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Abstract 

Background.  Causal mechanisms supporting the cardio-metabolic benefits of exercise 

can be identified for individuals who cannot exercise. With the use of appropriate causal 

discovery algorithms, the causal pathways can be found for even sparsely sampled data which 

will help direct drug discovery and pharmaceutical industries to create the appropriate drug to 

maintain muscles.  

Objective. The purpose of this study was to infer novel causal source-target interactions 

active in sparsely sampled data and embed these in a broader causal network extracted from the 

literature to test their alignment with community-wide prior knowledge and their mechanistic 

validity in the context of regulatory feedback dynamics.  

Methods. To this goal, emphasis was placed on the female STRRIDE1/PD dataset to see 

how the observed data predicts a Causal Directed Acyclic Graph (C-DAG). The analytes in the 

dataset with greater than 5 missing values were dropped from further analysis to retain a higher 

confidence among the graphs. The PC, named after its authors Peter and Clark, algorithm was 

executed for ten thousand iterations on randomly sampled columns of the modified dataset 

keeping intensity and amount constant as the first two columns to see their effect on the resultant 

DAG. Out of the 10,000 iterations, interactions that appeared more than 45%, 50%, 65%, 75% 

and 100% were observed. The interactions that appeared more than 50% of the times were then 

compared to the literature mined dataset using MedScan Natural Language Processing (NLP) 

techniques as a part of Pathway Studio.  

Results. Full consensus across all sub-sampled networks produced 136 interactions that 

were fully conserved. Of these 136 interactions, 64 were resolved as direct causal interactions, 5 

were not direct causal interactions and 67 could only be described as associative. It was found 

that about 17% of the interactions were recovered from the text mining of the 285 peer-reviewed 

journals from a total of 64 that were predicted at a 50% consensus. Out of these 11, 4 were 

completely recovered whereas 7 were only partially recovered. A completely recovered 

interaction was LDL → ApoB and a partially recovered interaction was HDL → insulin 

sensitivity.   

Conclusion. Only 17% of the predicted interactions were found through literature mining, 

remaining 83% were a mix of novel interactions and self-interactions that need to be worked on 

further. Of the remaining interactions, 53 remain novel and give insight into how different 

clinical parameters interact with the cholesterol molecules, biological markers and how they 

interact with each other.  
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Introduction 

Graphical Causal models are gaining importance in the area of muscular physiology. 

However, to identify mechanisms which support the benefits of cardio-metabolic exercise, there 

are experiments performed separately for some biomolecules, but no single pathway has been 

published that could give us answers about how to maintain muscles more efficiently. Our 

research explored new and unusual causal relationships among the various study parameters 

observed that might prove useful to physiology as well as to personalized medicine. The 

expectation is that the results of this work shall help us treat and maintain muscular functions in 

comatose patients and in those professions with minute exercise regimes as well as in conditions 

of microgravity related to space travel because individuals in these scenarios get very little to no 

exercise to be able to maintain healthy muscular physiology. Lastly, the interaction maps shall 

also provide insight into improved recovery from cardiac events and heart muscle damage. In 

this use of causal discovery pathways, we focus on improving our understanding of muscular 

pathways from the Studies Targeting Risk Reduction Interventions through Defined Exercise 

(STRRIDE) study performed by the Duke University’s Molecular Physiology Institute (DMPI) 

(Johnson et al. 2019). Interestingly, the study revealed that the moderate intensity exercise 

regimen proved to reduce the greatest fasting insulin measure in the 10 years after the original 

study was performed in the early 21st century (Kraus et al. 2001).  

An ever-growing database of peer-reviewed journals have and continue reporting and 

improving new and existing biological mechanisms that tie together interactions among 

biomolecules found in the human body. Their interactions are not always straightforward enough 

to catch the eyes of even the researchers who are working on them. Some of these issues were 

explored in a study by Ferreiro and coworkers (Ferreiro, Komives, and Wolynes 2014). 

Literature sources prove to be very useful for identifying relationships between two or three 

biomolecules due to the less complex networks involved, however, to develop an interaction 

map, they do not include enough data (de Las Rivas and Fontanillo 2010). Rarely do they report 

a complete cyclic relationship with sparsely sampled data. Our research addresses the problem of 

causal inference structure with a target molecule of interest using previously observed data. 

Through this study, we shift our focus to the discovery of local direct causes or direct effects of 

the target against a significant number of other variables. Knowing about the direct causes and 
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effects, we can predict mechanisms that can prove helpful for the drug industry to develop 

specific drugs targeting the mechanism in the host’s body that proves to be irregular. 

 Traditionally, causal models were discovered by randomized trials and clearly laid-out 

interventions. Though providing the highest level of confidence, this can be very inefficient, 

costly and sometimes impossible. Hence, using observational data to predict a cause-effect 

relationship from this data using Bayesian networks for causal discovery has gained momentum. 

The observational data can be collected without controlling factors that might be hypothesized to 

affect the system in question (Rathnam, Lee, and Jiang 2017). Time series data is fairly popular 

when it comes to using some of the advanced causal discovery algorithms (Hyttinen et al. 2016). 

However, since the STRRIDE data includes only two time points, i.e., pre- and post-intervention, 

using a simpler algorithm for causal discovery that does not build on rate equation formulations, 

seemed more plausible. Another reason for this is that the STRRIDE data cannot be simply 

viewed as a large time-series dataset with missing time steps. This would create an issue with the 

reliability of the current data which was not the goal of this study. 

The purpose of this study was to infer novel causal source-target interactions active in 

sparsely sampled data and embed these in a broader causal network extracted from the literature 

to test their alignment with community-wide prior knowledge and their mechanistic validity in 

the context of regulatory feedback dynamics. To achieve this, the data was verified for 

consistency. Once the consistency thresholds were defined, data was stratified to fit an arbitrary 

schema that would ensure homogenous data that would be an input to a causal discovery 

algorithm of choice. The output of this algorithm would be a directional graph that can be 

compared and analyzed with literature mined graphs for similarities. This would ensure the 

research would be directed towards a number of undiscovered edges that can be verified with 

further experimentation. 

Approach 

The discovery of native causal relationships is very vital as it plays a central function in 

causal discovery and classification of interactions between biomolecules and their governing 

mechanisms (Salon, Lodowski, and Palczewski 2011; Subramaniam et al. 2011; Cyr and 

Domann 2011). The structure of interaction networks is highly scalable across levels of 

biological complexity thanks to their scalable edge density distributions, e.g. individual 
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biomolecules involved in a certain pathway can be upregulated or downregulated in an 

experimental setup to find the appropriate mechanism of action to fight a disease and create a 

personalized drug. The Peter-Clark (PC) algorithm explores one such opportunity using Bayesian 

conditional independencies among the different individual markers in a dataset (Spirtes and 

Glymour 1991; Spirtes, Glymour, and Scheines 2000; Kalisch and Bühlmann 2007). The PC 

algorithm (Spirtes, Glymour, and Scheines 2000) provides a computationally efficient and 

reliable output given the faithfulness of conditional independence among the different variables, 

i.e. the variables can have conditional independencies among them that appear at higher order 

(involving more than two variables at once) independence relations.  

