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Abstract 

Digital microfluidics is a promising fluid processing technology used in lab-on-a-

chip applications to perform chemical synthesis, particle filtration, immunoassays, and 

other biological protocols. Traditional digital microfluidic (DMF) devices consist of a 2D 

grid of coated electrodes over which droplets are manipulated. Selective activation of the 

electrodes results in an electrowetting effect that deforms the droplets and can move them 

around the electrode grid. More recently, electrowetting on dielectric has also been used to 

eject droplets and transfer them between opposing surfaces. This has given rise to new 3D 

DMF devices capable of more sophisticated routing patterns that can minimize cross-

contamination between different biological reagents used during operation. A better 

understanding of electrowetting-induced droplet ejection is critical for the future 

development of efficient 3D DMF devices. 

The focus of this work was to better predict electrowetting-induced droplet ejection 

and to determine how droplet selection and electrode design influence the process. An 

improved model of droplet gravitational potential and interfacial energy throughout 

ejection was developed that predicts a critical electrowetting number necessary for 

successful detachment. Predictions using the new model agreed more closely with 

experimentally observed thresholds than previous models, especially for larger droplet 

volumes. Droplet ejection experiments were also performed with a variety of coplanar 

electrode designs featuring different numbers of electrode pieces and different spacings 

between features. The critical voltage for ejection was observed to be approximately the 

same for all designs, despite the poor predicted performance for the case with the widest 

spacing (200 𝜇𝑚) where nearly 25% of the area beneath the droplet was dead space. 

Findings indicated that a critical electrowetting for ejection must be achieved at the contact 

line of a droplet rather than over the entire droplet region. Droplets were also ejected for 

the first time from devices with inkjet-printed electrodes, demonstrating the feasibility of 

future low-cost 3D DMF systems. 
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1.0 Introduction 

Microfluidics is a multidisciplinary field in which fluids are processed at small 

scales where the effects of surface forces begin to outweigh the effects of body forces, 

unlike in macroscale systems. It can broadly be divided into two branches depending on 

how a working fluid is processed: continuous-flow microfluidics and droplet-based 

microfluidics. In continuous-flow systems, fluid flows through sub-millimeter sized 

channels1 either passively due to capillary forces2 or actively via mechanical pumps3,4 or 

electrokinetics.5 In droplet-based systems, discrete volumes of fluid are manipulated in air 

or while dispersed through another immiscible fluid.6,7 Droplets are typically several 

microliters or smaller in volume.6 

Lab-on-a-chip (LOC) devices leverage the small footprint of microfluidic 

techniques to perform fluid processing functions on a single palm-sized chip rather than in 

an entire traditional laboratory.8,9 The scale of a microfluidic approach reduces the required 

quantities of reagents required.1,9 The higher surface-area-to-volume ratio at the microscale 

also expedites heat and mass transfer.6,10 These devices are typically used to perform 

diagnostic and other biomedical tests.11,12 The size and processing speed of LOC devices 

also makes them well suited for point-of-care testing.7,11–13 

 

1.1 Digital Microfluidics 

Digital microfluidic (DMF) devices are a class of droplet-based LOC device that 

manipulate droplets over grids of electrodes. Electrical signals applied to select electrodes 

are used to perform basic droplet operations, such as moving, merging, mixing, and 
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splitting.14,15 Sequences of these basic operations can be used to execute a wide variety of 

biological protocols,7,16–20 including chemical synthesis, particle filtration, and 

immunoassays. The DMF platform has several advantages over other microfluidic 

techniques. It is capable of processing droplets with volumes ranging from picoliters to 

milliliters.16,19,21 Multiple droplets can be manipulated simultaneously without the need for 

additional tubing or valve networks.7,19 Droplet manipulation sequences can be readily 

reconfigured to perform a variety of protocols on a single generic electrode array.7 Solid 

test samples can also be used by suspending them in a working fluid, and subsequent 

processing can be performed without any risk of clogging.7,19,22–24 

Traditional DMF devices can be broadly classified as “open” or “closed” based on 

their structure.7,15 In an “open” device (Fig. 1.1), droplets rest on a single substrate 

containing a 2D array of coplanar electrodes. The electrodes are coated with dielectric and 

hydrophobic polymer layers that prevent electrical breakdown and improve droplet 

manipulation, respectively. Droplets are typically surrounded by air which allows them to 

be easily accessed.19 Voltage is applied either across two electrode beneath a droplet or 

across one electrode and a wire inserted into the droplet. This produces an electrowetting 

response in which the droplet deforms and spreads toward the substrate surface. 

Deformation of only part of a droplet creates a pressure difference across the droplet 

interface that can induce bulk motion. Selective electrode activation can leverage this to 

position droplets as desired in 2D space. Separate droplets can also be merged and mixed 

together. 

In a “closed” DMF device (Fig. 1.2), droplets are also contacted from above by a 

second hydrophobic substrate. Different immiscible fluids can be filled between the two 
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Figure 1.1 Schematic of an open coplanar digital microfluidic device from the (a) top 

and (b) side views. 
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substrates to facilitate droplet movement14,25–27 and limit evaporation.14,25,28 The second 

substrate may contain electrodes, but this is not strictly necessary. Voltage can be applied 

across either two coplanar electrodes on a single substrate or two electrodes on opposite 

substrates to produce an electrowetting response that induces motion.29 Selective electrode 

 
 

Figure 1.2 Schematic of a closed digital microfluidic device from the (a) top and (b) 

side views. 
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activation can produce the same moving, merging, and mixing possible in an open device. 

A closed design is also capable of splitting droplets apart.14,15  

More sophisticated “3D” DMF devices incorporate elements of both open and 

closed devices. They can perform traditional 2D droplet movements and also transfer 

droplets between opposing substrates using the same electrowetting mechanism. This can 

be done using a hybrid device with a closed region that widens to two separate open 

regions.30 Droplets can be transferred from one open substrate to the other by first 

transitioning through the closed region (Fig. 1.3a). Similar transfer can also be achieved in 

a device consisting of only two opposing open substrates. Carefully tuned electrowetting 

signals can create vertical distortions in the shape of a droplet. This can result in the 

formation of a temporary bridge between two opposing open devices in close proximity 

that transfers a droplet across (Fig. 1.3b).31,32 Tuned electrowetting signals can also induce 

detachment and eject a droplet to an opposing substrate.33–37 As in a closed device, the gap 

between two opposing open substrates in a 3D device can be filled with an immiscible fluid 

to facilitate droplet transfer. 

The droplet transfer functionality in 3D DMF devices gives two primary advantages 

over 2D devices. First, a 3D DMF is capable of more sophisticated droplet routing not 

possible in only two dimensions. Droplets can be moved across a device without ever 

crossing paths (Fig. 1.4).34,38–40 Second, a 3D DMF device can support a larger number of 

droplet operations in a given device footprint. The working area is up to twice that of a 2D 

device since the opposing open substrates can perform independent operations. These 

advantages make 3D devices well suited for biomedical applications where sensitivity can 

suffer due to reagent cross-contamination41,42 and adsorption.16,17 
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Figure 1.3 Droplet transfer between plates achieved by (a) transitioning between open 

and closed regions and (b) bridging after vertical distortion. 
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Figure 1.4 3D DMF devices allow a droplet to be (a) transferred to the opposite plate, 

(b) moved past a separate droplet on the initial plate, and (c) transferred back to the 

initial plate. 
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1.2 Device Fabrication 

The fabrication of DMF devices is a critical hurdle for their implementation as point 

of care (POC) diagnostic tools. Due to the nature of their operation, devices require small 

features that can be difficult to produce. Fabrication is traditionally performed in cleanroom 

facilities43,44 and involves photolithography to form the desired electrode arrays and spin 

coating to apply various polymer layers. This processing has a high cost per device due to 

the necessary facilities, equipment, materials, and trained technicians.44,45 Reducing these 

costs has been an ongoing focus in the development of new DMF devices.  

A variety of alternative fabrication techniques have been developed that reduce 

fabrication costs by producing device electrodes without the need for cleanroom 

facilities.18,37,46–51 Custom polydimethylsiloxane (PDMS) stamps can be coated with 

different materials and used to microprint conductive layers.46 Masking images can be laser 

printed47 or hand drawn48 directly onto copper sheets and etched to form the desired 

electrode pattern. Inkjet printers can also be used to deposit conductive inks onto 

photopapers49 and other polymer films18,50 to create flexible electrodes.18,37,49–51 

Alternatives techniques often sacrifice feature resolution, but resulting devices can still be 

of practical benefit. One inkjet printing process using an inexpensive commercial printer 

(~$120 USD) was able to produce devices with a minimum electrode spacing of ~50 𝜇𝑚 

that were capable of diagnosing measles and rubella in the field.18,50 

 

1.3 Objectives 

The overarching goal of this work is to improve the current physical understanding 

of electrowetting-induced droplet ejection. Such understanding is valuable in a variety of 
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applications where electrowetting is used to facilitate droplet removal, such as 

windshields,52 cameras,53 and condensation heat systems.54,55 However, this work is 

specifically motivated by 3D DMF applications where droplet ejection can enable new 

routing34,38–40 that minimizes cross-contamination in biological tests.16,17,41,42 An improved 

understanding of ejection can facilitate the development of 3D DMF devices by revealing 

how different design parameters affect device operation and making ejection capabilities 

easier to implement. 

To this end, this work has three main objectives. The first is (i) to determine how 

droplet size impacts electrowetting-based droplet ejection. Previous approximations of the 

ejection threshold56 and modeling of the energy throughout detachment38 have considered 

only interfacial energies. These models are detailed in Chapter 2. However, gravitational 

potential energy also changes throughout detachment. The magnitude of this change scales 

with size and may introduce error in the predicted threshold of larger droplets. Here, 

experiments are performed in which droplets of varying sizes are ejected from DMF 

devices using the setup described in Chapter 3. A new analytical model of both the 

interfacial and gravitational potential energies during detachment is developed in Chapter 

4 to better predict the ejection threshold. Thresholds observed during experimentation are 

used to validate the thresholds predicted by the model. Findings from this improved 

ejection model can be used to inform droplet selection in future 3D DMF devices.  

The second objective of this work is (ii) to determine how electrode geometry 

impacts electrowetting-based droplet ejection. While traditional cleanroom fabrication is 

capable of producing electrodes micron-scale features, the process can be expensive. Low-

cost inkjet-printing fabrication can produce devices of comparable quality,49,50 but this 
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technique is more limited in the electrode sizes and spacings it can produce. Understanding 

how electrode design features impact droplet ejection is valuable since fabrication 

constraints can vary between techniques. In Chapter 5, droplets are ejected from DMF 

devices with varying numbers of ejection pad segments and varying electrode spacings. 

Experimentally observed thresholds are then compared to those predicted by the proposed 

interfacial plus gravitational potential energies model. During subsequent analysis, a model 

of how electrode geometry impact the electrowetting number at the contact line of an 

actuated droplet is also developed. Findings from this investigation can be used to increase 

the efficiency of ejection electrode designs used in 3D DMF devices.  

The final objective of this work is (iii) to demonstrate electrowetting-induced 

droplet ejection from a low-cost DMF device. Inkjet printing is a promising low-cost 

fabrication technique. One process in particular has already been used to produce 2D DMF 

devices that have successfully performed POC testing.18,50 In Chapter 6, single-electrode 

devices are fabricated using a similar inkjet printing process and used to eject droplets. 

Successful droplet ejection from inkjet-printed devices demonstrates the feasibility of 

future low-cost 3D DMF devices. Such devices would allow 3D DMF technology to be 

studied more easily by new research laboratories and would make 3D DMF devices more 

affordable for POC diagnostic applications. 

 

1.4 List of Contributions 

Three separate investigations were performed in this work and are discussed in 

detail throughout the following chapters. The findings of these investigations have been 

disseminated to the wider scientific community through a publication in Langmuir,35 a 
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publication in Microfluidics and Nanofluidics,37 and a submission for publication in 

Sensors and Actuators A: Physical.36 Results were also shared with the local community 

through an article in The Rochester Engineer.57 The original contributions are as follows: 

 A numerical approach for computing the effective electrowetting number on 

different coplanar ejection electrode designs.35,36 

 An analytical model of changes in the interfacial and gravitational potential 

energies during droplet ejection that can be used to predict the ejection threshold.35 

 An empirical study of the ejection thresholds for droplets of varying sizes that 

compared observed thresholds to those predicted by the proposed model as well as 

previous adhesion work and interfacial energy models.35 

 The first reported electrowetting-induced droplet ejection in air from coplanar 

electrode using a single voltage pulse.35 

 An analytical model of the electrowetting number at the contact line of an actuated 

droplet.36 

 An empirical study of the ejection thresholds for droplets ejected from radially 

symmetric electrode designs with different pad segmentation and spacing that 

compared observed thresholds to those predicted by the proposed interfacial plus 

gravitational potential energies model.36 

 The first reported electrowetting-induced droplet ejection from an inkjet-printed 

electrowetting device.37  



12 

 

2.0 Background 

Digital microfluidic (DMF) devices operate by means of electrowetting.14,15,58,59 

Electrowetting is the modification of wetting behavior on a surface through the application 

of electric fields. This interaction was first explained by Gabriel Lippmann in 1875 as the 

electrocapillarity phenomenon.58,60 Lippmann observed that in capillary tubes the shape of 

the interface between mercury and a sulfuric acid solution could be manipulated by 

applying small voltages across the two phases. The resulting electric field causes charged 

ions to accumulate at the mercury-acid interface and form an electric double layer 

(EDL).58–60 The electrical energy stored in the EDL reduces the effective surface tension 

of the interface. 

Electrowetting in DMF devices extends the principles of electrocapillarity to the 

case of a droplet on a solid electrode.14,15,58,59 When a small voltage (< 1 𝑉)58 is applied to 

an aqueous droplet, an EDL forms at the solid-liquid interface and reduces its effective 

surface tension. This causes an increase in the apparent wettability of the droplet. Higher 

voltages disrupt the EDL and can result in electrolysis as current flows through the 

droplet.58,59 However, the onset of electrolysis can be delayed by including a thin dielectric 

layer between the electrode and droplet.14,15,58,59 This configuration was first employed by 

Berge in 1993 and is now known as electrowetting on dielectric (EWOD).61,62 The 

capacitance per area of the dielectric layer is typically much lower than the Helmholtz 

capacitance per area of the EDL. This causes the applied voltage to drop primarily across 

the dielectric layer.14,15,58,59,61,62 Depending on the thickness and dielectric strength of the 

material used in this layer, larger voltages can be applied without risk of electrolysis. 
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 Material presented here has previously been published in Langmuir,35 published in 

Microfluidics and Nanofluidics,37 and submitted for publication in Sensors and Actuators 

A: Physical.36 

 

2.1 Electrowetting on Dielectric (EWOD) 

The shape of a static droplet in contact with a flat, rigid surface and surrounded by 

air is dictated by surface tension and gravitational forces. The relative significance of these 

two factors is quantified by the Bond number (𝐵𝑜) 

 𝐵𝑜 =
Δ𝜌𝑔𝑅𝐻

𝛾lg
, (2.1) 

where Δ𝜌 is the different in density between the droplet and surrounding air, 𝑔 is the 

acceleration due to gravity, 𝑅 is the radius of curvature of the droplet, 𝐻 is the height of 

the droplet, and 𝛾lg is the surface tension along the liquid-gas interface.63 A value of 𝐵𝑜 ≈

1 indicates that surface tension and gravitational forces both affect the shape of the droplet. 

