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ABSTRACT 

Kate Gleason College of Engineering 

Rochester Institute of Technology 

Degree: Doctor of Philosophy                                              Program: Microsystems 

Engineering 

Author’s Name: Dylan J. McIntyre 

Advisor’s Name: Dr. Brian J. Landi 

Dissertation Title: Titanium Interconnection in Metallized Carbon Nanotube Conductors 

Metallized carbon nanotube (CNT) networks aim to achieve conductivities competitive 

with bulk metals, while retaining the favorable temperature coefficient of resistance (TCR) 

for CNT materials. Cu is the predominant metal for high conductivity applications due to 

cost and availability. However, microscopy shows that Cu poorly wets a CNT surface and 

requires an adhesion metal for an improved physical and electrical interface. The present 

dissertation utilizes thermal evaporation as a direct method to evaluate 2-D coatings of Ti 

as an interfacial metal for bulk Cu-CNT hybrids. Specifically, a 10 nm Ti layer maintained 

a continuous and uniform coating after annealing to 400 °C for an hour, demonstrating the 

temperature stability of Ti on a bulk CNT network. Additionally, Ti successfully 

suppressed the delamination of a Cu overcoat and achieved a 12% decrease in resistance 

for Cu-Ti-CNT hybrids after annealing at 400 °C.  

The benefits observed with thermally evaporated Ti adhesion layers motivated the 

development of a 3-D deposition approach using a novel joule-heated driven CVD 

technique, which can deposit metal throughout the entire bulk volume. Specifically, an 

oxygen-free precursor, cyclopentadienyl(cycloheptatrienyl) titanium(II), was used in the 

process under an inert/reducing atmosphere (95% Ar/ 5% H2) to promote a pure Ti metal 

deposition. Cross-sectional EDX mapping revealed that CVD successfully achieved 

diffusion of Ti throughout the entirety of a ~30 µm-thick, porous CNT conductor, 

demonstrating the capability of CVD as a method to fabricate bulk integrated Ti-CNT 

conductors for the first time. CVD coating morphology is shown to be tunable via the 

amount of precursor used, reactor pressure, and temperature, ranging from coatings 

localized along the individual bundles within the network to a fully connected film 

formation. Additionally, modification of reactor environment provides control over metal 

oxidation during growth onto the CNTs, achieving oxide-free to mixed Ti-oxide 

depositions as validated via Raman spectroscopy. The effectiveness of pure Ti as an 

adhesion metal on CNTs is benefitted from its wettability, temperature stability, and low 

contact resistance to CNTs; which can motivate investigating other potential adhesion 

metals that typically produce stable oxides like tungsten.  

Modeling of the temperature dependent electrical characteristics indicates an 

increase in metallic conduction behavior for the Ti-CNT conductors, with a decrease in the 

tunneling barrier between CNTs after Ti deposition, demonstrating the benefits of 

nanometal interconnection and showcasing the utility of temperature dependent modeling 

as a tool to assess nanoscale interaction of metallized CNT networks. CVD deposited Ti-

CNT conductors electroplated with Cu, annealed, densified and then annealed a second 

time, realize conductivities as high as 43.1 MS/m, which is the highest conductivity 

reported for a bulk metal-CNT conductor at 98% weight loading. A Ti seeded CNT 

conductor (~9% w/w) electroplated to 98% total metal mass was demonstrated to achieve 
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a specific conductivity of 6257 Sm2/kg, with a  TCR (from 300-600 K) of 3.49 × 10-3 K-1, 

which combined result in a surpassing of the specific conductivity of pure Cu at 

temperatures above 250 °C. Thus, the overall impact of this work is demonstration of 

advanced conductors with a combined high conductivity and low TCR, which can provide 

direct energy savings at elevated temperature operation for applications such as high 

efficiency motors. 
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1 Introduction 

1.1 Individual Carbon Nanotubes 

An individual CNT is comprised of a hexagonal arrangement of sp2 bonded C atoms 

formed in a cylindrical geometry (as depicted in Figure 1a). The configuration of the 

terminating atoms is formed based on the chiral angle connecting two 

crystallographically equivalent points of the hexagonal lattice, which consequently 

influences the electronic character of the nanotube. The chiral angle can range from 0° to 

30°, where 0° forms a zigzag geometry at the terminating edge, while a chiral angle of 

30° represents an armchair configuration. The resultant electronic properties of the CNT 

can be approximated via the zone-folding approximation, which applies a periodic 

boundary condition to the band structure of graphene to simulate the circular structure of 

a CNT. In graphene, a Dirac cone is formed in the electronic band structure at the 6 

corner points of the 1st Brillouin zone, whereby there is a zero band gap at the center of 

the cone [1]. Therefore, if the periodic slices intersect the center of the Dirac cones, 

metallic behavior is observed, which occurs in the case of armchair terminated CNTs. 

Specific zigzag configurations also result in the metallic behavior due to slices crossing 

through the center of the corner points of the 1st Brillouin zone. However, chiral angles 

that result in slices passing through the tapering portion of the Dirac cone will be 

semiconducting with a band gap related to the location of the slice. Additionally, the 

number of concentric walls forming the CNT (see Figure 1b) influences the electronic 

transport. Metallic behavior has been shown computationally for double walled CNTs, 

even if the concentric walls are comprised of semiconducting nanotubes. The number of 

concentric walls present tends to be influenced by the methods employed to synthesize 

the CNTs. Laser vaporization and chemical vapor deposition (CVD) based synthesis 
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techniques, for example, have been shown to produce either single walled CNTs 

(SWCNTs), double-walled (DWCNTs), or multi-walled CNTs (MWCNTs), based on the 

technique used and experimental conditions.  

For laser synthesis, a target consisting of graphite mixed with powdered metal 

catalyst is inserted into a heated tube furnace with inert gas flow, and bombarded by a 

pulsed laser, which induces local heating to sufficient temperatures for vaporization of 

the carbon and metal catalysts [2]. The vapor-phase carbon and metals then form nuclei, 

whereby the carbon diffuses through the metal and creates a site for CNT growth. 

Additional carbon then joins the graphitic cylinder to continue CNT growth, which is 

more energetically favorable than nucleating a concentric shell, thereby promoting 

exclusively SWCNT production. 

CVD based synthesis techniques are capable of achieving kilogram amounts of 

synthesis product and can be adapted in a variety of ways [3]. One particular CVD based 

approach is floating-catalyst CVD (FCCVD), which is especially relevant for the 

materials discussed throughout this dissertation. FCCVD utilizes a carbon feedstock and 

gaseous metal catalyst precursor that are injected into a heated furnace, which provides 

the temperature necessary to decompose the injected compounds into catalyst particles 

for CNT growth. The loose aerogel of CNTs that forms in the reactor can be extracted 

through a condensation and winding process, resulting in a fibrous roving material 

comprising a bulk CNT network [4, 5]. 
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Figure 1 Rendering of a (a) SWCNT, (b) MWCNT, (c) bundle of SWCNTs. Graphics courtesy of Andrew Merrill as 

part of Dr. Landi’s research group. 

1.2 Bulk Carbon Nanotube Conductors 

Bulk carbon nanotube (CNT) conductors have been extensively studied in recent 

decades due to their excellent flexibility, corrosion resistance, mechanical, and electrical 

properties [6, 7]. A driving force for the development of bulk CNT conductors towards 

electrical applications is the promise of exceeding the conductivity of metals, which is 

theoretically possible for an individual CNT. Ballistic conduction has been reported both 

theoretically and experimentally [8–11], which would correspond to conductivities > 108 

S/m for a 1 nm diameter and 1 µm length. However, these transport properties heavily 

depend on individual CNT characteristics such as chirality and number of walls, which 

govern the density of states and electronic band structure [12]. Consequently, a number 

of issues arise when translating the properties of individual CNTs to the bulk scale. For 

example, individual CNTs, when in close proximity, tend to agglomerate into bundles of 

various sizes due to the strong interaction between the delocalized orbitals [13, 14]. The 

bundling that occurs between the CNTs can, in turn, alter the electronic structure of the 

CNTs. For example, bundling can induce a bandgap in Armchair CNTs, which otherwise 

would have a zero-bandgap [15]. In general, bundling has been suggested to induce 
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scattering between the CNTs [16]. Moreover, the formation of a network leads to 

additional parameters which impact transport. The overall electrical conduction in CNT 

networks can be thought of as a sum of the individual electrical contributions stemming 

from transport along individual CNTs (intra-CNT transport), as well as the conduction 

between CNTs (inter-CNT transport).  

The intra-CNT transport is greatly influenced by the presence of surface defects or 

impurities located along the nanotube, which can arise as byproducts of synthesis. 

Individual CNTs have been experimentally measured to have resistance per lengths on 

the order of the 6 kΩ/µm [17], which is the theoretical quantum resistance limit for 

SWCNTs [18]. However, this resistance is not reliably achieved due to the random 

distribution of defects present after synthesis [19]. In fact, the difficulty in producing 

homogenous defect-free CNTs leads to a large inconsistency in reported mean-free-path 

(MFP) and R/L values [18, 20, 21]. Defects and impurities can act as scattering sites, 

which greatly impact the MFP of electrons in 1D conductors.  

Inter-CNT transport is otherwise affected primarily by the electrical barrier at the 

contact point between intersecting CNTs, e.g. the junction sites. Junction resistance has 

been reported to be a major contributing factor to the overall resistance in pristine CNT 

networks via C-AFM studies, where current maps of the network reveal the transport 

characteristics [22–25]. The junction resistance between two CNTs varies depending on 

the electronic type of each nanotube. The contact resistance between similar electronic 

type CNTs has been found to be far less than between electronically type mismatched 

CNTs, with metallic-metallic junctions having the lowest contact resistance [22, 24]. 
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Contact resistance can arise due to thin tunneling barriers present at the contacts, or by 

the presence of Schottky barriers. 

Models of the CNT network conduction have been developed, which describe 

multiple competing effects in the conduction of electrons [16, 26]. Namely, charge carrier 

conduction has partial contributions from metallic transport (limited by phonon 

backscattering), tunneling through thin barriers, and variable range hopping between 

spatially localized electronic states, which arise in highly disordered systems. The term 

“variable range” stems from the fact that the electronic transition is not limited to 

immediate neighbor states, but rather to other energetically favorable states depending on 

the length of localization (i.e. extent of the wavefunction). An implication of this 

phenomenon is that, as the temperature of the material increases, electrons in trapped 

states may adsorb enough phonon energy to transition states and participate in 

conduction, increasing the conductivity of the network. In fact, traditional metals 

decrease in conductivity when temperature is increased, due to increased phonon activity, 

which acts as a scattering mechanism for already free electrons. Bulk CNT networks, on 

the other hand, have been shown to have an order of magnitude lower variation in 

resistance with increasing temperature than traditional metals [27], making CNTs an 

attractive material for high-temperature applications. The conduction behavior in bulk 

CNT networks, therefore, differs greatly from traditional metals. As such, while 

traditional metals have the advantage of high conductivity at the bulk scale, bulk CNT 

networks exhibit favorable temperature dependent electrical properties. However, bulk 

CNT networks still require advancement to realize their inherent conductive capabilities 

for electrical applications.  
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Over the past decade, there has been a lot of attention focused on improving the 

electrical conductivity of bulk CNT conductors. Post-processing techniques, for example, 

have been explored to enhance the conductivity of bulk CNT networks via improving 

alignment, bridging junctions, and/or modifying local electronic structure through 

stretching [28], chemical doping [29–32], radial, solvent, or planar densifications [7, 33, 

34], and thermal treatment [35]. Additionally, a hybridized metal-CNT network has been 

of high interest in recent years as a means to achieve conductivities close to that of 

metallic wires by bridging the resistive CNT junctions with highly conductive metals [27, 

36, 37], while maintaining the favorable temperature coefficient of resistance (TCR) for 

the CNT bulk materials [27, 37]. Utilizing metals for adhesion as opposed to non-metallic 

adhesion materials is benefitted by the delivery techniques that can be adapted, such as 

Joule-heating driven CVD, which can encourage site-selectivity of deposition to the 

regions of the network that are benefitted the most [27], as will be discussed in more 

detail later. 

1.3 Metal-CNT Conductors 

Hybridizing CNTs with metals is an attractive method toward improving network 

conductivity, as the metals may serve to lower the electrical barrier between CNTs, as 

well as fill out the void space with a conductive material. From the other perspective, 

individual CNTs residing in a metal matrix can be thought of as ballistic transport centers 

within the metal, improving the local transport throughout metal matrices, as described 

by Tokutomi et al. [38]. Charge carriers in a metal wire will scatter according to the 

length of the MFP (see Figure 2). The presence of CNTs can act as local ballistic 
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pathways with an extended MFP, increasing the collective MFP, and thus providing an 

enhancement in the conductivity of the metal.  

 

Figure 2 Schematic of the electrical path for charge carriers in Cu with and without CNTs present. 

Simulations have predicted that embedding purely ballistic CNTs with perfect 

alignment into a Cu matrix can double the room temperature conductivity of Cu using 

only 30-40% CNT filling, assuming ideal electrical contact [39]. Cu is known to interface 

poorly with CNTs, so another simulation was conducted for a Ti interfaced CNT matrix, 

and suggested that Cu-Ti-CNT conductors can achieve double the conductivity of Cu for 

CNT fillings in the range of 30-60%. However, significant challenges must be overcome 

to realize (or at least approach) such ideal conditions. The primary areas requiring 

advancement include the synthesis of metallic defect free CNTs in bulk, and improved 

delivery of metals throughout the CNT network to achieve enhanced electrical contact 

(especially those metals which interface well with CNTs). The work herein will focus on 

the latter. Currently there exists multiple routes of interfacing metals with CNTs, each 
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with their own advantages and disadvantages. The three primary routes that will be 

explored here are PVD, CVD, and Electroplating. 

1.3.1 Physical Vapor Deposition 

The use of physical vapor deposition (PVD) can be employed for metalizing CNT 

networks through methods such as thermal or e-beam evaporation [40–43] and 

magnetron sputtering [44–48]. Thermal evaporation relies on ejecting atoms from a 

source material via thermal stimulus and allowing them to condense onto a substrate. The 

technique is carried out under vacuum, and thus the long mean-free-path for the vapor 

particles enables uniform deposition along a topologically flat/smooth surface. However, 

due to the line-of-sight nature of the technique, surface irregularities can cause 

shadowing to occur, which results in non-uniform deposition. For a porous network (such 

as that obtained by CNTs), these techniques offer limited penetrability, and provide 

primarily surface coatings, as the top layer of CNT bundles will effectively mask or 

shadow the underlying portions of the network. These techniques benefit from providing 

very pure depositions, and are ideal for constructing layered conductors, or for probing 

the interfacial interaction between the metals and the CNTs. These advantages make 

PVD an ideal route for evaluating the surface interaction between metals and CNTs. 

It has been hypothesized that the high energy of bombardment upon the CNT 

substrate induced by incident sputtered metal atoms may lead to defects [49, 50], which 

are claimed to localize electrons [49]. Electron localization results in an increase in the 

network resistivity and is attributed to an increased sp2-sp3 rehybridization [51]. Janas, 

et.al, found that, for Pt, Pd, Ag, and Au, sputtering indeed results in an increase in 

resistance of the metal-CNT hybrid during the initial deposition stages [49]. Sputtering 
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Au onto a 10 µm thick CNT network had the greatest impact electrically (among the 

metals studied), with a maximum increase in resistance of 200% compared to the starting 

CNT network. In fact, for thinner CNT substrates (~100 nm), the impact on increased 

resistance exacerbated, exhibiting a maximum increase in resistance of 1600% for the 

Au-CNT network, further emphasizing the surface locality of the effect. However, after a 

certain threshold of deposition time, percolation pathways formed which lead to a 

reduction in electrical resistivity. With enough deposition time, the resistivity of the 

networks eventually decreased beyond their starting resistance for all metals deposited. 

Thus, PVD techniques can be used to fabricate metal-CNT conductors with improved 

electrical properties, but may also impact the structure of the underlying CNTs. 

1.3.2 Chemical Vapor Deposition 

CVD is a popular technique for depositing metals onto topologically non-uniform 

substrates due to its reactive nature, which allows for better conformality across irregular 

and high-aspect ratio features [52]. Methods such as ALD are capable of achieving highly 

controlled conformal coatings on CNT networks, however, can require several hundred 

cycles (~1 min/cycle) to obtain thicknesses of ~15-30 nm for various metals [53, 54]. 

CVD otherwise offers a fast, scalable approach toward metal deposition, while still 

enabling infiltration throughout CNT networks. Typically, a powder or liquid precursor is 

brought into a vapor phase through applied heat. To reduce the precursor to a pure metal, 

excess energy in the form of heat must be supplied to crack the ligand and decompose the 

precursor. This excess heat can be applied after the vapor-phase precursor condenses onto 

a cool substrate; otherwise the reduction can occur upon contact with an already hot 

substrate (whereby the temperature exceeds the decomposition temperature).  
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There are multiple ways to provide heat to a substrate for decomposing the vapor-

phase precursor. An intriguing method in the context of CNT networks is Joule-heating 

(or resistive heating). In this case, the resistive components of the network generate the 

required energy for decomposing the precursors. At low currents, this lends the heating to 

be site-specific in nature, spatially localizing the heat adjacent to the resistive regions in 

the network. Alternatively, at sufficiently high currents, the lowest temperature anywhere 

along the length of the conductor is above the decomposition temperature of the 

precursor, in which case the deposition will tend toward a uniform distribution. Joule-

heating driven CVD is a novel delivery technique that has been established relatively 

recently as an effective route for depositing metals into CNT networks for device 

applications, whereby the metals preferentially deposit at the junctions sites between 

contacting CNTs [55]. More recently, Leggiero, et al, have expanded this technique to 

produce the first ever Joule-heating driven CVD-based bulk metal-CNT hybrid, whereby 

site-specific depositions of Cu(tBaoac)2 were demonstrated, and full integration 

throughout the thickness of the conductor was achieved [27]. This technique, when 

combined with electroplating to interconnect the Cu seeds, led to a record conductivity of 

28.1 MS/m for a conductor consisting of a mass percentage of 94.2% Cu w/w. Recent 

advances in this technique render it a promising method toward high-conductivity bulk 

CNT conductors.  

1.3.3 Electrodeposition 

A viable and well-studied route for delivering metals onto CNTs is electroplating 

[27, 37, 50, 56–60]. Electroplating relies on the transfer of metal ions from a counter 

electrode to a CNT working electrode through an electrolytic solution. Ions in solution 



23 

 

are adsorbed at the CNT surface via electrostatic attraction, and subsequently reduced by 

the charged CNT interface or impurities [57]. As a result, electroplating can achieve 

internal depositions within the CNT network via diffusion of ions in solution through the 

network. The degree of internal plating depends on the rate of ion diffusion through the 

CNT network relative to the deposition rate. Thus, surface plating can be encouraged by 

increasing the current to the extent that deposition occurs more rapidly than ionic 

diffusion through the CNT network [37]. As such, electroplating offers the tunability of 

internal vs. surface depositions. 

Hannula, et al, found that surface functionalization plays an important role in the 

deposition properties for Cu electroplated CNTs [57]. It was found that Cu deposits in an 

inhomogeneous manner on a pristine film comprised of >80% MWCNTs because of the 

lack of active nucleation sites. On the other hand, oxygen functionalized films, produced 

by thermal treatment in air or anodization, provided a highly active surface resulting in 

uniform coatings. Surface activation via functionalization, however, increases the defect 

content in the CNT film, evidenced by an increased D/G ratio. Increasing the 

functionalization improves the hydrophilicity of the CNT film and provides more active 

sites, however, excessive functionalization can severely impact the electrical properties of 

the film. In such a scenario, there exists a trade-off between increased resistance and 

improved wettability. 