The predictions of these discovery pathways generally bridge causation with predictivity, 

giving us more information about those edges and their inherent interactions. Determining the 

native causal inference map gives us more details about the natural and predicted pathways 

(using computer programs) which in turn helps us decide the best interventions to help us 

achieve the desired behaviors from the model organism, although, certain assumptions are made 

based on the nature of input data. One such assumption states “A variable X is independent of 

every other variable (except X’s effects) conditional on all of its direct causes” (Scheines 1997) 

which tells us that each variable in the PC algorithm is treated independently whereas in reality 

that might not always be the case. Generally, due to an overlap in the functions of certain protein 

markers, i.e. one protein marker affects the other protein marker in a biological pathway. For 

example, point mutations in the Adenomatous Polyposis Coli (APC) Mutation Cluster Region 

(MCR) leads to disabling the wnt signaling pathways depending on the effect of the mutation 

(Minde et al. 2013). Understanding the local pathways shall ultimately help us understand the 

role of every edge on our map on a global scale (Silverstein et al. 2000; Nikolay et al. 2017). 

This can be translated into novel algorithms that prove to be more time-efficient and are flexible 

enough to suit the needs of our goals. 

There are certain algorithms for the statistical inference of causal relationships that are 

known to us in this field. We explore the PC algorithm (Spirtes, Glymour, and Scheines 2000) to 

find all interactions predicted in our dataset based on only the values of the experiments and 

draw conclusion from a biologist’s perspective using natural language processing (Novichkova, 

Egorov, and Daraselia 2003) to find the known relations and inform us about new ones that can 

be verified with targeted protein interaction studies. Although most biological pathways are 
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cyclic in nature, we try to find acyclic pathways because cyclic pathways have no start or end 

node. In a cyclic pathway, interactions can be represented by multiple acyclic pathways (Strobl 

2019).  

In this work, we applied the PC algorithm to the STRRIDE data to provide insight into 

interactions among the sparsely sampled analytes that can be verified by the resampling of 

analytes as well as with the literature mined sources. The Bayesian conditional inference rules 

help predict these interactions that are a mix of literature mined interactions and some novel ones 

to be studied through further experimentation. The PC algorithm provides us with one such 

resource to predict a large number of interactions based on raw data from a large-scale 

experiment such as the STRRIDE study.  

Methods 

Subjects, study characteristics and data 

The participants recruited into the 3 STRRIDE studies were from North Carolina 

communities near the Duke University. They were 40-65 years old with a sedentary lifestyle. 

The exercise regimen was practiced over a period of six months and all analytes were measured 

before the intervention and after the six-month duration of the intervention. The experimental 

protocol included varying levels of the amount of exercise as well as varying levels of the 

intensity of workout. For the amount of exercise, the prescription varies from 14kcal per kg body 

weight for the low amount to 23kcal per kg body weight for the high amount. The intensity of 

exercise varied from 65-80% peak oxygen consumption for the vigorous intensity and 40-55% 

peak oxygen consumption for the moderate intensity of exercise. 

The edges for the causal interaction pathway include both clinical and physiological 

parameters. These were observed in a pre-intervention state as well as in a six-month post-

intervention state from 590 patients (randomly distributed among men and women) with varying 

levels of adherence to the proposed regimens. A comprehensive list of these analytes is listed in 

Supplementary Table 1. 

The data were retrieved from the Duke Molecular Physiology Institute (DMPI), Duke 

University in raw format which comprised one large dataset from 317 participants (with >75% 
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adherence to their respective exercise protocol) from all three STRRIDEs pooled into it with the 

levels of interventions being Low-Amount Moderate Intensity, Low-Amount Vigorous Intensity, 

High-Amount Vigorous Intensity [STRRIDE 1]; Aerobic Training, Resistance Training, Aerobic 

plus Resistance Training, High Amount Aerobic Training (n=~10) [STRRIDE 2], Diabetes 

Prevention Program, Low-Amount Moderate Intensity, High-Amount Moderate Intensity, High-

Amount Vigorous Intensity [STRRIDE PD]. An observation was noted for all the characteristics 

of the data. The types of analytes fell into these categories:- 

1. Protein – protein weight detection 

2. Small Molecules – macromolecules that were measured 

3. Clinical Parameters – analytes were measured using clinical techniques and do not 

directly specify a biomolecule.  

4. Independent – Amount and Intensity of interventions 

5. Unknown – analytes whose names were not found in the key  

Pre-Processing 

We found two options for combining data subsets in order to explore all possible 

permutations of Intensity and Amount of exercises to work with, so the data were grouped into. 

{1} Low-Amount Moderate Intensity, Low-Amount Vigorous Intensity, High-Amount Vigorous 

Intensity data retrieved from STRRIDE 1 study and High-Amount Moderate Intensity data from 

STRRIDE PD study. {2} Low-Amount Vigorous Intensity data from STRRIDE 1 study and 

Low-Amount Moderate Intensity, High-Amount Moderate Intensity, High-Amount Vigorous 

Intensity data from the STRRIDE PD study. This was done by matching rows among the studies 

with the respective Intensity and Amount of the intervention.  

Statistical Analysis 

An ANOVA was performed with the interaction of amount and intensity as the 

independent variables to find if they had an effect on the delta value of the pre-intervention and 

post intervention analytes within four interventions, namely; Low-Amount Moderate Intensity, 

Low-Amount Vigorous Intensity, High-Amount Vigorous Intensity (STRRIDE 1); High-Amount 

Moderate Intensity (STRRIDE PD) as well as on the basis of sex. The selection of significantly 

varying analytes was selected on the basis of p-score being less than 0.05. The p-scores were 
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then corrected using Benjamini-Hochberg (BH) correction and the corresponding corrected p-

value (q-value) cutoff being 0.05, i.e. q <= 0.05. Box and whiskers were plotted for the q-values 

using ggplot2 package whereas the raw p-values from the ANOVA were tabulated. 

Missing Data Reporting 

 There were on an average 30.3% (Min:2.6% Max:80.3%) missing values (indicated by 

NA/NaN) found in the data. These were summarized and subjected to having a maximum of five 

NA values per each of the four interventions per analyte to help decide which analytes to use for 

the causal inference network discovery. 

Network Assembly 

Empirical networks  

The pcalg (Kalisch et al. 2012; Hauser and Bühlmann 2012) package in R was used to 

find the initial Directed Acyclic Graph (DAG). The data was extracted for the significantly 

changing analytes (p-value <= 0.05) from the two-way ANOVA on the STRRIDE study using 

the pre and post intervention values of analytes. The PC algorithm was run on this dataset 

multiple times to get correct directions of interactions that were biologically viable.  