Smaller values of 𝐵𝑜 indicate that droplet shape is predominantly affected by surface 

tension forces and that gravitational effects are negligible. For the droplets examined in 

this work, gravitational effects on shape are neglected since 𝐵𝑜 < 1 in all cases.58 

In the absence of gravitational effects, a droplet will take the shape of a spherical 

cap (Fig. 2.1). The initial contact angle (𝜃0) of the droplet depends on the surface energies 

(𝛾) along the different interfaces in the system. This relationship is described by the Young 

equation58,59 

 𝛾sg = 𝛾sl + 𝛾lg  cos 𝜃0, (2.2) 



14 

 

where the “sg,” “sl,” and “lg” subscripts indicate the solid-gas, solid-liquid, and liquid-gas 

interfaces, respectively. Two known geometric quantities of a spherical cap, such as 

volume and initial contact angle, can be used to calculate any other desired geometric 

quantities, such as the contact area or height. In the presence of gravitational effects, 𝜃0 

will remain the same but the radius of curvature of the droplet will change over its profile 

and take a less predictable shape. 

An EWOD device can be used to manipulate the droplet and reduce its apparent 

contact angle (𝜃𝑈). A typical open EWOD device consists of four layers: (i) a base substrate 

material to provide structural support, (ii) a conductive layer of one or more electrodes, 

and (iii) a dielectric layer to delay electrolysis, and (iv) a hydrophobic layer that contacts 

the droplet. The hydrophobic layer increases the initial contact angle which allows for 

greater changes in droplet shape. A dielectric material that is sufficiently hydrophobic can 

also serve as a single hybrid layer.14  

In a simple “wired” EWOD setup, a droplet rests over a large, single electrode (Fig. 

2.2). A voltage is then applied between the electrode and a wire inserted into the top of the 

droplet. This charges the layers between the electrode and droplet which reduces the 

 
 

Figure 2.1 The unactuated initial contact angle of a droplet on a surface is a function of 

the relative strengths of the interfacial surface tensions. 
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effective surface energy along the solid-liquid interface (𝛾sl(𝑈)). This reduction is 

expressed by the Lippmann equation26,59,61 

 𝛾sl(𝑈) = 𝛾sl(0) −
𝑐𝑈2

2
, (2.3) 

where 𝛾sl(0) is the solid-liquid surface energy without an electric field, 𝑐 is the total 

capacitance per unit area between the droplet and electrode, and 𝑈 is the voltage applied. 

In the case of an AC signal, 𝑈 is the root-mean-square voltage applied. The total 

capacitance is affected by the capacitances per area of the dielectric layer (𝑐d), hydrophobic 

layer (𝑐h), and EDL (𝑐H). Since these all span the same area, 𝑐 can be computed as 

 
1

𝑐
=

1

𝑐d
+

1

𝑐h
+

1

𝑐H
. (2.4) 

 
 

Figure 2.2 Side-view diagram of a typical wired electrowetting setup. 
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The capacitance of the EDL has a negligible impact, since 𝑐d ≪ 𝑐H and 𝑐h ≪ 𝑐H.58 For the 

devices used here, 𝑐h also has a negligible impact (within ~3%) since 𝑐h exceeds 𝑐d by a 

factor of approximately 30. In such cases the total capacitance per area can then be 

approximated as the capacitance of the dielectric layer (𝑐 ≈ 𝑐d). The capacitance of the 

dielectric is expressed as 

 𝑐d =
𝜖0𝜖d

𝑑
, (2.5) 

where 𝜖0 is the permittivity of free space, 𝜖d is the dielectric constant, and 𝑑 is the thickness 

of the dielectric layer. 

The change in effective solid-liquid surface energy causes the droplet to spread on 

the surface and reach a new steady-state position. For the aqueous droplets actuated by DC 

voltages examined in this work, this takes several milliseconds.35–37,56,64 The steady-state 

apparent contact angle (𝜃𝑈) can be predicted by recalculating Young’s equation (Eq. 2.2) 

based on the reduced effective surface energy (Eq. 2.3). This yields the electrowetting 

equation59,65 

 cos 𝜃𝑈 = cos 𝜃0 +
𝑐d𝑈2

2𝛾lg
, (2.6) 

also known as the Young-Lippmann equation62,64 or the Berge-Lippmann-Young 

equation.15 The dimensionless quantity 
𝑐d𝑈2

2𝛾lg
 is known as the electrowetting number (𝐸𝑤). 

This quantity describes the ratio of the stored electrical energy to the interfacial energy 

along the boundary of the droplet and surrounding medium. Equation 2.6 accurately 

predicts steady-state droplet deformation up to a system-dependent saturation voltage. 

Voltages beyond saturation produce rapidly diminishing further changes in the apparent 

contact angle.59,66–68 
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In a more practical “coplanar” EWOD configuration, a droplet rests over multiple 

electrodes embedded under the dielectric layer (Fig. 2.3). Each covered electrode can serve 

as either an active or reference electrode depending on how voltage is applied. This type 

of design is preferred in real-world applications, because it eliminates the need for an 

external ground wire at each actuation site.29 This fundamentally changes the device circuit 

as compared to the wired configuration (Fig. 2.4). In a coplanar design, dielectric material 

in areas where the droplet covers active electrodes (𝐴a) and in areas where the droplet 

covers reference electrodes (𝐴r) act as two capacitors in series with capacitances per area 

of 𝑐a and 𝑐r, respectively.29 When all electrodes have the same dielectric layer, as is the 

case for all coplanar devices used in this work, voltage divides between the two regions as 

 
 

Figure 2.3 Side-view diagram of a typical coplanar electrowetting setup. 
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Figure 2.4 Side-view diagrams of the different circuits within (a) wired and (b) coplanar 

electrowetting setups. 
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 𝑈a =
𝐴r

𝐴a+𝐴r
𝑈, 𝑈r =

𝐴a

𝐴a+𝐴r
𝑈, (2.7) 

where 𝑈a and 𝑈r are the voltage drops across the dielectric layer where a droplet covers 

active and reference electrodes, respectively. As a result of the voltage division through a 

coplanar device, higher input voltages are required to achieve the same degree of 

electrowetting as in a wired device with the same dielectric layer. 

Since voltage can vary across a coplanar device, the electrowetting number can also 

vary when calculated at different positions. A representative electrowetting number (𝐸𝑤A) 

for the entire droplet area (𝐴t) can be calculated by weighting the electrowetting numbers 

in the active, reference, and gap regions by their area fraction as29 

 𝐸𝑤A =
𝜖0𝜖d 

2𝑑𝛾lg
(

𝐴a

𝐴t
𝑈a

2 +
𝐴r

𝐴t
𝑈r

2 +
𝐴g

𝐴t
𝑈g

2), (2.8) 

where 𝐴g is the total area of gaps between electrodes covered by the droplet (𝐴g = 𝐴t −

𝐴a − 𝐴r) and 𝑈g is the voltage drop through the dielectric layer in the gap regions. This 

can be reduced to 

 𝐸𝑤A =
𝜖0𝜖d 

2𝑑𝛾lg
(

𝐴a𝐴r

(𝐴a+𝐴r)𝐴t
) 𝑈2 =

𝜖0𝜖d 

2𝑑𝛾lg
𝛼A

2𝑈2, (2.9) 

since voltage divides only over the active and reference electrode regions (𝑈g = 0). 

The reduced formulation of 𝐸𝑤A resembles the general electrowetting equation for 

a single-electrode device, but it includes an additional coefficient based on the electrode 

geometry. This “area factor” (𝛼A) describes how effectively the input voltage is applied 

over the entire droplet area. The same droplet on a similarly coated single-electrode device 

would achieve an identical electrowetting number at a voltage 𝑈̃A where 

 𝑈̃A = 𝛼A𝑈. (2.10) 
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The area factor has a theoretical maximum value of max(𝛼A) = 0.5 when no gaps are 

present and the droplet area covers active and reference electrode areas equally. In this 

ideal case, the active and reference electrode areas evenly split the input voltage and the 

entire droplet region is actuated at 50%. However, gaps are necessary in real devices to 

isolate different electrodes, and some electrodes may be left inactive. Practically speaking, 

this “dead space” limits the maximum achievable 𝐸𝑤A before reaching saturation. 

The droplet deformation caused by electrowetting is used in many 2D DMF devices 

as a means for inducing horizontal droplet motion.14,15,26 When a droplet is positioned over 

multiple electrodes and only one is activated, only a portion of the droplet experiences 

electrowetting (Fig. 2.5). This can result in the reduction of the apparent contact angle on 

one side of the droplet while the other side remains relatively unaffected. The change in 

curvature along the droplet surface results in a pressure gradient across the droplet that 

drives it toward the active electrode at speeds on the order of centimeters per second.26 

Devices are designed such that droplets centered over one electrode will overlap adjacent 

 

 

 
 

Figure 2.5 Partial electrowetting pulls a droplet toward an active electrode. 
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electrodes should movement in those direction be desired. Unusual electrode shapes and 

small interdigitations along the electrode borders can be used to ensure coverage (Fig. 2.6). 

Sequential movements can be performed to move, merge, and mix droplets as needed for 

different biological protocols.7,16–20 

 

 

 
 

Figure 2.6 Electrodes in a DMF device are sized to allow a droplet to cover adjacent 

positions. Interdigitations can also be included to ensure overlap. 

 



22 

 

2.2 Electrowetting-Induced Droplet Ejection 

The electrowetting equation (Eq. 2.6) can be used to predict the steady-state shape 

of a droplet subjected to electrowetting, but the electrowetting response also has a dynamic 

component.31–34,38,39,56,64,69–71 When an actuation signal is applied to a device, the dielectric 

layer charges in a matter of microseconds.38 The reduced effective surface energy at the 

device surface causes the contact line of the droplet to spread, and over the next several 

milliseconds the entire droplet takes a new shape. For millimeter-size aqueous droplets, the 

spreading response is typically underdamped (Fig. 2.7).56,64,71 The dynamics of an 

underdamped droplet are such that the inertia from actuation allows it to overshoot the 

predicted steady-state position to achieve a maximally spread position at time 𝑡s. This time 

is proportional to 𝐿3/2 , where 𝐿 is a characteristic length of the droplet, such as the 

 

 
 

Figure 2.7 A 5 𝜇𝐿 sodium chloride droplet actuated beyond saturation voltage (a) after 

approximately 7 𝑚𝑠 and (b) after several seconds.  The droplet overshoots its steady-

state position.35 

B

A
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radius of curvature (𝑅).64 For aqueous droplets where inertial and surface tension forces 

dominate over viscous and frictional forces, like those examined in this work, the spreading 

time can be approximated as half of the dominant natural oscillation period of a 

hemispherical droplet.64 This is expressed as 

 𝑡s ≈ √
3𝜋𝜌𝑉

16𝛾lg
, (2.11) 

where 𝜌 and 𝑉 are the density and volume of the droplet, respectively.64 As droplets 

become smaller or more viscous, spreading times increasingly deviate from this estimate 

and the electrowetting response becomes overdamped.71 

Electrical signals tuned to the spreading response of an underdamped droplet can 

take advantage of the transient response to manipulate the droplet in new ways. Vertical 

distortions can be created that are sufficient to bridge a droplet to a nearby substrate.31,32 

Droplets can also be ejected from a substrate entirely. Tuned AC69 and DC39,56,64 signals 

have achieved ejection in air from both superhydrophobic39,69 and hydrophobic56,64 

surfaces. These manipulations can be used in a 3D DMF devices as a means to transfer 

droplets between two opposing open DMF substrates. 

In the case of DC electrowetting-induced droplet ejection, as is examined here, 

ejection is achieved by applying a sufficient voltage for a time of precisely 𝑡s.38,56 A 

previous model predicting the minimum voltage threshold is discussed in the following 

section. Actuation for 𝑡s allows a droplet to reach its most spread state and maximize its 

surface energy (Fig. 2.8). When actuation stops, the apparent contact angle quickly changes 

back toward its initial value and causes the contact line to recoil towards its unactuated 

position.38 Vertical elongation is induced as a capillary wave travels from the contact line 

toward the apex of the droplet.56 This conversion of excess surface energy into kinetic 



24 

 

energy can be sufficient for detachment from hydrophobic surfaces in air56 as well as 

oil.33,34 

 

2.3 Ejection Threshold 

The critical electrowetting number for electrowetting-induced droplet ejection 

(𝐸𝑤cr) has previously been estimated using an adhesion model.56 In order to achieve 

droplet ejection, this model asserts the electrical energy per area stored in the charged 

dielectric layer during actuation must exceed the adhesion work per area necessary to 

 
 

Figure 2.8 A 3 𝜇𝐿 sodium chloride droplet at various times (𝑡) throughout 

electrowetting-induced droplet ejection in air.57 
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separate the droplet-surface interface. This assumes energy changes along other interfaces 

as the droplet separates are negligible and no other significant energy changes occur. 

The work per area (𝑤12) required to separate two phases with interfacial surface 

energy 𝛾12 can generally be expressed as 

 𝑤12 = (𝛾1 + 𝛾2) − 𝛾12, (2.12) 

where 𝛾1 and 𝛾2 are the surface energies of the individual phases (Fig. 2.9). In the case of 

a droplet on an open DMF device, the solid phase (𝛾1 = 𝛾sg) and liquid phase (𝛾2 = 𝛾lg) 

contact at the solid-liquid interface (𝛾12 = 𝛾𝑠𝑙). Using Young’s equation (Eq. 2.2), the work 

per area to separate the liquid droplet from the solid substrate surface (𝑤sl) can be 

expressed as 

 𝑤sl = 𝛾lg(1 + cos 𝜃0). (2.13) 

By equating this work to the energy per area stored in the dielectric layer (𝛾lg𝐸𝑤), the 

critical electrowetting number for detachment can then be expressed as, 

 𝐸𝑤cr = 1 + cos 𝜃0. (2.14) 

 
 

Figure 2.9 The work to separate two surfaces can generally be expressed as a change 

in surface energies. 
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An electrowetting number higher than 𝐸𝑤cr is expected to eject a droplet. 

The adhesion model focuses solely on energy changes at the solid-liquid interface. 

However, changes also occur in the shapes of the solid-gas and liquid-gas boundaries as a 

droplet ejects from a surface. The interfacial energy model considers changes in interfacial 

energy along all three of these boundaries.38 This model asserts that a droplet can only eject 

from a surface when its total free interfacial energy in the dynamically maximally spread 

state (𝐸s) exceeds its total free interfacial energy in the ejected state (𝐸cr) (Fig. 2.10). This 

is expressed as 

 Δ𝐸int = 𝐸cr − 𝐸s, (2.15) 

where Δ𝐸int is the net change in total free interfacial energy. 

 

 

 
 

Figure 2.10 Side-view depiction of a droplet at its (a) maximally spread and (b) 

detachment threshold positions. 

