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Abstract 
 

The advanced development in autonomous agents like self-driving cars can be 

attributed to computer vision, a branch of artificial intelligence that enables software to 

understand the content of image and video. These autonomous agents require a three-

dimensional modelling of its surrounding in order to operate reliably in the real-world. 

Despite the significant progress of 2D object detectors, they have a critical limitation in 

location sensitive applications as they do not provide accurate physical information of 

objects in 3D space. 3D object detection is a promising topic that can provide relevant 

solutions which could improve existing 2D based applications. Due to the 

advancements in deep learning methods and relevant datasets, the task of 3D scene 

understanding has evolved greatly in the past few years. 3D object detection and 

localization are crucial in autonomous driving tasks such as obstacle avoidance, path 

planning and motion control. Traditionally, there have been successful methods towards 3D 

object detection but they rely on highly expensive 3D LiDAR sensors for accurate depth 

information. On the other hand, 3D object detection from single monocular images is 

inexpensive but lacks in accuracy. The primary reason for such a disparity in performance 

is that the monocular image-based methods attempt at inferring 3D information from 2D 

images. In this work, we try to bridge the performance gap observed in single image input 

by introducing different mapping strategies between the 2D image data and its 

corresponding 3D representation and use it to perform object detection in 3D. The 

performance of the proposed method is evaluated on the popular KITTI 3D object detection 

benchmark dataset.  
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Chapter 1  

 
Introduction 

 
 

 
 

1.1     Introduction 
 

An autonomous intelligent agent requires an accurate perception of its environment in order 

to operate reliably. A typical framework of an autonomous system consists of environment 

perception, self-localization, mapping, path planning and control. The perception system 

of an autonomous vehicle (AV) converts sensory information into semantic data such as to 

identify road agents like vehicles, pedestrians, cyclists etc. Object detection constitutes an 

important function of the perception system. There has been a lot of work in object 

detection with most of them using 2D detection methods. The 2D object detection has 

shown great progress however, the task of 3D object detection (3DOD) has been a difficult 

challenge. The 2D methods detect objects on the image plane lacking depth information of 

the scene which is important for tasks such as object perception and localization. The 

3DOD on the other hand introduces a third dimension revealing the depth information 

which further helps in determining the object size and position in 3D space. 

The 3DOD methods use a wide variety of artificial sensors for the task of perception. 

The most commonly used are passive sensors such as monocular, stereo cameras and active 

sensors such as LiDAR. The monocular cameras are readily available and inexpensive 

sensors. They provide scene information in the form of pixel intensities revealing the 

texture and shape properties. One disadvantage of monocular camera is that they lack depth 

information which is vital for object size and position inference. A stereo camera 

configuration could be used to recover the depth channel information using more 
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computationally expensive procedures. The LiDAR sensors emit laser beams and calculate 

the time difference to reach the obstacle and back. With the help of the time difference, the 

distance and position of the obstacle is determined and stored in a 3D form called as a point 

cloud. This point cloud representation is sparse with samples not uniformly distributed. 

Although LiDAR sensors provide precise depth measurements, they are expensive and 

constitute a large equipment.  

 

 

Figure 1.1:  Basic difference between a 2D and a 3D bounding box [23] 

 

Due to the availability of fully annotated and synchronized 3D LiDAR-camera datasets 

such as KITTI [15], nuScenes [17] and Waymo Open Dataset [16], the research for 3DOD 

has shifted more towards data driven deep learning techniques. The 3DOD methods could 

be divided into two categories- monocular image and point cloud-based methods. The 

monocular image-based approach uses only a single RGB image to predict a 3D bounding 

box. In monocular images, there is no availability of depth information. Hence, most 

approaches first predict 2D bounding boxes and then infer 3D bounding boxes using 

geometrical constraints [2], neural networks [1] or 3D model matching [3], [4] methods. 
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Most of the monocular methods only predict objects from a front facing camera ignoring 

those on the side and the rear. The main drawback of the monocular methods is they lack 

depth channel, limiting the object detection accuracy especially for faraway or occluded 

objects. Wang et al. [39] in their work try to address this drawback by using a 

Convolutional Neural Network (CNN) [5] architecture to predict the dense depth maps of 

the monocular images prior to regressing the 3D object bounding box. 

The point cloud-based methods for 3DOD could be divided into two subcategories- 

projection and volumetric convolution methods. The projection methods transform the 3D 

point cloud representations into 2D images via plane [6], spherical [7] or bird eye view 

(BEV) [8], [9], [10] projections. A standard 2D object detection model is used to process 

the 2D projection images and a 3D bounding box is predicted using position and dimension 

regression. The volumetric methods assume the objects to be present in a fixed size voxels 

or 3D grids [11], [12] and transform the raw point clouds into volumetric structures. As the 

data is in 3D, the volumetric methods require computationally expensive 3D convolutions. 

The projection category among the point cloud methods is more popular due to its 

propinquity to image object detection models. Also, it offers better trade-off between time 

complexity and object detection performance. 

The point clouds do not provide any texture information while monocular images do not 

capture depth information. In order to improve the performance, some methods [13], [14] 

use fusion of point clouds and image modalities using different fusion schemes. Due to the 

combination of different sensor modalities, these methods achieve state of the art results. 

They exploit accurate depth information obtained from sparse LiDAR and texture 

information from monocular images to enhance the 3DOD performance. Although, the 3D 

sensor-based methods show promising results, they are expensive, significantly increasing 

the overall manufacturing cost. Hence, a need to develop accurate 3DOD detection 

methods that rely only on inexpensive sensors such as a single monocular camera is highly 

practical. 
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1.2     Motivation 
 

Given an image, the task of an object detector involves localization of all the object 

instances in the scene and determining the bounding boxes of a certain class. Object 

detection is widely used in many applications including robotics, augmented reality and 

autonomous driving. Recently, due to the advancements in deep learning methods and 

relevant datasets, 2D object detection, classification and semantic segmentation solutions 

have greatly improved. Despite the significant progress achieved by 2D object detection 

methods, the 3D understanding of the real-world objects is still an open problem. The 3D 

based systems are more complicated as compared to the 2D systems mainly due to the 

convoluted representation of 3D data. The 3D data of the scene is represented using point 

clouds, volumes, meshes as compared to pixel grid representation of 2D images. The 2D 

detection methods have a limitation in applications such as autonomous driving and robot 

manipulation which are location sensitive and require physically accurate information of 

objects in 3D space. 