A delta change metric was used to make time implicit and model the approximate rate of 

change. The pre-intervention values were subtracted from post intervention values from all the 

analytes that were to be used further. Another metric used to remove the bias was a fold change 

metric which was the delta change metric divided by pre-intervention values. The delta change 

metric was given preference because it was found that the fold change created errors in dataset 

due to division by zero errors where delta change did not. Note, that an existing NA value in 

either the pre-intervention or the post intervention shall make the resultant value as NA as well.  

To compensate for bias introduced by the ordering of input variables, PC algorithm was 

run through 10,000 iterations on the input dataset where each column of the dataset represented 

an analyte that would impact each of the 10,000 output graphs. The algorithm generated a list of 

directed and undirected interactions between nodes for each of the iterations which were stored 

in Rdata format. The bidirectionality was seen due to PC not being able to identify a directed 

edge (a direct causal relation) between two nodes (analytes). To address this concern, the bi-
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directional edges were separated from directed edges and set aside for comparison with literature 

informed networks. This was done because the algorithm would predict with certainty if there 

was a causal relationship between the two analytes as a unidirectional edge. From the output 

unidirectional graphs, graphs where edges that were found in 45%, 50%, 65%, 75% or 100% of 

the iterations were retained and the causal inference graphs were plotted accordingly to the 

retaining threshold. A simple graphing tool (yED and iGraph Package, R) was utilized to view 

the graphs that would be generated in all these cases. To analyze the characteristics of these 

graphs, Cytoscape (Paul Shannon et al. 1971) was used. Cytoscape with the NetworkAnalyzer 

tool provides shortest paths, centrality measurements, clustering coefficients for both directed 

and undirected graphs.  

Literature informed networks  

As a measure of validation against the published literature, the graph edges were recorded 

and compared with the Natural Language Processing (NLP) output from the Pathway Studio 

tool. The NLP algorithm was used to data mine the interactions from the Elsevier database of 

journals. The NLP algorithm is derived from MedScan, which uses PubMed abstracts and full-

text articles from the PubMed database. MedScan NLP pulls out biological network information 

such as cellular processes, clinical parameters, complexes and biomolecules such as proteins as 

well as other small biomolecules such as high-density lipoproteins. The analytes from the study 

were entered into the Pathway Studio and it provided literature mined interactions among the 

analytes as entities and also returned a KEGG ID for Pathways wherever applicable, a direction 

of relation provided, types of source and target analytes as well as the total number of references 

and specific sentences containing the relation which it found in the database. The total number of 

references for the interactions found among these analytes was 7,015 among which on an 

average, 37 references were found for each interaction. 

This enabled us to label interactions as either Complete, Partial or None (not existent) in 

comparison to the PC results. The interactions were labelled as Complete when the NLP 

produced a result with the exact direction of edge found in the PC algorithm output. A Partial 

label was awarded to edges that had either the directions of source to target swapped or one of 

nodes were a more resolved molecule than Pathway Studio allowed us to. None was assigned to 

interactions that the NLP tool failed to find. This was done by manually comparing the 



9 
 

spreadsheets produced by NLP and comparing them to a source-target list of interactions 

extracted from the predicted directed acyclic graph. 

Results 

Data Pre-processing 

Statistical Analysis 

 Table 1 shows the result of a two-way analysis of variance (ANOVA) applied to the 

normalized dataset based on levels of two variables, namely amount and intensity. The 

significantly changing variables can be used to predict the causal inference graph due to very low 

p-values, however, on applying the method to male and female datasets, it was observed that 

very high missing value analytes disappeared. On further applying the 2-way ANOVA for option 

1 resulted in only 12 variables showing a significant difference in their mean expression. There 

were NAs found in the Option 1 (Low-Amount Moderate Intensity, Low-Amount Vigorous 

Intensity, High-Amount Vigorous Intensity data retrieved from STRRIDE 1 study and High-

Amount Moderate Intensity data from STRRIDE PD study) data due to one of the pre- and post-

values missing from the original dataset (Supplementary Figure 2 & Supplementary Table 2). 

The ANOVA for Option 2 (Low-Amount Vigorous Intensity data from STRRIDE 1 study and 

Low-Amount Moderate Intensity, High-Amount Moderate Intensity, High-Amount Vigorous 

Intensity data from the STRRIDE PD study) revealed that 12 variables changed significantly in 

their delta change values over the duration of the intervention. A substantial number of missing 

values were noted in this stratification of the whole dataset so Option 1 was chosen for further 

analysis. 

Table 1: Two-way ANOVA on the complete dataset with combinations of moderate vs vigorous 

intensity and low vs high amount. The missing values are reported in the last column. 

Complete Data Df1 Sum Sq1 Mean Sq1 F value1 Pr(>F)1 Missing Values 

age 3 5.61E-01 1.87E-01 1.55E+01 1.87E-09 2 

weight_kg 3 7.38E+01 2.46E+01 3.82E+00 1.03E-02 12 

waist_circum_cm 3 1.17E+02 3.89E+01 4.22E+00 6.15E-03 52 

avo2 3 1.70E+02 5.67E+01 9.52E+00 5.14E-06 32 
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rvo2 3 5.75E+01 1.92E+01 2.96E+00 3.27E-02 32 

