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ABSTRACT 

Muscularis propria (MP) and muscularis mucosa (MM), two types of smooth muscle fibers in the 

urinary bladder, are major benchmarks in staging bladder cancer to distinguish between muscle-

invasive (MP invasion) and non-muscle-invasive (MM invasion) diseases. While patients with 

non-muscle-invasive tumor can be treated conservatively involving transurethral resection (TUR) 

only, more aggressive treatment options, such as removal of the entire bladder, known as radical 

cystectomy (RC) which may severely degrade the quality of patient’s life, are often required in 

those with muscle-invasive tumor. Hence, given two types of image datasets, hematoxylin & 

eosin-stained histopathological images from RC and TUR specimens, we propose the first deep 

learning-based method for efficient characterization of MP. The proposed method is intended to 

aid the pathologists as a decision support system by facilitating accurate staging of bladder cancer. 

In this work, we aim to semantically segment the TUR images into MP and non-MP regions using 

two different approaches, patch-to-label and pixel-to-label. We evaluate four different state-of-

the-art CNN-based models (VGG16, ResNet18, SqueezeNet, and MobileNetV2) and semantic 

segmentation-based models (U-Net, MA-Net, DeepLabv3+, and FPN) and compare their 

performance metrics at the pixel-level. The SqueezeNet model (mean Jaccard Index: 95.44%, 

mean dice coefficient: 97.66%) in patch-to-label approach and the MA-Net model (mean Jaccard 

Index: 96.64%, mean dice coefficient: 98.29%) in pixel-to-label approach are the best among 

tested models. Although pixel-to-label approach is marginally better than the patch-to-label 

approach based on evaluation metrics, the latter is computationally efficient using least trainable 

parameters.  
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INTRODUCTION 

Urinary bladder in the human body is a muscular sac in the pelvis that stores urine. The 

bladder is mainly composed of four different layers [1]. Urothelium is the innermost layer of the 

bladder. The connective tissue underlying urothelium is the lamina propria, containing muscularis 

mucosa (MM), blood vessels, and fibroblasts. Thick muscle layer underneath lamina propria is the 

muscularis propria (MP), also known as detrusor muscle. The final layer is the serosa/adventitia 

that covers the bladder dome. The MM and MP are the two types of smooth muscle fibers seen in 

the urinary bladder. The MM is composed of several thin layers of muscle fibers, often showing 

discontinuous, wispy, wavy fascicles, whereas the MP consists of thick muscle bundles [2].  

Bladder cancer is one of the commonly diagnosed malignancies across the world, with a 

total of 573,278 new cases and 212,536 new deaths in 2020 [3].  It occurs when the cells that make 

up the bladder grow abnormally and eventually form a tumor. According to the American Cancer 

Society, nearly 83,730 new cases of bladder cancer and 17,200 deaths attributable to bladder 

cancer are estimated to occur in 2021 in the United States [4]. Bladder cancer mostly occurs in 

elderly people with an average age at diagnosis being 73, with men being at higher risk than women 

in the ratio of 3:1 [4]. 

Most of bladder cancers ( ̴ 90%) are urothelial carcinomas, where tumor originates in the 

urothelial cell lining inside of the bladder [5]. The other uncommon histological types of bladder 

cancers are squamous cell carcinoma (1-2% of overall bladder cancers), adenocarcinoma (about 

1%), small cell carcinoma (<1%), and sarcomas (very rare) [6, 7]. Bladder cancer can be clinically 

divided into two distinct categories: non-muscle-invasive bladder cancer (NMIBC) (Tis, Ta, and 

T1) and muscle-invasive bladder cancer (MIBC) (T2-4), as shown in Figure 1. According to the 

Tumor, Node, Metastasis (TNM) classification [8, 9], Tis stage (carcinoma in situ) or Ta stage is 
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a non-invasive carcinoma without or with, respectively, papillary architecture where tumor 

outgrows on the surface of urothelium, whereas T1 tumor invades the subepithelial connective 

tissue, lamina propria where MM is present. Approximately 80% of the patients are diagnosed to 

have NMIBC (Tis-10%, Ta-70%, and T1-20%) [10]. In MIBC, cancer invades the MP/detrusor 

muscle. The MM and MP tissues in the bladder are thus the major benchmarks in staging bladder 

cancer (T1/NMIBC vs. T2/MIBC).  

Treatments for bladder cancer depend on its staging. NMIBC including cases with MM 

invasion can typically be managed with relatively conservative approaches like transurethral 

surgery, where a resectoscope is inserted into the bladder to obtain abnormal tissues for further 

inspection (tissues obtained are referred to as transurethral resection (TUR) or biopsy specimen), 

and drug therapies include instillation of BCG/mitomycin into the bladder. Whereas MIBC with 

MP invasion often involves aggressive treatment options like radical cystectomy (RC), where the 

patient’s bladder is removed through surgery to avoid disease progression or metastasis (tissues 

obtained are referred to as RC specimen), and systemic chemotherapy. In particular, RC will have 

a huge impact on a patient's quality of life as there is a need for a small bag sticking permanently 
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around the ‘stoma’ in the abdomen to collect the urine. Thus, the distinction between MM invasion 

(T1/NMIBC) and MP invasion (T2/MIBC) is clinically critical.  