An alternative way to increase the amount of active sites is to perform a two-step 

process, whereby the CNT conductor is first “seeded”, and then electroplated [27, 37, 

50]. Such a method has been employed recently by Tran, et al, in which a wet-spun CNT 

wire purchased through DexMat was sputtered with an Au adhesion layer, prior to Cu 
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electrodeposition [50]. Notably, electroplating the as-received CNT wire resulted in a 

non-continuous Cu coating, with few nucleation sites leading to island growth in the 

initial deposition stages. The Au sputtered CNT wire, however, had greatly improved 

surface coverage during the initial deposition stages, with smaller and more abundant 

nuclei. A previous study has shown that the presence of Au improves the hydrophilicity 

of CNTs, which is important for the wetting of the aqueous electrolyte [49]. Additionally, 

the Au provides uniform activation sites for nucleation during electroplating. 

Furthermore, the Cu-Au-CNT wire achieved conductivities up to 80% of pure copper’s 

conductivity and density savings up to 42%. Thus, metal seeding can offer an advantage 

over oxygen functionalization for improving the electroplating deposition dynamics. 

1.4 Metrics and Techniques 

To quantify the performance of metals deposited onto CNTs via the 

aforementioned methods, a variety of metrics are employed. Characterization of the 

defect and elemental purity, conductivity, temperature dependent electrical properties, 

and morphology, among other characteristics, provide crucial information toward 

understanding the metal-CNT characteristics. Evaluating these properties is necessary to 

quantify the advantages of the different deposition techniques and the improvements they 

offer to the starting materials. 

1.4.1 Conductivity, Specific Conductivity, and Temperature Dependent Resistivity 

Volumetric and Specific Conductivity 

Volumetric conductivity (or simply, conductivity) is a paramount metric for 

assessing the performance of bulk CNT networks, and for drawing comparisons to 

traditional metallic conductors. Bulk conductivity of a material is defined by three 
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parameters: the cross-sectional area of the conductor, A; and the resistance, R, over a unit 

length, L. The equation governing conductivity is expressed as: 

𝜎 =
𝐿

𝑅⋅𝐴
     (1) 

Linear four-point probe measurements offer a reliable, facile method toward the 

measurement of a material’s R/L, while circumventing the contact resistance of the 

measurement probes. In this configuration, two outer probes supply current through the 

conductor, while two inner probes separated by a distance, L, act as a voltage meter. The 

R/L measurement can then be correlated with cross-sectional area to calculate 

conductivity. The cross-sectional area can be either calculated based on optical 

microscopy diameter measurements (for uniform cylindrical conductors) or obtained by 

SEM (for irregular conductors). 

A challenge that can arise when characterizing bulk CNT networks is the non-

uniformity in cross-sectional area that may be present along the length of the conductor. 

In such cases, mass specific conductivity is a preferred metric, which evaluates the 

electrical performance with respect to mass instead of cross-sectional area. Such a metric 

can also be useful to determine weight-savings provided by the advanced conductors. The 

mass specific conductivity is defined as follows: 

𝜎𝑠𝑝 =
𝜎

𝐷
=

𝐿/𝑅𝐴

𝑀/𝐿𝐴
=

𝐿2

𝑅𝑀
     (2) 

where D is the density of the conductor, and M is the mass of the conductor. 

Measurement of the mass can be reliably made using a microbalance to provide the 

necessary data for calculation of the specific conductivity. 
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Temperature Dependent Resistivity 

Temperature dependent electrical behavior lends insight toward the interaction 

between metals and CNTs. A vital component to hybridizing the CNTs with metals for 

conductive applications relies on improving the conductivity of the CNTs while 

preserving the beneficial temperature coefficient of resistance (TCR) properties inherent 

to CNT materials. Several physical phenomena are responsible for the change in 

resistance that materials experience under differing temperature conditions. In the case of 

metals, phonons increase the amount of collisions that free electrons endure in their 

conduction path, decreasing the MFP and increasing resistance at elevated temperatures. 

However, for semiconductors, the extra energy can assist in breaking captive electrons 

free from their host, allowing them to contribute to conduction at elevated temperatures. 

In general, the temperature coefficient of resistance for metals, 𝛼0, is expressed as 

𝛼0 =
𝜌−𝜌0

𝜌0(𝑇−𝑇0)
     (3) 

where 𝜌0 is the initial resistivity corresponding to an initial temperature, 𝑇0, and 𝜌 is the 

final resistivity corresponding to an elevated or reduced temperature, 𝑇.  

An additional factor governing the temperature dependent electrical properties of 

metals is the metal grain structure. In fact, the measured TCR for electrochemically 

deposited Cu interconnects has been demonstrated to vary with grain structure [61]. The 

resistivity, 𝜌0, of a metal consists of two components: the temperature-dependent 

component, which is influenced by phonon scattering, 𝜌𝑇(𝑇); and the scattering at 

defects, surfaces, and grain boundaries, 𝜌𝑅, which is temperature-independent. Thus, the 
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resistivity can be expressed as 𝜌 = 𝜌𝑇(𝑇) + 𝜌𝑅 [61]. Therefore, to understand the role 

that grain boundaries impart in the electrical behavior, the TCR can be rewritten as: 

𝛼0 =
𝜌𝑇(𝑇)−𝜌𝑇(𝑇0)

(𝜌𝑇(𝑇0)+𝜌𝑅)(𝑇−𝑇0)
                (4) 

Consequently, it is evident that 𝛼0 will decrease with an increased 𝜌𝑅, which can arise 

from a reduced grain size (or increased impurity concentration/crystal defects). While 

grain expansion can be induced in thin copper films via annealing, the maximum size is 

ultimately restricted based on film dimensions. A consequence of this is that, while the 

thickness of a surface Cu film may be tuned by deposition parameters, depositions 

internal to porous structures will ultimately be constricted in dimensions in accordance to 

the pore confinements.  

 

CNTs exhibit a more complex conduction behavior. Previous efforts have been 

made to model the temperature dependent conduction behavior of CNT networks by 

considering the different contributing factors to network conduction [16, 26], expressed 

as: 

𝜎(𝑇) = [𝐴exp (−
𝑇𝑚

𝑇
) + 𝐵exp (

𝑇𝑏

𝑇𝑠+𝑇
)]

−1

+ 𝐻exp (−(
𝑇0

𝑇
)
𝛾

)   (5) 

where A and B are coefficients related to morphology of the network (alignment, density, 

etc.). The three terms correspond to the contributions from metallic conduction, 

fluctuation assisted tunneling through thin barriers, and variable range hopping, 

respectively. Energies of the respective components can be obtained by multiplying the 

parameters by Boltzmann’s constant, kb. The energy kbTm is the metallic component that 
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corresponds to the backscattering energy of zone-boundary phonons for quasi 1-D 

conductors. Charge carriers that exhibit metallic character in this way have improved 

conduction at lower temperatures due to the lesser phonon activity. kbTb represents the 

typical tunneling barrier energy which occurs between contact regions (CNT junctions), 

and Ts/Tb relates to magnitude of the quantum resistivity in the low-temperature limit. T0 

is a function of the electronic wave function localization length, which governs the 

carrier’s ability to tunnel between localized states with assistance from phonon 

absorption (VRH). As such, the relative sensitivity of this term to change in temperature 

strongly depends on the localization length. Additionally, the dominance of this term is 

influenced by the degree of localized states within the network. For thicker networks, a 

greater number of metallic percolation pathways become available, and the VRH term 

becomes negligible. For thinner networks, however, localized states represent a greater 

proportion of the network, and the VRH term becomes an important consideration. The 

location of localization is represented by 𝛾 =
1

1+𝑑
, where d is the dimensionality. In this 

case, a dimensionality of 1 suggests intra-CNT localization, whereas d = 2 or 3 suggests 

inter-CNT localization. These models have had success in fitting to measured data for 

CNT networks and lends insight toward the character of different networks.  

Temperature dependent conductivity measurements can be made at RIT are using 

a commercial JANIS cryostat (see Figure 3) which handles temperatures ranging between 

77 K – 800 K under vacuum (low 10-6 mbar).  The temperature controller and four-point 

probe equipment are interfaced with LabVIEW for precise temperature control and 

electrical measurements. Measurements are typically made by recording IV sweeps at 5 

degree increments at temperatures ranging from 300 – 600 K.  
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Figure 3 Left image: Vacuum pump (left), temperature controller (center), and JANIS cryostat (right). Right image: 

JANIS cryostat four-point probe stage. 

To gain insight toward the interaction between CNTs and deposited metals, a parallel 

resistor model was developed [27] which treats the systems as two independent layers (no 

interaction between CNTs and Cu), and can be expressed as 

1

𝑅(𝑇)𝑡𝑜𝑡
=

1

𝑅(𝑇)𝐶𝑢
+

1

𝑅(𝑇)𝐶𝑁𝑇
     (6) 

where R(T) is the resistance as a function of temperature. In this case, resistance is 

obtained via each materials’ measured specific conductivity, and R(T) is subsequently 

calculated by using each materials’ corresponding TCR values. A sample which adheres 

to the model reflects a non-interacting bilayer system. Deviation from this model 

otherwise suggests that interaction between the materials exists. Thus, various models 

can be applied to understand the conduction behavior of the metal-CNT networks as well 

as whether interaction exists between the hybrid components. 

1.4.2 Morphology Analysis (SEM) 

Scanning electron microscopy (SEM) is a powerful tool for qualitatively 

identifying the presence of particles (such as catalysts) in the network, as well as 
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assessing the microscopic morphology of the network and particles within it. 

Additionally, SEM can be used to directly measure the cross-sectional area of the CNT 

conductors. Due to the irregular nature of bulk CNT networks, cross-sectional 

measurements may require specialized techniques to prepare the samples for SEM 

imaging. Several methods exist to achieve cross-section preparation, each with their own 

advantages and disadvantages. RIT has the capability to perform cross-sectioning via 

epoxy-setting followed by microtoming, laser-cutting using a Forest Scientific 30 W 

VLS2.30 CO2 laser, or razor slicing. The first option, microtoming, offers minimal 

distortion to the cross-sectional area size, but is time and labor intensive. Laser-cutting 

provides a rapid method of cutting CNT wires for cross-sectional assessment, however, 

the local heat generated may lead to metal migration and/or flaring of the CNT bundles in 

the network, distorting the cross-sectional area. Razor slicing also offers the advantage of 

speed, however, may disturb the morphology of the cross-section area by pulling out 

CNTs, and distorts the area through compression. As such, each of these techniques 

presents their own challenges. Therefore, careful consideration must be made when 

selecting the technique, depending on the application and desired analysis. 

1.4.3 Elemental Characterization (XRD, Raman, EDX) 

Scanning electron microscopes are capable of performing X-ray microanalysis to 

determine the elemental profile present within a specimen. The technique is performed by 

bombarding the sample with electrons whose energies are on the order of the binding 

energy of the element’s core electrons. The excited core electrons then relax, emitting 

photons in the X-ray range. The amount of orbital shells and occupancy of the subshells 

within the host atom dictate the amount of energy required to excite the electron. Thus, 



31 

 

each element can be uniquely identified by collecting the characteristic X-ray emission 

using a detector that is equipped on the SEM. This technique, referred to as energy 

dispersive spectroscopy (EDS), is useful for analyzing the carbon and metal distribution 

in the CNT hybrids. 

Another X-ray related technique that can be used to identify the presence of 

specific elements is X-ray diffraction (XRD). In compliance with the Bragg condition, an 

X-ray beam of a particular energy is directed at a crystalline sample and undergoes 

constructive interference at allowed diffraction angles dependent on the lattice spacing. 

The sensitivity of this technique to the lattice parameters provides characteristic 

measurements for elements as well as compounds such as oxides. Thus, XRD can help 

determine whether the deposition of metals onto CNTs results in a metallic film, or forms 

carbides/oxides.  

A third spectroscopy technique, which is powerful for probing low-frequency 

modes (e.g. vibrational and rotational), is Raman spectroscopy. In this case, incident 

radiation in the visible, near-UV, or near-IR region is inelastically scattered (i.e. the 

photons exhibit a different energy upon scattering) with an energy shift related to the 

molecule’s nuclear vibrations. Molecules may exhibit multiple types of vibrational states 

which may be unique to the molecule, enabling the identification of compositional 

information as well as crystallinity of a structure. In the context of CNTs, the relative 

defect ratio can be revealed through the presence of the D peak, as phonons responsible 

for this signal are forbidden in sp2-bonded carbon. Additionally, the presence of certain 

carbides and oxides can be identified by their vibrational modes, enabling this technique 

to determine the state of certain metal films deposited onto the CNTs, lending insight 
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toward the bonding characteristic of the metals with the CNTs. In general, the variety of 

characterization techniques described above are paramount for understanding the 

metal:CNT interaction, and helps to identify the compatibility of the different metals with 

CNTs. 

1.5 Interaction of Metals and CNTs 

1.5.1 CNT-Metal Compatibilities 

An issue that arises with the integration of certain metals, such as Cu, is their poor 

adhesion when deposited onto CNTs [45, 62], which prevents full utilization of the 

potential electrical benefits provided by the hybrid conductors. A qualitative indication of 

the wettability of metals on CNTs is the morphology that they take upon deposition, 

which can be observed using SEM or TEM. The morphology of a fairly thorough survey 

of metals as deposited onto individual CNTs has been performed by Zhang, et al, in 2000 

[63, 64]. Specifically, Ti, Ni, Pd, Au, Al, and Fe were deposited at 5 nm and 15 nm 

thicknesses using e-beam evaporation. Ti is shown to exhibit the best wettability amongst 

the metals studied, as it deposits uniformly and continuously along the CNTs. Ni and Pd 

are also shown to deposit mostly continuously, in the form of discrete particles, with 

some degree of interruptions along the length of the coating. Au, Al, and Fe, on the other 

hand form discrete islands as deposited. In fact, the size of the deposited Au clusters have 

a bigger diameter than the thickness of the deposited coating, indicating migration of the 

Au to minimize surface energy. 

The deposition dynamics are largely dependent on the interaction between the 

substrate and the condensate. The diffusion rate of adatoms on a surface is proportional to 

the energy required for diffusion (𝐸𝑑𝑖𝑓𝑓) by exp(−𝐸𝑑𝑖𝑓𝑓/𝑘𝐵𝑇), where 𝑘𝐵 is the 
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Boltzmann constant, and T is temperature [65]. Thus, a lower diffusion energy results in 

a higher rate of diffusion. The diffusion energy has been empirically determined to be 

proportional to the binding energy, 𝐸𝐵, as  𝐸𝐷𝑖𝑓𝑓~𝐸𝐵/4 [65]. Accordingly, a strong 

binding energy between the two constituents results in slow surface diffusion, which 

results in a higher nucleation density. A weak binding energy, otherwise, permits fast 

surface diffusion such that adatoms can find already formed nucleation centers and merge 

to induce island growth. Thus, the morphology observed for the deposited metal atoms on 

CNTs gives qualitative insight toward their binding energy and interaction. 

Attempts to explain the interaction between CNTs and metals has proven 

challenging, and groups have focused on correlating a variety of different parameters to 

explain the behavior observed. For example, Zhang, et al, explained the results observed 

in their evaporation studies described earlier [63, 64] based on the reactivity of bulk 

carbon with the respective metals. Metals can interact with carbon in a variety of ways. 

Fe, for example, is capable of dissolving carbon well for catalytic applications, while Ti 

limits the mobility of the carbon as it locks the carbon into a carbide [66]. Metals like Cu 

are otherwise inert to carbon. The range of interactions is explained by the bonding 

behavior between carbon and the respective transition metals, for which, the carbon p-

orbitals tend to overlap with the corresponding metal d-orbitals. A general trend has been 

noted by Sung, et al, that an increasing amount of d-orbital vacancies in transition metals 

is correlated to an increase in melting point temperature of their respective bulk carbides 

(see Table 1), as well as the maximum carbon solubility [66]. A higher melting point is 

generally indicative of strong bonding energy. Furthermore, carbon solubility is 

indicative of the reactivity of the metals with carbon. Thus, metals like Ti, which have 8 
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d-orbital vacancies, react very readily with carbon to form carbides, and as such have 

limited solubility. Metals like Fe and Ni, on the other hand, are capable of dissolving a 

substantial amount of carbon without fully locking up in carbides, due to their moderate 

reactivity [66]. Lastly, metals like Cu have very limited interaction with carbon and 

exhibit no carbon solubility as a result.  

 

Table 1: A list of metals and their corresponding number of d-orbital vacancies, as well as the melting point for the 

respective stable carbide types. Lastly, effective eutectic solubilities at 1000 °C for C in molten transition metals. All 

data obtained from Sung, et al [66]. 

The reactivity of metals with carbon is an important factor regarding the expected 

bonding and adhesion characteristics. However, the electrical interaction between metals 

and CNTs is another critical factor when considering their use for fabricating hybrid 

conductors. A primary consideration is the contact resistance between the metals and the 

CNTs, which can arise from the tunneling barriers generated by work function mismatch 

[67, 68] as well as the contact geometry [69]. Furthermore, the electrical contact can be 

influenced by adsorbates present on the CNTs, which modify the local density of states 
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(DOS) [70–72]. Adsorbates can arise from atmospheric or environmental exposure, 

whereby the CNT’s non-localized π-electrons enable the sidewalls to form weak van der 

Waals bonds with ambient molecules. Such adsorbates have been reported to measurably 

influence the electrical conductivity of CNTs [73, 74], and in some cases decrease the 

contact resistance [75]. 

More generally, however, wetting geometry imparts a significant role in contact 

resistance between metals and CNTs. It is reported that, with poor wetting, the contact 

area between the metal and the CNT decreases, and the work function difference 

dominates the resistance [67]. Thus, these two factors must be considered when assessing 

metal-CNT compatibility for electrical interfacing. Lim, et al., created a plot of metal-

CNT contact resistances versus the work function of the metals [67]. While Ti deviates 

from the typical range of CNT work functions, it exhibited the lowest contact resistance 

as a result of its excellent wetting to CNTs. Metals like Cu, on the other hand, exhibited 

moderate contact resistance, despite having a matched work function, due to its poor 

wettability.  

As mentioned previously, good wettability has been associated with a high 

amount of d-orbital vacancies. This trend has been observed for contact resistance as 

well, in a study performed by Liebau, et al [76]. In this study, individual CNTs were 

contacted by either Au/Fe, Pd, or Co electrodes to measure contact resistance via a two-

point probe method, which measures the intrinsic CNT resistances as well as the contact 

resistances. A four-point probe method was used to measure the intrinsic resistance of 5 

individual CNTs, which would serve as the CNT contribution to the resistance obtained 

via the two-point probe measurements. In the case of the Au/Fe electrode, the CNTs 
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exhibited the highest resistances measured (20 MΩ – 2.5 GΩ). Pd exhibited much lower 

resistances, between 70 – 450 kΩ. Co contacted CNTs, having the most d-orbital 

vacancies, resulted in resistances below 150 kΩ. This demonstrates a trend that higher 

metal d-orbital vacancy leads to improved contact resistance with CNTs, both of which 

have previously been correlated with good wettability. 

 Metals with the highest conductivities often have few to no d-orbital vacancies 

(such as Ag and Cu), and thus, interact poorly with CNTs. Therefore, when preparing 

bulk metal-CNT hybrid conductors, an interfacial layer is necessary to improve the 

contacting and interaction between the CNTs and the respective conductive metal 

coating. Table 2 shows a summary of all the important considerations to bear for metal-

CNT conductor design, with metals ordered by their number of d-orbital vacancies. A 

green cell indicates properties that are well aligned with intermixing of metals and 

carbon, and suitable for high performance. Yellow cells indicate limited interaction or 

performance, while red indicate very poor interaction or performance. Information for 

some metal:CNT interaction properties are not readily available and are shaded grey. 