 Successful modern 3DOD methods heavily rely on highly expensive 3D sensors such 

as LiDAR and depth cameras which provide 3D information of the entire scene. Major 

disadvantages of 3D sensor-based methods are- (1) calibration process required for 

LiDAR-camera synchronization; (2) expensive LiDAR equipment; (3) limited working 

range of depth cameras. On the contrary, a single camera is much cheaper and can capture 

the scene up to 80 meters. Although, there has been some research on monocular 3DOD 

[1], [18], [19], the performance of monocular methods is drastically low as compared to 

the LiDAR based methods. This makes monocular 3DOD an unsolved problem with a 

scope of improvement especially in terms of accuracy. 

 There are state of the art 3DOD methods [8], [10], [25] which project the 3D point cloud 

data into its corresponding 2D BEV image representation as an intermediate step before 

feeding them to an object detection network. The accuracy of these methods depends on 
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the quality of the generated BEV images. Generative Adversarial Networks (GANs) have 

become very popular recently in image-to-image translation tasks. Hence, by leveraging 

GANs, a monocular RGB image to BEV image translation would be possible. The quality 

of training data affects the final performance of a GAN network. This thesis aims at 

developing better training strategies for the GAN network for a better BEV image inference 

given a single monocular image. By enhancing the quality of the generated BEV images, 

the 3DOD accuracy would be boosted. The performance of our method is evaluated using 

KITTI 3D object detection benchmark dataset [15]. 

 

1.3     Contributions 
 

The principal contributions of this thesis research are outlined as below: 

• Examine 3D object detection methods that predict bounding boxes based on point 

cloud BEV image projection of the monocular RGB image.  

• Introduce a novel method to predict a BEV image given a monocular RGB image 

as input using a GAN based network. 

• Compare the effect of using dense versus sparse BEV image projection on the 

performance of a GAN based network 

• Compare and evaluate the effect of using dense versus sparse BEV image 

projection on the 3DOD performance.  

• Analyze and compare the proposed method with other monocular image-based 3D 

object detection methods.   

 

1.4     Document Structure 
 

Chapter 2 discusses the related work on 3DOD along with a background on Convolutional 

Neural Networks, Generative Adversarial Networks and an object detection network. It 

also provides an overview of different sensor modalities used in 3DOD such as LiDAR 
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and its data representation like Pseudo-LiDAR. Chapter 3 will discuss the methodology, 

that includes the RGB image-to-BEV translation network along with the training data 

preprocessing and the 3D object detection network used for the experimentation. Chapter 

4 outlines the training dataset, the hyperparameters used along with the implementation 

details. Chapter 5 will analyze the qualitative and quantitative results from 

experimentations on the proposed 3DOD method. Chapter 6 will summarize with a 

conclusion giving directions for future work. 
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Chapter 2 
    

Background 
 
 

 

 

2.1     Convolutional Neural Networks 
 

The Convolutional Neural Networks (CNN) are deep learning algorithms that take an 

image as an input and learn appropriate features of the image using different operations for 

the required learning task. The CNN architecture is inspired by the connectivity pattern of 

the neurons in the human brain. It consists of a convolutional layer, pooling layer, 

activation layer and a fully connected layer. The role of convolutional layer is to extract 

the high level and low-level features such as edges, color, gradient from the image. The 

element responsible for the convolutional operation is called as the filter. There are 

multiple filters which slide with a predefined stride and apply convolution on every region 

of the image. 

The pooling layer is responsible for reducing the spatial size of the convolved features 

of the input image. This dimensionality reduction helps in reducing the computational 

power required to process the image data. The pooling operation also helps in training of 

the model by extracting dominant features which are rotational and positional invariant. 

There are two types of popularly used pooling methods namely max pooling and average 

pooling. The max pooling returns the maximum value while the average pooling returns 

the average value of the image region covered by the filter. The activation function is 

applied at the end of the convolutional layer. It is used to output a non-linear transformation 

of the input signal. The output of the last convolutional or pooling layer is flattened and 
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fed to a fully connected layer. The fully connected layer does a non-linear combination of 

all the features and transforms them into an n-dimensional representation. 

 

 

 

Figure 2.1: Sample architecture of a Convolutional Neural Network [21] 

 

2.1.1     Generative Adversarial Networks 
 

 

Generative Adversarial Networks or GANs, are generative models based on deep learning 

methods such as CNN. They were first introduced by GoodFellow et. al. [22] in 2014. 

Generative modelling is an unsupervised learning task which involves learning the patterns 

in the input data in such a way that the model could generate new samples that could 

plausibly represent those drawn from the original dataset. The GAN model architecture 

consists of two CNNs namely a generator model and a discriminator model. The role of 

the generator model is to generate new plausible examples from the problem domain while 

the discriminator is responsible to classify whether the generated examples are real or fake. 

The generator model takes in a random vector of a fixed length as input and generates a 

sample in the domain. The discriminator takes a sample from the domain created by the 

generator and outputs a binary class label as real or fake. Both the generator and the 
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discriminator models are trained together in a zero-sum game or in an adversarial way. The 

discriminator is updated in order to get better at discriminating between real and fake 

samples while the generator is updated based on how well its generated samples fool the 

discriminator. Some compelling application of GANs include image-to-image translation, 

generating super resolution images, generating realistic faces even though the face does 

not belong to any real person. 

 

 

 

Figure 2.2: Sample architecture of a Generative Adversarial Network [24] 

 

 

2.1.2 CenterNet: Objects as Points 
 

There are two types of approaches used to regress bounding boxes around an object in 

anchor free object detection namely the center-based approach and the keypoint based 

approach. The center-based approach [28], [29] uses the object center or any object point 

to define positive and negative samples. From the predicted positive samples, the distance 

to the four bounding box coordinates is regressed. On the contrary, the keypoint based 

approach [26], [27] first predicts the predefined key points from the network which are 
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then used for the task of object detection. Objects as Points [30] also called as CenterNet 

is an object detection method which follows the keypoint based approach. In this, the center 

of the box is considered as an object as well as a keypoint and from the predicted box 

center, the object bounding box features are estimated. 