To distinguish any component of a cell/tissue in a surgical specimen, staining mechanism 

is commonly adopted. Generally, all the tissue specimens obtained by TUR or RC are stained with 

hematoxylin & eosin (H&E), where hematoxylin stains cell nucleus blue and eosin stains 

cytoplasm and extracellular matrix pink. Thus, pathologists can easily differentiate the nuclear and 

cytoplasmic parts of the cells in an H&E-stained tissue sample. In TUR specimens exhibiting 

invasive cancer, it is often difficult to distinguish between the MM, which may be hyperplastic, 

and the MP, which may be partially destroyed or splayed by infiltrating cancer [11, 12]. In H&E-

stained surgical specimens, the muscle bundles of MM, without or with cancer invasion exhibit 3 

typical patterns as shown in Figure 2, a continuous layer, scattered layer showing mild hyperplasia, 

and hyperplastic layer that mimics compact MP. Thus, MM could show no significant 

morphological differences to that of MP. These anomalous patterns of MM lead to 

misinterpretation of bladder cancer stages. Immunohistochemistry for smoothelin, a cytoskeletal 

protein specific stain for smooth muscle cells, has been used for differentiating MM (no or weak 

staining) from MP (strong staining) [13-16]. However, staining conditions have been found to 

considerably affect the staining intensity, and smoothelin immunohistochemistry is no longer used 

in the histopathological diagnosis of bladder cancer. To date, there are no other available 
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biomarkers that are useful for objectively distinguishing the two types of muscle bundles in bladder 

specimens. Therefore, it is often impossible for pathologists to differentiate MM invasion and MP 

invasion in biopsy specimens of bladder cancer. Thus, the distinction between MM invasion only 

(stage T1) and MP invasion (stage T2 or higher) is clinically critical. Particularly, considering the 

treatment regime for bladder cancer and challenges associated with pathological staging, detection 

of MP muscle fibers in H&E-stained tissues from the bladder is of high clinical importance and 

less visually taxing compared to MM muscle fibers. Hence, our goal in this study is to accurately 

differentiate MP from all non-MP tissues (including MM), using H&E-stained RC and TUR 

specimens.  

In recent years, the use of histopathological images from H&E-stained tissue specimens to 

identify tissue structures/abnormalities has gained prominence mainly due to the advancements in 

the modern machine learning (ML) [17-21] and deep learning (DL) [22, 23] approaches, that have 

achieved state-of-the-art results in the field of image processing, especially for histopathological 

tasks such as cancer detection, tumor stage classification, and survival predictions. Generally, 

studies have employed two types of approaches for such tasks. In one of the approaches, the whole 

or some parts of the images were used to extract image-level features, and architectures such as 

the convolutional neural network (CNN) [24, 25] were mainly used for this purpose. Although the 

CNN helps us classify the whole image as a particular class, for tasks that require both prediction 

and localization, where we want to segregate a region inside an image to a particular class, a natural 

solution would be to classify each pixel of the image as a particular class. Hence, the other 

approach employed by different studies was to semantically segment [23, 26-28] the image into 

regions that belong to different classes. Most of the studies in bladder cancer have used patch-

based approaches for either detection of tumor [29] or classification of the tumor stages [21, 30]. 
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However, to our knowledge, none of the studies have evaluated ML/DL models to characterize the 

muscle fibers in the bladder that are critical for cancer staging.     

In this work, we present a supervised DL-based framework to automatically extract 

informative features from H&E-stained histopathological images from RC and TUR and perform 

a binary classification to differentiate each pixel in those from TUR, into MP and non-MP regions. 

Particularly TUR specimen because there exists scope for further treatment. Since morphological 

differentiation of MP and non-MP is often challenging, we intend to evaluate features both at patch 

and pixel level. For this purpose, we introduce two approaches, patch-to-label and pixel-to-label. 

In the patch-to-label approach, patches are extracted such that each patch is labelled as either MP 

or non-MP. Prominent CNN-based architectures like VGG16 [31], ResNet [32], SqueezeNet [33], 

and MobileNet [34, 35] are selected for characterizing MP and non-MP regions. Whereas, in the 

pixel-to-label approach, every original image and the corresponding mask image are divided into 

an equal number of image patches and mask patches, with each pixel in the mask patch 

representing the label (MP or non-MP) of the corresponding pixel in the image patch. The state-

of-the-art semantic segmentation models chosen for characterizing MP and non-MP regions are 

U-Net [36], MA-Net [37], DeepLabv3+ [38] , and FPN [39]. In both approaches, we use either 

patch-based inference and/or whole-image based inference to evaluate semantic segmentation-

based metrics and compare the performance of all trained models. Given a TUR specimen at 100X 

total magnification, the produced framework is able to produce a binary and marked image 

representing MP and non-MP regions. Thus, we intend to ultimately be able to use the proposed 

work as a decision support system to highlight MP regions involved by bladder cancer in surgical 

specimens where pathologists are unable to do morphologically.  
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MATERIALS AND METHODS 

The aim of the proposed framework, as illustrated in Figure 3, is to semantically segment 

the H&E- stained TUR specimens into MP and non-MP regions. The proposed framework consists 

of mainly two steps: model training and model inference. During model training, the input images 

were first pre-processed, and patches of defined size were extracted. These patches with the 

corresponding labels were passed through DL architectures to learn MP and non-MP regions in 

the H&E-stained tissue images. During model inference, the test images were first pre-processed 

and passed through the trained model to obtain the output images with predicted MP and non-MP 

regions. Subsequently, the output images were post-processed to obtain predicted output image. 

 To semantically segment the H&E-stained TUR images into MP and non-MP regions, we 

applied two different approaches: 1) Patch-to-label and 2) Pixel-to-label. In the patch-to-label 

approach, the training patches were extracted where each patch had a single label, either MP or 

non-MP. Traditional CNN based architectures were used for model training and inference. In the 

pixel-to-label approach, training patches were extracted where each pixel of the patch had a label, 
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either MP or non-MP. Traditional semantic segmentation-based architectures were used for model 

training and inference. A detailed explanation of the proposed method is explained in the following 

subsections. 