A

B
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The total free interfacial energy of the spread droplet is expressed as, 

 𝐸s = 𝐸s,sl + 𝐸s,sg + 𝐸s,lg, (2.16) 

where 𝐸s,sl, 𝐸s,sg, and 𝐸s,lg are the interfacial energies along the solid-liquid, solid-gas, and 

liquid-gas boundaries, respectively. Each of the individual energies is computed as the 

product of the surface energy of the interface and its area. These can be expressed as 

 𝐸s,sl = 𝛾sl(𝜋𝑅2 sin2 𝜃), (2.17) 

 𝐸s,sg = 𝛾sg(𝜋𝑅̂2 − 𝜋𝑅2 sin2 𝜃), (2.18) 

and 

 𝐸s,lg = 𝛾lg(2𝜋𝑅2)(1 − cos 𝜃), (2.19) 

where 𝑅̂ is an arbitrary radius of the cylindrical system domain larger than 𝑅. The shape of 

the droplet in its ejected state is assumed to be a sphere tangent to the surface. In this 

threshold position, the solid-liquid boundary has no area. The total interfacial energy is 

expressed as  

 𝐸cr = 𝛾lg(4𝜋𝑅sph
2 ) + 𝛾sg(𝜋𝑅̂2), (2.20) 

where 𝑅sph is the radius of a sphere with the same volume as the droplet. The net change 

in total free interfacial energy can then be expressed as, 

 Δ𝐸int = 4𝜋𝛾lg𝑅sph
2 − 2𝜋𝛾lg𝑅2(1 − cos 𝜃) + 𝜋𝛾lg𝑅2 cos 𝜃0 sin2 𝜃. (2.21) 

Droplet ejection is expected when Δ𝐸int < 0. 

 

2.4 Droplet Ejection in Air 

All experiments in this work are performed in an air medium. An oil medium has 

the advantage of reducing surface adhesion which can reduce operating voltage.14,25–27 



28 

 

However, it also inhibits evaporation. While this can at times be beneficial for reducing 

biofouling,14,25,28 some applications depend on evaporation to deposit suspended particles 

on a substrate.20,72,73 Oil also limits the droplet compositions available for use since a 

selected carrier fluid must be oil-immiscible, and it runs the risk of adsorbing analytes from 

working droplets.19,73,74 Thus in several circumstances an air medium is preferable. 

Only a small number of previous investigations have focused on electrowetting-

induced droplet ejection in an air medium.31,32,56 Successful ejection using DC actuation 

has been demonstrated using both single-electrode devices in a wired configuration and a 

multi-electrode coplanar devices.56 In the wired configuration, droplets from 0.4 𝜇𝐿 to 

10 𝜇𝐿 in volume were ejected and found to have similar threshold voltages. However, 

thresholds were approximately 15% higher than the value predicted by the adhesion model. 

This suggests other factors may be at play that the adhesion model does not consider.  

The successful coplanar DC electrowetting-induced ejection was performed on a 

device with an interdigitated finger electrode design.56 Actuation on this design resulted in 

asymmetric droplet deformation (Fig. 2.11) which wasted energy on azimuthal oscillations 

after release. Successful ejection required the use of a modified signal. Two pulses spaced 

𝑡𝑠 apart were sent to give the droplet an initial perturbation. The asymmetric wetting and 

significant dead space beneath the droplet were cited as limiting factors for detachment on 

the coplanar design used. Other coplanar electrode geometries have not been examined for 

droplet ejection. 
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Figure 2.11 Top-view diagram of an interdigitated finger electrode design like that 

previously used for coplanar electrowetting-induced droplet ejection in air.56 An 

actuated droplet tends to deform asymmetrically along the electrodes. 
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3.0 Experimental Methodology 

Electrowetting-induced droplet ejection experiments were performed in each of the 

investigations presented in the following chapters. The electrowetting devices in those 

experiments were broadly classified as either “cleanroom fabricated” (CRF) or “inkjet-

printed” (IJP) based on how the electrodes of the device were formed. This chapter details 

both fabrication processes and how the finished electrowetting devices were used.  

Material presented here has previously been published in Langmuir,35 published in 

Microfluidics and Nanofluidics,37 and submitted for publication in Sensors and Actuators 

A: Physical.36 

 

3.1 Cleanroom-Fabricated (CRF) Devices 

Electrodes on CRF devices were fabricated in the cleanroom facilities of the 

Semiconductor and Microsystems Fabrication Laboratory at the Rochester Institute of 

Technology. A naming convention was used to distinguish different designs from one 

another, since a number of different designs were fabricated. Specific device types were 

identified based on number of ejection pad segments and electrode spacing in addition to 

fabrication technique. For example, cleanroom-fabricated devices with four ejection pad 

segments and an electrode spacing of 20 𝜇𝑚 were identified as “CRF4-20” devices. Single-

electrode devices were identified simply as “CRF1” devices since ejection was performed 

on an unsegmented electrode and the electrode spacing metric was not applicable. 

A commercially available clear borosilicate float glass microscope slide 

(50 x 75 x 1.1 𝑚𝑚) was used as a base material for most devices (Deposition Research 
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Lab, Inc.). These slides were available pre-coated with ~100 𝑛𝑚 of aluminum which 

served as the conductive layer. For CRF devices used in Chapter 6, plain glass microscope 

slides (Corning) were used as a base material. These were cleaned in piranha solution and 

then sputter coated with approximately 1 𝜇𝑚 of aluminum to form the conductive layer.  

The conductive layer was left intact for all single-electrode devices. For all multi-

electrode coplanar devices, the metal layer was patterned using a traditional 

photolithography process. Photomasks of the desired electrode geometries were produced 

prior to processing for use during the exposure stage. Electrode geometries were first drawn 

in AutoCAD software. Electrode spacings were drawn 5 𝜇𝑚 wider than intended to 

compensate for sizing bias observed in preliminary devices. Photomasks of each electrode 

geometry were then printed by CAD ART Services, Inc. at 25,400 𝑑𝑝𝑖 and a feature 

precision of ± 2 𝜇𝑚. Electrodes in the photomasks appeared as opaque black.  

The photomask for a single device included up to eight sets of ejection electrodes. 

Ejection electrodes were comprised of an ejection pad where the droplet was positioned 

during testing and contact pads for electrical access wired off toward the edge of the device. 

Electrodes were radially symmetric to allow for more radially uniform wetting during 

actuation. Each ejection pad consisted of a 6 𝑚𝑚 circular electrode region divided into 

four, six, or eight radially symmetric segments (Fig. 3.1). Opposite segments were 

connected by either an outer ring or through the center. Only four, six, or eight primary gap 

lines were required, as determined by the number of segments. Gap widths between 

electrodes were 20 𝜇𝑚, 55 𝜇𝑚, or 200 𝜇𝑚. The intent of this ejection pad design was to 

address issues of asymmetric wetting and excess dead space which were previously noted 

to limit detachment from devices with coplanar interdigitated finger electrodes.56 
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Electrode patterning in the cleanroom facilities began with coating the metal layer 

of the devices in photoresist. A ~1 𝜇𝑚 layer of AZ MiR 701 positive tone photoresist was 

applied via spin coating at 3000 𝑟𝑝𝑚 for 40 𝑠. Devices were then soft baked at 90 °𝐶 for 

1 minute prior to exposure. A Suss MA150 Contact Aligner loaded with an i-line filter was 

used to expose the photoresist coating to a 220 𝑚𝐽/𝑐𝑚2 dose of ultraviolet light. A 

photomask was taped to a transparent glass cover plate and positioned directly against 

devices during exposure to prevent exposure in the intended electrode regions. A post 

exposure bake was then performed at 115 °𝐶 for 1 minute. 

Exposed devices were then developed using a manual process. Devices were placed 

in a bath of CD-26 developer for 1 minute while lightly agitated to remove all exposed 

photoresist. Devices were then washed with deionized (DI) water to remove excess 

developer. Excess DI water was subsequently removed via nitrogen spray. At this point the 

 
 

Figure 3.1 Top-view diagram of the radially symmetric ejection pad design used in a 

CRF4 device. Gaps and wiring are enlarged for visibility. A 10 𝜇𝐿 droplet is shown for 

scale.35 
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remaining unexposed photoresist pattern could be seen with the naked eye. Devices were 

visually inspected for obvious defects and then hard baked at 140 °𝐶 for 1 minute. 

Excess aluminum was removed using a chemical wet etch process. A bath of 

Fujifilm 16:1:1:2 aluminum etch was warmed to 40 °𝐶. Devices were submerged in the 

etching solution for 2 minutes and then moved to a flowing DI water bath for 5 minutes. 

Unexposed photoresist was then stripped away to leave only the desired electrodes. Two 

baths of Baker PRS-2000 photoresist stripper were warmed to 90 °𝐶. Devices were 

submerged in one bath of stripper solution for 5 minutes and then moved to the second bath 

for 5 minutes. Stripped devices were then moved to a flowing DI water bath for 5 minutes. 

The final patterned devices were then dried. A nitrogen spray gun was used to remove the 

bulk of the DI water. Remaining moisture was then removed by baking devices at 140 °𝐶 

for 1 minute. 

Two additional polymer layers were then spin coated over finished electrodes 

outside the cleanroom facilities using a Laurell WS-650-23 spin coater (Fig. 3.2). A 

dielectric layer of SU-8 3005 photoresist (PR) was first applied directly over the electrode 

layer. This was done using a two-stage coating process: 500 𝑟𝑝𝑚 for 10 𝑠 then 4000 𝑟𝑝𝑚 

for 30 𝑠. An acceleration of 300 𝑟𝑝𝑚/𝑠 was used between stages. Devices were then soft 

baked at 95 °𝐶 for 2.5 minutes. An Electro-Lite EC-500 curing chamber equipped with a 

365 𝑛𝑚 ultraviolet lamp was then used to cure the photoresist. Devices were exposed in 

the chamber for 30 𝑠 and then hard baked at 150 °𝐶 for 3 minutes. Coating thickness was 

~5 𝜇𝑚 and verified via profilometry (Tencor P2). A final layer of Teflon AF 1601 

~100 𝑛𝑚 thick was then applied to increase the hydrophobicity of the outermost device 

surface. This was done in a single spin coating stage at 2000 𝑟𝑝𝑚 for 1 minute followed 
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Figure 3.2 Side-view diagrams of the layers in the (a) wired and (b) coplanar CRF 

devices used.  
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by a hard bake at 160 °𝐶 for 10 minutes. Initial contact angles (𝜃0) on finished devices 

were ~120° and verified via goniometry (Ramé-Hart model 250). 

A crude liftoff process was used to leave small portions of the aluminum layer 

exposed after SU-8 and Teflon AF spin coating. The edges of each device were masked 

with adhesive Kapton tape before spin coating. Kapton tape remained in place until all 

coating was complete. Polymers coated over the masked area were then lifted off by slowly 

removing the Kapton tape. This permitted direct electrical access to the electrodes during 

later experimentation. 

 

3.2 Inkjet-Printed (IJP) Devices 

Electrodes on IJP devices were produced without the need of cleanroom facilities 

using a low-cost inkjet printing process based on a previously described process by Dixon 

et al.18,50 Printing was done using a commercially available Epson Stylus C88+ desktop 

inkjet printer (~$120 USD) (Fig. 3.3). The stock ink cartridges were replaced with 

cartridges of silver nanoink (Metalon JS-B25P) to produce conductive printed features. 

Transparent sheets of treated polyethylene terephthalate (PET) film (Novele) were loaded 

into the paper feed and served as a flexible base material for printed devices. 

Electrode designs were drawn in Adobe Illustrator and printed directly onto the 

PET film without the need for patterning. Up to twelve individual designs were printed per 

sheet and then allowed to cure at room temperature for approximately 24 hours. Printed 

devices used for ejection experiments in Chapter 6 were all single-electrode designs. These 

were referred to as “IJP1” devices. Printing was done using the settings in Table 3.1 and 

with silver ink loaded into the black, cyan, and magenta nozzles of the printer. Yellow ink 
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was loaded into the yellow nozzle. Later printing with the inkjet system to produce multi-

electrode designs was done in grayscale mode with the “Paper” setting set to “Matte – 

Heavyweight” and silver ink loaded into the black nozzle only (Table 3.2). These changes 

helped minimize the impact of nozzle clogging when printing more complex features as 

the black nozzle was larger than the three color nozzles. The minimum feature size and 

 
 

Figure 3.3 Experimental facility for low-cost fabrication of electrodes by inkjet 

printing. 
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spacing between features that could reliably be produced with these settings were 

~100 𝜇𝑚 and ~200 𝜇𝑚, respectively. 

Individual electrode designs were cut out and affixed to glass slides using Kapton 

tape to provide a rigid base for spin coating. Printed electrodes were first spin coated with 

a layer of Teflon ~100 𝑛𝑚 thick (Fig. 3.4). They were then subsequently coated with a 

layer of SU-8 3005 photoresist and final layer of Teflon similar as was done on CRF 

devices. The extra Teflon layer directly over the electrodes served to separate the 

photoresist from the PET substrate. The photoresist and PET reacted when in contact and 

changed from translucent to an opaque white color. Such devices exhibited dielectric 

Table 3.1 Initial printer settings used for IJP electrode fabrication and nozzle 

cleaning37 

 

Parameter Setting 

Grayscale Off 

High Speed Off 

Print Quality Best Photo 

Paper Type Ultra Glossy 

 

Table 3.2 Later printer settings used for IJP electrode fabrication and cleaning to 

improve printer longevity 

 

Parameter Setting 

Grayscale On 

High Speed Off 

Print Quality Best Photo 

Paper Type Matte - Heavyweight 
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breakdown at low voltages and could not be used for experimentation. The hydrophobicity 

of the extra Teflon layer also resulted in a thinner SU-8 layer as detailed in Chapter 6. 

To improve the longevity of the printing system and reduce the frequency of 

clogging, excess silver ink in the printer was purged at the end of each printing session. 

This was done by first loading all nozzles of the printer with a diluted cleaning solution. 

The stock cleaning solution consisted of glycerin, ammonia (~1 𝑀), and isopropyl alcohol 

in a 1:2:10 ratio. This was diluted with three parts of DI water per one part cleaning 

solution. A pattern of black, cyan, magenta, and yellow squares was then repeatedly printed 

until the resulting sheets were damp with the cleaning solution and no ink was visible. This 

ensured that nozzles were unclogged and no excess metal remained. 

 
 

Figure 3.4 Side-view diagram of the layers in the wired IJP devices used. 
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This inkjet process allows for the fabrication of device electrodes at a greatly 

reduced cost as compared to the cleanroom fabrication process. Processing costs alone are 

reduced by approximately 95% (Table 3.3). For CRF devices, costs shown for the different 

processes in the SMFL account for the operation and maintenance of the equipment used, 

including any necessary chemicals or other consumables. Bench space and chemicals for 

development were freely provided. For IJP devices, all processing is done in one printing 

step and all necessary materials were purchased individually. Costs for each fabrication 

method do not reflect the startup expenses associated with buying an inkjet printer versus 

setting up a cleanroom facility stocked with equipment and chemicals. 

 

3.3 Ejection Setup 

Experiments generally consisted of depositing a droplet onto an electrowetting 

device, sending an actuation signal, and recording the resulting droplet behavior. 