 

 

Figure 2.3: CenterNet model workflow. [33] 

 

Figure 2.3 proposes the workflow of the method. The input image is passed through a 

CNN feature extractor such as ResNet [31] or a Deep layer Aggregation Network [32] to 

deduce feature maps which are further down sampled using a predefined stride. For every 

forward pass through the network, three heads are predicted namely the heatmap head, 

dimension head and the offset head. The heatmap head is used for the estimation of the box 

center (keypoint) for a particular class. This is achieved with the help of a heatmap variant 

focal loss. The heatmap head keypoint connects the dimension and the offset head for 

bounding box prediction. The dimension head predicts the dimension of the bounding box 



12  

viz. height and width. The box dimensions are regressed using a standard L1-norm loss of 

the ground truth and the predicted width and height.  The offset head is used to recover any 

discretization error introduced due to the down sampling of input features. It predicts the 

offset observed between the box center coordinates in a high-resolution image and that 

predicted in a low-resolution feature map. A standard L1-norm loss function is used to 

solve for the predicted and ground truth offset values. 

 

2.1.3  PSMNet 

 
 

 

 

 

Figure 2.4: Architecture overview of PSMNet [43] 

 

Chang et al. propose a pyramid stereo matching network (PSMNet) [43] for the task of 

depth estimation from stereo images. Figure 2.4 denotes the PSMNet architecture. The 

network takes left and right stereo images as input and predicts feature maps using a CNN 

based module. The feature maps are then provided to a spatial pyramid pooling (SPP) 

module which extracts hierarchical context information and learns the relationship between 

different object features and their subregions. The SPP module involves and concatenates 

different levels of features to achieve stereo matching. The SPP feature maps generated 

from the left and right images are then connected across each disparity level resulting in a 
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4D cost volume (height × width × disparity × feature size).  

 The 3D CNN module facilitates the cost volume regularization using a stacked hourglass 

(encoder-decoder) based architecture. It has three main hourglass networks having three 

outputs each of which generates a disparity map. All the hourglass networks are trained 

using a smooth L1 loss and the total loss is calculated as the weighted summation of all the 

three losses. The final disparity map is the output from the last network. 

 

2.2     LiDAR and its Data Representation 
 

LiDAR or light detection and ranging is a remote sensing method which collects 

measurements used to create 3D models of the objects and their surrounding environment. 

The LiDAR uses light energy to gauge the spatial relationships and shapes of the objects 

by measuring the time taken by the signal to bounce off an object and return to the scanner. 

The data provided by the LiDAR is rich in-depth information but lacks in texture and color 

information. 

 Point clouds are dynamic information storage technology which can handle and 

manipulate large spatial data for varying downstream tasks. Once the LiDAR readings are 

measured and processed, they are stored in the form of 3D point clouds. The 3D point 

clouds are a large collection of 3D coordinates, which include x, y, z along with additional 

attributes such as reflectance values. Unlike image data representation, the 3D point cloud 

is sparse and unbounded. 

 
 

2.2.1  Pseudo-LiDAR 
 

Depth estimation is the task of estimating the scene depth using monocular or stereo 

images. In this, the per pixel depth value of the image is derived using stereo vision, 

geometry or deep learning methods. Wang et. al. [39] introduced the concept of Pseudo-
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LiDAR, where the pixelwise image depth information is lifted to a 3D point cloud 

representation, mimicking the original 3D LiDAR point clouds. 

Given a disparity map 𝑌 of stereo images, the depth map 𝐷 is derived using the 

transform as shown in (1). 

 

D(u, v)  =
fu ∗ b

Y (u, v)
 

 

(1) 

 

where, fu is the horizontal focal length and 𝑏 is the baseline (horizontal offset) of the pair 

of cameras. Using depth information D, the 3D coordinates (x, y, z) of every image pixel 

(u, v) is derived in camera coordinates using the following transforms in (2), (3), and (4). 

 

 z =  D(u, v) (2) 

 

x =  
(u − cu)∗z

fu
 

 

(3) 

 

y =
(v –  cv )∗z

fv
 

 

(4) 

 

where, fv represents the vertical focal length and (cu, cv) is the pixel location 

corresponding to the camera centre. In addition to depth, the original LiDAR also provides 

the reflectance value. As there is no such information in Pseudo-LiDAR, the reflectance 

value is set to 1.0 for every pseudo-LiDAR points.  
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Pseudo-LiDAR++ [40] is an extension of Pseudo-LiDAR where the scene depth is 

updated by correcting the predicted depth values with a low-cost yet accurate sparse (4 

beams) LiDAR. It proposes a graph-based depth correction (GDC) algorithm that 

effectively combines the stereo depth and the sparse LiDAR measurements to get a 

corrected dense depth map. The GDC uses a weighted K-nearest-neighbor (KNN) 

approach to connect and correct each 3D point with the value of its nearest neighbors. To 

construct the KNN graph, the weight matrix is chosen as coefficients that reconstruct the 

depth of any point from the corrected depth to its neighbors. For the points which have 

corresponding LiDAR measurements, the depth values are updated to the ground truth 

values. The remaining depth points are updated based on the learned weight matrix and the 

ground truth depth points. Eventually, all the depth points are corrected as the depth 

correction propagates across the entire graph. 

 

2.3     3D Object Detection Methods 
 

Accurate and robust object detection in 3D plays an indispensable role in robotics and 

computer vision. Recently, due to the emergence of CNNs and large annotated image 

datasets, object detection research has progressively moved towards feature learning 

approaches thereby producing robust representation of the objects. The 3DOD methods 

could be broadly divided into three categories namely monocular image, 3D point cloud 

and fusion based methods. 