   

Histopathological Images  

Upon approval from the Institutional Review Board at the University of Rochester Medical 

Center, a total of 303 images of H&E-stained bladder tissues from RC (237 images of size 1920 x 

1440 pixels) and TUR (66 images of size 2448 x 1920 pixels) were collected from the Department 

of Pathology and Laboratory Medicine at University of Rochester Medical Center. The images 

were captured under 100X total magnification using an Olympus BX43 microscope attached with 

a high-resolution camera (DP27). The images were manually segmented by expert pathologists 

into MP and non-MP regions. Twenty-six out of 303 images were from ambiguous cases because 

they either contained both MM and MP tissues in the same image (RC-13 images and TUR-1 

image) or it was difficult for the pathologists to morphologically distinguish between MM and MP 

regions (RC-10 images and TUR-2 images). Hence, 277 images were used to train and test the 

state-of-the-art models.  

 

Ground Truth Preparation and Data Pre-processing  

The images annotated by the pathologists were used to prepare ground truth labels. Figure 

4 shows the procedure to obtain the labels for a histopathological image. A freehand drawing tool 

based on GrabCut segmentation algorithm [40] was used to manually mark the region of interest. 

The output from the tool was a bi-level mask which was then converted to a binary image. We 

could observe that the MP and non-MP tissues were represented as white and black regions 
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corresponding to pixel values of 255 and 0, respectively. 

 All TUR images and the corresponding binary ground truth images were resized to 1920 x 

1440 pixels using bilinear and nearest-neighbor interpolation, respectively, to maintain uniformity 

across all images. In the dataset, we observed considerable variability in the staining intensity 

among the images, especially between those from RC versus TUR. To alleviate these staining 

intensity differences, we applied Reinhard stain normalization [41], a standard color transferring 

technique that imparts the color of a chosen reference image to all the images of the dataset. This 

normalization resulted in a dataset with uniform stain consistency among all images, as shown in 

Figure 5. These stain normalized images were used as an input dataset for our analysis. Since the 

proposed method aimed to segment 

the TUR images into MP and non-

MP regions, we divided our input 

dataset into training set consisting of 

100% RC and 50% TUR images and 

a testing set consisting of the 

remaining 50% TUR images. Details 

of the criteria for dividing the input 

dataset into training and test were provided in the results section. We now provide an explanation 
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on the two different approaches and start with the patch-to-label approach. 

 

Patch-to-label Approach 

Figure 6 shows the overview of the patch-to-label approach. The model training and patch-based 

inference steps are explained as follows. 

In model training step, the images from training dataset were passed through stain normalization 

technique and were divided into several overlapping/non-overlapping patches. The patches were 

extracted such that each patch included either fully MP or fully non-MP regions. Thus, each patch 

was labelled either as an MP patch or a non-MP patch. Since each patch was a fully MP or non-

MP patch, some parts of the original images were unused. Next, the dataset consisting of patches 

and their corresponding labels (MP v/s non-MP) was passed through different DL models that 

performed binary image classification. CNN is the most established algorithm for image 

classification among various DL models. The key advantage of CNN models is that they can self-
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extract the image features through a backpropagation algorithm. The process of learning higher-

level features of the image belonging to a specific class can be enhanced by increasing the depth 

or in other words the number of weight layers in the CNN model. The four CNN-based deep 

learning models chosen to characterize MP and non-MP in TUR images were VGG16, ResNet, 

SqueezeNet, and MobileNet. For all these architectures, instead of using random weight 

initialization, we chose to use the pre-trained weights from the ImageNet dataset [42]. This process 

of using pre-trained weights from an existing dataset is called transfer learning [43, 44], a common 

practice [45, 46] in ML/DL to improve image classification performance. Since the ImageNet 

dataset comprises of natural images and does not contain any medical-related images such as 

H&E-stained images, we chose to retrain the whole network and update the pre-trained weights. 

Also, in each of the four architectures, we changed the last layer (classifier layer) to accommodate 

for two-class image classification. The trained models were then used to perform patch-based 

inference as explained below.    

 In patch-based inference step, we assessed test images individually. Each image was first 

stain normalized and divided into overlapping patches (96% overlap). Each patch was passed 

through trained model that outputs the probability that a patch belonged to the MP class. The 

probability of each patch was assigned to the central pixel of the corresponding patch in an output 

image, which resulted in a small-scale heatmap representation of the predicted output image. This 

probability heatmap image was interpolated to the size same as that of the input image using 

nearest-neighbor interpolation.  Each value in the heatmap representation corresponded to the 

probability that a fixed size patch surrounding the value was an MP region. To convert the 

probability heatmap to binary image representation, an optimal threshold was essential. Thus, the 

threshold was determined as shown in the equations below using adaptive thresholding,  
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 𝑌𝑡 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 − 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (1) 

                                          𝑡̂ = argmax
t

𝐘, 𝐘 ∈ ℝ𝑻, T = number of thresholds (2) 

Where 𝑌𝑡 represents the Youden’s J statistic [47] which is defined as the difference between the 

true positive rate (Sensitivity) and false-positive rate (1 - Specificity). The true positive rate and 

the false positive rate were determined by comparing the probability heat map against the binary 

ground truth at the pixel level. A threshold 𝑡̂ was determined such that it maximized the Youden’s 

J statistic. The probability heatmap representation was converted to binary image representation 

using this threshold 𝑡̂ , where each pixel was now labelled as either MP (pixel value: 255) or non-

MP (pixel value: 0). Lastly, we post-processed the binary image to remove noisy pixels and 

smoothen the boundaries of the binary image. Hence, we used two types of filters. First, we used 

a median blur filter (kernel size = 155 x 155 pixels) which reduced the noise effectively. Next, we 

used a simple averaging filter (kernel size = 25 x 25 pixels) to smoothen the boundary pixels. The 

post-processing finally resulted in a smoothed binary image representation. The same procedure 

was used to semantically segment all images into MP and non-MP regions in the test dataset.  