Table 3.3 Estimated electrode fabrication costs for a batch of eight CRF or eight IJP 

devices 

 

CRF Process Processing Cost IJP Process Component Cost 

Al-Coated Slides $120.00 Blank Slides $3.00 

Photoresist     

Spin Coat 
$29.21 PET Substrate $0.50 

Exposure $28.95 Conductive Ink $10.00 

Development 

(Manual) 
- Kapton Tape $0.10 

Etch and 

Photoresist Strip 
$90.00   

Batch Cost $268.16 Batch Cost $13.10 

Device Cost $33.52 Device Cost $1.64 
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Electrowetting devices were positioned on an adjustable Ramé-Hart stage for all ejection 

experiments (Fig. 3.5). All droplets were manually deposited using single-channel 

micropipettes (Eppendorf Research® Plus Medium Gray and Eppendorf Research® Plus 

Yellow). Droplets ranged in volume from 3 to 15 𝜇𝐿 and were drawn from a 1 𝑚𝑀 salt 

solution of NaCl in DI water. The total error in droplet volume for the range used was ~3% 

as reported by the pipette manufacturer.75 

Actuation signals were produced using a National Instruments PXI-5402 signal 

generator and Trek PZD700A amplifier. Devices were connected to the actuation system 

in one of two ways depending on the design of the electrowetting device being tested. On 

single-electrode wired devices, a probe tip was connected to the active wire leading from 

 
 

Figure 3.5 Experimental facility used to perform electrowetting-induced droplet 

ejection.57 
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the amplifier and positioned in contact with exposed metal of the electrowetting device. 

An alligator clamp was connected to the reference wire leading from the amplifier and 

loaded with a 22 𝜇𝑚 tungsten wire. This tungsten wire was then inserted into the droplet 

from above to ground it during actuation. On multi-electrode coplanar devices, probe tips 

were connected to both wires and positioned against the exposed contact pads of the 

ejection electrodes in use.  

Actuation signals were square waves oscillating between zero and some active 

voltage depending on the current test. When calculating 𝐸𝑤 values, only the voltage during 

the active signal time was considered. Pulse durations were tuned to match the spreading 

time (𝑡s) of the current droplet. Spreading times for 3, 5, and 10 µ𝐿 droplets under DC 

electrowetting were previously reported to be 5.3, 7, and 9 𝑚𝑠, respectively.56 General 

spreading times were known to be proportional to the 1.5th power of the characteristic 

length of the droplet64 or equivalently the square root of its volume. By fitting all reported 

times to this relationship, spreading times for 7, 12, and 15 µ𝐿 droplets were calculated to 

be 7.8, 10.1, and 11.3 𝑚𝑠, respectively. For most trials, the duty cycle of the signal was 

configured to allow 19𝑡s between pulses. This allowed the droplet to settle so the effects 

of each individual pulse could be observed. Signals for the trials in Chapter 6 used a 50% 

duty cycle where the time between pulses was the same as the active time (𝑡s). 

Droplets were initially actuated at active voltages too low for ejection. Testing 

began at 115 𝑉 on wired devices and 230 𝑉 on coplanar devices. The camera feed of the 

droplet response was observed in real time for obvious detachment. Droplets were 

considered to have detached if a gap was visible between the droplet and the substrate. If 

no such detachment was visible, voltage was stepped up and applied again. Voltage 
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increased in 5 𝑉 increments on wired devices and 10 𝑉 increments on coplanar devices. 

This repeated until detachment was observed or saturation was passed. Due to the timescale 

of the ejection phenomenon, recorded video of each trial was also reviewed after 

experimentation to check for detachment. The lowest voltage at which detachment 

occurred for a given droplet was considered its threshold voltage. 

Saturation voltages were determined using a constant DC voltage signal rather than 

square waves. The steady-state apparent contact angle of an actuated 5 𝜇𝐿 droplet was 

measured at a series of increasing voltages. The onset of saturation was identified as the 

point at which the apparent angle began to deviate from theoretical predictions computed 

with the electrowetting equation. Saturation was found to begin at ~140 𝑉 on single-

electrode CRF devices37 and ~290 𝑉 on four-part CRF devices. 

 

3.4 Image Capture and Processing 

Droplets were observed from the side during experimentation using one of two 

imaging systems. Both systems incorporated a Ramé-Hart 100-05-115 fiber optic 

illuminator backlight which resulted in the observation of a dark droplet profile against a 

white background. The majority of droplet ejection trials were conducted on a Ramé-Hart 

model 100-00-115 goniometer stage. Trials were recorded using a 0.4 𝑀𝑃 mono Blackfly 

S camera equipped with a 35 𝑚𝑚 Edmund Optics lens. The camera was controlled with 

SpinView software (FLIR Systems). Videos were recorded at 600 𝑓𝑝𝑠, which 

corresponded to approximately 1.67 𝑚𝑠 between consecutive frames. Approximately 3 𝑠 

of video were recorded at a time. This spanned approximately ten actuation pulses. More 

pulses were captured for smaller droplets with shorter spreading times (𝑡s).  



43 

 

Trials in Chapter 6 were performed on the stage of a Ramé-Hart model 250 

goniometer system and observed with a U1 series camera. Several seconds of video at 

40 𝑓𝑝𝑠 were recorded using DROPimage Advanced software. This lower-speed system 

and DROPimage Advanced were also used when measuring the initial angles of droplets 

on finished devices and when determining saturation. 

Recorded videos were then processed in MATLAB. The individual frames from 

each video were saved as images and manually checked for detachment. MATLAB was 

also used to generate slow-motion versions of the recorded videos to observe the droplet 

detachment phenomenon more clearly. For each ejection experiment performed in Chapter 

4, the frame with the widest droplet contact width prior to the first detachment was also 

identified. These frames were assumed to be the maximum spreading states achieved prior 

to detachment. The contact radius in each of these images was measured directly. The radii 

at all other heights within the droplet were also measured and used to compute the height 

of the center of mass in the spread state by assuming each layer of the droplet was a circular 

disc.  

 

3.5 Electrode Design Analysis 

All electrode designs were analyzed in MATLAB using the image processing 

toolbox to determine how much of the active and reference electrodes were covered by a 

droplet positioned over a given design. Analysis was limited to the detachment pad region 

that a droplet would contact on a device. Simplified versions of only this region were drawn 

in Adobe Illustrator. These excluded the wiring around the outer ring since the droplet 

would not cover it. Wiring at the center pad was drawn to consist of straight rectangular 
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wires connecting alternating segments. For designs with 200 𝜇𝑚 spacing no central 

connection was included. Spacings in these drawings were also true to intended size rather 

than oversized by 5 𝜇𝑚 as was done for the photomasks. 

The active and reference electrode regions were first identified in each image (Fig. 

3.6). An image consisting of a circular region of interest (ROI) with radius 𝑟 positioned  

over the center of the design was then constructed. The size of 𝑟 corresponded to the initial 

contact radius of an unactuated droplet on the hydrophobic surface used (𝜃0 = 120.1°). 

Pixels within the ROI overlapping with an electrode were counted to determine the total 

active and reference electrode areas covered by a droplet. This process was then repeated 

several times with the circular ROI offset up to 1 𝑚𝑚 away from the center of the design. 

 
 

Figure 3.6 Electrodes identified in the (a) ejection pads and (b) droplet contact regions 

of a 5 𝜇𝐿 droplet (𝜃0 ≈ 120°) centered on the CRF4-20 design. 
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The lengths of contact line over the active and reference electrodes were determined 

using a similar process. An image with a ring-shaped ROI was constructed consisting of 

all points a distance 𝑟 from the center of the design. Pixels within the ROI overlapping with 

an electrode were then counted to determine how much of the droplet perimeter covered 

each electrode type. This process was also repeated several times with the ring-shaped ROI 

offset up to 1 𝑚𝑚 away from the center of the design. 
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4.0 Impact of Droplet Size on Ejection 

The investigation in this chapter extends the previous electrowetting-induced 

ejection experiments in air56 described in Chapter 2. In those experiments, ejection was 

achieved using a coplanar device, but asymmetric spreading and dead space were both cited 

as factors limiting successful detachment. Ejection was also achieved in a wired setup, and 

ejection thresholds for droplets up to 10 𝜇𝐿 were reported to be independent of volume. 

The observed thresholds were significantly higher than expected based on a simple 

adhesion work model of the energy necessary for detachment. As a droplet separates from 

a surface, excess surface energy is lost to increase gravitational potential energy as well as 

separate the solid-liquid interface.38 The magnitude of the gravitational potential energy 

change would increase with increasing droplet size since it is directly proportional to 

droplet mass. However, the resulting impact on the ejection threshold has not been 

thoroughly examined. 

In this investigation, thresholds for electrowetting-induced droplet ejection in air 

are compared for droplets ranging in volume from 3 𝜇𝐿 to 15 𝜇𝐿. The previous models for 

predicting detachment38,56 detailed in Chapter 2 are updated to include changes in 

gravitational potential energy during detachment. Droplets are actuated on cleanroom-

fabricated (CRF) electrowetting devices with (i) wired and (ii) coplanar electrode 

configurations. In the wired configuration, droplets are positioned over a CRF1 device with 

a large, single electrode and grounded using an inserted tungsten wire. On coplanar 

devices, droplets are positioned over a CRF4 device with a circular electrode pad divided 

into four equal regions. Actuation on both device types is performed at increasing voltages 
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until detachment is observed. Thresholds for all trials across a range of droplet volumes 

are then compared to thresholds predicted by previous models38,56 and the updated models 

developed here. A minimum of eight trials (𝑛 = 8) are performed for each case. All 

measurement errors are reported as one standard deviation (𝑠) from the mean unless 

otherwise specified. All coplanar electrowetting numbers here are the effective 

electrowetting number of the entire droplet contact region as weighted by electrode area 

(𝐸𝑤A). 

The material presented in this chapter has previously been published in Langmuir.35 

Reprinted with permission from Burkhart, C. T.; Maki, K. L.; Schertzer, M. J. Coplanar 

Electrowetting-Induced Droplet Detachment from Radially Symmetric Electrodes. 

Langmuir 2020, 36 (28), 8129–8136. https://doi.org/10.1021/acs.langmuir.0c01015. 

Copyright 2020 American Chemical Society. 

 

4.1 Modeling the Ejection Threshold 

Lee et al.56 provided the first estimate for a critical threshold electrowetting number 

(𝐸𝑤cr) for electrowetting-induced droplet detachment using a simple adhesion model. 

They predicted detachment would occur when electrical energy stored in the dielectric 

layer exceeded the adhesion energy between the droplet and the surface. This energy 

difference per unit area can be expressed as the detachment function 

 𝑓adh(𝐸𝑤) = 𝛾lg𝐸𝑤 − 𝛾lg(1 + cos 𝜃0), (4.1) 

where 𝐸𝑤 is the electrowetting number, 𝛾lg is the surface tension along the liquid-gas 

interface, and 𝜃0 is the initial contact angle of the droplet. For the devices examined here, 

the initial contact angle was measured to be 120.1° ± 0.8°. The critical electrowetting 
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number for detachment predicted by the adhesion model (𝐸𝑤cr,adh) occurs at the root of 

this function, 𝑓adh(𝐸𝑤cr,adh) = 0. 

While the adhesion model56 offers a simple analytical tool to estimate the critical 

electrowetting number for detachment, it neglects changes in the energies of the solid-

liquid and solid-gas interfaces. Cavalli et al.38 provided an updated model that accounted 

for changes in all three interfaces by computing the difference in total free interfacial 

energy (Δ𝐸int) between the maximally spread position and a critically detached position 

tangent to the surface (Fig. 4.1). This can be expressed in terms of actuated apparent contact 

angle (𝜃𝑈) as 

 Δ𝐸int = 4𝜋𝛾lg𝑅sph
2 − 2𝜋𝛾lg𝑅2(1 − cos 𝜃𝑈) + 𝜋𝛾lg𝑅2 cos 𝜃0 sin2 𝜃𝑈, (4.2) 

where 𝑅sph is the radius of a sphere with the same volume as the droplet and 𝑅 is the radius 

of curvature of the droplet. This interfacial model predicts droplet ejection when 

detachment is energetically favorable (Δ𝐸int < 0). 

The interfacial model38 can also be used to predict a critical electrowetting number 

for droplet detachment (𝐸𝑤cr,int) by approximating a droplet’s maximally spread shape as 

its steady-state spherical cap shape. Sufficiently small droplets reach a steady-state position 

after actuation described by the electrowetting equation, 

 cos 𝜃𝑈 = cos 𝜃0 + 𝐸𝑤. (4.3) 

The spherical cap assumption is suitable for droplets small enough that their shape is 

largely determined by surface tension and minimally deformed by gravitational forces. The 

Bond number (𝐵𝑜) describes the ratio of these forces. For all droplets examined here, 𝐵𝑜 

is less than 1, indicating surface tension exceeds gravitational force and a spherical cap is 

a reasonable approximation for droplet shape (Table 4.1).58 



49 

 

 

The steady-state shape approximation will still underpredict spreading as the 

droplet’s dynamic contact line is known to overshoot the steady-state geometry used.64 

Measurements made in captured frames of maximally spread droplets from the experiments 

performed later in this chapter show underprediction worsens with increasing droplet 

volume (Table 4.2). In all cases, the steady-state contact radius is less than the maximally 

spread contact radius. However, this approximation allows the total free interfacial energy 

 
 

Figure 4.1 Approximated shape of a droplet at its (a) maximally spread and (b) 

detachment threshold positions. The quantities ℎs and 𝑅sph denote the distance from the 

droplet’s center of mass to the substrate in the spread and threshold positions, 

respectively.35 
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in the spread state to be approximated without experimentally ejecting a droplet and 

measuring the dynamic geometry directly. 

As in the adhesion model, the energy difference in the interfacial model can also be 

expressed per unit area with all terms scaled by the contact area of the maximally spread 

droplet (𝐴s), where 

 𝐴s = 𝜋𝑅2 sin2 𝜃𝑈. (4.4) 

Since 𝑅sph can be expressed as a multiple of 𝑅 where 

 

Table 4.1 Bond numbers for a droplet in air on a Teflon surface (𝜃0 = 120.1°)35 

 

Volume Bond Number (−) 

3 𝜇𝐿 0.18 

5 𝜇𝐿 0.26 

7 𝜇𝐿 0.32 

10 𝜇𝐿 0.41 

12 𝜇𝐿 0.46 

15 𝜇𝐿 0.53 

 

Table 4.2 Deviations in droplet geometry at maximum spreading35 

 

Volume 
Deviation in Contact 

Radius 

Deviation in Center 

of Mass Height 

3 𝜇𝐿 −6.8 % 34.2% 

5 𝜇𝐿 −10.6 % 42.1% 

7 𝜇𝐿 −11.1% 39.2% 

10 𝜇𝐿 −12.3% 48.5% 

12 𝜇𝐿 −13.8% 51.8% 

15 𝜇𝐿 −22.0% 62.8% 
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 𝑅sph = (
2−3 cos 𝜃𝑈+cos3 𝜃𝑈

4
)

1

3
𝑅, (4.5) 

all length terms in the change in total free interfacial energy drop out when scaled by 𝐴s 

resulting in 

 
Δ𝐸int

As
= 𝛾lg

(4−6 cos 𝜃+2 cos3 𝜃𝑈)
2
3−2(1−cos 𝜃𝑈)+cos 𝜃0 sin2 𝜃𝑈

sin2 𝜃𝑈
. (4.6) 

Using the electrowetting equation (Eq. 4.3), each 𝜃𝑈 can be expressed in terms of the 

known initial contact angle (𝜃0) and 𝐸𝑤. A detachment function can then be written as 

 𝑓int(𝐸𝑤) = Δ𝐸int/𝐴s. (4.7) 

The critical electrowetting number predicted by the interfacial model (𝐸𝑤cr,int) occurs at 

the root of this function, 𝑓int(𝐸𝑤cr,int) = 0. 