Since, monocular image methods do not have any depth information, most approaches 

first detect 2D candidates and then predict a 3D bounding box over the object using 

geometric constraints [2] or CNNs [1]. Mono3D [1] introduces a region proposal algorithm 

based on semantics, context, shape features and location priors. These features are 

computed and scored for any given proposal using an energy model. The proposals are 

generated using an exhaustive search in the 3D space and further filtration using non-
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maxima suppression techniques. Mono3D is an extension to the authors previous work 

3DOP [34] which uses depth images to generate proposals in a similar framework. Deep 

MANTA [4] in their work use a many task network to predict vehicle position, localization 

and shape using only monocular images. The vehicle shape consists of a set of keypoints 

which characterize the 3D dimensional vertices of the vehicle. Initially, a 2D bounding box 

is regressed using a two-level region proposal network. Using the inferred 2D shape, the 

3D object pose is predicted using 3D model matching techniques. Most monocular methods 

rely on first learning region proposals and then 3D model matching and reprojection in the 

second stage for 3DOD.  

3D sensors such as LiDAR are naturally represented as 3D point clouds. Many 3D point 

cloud methods first project the 3D points into 2D images using plane [6], spherical [7] or 

BEV [8], [9], [10] projections before feeding them to a standard 2D object detection model. 

The availability of good datasets and state of the art architectures for 2D images have made 

the projection-based methods more popular. Li et. al. [35] uses a cylindrical projection of 

the 3D point clouds along with CNNs to predict 3D bounding boxes. The projection image 

has channels encoding the points height and distance from the 3D sensor. This image is fed 

as an input to a fully convolutional network which first down-samples and then uses 

transposed convolutional layers to up-sample the map to predict bounding boxes. Since 

there are many bounding box predictions, a non-max suppression is used to filter the 

overlapping predictions based on score and distance. 

BirdNet [8] uses a BEV image projection to generate the 3D proposals. It encodes the 

BEV image as height, intensity and density channels. They also propose a novel encoding 

that normalizes the density channel based on the type of LiDAR being used. The density 

normalization creates a uniform representation making the detection model generalize to 

LiDAR sensors with different specifications and number of beams. ComplexYOLO [10] 

also uses a BEV projection with three channels encoding the minimum, median and 

maximum height values of the points associated with a pixel. It introduces real time 
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operation capability using a YOLO [36] based architecture with extensions to predict the 

extra dimension and orientation angle. Its architecture is categorized as a single shot 

detector allowing ComplexYOLO to achieve a runtime of 50 fps, five times more efficient 

than comparable methods. BirdGAN [41] uses a GAN based approach towards generating 

a sparse BEV map given a monocular image as input. The method uses a mapping 

mechanism between an RGB image and its corresponding BEV projection to train a GAN 

based network. The network further uses existing 3DOD methods which utilize BEV 

projection for its bounding box estimation. BirdGAN requires only a single RGB image as 

input at test time and achieves high performance for nearby objects. But, one major 

disadvantage of their method is that they restrict the frontal distance by clipping the 

generated sparse BEV map to 25 meters, severely limiting the 3D detection to only objects 

which are close. 

The 3D point clouds consist of a variable number of sparse 3D points distributed over 

the space. Hence, it is not possible to incorporate their structure to standard feed forward 

CNNs which assume fixed input sizes. PointNet [37] introduced a method to handle these 

irregularities by using raw points as inputs to their network. The network takes segmented 

3D point clouds as input to perform object classification and part-segmentation. It performs 

pointwise transformation and feature extraction using fully connected and max pooling 

layers. PointNet++ [38] is an extension to PointNet and outperforms it by encoding more 

complex features at every layer of its model architecture. 

MV3D [13] introduces different fusion strategies of camera and LiDAR modalities in 

order to improve the 3DOD performance. They propose three types of fusion strategies 

namely early fusion, late fusion and deep fusion. In early fusion, the modalities are 

combined initially creating a new representation which is dependent on all the participating 

modalities. The late fusion scheme processes the modalities separately and independently 

until the last process, where fusion occurs. In deep fusion scheme, the modalities are mixed 

hierarchically in CNN layers such that their features interact over the layers to produce 
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more general fusion scheme. MV3D combines the RGB image of the camera along with 

the BEV and front view projection of the LiDAR points for its prediction. The authors 

conclude that the deep fusion scheme obtains the best performance due to hierarchical 

feature aggregation from different modalities. AVOD [14] uses a similar input 

representation as MV3D except that only BEV projection and camera RGB image are used. 

They propose an early fusion scheme to merge the feature maps obtained from both the 

modalities to achieve a high proposal recall from their region proposal network. 

Wang et. al. [39] introduced the concept of Pseudo-LiDAR, where initially the depth of 

a monocular image is estimated and later is converted into 3D dense point clouds 

mimicking the original LiDAR point cloud representation. The Pseudo-LiDAR 

representation is used instead with any 3D point cloud-based method to achieve comparable 

results. Some methods [19] often treat image depth as a fourth channel, Pseudo-LiDAR 

uses it to lift 2D image pixel to its 3D coordinates. Pseudo-LiDAR++ [40] is an extension 

to Pseudo-LiDAR in which the generated pseudo-LiDAR is corrected using sparse but 

accurate measurements from a low-cost LiDAR.
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Chapter 3 
    

Methodology 
 
 
 

 
 
 

3.1    Proposed Method Overview 
 

 

 

Figure 3.1: Overview of the proposed method. The training process of the network is 

enclosed in the green dash line box. The testing process is enclosed by the orange dash line 

box.  
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The proposed method could be divided into training and testing phases. For the training, a 

depth estimation network is used to predict the depth of a given pair of stereo RGB images. 

The predicted depth map is then corrected using a depth correction algorithm. The depth 

correction algorithm takes the predicted depth maps and with the help of the ground truth 

depth values obtained from a sparse 64-beam LiDAR corrects them. The corrected dense 

depth map is then lifted to its 3D point cloud representation using the pseudo-LiDAR 

method. This corrected dense 3D point cloud is then projected to a dense BEV image. The 

input RGB image and its corresponding dense BEV image consists of the image pair used 

to train the Image-to-BEV translation network. 