 To completely utilize the full image during the model training and to understand if pixel-

level features better characterize the MP regions in the TUR images, we proposed the pixel-to-

label approach which is explained in the following section.  

 

Pixel-to-label Approach 

Figure 7 shows the overview of the pixel-to-label approach. The model training, patch-based 

inference, and whole-image based inference steps are explained as follows. 
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In model training step, all training images were first stain normalized. These images and their 

corresponding binary ground truth images were divided into overlap/non-overlapping patches. 

However, unlike the patch-to-label approach, the patches were extracted such that each patch 

included either MP or non-MP region, or both. The reason that a patch can contain any region was 

that each pixel of the patch was either labelled as MP or non-MP. Each extracted patch had an 

equal-sized relating binary ground truth mask. As a result, all informative regions of the images 

were effectively utilized for training the semantic segmentation models.  

 The input patches and the corresponding binary ground truth masks were input to the 
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traditional semantic segmentation-based models that performed pixel-wise binary classification. 

These models were developed to perform semantic segmentation tasks and their main advantage 

comes from the encoder-decoder architecture that forms the backbone. While the encoder encodes 

the original patch to a higher feature level representation, the decoder uses the same high-level 

feature to obtain a pixel-wise predicted output patch whose size is the same as that of the input 

patch and the pixel values represent the probability that a pixel is MP. The predicted output patch 

was compared with the ground truth mask and the weights were updated using the well-known 

backpropagation method. The four semantic segmentation-based deep learning models chosen to 

characterize MP and non-MP in TUR images were U-Net, MA-Net, DeepLabv3+, and FPN. Like 

patch-to-label approach, pre-trained weights from the ImageNet dataset  [42] were used as initial 

weights before re-training the whole network and the last layer of the semantic segmentation 

models were changed to accommodate for pixel-wise two-class classification (MP and non-MP). 

The trained models were then used to perform patch-based and whole image-based inference as 

explained below. 

 To assess the trained model performance, we used two independent ways of model 

inference methods, patch-based and whole image-based. The working of patch-based inference 

method was similar to the one that was previously described in the patch-to-label approach. Here, 

although we obtained the MP probabilities for each pixel in a patch, we estimated an average MP 

probability of the patch and assigned it to the central pixel of the corresponding patch in an output 

image. Thus, the output image resulted in a small-scale heatmap representation of the predicted 

output image. This probability heatmap image was interpolated to the size same as that of the input 

image using nearest-neighbor interpolation to obtain predicted output image.  

 In whole image-based inference, the stain normalized test images were directly fed to the 
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trained model without dividing the images into patches. The output image was a probability 

heatmap image whose size was same as that of the input image and each pixel value represented 

the probability that a pixel was MP. Next, the optimal threshold was determined to convert the 

predicted probability heatmap image to a predicted output image as the value that maximized the 

Youden’s J statistic, as shown in Equations (1) and (2). The binary image was passed through the 

median blur (kernel size = 155 x 155 pixels) and averaging filter (kernel size = 25 x 25 pixels) to 

obtain a smooth predicted binary image. The methods used in patch-based and whole image-based 

were applied individually to all the images of the test dataset to semantically segment each image 

into MP and non-MP regions.  

 

Evaluation Metrics 

As described in both patch-to-label and pixel-to-label approaches, the final output was the post-

processed predicted binary image with MP and non-MP regions highlighted in different colors. To 

assess the performance of models used in patch-to-label and pixel-to-label approaches, we use 

standard pixel-level evaluation metrics like precision, recall, specificity, F1 score, mean dice 

coefficient, mean Jaccard index, and global pixel-wise accuracy. The basic components that 

describe these metrics involve true positives (TP); the total number of MP pixels in ground truth 

that are correctly predicted as MP, true negatives (TN); the total number of non-MP pixels in 

ground truth that is correctly predicted as non-MP, false positives (FP); the total number of non-

MP pixels in ground truth that are wrongly predicted as MP pixels, and false negatives (FN); the 

total number of MP pixels in ground truth that are wrongly predicted as non-MP pixels.  

            The precision or the positive predicted value is the measure of correctness. It evaluates how 

“precisely” the model predicts the positive class, MP pixels. The precision value can be determined 
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as shown in equation (3). 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3) 

 

Recall or sensitivity or the true positive rate corresponds to the accuracy of positive cases or in 

other words, MP class accuracy. It is defined as the ratio of true positives to the total number of 

predicted positives, as represented in equation (4). 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4) 

 

Specificity or true negative rate determines the non-MP class accuracy. As shown in equation (5), 

specificity is calculated as a ratio of total true negatives to the total number of predicted negatives. 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(5) 

 

F1 Score is a metric defined as the harmonic mean of precision and recall, as presented in equation 

(6). The higher value of the F1 score signifies how well the model predicts the positive class. 

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 =  

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
  

(6) 

 

Jaccard Index, also known as Intersection Over Union (IoU), is the ratio of the area of overlap 

between the predicted image and the ground truth image to the area of union between the predicted 

image and the ground truth image. We determine the mean Jaccard Index by taking an average of 

class specific Jaccard Indices, each for MP and non-MP using the equation (7). 

 
𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(7) 

 

Dice Coefficient is a statistical measure to determine the similarity between the predicted image 
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and the ground truth image. It emphasizes only the positive class similarity and does not account 

for the negative class. Thus, we determine the full image dice coefficient (MP and non-MP regions) 

by computing the average of class-specific dice coefficients, each for MP and non-MP using 

equation (8).  

 
𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

(8) 

Mean Jaccard Index and mean Dice coefficient are the most used metrics for evaluating semantic 

segmentation models that show how well the model characterizes a pixel into corresponding class. 

 

Global pixel-wise accuracy indicates the fraction of correctly predicted pixels, considering both 

MP and non-MP class, to the total number of pixels, and it is represented in equation (9).     