Critical electrowetting numbers predicted by the adhesion and interfacial models 

neglect changes in the gravitational potential energy of the droplet. When a droplet 

transitions from the maximally spread state to the detached state, its center of mass shifts 

upward (Fig. 4.1). This results in a change in gravitational potential energy (Δ𝐸g) that can 

be expressed as 

 Δ𝐸g = Δ𝜌𝑉𝑔(𝑅sph − ℎs), (4.8) 

where Δ𝜌 is the droplet density relative to the surrounding medium, 𝑉 is the droplet 

volume, 𝑔 is the acceleration due to gravity, and ℎs is the height of the center of mass of 

the droplet when maximally spread. 

The center of mass height can be estimated by assuming the droplet maintains a 

spherical cap shape as it dynamically spreads (ℎs ≈ ℎcap). The center of mass height for a 

spherical cap relative to the surface (ℎcap) is computed as 
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 ℎcap =
3(2𝑅−𝐻)2

4(3𝑅−𝐻)
− 𝑅 + 𝐻, (4.9) 

where the total droplet height (𝐻) for a given droplet volume varies as 

 𝐻 = 𝑅(1 − cos 𝜃𝑈). (4.10) 

However, this is known to overestimate ℎs since droplets overshoot the steady-state 

position and do not maintain a spherical cap shape at all times. Experimental measurements 

from experiments performed later in this chapter show the steady-state center of mass is 

always higher than the maximally spread center of mass (Table 4.2).  

Gravitational potential energy can be introduced to the adhesion (Eq. 4.1) and 

interfacial (Eq. 4.7) models to account for the change in center of mass height between the 

maximally spread and detached positions. The detachment function for the modified 

adhesion model becomes 

 𝑓adh+g(𝑉, 𝐸𝑤) = 𝑓adh + Δ𝐸g/𝐴s. (4.11) 

Values for 𝐴s and ℎs at a given volume can be approximated in terms of 𝐸𝑤 by again 

assuming the spread droplet takes its steady-state spherical cap shape. Thus 𝑓adh+g is a 

function of volume and electrowetting number. The critical electrowetting number 

predicted by this new adhesion plus gravitational potential model (𝐸𝑤cr,adh+g(𝑉)) is then 

𝑓adh+g(𝑉, 𝐸𝑤cr,adh+g) = 0.  

The interfacial model (Eq. 4.7) can similarly be modified to include changes in 

gravitational potential energy. The modified detachment function becomes 

 𝑓int+g(𝑉, 𝐸𝑤) = 𝑓int + Δ𝐸g/𝐴s. (4.12) 

The critical electrowetting number predicted by this new interfacial plus gravitational 

potential model (𝐸𝑤cr,int+g(𝑉)) occurs when 𝑓int+g(𝑉, 𝐸𝑤cr,int+g) = 0. This model is 



53 

 

expected to be the most accurate of the four presented, as it includes the fewest simplifying 

assumptions. 

The impact of the change in gravitational potential energy during detachment can 

be examined by comparing the critical electrowetting numbers predicted by each model 

(Fig. 4.2). Predictions were calculated for an aqueous droplet in air at room temperature on 

a hydrophobic surface (Δ𝜌 = 997 𝑘𝑔/𝑚3, 𝛾lg = 0.072 𝑁/𝑚, 𝜃0 = 120.1°). Both the 

adhesion and interfacial models predict constant thresholds independent of volume. 

However, the interfacial prediction is approximately 8% higher. This is expected since the 

interfacial model considers energy changes along two additional interfaces. 

 

 

 
 

Figure 4.2 Predicted 𝐸𝑤 detachment thresholds for each model shown as solid lines. 

From top to bottom (based on 18 𝜇𝐿 volume): interfacial plus gravitational model 

(orange), adhesion plus gravitational model (green), interfacial model (purple), and 

adhesion model (black).35 
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The relative importance of gravitational potential energy appears to be significant 

as its inclusion causes a larger deviation from the adhesion model than the interfacial model   

for all volumes greater than 2.5 𝜇𝐿. For the smallest droplets examined here (3 𝜇𝐿), 

including gravitational potential in the adhesion and interfacial models results in predicted 

thresholds (𝐸𝑤cr) that are 9% and 16% higher, respectively (Fig. 4.3). For 15 𝜇𝐿 droplets, 

inclusion of gravitational potential increases the predicted 𝐸𝑤cr by 27% (adhesion) and 

42% (interfacial). This suggests that gravitational effects may be significant, even for 

relatively small droplets. 

 

 

 
 

Figure 4.3 Increase in predicted electrowetting number (solid) and corresponding 

voltage (empty) between the adhesion plus gravitational potential model (red circles) 

and the interfacial plus gravitational model (blue squares) as compared to the adhesion 

only and interfacial only models, respectively.35 
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4.2 Coplanar Ejection from Radially Symmetric Electrodes 

The first objective of this investigation is to demonstrate electrowetting-induced 

droplet detachment from a coplanar electrode array. Figure 4.4 depicts typical actuation 

cycles of a 5 𝜇𝐿 droplet that was (a) unsuccessfully and (b) successfully ejected from a 

coplanar device. The captured frame with the widest droplet contact diameter (i) is assumed 

to occur approximately when the actuation pulse is released and the droplet interface stores 

its maximum excess energy. The contact diameter then shrinks as the surface energy shifts 

the droplet upward (ii,iii). The bulk of the droplet then separates from the surface (iv) 

before falling back and reattaching (v,vi). Droplet detachment using coplanar electrodes 

was successfully recorded with volumes ranging from 3 𝜇𝐿 to 15 𝜇𝐿 (Table 4.3). 

 

‘

 
 

Figure 4.4 Captured frames of a 5 𝜇𝐿 droplet on a coplanar device (i) after a 7 𝑚𝑠 pulse 

and then (ii-vi) every ~3.3 𝑚𝑠. The droplet exhibits (a) incomplete detachment at 

250 𝑉 and (b) detachment at 260 𝑉.35 

A

B

i ii iii iv v vi

i ii iii iv v vi
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Previous coplanar detachment in air was only possible via a closely timed double 

pulse to perturb and then eject droplets.56 The successful detachment from coplanar 

electrodes in this investigation can be attributed to electrode design. Unlike the IDEs used 

by Lee et al.,56 the symmetry of the pattern used here allowed for more axisymmetric 

droplet spreading. This minimizes the amount of surface energy wasted on azimuthal 

oscillations as the droplet recedes. The four-part electrode array used here also significantly 

reduced the amount of dead space compared to the interdigitated electrodes.56 The area 

fraction in the four-part coplanar design was 𝛼A ≈ 0.495 (less than 3% dead space) as 

compared to 𝛼A ≈ 0.459 on the interdigitated finger electrodes (~15% dead space). Lower 

area fractions limit the maximum achievable electrowetting number prior to the onset of 

contact angle saturation. Increasing voltage after saturation is not expected to induce 

detachment as the electrowetting response falls off dramatically. 

Table 4.3 Observed droplet ejection thresholds35 

 

Volume 

Coplanar Wired 
Lee et al.56 

(Wired) 

Critical 

Voltage 

(𝑉) 

Critical 𝐸𝑤 

(−) 

Critical 

Voltage 

(𝑉) 

Critical 𝐸𝑤 

(−) 

Critical 𝐸𝑤 

(−) 

0.4 𝜇𝐿 - - - - 0.67 

1 𝜇𝐿 - - - - 0.69 

3 𝜇𝐿 249 ± 6 0.58 ± 0.03 124 ± 5 0.62 ± 0.05 0.62 

5 𝜇𝐿 246 ± 9 0.57 ± 0.04 124 ± 5 0.62 ± 0.05 0.64 

7 𝜇𝐿 257 ± 21 0.61 ± 0.10 131 ± 3 0.69 ± 0.03 - 

10 𝜇𝐿 259 ± 6 0.63 ± 0.03 131 ± 6 0.69 ± 0.07 0.64 

12 𝜇𝐿 276 ± 16 0.71 ± 0.08 135 ± 3 0.74 ± 0.03 - 

15 𝜇𝐿 273 ± 9 0.70 ± 0.04 142 ± 7 0.81 ± 0.08 - 
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While coplanar detachment was successful across the droplet volume range 

examined here, experimentally observed critical electrowetting numbers increased with 

droplet volume. The smallest droplets (3 𝜇𝐿) ejected at an electrowetting number of 0.58 ±

0.03, while the largest droplets (15 𝜇𝐿) ejected at 0.70 ± 0.04. This appears to contradict 

previous results on wired devices reported by Lee et al. that thresholds are independent of 

volume.56 The discrepancy could be due to (i) the change to a coplanar electrode 

configuration or (ii) the higher range of droplet volumes examined here. The modified 

adhesion model supports the significance of the larger droplets examined. Predicted 

thresholds are up to 25% higher for an ejected 15 𝜇𝐿 when gravitational potential energy 

changes are considered. 

 

4.3 Wired Ejection 

To further examine the role of gravitational potential energy, experiments were 

repeated for all volumes in a wired configuration to observe the impact of droplet volume 

on critical electrowetting number. The wire used to ground droplets was less than 2% of 

the smallest droplet diameter and should have had a minimal influence on the system.40,56  

Experimentally observed critical electrowetting numbers from both configurations 

in this investigation were compared to those from Lee et al.56 Critical electrowetting 

numbers for both wired and coplanar configurations were consistent with previously 

reported data56 for volumes between 3 𝜇𝐿 and 10 𝜇𝐿. Previous work examining droplets at 

smaller volumes than those included here (including 0.4 𝜇𝐿 and 1 𝜇𝐿) observed an increase 

in critical electrowetting number in those cases.56 This increase has been attributed to a 

change in spreading dynamics from underdamped to overdamped as droplets get smaller 
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(𝑅 < ~1 𝑚𝑚) and increased domination of surface tension effects.71 This limits the excess 

surface energy stored in the interface during dynamic spreading.  

Like the coplanar data described above, an increase in critical electrowetting 

number was also apparent in the wired configuration over the larger range of volumes 

examined here. For the coplanar configuration, thresholds over the entire range increased 

with volume from 0.62 ± 0.05 (3 𝜇𝐿) to 0.81 ± 0.08 (15 𝜇𝐿). The wired configuration 

consistently had higher mean critical electrowetting numbers than the coplanar 

configuration, but thresholds between device types agreed for most volumes (two sample 

t-test, 𝑝 > 0.01). For the 7 𝜇𝐿 and 15 𝜇𝐿 trials, the wired configuration had statistically 

higher thresholds (𝑝 < 0.01) than the coplanar configuration. This demonstrates that the 

increasing threshold-volume relationship is not unique to the coplanar configuration. 

 

4.4 Significance of Gravitational Potential Energy 

Experiments performed in this investigation suggest that gravitational potential 

significantly impacts droplet detachment. To test this hypothesis, experimental results were 

compared to predictions from analytical models with and without gravitational potential 

energy. Threshold conditions for detachment are consistently underpredicted when 

adhesion and interfacial models neglect changes in gravitational potential energy. 

Predictions from both models are improved in nearly all cases when changes in 

gravitational potential energy are considered. 

Detachment of 3 𝜇𝐿 droplets in wired and coplanar configurations (𝑛 = 8) was 

observed at 𝐸w = 0.62 (𝑠 = 0.05) and 𝐸𝑤 = 0.58 (𝑠 = 0.03), respectively. When 

changes in gravitational potential energy were neglected, the adhesion model predicted 
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droplet detachment at 𝐸𝑤cr,adh = 0.50 ± 0.01 for all volumes. The difference between the 

predicted and experimentally observed threshold was statistically significant in this case 

(two sample t-test, 𝑝 < 0.01). This demonstrates that the adhesion model underpredicts the 

detachment threshold, suggesting that additional energies may play a significant role in 

detachment. 

When gravitational potential energy is neglected, accuracy of predictions made 

with the adhesion model decreases with increasing droplet volume (Fig. 4.5). At 3 𝜇𝐿 the 

adhesion model deviated by 19% and 14% on wired and coplanar devices, respectively 

 

 

 
 

Figure 4.5 Coplanar detachment threshold results (red circles), wired results (blue 

squares), Lee et al.’s wired results56 (black triangles), saturation limit (dashed black), 

and detachment threshold predictions from top to bottom (based on an 18 𝜇𝐿 volume): 

interfacial plus gravitational model (solid orange), adhesion plus gravitational model 

(solid green), interfacial model (solid purple), and adhesion model (solid black).35 
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(Table 4.4). The discrepancy roughly doubles for 15 𝜇𝐿 droplets to 39% and 29%,  

respectively. The increasing error suggests that the adhesion model oversimplifies the 

droplet system. Experimental detachment thresholds in both configurations increased with 

volume. A model neglecting gravitational potential energy does not capture this effect. 

Effectively, such a model predicts the minimum limit for a massless droplet. 

Inclusion of gravitational potential energy improves critical electrowetting number 

predictions and captures the increasing threshold-volume relationship. The roots of the 

adhesion plus gravitational potential model detachment function (Eq. 4.11) were calculated 

to predict critical electrowetting numbers for the range of volumes tested here (Fig. 4.5). 

Table 4.4 Deviations from predicted thresholds35 

 

 Volume 
Adhesion 

Model 

Interfacial 

Model 

Adh. + G. 

Model 

Int. + G. 

Model 

C
o
p
la

n
ar

 
3 𝜇𝐿 14.0% 7.5% 5.9% −7.2% 

5 𝜇𝐿 12.7% 6.0% 1.2% −14.4% 

7 𝜇𝐿 18.7% 12.5% 5.4% −10.8% 

10 𝜇𝐿 21.3% 15.3% 5.1% −12.6% 

12 𝜇𝐿 30.0% 24.6% 13.8% −3.0% 

15 𝜇𝐿 28.6% 23.1% 9.5% −8.9% 

W
ir

ed
 

3 𝜇𝐿 19.4% 13.2% 11.8% −0.5% 

5 𝜇𝐿 20.2% 14.1% 9.7% −4.5% 

7 𝜇𝐿 27.6% 22.1% 15.8% 1.4% 

10 𝜇𝐿 28.3% 22.9% 13.6% −2.6% 

12 𝜇𝐿 32.3% 27.1% 16.6% 0.4% 

15 𝜇𝐿 38.7% 34.0% 22.3% 6.5% 

L
ee

 e
t 

al
.5

6
 

(W
ir

ed
) 

0.4 𝜇𝐿 16.6% 12.5% 14.9% 9.4% 

1 𝜇𝐿 19.2% 15.2% 16.1% 9.8% 

3 𝜇𝐿 9.3% 4.8% 2.1% −7.4% 

5 𝜇𝐿 12.8% 8,4% 3.1% −7.7% 

10 𝜇𝐿 12.8% 8.4% −2.3% −16.1% 
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Including changes in gravitational potential improved prediction accuracy from 14.0%  

(without) to 5.9% (with) for 3 𝜇𝐿 droplets on coplanar devices. The improvement 

increased with droplet volume with deviations going from 28.6% (without) to 9.5% (with) 

for 15 𝜇𝐿 droplet. On wired devices, inclusion of gravitational potential improved the 

accuracy of the adhesion model from 19.4% (without) to 11.8% (with) for 3 𝜇𝐿 droplets 

and 38.7% (without) to 22.3% (with) for 15 𝜇𝐿 droplets. 