matsuda 3 3.68E+02 1.23E+02 1.53E+01 2.85E-09 21 

sbp 3 2.01E+05 6.69E+04 4.43E+01 1.19E-23 26 

dbp 3 1.91E+05 6.36E+04 4.32E+01 5.16E-23 36 

albumin 3 1.46E+00 4.86E-01 3.45E+00 1.77E-02 130 

cmv 3 7.50E-01 2.50E-01 3.18E+00 2.50E-02 130 

h6p 3 2.32E+00 7.72E-01 3.04E+00 2.93E-02 37 

hsa_mir_223_3p 3 2.91E+01 9.70E+00 3.20E+00 2.47E-02 150 

Males Df1 Sum Sq1 Mean Sq1 F value1 Pr(>F)1 Missing Values 

age 3 2.22E-01 7.40E-02 5.60E+00 1.15E-03 2 

avo2 3 9.38E+01 3.13E+01 4.00E+00 9.17E-03 20 

lbm 3 9.64E+00 3.21E+00 3.02E+00 3.16E-02 8 

matsuda 3 2.60E+02 8.65E+01 9.03E+00 1.59E-05 8 

sbp 3 9.44E+04 3.15E+04 2.15E+01 1.42E-11 10 

dbp 3 9.53E+04 3.18E+04 2.29E+01 3.72E-12 13 

bun 3 1.13E+02 3.78E+01 2.98E+00 3.61E-02 73 

gsp 3 3.44E+04 1.15E+04 3.20E+00 2.55E-02 21 

cmv 3 1.54E+00 5.15E-01 4.09E+00 9.33E-03 73 

infx 3 3.64E+02 1.21E+02 3.61E+00 1.52E-02 21 

Females Df1 Sum Sq1 Mean Sq1 F value1 Pr(>F)1 Missing Values 

age 3 4.14E-01 1.38E-01 1.29E+01 1.28E-07 2 

avo2 3 6.66E+01 2.22E+01 5.30E+00 1.68E-03 14 

rvo2 3 6.32E+01 2.11E+01 5.04E+00 2.36E-03 14 

matsuda 3 1.37E+02 4.57E+01 7.75E+00 7.63E-05 15 

sbp 3 1.02E+05 3.41E+04 2.26E+01 4.48E-12 18 

dbp 3 8.62E+04 2.87E+04 1.88E+01 2.73E-10 25 

albumin 3 2.00E+00 6.65E-01 5.53E+00 1.45E-03 59 

crp 3 1.62E+04 5.38E+03 5.03E+00 2.69E-03 59 

apob 3 1.45E+03 4.84E+02 3.76E+00 1.23E-02 18 

h6p 3 3.71E+00 1.24E+00 3.96E+00 9.54E-03 18 

nldlc 3 2.56E+03 8.52E+02 3.62E+00 1.47E-02 18 

totchol 3 4.30E+03 1.43E+03 3.94E+00 9.78E-03 18 

hsa_mir_133a_3p 3 1.32E+02 4.41E+01 3.03E+00 3.31E-02 69 

mir_374b 3 4.06E+01 1.35E+01 3.02E+00 3.36E-02 69 

  

The ANOVA revealed certain trends in the data. Age was seen in all raw p-score sorted 

analytes as was expected because age increased at a fixed rate over the duration of six months 

from pre to post intervention. The BH correction removed analytes that were potentially false 

positives, hence, the most significantly differing analytes between pre- and post-intervention 

were extracted. Figure 1A-C showed that the Matsuda index, systolic and diastolic blood 
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pressures significantly changed over the period. However, the direction of change varied 

significantly due to multiple lines connecting the pre- and post-intervention analytes increasing 

and decreasing at the same time. The medians of these analytes, however, changed as expected, 

since the Matsuda index increased slightly, and the blood pressure readings dropped 

significantly. The analytes in men also differed from women in the BH corrected graphs. Female 

subjects, in addition to significantly changing analytes from the whole dataset and men, showed 

changes in absolute and relative O2 measures as well as albumin and c-reactive protein values 

also changed. There was a slight decrease in the medians of the avo2 and rvo2 whereas the 

medians for albumin and c-reactive protein did not show a visible change. A comprehensive list 

of missing data can be seen from supplementary figure 2. 
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Figure 1 A 
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Figure 1 B 
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 Figure 1 C 

 

Figure 1: The significantly varying analytes from the STRRIDE studies using raw p-scores (left) and Benjamini-

Hochberg corrected scores (right) among the males and females. (A) Log Transformed two-way ANOVA results for 

analytes for the whole dataset with pre vs post exercise intervention. (B) Log Transformed two-way ANOVA results 

for analytes for the male subjects with pre vs post exercise intervention. (C) Log Transformed two-way ANOVA 

results for analytes for the female subjects with pre vs post exercise interventions. The Pre-intervention analytes 

(turquoise) and post int. analytes (light red) values are connected through black lines for each value. The total 

number of subjects were All Data: 322; Male: 156; Female: 166. 
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Inferring Causal Interactions 

Causal relationships between the analytes were used to predict the presence of a causal 

arrow in the resulting graph where a single-headed arrow showed clear X is a cause of Y 

(X→Y), a double-headed arrow representing an unclear relationship between X and Y (X↔Y). 

The direct causes and effects are predicted using PC algorithm. It works on providing local 

causal interactions based on one variable and helps with the directionality of the nodes in our 

resulting graph.  

A cutoff of ≤5 NA was chosen for all columns with missing values. This ensured a 

completeness of the analytes so that a missing data column does not influence the output of the 

DAG. Once the higher NA count columns were removed from our data, we resampled our 

columns keeping our intensity and amount columns as the first 2 variables since they were meant 

to be source nodes in all cases, i.e. they drive the changes in analytes that we wish to see. The PC 

algorithm was then run for 10,000 iterations to see the positional effect of the order of input 

variables to the algorithm and to counter a possible bias introduced by the naïve PC algorithm. It 

was noted that positionality affected the output of the algorithm significantly. Hence, running a 

large number such as 10,000 iterations of PC on the Option1 Female stratified data was entered 

as the input to PC.  

Different levels of consensus were observed to get a better understanding of which 

interactions were highly supported by the PC algorithm analyses. From Figure 2A-D, at 100% 

consensus, 23 interaction edges were observed in the graph. There were a large number of 

orphan nodes observed and 11 sub-networks were observed. As the consensus threshold was 

relaxed by dropping the value of threshold at 75%, 25 interactions were observed which was due 

to addition of 2 new interactions with less unanimously agreed upon edges but the sub-networks 

were still 11. At a threshold of 65%, 6 more interactions appeared making it 31 total interactions 

and dropped the sub-networks number to 10. At the threshold of 50%, a large singular graph with 

63 interactions and an island graph of one interaction was observed. We found that forcing the 

conservation of an edge in over 50% of the networks created a larger number of disjointed 

acyclic graphs, most of which were essentially subnetworks of the larger one. Our motivation 

was to explore the full structure of the more connected graph even if it suffered a higher degree 

of uncertainty. From Figure 2E, dropping the threshold to 45% retention, the edges started to 
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show bidirectionality which was to be avoided. This was essential as only the directed edges 

from the out of 10,000 iterations of PC were used for further study. The bidirectional edges 

appeared due to some interactions having their cause-and-effect nodes flipped due to bias in 

position of analytes in the input of the PC algorithm. As a result, only interactions appearing 

50% or more times were further studied as shown in Figure 2D. The edges shown in this graph 

included interactions between weight and fat mass / lean body mass; cholesterol and 

apolipoprotein B.  