Based on the collection of reported values, metals such as Al, Cu, Au, and Ag, while 

highly conductive, will require an interfacing component if to be used with CNTs. Ti and 

Ni are two candidates that stand out as promising adhesion metals, with overall good 

compatibility with CNTs. As such, Ni and Ti have been selected for evaluation herein. 
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Table 2: A summary of metal, carbon, and metal-CNT properties reported in the literature. Values obtained from 

reports are referred to accordingly: a [18], b [77], c [63], d [78], e [69], f [79], g [80], h [81], i [82], j [83], k [84], l [85]. 
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1.5.2 Ni Compatibility for CNT Hybrids 

Previous studies have shown that Ti and Ni have favorable wettability on CNTs, as well 

as good electrical contact [63, 86], whereas metals such as gold, aluminum, and iron 

show poor wetting properties[63]. In the case of Ni, Menon et al. found computationally 

that the curvature of the CNTs can promote rehybridization of the carbon sp2 orbital with 

the Ni d-orbital, altering the bonding characteristics from that experienced between Ni 

and bulk carbon [87]. This motivates the use of Ni for use in bulk metal-CNT hybrid 

conductors.  

Zou et al. used electrodeposition to fabricate a bulk Cu-Ni-CNT conductor 

consisting of a nanoscale Ni layer and a 2 µm thick Cu layer. Samples were annealed in 

Ar for 30 minutes at 300 °C, resulting in a conductivity greater than 20 MS/m, and a 

temperature coefficient of resistance as low as 1.14 × 10-3 K-1 [62]. Zou et al. showed via 

cross-sectional electron microscopy that an annealed Cu-CNT conductor fabricated 

without a Ni adhesion layer resulted in microgaps at the Cu-CNT interface, due to poor 

wettability of the Cu. With the use of a Ni buffer layer, however, a well-connected 

interface was formed, demonstrating the ability of Ni to interface well with CNTs. 

However, another important aspect to note is that the Ni diffuses through the Cu layer 

due to the mutual compatibility of the metals, as evidenced by an EDX line scan. 

 The impact that annealing has on the diffusion of Ni within the Cu layer was 

further illustrated using surface EDX mapping, whereby the Ni signal became more 

homogeneous after annealing. This can have a variety of consequences on the electrical 

properties of Cu. For example, a previous study has shown that the conductivity of 

electrodeposited Ni-Cu alloys decreases with increasing Ni content [88]. In this case, 
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diffusion of Ni into Cu should be limited. On the other hand, constantan is a Ni/Cu 

(~45%/55%) alloy, which is known for its extremely low TCR of ~5.0 × 10-6 K-1 [89]. 

Thus, the observed low TCR for this Cu-Ni-CNT hybrid may be partially benefited by 

the diffusion of the Ni into the Cu layer, although the true origin of this low TCR is not 

fully understood. In this paper, it is speculated that partial elastic scattering at the surface 

could possibly be reducing the TCR, however no evidence is provided. Regardless, Ni is 

shown to interface well with CNTs as well as Cu, showing promise from a wettability 

standpoint. 

Milowska et al. have studied the interaction between Cu, Ni, and Cr with CNTs as 

deposited (via magnetron sputtering) and after exposure to elevated temperatures 

(ranging from 400 to 1000 °C) [45]. Electron microscopy images indicate that melting of 

the Cu is observed at temperatures as low as 400 °C, leading to severe de-wetting at 600 

°C, and eventually evaporation at 1000 °C. In the Cu-Ni-CNT system, however, 

significant beading was not observed until 800 °C, with Ni remaining at 1000 °C after the 

Cu evaporates. Furthermore, some amount of metal was visible beneath the CNT surface 

in the Cu-Ni-CNT, suggesting a much greater interaction between the metals and the 

CNTs. However, the high degree of interfacial interaction provided by the Ni comes at 

the cost of degradation of the CNT structure. Milowska et al. measured higher D/G ratios 

for the Cu-Ni-CNT system as the annealing temperature increased, attributed to the 

solubility of carbon in Ni (which is corroborated by EDX measurements). The solubility 

of carbon within the Ni is decreased with the presence of Cu, and thus, while Ni provides 

great surface interaction with CNTs, careful considerations must be made regarding 

applied temperatures and metal combination selection.  
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1.5.3 Ti-CNT Interaction 

Ti is among the most reactive metals with CNTs, indicating superior wettability 

[63] and binding [66], as well as electrical contact  [67]. Computational studies 

performed by Yang et al. investigated the adsorption of continuous Ti, Au, and Al chains 

(linear connection of metal atoms) on various SWCNT surfaces and found that Ti is 

energetically more favorable [90]. Their ab initio calculations determined binding 

energies of 0.25 eV/metal atom and 0.52 eV/atom for Au and Al, respectively, while Ti 

had binding energies as high as 2.04 eV. Moreover, it was found that the Ti chain imparts 

a DOS at the Fermi level for the Ti deposited SWCNT, giving rise to metallic behavior 

for an otherwise semiconducting SWCNT. First principle calculations were also carried 

out on the bonding distance and electrical contact properties of metals on graphene and 

SWCNTs by Matsuda et al. [91]. Ti was shown to exhibit the smallest bonding distance 

on graphene at 2.17 Å, and a high binding energy of 2.09 eV. Further calculations were 

conducted for (13,0) SWCNTs, resulting in an even smaller bonding distance of 2.11 A, 

attributed to the curvature of the SWCNT. Matsuda’s calculations determined that the 

interaction between the d-orbitals of the metals and carbon’s pπ orbitals have a critical 

impact on the electrical and bonding characteristics imparted to the metal-CNT systems. 

Electrical characteristics were probed by constructing I-V models to calculate the contact 

resistances of the metals with the CNTs. Ti was found to have an extremely low contact 

resistance on (7,7) SWCNTs of 6.9 kOhm/nm, an order of magnitude lower than the next 

best contact resistance found (63.7 kOhm/nm for Pd-SWCNT). Overall, computational 

studies have good agreement that Ti has highly favorable characteristics as deposited on 

CNTs. 
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Zhang et al. also provided experimental evidence of the strong adhesion between 

Ti and CNTs [63, 64]. As mentioned previously, Zhang coated individual CNTs with 

various metals and found that Ti forms continuous coatings along the surface of the 

CNTs [63]. In a follow up study, they coated CNTs with 1 nm of Ti and investigated the 

coating properties of various other metals deposited onto the Ti-CNT system [64]. 

Electron microscopy images showcased that 5 nm coatings of Au, Pd, Fe, Al, and Pb onto 

individual SWCNTs resulted in mostly discontinuous coatings as deposited. However, a 

1 nm Ti adhesion layer was capable of significantly improving the wettability of all 

metals studied, resulting in nearly continuous coatings for even the least compatible 

metals. 

Experimentally, the use of a Ti layer on CNTs has also been prevalent in 

nanoelectronics, whereby Ti improves the contact resistance between CNTs and their 

respective substrate [92, 93]. Srividya et al. found that as-grown vertically aligned CNTs 

using an Fe catalyst exhibited poor adhesion with a Si substrate (with CNTs detaching 

from the surface), whereas a Ti buffer layer provided sufficient support to maintain 

adhesion of the CNTs [93]. Additionally, it has been reported that the high CNT-substrate 

contact resistance can lead to excessive Joule-heating, eventually damaging/evaporating 

the CNTs, resulting in a reduction in emission current for the CNT devices [94]. This 

effect is witnessed in the CNT devices that Srividya et al. fabricated without the Ti 

adhesion layer. However, the use of a Ti adhesion layer maintains a stable emission 

current for extended periods of time, attributed to the lowering of the contact resistance 

from the Ti-CNT interface (resulting in less Joule-heating).  
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Additionally, in a study performed by Chu et al., Ti was shown to exhibit strong 

interfacial interaction in a Cu-Ti/CNT metal composite matrix while having no negative 

impact on electrical conductivity with up to 15% CNTs by volume [95]. In this study, 

Cu-Ti/CNT composites were prepared via mechanical ball milling of either Cu or 

prealloyed Cu-Ti (0.85% Ti, 8-20 µm in size) powders and MWCNTs. The prepared 

composites consisted of 0, 5, 10, and 15% wt CNTs and were tested for yield strength 

and electrical conductivity. A measurably higher yield strength was evident for the Cu-

Ti/CNT composite and is attributed to a couple of factors. Namely, the presence of Ti 

itself can slightly improve the resistance to plastic deformation by impeding the 

movement of lattice dislocations. Moreover, Chu et al. observed the presence of TiC 

(111) lattice fringes via HRTEM imaging, the presence of which may significantly 

improve the interfacial interaction between the Cu and the CNTs and the corresponding 

load-transfer ability. Furthermore, while the yield strength is improved significantly with 

the presence of a Ti buffer, the electrical conductivity is unaffected. This suggests that Ti 

is a very effective adhesion metal for use in Cu-CNT composites, which can improve the 

interfacial interaction without negatively impacting the electrical performance.  

2 Opportunities for Advancement & Dissertation Goals 

2.1 Evaluation of Adhesion Metals for Metal-CNT Hybrid Conductors 

Ti and Ni have shown promising adhesion properties as-deposited, however, 

studies to date have focused on room temperature electrical variation and microscale 

behavior, whereas understanding how adhesion metals on bulk networks are stable at 

increased temperature due to operation conditions (such as motors) or under increasing 

applied current [7, 27] is warranted. As highlighted earlier, Milowska et al. have studied 
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the effects of high-temperature annealing (400 °C to 1000 °C) on Cu-Ni-CNT 

composites, finding that the Ni experiences a complex solubility with both Cu and CNTs 

[45]. The effectiveness of Ti as an adhesion layer for conductive Cu-CNT hybrids at 

elevated temperatures is yet to be reported. In fact, there has been very limited research in 

general investigating the use of Ti as an adhesion layer for bulk metal-CNT hybrid 

conductors. Much of the research to date on Ti-CNT structures are based in 

microelectronics or MMC’s for mechanical purposes, which have demonstrated the clear 

advantages that Ti shows as an electrical interface for CNTs. Utilizing Ti as an adhesion 

layer for metal-CNT hybrids could offer the advantages of improving wettability of 

conductive metal overcoats as well as provide an electrical interface capable of allowing 

charge transfer due to its low contact resistance with CNTs. 

2.2 Scalable Fabrication Methods Towards Ti-rich Integrated Conductors 

One of the critical challenges with integrating Ti into bulk CNT networks is the high 

reactivity of Ti and its corresponding tendency to form oxides. As a result of its high 

reactivity, electrodeposition of metallic Ti is particularly challenging, often resulting in 

depositions of various Ti compounds based on the media used [96–98]. Therefore, PVD 

techniques offer an easy route for the deposition of pure Ti. However, due to the limited 

penetrability of PVD techniques, they are not a viable solution for fabricating integrated 

metal-CNT conductors. Joule-heating CVD based delivery offers a promising route 

toward the fabrication of integrated Ti-CNT conductors, with the advantage of 

maximizing metal-CNT interfacial area for enhanced interaction. There has been limited 

work on the deposition of pure Ti onto bulk CNT networks through the Joule-heating 

CVD method, as the technique is relatively recently developed for bulk CNT networks.. 
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Such a technique would be suitable as a scalable fabrication method for fully integrated 

Ti-CNT conductors, which can then be processed further to bridge the CNT bundles and 

junctions with highly conductive metals that are typically incompatible with CNTs.  

Ultimately, CVD deposited Ti-CNT conductors can enable the fabrication of high-

performance metal-CNT hybrids, mitigating the connectivity issues, improving their 

temperature stability, and enhancing their electrical performance. 

2.3 Dissertation Objectives 

The aim of this dissertation is to optimize the fabrication of 3D Cu-Ti-CNT hybrids for 

development of highly conductive, temperature-stable wires with favorable temperature 

dependent electrical properties to provide energy savings in elevated temperature 

applications. Developing an understanding of the relationship between metallization 

processing conditions and resultant material characteristics is key for the fabrication of 

high performance metal-CNT hybrids. The major focus areas in this dissertation are 

subdivided below: 

1. Evaluation of the electrical performance, temperature stability, and wettability of 2-D 

Ti and Ni as adhesion metals for bulk Cu-CNT conductors via thermal evaporation. 

2. Fabrication of high conductivity 3-D Cu-Ti-CNT hybrids combined with low TCR by 

means of a Joule-heating CVD technique and electroplating. 

3. Demonstration of Ti-rich depositions achieved via development in CVD processing 

conditions. Assessment of the influence of CVD conditions on the nanoscale 

interconnection characteristics by employing temperature-dependent electrical 

modeling. 

 



45 

 

3 Evaluation of Ti and Ni as Adhesion Metals 

 

3.1 Thermal Evaporation and Annealing 

The use of physical vapor deposition (PVD) can be employed for metalizing CNT 

networks through methods such as thermal or e-beam evaporation [40–43] and 

magnetron sputtering [44–48]. In our recently published work, a thermal evaporation 

technique was used to deposit thin metal films onto a CNT conductor, followed by 

annealing, for assessing adhesion via scanning electron microscopy (SEM) analysis and 

electrical characterization [99]. PVD was selected as a means to achieve a well-defined 

thin-film interface for assessing the benefits of an adhesion layer towards scalable 

designs. Samples were annealed at temperatures between 100 °C and 400 °C, a 

temperature range which could be reached during the operation of motor applications or 

during fabrication of the Cu-CNT conductors [27]. Furthermore, temperature-dependent 

electrical measurements were conducted from 26.85 °C to 326.85 °C (300 K to 600 K) to 

understand the permanent electrical effects that processing at elevated temperatures has 

for the various hybrid conductors. Identification of a conductive adhesion metal for the 

Cu-MA-CNT is critical for designing hybrid conductors, which can eventually replace 

conventional conductors in applications in which they are exposed to elevated 

temperatures. The following work in this section has been reprinted with permission from 

(McIntyre, D. J., et al, Enhanced Copper–Carbon Nanotube Hybrid Conductors with 

Objectives 

— Assess the morphology of Ti and Ni deposited onto CNTs via thermal evaporation. 

— Determine the stability of 10 nm Ti and Ni layers, and 100 nm Cu layer, on CNTs 

after exposure to elevated temperature 

— Study the electrical properties of Cu-MA-CNT hybrids and their temperature stability. 
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Titanium Adhesion Layer, Journal of Materials Science 55 (2020): 6610-6622). 

Copyright (2020) Springer https://doi.org/10.1007/s10853-020-04457-1. 

Fabrication and processing 

Miralon® roving from Nanocomp Technologies Inc. (a Huntsman International 

LLC. company) is used as the carbon nanotube conductor in this study. The roving 

product is produced on the kilometer scale [100] and is obtained prior to the yarn 

spinning process, yielding a ribbon-like form (~30 µm × 1.53 mm) with an average 

density of 0.12 g cm-3. The width of the roving product has a standard deviation of 20%, 

based on 360 width measurements taken over ~ 50 cm via optical microscopy. A 

10 ± 1 nm-thick adhesion metal layer of either Ni (99.98% purity pellets) or Ti (99.995% 

purity pellets) was deposited onto the CNT ribbons via thermal evaporation (Kurt J. 

Lesker PVD 75) under a vacuum base pressure of < 10-6 mbar and a deposition rate of 3.5 

± 0.5 Å s-1. All metal pellets were obtained from Kurt J. Lesker. Deposition rate 

monitoring was carried out using a quartz oscillating crystal to obtain effective film 

thicknesses. The samples were subsequently removed from vacuum and separately 

subjected to a 95% Ar / 5 % H2  anneal in a Lindberg/Blue M(HTF55322A) tube furnace 

at temperatures of 100, 200, 300, and 400 °C for 1 hour (as depicted in Figure 4). After 

the corresponding anneal, thermal evaporation of a 100 ± 2 nm Cu layer (99.99% purity 

Cu pellets) was then performed at a deposition rate of 10.0 Å s-1. Control samples were 

generated with and without the adhesion metal layer. After copper deposition, the Cu-

MA-CNT conductors were annealed to the same temperature and gas conditions as the 

first annealing step. The fabrication sequence involving a break in vacuum between 

deposition of the adhesion metal layer and the copper layer is referred to here as the 
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“two-step” deposition process. An additional set of samples were fabricated by depositing 

the adhesion metal layer and copper layer sequentially, without breaking vacuum, 

referred to as the “one-step” deposition process. 

Characterization 

Analysis of film morphologies was performed using a Hitachi S-900 scanning 

electron microscope (SEM) equipped with a secondary electron detector and biased at 2 

kV accelerating voltage. Current-voltage sweeps (up to 100 mA) were conducted in an 

ambient atmosphere at room temperature using a four-point-probe configuration with a 

National Instruments NI PXI-5652 source/measure unit and NI PXI-4071 digital 

multimeter. The probe tips were bent in a configuration that applies firm contact but 

prevents penetration through the top layers of the samples (i.e. a dull contacting point 

rather than a sharp contacting point). Temperature-dependent electrical measurements 

were performed in a Janis cryostat under 10-6 mbar vacuum. Two cycles of temperature 

sweeps over 26.85 – 326.85 °C (300 – 600 K) were performed with four-point probe I-V 

sweeps being carried out at 5 °C increments. A National Instruments NI PXI-4110 

programmable power supply and NI PXI-4072 digital multimeter were used to acquire 

the electrical measurements.  
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Figure 4 (a.) SEM images of the starting CNT conductor material. (b.) Experimental process for studying 

the CNT-metal interfacial interactions [99]. 

SEM Analysis 

The SEM image in Figure 4a was acquired from the surface of the CNT conductor used 

in this study, showing the network morphology of the CNT bundles. The presence of 

residual iron catalyst and carbonaceous material from synthesis is visible. The porosity of 

the network on the nanoscale enables infiltration of the metals and a greater surface area 

for deposition. Meanwhile, the planar ribbon geometry of the material provides a 

relatively flatter surface for line-of-site metal deposition than a wire-like format.  

The processing steps used for the study of adhesion metals are summarized in 

Figure 4b. Additionally, as a point of comparison for the Cu-MA-CNT conductors, a Cu-

CNT conductor was fabricated and subjected to the annealing steps. The SEM images in 

Figure 5 show the morphology of a 100 nm Cu layer directly deposited onto the CNT 

conductor followed by subsequent annealing treatments at 100, 200, 300, and 400 °C. 

The morphology at each processing step was analyzed and compared against electrical 

measurements to quantify the performance of the Cu-CNT system. The annealing 

sequence performed on the Cu-CNT conductor provides a benchmark by which the 
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performance of the Cu-MA-CNT may be compared. Due to its thickness, the Cu layer 

initially forms a continuous film along the CNT network as-deposited, with an average 

grain size of 58 ± 6 nm measured based on SEM images. A gradual evolution of the Cu 

grain structure is observed upon exposure to elevated temperatures. At an annealing 

temperature of 100 °C, the onset of grain growth is observed with grain size increasing to 

a measured 71 ± 1 nm. As the temperature is increased to 200 °C, more evident 

coalescence is observed as the average grain size increases to approximately 137 ± 9 nm. 