Experimental thresholds were also found to be underestimated by the interfacial 

model when changes in gravitational potential energy were neglected. The interfacial 

model predicted a higher threshold of 𝐸𝑤cr,adh = 0.54 ± 0.01 for all volumes. It was 

expected that this prediction would be higher than the adhesion prediction as it accounts 

for additional interfacial energy changes in the system. However, it still fell below the mean 

experimental threshold at all volumes with the magnitude of underprediction generally 

increasing with volume. This suggests interfacial energy alone may not provide a 

sufficiently accurate prediction of critical electrowetting number.  

The accuracy of the interfacial model was also improved by the inclusion of 

gravitational potential energy (Fig. 4.5). Deviations on coplanar devices improved from 

7.5% (without) to −7.2% (with) for 3 𝜇𝐿 droplets and from 23.1% (without) to −8.9% 

(with) for 15 𝜇𝐿 droplets. On wired devices, the accuracy improved from 13.2% (without) 

to −0.5% (with) for 3 𝜇𝐿 droplets and 34.0% (without) to 6.5% (with) for 15 𝜇𝐿 droplets.  

Of the four models examined, the interfacial plus gravitational potential model 

generally provides the most accurate prediction of experimentally observed critical 

electrowetting numbers. This was expected as this model accounts for the most energies 

influencing the droplet’s behavior out of the different models examined. In the wired 
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configuration, this model predicts a threshold within approximately 6% of what was 

experimentally observed. In the coplanar configuration, the interfacial plus gravitational 

model deviates least for the two largest volumes. The adhesion plus gravitational model 

predicts the detachment threshold most accurately for the remaining smaller droplet 

volumes. 

Based upon the collected results and despite previous findings to the contrary,56 

gravitational potential energy appears to have a significant impact on the critical 

electrowetting number required for droplet detachment. While the low Bond numbers for 

the droplets examined here indicate that droplet mass did not significantly affect droplet 

shape in any case, droplet mass still affects the magnitude of gravitational potential energy 

changes as droplets are lifted through the air. Analytical and experimental results in this 

investigation demonstrate that this change in gravitational potential energy is a significant 

contribution to the energy difference between the ejected and spread states and should be 

considered when performing electrowetting-induced droplet ejection. 

 

4.5 Summary 

This investigation demonstrates the first coplanar droplet detachment in air using 

single pulses. Additionally, it presents two new models for electrowetting-induced droplet 

detachment that account for the gravitational potential energy of the droplet. An improved 

understanding of the detachment threshold is critical for development of 3D digital 

microfluidic (DMF) devices. While the threshold has previously been estimated using 

either the work of adhesion or total free interfacial energy changes, in the experiments 

performed here it was observed that these estimates fell increasingly below what was 
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observed. The proposed models incorporate the increase in gravitational potential energy 

of a detaching droplet into these previous models. By approximating the droplet’s 

spreading profile with its steady state electrowetting profile, the new models can be used 

to predict the electrowetting number required for detachment prior to any experimentation. 

Threshold predictions using these models agreed more closely with the observed 

thresholds, roughly halving the deviation from the adhesion model. 

It should be noted that a droplet in a 3D DMF device has the potential to be 

manipulated when resting on the bottom plate of the device or when hanging from the top 

plate. The results here suggest that the voltage threshold to detach a droplet would change 

whether ejecting a droplet upward or downward. Future investigations into the voltage 

threshold for inverted ejection will prove beneficial for the advancement of 3D DMF 

devices.   
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5.0 Impact of Electrode Geometry on Ejection 

The investigation in this chapter extends the coplanar electrowetting-induced 

ejection experiments in air described in Chapter 4.35 In those experiments droplets were 

successfully ejected from a coplanar electrowetting device featuring a radially symmetric 

electrode design. The electrode pad beneath the droplet was divided into four segments 

with 20 𝜇𝑚 gaps separating them. Successful ejection was attributed to the greatly reduced 

the gap space beneath an actuated droplet as compared to previous coplanar ejection 

performed using interdigitated finger electrode,56 but the role of the design was not 

thoroughly examined. The design used also incorporates small features not compatible with 

current low-cost electrode fabrication techniques.18,37,50 

In this investigation, the electrowetting and ejection performance of multiple 

variations of the coplanar design used in Chapter 4 are characterized. Detachment pads are 

segmented into four, six, or eight electrodes parts. Spacing between individual electrodes 

varies from 20 𝜇𝑚 to 200 𝜇𝑚. Predicted performance for a 5 𝜇𝐿 droplet on each design is 

first determined numerically. Designs are then tested experimentally on physical devices. 

All devices are fabricated using the same cleanroom processes to isolate the effects of 

number of electrode segments and electrode spacing. Increasing voltage is applied until 

electrowetting-induced droplet ejection is observed. Observed droplet ejection thresholds 

for each design are presented with the thresholds predicted using the ejection model 

developed in Chapter 4. A minimum of four trials are performed for each case. All 

measurement errors are reported as one standard deviation from the mean unless otherwise 

specified. 
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The material presented in this chapter has been submitted for publication in Sensors 

and Actuators A: Physical.36 

 

5.1 Electrode Design Variations 

Five different cleanroom-fabricated (CRF) electrode patterns were tested here. 

Electrodes in the benchmark pattern (Fig. 5.1a) consisted of a 6 𝑚𝑚 diameter circular 

region divided into four quarter-circle segments. Alternating segments were connected at 

either the center of the circular region or by an outer ring. The minimum spacing between 

electrodes was 20 µ𝑚. The benchmark design is referred to here as “CRF4-20” which 

 

 
 

Figure 5.1 Simplified top-view of the detachment pad designs used with varying 

numbers of segments (𝑁) and minimum gap spacings (𝐺). Gaps are not to scale. Wiring 

of alternating segments is not shown.36 

A

B C

D E
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references the fabrication process (CRF), number of segments (4), and electrode spacing 

(20 𝜇𝑚) to identify the design and distinguish it from the other four. 

The effect of the number of segments in the coplanar electrode array was tested 

using two additional designs with 20 µ𝑚 spacing. These designs have the same circular 

electrode region divided into either six (“CRF6-20”) (Fig. 5.1b) or eight (“CRF8-20”) (Fig. 

5.1c) segments. 

The effect of electrode spacing was tested using two additional designs with four 

segments in the coplanar electrode array. These designs have the same overall footprint but 

with minimum spacings of 55 𝜇𝑚 (“CRF4-55”) (Fig. 5.1d) and 200 𝜇𝑚 (“CRF4-200”) 

(Fig. 5.1e) between features. These spacings were chosen to mimic reported resolutions of 

low-cost inkjet-printing fabrication methods.18,37,50 

 

5.2 Design Analysis 

Predicted electrowetting performance of each design was first compared using 

numerically measured area factors (𝛼A) for an initially unactuated 5 𝜇𝐿 droplet centered on 

each design (Table 5.1). These were computed as 

 𝛼A = √𝐴a

𝐴t
(

𝐴r

𝐴a+𝐴r
)

2

+
𝐴r

𝐴t
(

𝐴a

𝐴a+𝐴r
)

2

, (5.1) 

where 𝐴a is the measured active electrode area beneath the droplet, 𝐴r is the measured 

reference electrode area beneath the droplet, and 𝐴t is the total contact area of the droplet. 

Droplets were assumed to have an initial contact angle (𝜃0) of 𝜃0 = 120°. 

An area efficiency (𝜂A) was computed for each design by normalizing all area 

factors by the theoretical maximum area factor (𝜂A = 𝛼A 0.5⁄ ). The four-part design with



67 

 

 

20 𝜇𝑚 spacing (CRF4-20) served as the benchmark for comparison as it had previously 

been used to study droplet ejection.35 The benchmark CRF4-20 design was found to have 

the highest area efficiency (𝜂A = 0.986). 

Area efficiency decreased as detachment electrodes were further segmented and 

additional gap lines were required. The CRF8-20 had an area efficiency of 𝜂A = 0.973 

which would only increase voltage requirements by 1.4% as compared to an ideal design 

with 𝜂A = 1. As all gaps were relatively narrow (~20 𝜇𝑚), total dead space with eight 

segments is a small fraction of the overall droplet area (~5.3%). 

Area efficiency also fell as gap space widened. The CRF4-55 was moderately less 

efficient at 𝜂𝐴 = 0.964, but efficiency fell significantly on CRF4-200 down to 𝜂A = 0.866. 

Nearly one quarter of the CRF4-200 design is gap space which results in a 15.4% increase 

in voltage requirements versus an ideal design. This suggests that droplet ejection from a 

CRF4-200 device would require a significantly higher voltage than a device of any of the 

other four designs. 

Predicted sensitivity to droplet position on each device type was then examined by 

computing 𝜂A for droplets positioned offset toward one electrode (Fig. 5.2). An increased 

Table 5.1 Predicted electrowetting performance over the contact area of a centered 

5 𝜇𝐿 droplet (𝜃0 = 120°)36 

 

Device Type 
Area Factor 

(𝛼A) 

Area Efficiency 

(𝜂A) 

Voltage Increase 

(0.5 𝛼A⁄ − 1) 

CRF4-20 0.493 98.6% 1.4% 

CRF6-20 0.490 98.0% 2.1% 

CRF8-20 0.486 97.3% 2.8% 

CRF4-55 0.482 96.4% 3.7% 

CRF4-200 0.433 86.6% 15.4% 
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number of segments in the electrode array delays the decline in predicted performance at 

higher offsets. The benchmark CRF4-20 design remains the most efficient (𝜂A ≈ 98%) for 

offsets up to 0.4 𝑚𝑚 and remains relatively constant (within 2%) until an offset of 

0.52 𝑚𝑚. At larger offsets, the area efficiency on CRF4-20 begins to drop off. A 

substantially offset droplet on the CRF4-20 design rests primarily over a single electrode 

segment. This creates an imbalance in the active versus reference areas covered. The 

voltage in each region is inversely related to the size of its areas and can be computed as 

 𝑈a =
𝐴r

𝐴a+𝐴r
𝑈, 𝑈r =

𝐴a

𝐴a+𝐴r
𝑈, (5.2) 

 
 

Figure 5.2 Expected area factor efficiency of a 5 𝜇𝐿 droplet offset along the midline of 

an electrode segment (inset).36 
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where 𝑈 is the input voltage, 𝑈a is the voltage across the dielectric layer in the active 

electrode region, and 𝑈𝑟 is the voltage across the dielectric layer in the reference electrode 

region. At an offset position, the resulting imbalance in covered electrode areas reduces the 

voltage applied to most of the droplet. 

Predicted performance on the CRF6-20 and CRF8-20 designs for small offsets (<

~0.54 𝑚𝑚) is similar to the benchmark case despite the additional gap lines required. At 

larger offsets CRF6-20 and CRF8-20 become more efficient than CRF4-20 despite their 

increased gap space. Performance on CRF6-20 does not appreciably decay (> 2%) until 

an offset of 1 𝑚𝑚, and performance on CRF8-20 never appreciably decays in the offset 

range examined. The additional electrode segments in the CRF6-20 and CRF8-20 designs 

allow for a more equal ratio of active and reference electrode areas to be covered at an 

offset position. It is expected that at even larger offsets the CRF8-20 design will also drop 

off as the droplet begins to cover predominantly a single electrode segment. These results 

suggests reductions in performance due to an offset can be mitigated by further subdividing 

the electrode pad as is also done with thin-film transistor arrays.76 

The gap distance between electrodes results in a more rapid decline of predicted 

performance at increasing offsets. Performances on the CRF4-20, CRF4-55, and CRF4-

200 designs all begin to drop off appreciably beyond offsets of approximately 0.52 𝑚𝑚. 

However, the overall drop in performance due to a 1 𝑚𝑚 offset (𝜂A(1 𝑚𝑚) 𝜂A(0)⁄ ) 

increases with increasing gap size. Performance on the CRF4-20, CRF4-55, and CRF4-200 

designs drops by 27%, 29%, and 38%, respectively. By minimizing the spacing between 

electrodes the impact of a sizeable offset can be reduced. 
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Area efficiency on all five designs is minimally impacted by small offsets and drops 

less than 2% for offsets up to 0.52 𝑚𝑚. In this range, a design with the fewest segments 

is preferable since it will have the highest efficiency. If higher offsets are expected, then 

additional segments can be included to reduce the sensitivity of efficiency to droplet offset. 

This comes at the cost of additional gap lines, but overall gap space can remain low if gap 

widths are small. 

 

5.3 Droplet Ejection Results 

Electrowetting-induced droplet detachment experiments were successfully 

performed on all five electrode designs. Droplets were actuated at increasing voltages until 

detachment was observed. Figure 5.3 shows a typical detachment process captured on a 

CRF4-200 device. Actuation causes the droplet bulk to shift from its initial position (Fig. 

5.3a) downward toward the substrate to a deformed position (Fig. 5.3b). As the signal is 

released, the droplet returns towards its initial position (Fig. 5.3c). With sufficient stored 

energy, the droplet can overshoot the initial position (Fig. 5.3d) and eject from the surface 

(Fig. 5.3e). The success on the CRF4-200 design is promising for future inkjet-printed 3D 

digital microfluidic (DMF) device testing, as current low-cost printing techniques are 

capable of producing electrodes with similar feature resolution.18,37,50 

Threshold voltages for detachment were then compared to predicted performance. 

Predicted critical electrowetting numbers for droplet ejection (𝐸𝑤cr) were computed using 

the interfacial plus gravitational potential energies model developed in Chapter 4 and used 

to determine critical voltage thresholds (𝑈cr). In a coplanar device, voltage is related to the 

effective electrowetting number over the droplet contact area (𝐸𝑤A) as 
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 𝑈 = √
2𝑑𝛾lg𝐸𝑤A

𝜖0𝜖d𝛼A
2 , (5.3) 

where 𝑈 is the applied voltage, 𝑑 is the thickness of the dielectric layer, 𝛾lg is the surface 

tension along the liquid-gas interface, 𝜖0 is the permittivity of free space, and 𝜖d is the 

dielectric constant. 

Experimental thresholds on CRF4-200, CRF4-55, CRF6-20, and CRF8-20 devices 

were all significantly higher than previously observed on the benchmark CRF4-20 (two 

sample t-tests, 𝑝 < 0.01) and occurred beyond the estimated onset of saturation (Fig. 5.4). 

This is attributable in part to differences in dielectric thickness. The previously fabricated 

CRF4-20 devices had a coating thickness of 4.8 ± 0.4 𝜇𝑚. The CRF4-200, CRF4-55, 

CRF6-20, and CRF8-20 devices were fabricated separately and had a measured dielectric 

thickness of 5.4 ± 0.6 𝜇𝑚. Predictions shown in Figure 5.4 reflect the measured dielectric 

thickness specific to each design type. An increase in dielectric thickness reduces the 

effective electrowetting number. This increases the voltage necessary to achieve the critical 

electrowetting number for detachment.  