During testing, the Image-to-BEV translation network takes a single image as input and 

predicts its corresponding dense BEV projection. The predicted dense BEV image is then 

processed by a 3D object detection network which regresses the 3D bounding box 

parameters. The 3D object detection network consists of a 2D object detector architecture 

with additional object dimension and position regression. Figure 3.1 represents the 

overview of our proposed method.   

 

 

3.2     3D Point Cloud to BEV Image Projection 
 

The BEV image projection is obtained from a 3D point cloud representation and encodes 

three channels namely height, intensity and density. The LiDAR sensor scans the region of 

interest using laser beams and collects the 3D coordinates (x, y, z) and reflectivity (r) values 

for every laser pulse. The collection of the 3D coordinates and reflectivity values are stored 

in the form of 3D point clouds. The 3D point cloud representation is projected to a 2D BEV 

image of size N x N x 3. The 3D point clouds covering an area of 𝑥 ε [0, 50m], 

  y ε [−25m, 25m] and 𝑧 ε [−2m, 1.23m] in front of the LiDAR sensor are discretized and 

converted into 2D BEV images with a resolution 
50

N
 meters per pixel. The z value range is 

chosen considering the LiDAR z position to be 1.73m [44] above the ground level such 
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that it can cover a maximum height of 3m above the ground.  The three channels of the 

BEV image encode the height, intensity and density values [8].  

The height channel represents the maximum height value of the point clouds associated 

by the pixel, and is limited to 3 meters above the ground. The intensity channel encodes 

the mean reflectance intensity value of the points associated by the pixel. The last which is 

the density channel encodes the density of all the points associated by a pixel. It is 

computed by dividing the number of points present in a pixel with the maximum possible 

number of points. More the number of points associated by a pixel, higher is the density 

value of that particular pixel. Figure 3.2 shows an RGB image and its corresponding BEV 

image of size 256 x 256 encoding the height, intensity and density channels. The BEV 

image is discretized and projected from the 64-beam LiDAR sparse 3D point clouds by 

considering an area of 50m x 50m in front with a resolution of about 0.19 meters per pixel 

and a height of 3 meters above the ground. 

The task of translating the street view RGB image to its corresponding BEV projection 

is achieved using a GAN based architecture. The GAN based architectures are a popular 

choice in many image-to-image translation applications. The performance of a GAN is 

highly dependent on the quality of the training data. Hence, the BEV images used for 

training the GAN are first pre-processed, to remove the noise and include the relevant 

information, prior to training. 
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Figure 3.2: Street view RGB image (top) and corresponding BEV image features (below) 
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3.3  Dense BEV Image Generation 
 

 

 

 

Figure 3.3: Workflow of the generation of dense BEV images prior to training. The newly 

generated dense BEV images are used as ground truth for training the RGB image-to-BEV 

translation network.    

 

A 64-beam LiDAR produces sparsely distributed 3D point clouds. The generated points 

have accurate location coordinates, however, due to the sparse distribution some important 

details present in between two beams are lost. The BEV projection of a sparse 3D point 

cloud generates a sparse image with minimum information density in the object regions. 

On the other hand, by projecting a dense depth map of the image to a pseudo-LiDAR 3D 

point cloud representation, a dense BEV image is obtained. However, the pseudo-LiDAR 

point cloud accuracy highly depends on the accuracy of the depth prediction network. 
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For the task of generating ground truth BEV images, a stereo-pair of RGB images are 

first passed through a stereo depth estimation network PSMNet [43]. The PSMNet stands 

for pyramid stereo matching and consists of a Siamese network for stereo disparity 

estimation followed by 3D convolutions for outlier refinement. The estimated depth map 

consists of the per pixel depth value of the RGB image. By utilizing the depth values, the 

2D image (u, v) is lifted to its 3D coordinates (x, y, z) using the pseudo-LiDAR method. 

The newly transformed 3D point clouds have dense representation with size equal to the 

image dimensions. However, the point cloud values are not accurate due to the error 

introduced by the stereo depth estimation (PSMNet) network. 

The predicted dense depth map values are corrected using the graph-based depth 

correction (GDC) [40] algorithm. The GDC algorithm takes the predicted dense depth map 

and the sparse (64-beam) LiDAR ground truth depth map as input and uses a weighted 

KNN approach to correct the predicted dense depth values. In the GDC algorithm, initially 

every point of the predicted dense depth is connected to its K nearest neighbor using the 

KNN method. An edge weight matrix is then computed between every depth point and its 

neighbors by solving a linear matrix equation. The weight matrix is computed such that it 

could be used to reconstruct the depth of any point from the depth of its K neighbors. The 

depth points which have their corresponding LiDAR values are replaced by their ground 

truth depth values. Then by utilizing the pre-computed weight matrix and the ground truth 

replaced depth points, the entire dense depth map is corrected. By using the pseudo-LiDAR 

method, the corrected dense depth map is projected to its 3D coordinates to get a corrected 

dense 3D point cloud representation. A dense BEV image encoding the height, intensity 

and density channels is projected from the newly corrected dense point clouds. Figure 3.4 

denotes a sparse and a dense BEV projection of a sample image from the KITTI dataset 

[15]. The sparse BEV is projected from a 64-beam LiDAR based sparse 3D point cloud 

while the dense BEV is obtained from the GDC corrected depth estimated 3D point cloud. 

The newly generated dense BEV images are used as ground truth for training the RGB 
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image-to-BEV translation GAN based network. 

 

3.4  Image-to-BEV Translation Network 
 

The Image-to-BEV translation Network is based on the Pix2Pix [20] architecture. Pix2Pix 

is a GAN model designed for the task of image-to-image translation. The conditional GAN 

(cGAN) is an extension towards the GAN architecture that allows an image of a particular 

class to be generated. Our Image-to-BEV translation Network is an implementation of 

cGAN where the image generation is conditional on a given input image. In this, the 

generator model takes input an image and generates a translated version of that image. The 

discriminator model is given as input a pair of an image and its generator generated image 

or a translated real image and must determine whether the paired image is real or fake. The 

generator model is trained to fool the discriminator by generating plausible sample images. 