 
𝑃𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(9) 
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RESULTS 

Software and Hardware 

The proposed methodology was executed on a workstation with hardware and software 

specifications as described in Table 1. The workstation had 16 GB of RAM, 6 GB of graphical  

memory (GPU), i7 6 core processor, and Windows 10 operating system.  

 All thesis-related tasks were performed in Spyder [48], an integrated development 

environment from Anaconda.org, except the Ground Truth preparation, for which MatLabR2020b 

Image Labeler tool was used. In Spyder, all deep learning analyses were accomplished using 

PyTorch [49], a Python-based scientific computing package that includes functionality to use the 

power of system GPUs, thereby utilizing available resources and leading to time-efficient analysis. 

PyTorch also incorporates automatic efficient differentiation libraries that are useful to implement 

deep learning neural networks. For all the numerical computations NumPy [50] library was used. 

For image reading/manipulations and plots, OpenCV [51] and Matplotlib [52] were utilized, 

respectively. For file operations such as reading the file and writing results to a file, Pandas [53] 

Table 1: Summary of machine specifications 
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library was used. 

 

Deep Learning Model Architectures 

We have evaluated four different models each for patch-to-label and pixel-to-label approaches, 

which are explained as follows.  

 For the patch-to-label approach, we have used state-of-the-art CNN architectures for image 

classification such as VGG16, ResNet18, SqueezeNet, and MobileNetV2, whose number of layers 

and number of parameters are listed in Table 2.  

VGG16: The Visual Geometry Group (VGG) is one of the earliest CNN architecture consisting of 

a large number of convolutional, pooling, and fully connected layers. The model is large and has 

119.55 million trainable parameters.   

ResNet18: Deeper models should theoretically provide better results, however, they did not 

because of the vanishing gradient problem. ResNet models addressed this issue by introducing the 

concept of “skip connection”. With this concept, we can now build deeper architectures. ResNet18 

is a model which has the least depth among other models in the ResNet family with 11.18 million 

trainable parameters.   

SqueezeNet: This model was designed to create a network with few trainable parameters without 

compensating for the model performance. The SqueezeNet was able to achieve the accuracy of 

AlexNet, however with significantly less trainable parameters as evident in the listed table (0.74 

million trainable parameters).  

MobileNetV2:  This model is one of the models belonging to the family of MobileNet models 

which introduced the concept of depth-wise separable convolution that resulted in fewer 

parameters during training. 
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 For the pixel-to-label approach, we have used state-of-the-art semantic segmentation 

architectures for pixel classification such as U-Net [36], MA-Net [37], DeepLabv3+ [38], and FPN 

[39], whose encoder and the number of parameters are listed in Table 2. ResNet18 model was 

chosen as an encoder to compare the model performances of all four chosen models.  

U-Net: This model was developed on top of the fully convolutional network and was used for the 

segmentation of tumors in the lungs and brain. The main contribution of this model was that it 

provides a shortcut connection between every layer in the encoder with the corresponding layer in 

the decoder thereby alleviating the problem of excess compression of the image happening in the 

encoder.   

MA-Net: Multi-scale Attention Net was a model that has introduced a self-attention mechanism 

into the network that helps to combine local and global features. This attention mechanism 

provides an ability to the Manet to capture contextual dependencies. 

DeepLabv3+: This model was the latest among the family of DeepLab models, which introduced 

the concept of atrous convolutions (dilated convolutions) and atrous spatial pyramid pooling that 

resulted in the enhanced model’s ability in providing better segmentation results. 

FPN: This model was developed to solve the problem of panoptic segmentation which was a 

combination of semantic and instance segmentation. The model architecture fuses two different 

Table 2: Characteristics of the chosen models in patch-to-label and pixel-to-label approaches 
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algorithms, ResNet152 [32] and ResNeXt152 [54] that are suited for instance and semantic 

segmentation of the image. 

 

Hyperparameter Selection 

 To train the DL models and obtain state-of-the-art results, choosing the right model 

hyperparameters was important. Since we were using two different approaches (patch-to-label and 

pixel-to-label) to segment the TUR images into MP and non-MP regions, separate hyper-

parameters were used for both approaches. Based on the combination of trial-and-error 

experimentation using a validation dataset and suggested standard hyperparameters settings 

presented in the literature, we used the model hyperparameters as listed in Table 3. The batch size 

indicates the number of training samples processed in one iteration before updating the model 

weights and epoch defines the number of times the learning algorithm will encounter the entire 

training dataset. 

 For the patch-to-label approach, we used 30 epochs and we chose a batch size of 32 which 

is a standard batch size used in CNN models for image classification. The learning rate was chosen 

to be 0.001 and the stochastic gradient descent optimization algorithm was used to update the 

Table 3: Hyper-parameters used for patch-to-label and pixel-to-label approaches 
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weights. We used the cross-entropy loss function, which is generally used in image classification 

tasks.  

 For the pixel-to-label approach, since we used semantic segmentation architecture, a higher 

number of epochs were needed to train (50 epochs). Smaller batch sizes are commonly used for 

semantic segmentation tasks, and thus, we used a batch size of 4 in our analysis. The cross-entropy 

loss function was used determine the loss between predicted and ground truth mask. To optimize 

the loss function and update the weights we used a learning rate of 0.0001 with Adam optimizer.  

 

Determination of Optimal Dataset Combination   

 The dataset used in this work comprises of both RC and TUR images. Although both the 

images are from the urinary bladder, the tissue extraction process and conditions of the tissues 

which were imaged are different as explained in the Introduction section. Also, our dataset 

comprises a higher number of RC images in comparison with the TUR images, as it is easy to label 

MP regions in RC than in TUR images. As a result, the reasonable question we wanted to answer 

was whether RC images are enough to train the model. Otherwise, should we use RC images and 

some TUR images for training to obtain better segmentation for TUR images? Out of curiosity, 

we also wanted to determine what would be the effect of just using the TUR images for training 

and testing, given their small number. Hence, we wanted to assess what combination of RC and 

TUR images was required for obtained accurate segmentation prediction for the TUR images. 