Observed voltage thresholds on the CRF4-200, CRF4-55, CRF6-20, and CRF8-20 

devices were not statistically significantly different from each other (single-factor 

 
 

Figure 5.3 A 5 𝜇𝐿 droplet ejected from a CRF4-200 electrowetting device. 

Approximately 5 𝑚𝑠 elapse between consecutive frames.36 
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ANOVA, 𝑝 > 0.05). It was expected that the CRF4-55, CRF6-20, and CRF8-20 devices 

would have similar voltage thresholds since they have similar area efficiencies (within 

~2%). The same parameter suggested detachment on the CRF4-200 design would be less 

likely since its area efficiency was lower (𝜂A = 86.6%). The predicted detachment voltage 

on CRF4-200 devices (310 𝑉) was ~13% higher than on all other designs. 

 

5.4 Contact Line Electrowetting Model 

Successful detachment from the CRF4-200 design despite its poor efficiency 

suggests that the geometry coefficient 𝛼A may underpredict the effectiveness of an 

 
 

Figure 5.4 Experimentally observed threshold voltage and critical electrowetting 

number for droplet ejection from each device type.36 
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electrode design in some cases. In practice, the electrowetting response and subsequent 

spreading of a droplet are driven by changes at the contact line.59 As such, dead space at 

the center of the droplet area may not have an impact on spreading.  

The effective electrowetting number over the entire droplet contact area has 

previously been computed as 

 𝐸𝑤A =
𝜖0𝜖d 

2𝑑𝛾lg
(

𝐴a

𝐴t
𝑈a

2 +
𝐴r

𝐴t
𝑈r

2 +
𝐴g

𝐴t
𝑈g

2), (5.4) 

where 𝐴g is the gap area beneath the droplet, and 𝑈g is the voltage across the dielectric 

layer in the gap region.29,35 This can be reformulated to compute the effective 

electrowetting number only at the contact line of the droplet (𝐸𝑤P). This is expressed as 

 𝐸𝑤P =
𝜖0𝜖d 

2𝑑𝛾lg
(

𝑠a

𝑠t
𝑈a

2 +
𝑠r

𝑠t
𝑈r

2 +
𝑠g

𝑠t
𝑈g

2), (5.5) 

where 𝑠a, 𝑠r, and 𝑠g are the total lengths of the droplet contact line over active electrodes, 

reference electrodes, and gaps, respectively. The total length of the contact line (𝑠t) is 

equivalent to the perimeter of the circular interface where the droplet contacts the substrate. 

Since 𝑈g = 0, this reduces to 

 𝐸𝑤P =
𝜖0𝜖d 

2𝑑𝛾lg
𝛼P

2𝑈2, (5.6) 

where a new “perimeter factor” (𝛼P) can be defined as 

 𝛼P = √𝑠a

𝑠t
(

𝐴r

𝐴a+𝐴r
)

2

+
𝑠r

𝑠t
(

𝐴a

𝐴a+𝐴r
)

2

. (5.7) 

This new factor characterizes how effectively the input voltage is distributed to the contact 

line. All geometric quantities used to determine the perimeter factor are also computed at 

a maximally spread droplet position to better reflect the physical spreading behavior rather 

than an initially unactuated shape as previously done using an area factor analysis.35 These 



74 

 

are approximated using the steady-state spherical cap shape predicted by the general 

electrowetting equation at saturation. The model used to predict detachment similarly 

approximates the spread geometry using the steady-state geometry. 

The perimeter factor was computed for a centered droplet on all designs (Table 

5.2). A fixed contact angle (𝜃) of 𝜃 = 75° was used for all cases here, as this is the 

approximate saturation angle on the CRF4-20 device. A droplet centered on an idealized 

version of the designs used here where no gaps were present and the active electrode area, 

reference electrode area, active electrode perimeter, and reference electrode perimeter were 

equal (
𝐴a

𝐴t
=

𝐴r

𝐴t
=

𝑠a

𝑠t
=

𝑠r

𝑠t
= 0.5) would have a perimeter factor of 𝛼P = 0.5. Results were 

scaled by this value to compute a perimeter efficiency (𝜂P = 𝛼P/0.5). Perimeter efficiency 

was slightly higher (~2%) for most designs as compared to their area efficiency. In the 

case of the CRF4-200 design, 𝜂P was more than 10% higher than 𝜂A. As a result, perimeter 

efficiencies for all designs agreed within 4%, whereas previously the area efficiency of 

CRF4-200 was ~11% lower than all other designs. This agreement in predicted 

Table 5.2 Predicted electrowetting performance along the contact line of a centered 

5 𝜇𝐿 droplet (𝜃 = 75°)36 

 

Device Type 
Perimeter Factor 

(𝛼P) 

Perimeter 

Efficiency 

(𝜂P) 

Voltage Increase 

(0.5 𝛼P⁄ − 1) 

CRF4-20 0.498 99.6% 0.4% 

CRF6-20 0.497 99.3% 0.7% 

CRF8-20 0.496 99.2% 0.8% 

CRF4-55 0.495 99.0% 1.1% 

CRF4-200 0.481 96.1% 4.0% 
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performance matches the trend in the experimental results where droplets on the CRF6-20, 

CRF8-20, CRF4-55, and CRF4-200 designs all ejected at similar voltages (Fig. 5.4).  

Predicted sensitivity to droplet position was then reexamined by computing 𝜂P at 

different offsets along the midline of one electrode (Fig. 5.5). As with 𝜂A, the efficiency 

on all designs is initially steady. Performance decreases less than 2% for offsets up to 

0.84 𝑚𝑚. At higher offsets performance continues to hold steady or improves. On the 

CRF4-20 and CRF4-55 designs, 𝜂P exceeds 1 at an offset of 1 𝑚𝑚. This indicates that in 

these positions the effective voltage along the contact line (𝑈̃P) is more than half of the 

input voltage. 

 
 

Figure 5.5 Expected perimeter factor efficiency of a 5 𝜇𝐿 droplet offset along the 

midline of an electrode segment.36 
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The effective voltage over the entire droplet area (𝑈̃A) is limited to 50% of the input 

voltage. The effective area voltage increases as the square of the voltage on the active and 

reference electrodes increases, where 

 𝑈̃A
2 =

2𝑑𝛾lg

𝜖0𝜖d
𝐸𝑤A =

𝐴a

𝐴t
𝑈a

2 +
𝐴r

𝐴t
𝑈r

2. (5.8) 

Because the voltage on each electrode is inversely related to its area (Eq. 5.2), 𝑈̃𝐴 is 

maximized when the areas are equal. An imbalance in the ratio of active to reference 

electrode area can result in a higher local voltage on one of the two electrodes, but will still 

reduce the effective voltage applied to the entire area. 

 

5.5 Designing for Localized Electrowetting 

The perimeter factor model suggests that dissimilarly sized electrodes can be 

beneficial when interested only in increasing the voltage applied at the contact line. The 

effective contact line voltage (𝑈̃P) can be represented as 

 𝑈̃P
2 =

2𝑑𝛾lg

𝜖0𝜖d
𝐸𝑤P =

𝑠a

𝑠t
𝑈a

2 +
𝑠r

𝑠t
𝑈r

2. (5.9) 

Voltages at positions elsewhere in the droplet area do not contribute to 𝑈̃P. However, the 

ratio of active to reference electrode areas still dictates 𝑈a and 𝑈r. Having two dissimilarly 

sized electrodes will result in voltage being preferentially distributed toward the smaller 

electrode. If the contact line primarily covers the smaller electrode, then it will receive most 

of the input voltage. The larger electrode can be safely positioned toward the center of the 

droplet where voltage can be sacrificed. This imbalance in the ratio of active to reference 

electrode areas still results in a lower 𝑈̃A, but the careful positioning can also result in 𝑈̃P 

exceeding half of the input voltage. 
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In an extreme case, 𝛼P has a maximum value of 1 when the contact line covers an 

infinitely thin ring-shaped active electrode and the droplet contact area covers a circular 

reference electrode (Fig. 5.6). However, such a case is unrealistic since a droplet spreads 

as it is actuated and must cover both active and reference electrodes at all times to do so. 

The contact radius of the initial unactuated droplet limits the maximum size of the circular 

electrode (𝑟inner). The minimum outer radius of the ring electrode (𝑟outer) is limited by the 

contact radius of a maximally spread droplet, since a ring electrode any smaller would limit 

spreading. For the 5 𝜇𝐿 droplets on the hydrophobic surface used here (𝜃0 ≈ 120°), the 

limits of these radii are 0.97 𝑚𝑚 and 1.51 𝑚𝑚, respectively. In practice, constructing such 

a design (Fig. 5.6), where any wiring or gaps are neglected (𝑠a = 0, 𝑠r/𝑠t = 1) results in a 

perimeter factor of only 𝛼P = 0.41. This is less efficient than a droplet on any of the 

physical designs tested here. While there may be a more efficient electrode geometry 

 

 
 

Figure 5.6 Top-view schematic of a theoretical two-part electrode design sized for a 

5 𝜇𝐿 droplet (𝜃0 ≈ 120°).36 

Active Electrode

Reference Electrode
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suitable for physical applications, this suggests the optimal design is not obvious and merits 

further investigation. 

 

5.6 Summary 

The electrode geometry is an important design consideration in coplanar 

electrowetting applications. An efficient design maximizes the electrowetting number 

achieved at a given input voltage by minimizing dead space and allowing a droplet to cover 

as equal a ratio of active to reference electrode areas as possible. Efficiency also translates 

to reaching a target electrowetting number at a reduced voltage as is critical in a droplet 

ejection application. Radially symmetric electrode designs can be highly efficient provided 

droplet are not significantly offset. Such designs can contain fewer parts than an 

interdigitated finger design and as a result require less gap space. The more uniform radial 

spreading is also beneficial for droplet ejection. 

Droplets here were successfully detached from all examined electrode designs. This 

includes a four-part electrode design with 200 𝜇𝑚 gaps between the electrode segments 

(CRF4-200). The successful detachment despite the significant dead space beneath the 

initial droplet (~25%) suggests that a sufficient electrowetting number at the contact line 

is critical for detachment rather than a sufficient mean electrowetting number across the 

entire droplet area. The proposed perimeter factor (𝛼P) characterizes how effectively input 

voltage is divided through the electrode array at the contact line. Successful ejection on the 

CRF4-200 design is also promising for the design of future 3D inkjet-printed DMF devices 

as current low-cost printing techniques can already achieve spacings of this size and 

smaller.  
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6.0 Ejection from Inkjet-Printed Devices 

The investigation in this chapter examines electrowetting-induced droplet ejection 

on digital microfluidic (DMF) devices fabricated using the low-cost inkjet printing process 

described in Chapter 3 and originally developed by Dixon et al.18,50 As highlighted in 

Chapter 1, the expenses associated with traditional cleanroom fabrication of DMF devices 

are a major hurdle for the widespread implementation of DMF devices as point of care 

(POC) diagnostic tools. The inkjet-printing process used here eliminates the need for 

cleanroom facilities and is already a promising low-cost alternative for fabricating 2D 

DMF devices.18 However several properties of these printed devices have not previously 

been characterized. 

In this investigation, the conductivity and roughness of cleanroom-fabricated 

(CRF) and inkjet-printed (IJP) devices are compared. The adhesion energy of an 

unconfined 5 𝜇𝐿 droplet on each device types is then calculated and used to estimate the 

minimum threshold electrowetting number for ejection using Lee et al.’s adhesion model.56 

Droplet ejection is then demonstrated by applying ejection pulses at saturation voltage to 

droplets on both device types. Each device contains a single electrode and is actuated in a 

wired configuration using a 22 𝜇𝑚 tungsten wire inserted into the active droplet. All 

measurement errors are reported as one standard deviation from the mean unless otherwise 

specified. 

The material presented in this chapter has previously been published in 

Microfluidics and Nanofluidics.37 Material from: ‘Bernetski, K. A.; Burkhart, C. T.; Maki, 

K. L.; Schertzer, M. J.; Characterization of Electrowetting, Contact Angle Hysteresis, and 
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Adhesion on Digital Microfluidic Devices with Inkjet-Printed Electrodes; Microfluids and 

Nanofluids; published 2018; Springer Nature.’ 

 

6.1 Conductivity of Printed Electrodes 

Conductivity of printed electrodes (Fig. 6.1) was characterized prior to fabricating 

complete devices for ejection testing. The IJP electrodes fabricated by Dixon et al.50 were 

not actively sintered and were simply allowed to cure overnight prior to being coated. 

Photonic curing allows for conductivity to be improved without thermally damaging the 

flexible polymer substrate used in the inkjet-printed devices. Here two active photonic 

curing techniques and their impact on conductivity were examined. The first active 

technique was based on a low-cost process reported by Yung et al.77 involving a simple 

 

 
 

Figure 6.1 An early inkjet-printed electrode. 
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camera flash (Nikon Speedlight DB-600, ~$100 USD). Electrodes were positioned ~1 𝑐𝑚 

away from the flash and exposed one, two, or three times. The second involved 

photosintering devices in an industrial photonic curing system (Novacentrix PulseForge 

3300, ~$1M USD) at 200 𝑉 for 400 𝜇𝑠. PulseForge processing is not conducive to low-

cost applications, but it served as a reference for comparing the effectiveness of the low-

cost alternatives. To further explore the effects of passive curing each technique was used 

on a freshly printed device and on a device allowed to rest for approximately two weeks. 

To compare conductivities, six measurements of sheet resistance were taken across each 

device using a four-point probe (Jandel RM 3000+). 

Freshly printed electrodes were found to have a sheet resistance of 745 ±

53 𝑚Ω/𝑠𝑞 (Fig. 6.2). Camera flash exposure reduced resistivity, but diminishing returns 

were observed with multiple exposures. The maximum reduction in resistivity was 

approximately 17% after three exposures. This was consistent with results reported by 

Yung et al.77 As expected, the improvement in resistivity with the PulseForge (~84%) was 

far superior to that of the low-cost camera flash method. Electrodes that were allowed to 

rest had lower sheet resistances in all cases. Interestingly, the rested electrode that was not 

actively sintered had a lower sheet resistance than all the fresh and actively sintered 

electrodes aside from the PulseForge case. 

While both active curing techniques reduced sheet resistance, neither was 

performed when fabricating the ejection devices tested later in this chapter. Instead, 

electrodes were allowed to dry at least overnight as done by Dixon et al.50 The benefit of 

improved conductivity in the devices is likely small since they contain no complex 

electrode geometry and the current in the devices is negligible. Furthermore, both 
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techniques represent an increase in device cost and processing time. While these methods 

were not implemented here, they may be attractive for more widely spread commercial 

applications. 

 

6.2 Roughness, Dielectric Thickness, and Adhesion 

Surface roughness of inkjet-printed electrodes was examined to determine if it 

would have a significant impact on the hydrophobicity of the final device surface. An 

increased density of surface defects can decrease the initial contact angle of a droplet78 and 

 
 

Figure 6.2 Conductivity of fresh and dried printed electrodes samples after various 

curing techniques.37 
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in turn inhibit droplet ejection.56 Surface defects can also result in local variations in the 

thickness of the dielectric layer and create variations in the local electrowetting number. 