Figure 2 A 
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Figure 2 B 

 

Figure 2 C 
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Figure 2 D 

Figure 2 E 

 

Figure 2: The graphs for option 1 10,000 iterations of PC algorithm. The edges that appear in (A) 100%, (B) 75%, 

(C) 65%, (D) 50% and (E) 45% of the total number of iterations are represented in the above figure. A node 

appearing in 65% graph means it appeared at least 6,500 times in a 10,000 runs of PC algorithm. All interactions 

provided were unidirectional until consensus of 45% was reached.  
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Figure 3 shows all interactions that were found in PC run from above with a 50% 

threshold line (black). There were only 5 undirected edges that appeared more than 50% 

consensus. The Directed Edges (blue) were used to make a large unidirectional graph shown in 

Figure 4. These were 64 interactions with all the analytes stratified into their classes and edges 

with weights according to their consensus level. Cytoscape network analysis revealed that the 

average number of neighbors was 2.415, network diameter was 7 which tells that the maximum 

length of the shortest path between two nodes. The characteristic path length was 2.361 which 

tells us the average shortest path length between two connected nodes. The network radius is 1 

which the shortest length between any two nodes in the network. The network is sparsely 

populated as the density is 0.023. The clustering coefficient is 0.065 which is the ratio of number 

of edges in the neighbors of nodes to maximum edge count that is possible between nodes. The 

low value suggests that the graph is not densely packed. 
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Figure 3: Number of the edges found in a 10,000 iterations of PC algorithm ran on option 1 data. The total number 

of directed and undirected edges is 136 where 110 directed edges and 26 undirected edges were present. The red 

bars represent the edges that were occurring less than 5,000 times and the blue bars represent edges occurring more 

than 4,999 times. There were 64 blue directed and 5 blue undirected edges appeared in at least half of the total runs.    
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Figure 1: Figure 4: Option 1 DAG for Females. Each node stands for one of the variables from the experiment from 

STRRIDEs 1 and PD. The disjoint nodes are placed on the upper-right corner of the graph. Single-headed arrows 

show a causal relationship, for example, absolute O2 is a cause of relative measure of O2. The double-sided arrows 

represent an unclear causal relationship. This is a plot for 50% retention of nodes, i.e. nodes that appear in at least 

5,000 occurrences out of a total 10,000 PC simulations. 

Validation with a literature informed network 

The NLP output was either a direct or indirect regulation retrieved from the peer-

reviewed journals. It also gave information about the effect of the regulation, which was either 

positive, negative or unknown. There was a total of 186 interactions that were listed in the NLP 

output that were verified by 7,015 literature references. Of the 186 relations provided, 40 
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relations were direct and 146 were indirect. 44 of these relations were source analyte positively 

affecting the target, 64 had their source analyte negatively impacting the target analyte and 78 

had an unknown effect on their targets. The types of analytes belonged to one of the same criteria 

as before:  

Protein / Clinical Parameter / Small Molecule / Complex.  

On comparison of the 50% retention graph with the NLP supported interactions, it was 

noticed that 17.82% of the 64 interactions were supported by text mining of 285 peer-reviewed 

journal publications. There were 4 interactions with Complete agreement (172 references), 

shown in Table 2 and 7 interactions with Partial agreement (113 references) reported in Table 3. 

The Complete interactions include ApoA1  HDL particles, LDL (cholesterol)  ApoB, etc. 

The Partial interactions include cholesterol  triglycerides, etc. In the comprehensive list of 

NLP interactions (supplementary table 2), in addition to the 11 interactions, 3 more are marked 

as Partial interactions because the source and target nodes are various fractions of the same 

biomolecule. For example, trlz  vltrlp interaction shows total triglyceride rich lipoprotein is a 

cause of very large triglyceride rich lipoprotein. This interaction makes sense because both the 

source and target are part of the same biomolecule, i.e. the triglyceride rich lipoproteins and a 

change in the part of the whole will reflect in the whole as well. However, due to it not having 

support from NLP, they were omitted from interactions supported by text mined data. The 

complete interactions were all direct regulations whereas the all but one of the partial interactions 

were indirect regulations.  

The undirected edges from the PC run revealed 5 interactions that were over the 

consensus of 50%. On comparison with NLP output, all 5 interactions were not found at all. For 

each of these interactions, the source and target types were sub-types of each other as well as 

were not matched to MedScan database analytes. These were different fractions of complex 

molecules such as glucose, LDL and triglycerides interacting with each other.  

Table 2: Completely matching Data Mined Interactions that were recovered from text-mined 

search of source and target variables out of a total of 110 inferred from the data. 

  source target 
Source 

type 

Target 

type 
Interaction Direction 

1 apoa1 h123 Protein 
Small 

Molecule 
DirectRegulation: estradiol ---> LPL Unknown 

2 Cldlp apob 
Small 

Molecule 
Protein 

DirectRegulation: cholesterol ---> 

APOB 
Unknown 
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3 totchol apob Unknown Protein 
negative DirectRegulation: cholesterol --

-| APOB 
Negative 

4 totchol nldlc Unknown 
Small 

Molecule 

negative DirectRegulation: cholesterol --

-| LDL 
Negative 

 

Table 3: Partially matching Data Mined Interactions that were recovered from text-mined search 

of source and target variables out of a total of 110 inferred from the data. 

  source target Source type Target type Interaction Direction 

1 Lpir lchdlp 
Clinical 

Parameter 

Small 

Molecule 

positive Regulation: HDL --+> 

insulin sensitivity 
Positive 

2 Lpir trlz 
Clinical 

Parameter 
Protein 

positive Regulation: triacylglycerol 

lipase --+> insulin sensitivity 
Positive 

3 trlp ntrlc 
Small 

Molecule 

Small 

Molecule 

negative Regulation: cholesterol ---| 

triacylglycerol lipase 
Negative 

4 ala weight_kg 
Small 

Molecule 

Clinical 

Parameter 
DirectRegulation: IgG ---> INS Unknown 

5 h7p prot 
Small 

Molecule 
Protein 

HDLP with both APOA1 and 

APOB 
Unknown 

6 ntrltg ntrlc 
Small 

Molecule 

Small 

Molecule 

negative Regulation: cholesterol ---| 

triacylglycerol lipase 
Negative 

7 vstrlp ntrlc 
Small 

Molecule 

Small 

Molecule 

negative Regulation: cholesterol ---| 

triacylglycerol lipase 
Negative 
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Discussion 

A large potential value is derived from being able to predict causality based on only 

sparse experimental data and hence, it is based on several assumptions. There is a need to 

understand the relationships that appear anew in the predicted graphs and conduct suitable 

experiments to confirm the hypothesis. The use of tools like pcalg for different biological data 

can prove to be highly useful to see the correctness of these algorithms and to be able to validate 

the finding of these graphs more easily. The data provided to us was a sparsely spaced data from 

pre- and post-interventions, just like many other datasets from the field of biology. It was 

interesting to see a largely continuous data prediction to get an even more thorough causal 

inference pathway. The PC algorithm is not efficient in such cases, hence, the use of more 

advanced tools like FCI (Spirtes, Meek, and Richardson 2013) which take into account the 

heuristics of using unknown confounders to measure the causal relationship between nodes using 

a Markov assumption or faithfulness assumption. For a time series data, a new approach shall be 

taken to discover the causal inference pathways. 