Therefore, we created three categories: a) Training on 100% RC and testing on 100% TUR images, 

b) Training on 85% TUR and testing on 15% TUR images, and c) Training on 100% RC and 50% 

TUR images and testing on 50% TUR images. The purpose of the testing dataset is mainly to 

determine the final predictions and assess all the semantic segmentation-based evaluation metrics. 
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One of the primary requirements for DL models is that they require a large number of training 

data. While dividing the whole image into patches, the use of overlapping patch extraction results 

in an increased number of patches for training purposes. Hence, we also wanted to confirm whether 

there exists any effect of using overlapped patches in comparison with non-overlapped patches. 

Thus, for each train/test division category, we used two types of overlapping strategies: a) No 

overlap and b) 50% overlap. The three train/test division categories and two overlapping strategies 

were tested only on the patch-to-label approach and thus resulted in a different number of training 

and testing patches. When we looked at the distribution of MP and non-MP classes, we found that 

there was a larger number of non-MP patches in comparison with MP patches as evident in the 

table. Hence for each combination of train/test division categories and overlapping strategies, we 

wanted to determine the impact of using a weighted cross-entropy loss function that provides high 

weight for the MP patches in comparison with non-MP patches and the weight provided is equal 

to the reciprocal of the number of patches belonging to a particular class. Hence, we used two 

weighting approaches: a) Weighted cross-entropy and b) unweighted cross-entropy. Thus, a total 

of 12 task combinations were assessed using the ResNet18 model in patch-to-label approach. For 

evaluation, we determined the mean Jaccard index, mean dice coefficient, and area under the curve 

(AUC) of Receiver Operating Characteristic curve (ROC)/ Precision-Recall curve (PR). Table 4 

shows the mean Jaccard index and mean dice coefficient metrics for each combination at the pixel 

level. We observed that by using 100% RC and 50% TUR images, producing non-overlapping 

patches, and by using weighted cross-entropy loss function for training, the best evaluation metrics 

were obtained by testing the remaining 50% TUR images. The mean Jaccard index and Dice 

coefficient for the best test case (task no 10) was 0.95 and 0.97, respectively. For the same 

combination, we also observe high AUC-PR and AUC-ROC values of 0.98 and 0.99 respectively 
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as shown in Figure 8. As observed, in most of the cases, weighted cross entropy loss function with 

no overlap gave slightly better results compared to unweighted cross entropy loss function, mainly 

due to class imbalance in our dataset. The next best performing combination was when all RC 

images were used for training and all TUR images were used for testing. Here, the mean Jaccard 

index and Dice coefficient dropped mainly because the model had not encountered any TUR 

Table 4: 12 task combinations to decide optimal training-testing dataset, overlap, and loss function 
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images while training. Least performance was observed when purely TUR images (63 images) 

were used for both training (53 images) and testing (10 images) the model. This was expected 

since model was trained on minimal TUR images. Hence, for both patch-to-label and pixel-to-

label approaches we used 100% RC and 50% TUR images for training purposes and used the 

remaining 50% TUR images for testing the trained models. We extracted non-overlapping patches 

and used weighted cross-entropy as a loss function for all the further analysis. Thus, a total of 214 

RC images and 31 TUR images were used for training and remaining 32 TUR images were used 

for testing. The training images with dimensions 1920 x 1440 pixels were divided into non-

overlapping patches of size 240 x 240 pixels. Two reasons for choosing a size of 240 x 240 pixels 

patches were that the deep learning models need the input image size to be at least 200 x 200 pixels 

and both the dimensions of the original image are divisible by patch size, resulting in complete 

utilization of input image without the need for truncation or padding. These training patches were 

further divided into 80% training set and 20% validation set using stratified sampling technique 

[55], which ensured that the distribution of the classes was maintained in both, training and 

validation datasets. The validation set was used as an indicator for overfitting the data during model 

training. Table 5 indicates the total number for training and validation patches in patch-to-label 

and pixel-to-label approaches. 

 

Table 5: Count of training and validation patches in patch-to-label and pixel-to-label approaches 



26 
 

Patch-to-label Model Training and Inference 

 In patch-to-label approach, the total number of patches extracted were 8,050 patches (Table 

5). These patches comprised 2,459 MP patches and 5,591 non-MP patches, which when further 

divided resulted in 6,440 training patches and 1,610 validation patches. With predefined 

hyperparameters from Table 3, we trained all four CNN-based models. Table 6 shows the 

evaluation metrics for all the CNN-based models. When we compare results from four different 

CNN-based models, we can observe that SqueezeNet performs the best. Except for precision and 

specificity, all the other metrics of the SqueezeNet model are higher in comparison with other 

models. The ResNet18 model also provides stiff competition to the SqueezeNet models. As we 

can observe the ResNet18 model has the high precision and specificity, and all the other metrics 

are very close to the best performing SqueezeNet model. The MobileNetV2 and VGG16 provide 

the worst results as the evaluation metrics are the least among the models. Among different metrics 

the mean Jaccard index and mean Dice coefficient are considered as best metrics to decide on the 

Table 6: Performance measure (%) of models in Patch-to-label approach 
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superiority of the model in the segmentation tasks. We observe that the SqueezeNet/ResNet18 

have mean Jaccard and Dice coefficients of 95.44/94.94 and 97.66/97.40, respectively. Whereas 

the MobileNetV2Net/VGG16 have mean Jaccard and Dice coefficients of 86.61/84.45 and 

92.81/91.79, respectively. We also plotted the PR and ROC curves for all the models as shown in 

Figure 9. The AUC-PR and AUC-ROC followed a similar trend as we had seen for the evaluation 

metrics. The SqueezeNet and ResNet18 models have high AUC-PR/ROC values of 0.98/0.99 in 

comparison with the MobileNetV2 and VGG16 models which have lower AUC-PR/ROC values. 