Grain growth appears to peak toward an average size of about 167 ± 7 nm at temperatures 

of 300 °C. Similar grain growth effects have been observed on nanocrystalline Cu thin 

films sputtered onto Cu substrates, whereby grain growth is observed at temperatures as 

low as 100 °C and increases at temperatures of 300 °C [101]. However, the Cu grain size 

appears to decrease for the 400 °C anneal, with an average size of 121 ± 7 nm. The 

reduction in size is attributed to the Cu layer beginning to discretize, confining the area 

for grain expansion. This is accompanied by delamination into an independent film, 

consistent with a previous report in the literature, where melting of thin Cu films on 

MWCNTs was observed at temperatures of 400 °C [45], and attributed to nanoscale 

induced melting point depression [102]. Furthermore, poor wettability is evidenced by 

the non-coated CNTs becoming visible between gaps generated during delamination in 

the post-annealed Cu layer (as shown in Figure 5e). The observed delamination indicates 

a need to introduce an adhesion metal to the Cu-CNT conductor to improve the stability 

of the Cu overlayer when exposed to high temperatures. For applications in which the 

conductors operate at elevated temperatures, the electrical performance of Cu-CNT wire 

technologies must be stable upon exposure to these increased temperatures. 
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Figure 5 SEM images of (a) as-deposited 100 nm Cu with samples separately annealed at (b) 100 °C, (c) 200 

°C, (d) 300 °C, and (e) 400 °C for 1 hour under 95% Ar / 5% H2 environment. Circled region with arrow 

indicating the presence of exposed CNTs [99]. 
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Figure 6 shows SEM images of the CNT conductor after deposition with 10 nm of 

Ni thermally evaporated and after a 1 hour anneal in 5% H2 / 95% Ar at different 

temperatures. From Figure 6, the gradual formation of discrete structures by the 10 nm 

thick Ni can be observed as the temperature is increased to 400 °C. The as-deposited Ni 

layer consists of well-distributed nanocrystallites, giving it a textured appearance. The 

nanoscale textured surface features have been attributed to fast surface diffusion of 

adatoms upon deposition, implying a low diffusion activation energy (i.e. weak binding 

energy) characteristic of poor condensate-substrate interaction [65]. As the annealing 

temperature is increased to 200 °C, the Ni layer begins to coalesce together. As the 

temperature further increases to 300 °C, the layer continues to discretize, and Ni island 

formation occurs. At 400 °C, the Ni island formations evolve into larger isolated 

particles, which is attributed to Ostwald ripening effects, whereby the Ni atoms reduce 

their total interfacial energy with the CNTs via coalescence into larger particles, 

minimizing the total surface area due to poor interaction with the CNTs [103]. Such a 

phenomenon has previously been observed for nanoscale Ni on TiO2/n-Si substrates, 

whereby temperatures as low as 300 to 500 °C were found to induce dispersed island 

formation for Ni thicknesses up to 8 nm as a result of Ni atoms being weakly bound to 

the substrate [103]. Thus, the textured surface after deposition, combined with the 

discrete particle formation observed upon annealing in this study, demonstrate 

characteristics of weak binding of Ni with CNTs. 
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Figure 6 SEM images of (a) as-deposited 10 nm Ni with samples separately annealed at (b) 100 °C, (c) 200 

°C, (d) 300 °C, and (e) 400 °C for 1 hour under 95% Ar / 5% H2 environment [99]. 
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Figure 7 shows SEMs of the samples with 10 nm of Ti thermally evaporated onto 

the CNT conductor (and after the 1 hour anneal) at different temperatures. The SEM of 

the as-deposited Ti layer shows that the CNT bundles are uniformly coated when 

compared to the starting CNT conductor. The presence of sparse particulates is attributed 

to the residual iron catalyst present on the as-received CNT conductor as highlighted in 

Figure 1. In contrast with the observations made with the Ni deposition, the Ti layer does 

not exhibit visible surface irregularity upon deposition. In addition, it remains uniform 

upon annealing. No observable differences can be made between the Ti coating as-

deposited and after annealing, suggesting favorable adhesion properties. The evolution of 

the coating upon exposure to temperatures up to 400 °C reveal important insight toward 

the effectiveness of the adhesion layers as part of conductors that will be subjected to 

elevated temperatures. 
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Figure 7 SEM images of (a) as-deposited 10 nm Ti with samples separately annealed at (b) 100 °C, (c) 200 

°C, (d) 300 °C, and (e) 400 °C for 1 hour under 95% Ar / 5% H2 environment, showcasing sustained 

uniformity [99]. 
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After annealing the deposited adhesion metals, a 100 nm layer of Cu was then 

deposited to form the Cu-MA-CNT conductors. To assess the performance of Ti and Ni as 

adhesion layers, the entire conductor was subjected to the same annealing treatment as 

performed on the underlying adhesion metal. Figure 8 shows the surface morphology of 

the Cu-Ni-CNT system upon exposure to elevated temperatures. In this case, exposure to 

100 °C has little effect on the Cu coating, retaining the small grain size typically 

observed in the as-deposited state. At temperatures of 200 °C and above, grain 

restructuring can be seen, though with varying morphological surface features as a result 

of the progressive discretization of the underlying Ni layers. Contrary to the Cu-CNT 

system, the presence of exposed CNTs was not visible even after annealing to a 

temperature of 400 °C.  
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Figure 8 SEM images of an annealed 10 nm thick Ni layer overcoated with 100 nm Cu, undergoing a 

subsequent annealing step corresponding to the same conditions as the underlying Ni layer: (a) 100 °C, (b) 

200 °C, (c) 300 °C, and (d) 400 °C for 1 hour under 95% Ar / 5% H2 environment [99]. 

Figure 9 shows the progression of the surface morphology for the Cu-Ti-CNT 

system after annealing. Similar to the Cu-Ni-CNT system, an annealing step of 100 °C 

remains relatively unchanged compared to that typically observed for as-deposited Cu. 

The evolution of grain restructuring is also visible at temperatures above 200 °C, 

however, contrary to the Cu-Ni-CNT case, the surface remains relatively uniform due to 
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the enhanced adhesion of the Ti layer at all temperatures. The Cu-CNT system without 

the use of an adhesion layer demonstrates poor interaction at annealing temperatures of 

400 °C, as film gap formation occurs, exposing underlying CNTs (see Figure 5e). In the 

case of both Ni and Ti adhesion layers, however, suppression of significant Cu 

delamination is observed, with no underlying CNTs exposed, demonstrating improved 

bonding between the Cu overcoat and the CNT conductor. 

 

Figure 9 SEM images of an annealed 10 nm thick Ti layer overcoated with 100 nm Cu, undergoing a 

subsequent annealing step corresponding to the same conditions as the underlying Ti layer: (a) 100, (b) 200, 

(c) 300, or (d) 400 °C for 1 hour under 95% Ar / 5% H2 environment [99]. 
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Electrical Performance 

  Physical analysis via SEM shows clear changes in nanoscale morphology for the 

metal-CNT conductors upon exposure to the elevated temperatures, and the impact of 

those effects on electrical transport is measured via four-point probe measurements. The 

CNT conductor material starts with an average resistance per length (R/L) of ~ 340 Ω m-1 

and increases by 8.8% after annealing at 400 °C, as seen in Figure 10. It is observed that 

the deposition of Cu always decreases the R/L of the conductor, as observed without the 

presence of an adhesion metal. Upon deposition of a 100 nm Cu layer, the R/L of Cu-

CNT hybrid reduces to 140 Ω m-1.  However, due to the poor interaction between the Cu 

film and the underlying CNT conductor, there is an irreversible increase in room 

temperature resistance from 140 Ω m-1 to 200 Ω m-1 (40% increase) upon annealing up to 

400 °C (see Figure 10). The increase in electrical resistance is attributed to the presence 

of gaps generated via the annealing process as observed in Figure 2e, inducing 

discontinuous conduction pathways [60]. Nevertheless, in all cases, this is an 

improvement from the as-received CNT conductor and provides a benchmark by which 

the electrical performance of the adhesion metals used in this study may be compared. 

The resistance of the metal-CNT conductor is influenced by the width of the 

deposited metal layer, which is dependent on the width of the starting conductor. 

Therefore, the R/L values are corrected based on width measurements for each sample to 

ensure that the samples are directly comparable. The corrected R/L values reported for 

the Cu-CNT conductors have an average standard deviation of 4.6% based on 

measurements taken across 2-4 samples fabricated and treated under the same conditions.     
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Figure 10 also shows that prior to Cu deposition, the R/L of the MA-CNT system 

is similar to that of the as-received CNT conductor, with the anneal temperature having 

no significant effect (~2% variation). The presence of a 10 nm metal layer is not 

sufficient to strongly influence the electrical properties of the conductor due to the bulk 

conductivity of the metals. The small difference observed between the two adhesion 

metals prior to Cu deposition likely arises due to Ni having an order of magnitude greater 

conductivity than Ti in bulk form (1.43 × 107 and 2.38 × 106 S m-1, respectively).  

The deposition of 100 nm of Cu onto the CNT conductors leads to a decreased 

R/L compared to that achieved from the as-deposited adhesion metals. The inclusion of a 

10 nm Ni adhesion layer to form a Cu-Ni-CNT hybrid results in a slight decrease in the 

as-deposited R/L compared to the Cu-CNT conductor, as seen in Figure 10. However, the 

measured R/L of the Cu-Ni-CNT hybrid increases continuously after each anneal for 

temperatures up to 300 °C, followed by a sharp increase in R/L up to 309 Ω m-1 around 

400 °C. The R/L values reported for the Cu-Ni-CNT hybrids have an average standard 

deviation of 6.2%.  

In the case of a 10 nm Ti adhesion layer to form a Cu-Ti-CNT hybrid, a higher as-

deposited R/L is observed than the as-deposited Cu-CNT conductor. On the other hand, 

the measured R/L of the Cu-Ti-CNT hybrid decreases after exposure to any elevated 

temperature, stabilizing around 166 Ω m-1 after being annealed to 200 °C. The R/L values 

reported for the Cu-Ti-CNT hybrids have an average standard deviation of 5.3%. 

Furthermore, the Cu-Ti-CNT conductor exhibits lower R/L than the Cu-CNT conductor 

after exposure to 400 °C, likely due to Cu grain expansion enabled by favorable 

adhesion. These results are supported by the observations made in Figure 7 and Figure 9, 
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which indicate that Ti maintains a continuous layer on the CNT surface, and thereby 

preserves the Cu layer upon exposure to any temperature up to 400 °C. As such, Ti acts 

as an effective conductive adhesion metal, promoting stability to the Cu film upon 

exposure to elevated temperatures, as well as providing an electrically superior conductor 

to Cu-CNT alone, achieving a stable R/L of 166 Ω m-1 at 400 °C.   

 

Figure 10 Electrical performance of the CNTs and metal-CNT hybrids as-deposited, and upon annealing at 

temperatures of 100 °C, 200 °C, 300 °C, and 400 °C for 1 hour in a 95% Ar / 5% H2 environment [99].  

Additional samples were prepared by depositing the adhesion metal and copper 

overcoat onto the CNT conductor in succession (without breaking vacuum between 

depositions), referred to here as the “one-step” deposition process. The one-step 

deposition process was performed to investigate if exposure to ambient conditions 

between depositions impacts the performance of the hybrid conductors. In the case of Cu-

Ni-CNT, the one-step deposition process shows an increase in R/L from 186 to 250.9 ± 

8.4 Ω m-1 upon annealing to 400 °C (see Figure 8a). The measured R/L for the one-step 



61 

 

process is also higher than the Cu-CNT conductor exposed to the same conditions, 

demonstrating the detrimental behavior of the Ni/Cu combination. The initial R/L of the 

Cu-Ti-CNT samples prepared using the one-step process are lower than those fabricated 

with a break in vacuum in-between deposition steps (see Figure 8b). However, after 

annealing to 400 °C, the final R/L still maintains 157.9 ± 11.1 Ω m-1, in line with the 

results observed for the two-step deposition. Thus, the annealing process in a reducing 

environment at 400 °C is sufficient to reconcile any impact on the electrical properties 

induced by exposure to the atmosphere (e.g. formation of surface oxides) between 

deposition steps.  

 

Figure 11 Electrical measurements comparing the two-step and one-step deposition processes as-deposited 

(black) and after annealing to 400 °C (red) for the (a.) Cu-Ni-CNT and (b.) Cu-Ti-CNT hybrids [99]. 

Temperature-dependent measurements of the resistance of the constructed hybrids 

were performed under vacuum at a constant up-ramp rate of 3.3 C min-1 in order to assess 

their stability and variability after deposition. Measuring the resistance at incremental 

temperatures provides complementary data to understand the dynamic changes in 
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electrical behavior compared to measurements after the static annealing conditions in 

Figure 10.  

Figure 12 shows the 1st and 2nd cycle temperature-dependent resistance 

measurements for the CNT conductors. The resistance values are normalized to the 

starting resistance (R/R0) at 26.85 °C (300 K) and show the relative change as a function 

of temperature.  Two cycles were measured to assess any permanent effects in conductor 

transport due to exposure to higher temperatures. The measured R/R0 of the as-received 

CNT conductor shows a non-linear behavior (see Figure 9a), as reported previously for 

the complex CNT electronic behavior between resistivity and temperature [104]. The 2nd 

cycle demonstrates that the as-received CNT response undergoes no change during the up 

and down ramps indicating that the sample has stabilized. The observed increase in as-

received CNT starting resistance from the 1st to 2nd cycle is attributed to the reversible 

desorption of oxygen or other ambient dopants, after exposure to elevated temperatures, 

which directly influences the CNT electronic transport [105–107].   

In the case of the Cu-CNT conductor (Figure 12b), the starting resistance of the 

2nd cycle shows little variation from that of the 1st cycle. The lack of change under 

vacuum may be attributed to the presence of a CuO passivation layer, as there is no 

evidence suggesting that the film will coalesce into larger grains leading to more discrete 

particles (and increase in R/L) as compared to the annealing studies above. Additionally, 

the positive linearity in the slope is typical of metals, as increasing the temperature 

increases phonon activity, decreasing the mean-free-path of electrons, thereby increasing 

resistance [108].  
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Figure 12c shows the 1st and 2nd cycle data for the Cu-Ni-CNT conductor. The 1st 

cycle up-ramp shows a steady increase in resistance until around 270 °C, where the 

resistance begins to increase more steeply. The resistance returns to a starting resistance 

that is 14% higher than the starting resistance of the 1st cycle. The permanent increase in 

resistance upon annealing in vacuum is consistent with the trend observed for the 

annealing measurement data presented in Figure 10, rendering Ni an ineffective adhesion 

metal in Cu-Ni-CNT conductors exposed to elevated temperatures in either vacuum or 

reducing environments. 

Figure 12d shows the temperature-dependent measurements for the Cu-Ti-CNT 

conductor. During the 1st cycle, a steady increase in resistance up to ~ 270 °C is 

observed, however, in contrast with Cu-Ni-CNT, the slope of the resistance begins to 

reverse as the temperature goes to 327 °C (600 K). The resistance steadily decreases to a 

starting resistance that is 12% lower than the starting resistance of the 1st cycle.  The 

ability of Ti as an adhesion metal to provide a permanent decrease in room temperature 

resistivity when subjected to elevated temperatures in a reducing atmosphere is 

complemented by the measurements conducted under vacuum, whereby the resistivity of 

Cu-Ti-CNT conductors decreases between the 1st and 2nd cycle, further validating the 

benefit of Ti as an adhesion metal in elevated temperature applications.  
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Figure 12 1st cycle and 2nd cycle temperature-dependent electrical data for the (a) as-received CNT, (b) Cu-

CNT, (c) Cu-Ni-CNT, and (d) Cu-Ti-CNT conductors. Resistance values are normalized to the start of the 

first cycle at 300 K 26.85 °C (300 K). Narrow black arrows correspond to the ramp direction, while the 

wider arrows compared to the dashed lines indicate the change in room temperature resistance from the 1st 

cycle to the 2nd cycle [99]. 

The behavior observed for the physical and electrical properties of the conductors 

upon static annealing is further verified via temperature-dependent electrical 

measurements performed under vacuum, whereby the strong interaction between the Ti 
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and the CNTs results in a reduction in room temperature resistance from the first cycle to 

the second cycle. The performance observed for the hybrids fabricated here can be 

explained by the interaction expected between the various metals and the CNTs. Previous 

studies have suggested that metals with a higher amount of vacancies in the d-orbital 

react more readily with carbon [66], and thus exhibit better wettability on CNTs [79]. 

Since Cu has a full d-orbital, it exhibits the worst interaction with carbon. Ni exhibits 

improved characteristics over that of Cu, due to having two d-orbital vacancies, however, 

still exhibits weaker interaction with CNTs than Ti, forming quasicontinuous coatings 

(when < 5 nm thick)  as-deposited onto individual CNTs [63]. Ti exhibits the strongest 

reactivity (of the three metals investigated here) with carbon owing to its eight d-orbital 

vacancies [66]. Moreover, computational studies have calculated that Ti has a high 

binding energy with CNTs of various chiralities [90, 109], which supports the formation 

of continuous Ti chains on the surface [90], corroborating experimental findings of the 

tendency of Ti to wet individual CNTs [63, 64]. It has been suggested that the high 

binding energy calculated between Ti and CNTs may stem from hybridization of the 3d 

orbitals of the Ti with the 2p orbitals of carbon, as the 3d orbitals in Ti tend to behave as 

valence orbitals facilitating bonding [90, 110, 111]. The weakness/strength of these 

interactions are also evidenced here by the textured nanostructure morphology of as-

deposited Ni (Figure 6a), and the uniform coating of the as-deposited Ti (Figure 7a), 

respectively. While fast surface diffusion accompanied by low nucleation rate are 

responsible for the formation of surface roughness upon deposition, a conformal coating 

corresponds to a strong binding energy and condensation coefficient between the metals 

and the CNTs [64].  
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The electrical properties of the conductors also reveal insight toward the metal-

CNT interaction. While Ni exhibits weaker interaction with carbon than Ti, it is capable 

of providing some benefit to the electrical properties in a Cu-Ni-CNT conductor over that 

of Cu-CNT alone when exposed to temperatures up to 300 °C in a reducing environment. 

At temperatures of 400 °C, however, degradation is observed in the electrical benefits of 

the Cu-Ni-CNT conductor, as the resistance sharply increases beyond that of the Cu-

CNT. The sharp rise in resistance may be attributed to the fact that the Ni layer on its 

own minimizes its area on the surface of the CNTs at this temperature, thereby exposing 

bare CNT surface prior to the Cu deposition as observed in Figure 6. Furthermore, the Ni 

may be negatively impacting the CNT structure due to the high carbon solubility [45]. 

Additionally, the Cu and Ni are likely forming a low concentration Ni/Cu alloy which is 

also contributing to an increase in R/L beyond that expected for Cu-CNT alone. It is 

known that metallurgically processed [112] and electrodeposited [88] Ni-Cu alloys 

experience an increase in resistivity over that of pure Cu as the Ni content is increased. 

Moreover, nano-phase Ni-Cu is expected to have a depression in the liquidus and solidus 

curves compared to its bulk form [113]. The high surface energy between the CNTs and 

the Ni (as indicated by the formation of discrete Ni particles in Figure 6e) may further 

reduce the temperatures required to form an alloy. The electrical data presented here 

suggests that an alloy may be forming at temperatures as low as 400 °C, which is 

detrimental for operation or processing of such metal-CNT hybrids at elevated 

temperatures when using Ni as an adhesion metal. In contrast, enhanced interaction 

between Ti and the CNT conductor enables the Cu grain structure to expand while 

maintaining adhesion. In addition, the material compatibility between Ti and Cu sustains 
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the electrical benefits induced by the annealing to temperatures up to 400 °C. As a result, 

the Cu-Ti-CNT conductor outperforms the Cu-CNT and Cu-Ni-CNT conductors upon 

exposure to 400 °C, and, therefore, Ti emerges as an effective adhesion metal for metal-

CNT conductors. 