 

 

 

Figure 3.4: Sparse BEV (left) and dense BEV (right) image projection of a sample image 

(top) from the KITTI dataset. 
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The generator and discriminator models of the architecture use standard convolutional-

batch normalization-ReLU blocks of layers. Unlike a traditional GAN architecture, the 

generator model does not take a random point from latent space as input. Instead, it takes 

an image as input with the source of randomness coming from the use of dropout layers 

applied at several layers of the generator. The generator comprises of a U-net [54] style 

model architecture which involves an encoder down sampling the input image for a few 

layers until a bottleneck layer and then a decoder up sampling it to get the desired output 

size. In order to make the most of any low-level information shared between the input and 

the output layers, skip connections are added between layers of the same size of the encoder 

and the decoder. Figure 3.5 depicts the U-net generator model. In this, the first layer of the 

encoder is merged with the last layer of the decoder and both have the same sized feature 

maps. This is repeated for every encoder layer and its corresponding decoder layer, forming 

a U-shaped model. 

 

 

 

Figure 3.5: Framework of the image-to-BEV translation network (left) and U-net 

generator model having skip connections (right). 
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A traditional GAN discriminator model uses a CNN to classify the images, our image-

to-BEV translation discriminator uses a PatchGAN model. The PatchGAN is a CNN 

designed to classify patches of the input image as real or fake instead of the entire image. 

The output of the PatchGAN model is a single feature map of predictions which can be 

averaged to get a single score. From Pix2Pix, it is observed that a patch size of 70 x 70 is 

found to be the most effective for the image-to-image translation. Hence, our translation 

model uses a patch size of 70 x 70. The PatchGAN discriminator model is trained to 

minimize the negative likelihood of identifying real and fake images, conditioned on the 

source image. The discriminator loss is halved as the discriminator training is too fast as 

compared to the generator. The generator model is trained using both the L1 loss and the 

adversarial loss. The L1 loss regularizes the generator to obtain reasonable images which 

are translated from the source image. The adversarial loss controls whether the generated 

images are plausible in the target domain. Both the L1 loss and the adversarial loss are 

combined into a composite cost function such as the contribution of the L1 loss to the 

adversarial loss is controlled by a hyperparameter lambda (ℒ). 

Generator Loss =  Adversarial Loss +  ℒ ∗  L1 Loss 

 

 

The image-to-BEV translation model must be trained on image datasets that constitute 

the input images and their translated target images. Hence, the RGB images along with 

their corresponding generated sparse/dense BEV images comprises the dataset for training 

the image-to-BEV translation network. 
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Figure 3.6: The image-to-BEV translation network predicts a sparse or a dense BEV 

representation of the given input street view RGB image.  

 

3.5     3D Object Detection 
 

We extend the CenterNet [30] architecture with a BEV image as input and use it as our 

3DOD framework. The model uses a keypoint based approach and considers the center of 

the object as the keypoint for connecting all the bounding box features. Figure 3.7 denotes 

the overall architecture of the 3DOD pipeline. The RGB image-to-BEV translation model 

takes a single RGB image as input and predicts its BEV representation. The BEV image is 

further encoded using a variant of ResNet [31] called as ResNet-50 based feature extractor. 

Similar to CenterNet, the ResNet-50 feature extractor is augmented with three up 

convolutional layers each having 256, 128, 64 channels respectively. It takes the BEV 

image of size 256 x 256 as input and down samples it by a stride (S) factor 4 to produce 

feature maps of size 64 x 64. 
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Figure 3.7: 3D object detection framework. 

 

In order to predict the 3D bounding box constrains, for every forward pass through the 

feature extractor, five heads (keypoints) are regressed. They constitute the object center 

heatmap, center offset, dimension, orientation and the z-coordinate head. The center 

heatmap is used for the estimation of the object center for each class and has dimensions 

64 x 64 x 3 (for classes = 3). To generate the ground truth center heatmaps for training and 

loss propagation, the object center is first converted to its low-resolution equivalent by 

dividing it by a stride 4 and then splat using gaussian kernels. If two gaussian kernels of 

the same class are overlapping, an element wise maximum is taken to decide the target 

class. All the values corresponding to the object center and its related 3D box features are 

first converted from camera to LiDAR coordinates in order to project them on BEV images. 

For the inference, a 3 x 3 max pooling operation is applied on the predicted center heatmaps 
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and only the top predictions whose confidence score is greater than 0.2 are kept.  

The center heatmap keypoint connects all the feature heads viz. center offset, dimension, 

orientation and the z-coordinate for an object belonging to a particular class. Due to the 

down sampling of the input image by stride 4, a discretization error is introduced at the 

object center coordinates. The center offset head is used to recover the discretization error 

of the predicted object centers. The keypoint coordinates are very position sensitive in 

keypoint estimation problems as all the bounding box features are related to it. Hence, the 

center offset head is added to adjust for any quantization errors and get more accurate 

results. The dimension of the center offset head is 64 x 64 x 2. 

The 3D bounding box dimensions such as the height, width and the length are regressed 

from the dimension head. The size of the dimension head is 64 x 64 x 3. The orientation 

head constitutes the sine and cosine value prediction of the yaw angle displacement of the 

object and has dimensions 64 x 64 x 2. The depth of the object or the z-coordinate of the 

center of the object is regressed using the z-coordinate head. The size of which is given as 

64 x 64 x 1. The object center heatmap uses a heatmap variant focal loss while the bounding 

box heads are regressed using a standard smooth L1 loss for the stabilized training of the 

network.  

 

3.5.1  Heatmap Variant Focal Loss  
 

The center keypoint heatmap is trained and propagated through the network using a variant 

of the focal loss [45] called as the heatmap variant focal loss. Focal loss helps to address 

the issue of the class imbalance problem. This issue is observed when information related 

to one class in the dataset overrepresents the other classes. The single stage object detectors 

produce a large amount of candidate targets out of which very few belong to the positive 

samples with rest being background targets. This introduces an imbalance during training 

with the loss of the negative samples overpowering that of the positive samples. The focal 
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loss addresses this issue and is given by the equation (5).  