Hence, based on the evaluation metrics we conclude that the SqueezeNet and ResNet18 models 

are the best performing models in the patch-to-label approach.        

 

Pixel-to-label Model Training and Inference 

 In pixel-to-label approach, since each pixel of the patch was labelled and for reasons 

mentioned in the Methods section, the total number of patches extracted were 11,760 patches 

which were higher than patches extracted for the patch-to-label approach (Table 5). These patches 

comprised 233.9 million MP pixels and 356.1 million non-MP pixels. The 11,760 patches when 
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further divided, resulted in 9,408 training patches and 2,352 validation patches. We used the 

weighted cross-entropy loss function with weighted random subsampling to ensure that each batch 

of size 4 saw a proportional number of MP and non-MP classes. The weight provided is equal to 

the reciprocal of the number of pixels belonging to a particular class. With predefined 

hyperparameters from Table 3, we trained all four semantic segmentation-based models. Model 

evaluation for patch-based and whole image-based inference types for the pixel-to-label approach 

is explained below. 

 

Patch-based inference  

Patch-based inference is an approach similar to that of the inference for the patch-to-label 

approach. Table 7 shows the evaluation metrics for all the semantic segmentation-based models. 

When we compare results of four different semantic segmentation-based models, we observe that 

the DeepLabv3+ performs the best. The DeepLabv3+ model outperforms all the other models 

Table 7: Patch-based performance measure (%) of models in pixel-to-label approach 
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across all different evaluation metrics (all metrics > 95%) as highlighted in the table. The next best 

performing model is the U-Net, where all metrics except the mean Jaccard index are greater than 

95%. U-Net is followed by MA-Net. The FPN provides the worst results as the evaluation metrics 

are the least among the models. We observe that the DeepLabv3+/U-Net have a mean Jaccard 

index and mean dice coefficient of 96.35%/94.57% and 98.14%/97.20%, respectively. Whereas 

the MA-Net/FPN have a mean Jaccard index and mean dice coefficient of 92.35%/85.64% and 

96.02%/92.25%, respectively. We also plotted the PR and ROC curves for all the models as shown 

in Figure 10 (dashed lines). The AUC-PR and AUC-ROC followed a similar trend as we had seen 

for the evaluation metrics. The DeepLabv3+ model shows high AUC-PR/ROC values of 0.99/0.99 

in comparison with other models. DeepLabv3+ is followed by U-Net and finally, FPN had the 

least AUC-PR/ROC values when compared to other models. Hence, based on the evaluation 

metrics we conclude that for patch-based inference, the DeepLabv3+ and U-Net models are the 

best performing models in the pixel-to-label approach. 
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Whole image-based inference 

 In whole image-based inference, the test images were not divided into patches. Instead, the 

full image was passed through the trained model and the predictions were achieved. Table 8 shows 

the evaluation metrics for all the semantic segmentation-based models using whole image-based 

inference. When we compare the results of four different semantic segmentation-based models, 

we observe that the MA-Net performs the best. The MA-Net model outperforms all the other 

models across all different evaluation metrics (all metrics > 95%) as highlighted in the table. The 

next best performing model is the FPN, where all metrics except the recall and mean Jaccard index 

are greater than 95%. FPN is followed by DeepLabv3+. The U-Net is providing the worst results 

as their evaluation metrics are least compared to all other models. We observe that the MA-

Net/FPN have a mean Jaccard and mean dice coefficient of 96.64%/94.93% and 98.29%/97.40%, 

respectively. The DeepLabv3+/U-Net have a mean Jaccard and mean dice coefficient of 

90.17%/82.79% and 94.82%/90.56%, respectively. We also plotted the PR and ROC curves for all 

Table 8: Whole image-based performance measure (%) of models in pixel-to-label approach 
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the models as shown in Figure. 10 (solid lines). The AUC-PR and AUC-ROC followed a similar 

trend as we had seen for the evaluation metrics. The MA-Net model resulted in high AUC-PR/ROC 

values of 0.99/0.99 in comparison with other models. MA-Net is followed by DeepLabv3+ and 

finally, U-Net has the least AUC-PR/ROC values as observed in the figure. Hence, based on the 

evaluation metrics, we conclude that for whole image-based inference, the MA-Net and 

DeepLabv3+ models are the best performing models in the pixel-to-label approach.         

  

 It is very interesting to note that when we compare the two inference methods in the pixel-

to-label approach, we observe that, for patch-based inference method that uses the extracted 

patches for image predictions, DeepLabv3+/U-Net provided the best results in comparison with 

MA-Net/FPN. Whereas for whole image-based inference that uses full-sized images for their 

prediction, MA-Net/FPN were the best performing models in comparison with DeepLabv3+/U-

Net.  The reason for such behavior can be attributed to the architectural structure of these models. 

The MA-Net [37] which stands for multi-scale attention network and FPN [39] which stands for 

feature pyramidal network are both built on the principle of extracting information from the images 

at multiple scales. When we input an image to these networks, they try to understand the contextual 

information by extracting the features from an image and its corresponding scaled version. So, 

these networks have the inherent ability to capture contextual information while predicting the 

class of each pixel in an image. Hence, we speculate that, when we provide a full image to these 

networks, the presence of full information helps them predict more accurately in comparison with 

their performance when we give these networks just a patch or a small part of the image. Whereas, 

in patch-based inference, the DeepLabv3+ [38] and U-Net [36] performed the best since the 

procedure explicitly considers the neighboring pixel’s MP probability in a patch before assigning 
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the MP probability (average of all pixel’s MP probability) value to its central pixel. Thus, these 

results show the importance of semantic segmentation model architecture in determining the 

region of interest in an input image. 