In conclusion, interfacing CNTs and Cu with a Ni or Ti layer proves to mitigate 

Cu-CNT connectivity problems, providing stability to the Cu overcoat upon exposure to 

elevated temperatures. Without the use of an adhesion metal, Cu deposited onto the CNT 

conductor coalesces at elevated temperature, which is relevant for motor applications, 

and is accompanied by an irreversible increase in resistance. Ni showed poor adhesion to 

the CNTs at elevated temperatures, however, the use of Ni in a Cu-Ni-CNT system 

suppressed the delamination of the Cu layer. The electrical properties, however, were still 

unfavorable at temperatures reaching 400 °C, ultimately increasing resistance by up to 

125%. In the case of Ti, on the other hand, uniformity of the coating was preserved upon 

heat treatment, and with the addition of a Cu overcoat, delamination was mitigated. In 

addition, the conductive properties of the Cu overcoat in the Cu-Ti-CNT conductor 

improved upon annealing, with room temperature resistances decreasing by up to 12%. 

Furthermore, temperature-dependent electrical measurements performed under vacuum 

demonstrate similar trends as seen in the static anneals in a reducing atmosphere. As a 

result, Ti has been identified as an effective interfacing metal for metal-CNT conductors, 

which when exposed to elevated temperatures (either through operation or processing), 

can provide superior electrical and adhesion benefits, enabling a path forward for 

conductor designs.  
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4 Fabrication of Composites Through CVD & 

Electrodeposition 

 

Ti is known to exhibit excellent interfacial interaction with CNTs and enhances the 

electrical performance for Cu-CNT hybrids. A simple route for depositing Ti to form 

integrated Ti-CNT bulk conductors is warranted to increase the total metal:CNT 

interfacial contact area. Delivery of Ti rich films is difficult due to the high reactivity of 

Ti. Physical vapor deposition techniques offer a facile route toward deposition of pure Ti; 

however, these techniques deposit material primarily in the line-of-sight, resulting in 

surface coatings. Chemical vapor deposition, on the other hand, is known for its 

capability in providing more uniform coverage across irregular topographies [52], and is 

suitable for penetrating porous networks [27]. Leggiero et al. have demonstrated the 

successful deposition of metals on CNTs using a Joule-heating CVD technique, whereby 

a CNT substrate is resistively heated to provide thermal energy sufficient for 

decomposition of organometallic precursors [27]. Among the commercially available 

CVD precursors, cyclopentadienyl(cycloheptatrienyl) titanium (II) [CHT-Ti-Cp] has been 

demonstrated to have the potential to form Ti rich films (24). A potential fragmentation 

pathway of the C7H7 and C5H5 rings can occur, in which a disproportionation results in 

Objectives 

— Identify a viable Ti precursor for CVD delivery. 

— Assess Interaction of Ti Deposited via CVD. 

— Electroplate to form Cu-Ti-CNT hybrids. 

— Optimize metal depositions for high conductivity and favorable TCR. 
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two stable benzene rings being eliminated in turn from the parent ion (24,25). The 

research herein reports the utilization of the Joule-heating CVD technique to fabricate 

integrated Ti-CNT conductors, whereby the Ti is assessed as an adhesion metal for bulk 

Cu-CNT conductors. Delivery of Ti via CVD enables the penetration of Ti into the CNT 

network, maximizing the metal:CNT interfacial contact area in the bulk conductor. The 

following work in this section has been reprinted with permission from (McIntyre, D. J., 

et al, Integrated Titanium-Carbon Nanotube Conductors via Joule-Heating Driven 

Chemical Vapor Deposition, ECS Transactions 97.7 (2020): 321-327). Copyright (2020) 

ECS https://doi.org/ 10.1149/09707.0321ecst. 

4.1 Fabrication of Ti-CNT Conductors Using Joule-heating Driven CVD 

4.1.1 CVD experimental setup 

Fabrication and processing 

The CNT conductor used in this study is Miralon® roving (lot 954738) obtained 

from Nanocomp Technologies Inc. (a Huntsman International LLC. company). This free-

standing unspun CNT conductor takes a ribbon geometry (~30 µm × 1.53 mm), and the 

full physical characteristics have been reported previously [27, 99]. A one-hour vacuum 

dry at 100 °C is performed on the CNT conductor prior to analysis and processing. 

 Joule-heating driven chemical vapor deposition (CVD) was performed in 

accordance to a previous study [27]. Flat Cu clips crimped to Cu electrical leads are 

passed through rubber septa at two opposing necks in a three-neck flask. Three 12 cm 

long CNT conductors are suspended in parallel by the Cu clips, sharing a common 

electrical contact point at each clip. Precursor masses of 1 mg, 5 mg, and 25 mg 

cyclopentadienyl(cycloheptatrienyl) Titanium(II) (CAS# 51203-49-7, Strem Chemicals 
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99%), were loaded into the bottom of the flask within a glovebox, in an inert Ar 

atmosphere. A heating mantle temperature of 200 °C was used to sublimate the precursor. 

The center neck of the flask was connected to a Schlenk line via a hose-barb adapter with 

a stopcock, which allowed for pulling vacuum or supplying 5% H2 / 95% Ar (mol/mol) 

gas. A constant current of 350 mA per CNT conductor is continuously applied for one 

hour while the precursor is subliming, to provide sufficiently high temperatures required 

for decomposing the metal-organic precursor upon contact with the CNTs. A target 

vacuum pressure of 0.3 Torr was regulated by opening the stopcock as needed. The Ti-

CNT conductors were then subjected to a 95% Ar / 5 % H2 anneal in a tube furnace at a 

temperature of 300 °C for one hour. 

 Electroplating in a sandwich cell configuration was performed as reported 

previously [27] on the 5 mg CHT-Ti-Cp seeded CNT conductor. A constant-current 

condition of 7.4 A/gCNT was applied for 354 minutes to achieve a target total metal mass 

of 98% wt/wt. Due to irregularities in surface area, plating rate is calculated based on 

mass of the CNT conductor. To determine the amount of mass/length needed to be added 

in the form of Cu to obtain 98% total metal mass, the following equation is used: 

(
𝑀

𝐿
)
𝐴𝑑𝑑𝑒𝑑_𝐶𝑢

=
(
𝑀

𝐿
)
𝐴𝑠−𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝐶𝑁𝑇𝑠

0.02
− (

𝑀

𝐿
)
𝑇𝑖−𝐶𝑁𝑇_𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

   (7) 

The chosen plating rate then determines how much time is necessary to achieve the target 

amount of added Cu mass. After electroplating, the Cu-Ti-CNT conductor was then 

densified to a target 30 µm using a rolling mill, and subsequently subjected to a 95% Ar / 

5 % H2 anneal in a tube furnace at a temperature of 300 °C for three hours. 
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Characterization 

Analysis of deposition morphologies was performed using a Hitachi S-4000 

scanning electron microscope (SEM) equipped with a secondary electron detector and  10 

kV accelerating voltage. Cross-sections for the Cu-Ti-CNT samples were prepared via 

razorblade sectioning of the conductors. Energy dispersive X-ray measurements were 

performed on the 25 mg CHT-Ti-Cp deposited sample using a Tescan Mira3 SEM 

equipped with a Bruker XFlash 6|30 EDS at a 20 kV accelerating voltage. Cross-sections 

for EDS mapping were epoxy-set and ultramicrotomed. The room temperature electrical 

properties of the conductors were measured in an ambient atmosphere by applying 

current-voltage sweeps (up to 100 mA) using a four-point-probe configuration with a 

National Instruments NI PXI-5652 source/measure unit and NI PXI-4071 digital 

multimeter. Temperature-dependent electrical measurements were performed by 

sweeping the temperature from 300 to 600 K under 10-6 mbar vacuum in a Janis cryostat. 

Four-point probe I-V sweeps were carried out at 5 K increments for two cycles of 

temperature sweeps. Measurements were acquired using a National Instruments NI PXI-

4110 programmable power supply and NI PXI-4072 digital multimeter. The temperature 

coefficient of resistance (TCR) was calculated based on the average slope of resistance 

with respect to temperature, whereby the resistance is normalized to the starting 

resistance at 300 K. TCR calculations are based on the second cycle data. Mass 

measurements were made using a Mettler Toledo XP-2U microbalance. 

4.1.2 CVD deposited Ti properties 

CHT-Ti-Cp 

The surface-view SEM image acquired in Figure 13a shows the network 

morphology of the starting CNT conductor. A loose network morphology is observed 
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with the presence of nanoscale pores. Joule-heating driven CVD was performed using 25 

mg of CHT-Ti-Cp precursor, leading to an average deposition mass loading of 67.2 ± 

2.5% wt/wt. The standard deviation reported here is based on three samples fabricated 

together at the same conditions. As shown in Figure 13b, a fully connected film forms at 

the surface of the Ti-CNT conductor at this mass loading. An ultramicrotomed epoxy-set 

cross-section of the Ti-CNT conductor is shown in Figure 13c, with the corresponding 

EDS Ti signal overlay shown in Figure 13d. A higher concentration of Ti localizes at the 

surface and is likely resultant of deposited Ti blocking the pores at the surface, 

preventing further penetration as the CVD process evolves. However, Ti is observed to 

be present throughout the entire cross-section of the conductor, indicating successful 

penetration of the precursor during the initial stages of the CVD process. Additionally, a 

strong Ti peak is observed in the surface-view EDS data (Figure 13e), demonstrating the 

successful deposition of Ti. The presence of O is also observed, which may result from 

residual adsorbed oxygen within the CNT network, or the formation of surface oxides 

after exposure to atmosphere. The oxygen content may be reduced by performing a heat-

treatment to the CNT network, which is known to desorb oxygen and other ambient 

dopants [105]. Furthermore, surface oxidation may be minimized by performing a 

subsequent CVD deposition using Cu to passivate the Ti surface and improve the Cu-Ti 

interface. Nevertheless, the Joule-heating driven CVD technique utilized here has shown 

to successfully deposit Ti, and achieve penetration throughout the entirety of the bulk 

CNT network. 
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Figure 13 Surface SEM images of (a) as-received CNT conductor and (b) Ti-CNT conductor fabricated via Joule-

heating driven CVD using 25 mg of CHT-Ti-Cp precursor. Cross-sectional SEM image of (c) the same Ti-CNT 

conductor with (d) an EDS overlay of the Ti component. (e) Signal intensity of the observed elemental peaks obtained 

via EDS from the surfaces of the as-received CNT conductor and a 25 mg deposition of CHT-Ti-Cp [114]. 

Joule-heating driven CVD was additionally performed using 1 mg, and 5 mg of 

CHT-Ti-Cp precursor, leading to 10.6 ± 5.1%, and 31.3 ± 1.8% deposition mass 

respectively. Figure 14a-c shows the surface morphology of the as-deposited Ti coatings. 

It is observed that 1 mg of precursor is sufficient to coat the CNT bundles while 

maintaining the network morphology. Increasing the precursor amount to 5 mg and 

beyond results in full surface coverage of the CNTs, forming a continuous Ti film which 

blocks the nanopores and prevents further network penetration. Figure 14d-f shows the 

surface morphology of the corresponding depositions after annealing to 300 °C in 95% 

Ar / 5% H2 for 1 hour. Upon exposure to 300 °C, some grain restructuring can be 

observed. However, the deposited Ti indeed maintains a continuous coating for all 

depositions, resulting from the strong interaction between Ti and CNTs. The stability of 

Ti on CNTs observed here is in agreement with that reported for thermally evaporated Ti 

on CNTs. The CVD technique used here, however, has the advantage of network 
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penetration and has demonstrated the ability to tune the morphology of coatings to 

localize along the CNTs or form a thin film. 

 

Figure 14 SEM images of CVD deposited CNT roving with a.) 1 mg, b.) 5 mg, and c.) 25 mg of CHT-Ti-Cp precursor 

as-deposited. (d-f) SEM images of the corresponding conductors annealed at 300 °C for 1 hour under 95% Ar / 5% H2 

environment, showcasing sustained continuity [114]. 

 

4.2 Electroplating to form Cu-Ti-CNT hybrids 

4.2.1 Hybrid conductor performance 

Electroplating of Cu was performed on the 5 mg CHT-Ti-Cp deposited CNT 

conductor to fabricate a Cu-Ti-CNT hybrid comprising 97.1%/0.9%/2% wt/wt of each 

respective component. Based on cross-sectional SEM images (see Figure 15a) and room 

temperature electrical measurements, the conductivity of the Cu-Ti-CNT conductor was 

determined to be 32.3 MS/m. Insight toward the interaction between the metals and the 

CNTs can be gained by analyzing how the conductor performs at increasing 

temperatures. Two cycles of temperature-dependent electrical measurements were taken 

from 300 to 600 K. The resistance was normalized to a starting resistance at 300 K and 

plotted to show the relative change in resistance for the second cycle, shown in Figure 
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15b. A temperature coefficient of resistance (TCR) for the Cu-Ti-CNT conductor of 3.18 

× 10-3 K-1 was calculated based on the average slope of the relative resistance with respect 

to temperature. The Cu-Ti-CNT hybrid presented here exhibits a higher conductivity and 

a lower TCR than that reported for a similar Cu-CNT conductor fabricated without a Ti 

adhesion layer [27], demonstrating the direct benefits that interfacing the CNTs and Cu 

with Ti has. 

 

Figure 15 Cross-sectional SEM of a.) the 5 mg CHT-Ti-Cp deposited CNT roving, electroplated with copper to 98% 

total metal mass and b.) temperature dependent electrical measurements of the Cu-Ti-CNT hybrid, as-received CNT 

conductor, and 99.999% pure copper [114]. 

Utilization of the Joule-heating driven CVD technique with a CHT-Ti-Cp 

precursor enables the fabrication of integrated Ti-CNT conductors. CVD depositions 

carried out using 1 mg of precursor lead to Ti coatings which localized along the CNT 

bundles, preserving the nanopore integrity for further metal infiltration. On the other 

hand, depositions using 5 mg or more of precursor lead to fully continuous thin film 

formation. Thus, varying the amount of precursor used for the CVD process offers 

control over the resulting deposition morphology. In all cases, the Ti films remained 

adhered to the underlying CNTs upon exposure to temperature of 300 °C for 1 hour in 
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95% Ar/ 5% H2, demonstrating the strong interaction between the Ti and CNTs. Cu-Ti-

CNT hybrids constructed via electrodeposition of Cu resulted in a high conductivity of 

32.3 MS/m and a corresponding TCR of 3.18 × 10-3 K-1
. Thus, the CVD technique shows 

promise as a delivery route for fabricating integrated Ti-CNT conductors for use in high-

performance metal-CNT hybrids.  

4.3 CVD and Electroplating Controls 

Further optimization has been carried out by performing studies investigating the impact 

that metal mass loading has on the room temperature electrical and temperature 

dependent electrical performance of the Cu electroplated hybrids. 

4.3.1 CVD & Electrodeposition Weight Loading Impact 

95% Total Metal Mass / 5 mA Electroplating Current 

CVD of CHT-Ti-Cp was performed onto the CNTs as described in 4.1.2 and 

electroplated in a sandwich cell configuration with 5 mA cathodic current to a total metal 

mass loading of 95% w/w (see Figure 16). Upon planar densification and annealing, the 

Cu-Ti-CNT conductors seeded with 5 mg and 25 mg CHT-Ti-Cp exhibited a conductivity 

of 1.1 MS/m and 4.9 MS/m, respectively, with TCR300K values of 1.5 and 2.5 × 10-3 K-1. 

Conductivities were calculated using cross-sectional SEM images to determine the area, 

and temperature dependent electrical measurements were performed in the Janis cryostat 

as described earlier [114]. Electroplated coatings at 95% total metal mass loading led to 

spotty coatings that weren’t well connected at the surface. The lack of sufficient electrical 

connection is attributed to the low conductivities obtained at the 95% metal mass loading. 

Thus, evaluation of higher electroplated weight loadings are investigated to promote 

additional circuitous pathways and enhance the performance of the hybrid conductor. 
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Figure 16 Cross-sectional SEM images of (a) 5 mg, and (b) 25 mg CHT-Ti-Cp deposited CNT roving, electroplated 

with Cu to a total metal mass of 95%, using 5 mA current, and further processed by densification, and annealing in 5% 

Ar / 95% H2 for 3 hours at 300 °C. 

98% Total Metal Mass / 5 mA Electroplating Current 

CVD of CHT-Ti-Cp was performed onto the CNTs as described in 4.1.2. 

Additionally, a Ti-CNT conductor was fabricated using 0.625 mg of CHT-Ti-Cp 

precursor to assess the impact on electrodeposition behavior. As shown in Figure 17, the 

deposited Ti with 0.625 mg precursor maintains the network morphology and had greater 

retention to the pore structure than achieved at higher weight loadings.  Samples were 

electroplated in a sandwich cell configuration with 5 mA cathodic current to a total metal 

mass loading of 98% w/w (see Figure 18). Electroplating the 0.625 mg CHT-Ti-Cp 

seeded conductor (97.9% Cu / 0.1% Ti / 2.0% CNT) led to a surface coating consisting of 

gaps and discontinuous regions, resulting in a specific conductivity of 2263 Sm2/k.  

Previously, densification has been shown to increase the resistance of the 

conductors; however, there exists a trade-off between cross-sectional area and resistance 
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per length when targeting high conductivity. To assess the conductivity trade-off from 

densification, the 0.625 mg CHT-Ti-Cp seeded conductor was first annealed directly after 

electroplating at 300 °C for 3 hours in 5% H2 / 95% Ar, resulting in a conductivity of 

14.9 MS/m. Afterwards, the sample was densified and annealed again, resulting in a final 

conductivity of 16.4 MS/m, indicating that the rise in resistance resulting from 

densification doesn’t outweigh the benefit of the reduced cross-sectional area.  

 

Figure 17 Surface SEM images of a,b.) 0.625 mg CHT-Ti-Cp seeded CNT conductors. Cross-sectional SEM images of 

the seeded conductors after c.) electroplating (5 mA current) and annealing, as well as after d.) electroplating (5 mA 

current), annealing, densification, and a final anneal in 5% Ar / 95% H2 for 3 hours at 300 °C. 

 

Electroplating the 1 mg CHT-Ti-Cp seeded conductor (97.6% Cu / 0.2% Ti / 2.2% CNT) 

led to a specific conductivity of 6604 S·m2/kg, which reduced to 6044 S·m2/kg after 
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densification, and recovered to 6257 S·m2/kg upon annealing. The improved performance 

in the 1 mg seeded sample is attributed to a combination of the retention of pore access 

after CVD allowing for additional Cu filling, as well as improved surface activity for 

electrodeposition resulting in a uniform surface coating of Cu. The fully connected Cu 

film at the surface is expected to increase the number of circuitous pathways, improving 

the overall electrical performance. The conductivity of the finished 1 mg seeded 

conductor reached 43.1 MS/m, based on cross-sectional SEM (see Figure 18) and 

electrical measurements, representing the highest conductivity and specific conductivity 

ever reported for a bulk CNT conductor at 98% weight loading or lower.  

 

 

Figure 18 Cross-sectional SEM images a (a) 1 mg CHT-Ti-Cp deposited CNT roving, (b) electroplated with Cu to a 

total metal mass of 98%, using 5 mA current, and further processed by densification, and annealing in 5% Ar / 95% H2 

for 3 hours at 300 °C. 

4.3.2 Electrodeposition Rate 

98% Total Metal Mass / 10 mA Electroplating Current 

Electroplating of the 0.625 mg CHT-Ti-Cp seeded CNT conductors (97.8 % Cu / 

0.3% Ti / 1.9% CNTs) was performed with a current of 10 mA (as opposed to the 5 mA 
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used previously), to encourage better connectivity of the Cu at the surface, which was 

observed to have a positive impact in previous depositions. After electroplating the 0.625 

mg seeded sample with a 10 mA electroplating rate, a uniform, well connected Cu film 

was achieved at the surface. A specific conductivity of 5179 S·m2/kg was achieved with 

the 10 mA electroplating current, compared to the 2263 Sm2/kg achieved on the 0.625 mg 

seeded conductor with 5 mA electroplating current. Annealing the conductor brought the 

specific conductivity to 5962 S·m2/kg, while densification reduced the conductivity to 

5869 S·m2/kg. A final anneal brought the specific conductivity to 5976 S·m2/kg. A 

conductivity of 34.1 MS/m was achieved based on the cross-sectional measurements 

(Figure 19). The high specific conductivity and conductivity observed for this sample is 

attributed to the continuity in the surface coating provided by the higher electroplating 

rate, and thus the surface coverage of the Cu is attributed to being an important factor in 

the final electrical performance for the Cu-Ti-CNT conductors. 