The naïve PC algorithm is very reliable due to false positive rates being small as 

Bühlmann, Rütimann, and Kalisch (2013), tried to recover 1000 true interventions effects from 

234 intervention experiments in a S. cerevisiae gene expression data set: by assigning 100 

interventions as true and 900 as false. The algorithm was able to produce an expected 

logarithmic shape ROC (receiver operating characteristic) curve of true and false positives. 

However, it is variable position dependent, i.e. the position of variables in the input directly 

affect the Completed Partially Directed Acyclic Graph (CPDAG). To resolve this issue, columns 

were resampled for 10,000 iterations to reduce the effect of positionality of variables. 

The current approaches of causal discovery pathways face certain limitations that are 

ubiquitous to a large number of domains similar to our data of interest, i.e. the physiological 

domain. One such problem rises from the missing data which could be due to random chance. In 

the case of a low number of observations, the output is less reliable because statistically it has 

more likelihood of representing a false positive result (Dumas-Mallet et al. 2017). In this case, it 

is hypothesized that depending on the quantity of missing data, it should not affect the outcome 

of a causal discovery pathway. In other cases, where the data is not missing at random, a newer 

discovery pathway can be recovered which is different from a causal discovery pathway 
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predicted from an incomplete dataset. Tu et al. (2020) discusses how the missing data causes 

certain edges of a graph to behave differently due to certain assumptions such as faithful 

observability (i.e. Edges recovered from observed data also hold true in unobserved data). 

Another set of assumptions include missingness indicators (representing the status of 

missingness) that cannot be either a deterministic cause or be used to create an edge with another 

missingness indicator (Tu et al. 2020). In the STRRIDE data, such a pattern was observed as 

well. Many of the rows have a multitude of missing data. Hence, a cutoff can be chosen to 

separate the highly missing data from the whole and so they are not considered for further 

analysis. There is also an instance where indirect relations are recovered from the data, i.e., they 

appear at a happenstance. Schlegel and Shapiro (Schlegel and Shapiro 2013) talk about 

performance of data driven methods being directly affected by incompleteness of data and how 

different methods can be improved by using the Wh-questioning algorithm to improve the 

completeness, henceforth, improving the reliability of the predictive results in cognitive systems.  

The statistical tests showed only a few of the analytes were significantly changed over the 

two-time point study. This could be attributed to the high number of missing values in certain 

columns. The missing data in this study was found to be a problem in PC due high volumes of 

rows missing data. Especially in the **mir** columns which were micro-RNA concentrations 

where across the various combinations of amount and intensity groups, low amount and 

moderate intensity group consisted of only missing values. This created runtime errors while 

running the PC algorithm as it could not work by comparing missing values to themselves. The 

cutoff of greater than 5 NA ensured that there were no more than 5 missing values in each of the 

group out of the size of roughly 30 values in each group. Even with the missing values it was 

seen than regardless of gender, the Matsuda index (measure of insulin resistance) and blood 

pressures were significantly changed. This shows that participants of the study would have 

lowered levels of blood pressure and slightly elevated levels of Matsuda, regardless of their 

intervention subscription. Hence, blood pressure and insulin sensitivity are affected by an 

exercise regimen. The graph produced for a PC run on the pre- and post-intervention analytes 

was many interactions that had edges which were nonsensical as shown in supplementary figure 

1. These edges did not have a biological meaning. For example, the pre intervention low density 

lipoprotein (ldlz_pre) appeared to be a cause of intensity of exercise and post intervention 

calibrated HDL concentrations (h5p_post) be a cause of pre intervention calibrated HDL 
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concentration (h5p_pre). Both edges cannot exist due to intensity being an independent variable 

than can only affect some or all analytes as well as post intervention analytes cannot affect a past 

intervention analyte albeit the same analyte. It also had a lot of orphan nodes along with two 

islands (smaller DAGs) which does not provide us with much valuable information due to 

fracturing of an expected single large DAG which would entail inter-relations among the islands.  

A retention of edge-based strategy showed more reliable results because every edge in 

the final graph is at least appearing 5,000 out of 10,000 times. If interactions appeared less than 

50% of time, there were instances of the same interactions, but the source and target nodes were 

flipped. This created bidirectionality which was talked about earlier. As was seen in the 45% 

retention graph, having bidirectionality in a graph that was extracted from unidirectional output 

of PC would make it highly unreliable. This could cause reporting of indirect relations that 

would appear only due to chance and have a minimal significance in discovering new relations 

yet add to the work done to recover true novel relations that could be derived. While the 

accuracy of the PC algorithm is relatively high,  

The resolution of analytes used in the study was very high (multiple sized fractions of the 

same biomolecule). This creates a problem because the STRRIDE study used different fractions 

of HDL (high density lipoprotein), LDL, TG-RL (Triglyceride rich lipoproteins) which could not 

be fed to the NLP because it only takes in general terms such as HDL instead of a fractional 

term. The reason it takes HDL as an input and not a specific fraction is that almost no studies 

have been conducted on fractions of biomolecules or they are not published in the public journal 

database that comprises our knowledgebase. Hence interactions comprised of purely fractional 

terms have to be called None due to low support or Partial in the case of a different molecular 

fraction being a cause of the first one.  

 Interactions such as, for example, the low-density lipoprotein (LDL) is known to inhibit 

the cholesterol synthesis pathway (Bhanpuri et al. 2018; Wägner et al. 2002) which was observed 

as a cause-effect relation by our graph, hence, supporting the already existing information. 

Promotion/Inhibition expression was not observed in the output of PC as this would be out of 

scope for this study, studied in-vitro by the researchers. Examples like these provide only a level 

of certainty to our methodology which leaves a gap to study the undiscovered relations. To 

reliably discover new edges and hypotheses to test upon, we need to be able to show such 

interactions that already exist in nature as a sanity check for newer discoveries to be made. 
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 Our study was able to provide literature confirmation in roughly one-sixths of the 

recovered relations. The remaining five-sixths of the interactions consisted of a mix of novel 

interactions that have not been reported as well as others that do not need to be explored as 

talked about earlier. While the literature-based search helped with identifying interactions that 

have been either well studied or those that are currently being discovered, it is certain that only a 

fraction of the actual number of naturally occurring interactions have been reported in MedScan. 

Also, the interactions that were reported by MedScan are limited to only the source and method 

that was used to build the tool. The natural language processing rules (used in MedScan) are also 

ever growing since human language and cognitive skills are vast and cannot be contained with 

the current methods and require further research as well (Wang et al. 2020).  