 

Comparison of Patch-to-label and Pixel-to-label Approach 

 When we compare the results of patch-to-label and pixel-to-label approaches, based on the 

Jaccard index and dice coefficient metrics, we can conclude that the pixel-to-label approach is 

marginally better than the patch-to-label approach [56]. We anticipated this result because in the 

pixel-to-label approach we are using the models that are tailor-made for the semantic segmentation 

task and they directly coincide with our aim of semantically segmenting the TUR images into MP 

and non-MP regions. However, the patch-to-label approach also provides stiff competition to the 

pixel-to-label approach. Although pixel-to-label has a slightly better Jaccard index and dice 

coefficient, the time taken to train the pixel-to-label approach architecture is much higher in 

comparison with patch-to-label approach models. Also, the number of parameters to train for pixel-

to-label models is significantly higher than the patch-to-label models except for the VGG16 model. 

The conclusion is that for the task of semantically segmenting the TUR images, both patch-to-

label and pixel-to-label approaches work extremely well. 

 

Visualization of Segmentation Results 

 We have provided a visualization of the segmentation result for test TUR images obtained 

from both approaches. Figures 11, 12, and 13 represent the visualization results for the patch-to-

label, pixel-to-label - patch-based, and pixel-to-label - whole image-based approaches, 

respectively. In these figures, each row represents an original TUR image with a pathologist 
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marked MP region (red mark) in the first column. The subsequent columns represent the 

corresponding predictions from different patch-to-label approach models and pixel-to-label 

approach models. In Figure 11 we can observe that among all models, the SqueezeNet prediction-

based visualization is the best. Similarly, in Figures 12 and 13, we can observe that among all 

models, DeepLabv3+ for patch-based and MA-Net for whole image-based inference provides the 

best visualization result in pixel-to-label approach.  

 We also had another test dataset for which pathologists were skeptical in deciding MP 

regions due to the reasons described in the Methods section. We also passed these images through 

the best models in both the approaches, i.e., SqueezeNet for patch-to-label, DeepLabv3+ for pixel-

to-label (patch-based) and MA-Net for pixel-to-label (whole image-based), and the visualizations 

are represented in Figure 14.    
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Figure 11: Visualization of segmentation results for test TUR images using trained models from patch-to-label approach 
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Figure 12: Visualization of patch-based segmentation results for test TUR images using trained models from pixel-to-label 

approach 
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Figure 13: Visualization of whole image-based segmentation results for test TUR images using trained models from pixel-to-label 

approach 
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Figure 14: Visualization of segmentation results for ambiguous H&E-stained urinary bladder images using trained SqueezeNet 

from patch-to-label, DeepLabv3+ from pixel-to-label (patch-based inference), and MA-Net from pixel-to-label (whole image-

based inference) 
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CONCLUSION 

As MM and MP are major benchmarks in staging bladder cancer and their distinction being 

clinically critical, our work aimed at characterizing MP (in particular) in H&E-stained tissues 

obtained by TUR using DL approaches. In this study, we proposed two DL model training 

approaches: patch-to-label and pixel-to-label. For these, we chose 4 different state-of-the-art CNN-

based architectures and semantic segmentation-based architectures and compared their 

performances at a pixel level. Our analysis indicated that the pixel-to-label approach was 

marginally better than the patch-to-label approach. MA-Net model from the pixel-to-label 

approach – whole image-based inference outperformed all other models, with mean Jaccard index, 

mean dice coefficient, and pixel-wise accuracy equal to 96.64%, 98.29%, and 98.38%, 

respectively. However, the patch-to-label approach used CNN-based models with reduced 

trainable parameters and used much less time for model training and inference in contrast with the 

pixel-to-label approach. Particularly, SqueezeNet, the model with the least trainable parameters 

(0.74 million), resulted in comparable model performance with mean Jaccard index, mean dice 

coefficient, and pixel-wise accuracy equal to 95.44%, 97.66%, and 97.76%, respectively. Hence, 

using both approaches, we were able to successfully characterize MP and non-MP regions in H&E-

stained TUR specimens. It is expected that our framework will make an important contribution by 

acting as a decision support system to distinguish between the presence and absence of MP 

invasion (T2 disease) in bladder cancer specimens. 
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FUTURE WORK 

• In this work, we have used only 31 TUR images for training along with RC images and tested 

the remaining 32 TUR specimens. With increased TUR specimens in both training and testing 

datasets, the versatility of the DL model is enhanced to determine MP and non-MP regions in 

complex TUR specimens.  

• To explore and evaluate traditional ML models like logistic regression, decision trees, support 

vector machines, etc, MP and non-MP features can be extracted from the final layer of the DL 

models and these features can be used to train and assess the performance of the ML models.  

• To explore other CNN-based and semantic segmentation-based architectures using the 

proposed approaches.  

• An additional semantic segmentation-based technique can be implemented, where instead of 

using pre-trained model weights from the ImageNet dataset, we may utilize pre-trained model 

weights from our proposed work (patch-based model training) and input full-sized images for 

model training. This way, the model is purely trained on H&E-stained histopathological 

images. This approach requires high-performance computers and is time-consuming. 

However, this approach might result in improved model performance. 

• To characterize MM in addition to MP in H&E-stained biopsy specimens from the bladder, 

thus giving rise to decision support system to accurately distinguish between MM invasion (T1 

disease) and MP invasion (T2 disease) in bladder cancer specimens. 

• To build a cloud-based graphical user interface to make this work more accessible to all 

pathologists to semantically segment MP regions in H&E-stained TUR specimens, thereby 

facilitating accurate staging of bladder cancer, MIBC (MP invasion) v/s NMIBC (MM/non-

MM invasion). 
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