 

Figure 19 Cross-sectional SEM images of (a) 0.625 mg CHT-Ti-Cp deposited CNT roving, (b) electroplated with Cu 

to a total metal mass of 98%, using 10 mA current, and further processed by annealing, densification, and a final anneal 

in 5% Ar / 95% H2 for 3 hours at 300 °C. 
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4.3.3 Temperature Dependent Electrical Behavior 

Temperature dependent electrical measurements of the electroplated and fully processed 

CHT-Ti-Cp seeded conductors have been conducted under vacuum (10-6 mbar) in the 

temperature range of 300 – 600 K (see Figure 20a). Samples electroplated (5 mA current) 

to a total metal mass loading of 95% exhibited the lowest TCR300K values for any of the 

Cu-Ti-CNT conductors evaluated, at 1.5 and 2.5 × 10-3 K-1 for 1 mg and 5 mg CHT-Ti-

Cp seeded conductors respectively. As the weight loading is increased to 98% metal w/w 

(at 5 mA current), the TCR values correspondingly increase, attributed to the better 

connected surface Cu playing a more prominent role in the electrical transport. TCR300K 

values of 3.12, 3.49 and 3.18 × 10-3 K-1 were obtained for 0.625, 1, and 5 mg CHT-Ti-Cp 

seeded conductors, respectively. Lastly, a TCR300K value of 3.53 × 10-3 K-1 was obtained 

for the 0.625 mg CHT-Ti-Cp seeded conductor that was electroplated to 98% total metal 

mass at 10 mA electroplating current. Due to the extensive processing and measurement 

time required for each sample, repeats for exact conditions have not been performed. The 

results are thus assessed based on the general trends observed. It is generally observed 

here that higher total mass loading as well as higher electroplating rates both lead to more 

conductive coatings at the expense of a higher TCR, which is consistent with studies that 

have found TCR to be dependent on the amount of filling and intermixing with the 

underlying CNTs. Moreover, samples that had a better connected Cu film at the surface 

tended to exhibit higher specific conductivities as well as higher TCR values as a result 

of the increased participation of the Cu. 

In all cases, the TCR is lower for the Cu-Ti-CNT hybrids, and thus a metric is 

needed to assess whether the combination of TCR and conductivity indicates a lack of 
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interaction or favorable interaction. To evaluate the performance for conductivity or 

specific conductivity, a simple rule of mixtures comparison is sufficient to indicate 

whether the electrical performance exceeds that of two non-interacting conductors (i.e. 

Cu and CNTs). For assessing the TCR, a model has been developed to calculate an 

expected TCR for a non-interacting, parallel resistor combination of CNTs and Cu at any 

Cu mass fraction from 0 to 100% [27], as shown in the curve in Figure 20b. The Cu-Ti-

CNT hybrids fabricated here have been plotted against the curve. Conductors with higher 

specific conductivity and lower TCR than the curve represent cases where favorable 

interaction leads to enhanced electrical properties. It is observed that the samples 

fabricated at 95% total mass loading don’t interact well, and instead perform worse than 

two independent resistors. Potentially the deposition in these cases led to increased 

scattering and were not connected well enough to provide enhancements to the electrical 

transport. However, samples with higher mass loading (98%) as well as faster 

electroplating rates are observed to exceed the rule of mixtures performance, indicating 

enhanced electrical interconnection. In fact, the 1 mg CHT-Ti-Cp seeded conductor has a 

specific conductivity of 6257 Sm2/kg, combined with a TCR300K of 3.49 × 10-3 K-1, and 

thus outperforms pure Cu in terms of specific conductivity at any temperature above 250 

°C, demonstrating direct energy savings for elevated temperature applications. 
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Figure 20  (a) Temperature-dependent resistance measurements for the various Cu-Ti-CNT hybrids, as well as (b) a 

comparison the TCR versus specific conductivity for the various CHT-Ti-Cp seeded conductors. 
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5 Surface Modification towards Enhanced Ti-CNT Interface 

 

5.1 Contact Modification and Oxidation Prevention 

5.1.1 Material Processing: Purification and Joule-heating Annealing 

The non-localized electrons in CNTs leads to ambient susceptibility due to van der Waals 

attractions at the sidewalls, whereby molecules adsorb out-of-plane to the CNTs [71, 72, 

74]. Specifically, moisture and oxygen from the ambient are known to adsorb well to 

CNTs [105]. The presence of adsorbed molecules alters the density of states for CNTs 

and can negatively impact the contact between metals and CNTs [69]. In fact, previous 

work demonstrated that current stressing provides enough Joule-heating to drive off 

adsorbed molecules [115, 116], and was separately shown to drastically improve the 

contact resistance between CNTs and metals [69]. Thus, the presence of foreign 

molecules can strongly influence the overall electrical properties and must be considered 

for metal-CNT hybrid conductor design.  

In the context of Ti deposition onto CNTs, oxygen removal is especially 

important, as Ti is highly reactive and forms non-conductive oxides. In addition to 

adsorbed oxygen at the CNT walls, metal catalysts used during the synthesis of CNTs can 

also remain trapped within the network and may be susceptible to oxide formation. Such 

oxides (e.g. Fe2O3) may undergo a redox reaction with the highly reactive Ti, or 

Objectives 

— Purify NCTI roving to remove catalyst and improve interaction with CVD deposited 

metals. 

— Develop control over oxide formation during CVD depositions 

— Evaluate the influence of CVD on the electrical properties by modeling the 

temperature dependent electrical properties. 
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otherwise alter the contacting properties. Thus, in the pursuit of a Ti-rich film, multiple 

sources of oxygen must be considered and managed. As seen in Figure 13e, a non-

negligible oxygen EDS signal is present upon CVD deposition of Ti onto the CNTs. 

Since the CHT-Ti-Cp precursor doesn’t inherently contain oxygen, the only source of 

oxygen is that within the CNT network, and that from exposure to atmosphere.  

Pretreatment steps are employed here to reduce oxygen content and encourage the 

deposition of Ti-rich or TiC films. A CNT purification technique has been previously 

developed to remove carbonaceous impurities and catalysts [117].  This purification 

technique is adapted and optimized for the CNT materials used herein for the removal of 

the catalyst to provide a cleaner surface for contacting. The as-received Miralon is loaded 

into a tube furnace and ramped to 560 °C at 10 °C/min in air to burn carbonaceous 

material and oxidize the metal catalyst, and subsequently submerged in concentrated HCl 

for 30 minutes to dissolve the catalyst. A final burn to 560 °C is performed with identical 

conditions to the first burn to remove any residual acid.  The efficiency of purification is 

assessed via thermogravimetric analysis (see Figure 21), from which the residual catalyst 

remaining within the CNTs after purification is shown to be < 1.4%. The amount of 

catalyst remaining determined by TGA is corroborated with EDX measurements, which 

shows <1 % Fe remaining, in close agreement with the TGA data (see Figure 22). It 

should also be noted that purification leads to a reduction in the overall mass of the 

conductors, reducing the mass/length to ~8 tex, and correspondingly increasing the R/L 

to ~350 Ω/m. As such, the thermal response to an electric bias is also altered and must be 

accounted for, for use in CVD experiments. 
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Figure 21 Thermogravimetric analysis of as-received and purified Miralon (Lot 955388) showing a reduction in 

residual catalyst ash from 15.4% down to 1.4%. 

 

Figure 22 Surface view secondary electron SEM images of (a) as-received and (b) purified Miralon roving, as well as 

(c) their corresponding EDX spectra and (d) elemental composition. 
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A range of currents in 50 mA intervals between 100 mA and 350 mA were 

applied to the purified Miralon roving and the resultant temperature profile was measured 

via an IR camera to establish a calibration for targeting specific temperatures during 

Joule-heating driven CVD experiments (see Figure 23).  Average temperatures were 

calculated by first exporting the IR image data into an excel sheet, whereby every cell 

contains a temperature value corresponding to a pixel in the image. Therefore, the region 

of the image that corresponds to the sample can be defined by filtering pixels with a 

temperature value greater than a specified threshold temperature. As such, the image with 

the hottest temperature profile is selected for defining the sample region as it has the most 

contrast between the sample and the surrounding environment. This defined area is then 

applied to every image within the set for accurate calculations at low temperatures. When 

the region is defined, the average temperature of the sample is calculated by averaging 

every cell within the defined area. Given that the sample is suspended between copper 

clips for electrical biasing, it is expected that the regions nearest the contact points are 

cooler than in the center due to heat-sinking. Additionally, the edges of the ribbon-shaped 

conductor may have a different behavior than the bulk. A standard deviation is calculated 

to reflect the differences in temperature along the entire sample, as represented by the 

error bars in Figure 23. 

To ensure comparability of results between CVD depositions performed on as-

received versus purified Miralon roving, currents were selected to provide the same 

average temperature across the sample. An applied current of 350 mA was applied during 

the CVD runs shown earlier on as-received roving, and as such, 250 mA has been 
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selected for experiments involving purified Miralon, based on the temperature calibration 

in Figure 23. 

 

Figure 23 (a) IR images of the purified Miralon roving biased at currents ranging from 100 to 350 mA, as well as (b) 

the corresponding average temperature of the conductors at each applied current. 
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5.1.2 Vacuum CVD (<  0.250 Torr) 

Using a purified CNT template helps to ensure that the impact of the CVD experiments 

can be attributed to the deposited metal, and to reduce any unexpected interactions with 

catalysts and/or species adsorbed at the surface of the CNTs. Thus, in the remaining 

sections, CVD conditions are developed for purified Miralon roving, and the resulting 

material properties are assessed via a mixture of electron microscopy, energy dispersive 

X-ray spectroscopy, mass and electrical measurements, and Raman spectroscopy.  

In this study, an as-received Miralon CNT roving material is subjected to the 

purification procedure outline in section 5.1.1 to remove carbonaceous material, and 

catalyst metals trapped within the network. After purfication, there is a potential for 

oxygen to be adsorbed at the CNT sidewalls and/or bonded through functionalization. 

EDX spectroscopy indicates an elemental purity of ~99% carbon after purification; 

however, for extra caution, a reducing step is applied to clean the network. An in-situ 

hydrogen reduction is performed wherein the CNT network is Joule-heated in a 5% 

H2/95% Ar atmosphere for 1 minute to reduce any potential functionalization, followed 

by 1 minute under vacuum, with sufficient current to reach temperatures > 300 °C 

(shown to drive off ambient dopants during temperature dependent resistance 

measurements shown in Figure 12). To monitor the impact of the treatment in-situ, 

applied current is increased in 50 mA steps for 1 minute intervals. In between each 

interval, the resistance of the sample is measured at 50 mA of applied current to ensure 

that the resistance isn’t influenced by temperature during the measurement. The applied 

current for reducing the CNTs is increased in 50 mA steps until the room-temperature 

resistance is stabilized, indicating that the reaction is finished. 
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The Joule-heating pretreatment was performed on purified Miralon roving within 

the three-neck flask reaction chamber as described above, and then transferred to a 

glovebox with no exposure to atmosphere in between. The precursor was then massed 

inside of the glovebox within an argon atmosphere using a Mettler Toledo XP-2U to 

measure masses as low as < 1 mg. Cyclopentadienyl(cycloheptatrienyl) Titanium(II) 

(CAS# 51203-49-7, Strem Chemicals 99%) [CHT-Ti-Cp] was used as the precursor in 

this study. After massing the precursor, it was transferred into the three-neck flask within 

the glovebox and the flask was transferred into a hood while closed under argon. At this 

point, Joule-heating driven CVD was performed (as described in earlier works [27, 83, 

114]) using CHT-Ti-Cp onto purified Miralon roving at a pressure of < 250 mTorr, a 

mantle temperature of 200 °C, and a continuously applied current of 250 mA for 1 hour.  

The coating morphology of CVD deposited CNTs is assessed using a Hitachi S-

4000 scanning electron microscope via secondary electron imaging, using a working 

distance of 8 mm and an accelerating voltage of 10 kV. Cross-sections were obtained via 

epoxy-setting and ultramicrotoming, and analyzed using a Tescan Mira3 SEM equipped 

with a Bruker XFlash 6|30 EDS at a 10 kV accelerating voltage. A Mettler Toledo XP-2U 

microbalance is used to acquire the mass before and after deposition in order to determine 

weight loading. Electrical properties were measured at room temperature in an ambient 

atmosphere by using a four-point-probe configuration with a National Instruments NI 

PXI-5652 source/measure unit and NI PXI-4071 digital multimeter and applying current-

voltage sweeps up to 100 mA. 

The results of one hour depositions using precursor masses of 0.7, 1.2, and 4.7 mg 

at 200 °C and < 0.250 Torr onto purified Miralon CNT roving biased at 250 mA are 
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presented in Figure 24. Mass measurements indicate that an increase in metal mass 

loading is obtained as the amount of precursor mass is increased, as expected, and is 

consistent with that observed for other precursors [27, 83]. Three samples were separately 

fabricated for the 4.7 mg condition to assess the reliability of targeting a specific weight 

loading using a specified precursor mass. The three samples resulted in a standard 

deviation for the weight loading of 4%, demonstrating the reliability of the method, and is 

within the range of standard deviations observed for depositions performed onto as-

received Miralon CNTs with varied weight loadings (1.8-5.1%) [114]. All further 

depositions are performed on individual samples and the reliability is confirmed through 

the observation of consistent trends as established on prior sample sets. SEM imaging 

shows that a light coating is deposited using 0.7 mg of precursor, which is localized along 

the network morphology and preserves the mesoporous accessibility to an extent. As the 

precursor mass is increased to 1.2 mg, thickening of the coating around the bundles is 

observed and correspondingly, the void space between CNT bundles begins to fill in. At 

4.7 mg, a fully connected film coats the CNT network, and the network morphology is no 

longer visible. As such, tunability of the coating morphology is demonstrated. 

Additionally, the Ti coating is observed to be uniform and continuous in all cases, with 

no observation of discrete crystallite formation, owing to its favorable interaction with 

CNTs. 
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Figure 24 (a) Plot of the weight loading %w/w versus the starting precursor mass for CHT-Ti-Cp depositions 

performed at < 0.250 Torr, with a 200 °C mantle temperature, and 250 mA applied current for 1 hour. SEM images 

showing the morphology of the corresponding depositions with (b) 0.7 mg, (c) 1.2 mg, and (d) 4.7 mg CHT-Ti-Cp 

precursor.  
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Raman spectroscopy was performed to assess the characteristics of the hybrids 

after deposition. After CVD was conducted, samples were transported in glass vials held 

under an argon environment and sealed with Parafilm to prevent exposure to the 

atmosphere. Samples were subject to only minutes of exposure to atmospheric conditions 

while the Raman measurements were actively being taken. The measurements obtained 

via Raman spectroscopy show the standard graphitic peak at 1583 cm-1 associated with 

sp2-bonded carbon, as well as a defect peak at 1331 cm-1 associated with sp3-bonded 

carbon. Additionally, peaks are observed to be present that are identified for TiO2 at 

locations of 218, 440, and 604 cm-1, compared to those reported at 219, 443, and 609 cm-

1. Given that the precursor itself contains no oxygen, and the CNT network is treated to 

provide > 99% carbon purity, it is hypothesized that the reactor chamber is susceptible to 

trace amounts of oxygen insertion during the experiment at the inlets of the rubber setpa 

whereby the electrical leads are passed through. To ensure an oxygen-free environment, 

modifications to the reactor set-up were investigated. 
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Figure 25 Raman spectroscopy measurements of a 5 mg CHT-Ti-Cp deposition onto purified Miralon CNT roving 

performed at < 0.250 Torr, with a 200 °C mantle temperature, and 250 mA applied current for 1 hour. 

The standard three-neck flask set-up was modified to accommodate pressures greater 

than atmosphere, allowing for a continuous flow of 95% Ar / 5% H2 (mol/mol) carrier 

gas throughout the reactor flask as shown in Figure 26. In this configuration, a pressure > 

760 Torr is first applied, and then two 22 Ga. needles are quickly implemented to act as 

pressure release outlets, restricting entry of any foreign species at flask connection points. 

Throughout a CVD experiment, a constant flow of the argon formulate gas is maintained. 

Due to the presence of a carrier gas, it is expected that convective cooling will result in a 

lower temperature of the purified Miralon roving for a given applied bias. To account for 

this, CVD experiments presented here are conducted with an increased applied current of 

300 mA, compared to the 250 mA used for vacuum experiments. Additionally, due to the 

higher pressure within the reactor flask, it is expected that the vapor phase precursor will 

encounter a greater amount of collisions prior to reaching the sample, and thus less 
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diffusion throughout the conductor is expected. Lastly, a mantle temperature of 200 °C is 

maintained to sublimate the CHT-Ti-Cp precursor, consistent with the temperature 

utilized for CVD depositions at < 0.250 Torr pressure, as the temperature of the mantle is 

in direct contact with the medium contacting the precursor and not expected to be 

influenced by pressure. 

 

Figure 26 Picture of the three-neck flask set-up used for Joule-heating driven CVD, with 22 Ga. needles inserted into 

the outer necks’ rubber septa to act as pressure releases. 

The influence of precursor mass on the resultant deposition mass loading and 

morphology are presented in Figure 27a, using 10, 15, and 20 mg of precursor. Similar to 

experiments performed at < 0.250 Torr, the weight loading after deposition increases 

correspondingly with increasing precursor mass. However, it is notable here that for a 

given precursor mass, the resultant weight loading after deposition at > 760 Torr pressure 

was lower when compared to < 0.250 Torr depositions. A number of factors contribute to 

this phenomenon; it is expected that precursors will more readily sublimate at lower 

pressures, and additionally, a higher mass fraction of vapor phase precursor in the 



96 

 

gaseous phase will increase the amount of decomposition at the CNT surface. Moreover, 

convective cooling may lead to a reduction in temperature at the CNT surface, which is 

known to affect the mass deposited for some precursors [83]. A potential benefit in 

obtaining lower weight loadings via the > 760 Torr method is the ability to more finely 

control the mass loading at lower precursor masses, as precursor masses below 0.5 mg 

become increasingly challenging due to the accuracy of microbalances in a glovebox 

environment.  

Secondary electron images reveal the morphology obtained at the various weight 

loadings. As seen in Figure 27b, utilization of 10 mg of CHT-Ti-Cp precursor lead to a 

coating that is closely bound to the CNT surface, following the network morphology and 

retaining pore structure. The morphology for the 10 mg deposition at >760 Torr 

deposition closely resembles that obtained for 0.7 mg depositions conducted at < 0.250 

Torr pressure, which may be expected as the weight loading is similar between the two 

samples. However, an additional insight that can be leveraged from this observation is 

that the expected decrease in mean-free-path for the vapor phase precursor at > 760 Torr 

pressure likely had limited effects on the penetrability of the precursor throughout the 

network, evidenced by the similar levels of surface coating at similar weight loadings. 

Possibly the direction of gas flow aids in carrying the precursor through the network. 

Figure 27c shows that 15 mg precursor results in a coating of a film across the network, 

filling in the pores and only slightly retaining the visibility of the network morphology. 