The novel-like interactions found in this study shall provide grounds to research further 

based on consensus-based strategies that can be developed by using a multitude of algorithms 

who strive to discover accurate causal inference pathways. Using algorithms that use simpler 

mathematical modelling like ordinary differential equations and probability distributions with 

literature-based conformance shall prove to be provide novel inference pathways for further 

experimentation (Vashishtha et al. 2015; Huynh-Thu and Sanguinetti 2015). The consensus-

based strategy in conjunction with data-text hydrid method provided support for validation of 

already existing knowledge and an insight into what can we narrow our research to be focused on 

to provide us with discovery of causal relations. As we research the data-text driven hybrid 

methods, we shall keep improving on the discovery aspect of purely statistical algorithms. 

Future Work 

While the data-text hybrid methods are well corroborated, since our current knowledge is 

used to get meaningful information out of observational data, the sources of the text-driven 

methods also play a key role in discovery of new causal inference interactions. There are a 

multitude of databases that can be utilized to this effect, including the Human Metabolome 

Database (https://hmdb.ca/), MetaCyc (https://metacyc.org/), etc. as well as manually curated 

databases. While these databases can expand the horizon of the text driven portion, we can also 

employ strategies to improve the false discovery rate, redundancy of similar interactions reported 

as separate by the data-driven algorithms, improvement of underlying causal inference method,  

https://hmdb.ca/
https://metacyc.org/


28 
 

Using the PC algorithm, it was observed that most of the predicted graph might have 

around 10% false positives, which paves way for developing strategies for reducing them. The 

algorithm PC-p (Strobl, Spirtes, and Visweswaran 2019) seems to perform a reliable task of 

sorting the false positives out by evaluating p-values for edges and then ranking them to find a 

more accurate graph with a higher Confidence Interval. We can test the novel interactions in a 

laboratory experiment to validate the novel interactions to add to the regulatory and metabolomic 

biology. Using the same approach, we can develop graphs for other data that has not been 

studied well. 

The consensus-based strategy can also be improved further by executing the PC 

algorithm even more than 10,000 runs to see if the redundant interactions disappear or fall into 

lower thresholds of the consensus based strategy. There are also interactions that PC algorithm 

might deem insignificant, however, might turn out to play key roles in certain biological areas. 

To find these interactions, we need to develop an even more robust underlying conditional 

independence methodology with the help of mathematical models used in such discoveries. This 

could also help us reduce the orphan graphs that are seen at higher thresholds (100% rccovery) 

and provide us with a wholistic picture at higher confidence levels than the studied 50% recovery 

graph. 

The PC algorithm is one of many approaches, scientists have employed for discovery of 

causal inference pathways. The ODLP (Statnikov et al. 2015) algorithm is another algorithm 

designed to discover cause-and-effect interactions by  using Markov models to find the accurate 

interactions of a variable T and test its faithfulness in its respective graph. Multiple approaches 

can be applied to a given dataset and a consensus of these approaches shall be statistically sound 

to make real-life decisions for developing drugs to fight virtually any lifestyle / chronic disorder. 

There are endless possibilities for the use case of such algorithms that need to be explored.   
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Appendix 
Supplementary Table 1: A comprehensive list of analytes reported in the STRRIDE studies 

(From Key, missing some data) 

Acac Acetyl acetone 

Acetone Acetone 

Age Chronologic age  

Ala Alpha-linolenic acid 

Albumin Albumin (mg/dl)  

Alp Alkaline phosphatase mg/dl 

Amount Amount of exercise (low/high) 

Apoa1 Apolipoprotein a1 

Apob Apolipoprotein b 

Avo2 Absolute vo2 max 

Bcaa Branched-chain amino acid 

Bun Blood urea nitrogen mg/dl 

Chdlp Calibrated hdl particle 

Cldlp Calibrated ldl particle 

Cmv Cmv igg (od) 

Creat Creatinine mg/dl  

Crp Crp mg/dl  

Ctr Citrate 

Dhea Dehydroepiandrosterone 

Dht Dihydrotestosterone 

Fat Fat mass in kg pre intervention 

Fat Fat mass in kg 

Gh Growth hormone 

Glu Glucose (mg/dl) 

Glut-4 Muscle glucose transporter 

Glyca Glycoprotein acetyls 

Gsp Glycated serum protein (micromoles/l)  

H123 Small hdl particles <9 nm (μmol/l) 

H1p Calibrated hdl particle 7.4μmol/l 

H2p Calibrated hdl particle 7.8μmol/l 

H4p Calibrated hdl particle 8.7μmol/l 

H5p Calibrated hdl particle 9.5μmol/l 

H6p Calibrated hdl particle 10.3μmol/l 

H7p Calibrated hdl particle 10.8μmol/l 

Hdlz Hdl  7.4-13 nm 

Height Height in meters 

Igf-1 Insulin gorwth factor 

Infx Inflammation index 

Intensity Intensity of exercise (moderate/vigorous) 

Isi Insulin sensitivity  
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Ketbod Ketone body 

Lbm Lean body mass in kg  

Lbm Lean body mass in kg 

Lchdlp Large chdlp 9.6-13 μmol/l 

Ldlz Mean lipoprotein sizes 19-22.5 nm 

Leu Leucine 

Lpir Lipoprotein insulin resistance index 

Ltrlp Large triglyceride-rich lipoprotein (trlp) particle 

Mbp Mean blood pressure  

Mchdlp Medium chdlp 8.1-9.5 μmol/l 

Mcldlp Medium cldlp 20.5-21.4 nmol/l 

Mmx Metabolic malnutrition index 

Mmx1 Metabolic malnutrition index 1 

Mtrlp Medium triglyceride-rich lipoprotein (trlp) particle 37-49 nmol/l 

Mvx Metabolic vulnerabilty index  

Mvx1 Metabolic vulnerabilty index 1  

Nhdlc Cholesterol hdl concentration 

Nldlc Cholesterol ldl concentration 

Ntrlc Colesterol fractions 

Ntrltg Trl triglyceride 

Prot Protein 

Rvo2 Relative vo2 max 

Sbp Systolic blood pressure (mmhg)  

Schdlp ? – unknown  

Scldlp ? – unknown 

Strlp ? – unknown  

T3 Triiodothyronine 

T4 Thyroxine 

Totchol ? – unknown (Total Cholesterol?) 