 

FL(p) = {
−α(1 − p)γ log(p) , if y = 1

−(1 − α)pγ log(1 − p) ,   otherwise
 

 

(5) 

 

where p is the class probability of the anchor, α and γ are the hyperparameters with y = 1 

representing a positive sample and y = 0 representing a negative sample. The effect of loss 

due to the negative samples as compared to the positive samples is balanced by adjusting 

the terms (1 − α) and α. Greater the value of γ, more is the importance given to 

misclassified samples and hence less loss will be propagated by the well-classified samples.  

 

 

 

Figure 3.8: Effect of different γ value on the focal and the cross-entropy (CE) loss [47] 
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The heatmap variant focal loss helps to increase the number of positive samples and 

decrease the imbalance by considering the center heatmap values generated by the gaussian 

kernels. It is represented by the equation (6). 

 

Lk =  
−1 

N
 ∑ {

(1 − Ŷxyc)α log(Ŷxyc), if Yxyc = 1

(1 − Yxyc)
β

(Ŷxyc)α log(1 − Ŷxyc) , otherwise
xyc

 

 

(6) 

 

where α and β are the hyperparameters and are set to values 2 and 4 respectively. When 

Yxyc = 1 and the predicted Ŷxyc is close to 1, it considers a well classified sample and by 

the logic of focal loss the propagated loss is decreased. The same logic follows for 

misclassified samples when Yxyc = 1 and the propagated loss slope is increased by value 

α. When Yxyc! = 1 and Ŷxyc is close to 0, then (Ŷxyc)α will make the overall loss towards 

0 and less loss will be propagated. The center heatmap ground truths are gaussian kernels 

and hence there is no sudden drop in values close to Yxyc = 1. The values inside the 

gaussian outputs are considered candidate positives.  For example, if Ŷxyc is not near to 0 

and has a value close to 1 but in the vicinity of the peak of the ground truth heatmap, there 

will be less loss propagated, even in this condition of misclassification, due to term 

(1 − Yxyc)
β
. This is because Yxyc will be close to 1 in the region near the center peaks of 

the heatmap.  

 

3.5.2  Smooth L1 Loss 
 

The 3D bounding box features such as the box dimension, orientation and the z-coordinate 

value is regressed using a smooth L1 loss. It can be observed form Figure 3.9 that the 

smooth L1 loss grows linearly with error rather than squarely as observed in L1 loss. 
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Figure 3.9: Smooth L1 loss [46] 

 

Smooth L1 loss combines the advantages of both the L1 and the L2 loss with steady 

gradients for large error values and less oscillations to updates when error value is small. 

The smooth L1 loss is less sensitive to outliers than L2 loss. It is given by the equation in 

(7). 

 

L1;smooth = {
|x| if |x| >  α

1

α
x2 if |x| ≤  α

  
(7) 

 

where α is a hyperparameter and is set to a value 1. The smooth L1 loss behaves as L2 

when the absolute value of the error is close to zero and like L1 when it is very high.  
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Chapter 4 
    

Implementation 
 

 
 

4.1     Datasets 

 

4.1.1   KITTI Dataset  
 

The KITTI dataset [15] contains a suite of vision tasks such as 3D object detection, stereo, 

optical flow, visual odometry, etc. built using an autonomous driving platform. It consists 

of 6 hours of real-world road traffic scenarios recorded using different sensors. The KITTI 

3D object detection benchmark dataset has about 200k 3D object annotations for image 

data captured from four HD cameras as well as their corresponding point cloud data from 

a Velodyne 64-beam LiDAR. All the cameras, sensors and localization systems are 

calibrated and synchronized. Each image has a maximum of 15 cars and 30 pedestrians. 
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Figure 4.1: Sample image and 3D bounding boxes of the KITTI dataset 

 

For the 3D object detection, the data is split in 7481 training samples and 7581 testing 

samples. However, there are no ground truth labels available for the test split. Hence, in 

this the train test split followed by BirdNet [8] and other similar works is used. The training 

set is further split into a new training and validation set of 3712 and 3769 samples 

respectively. The evaluation is done on the validation set. Each annotation label is marked 

as easy, moderate and hard depending on the object occlusion, bounding box height and 

truncation. The annotations are provided in camera reference frame. Every object in the 

image is associated with a class and has 2D, 3D bounding box coordinates and yaw angle 

of orientation. Mainly there are 3 dominant object classes namely car, pedestrian and 

cyclists. Figure 4.1 shows a sample image from the dataset with 3D bounding boxes. 
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4.1.2  Scene Flow Dataset 
 

The Scene Flow dataset [48] is a synthetic dataset suite that consists of more than 39k stereo 

frames rendered from various sequences. It consists of three subsets namely 

FlyingThings3D, Monkaa and Driving. The Driving data includes street scenes from the 

viewpoint of the driving car. It consists of synthetically rendered car models, tree models 

and street lights representing a street view. Each of the subsets has data including RGB 

stereo images, object level segmentation, optical flow maps, disparity maps, disparity 

change maps along with the extrinsic and intrinsic camera data for each view of the stereo 

frame. 

 

 

 

Figure 4.2: Sample stereo images from Scene Flow driving dataset [18] 
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4.2     Evaluation Metric 
 

Intersection of Union (IoU) is a measure of the overlap between two boundaries of an 

object. It is used to calculate how much the predicted bounding box overlaps with the 

ground truth box. A predicted box is considered a true positive (TP) if its IoU exceeds a 

predefined threshold for a particular class category. Similarly, if the IoU is less than the 

threshold, the predicted box is considered a false positive (FP). A false negative (FN) 

occurs when the detector fails to predict an object that is present in the view. Figure 4.3 

visualizes the IoU calculation for the object detection.  

 

 

 

Figure 4.3: Visualization of the Intersection over Union (IoU) [49] 

 

Average precision (AP) is a popular metric used to evaluate the accuracy of object 

detectors. Precision measures how well the network is able to predict accurately. It is given 

by the ratio of TP and the total number of predicted positives.  
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Precision =  
TP

TP + FP
 

(8) 

Similarly, recall or sensitivity measures how efficient the network is to predict all the 

true positives. It is given by the ratio of the TP and the total ground truth positives. 