Using 20 mg of precursor at >760 Torr pressure results in a full surface coverage, as seen 

with 4.7 mg at < 0.250 Torr pressure. 
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Figure 27 (a) Plot of the weight loading %w/w versus the starting precursor mass for CHT-Ti-Cp depositions 

performed at > 760 Torr, with a 200 °C mantle temperature, and 300 mA applied current for 1 hour. SEM images 

showing the morphology of the corresponding depositions with (b) 10 mg, (c) 15 mg, and (d) 20 mg CHT-Ti-Cp 

precursor. 
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Cross-sectional EDX mapping was performed to assess the diffusion of CHT-Ti-Cp 

throughout the volume of the CNT template for a >760 Torr CVD deposited sample with 

25% w/w Ti (10 mg CHT-Ti-Cp precursor). It is observed that the precursor does 

successfully penetrate throughout the entire thickness, however, a higher concentration at 

the surface of the composite is noted, similar to that observed in previous studies, 

however, at a lower weight loading in this case [114]. The spectrum shown in Figure 28b 

confirms the presence of Ti with signal being registered for the Lα and Kα transitions. 

 

Figure 28 (a) Cross-sectional SEM of a 10 mg CHT-Ti-Cp deposition onto purified Miralon roving performed at > 760 

Torr, with a 200 °C mantle temperature, and 300 mA applied current for 1 hour. (b) An overlay of the Ti signal, and (c) 

the corresponding EDX spectrum. 
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Raman spectroscopy showcases the standard graphitic peak and defect band 

associated with CNTs as described earlier, however, a lack of any peak corresponding to 

the vibrational modes for TiO2 are present (see Figure 29), in contrast with that observed 

for the depositions performed at < 0.250 Torr. Environmental control is thus attributed as 

being a major factor influencing oxidation during growth. The reduction in amount of 

oxide present after CVD deposition demonstrates a path forward toward Ti-rich 

depositions throughout a 3-D CNT network, providing a direct approach toward the 

fabrication of fully interconnected Ti-CNT hybrids. 

 

Figure 29 Raman spectroscopy measurements of a 10 mg CHT-Ti-Cp deposition onto purified Miralon CNT roving 

performed at > 760 Torr, with a 200 °C mantle temperature, and 300 mA applied current for 1 hour. 

5.2 Evaluation of Metal Grain Structure on Hybrid Electrical Properties 

To understand the impact of metallization on the electrical interconnection 

between CNT bundles, temperature-dependent electrical measurements were taken and 
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analyzed via electron transport modeling. A Janis VPF-800 cryostat was used to perform 

the temperature-dependent electrical measurements under 10-6 mbar vacuum. Multiple 

cycles of temperature sweeps from 80 – 600 K were performed with four-point probe I-V 

sweeps being carried out at 5 °C increments, using a National Instruments NI PXI-4110 

programmable power supply and NI PXI-4072 digital multimeter to acquire the electrical 

measurements. Figure 30 shows a typical I-V sweep measurement for metallized CNT 

hybrids, which is used to calculate resistance values. As shown previously, the first 

temperature cycle can modify material properties either through annealing, or desorption 

of weakly bound ambient species [99]. To ensure that analysis of the curves are 

representative of the permanent material characteristics, multiple temperature cycles were 

carried out until the temperature response during an up and down ramp remained stable 

(i.e. no change in response regardless of ramp direction).  
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Figure 30 Individual I-V sweeps for a Ti-CNT sample fabricated using 10 mg CHT-Ti-Cp deposition onto purified 

Miralon CNTs performed at > 760 Torr, with a 200 °C mantle temperature, and 300 mA applied current for 1 hour. The 

I-V sweep in this figure represents a typical I-V response for the metallized CNT hybrids and is used to determine the 

resistance values for temperature dependent electrical data.  

Figure 31 shows temperature-dependent electrical data taken for Ti-CNT composites 

fabricated with 0.7 and 5 mg CHT-Ti-Cp precursor at < 0.250 Torr pressure (16% and 

54% w/w Ti respectively), as well as 10 mg CHT-Ti-Cp precursor deposited at > 760 

Torr pressure (25% w/w Ti). Additionally, the samples prepared at < 0.250 Torr pressure 

were subjected to a 6 hour, 400 °C (673.15 K) vacuum anneal within the Janis cryostat at 

10-6 mbar pressure to assess the impact of annealing on the temperature dependent 

properties. Conductivities were estimated based on average cross-sectional area of the 

Miralon. Fitting of the curves was performed using the Kaiser model [16] described in 



102 

 

1.4.1 using a generalized gradient algorithm that minimizes the sum of residual squares. 

The variable range hopping term generally plays a bigger role in thin film networks [29] 

and was correspondingly found to be insignificant for the networks used in this study; 

thus, the term was omitted for the fits presented here. 

Generally, it is observed that after annealing to 400 °C for 6 hours, the conductivity 

of the Ti-CNT composites permanently decreases overall, at any given temperature. In 

the case of both 0.7 mg and 5 mg CHT-Ti-Cp depositions, an increase in both the phonon 

backscattering energy (calculated as 𝑇𝑀 ⋅ 𝑘𝐵) and the tunneling barrier energy (𝐸𝐵 = 𝑇𝐵 ⋅

𝑘𝐵) is observed after annealing, which accounts for the decreased conductivity. For as-

deposited samples, it is shown that increasing the weight loading of Ti when deposited at 

pressures of < 0.250 Torr leads to a decrease in the values of both 𝑇𝑀 and 𝑇𝐵, which 

indicates a lower phonon scattering energy as well as a decreased tunneling barrier 

between CNT bundles. In fact, the calculated barrier energy is 4.92 meV at a weight 

loading of 16% w/w Ti, which is very similar to that observed for 21% w/w Pt seeded 

roving shown in other studies (4.66 eV) [118]. Moreover, the barrier energy decreases to 

3.32 meV as the weight loading increases to 54% w/w Ti, another trend of which is also 

observed in Pt seeded conductors. The addition of metal at higher weight loadings 

contribute to a lower average tunneling barrier as additional contact points are bridged 

within the CNT network, providing evidence that the metal deposition is leading to 

electrical interconnection.  

The Ti-CNT conductors fabricated at pressures < 0.250 Torr are shown earlier to 

have some amount of TiO2 present, however, some amount of the deposited coating is in 

the form of Ti or TiC, evidenced by the fact that the samples are still conductive. Thus, 
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the Ti present is attributed to the low tunneling barrier obtained. Temperature-dependent 

electrical measurements were also taken for a Ti-CNT conductor that was fabricated via 

CVD at > 760 Torr pressure, to assess if the presence of TiO2 in the samples fabricated at 

< 0.250 Torr influence the electrical interface. In this case, a Ti-CNT conductor with 25% 

w/w Ti was modeled and exhibits a tunneling barrier energy of 2.40 meV, which is lower 

than that obtained for samples fabricated at < 0.250 Torr pressure even with higher 

weight loadings. Thus, minimizing the amount of TiO2 in the deposited coatings is 

attributed to providing a lower barrier height between CNTs. 
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Figure 31 Temperature-dependent electrical measurements with curve fitting results for (a) 0.7 mg, and (b) 5 mg CHT-

Ti-Cp depositions onto purified Miralon CNTs performed at < 0.250 Torr, with a 200 °C mantle temperature, and 250 

mA applied current for 1 hour. (c) 10 mg CHT-Ti-Cp deposition onto purified Miralon CNTs performed at > 760 Torr, 

with a 200 °C mantle temperature, and 300 mA applied current for 1 hour. 
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5.3 Transferability of Process Principles to another Material System: W-

CNT Hybrids 

The effectiveness of pure Ti as an adhesion metal on CNTs is benefitted from its 

wettability, temperature stability, and low contact resistance to CNTs. W is an alternative 

metal that exhibits similar properties to Ti with respect to CNTs, but also has a tendency 

to form stable oxides. The processing principles developed for the Ti-CNT system are 

evaluated in this section for a W-CNT composite to assess the effectiveness of the 

process and establish the basis for an alternative metal-CNT system. 

5.3.1 Vacuum CVD (< 0.250 Torr) 

In this study, the purified Miralon roving described in section 5.1.1 is used as the 

base CNT material, and the resulting material properties after CVD are assessed via a 

combination of electron microscopy, energy dispersive X-ray spectroscopy, mass 

measurements, and Raman spectroscopy.  

A three-neck flask set-up is used for the deposition of W via Joule-heating driven 

CVD as described in earlier works. A single strand of purified Miralon CNT roving is 

suspended between two electrical leads passed through rubber septa enclosing the outer 

two necks. The flask is brought into a glovebox purged under an argon environment. The 

precursor was massed inside of the glovebox using a Mettler Toledo XP-2U 

microbalance to measure masses as low as 3 mg. Bis(cyclopentadienyl) Tungsten(IV) 

(CAS# 1271-33-6, Sigma-Aldrich 97%) [W(Cp)2H2] was used as the precursor in this 

study. The massed precursor was transferred into the three-neck flask within the 

glovebox and the flask was transferred into a hood equipped with a Schlenk line to 

control the environment of the flask. The Schlenk line system consists of two lines; one 

line for delivering 95% Ar/5% H2 gas, and the other for pulling vacuum on the system. 
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Joule-heating driven CVD was performed (as described in earlier works [27, 83, 114]) 

using W(Cp)2H2 onto purified Miralon roving at a pressure of < 0.250 Torr, a mantle 

temperature of 150 °C, and a continuously applied current of 250 mA for 1 hour.  

The coating morphology of CVD deposited CNTs is assessed using a Hitachi S-

4000 scanning electron microscope via secondary electron imaging, using a working 

distance of 8 mm and an accelerating voltage of 10 kV. Elemental analysis of the surface 

of the composite was performed using a Tescan Mira3 SEM equipped with a Bruker 

XFlash 6|30 EDS at a 10 kV accelerating voltage. A Mettler Toledo XP-2U microbalance 

is used to acquire the mass before and after deposition in order to determine weight 

loading.  

The results of one hour depositions using precursor masses of 3, 11, and 18 mg at 

200 °C and < 0.250 Torr onto purified Miralon CNT roving biased at 250 mA are 

presented in Figure 32. As expected, an increase in the amount of precursor mass leads 

to an increase in metal mass loading after deposition, which is observed for other 

precursors as well [27, 83]. SEM images show that the W precursor deposits a coating 

with spikey morphology when using 3 or 11 mg of precursor. As seen in Figure 32b, the 

network morphology is still visible at low magnification, however, the pores within the 

network are fully filled at the surface. A thicker coating is observed when using 11 mg, 

and the spike-shaped features are more pronounced. As the precursor mass is increased to 

18 mg, a smoother surface is observed.  
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Figure 32 (a) Plot of the weight loading %w/w versus the starting precursor mass for W(Cp)2H2 depositions performed 

at < 0.250 Torr, with a 150 °C mantle temperature, and 250 mA applied current for 1 hour. SEM images showing the 

morphology of the corresponding depositions with (b) 3 mg, (c) 11 mg, and (d) 18 mg W(Cp)2H2 precursor.  
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Raman spectroscopy was performed to assess the state of the W deposited onto 

the CNTs (see Figure 33). Standard peaks representing sp2 and sp3 bonded carbon, noted 

as the graphitic (or G) and defect (or D) peaks, respectively, are observed. However, in 

addition to these peaks, five WO3 peaks are also observed at 129, 265, 322, 695, and 804 

cm-1. The peaks identified for WO3 closely resemble those reported in literature for h-

WO3 at 161, 251, 321, 691, and 817 cm-1[119].  

 

Figure 33 Raman spectroscopy measurements of an 18 mg W(Cp)2H2 deposition onto purified Miralon CNT roving 

performed at < 0.250 Torr, with a 150 °C mantle temperature, and 250 mA applied current for 1 hour. 

It has been reported that WO3 can be reduced to pure W in a hydrogen 

environment in less than an hour annealing time at temperatures between 500-900 °C 

[120]. Herein, annealing in a 95% Ar/ 5% H2 environment was performed in a 

Lindberg/Blue M(HTF55322A) tube furnace at multiple temperatures from 500 to 900 °C 

for 1 hour on a quartz boat to attempt to reduce the deposited W after CVD deposition. 
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Raman measurements on the annealed samples show that the peaks associated with WO3 

remain after annealing to 500 and 600 °C, however, successful reduction is achieved at 

900 °C, whereby all peaks related to oxides are vacant, and a pristine CNT curve is 

observed from beneath the surface (see Figure 34). Moreover, a significant recovery of 

the D/G ratio is observed, indicating that the high temperature annealing didn’t 

negatively impact the CNT structure.  

 

Figure 34 Raman spectroscopy measurements of an 18 mg W(Cp)2H2 deposition onto purified Miralon CNT roving 

performed at < 0.250 Torr, with a 150 °C mantle temperature, and 250 mA applied current for 1 hour after annealing to 

500, 600, and 900 °C in a 95% Ar/ 5% H2 environment. 
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Table 3 Raman shift peak locations (reported in cm-1) associated with WO3. h-WO3 and m-WO3 values referenced 

from literature [119]. 

Additionally, secondary electron images show the impact of annealing on the 

surface morphology of the W (see Figure 35). No clear trend is established between 

anealing and grain structure, however, it is demonstrated that the W coating is stable on 

the CNT surface at temperatures up to 900 °C, maintaining a uniform and continuous 

coating. Thus, W is demonstrated here to have high temperature stability on the surface 

of CNT networks. 

 

Figure 35 Surface SEM measurements of an 18 mg W(Cp)2H2 deposition onto purified Miralon CNT roving performed 

at < 0.250 Torr, with a 150 °C mantle temperature, and 250 mA applied current for 1 hour as-deposited and after 

annealing to 500, 600, and 900 °C in a 95% Ar/ 5% H2 environment. 
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5.3.2 >760 Torr CVD 

Annealing in a reducing atmosphere successfully converted the CVD deposited WO3 film 

to pure W. Joule-heating CVD at > 760 Torr pressure is explored as an alternative route 

to achieve W-rich films by encouraging a pure W deposition onto the CNTs during 

growth. In this study, the modified three-neck flask set-up was used to accommodate 

pressures greater than 760 Torr, with a continuous flow of 95% Ar / 5% H2 (mol/mol) gas 

as shown in Figure 26. CVD experiments presented here are conducted with an applied 

current of 300 mA for 1 hour, using a mantle temperature of 150 °C to sublimate a 

W(Cp)2H2 precursor.  

The influence of precursor mass on the resultant deposition mass loading and 

morphology are presented in Figure 36a, using 5, 10, and 21 mg of precursor. As 

observed in the case for CHT-Ti-Cp deposition at > 760 Torr, the weight loading after 

deposition increases correspondingly with increasing precursor mass. Furthermore, it is 

again observed here that for a given precursor mass, the resultant weight loading after 

deposition at > 760 Torr pressure was lower when compared to < 0.250 Torr depositions, 

which is attributed to the lower mass fraction of vapor phase precursor as described 

earlier as well as potential convective cooling effects.  

Secondary electron images showcase the morphology obtained at the various 

weight loadings. As seen in Figure 36b, utilization of 5 mg of CHT-Ti-Cp precursor led 

to a continuous and uniform coating that adheres closely to the to the CNT network 

morphology. Notably, the surface texture is much more smooth in comparison to the 

spike-shaped features obtained via < 0.250 Torr depositions of W(Cp)2H2. The 

morphology for the 10 mg and 21 mg depositions performed at >760 Torr deposition 
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show greater amount of filling due to the higher weight loading. Importantly, depositions 

at all weight loadings showcase a smoother surface texture without the presence of spike-

shaped features that were observed in the < 0.250 Torr depositions, which may be 

resultant of oxide formation.  

 



113 

 

 

Figure 36 (a) Plot of the weight loading %w/w versus the starting precursor mass for W(Cp)2H2  depositions performed 

at > 760 Torr, with a 150 °C mantle temperature, and 300 mA applied current for 1 hour. SEM images showing the 

morphology of the corresponding depositions with (b) 5 mg, (c) 10 mg, and (d) 21 mg W(Cp)2H2 precursor. 
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To verify the deposition of W onto the CNTs, surface-view EDS mapping was 

performed on a W-CNT sample with a weight loading of 65% w/w, shown in Figure 37. 

Uniform coverage of W is shown across the surface of the CNTs, with a strong W signal 

confirming the presence of W. The confirmation of W deposition validates W(Cp)2H2 as 

a viable precursor for CVD depositions of W onto CNT networks. 

 

Figure 37 (a) Surface-view SEM of a 10 mg W(Cp)2H2  deposition on purified Miralon CNTs performed at > 760 Torr, 

with a 150 °C mantle temperature, and 300 mA applied current for 1 hour. EDX map overlay of W signal in bottom 

image. (b) Corresponding EDX spectrum. 

Raman spectroscopy was performed to understand the phase of W deposited onto 

the CNTs, shown in Figure 38. Standard G, D, and G’ peaks are observed for the W-

CNT composite, which correspond to the vibrational modes observed in CNTs. No peaks 

are observed that would correspond to WO3, however, which is consistent with that 

observed for >760 Torr CVD depositions performed with CHT-Ti-Cp, whereby oxide 

formation was minimized. Moreover, a small amount of signal is registered at 690 and 
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860 cm-1, which has been identified as the vibrational modes for WC [121]. There are 

two potential sources of WC formation: (1) during deposition, it is possible that W bonds 

at the outer walls of the CNT surface to form a carbide; (2) the precursor itself contains 

two five-membered carbon rings, which could dissociate to WC during the fragmentation 

of the precursor. Either way, WC is known to have a thermal conductivity of 110 W/mK 

as well as a low resistivity (~0.2 µΩ·m) [122], which could be beneficial for metal:CNT 

interconnection. 

 

Figure 38 (a) Raman spectroscopy measurements of a 5 mg W(Cp)2H2 deposited purified Miralon CNT roving at > 

760 Torr, with a 150 °C mantle temperature, and 300 mA applied current for 1 hour, with (b) an enlarged plot to show 

the WC peaks. 

Overall, the work here demonstrates the ability to reliably deposit either WO3 or pure W 

by controlling the reactor environment. W-CNT composites provide an effective template 

to probe the oxidation state via Raman due to the large number (5) of detectable oxide 

peaks, and their relatively high intensity. WO3 films are shown to be reducible to metallic 

W by annealing at 900 °C for 1 hour in a 95% Ar/ 5% H2 environment, while CVD at > 

760 Torr is shown to deposit oxide-free W, providing two paths toward W-rich coatings 
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on the CNT surface. Additionally, the lack of tungsten oxide formation during CVD 

deposition at > 760 Torr pressure with the W(Cp)2H2 precursor corroborates the 

observation of oxide-free Ti deposition shown earlier using the CHT-Ti-Cp precursor, 

further cementing the ability to deposit Ti-rich or W-rich films.  