Trlp Total triglyceride rich lipoprotein particles 

Trlz Mean lipoprotein sizes 30-100 nm 

Tsh Thyroid-stimulating hormone 

Val Valine 

Vltrlp Very large triglyceride-rich lipoprotein (trlp) 

Vstrlp Very small triglyceride-rich lipoprotein (trlp) 

Waist_circum_cm Waist circumference  

Weight_kg Weight in kilogram  

Weight_kg Weight in kg 
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Supplementary Table 2: A comprehensive list of all the interaction that were discovered through 

applying the PC algorithm and conformance with the Pathway Studio natural language 

processing of the terms from the nodes.  

source target source_type target_type Data Mined  Interaction Interaction Sub Direction 

apoa1 h123 Protein 
Small 
Molecule Complete 

DirectRegulation: 
estradiol ---> LPL DirectRegulation unknown 

cldlp apob 

Small 

Molecule Protein Complete 

DirectRegulation: 

cholesterol ---> APOB DirectRegulation unknown 

lpir lchdlp 

Clinical 

Parameter 

Small 

Molecule Partial 

positive Regulation: 
HDL --+> insulin 

sensitivity Regulation positive 

lpir trlz 
Clinical 
Parameter 

Small 
Molecule Partial 

positive Regulation: 

triacylglycerol lipase --
+> insulin sensitivity Regulation positive 

totchol apob Unknown Protein Complete 

negative 

DirectRegulation: 

cholesterol ---| APOB DirectRegulation negative 

totchol nldlc Unknown 

Small 

Molecule Complete 

negative 

DirectRegulation: 

cholesterol ---| LDL DirectRegulation negative 

trlp ntrlc 

Small 

Molecule 

Small 

Molecule Partial 

negative Regulation: 

cholesterol ---| 

triacylglycerol lipase Regulation negative 

acac ketbod 

Small 

Molecule 

Small 

Molecule None 

   

acetone vltrlp 

Small 

Molecule 

Small 

Molecule None 
   

amount rvo2 independent 

Clinical 

Parameter None 

   

avo2 rvo2 

Clinical 

Parameter 

Clinical 

Parameter None both are related to VO2max 

bcaa mmx1 

Small 

Molecule 

Clinical 

Parameter None check type of bcaa 

 

chdlp h123 

Small 

Molecule 

Small 

Molecule None both are HDL particles 

ctr glyca 

Small 

Molecule 

Small 

Molecule None 

   

ctr mmx 

Small 

Molecule 

Clinical 

Parameter None 
   

glyca infx 

Small 

Molecule 

Clinical 

Parameter None 

   

h123 infx 

Small 

Molecule 

Clinical 

Parameter None 
   

h1p acetone 

Small 

Molecule 

Small 

Molecule None 

   

h2p mcldlp 

Small 

Molecule 

Small 

Molecule None HDLP size vs LDLP size 

h4p lchdlp 

Small 

Molecule 

Small 

Molecule None HDLP size vs LDLP size 

h6p h5p 
Small 
Molecule 

Small 
Molecule None Different HDLP sizes 

h6p hdlz 

Small 

Molecule 

Small 

Molecule None Different HDLP sizes 

hdlz cldlp 

Small 

Molecule 

Small 

Molecule None HDLP size vs LDLP size 

hdlz h7p 

Small 

Molecule 

Small 

Molecule None both are HDL particles 

hdlz lchdlp 
Small 
Molecule 

Small 
Molecule None HDLP size vs LDLP size 

infx mvx 

Clinical 

Parameter 

Clinical 

Parameter None 

   

intensity h1p independent 
Small 
Molecule None 
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intensity rvo2 independent 

Clinical 

Parameter None 

   

ketbod acetone 
Small 
Molecule 

Small 
Molecule None 

   

lbm fat 

Clinical 

Parameter 

Clinical 

Parameter None calculate weight 
 

lbm weight_kg 
Clinical 
Parameter 

Clinical 
Parameter None 

   

lchdlp h5p 

Small 

Molecule 

Small 

Molecule None Different HDLP sizes 

ldlz scldlp 
Small 
Molecule Unknown None Different LDLP sizes 

 

leu bcaa 

Small 

Molecule 

Small 

Molecule None 
   

leu mmx1 
Small 
Molecule 

Clinical 
Parameter None 

   

ltrlp lpir 

Small 

Molecule 

Clinical 

Parameter None 
   

mchdlp schdlp 
Small 
Molecule Unknown None Different sizes of HDLP 

mmx mmx1 

Clinical 

Parameter 

Clinical 

Parameter None 
   

mmx mvx 
Clinical 
Parameter 

Clinical 
Parameter None 

   

mtrlp avo2 

Small 

Molecule 

Clinical 

Parameter None 
   

mtrlp ctr 

Small 

Molecule 

Small 

Molecule None 

   

mvx mvx1 

Clinical 

Parameter 

Clinical 

Parameter None 
   

mvx1 mmx1 

Clinical 

Parameter 

Clinical 

Parameter None 

   

nhdlc h123 

Small 

Molecule 

Small 

Molecule None chol conc vs HDL 
 

nldlc apob 

Small 

Molecule Protein None 

   

nldlc cldlp 

Small 

Molecule 

Small 

Molecule None chol conc vs cLDLP 
 

nldlc mcldlp 

Small 

Molecule 

Small 

Molecule None chol conc vs cLDLP 

 

ntrltg mtrlp 

Small 

Molecule 

Small 

Molecule None Triglyceride rich lipoprotein vs triglyceride 

prot ctr Protein 

Small 

Molecule None 

   

prot mmx1 Protein 

Clinical 

Parameter None 
   

rvo2 fat 

Clinical 

Parameter 

Clinical 

Parameter None 

   

scldlp cldlp Unknown 

Small 

Molecule None Different sizes of LDLP 

scldlp mcldlp Unknown 

Small 

Molecule None Different sizes of LDLP 

strlp trlz Unknown 
Small 
Molecule None 

   

strlp vstrlp Unknown 

Small 

Molecule None differetn sizes of trlp 

val bcaa 
Small 
Molecule 

Small 
Molecule None 

   

fat weight_kg 

Clinical 

Parameter 

Clinical 

Parameter None  fat mass contributes to weight 

ala weight_kg 
Small 
Molecule 

Clinical 
Parameter Partial 

DirectRegulation: IgG 
---> INS DirectRegulation unknown 

h7p prot 

Small 

Molecule Protein Partial HDLP with both APOA1 and APOB 

ntrltg ntrlc 

Small 

Molecule 

Small 

Molecule Partial 

negative Regulation: 
cholesterol ---| 

triacylglycerol lipase Regulation negative 
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trlp vstrlp 

Small 

Molecule 

Small 

Molecule Partial Both are lipoprotein 

negative 

DirectRegulation: 

cholesterol ---| LDL 

DirectRegulati

on 

trlz h1p 

Small 

Molecule 

Small 

Molecule Partial Both are lipoprotein 

negative 

DirectRegulation: 

cholesterol ---| LDL 

DirectRegulati

on 

trlz vltrlp 

Small 

Molecule 

Small 

Molecule Partial Both are lipoprotein 

negative 

DirectRegulation: 

cholesterol ---| LDL 

DirectRegulati

on 

vstrlp ntrlc 

Small 

Molecule 

Small 

Molecule Partial 

negative Regulation: 
cholesterol ---| 

triacylglycerol lipase Regulation negative 

 

 

 

Supplementary Figure 1: An intial PC algorithm graph for pre vs post values that differed significantly. There are 

twelve orphan nodes without edges and two smaller acyclic directed graphs.  
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