The root-mean-square roughness of the printed electrodes was measured in three 

0.5 𝑚𝑚 x 0.5 𝑚𝑚 regions across multiple devices using a Nanovea ST400 profilometer 

and found to be 400 𝑛𝑚 ± 85 𝑛𝑚. This is approximately three times greater than the 

roughness reported by Dixon et al.50 After deposition of the dielectric and hydrophobic 

films, roughness on IJP devices was measured to be 189 𝑛𝑚 ± 6 𝑛𝑚. Roughness on coated 

CRF devices was measured to be 73 𝑛𝑚 ± 4 𝑛𝑚, which is approximately the resolution 

of the profilometer. This suggests that increased roughness on an IJP electrode can affect 

roughness of the polymer layers subsequently spin coated over them. 

Initial contact angles (𝜃0) were measured on both device types and found to be 

slightly lower on IJP devices (115.7°) as compared to CRF devices (118.5°).37 The lower 

initial contact angle on IJP devices indicates greater surface adhesion. Adhesion work per 

area (𝑤adh) can be estimated as 

 𝑤adh ≈ 𝛾lg[1 + cos(𝜃0)], (6.1) 

where 𝜃0 is the initial contact angle of a droplet on the surface and 𝛾lg is the surface tension 

between the droplet and the surrounding medium.56 In order for an actuated droplet to eject 

from the surface, the electrical energy in the system (𝛾lg𝐸𝑤) must at least be greater than 

this adhesion work. By equating the electrical energy and adhesion work, the minimum 

necessary electrowetting number for ejection (𝐸𝑤cr) can be estimated as 

 𝐸𝑤cr = 1 + cos (𝜃0). (6.2) 
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The difference in initial contact angle results in a predicted 𝐸𝑤cr for IJP devices (0.57) that 

is approximately 8% higher than on CRF devices (0.52). 

The thickness of the dielectric layer in IJP and CRF devices was also measured and 

compared. Despite being deposited using the same spin coating parameters, the dielectric 

layer in the IJP devices was thinner (~4.4 𝜇𝑚) than in the CRF devices (~6.4 𝜇𝑚). This 

was attributed to the additional hydrophobic Teflon layer deposited directly over the 

printed electrodes in all IJP devices. Previous works have demonstrated that spin coating 

photoresist on fluoropolymers can be difficult due to the high hydrophobicity,79–81 but 

sufficiently viscous photoresists (> 50 𝑐𝑆𝑡) can still be deposited directly.79 The 

manufacturer reported viscosity of the SU-8 3005 photoresist used is 65 𝑐𝑆𝑡. The 

combination of the moderate photoresist viscosity and the hydrophobicity of the Teflon 

coating appear to result in a reduced thickness of spin-coated SU-8. 

 

6.3 Droplet Ejection 

The printing system was then used to produce single-electrode inkjet-printed 

devices (IJP1) for detachment trials in a wired configuration (Fig. 6.3). Prints were allowed 

to dry for a day or more prior to spin coating. Devices were tested with 5 𝜇𝐿 droplets 

actuated with 7 𝑚𝑠 pulses at varying DC voltages and recorded using DROPimage 

software at 40 𝑓𝑝𝑠. Droplet ejection was also performed on single-electrode CRF devices 

for comparison. 

Droplets were successfully ejected from printed devices with the application of 

120 𝑉 (𝐸𝑤 ≈ 0.60) (Fig. 6.4). This is the first reported demonstration of electrowetting-

induced droplet ejection from an IJP device. Droplets on similarly tested single-electrode 
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CRF devices (CRF1s) were also ejected at 𝐸𝑤 ≈ 0.48. The experimentally observed 

thresholds on both device types agreed well with the values predicted by the simple 

adhesion model. As expected, the increased adhesion energy on IJP devices required the 

addition of more electrical energy at the solid liquid interface than on CRF devices. This 

may not have been the case if the reduction in the initial contact angle increased 

𝐸𝑤cr beyond the threshold for contact angle saturation. 

The frame rate used in this investigation (40 𝑓𝑝𝑠) was well below the 5000 𝑓𝑝𝑠 

used by Lee et al. to characterize the dynamics and maximum height of electrowetting-

induced droplet detachment.56 However, results presented here suggest that the wetting 

dynamics are likely similar on CRF and IJP devices since full detachment was observed at 

the predicted electrowetting number on both device types. 

 
 

Figure 6.3 A single-electrode printed device used for droplet ejection.37 

 



86 

 

 

6.4 Summary 

Minimizing the cost of DMF devices is critical for their future development as POC 

diagnostic tools. The inkjet printing process examined here is a low-cost alternative to 

traditional cleanroom electrode fabrication. This investigation characterized the roughness 

 
 

Figure 6.4 Successful ejection of a 5 𝜇𝐿 droplet from an CRF and IJP device.37 
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of printed electrodes and found there was a minimal impact on the hydrophobicity of the 

final coated surface despite the increased roughness. The experimental results presented 

also demonstrate that electrowetting-induced droplet ejection is possible on printed 

electrodes and can be predicted using a simple adhesion work model. The success here is 

promising for the future development of low-cost 3D DMF systems using this inkjet 

printing fabrication process. 
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7.0 Concluding Remarks 

7.1 Summary 

Digital microfluidic (DMF) devices are well suited for biological testing 

applications because they are automatable, reconfigurable, and can process a wide range 

of samples. Traditional 2D DMF devices have been used to perform chemical synthesis, 

particle filtration, immunoassays, and a variety of other biological protocols. However, 

cross-contamination is an ever present concern as droplets of biological reagents are 

processed. Newer 3D DMF devices can reduce cross contamination and improve testing 

sensitivity by routing droplets such that they never cross paths. These 3D systems leverage 

the first milliseconds of the electrowetting response in order to eject and transfer droplets 

between opposing substrates.  

Understanding electrowetting-induced droplet ejection is critical for the future 

design and optimization of 3D DMF devices. Here, an analytical model for droplet ejection 

was developed that predicts the minimum electrowetting number necessary for successful 

detachment. This model expanded previous models of adhesion work and free interfacial 

energy changes throughout detachment by also accounting for gravitational potential 

energy changes. By approximating the droplet’s maximally spread profile with its actuated 

steady-state profile, the ejection threshold can be predicted based on properties of the 

device and droplet known prior to experimentation. While the impact of gravitational force 

on droplet shape is generally neglected in DMF applications, gravitational potential energy 

changes throughout detachment were found to have a significant impact on the predicted 

threshold. As droplet size increased, this impact was greater. Droplet ejection experiments 
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confirmed that ejection thresholds were more accurately predicted by the newly developed 

interfacial plus gravitational potential energies model than previous models. 

Optimizing the design of the ejection electrodes used can allow a target 

electrowetting number to be achieved at a lower input voltage. While a wired configuration 

allows for the lowest input voltage, such a design is not practical for real-world 

applications. In a coplanar electrode design, the input voltage is divided between dielectric 

material over active electrodes covered by a droplet and dielectric material over reference 

electrodes covered by a droplet. The area factor efficiency (𝜂A) can be used to quantify 

how effectively an input voltage is applied to the entire droplet area in a given position. An 

ideal design will minimize dead space and allow a droplet cover active and reference 

electrodes equally. The different radially symmetric electrode designs examined here had 

close area factor efficiencies with the exception of the four-part design with 200 𝜇𝑚 

spacing (CRF4-200). However, ejection was possible with all designs at similar voltages 

despite the ~25% dead space droplets covered on CRF4-200 devices. Recalculating the 

effective electrowetting number at only the contact line found the difference in the 

perimeter factor efficiency (𝜂P) was much smaller. The experimental results suggest this 

contact line electrowetting number model is more appropriate for predicting the necessary 

threshold voltage, especially in cases with more sizable gaps between electrodes. 

Reducing device fabrication costs will also be critical for the development of 3D 

DMF technology in point-of-care diagnostic applications. Inkjet printing is a promising 

low-cost alternative to traditional cleanroom fabrication that has been used to produce 2D 

DMF devices with features 200 𝜇𝑚 and smaller. Here, an inexpensive commercial desktop 

inkjet printer (~$120 USD) was used to create single-electrode devices. Droplets were 
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successfully ejected in a wired configuration, demonstrating the feasibility of low-cost 3D 

DMF devices as well. The successful coplanar ejection on the CRF4-200 design suggests 

more practical coplanar electrodes can also be printed and used to eject droplets. 

 

7.2 Contributions 

All work detailed here was performed with the intent of improving the current 

physical understanding of electrowetting-induced droplet ejection. The droplet ejection 

operation in DMF devices allows for 3D control that can minimize cross-contamination 

between reagents used and can approximately double the working area within a single 

device. As 3D DMF devices are developed for practical applications, a thorough 

understanding of ejection will be critical for designing functional and efficient systems. 

In the first investigation presented (Chapter 4), a new analytical model for droplet 

ejection was developed that accounted for changes in gravitational potential energy and 

free interfacial energy throughout detachment. While gravitational potential energy 

changes were not considered in previous models, it was shown here analytically and 

experimentally that these changes have a significant impact on the energy barrier for 

detachment. This new model was able to predict critical electrowetting numbers for 

ejection more accurately than previous models. When designing future 3D DMF systems, 

this model can be used to predict the minimum electrowetting number a device must be 

able to achieve to ensure droplet ejection is possible. It was also demonstrated here that the 

radially symmetric electrode design used could achieve droplet ejection in air using single 

pulses rather than a double pulse signal. Incorporating a similar radially symmetric design 
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into a 3D DMF system at ejection sites could reduce the necessary complexity of the 

actuation system.  

The subsequent investigation (Chapter 5) examined variations of the initial 

coplanar electrode design that had different electrode spacings and numbers of ejection pad 

segments. A numerical image processing technique was used to quantify droplet coverage 

prior to experimentation to predict performance on each design based on its area factor 

(𝛼A). The process used can readily be extended to analyze new designs as well. Analysis 

showed that small offsets on the radially symmetric designs did not significantly impact 

predicted performance. Droplets moving in 3D systems will always have a degree of 

imprecision, and it is useful to know what magnitude of offset can be tolerated. 

Experiments demonstrated that ejection was possible from designs with up to 200 𝜇𝑚 

spacing, indicating that the area factor can underpredict performance in some cases. A new 

model of contact line electrowetting and reanalysis of the designs used suggested that a 

critical electrowetting number at the droplet contact line is necessary for ejection rather 

than a critical electrowetting number over the entire droplet area. How effectively a design 

distributes an input voltage to the contact line can be characterized by the new perimeter 

factor (𝛼P) developed here. This perimeter factor can be used to predict performance of 

new electrode designs. As future 3D DMF systems are developed, knowledge of how 

electrode layout and droplet positioning affect the perimeter factor can be leveraged to 

enable more efficient droplet ejection. Higher efficiency allows for ejection to be achieved 

at lower voltages and can reduce constraints on the actuation system necessary for device 

operation. 
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In the final investigation presented (Chapter 6), an inkjet-printing process was used 

to create single-electrode DMF devices. The first reported droplet ejection from inkjet-

printed electrodes was then achieved. The electrode fabrication technique used here was 

significantly less costly than traditional electrode fabrication in a cleanroom environment. 

Cleanroom accessibility can act as a barrier to entry for new research laboratories interested 

in studying droplet ejection. The success here demonstrates that this more accessible 

processes can also be used to create devices and examine droplet ejection. Low-cost 

alternative processes typically sacrifice feature resolution for cost. In the previous 

investigation coplanar ejection was achieved using a design with 200 𝜇𝑚 spacing. This 

resolution was achievable using the printing system here. The wired droplet ejection from 

printed devices in conjunction with the coplanar ejection from cleanroom devices with 

200 𝜇𝑚 spacing suggest that coplanar ejection from printed devices is also feasible. In 

practice, that would mean complete 3D DMF systems could be fabricated using this low-

cost system. This would make prototyping and studying new 3D systems more widely 

accessible and would help minimize diagnostic testing costs as printed devices are 

eventually developed for specific biological applications. 

 

7.3 Future Work 

Findings from the investigations performed here lend themselves to several avenues 

of further research and exploration into electrowetting-induced droplet ejection. A model 

for the changes in interfacial and gravitational potential energies throughout detachment 

was developed in Chapter 4 and showed that the potential energy contribution was 

significant. This was confirmed experimentally by ejecting droplets upward off of devices. 
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However, droplets in a 3D DMF device can be transferred between the bottom and top 

surface in either direction. The developed model suggests that the threshold ejection 

voltage will be lower when ejecting a droplet downward, but this was not confirmed 

experimentally. Additional experiments investigating thresholds for the case of inverted 

ejection could further validated the model. The model developed here also implies that 

actuation at electrowetting numbers beyond the predicted threshold will result in excess 

energy when reaching the detached state. Previous ejection experiments have found that 

actuation beyond the threshold causes droplets to be ejected higher into the air.56 The model 

proposed here could theoretically be rewritten to predict an ejection height for a given 

droplet volume and electrowetting number. Ejection experiments like those done here 

could be repeated to measure heights at different electrowetting numbers and validate the 

model, but this would require a high frame rate to ensure a droplet is observed at its apex. 

A model for ejection height would be beneficial for determining the voltage capabilities 

and substrate spacings necessary in complete 3D DMF systems. 

Based on the successful coplanar ejection in Chapter 5 from CRF devices with 

printable electrode geometries, ejection from coplanar IJP devices seems feasible. The 

experiments in Chapter 6 demonstrated that single-electrode IJP devices were capable of 

droplet ejection in a wired configuration. These IJP electrodes could next be used to 

construct a proof-of-concept 3D DMF device where ejection is performed using an inserted 

wire to move a droplet between two devices. However, such a device would have limited 

practical applications. The more significant next step would be to print coplanar electrodes 

and then use them to perform electrowetting-induced droplet ejection. This would more 
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strongly demonstrate the feasibility of low-cost 3D DMF devices and further pave the way 

for more accessible 3D DMF devices in the future. 

The ejection threshold model developed in Chapter 4 and the electrode geometry 

considerations examined in Chapter 5 can both be used to inform the development of future 

3D DMF devices. One potential future application in particular is cell culturing. The 

traditional 2D DMF platform is already an attractive fluid handling option for cell culturing 

applications since it can reduce the need for manual processing or expensive robotic 

systems.16 Devices have previously been used to seed, treat, detach, and sort cells. With 

the added functionality of droplet ejection, the 3D DMF platform could serve as an 

automated chemical delivery system. Such a system would consist of an open DMF plate 

positioned over a large culture dish or a microwell plate loaded with a number of smaller 

samples (Fig. 7.1). Droplets could then be positioned over precise regions or wells and 

ejected downward to deliver the loaded chemicals. Sequences of different droplet types 

could be delivered as necessary for a particular protocol. As with previous DMF devices, 

multiple droplets could be manipulated simultaneously to reduce processing times. 

However, this 3D system would also not need to interface directly with the cell culture and 

would not risk exposing cells to electric fields or heating in the event of device failure.16 
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Figure 7.1 Diagram of a proposed 3D DMF droplet delivery system for cell culturing 

applications. 
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