5.4 Outcomes 

The work presented in this chapter has provided an understanding of the influence that 

reactor environment and pressure have on the deposition properties. Success of oxide-free 

deposition was achieved using a pressure > 760 Torr in an inert/reducing environment, 

attributed to the absence of any leaks. However, modifying the pressure also influences 

other aspects of the deposition dynamics. Namely, at pressures > 760 Torr, lower weight 

loadings are deposited for a given precursor mass, and thus, finer control over low weight 

loadings is possible. Additionally, depositions at > 760 Torr offer a route towards CVD 

onto CNT samples that are sensitive to vacuum environments. At the same time, for 

applications where higher weight loadings are desirable, deposition at < 0.250 Torr 

benefits from achieving higher weight loadings while using less precursor. Moreover, a 

vacuum environment enables longer mean-free-paths for vapor-phase precursors, which 

may affect diffusion dynamics during deposition. For follow-on studies, an alternative 

set-up could be implemented in which the reactor flask is situated within an 

environmental enclosure. In this manner, the flask could be held under vacuum, while the 

surrounding environment is purged with argon, such that any potential leaks into the flask 

would be inert. Such a set-up would allow for the study of the pressure effects on the 

reaction dynamics more closely.  
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6 Dissertation Conclusions and Impact 
The dissertation focused on the nature of adhesion metal interactions with carbon 

nanotubes. In particular, Ti, Ni, and W were explored as candidate metals due to their 

wettability, ability to form carbides, and their low contact resistance to CNTs.  Multiple 

deposition techniques were evaluated to create both 2-D thin film structures as well as the 

use of a novel CVD approach for 3-D deposition.  Sample processing methods such as 

annealing and temperature-cycling were explored to understand the stability of the metals 

at elevated temperature. The sample test structures were interrogated by SEM, Raman 

spectroscopy, etc. to explore the morphology and structure that was produced.  Electrical 

measurements and mass characterization provided detailed relationships between 

experimental conditions and the resulting physical properties.  Each of these experiments 

were directed at understanding the fundamental interaction and susceptibility to 

electroplated coatings for enhanced hybrid conductors.  Ultimately, the experimental 

work was complemented by a physics-based model to extract parameters that can aid in 

understanding the conduction mechanism for novel hybrids.  The outcomes of each 

chapter section are provided below as well as summary for the dissertation impacts along 

with pathways for future work. 

 Chapter 3 utilizes thermal evaporation to directly evaluate the interfacial 

characteristics of a 2-D Ti film on a CNT ribbon conductor. Specifically, a 10 nm layer of 

Ti was shown via secondary electron imaging to deposit continuously and uniformly 

along the CNT network, indicative of a high binding energy to the CNTs as-deposited. 

The 10 nm Ti layer was demonstrated to maintain a tightly adhered coating up to 400 °C 

for 1 hour in 95% Ar / 5% H2, warranting its use as an adhesion metal for elevated 
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temperature applications. A 100 nm Cu layer was deposited onto the as-received CNT 

conductor and annealed to 400 °C, resulting in gap formation throughout the film as the 

Cu began to delaminate from the surface due to poor interaction. Additionally, as a result 

of film delamination, the annealed Cu-Ti-CNT hybrid increased in resistance by 40%. 

Utilizing a 10 nm Ti layer in a Cu-Ti-CNT hybrid succesfully suppressed delamination of 

the Cu overcoat, and achieved a 12% reduction in the resistance per length, 

demonstrating the advantages of Ti as an adhesion metal for elevated temperature 

applications. 

 Chapter 4 demonstrates the ability to deposit Ti throughout the entire volume of a 

porous 3-D CNT conductor via Joule-heating driven CVD using a CHT-Ti-Cp precursor. 

The diffusion of Ti throughout the ~30 µm thickness was verified through cross-sectional 

EDS mapping, showing for the first time the fabrication of integrated bulk Ti-CNT 

conductors via this technique. Moreover, control over coating morphology and weight 

loading is demonstrated by varying precursor mass, achieving coatings tightly bound to 

the CNT network geometry as well as fully connected thin films on the bulk conductor 

surface. Additionally, electroplating was employed to fabricate Cu-Ti-CNT hybrids, 

achieving conductivities as high as 43.1 MS/m after densification and annealing, which is 

the highest value reported in literature for bulk metal-CNT conductors at 98% or lower 

metal mass loading. Favorable interaction between the metals and the CNTs resulted in a 

TCR of 3.49 × 10-3 K-1, combined with a specific conductivity of 6257 Sm2/kg, which 

results in a conductor that surpasses the specific conductivity of pure Cu at or above a 

temperature of 250 °C. This work demonstrates the fabrication of advanced metal-CNT 
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hybrids that can provide direct energy savings during operation at elevated temperatures 

for applications such as high efficiency motors. 

 Chapter 5 establishes CVD reactor environment controls that enable either mixed 

Ti-oxide or oxide-free depositions, performing depositions at < 0.250 Torr or > 760 Torr 

in a 95% Ar/ 5% H2 envinronment. Depositions performed at > 760 Torr are shown to 

have lower resultant weight loadings for a given starting precursor mass when compared 

to depositions performed at < 0.250 Torr, allowing for higher precision of control when 

targeting low masses. Additionally, Raman spectroscopy measurements indicate a lack of 

oxide formation during depositions at > 760 Torr. The control over oxide formation was 

verified by depositing W onto CNTs at < 0.250 Torr and > 760 Torr, corroborating the 

same trends observed for Ti depositions. The W-CNT acts a useful template for probing 

oxide formation due to WO3 having 5 easily detectable peaks measurable by Raman. 

Moreover, in depositions performed at > 760 Torr pressure, the presence of WC was 

observed, indicating an oxygen-free reaction environment. The results here demonstrate a 

path toward W-rich and Ti-rich throughout a 3-D porous CNT conductor. 

 Additionally, in Chapter 5, the impact of oxide formation as well as weight 

loading on the electrical properties of the Ti-CNT conductors is evaluated via modeling 

of the temperature-dependent conductivity. Curve fitting revealed that the tunneling 

barrier between CNT bundles within the network decreased with increased weight 

loading of Ti deposited at < 0.250 Torr pressure. Furthermore, Ti deposited at > 760 Torr 

was determined to have an even lower tunneling barrier than depositions performed at < 

0.250 Torr, even with higher weight loadings, attributed to the reduced amount of oxides 

present within the metal coating. The modeling performed herein directly supports the 
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theory that the deposited metals provide enhanced electrical interconnection between the 

CNT bundles. 

 Thus, overall, this work has established the ability to deliver Ti throughout a 3-D 

CNT network with control over the morphology, oxide formation, and electrical 

interconnection for the fabrication of advanced Cu-Ti-CNT hybrids with high 

conductivities and low TCRs. As a result, this dissertation has demonstrated the ability of 

Ti to act as a temperature-stable adhesion metal for electrical interconnection in Cu-Ti-

CNT hybrids, which can provide direct energy savings in elevated temperature 

applications. Additionally, Joule-heating driven CVD offers conductor fabrication 

scalability, enabling opportunities for commercialization. Future developments to the 

scalability of CVD will require modifications to the chamber geometry such that larger 

samples and alternative Joule-heating can be utilized.  Additional work that can 

systematically control the pressure level while retaining inert atmosphere can probe the 

mean-free-path dynamics during deposition.  Development of electroplating-based 

processing on a series of higher adhesion metal deposited samples can potentially enable 

the commercialization of these advanced conductors for use in applications such as high 

efficiency motors. Exploring modifications to the electroplating approach, including AC-

based plating and the use of electrolytic additives, may provide enhancements to the 

deposited coatings and their interaction with the carbon nanotubes. Adapting these 

techniques and insights onto other CNT types (i.e. SWCNT, DWCNT, etc.) and 

geometric articles (i.e densified sheets, wires, etc.) may enable their functionality in 

applications requiring cylindrical wire formats for electrical applications, or sheet formats 

for electrode based applications.  Overall, the utility of both adhesions metals for hybrid 
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CNT conductors and the benefits of using joule-heating CVD to realize the depositions 

show tremendous promise in this emerging field of metal-CNT conductors.  
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7 Appendix A: Additional Experiments 
Data sets included here are based on screening experiments to better understand CVD 

parameters. The experiments performed here were sufficiently rigorous to be valid, but 

don’t fit into a complete story, and are intended to explore alternative experimental 

pathways.  

7.1 Serial Deposition towards Ti Passivation 

A potential source of oxidation for Ti coatings on CNTs can come from 

environmental exposure. Encapsulation of the Ti layer can prevent the formation of 

native oxides by eliminating exposure to the environment. Serial CVD deposition is 

suggested to coat a Ti layer with a Cu overcoat prior to exposure to the ambient 

environment. In this way, a CVD deposition of 7.5 mg CHT-Ti-Cp was performed at < 

0.250 Torr with a mantle temperature of 200 °C and applied current of 350 mA for one 

hour. Immediately after the Ti deposition was performed, the flask was transferred into a 

glovebox, where 13 mg of Cu(acac)2 precursor was loaded into the flask. The flask was 

then transferred back to the Schlenk line and a subsequent CVD deposition was 

performed at the same conditions. Figure 39 shows the surface morphology of the Ti-

CNT and Cu-Ti-CNT depositions. A spike-shaped morphology is observed the Ti, which 

is shown to be stable after an anneal to 300 °C in 95% Ar / 5% H2. The Cu deposition 

appears to have some degree of coating on the spike-shaped features, with additional 

spherical particles throughout. After annealing, the spherical Cu particles grow in size, 

however, the coating underneath the spheres remains intact as well, suggesting that the Ti 

layer may be helping with the adhesion of the Cu. More studies are needed to encourage 

a continuous Cu coating along the surface, potentially by focusing on improving the Ti 

adhesion layer through oxide-free deposition controls. 
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Figure 39 Surface SEMs of (a) as-deposited 7.5 mg CHT-Ti-Cp and (b) serially deposited 13 mg Cu(acac)2, as well as 

(c,d) after a 300 °C anneal in 95% Ar / 5% H2 for 1 hour, respectively . Both depositions were performed at < 0.250 

Torr with a mantle temperature of 200 °C and applied current of 350 mA for one hour. 

7.2 CVD on DexMat 

In this study, DexMat is explored as an alternative CNT material for use in CVD 

depositions. As-received DexMat 1 cm film was laser cut to a width of 2 mm and length 

of 12.5 cm, to achieve comparable dimensions to that of Miralon CNT roving. A 

temperature calibration was performed by electrically biasing the 2 mm laser-cut DexMat 

film and measuring the resultant temperature profile with an IR camera (shown in Figure 

40).  
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Figure 40 (a) IR images of the 2 mm wide laser cut DexMat film biased at currents ranging from 0.2 to 1.4 A, as well 

as (b) the corresponding average and maximum temperature of the conductor at each applied current. 

Joule-heating driven CVD was performed on the 2 mm laser-cut DexMat film using 21.3 

mg CHT-Ti-Cp precursor with a constant flow of 95% Ar/ 5% H2 (>760 Torr), a mantle 

temperature of 200 °C, and electrical bias of 1.3 A for 1 hour, resulting a deposition of 

36% w/w Ti. Figure 41 shows the surface morphology of the Ti, showcasing the 

successful deposition of a fully connected film on the surface.  

It is worth noting here that, despite having similar dimensions to the Miralon 

roving, and depositing with matched conditions, CHT-Ti-Cp CVD performed on DexMat 

achieved a weight loading of only 36% compared to the 66% obtained on Miralon. 

Several factors influence the amount of deposition that occurs during a run. It has been 

shown in this dissertation that the amount of starting precursor mass directly affects the 

resultant weight loading after CVD. Furthermore, decreasing reactor pressure results in 

higher weight loading depositions as well, attributed to the fact that powdered precursor 

more readily sublimes at lower pressures. Similarly, previous studies have shown that 



125 

 

increasing mantle temperature also increases the deposited mass [83]. Lastly, the amount 

of applied current has been shown to impact the deposition properties due to the 

temperature distribution resulting from Joule-heating [83]. In such a manner, alternate 

CNT templates may exhibit different temperature profiles due to CNT network properties 

(such as alignment and density), which can alter the resultant deposition properties as 

observed here. 

 

Figure 41 Surface SEM images of a 21.3 mg CHT-Ti-Cp deposition onto 2 mm laser-cut DexMat ribbon at > 760 Torr, 

with a 200 °C mantle temperature, and 1.3 A applied current for 1 hour. 

In addition to Ti deposition onto DexMat, W deposition was performed for comparison. 

Joule-heating driven CVD was performed on the 2 mm laser-cut DexMat film using 21.3 

mg W(Cp)2H2 precursor with a constant flow of 95% Ar/ 5% H2 (>760 Torr), a mantle 

temperature of 200 °C, and electrical bias of 1.3 A for 1 hour. Figure 42 shows the 
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surface morphology of the W, whereby a very light coating is observed, following along 

the network morphology. 

 

 

Figure 42 Surface SEM images of a 21.3 mg W(Cp)2H2 deposition onto 2 mm laser-cut DexMat ribbon at > 760 Torr, 

with a 150 °C mantle temperature, and 1.3 A applied current for 1 hour. 

Surface EDS mapping confirms the presence of W, with a uniform distribution across the 

surface (Figure 43). Additionally, Fe and S are found in the sample, which likely result 

from the catalyst used to synthesize the CNTs, and the acids used to process the CNT 

product (such as chlorosulphonic acid, which contains S). 
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Figure 43 (a) Surface-view SEM of a 21.3 mg W(Cp)2H2  deposition onto 2 mm laser-cut DexMat ribbon at > 760 

Torr, with a 150 °C mantle temperature, and 1.3 A applied current for 1 hour. EDX map overlay of W signal in bottom 

image. (b) Corresponding EDX spectrum. 

Raman spectroscopy indicates the lack of an oxide present; however, a weak signal is 

measured where peaks for WC are expected, consistent with that observed for W 

depositions on the purified Miralon roving (shown in Figure 44). 

 

Figure 44 (a) Raman spectroscopy measurements of a 21.3 mg W(Cp)2H2 deposition onto 2 mm laser-cut DexMat 

ribbon at > 760 Torr, with a 150 °C mantle temperature, and 1.3 A applied current for 1 hour, with (b) an enlarged plot 

to show the WC peaks. 
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The M/L of the W-CNT (DexMat) did not change after W deposition. It is hypothesized 

that some amount of mass is lost in the beginning of the Joule-heating CVD process due 

to desorption of residual dopants present from the DexMat fabrication process. To 

determine the amount of mass deposited, thermogravimetric analysis was performed, 

whereby the mass of as-received DexMat and W-deposited DexMat were measured in-

situ while ramping the temperature up to 1000 °C at 10 °C/min in air. The as-received 

DexMat shows a steady decline in normalized weight % until around ~600 °C. This 

decrease at lower temperatures may be resultant of residual dopants and/or acids used 

during the fabrication of DexMat. Furthermore, the W-CNT sample shows a more stable 

weight % for the first 200 °C, which additionally supports the theory that the Joule-

heating driven CVD process desorbed species prior to the deposition of W. After 

reaching 1000 °C, the only elements that will remain in the sample are the metals present 

– Fe catalyst (shown to be present in EDX scans shown in Figure 43), and the deposited 

W. A comparison of the residual mass left after reaching 1000 °C for the as-received and 

W-CNT was used to calculate a 6.1% mass loading of W on the sample. 
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Figure 45 Thermogravimetric analysis measurements of as-received DexMat and a 21.3 mg W(Cp)2H2  deposition onto 

2 mm laser-cut DexMat ribbon at > 760 Torr, with a 150 °C mantle temperature, and 1.3 A applied current for 1 hour. 

7.3 IR Measurements of Various CNT Templates 

Thermal imaging with an IR camera was performed on a variety of CNT templates under 

electrical bias to generate an understanding of the temperature dynamics for use in CVD 

or other applications. The CNT templates evaluated here consist of the following:  

(1) Purified Miralon CNT roving subjected to a thermal oxidation up to 560 °C at 10 

°C/min ramp, followed by an HCl rinse for 30 minutes, and an additional thermal 

oxidation with the same conditions 

(2) An experimental 40 tex Miralon roving 

(3)  The 40 tex Miralon roving with ultrasonically welded Cu pads for improved 

current distribution over the wide injection area 

(4)  As-received DexMat 1 cm film 

(5) As-received DexMat 1 cm film with ultrasonically welded Cu pads for current 

distribution 
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(6) Laser-synthesized SWCNT ribbon cut from a purified paper. 

The average temperature measured for a given applied current for each sample is shown 

in Figure 46. In general, it is shown that the wider samples generate less heat at a given 

current, which results from the lower resistance. Additionally, it is found that for the 

widest samples (DexMat 1 cm film and 40 tex roving), hot spots accrue at the electrical 

contact points. Ultrasonically welding Cu pads onto these samples results in a cooler 

contact region, and improves the uniformity of the temperature profile overall. Thus, it is 

shown here that it is crucial to use Cu pads on wider samples for proper current 

distribution and improved heating uniformity.  

 

Figure 46 (a) IR images of various CNT templates biased at currents at a range of currents up to 4 A, as well as (b) the 

corresponding average temperature of the conductors at each applied current. 

7.4 Alternative Ti Precursors 

7.4.1 Dimethylbis(t-butylcyclopentadienyl) Titanium (IV) [tCp2-Ti-Me2] 

Dimethylbis(t-butylcyclopentadienyl) Titanium (IV) [tCp2-Ti-Me2] was selected as an 

alternative precursor to evaluate the performance of Ti on the CNT roving seeded via 
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CFH-CVD. The CVD process was conducted under static 0.300 Torr vacuum, with three 

roving in parallel biased at 350 mA/roving for 1 hour. The mantle temperature was held 

at 200 °C. A precursor mass of 6.5 mg lead to a weight loading of 25.1% w/w. As 

observed in Figure 47, 6.5 mg of tCp2-Ti-Me2 precursor was sufficient to coat the CNTs 

with a thin film while maintaining some of the network morphology. Finishing of the 6.5 

mg tCp2-Ti-Me2 seeded conductor was performed by electroplating in a sandwich cell 

configuration in Transene Cu acid solution at a current of 10 mA, followed by 

densification and annealing at 300 °C for 3 hours in a reducing environment. The finished 

6.5 mg tCp2-Ti-Me2 seeded conductor (97.4% Cu / 0.7% Ti / 1.9% CNT) exhibited a 

specific conductivity of 3874 S·m2/kg, and conductivity of 36 MS/m, based on cross-

sectional SEM (see Figure 47b). Thus, tCp2-Ti-Me2 is shown here to be a viable 

precursor for fabrication of high conductivity Cu-Ti-CNT hybrids. 

 

Figure 47: a.) Surface SEM images of the 6.5 mg tCp2-Ti-Me2 seeded CNT roving. b.) False-colored cross-sectional 

SEM of 6.5 mg tCp2-Ti-Me2 seeded CNT conductor electroplated at 10 mA current and finished. 
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7.4.2 Titanium Tetraisopropoxide (TTIP) 

Cyclopentadienyl (Cycloheptatrienyl) Titanium (II) [CHT-Ti-Cp] and Titanium 

Tetraisopropoxide (TTIP) precursors were selected to evaluate the deposition of Ti 

compounds onto the CNT roving via CFH-CVD. The CVD process was conducted under 

static 0.300 Torr vacuum, with three roving in parallel biased at 350 mA/roving for 1 

hour. The mantle temperature was held at 200 °C for the CHT-Ti-Cp powder precursor, 

however, the mantle was kept at 23 °C for the liquid TTIP precursor, as the vacuum alone 

provides necessary conditions to evaporate the TTIP precursor. Deposition of 25 mg of 

the TTIP and CHT-Ti-Cp precursor onto the CNT roving can be seen in Figure 48, 

whereby the TTIP led to an 87.98% weight loading by mass, and the CHT-Ti-Cp led to a 

67.15% weight loading. TTIP deposition is shown to form nano-needles, whereas the 

CHT-Ti-Cp precursor deposits more bulbous structures. The R/L remained relatively 

unchanged in the case of the CHT-Ti-Cp seeded conductor (354 ± 30 Ω/m), while the 

TTIP precursor, which is known to form titanium oxides, deposited an insulating layer on 

the surface of the roving.  



133 

 

 

Figure 48 Surface morphology of the TTIP and CHT-Ti-Cp depositions on CNT roving as taken by SEM. 

To understand the phase of the titanium deposited onto the CNTs by the TTIP precursor, 

Raman spectroscopy was performed. As see in Figure 49a, the TTIP seeded conductor 

exhibits well-defined anatase TiO2 peaks, as compared to literature values.  
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Figure 49 Raman analysis of the (a.) TTIP and (b.) CHT-Ti-Cp depositions on CNT roving. 
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