 

Recall =  
TP

TP + FN
 

 

(9) 

 

The AP is the weighted sum of precisions at each threshold where the weight is the 

increase in recall. When the network has a low precision but a high recall value, then it 

classifies most of the positive samples correctly but has a lot of false positives. On the other 

hand, if the network has a high precision but low recall, it accurately classifies a sample as 

positive but may classify only a few positive samples. A precision-recall curve shows a 

trade-off between precision and recall values for different thresholds. The AP is a way of 

finding the area under the precision-recall curve. The AP is calculated according to the 

equation (10). 

 

AP = ∑ [Recall(i) − Recall(i + 1)] ∗ Precision(i)

i=t−1

i=0

 

 

(10) 

 

where 𝑡 is the number of thresholds. In most cases the AP is calculated for each class 

and then averaged to get the mean average precision (mAP). In this work, the AP is 

calculated for the easy, moderate and hard object labels and then averaged to get the mAP 

values.  
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4.3     Implementation 
 

4.3.1  RGB Image-to-BEV Translation 
 

The RGB image-to-BEV translation GAN based network is trained end to end using the 

paired RGB image and its corresponding dense and sparse BEV representations. The dense 

BEV images are generated from the KITTI [15] 3D object detection training set consisting 

of 3712 samples. Initially, a PSMNet [43] disparity estimation model which is pretrained 

on the Scene Flow dataset and finetuned on 200 training pairs of the KITTI [15] stereo 

dataset is used to predict dense disparity maps of the training samples. The PSMNet model 

is trained for 300 epochs with the same strategy as done in Pseudo-LiDAR [39]. The 

estimated dense depths of the training samples are first converted into dense 3D point cloud 

representations and then corrected by the GDC [40] algorithm using the 64-beam LiDAR 

point clouds. 

The corrected dense 3D point clouds are then projected to 2D BEV images with the 

configuration as shown in Table 4.1. The RGB image-to-BEV translation network is 

trained in a similar strategy as done in the original Pix2Pix [20] paper. A 70 x 70 PatchGAN 

discriminator model is implemented with a binary cross entropy loss and optimized using 

the Adam optimizer. The generator model is updated using a weighted sum of the 

adversarial loss and the L1 loss. The weight hyperparameter lambda (ℒ) is set to 100 in 

favor of the L1 loss. The network is first trained on the RGB and dense BEV image pairs 

and then on the RGB and sparse BEV image pairs for 150 epochs with a batch size value 

set to 1.  
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Table 4.1: Configuration of point cloud to BEV image projection 

 

 Configuration Value 

Point cloud range 

(meters) 

Xmin 0 

Xmax 50 

Ymin -25 

Ymax 25 

Zmin -2 

Zmax 1.23 

BEV dimensions 

Height 256 

Width 256 

BEV resolution 

(meters) 

 
Xmax − Xmin

Height
 

 

0.19 

      

 

4.3.2  3D Object Detection 
 

All the 3DOD training dataset labels are converted to BEV image coordinates using the 

BEV image dimensions and resolution. The down-sampling layers of the ResNet-50 

backbone network are initialized with an ImageNet dataset pre-trained model and the up-

sampling layers are randomly initialized. The network uses a heatmap variant focal loss 

and a standard smooth L1 loss as discussed in section 3.2 for the training. The network is 

trained on the image-to-BEV predicted sparse/dense BEV images of the 3D object 
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detection training set. The network is trained for 120 epochs with a learning rate of 0.001 

and a batch size of 16. At inference, a 3 x 3 max pooling operation is applied on the 

predicted object center heatmap and only the top predictions with the confidence scores 

greater than 0.2 are kept while the rest are discarded. The implementation and training of 

the network is done using the Pytorch framework.  
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Chapter 5 
    

Results and Analysis 
 

 
 

5.1     Results 
 

The RGB image-to-BEV translation model is trained on the KITTI 3D object detection 

training split and then evaluated on the validation images. Figure 5.1 and Figure 5.2 

presents the qualitative results of the translation model on some images from the validation 

split when trained on two different types of training data. In the first case, the training data 

includes the RGB and dense BEV image pairs. For the second, the training consists of the 

RGB and the sparse BEV projection as ground truth data.  

In sparse BEV representations, as the distance of objects in the image increases the BEV 

image becomes extremely sparse making a GAN based model difficult to train. Hence, for 

the experimentation, the sparse BEV image data corresponding to points which are more 

than 20 meters are removed. This modified sparse BEV (20m) images along with their 

corresponding RGB images are used to train the translation model.  Figure 5.1 denotes the 

results reported when trained on dense BEV images. The dense BEV images are generated 

by considering objects which are 50m in the front view. Figure 5.2 denotes the results when 

the model is trained on sparse BEV images (20m).  
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Figure 5.1: Qualitative validation set results of the image-to-BEV translation model when 

trained on dense BEV (50m) images. 
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Figure 5.2: Qualitative validation set results of the image-to-BEV translation model when 

trained on sparse BEV (20m) images. The sparse BEV images are clipped to objects at a 

distance of 20m in the front view. 
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Looking at the results, it is evident that the translation model generates better images 

with object details when trained on dense BEV in comparison to the sparse BEV. This is 

because the dense BEV representation has a greater number of pixels encoding 

information/density of the input RGB image as compared to the sparse BEV. This helps 

the GAN based translation model to generate more plausible dense BEV images given an 

RGB image. In the case of sparse BEV, the performance of the translation model decreases 

significantly as the object distance increases. This is due to the fact that as the distance 

increases, the sparse BEV points become more and more scattered and scanty making it 

hard for the model to train and generate credible images.  

The 3DOD model is trained on both the dense (50m) and the sparse BEV (20m) images 

for only the ‘car’ category. The model is evaluated for the task of 3D object detection based 

on IoU and mAP scores. In this, the AP is first calculated for the easy, moderate and hard 

object labels and then averaged to get the mAP scores. Table 5.1 shows the result of the 

3D object detection task on the dense (50m) and sparse BEV (20m) representations on the 

KITTI validation set. The sparse BEV accuracy is reported by considering only the objects 

which are 20m in the front view. 

 

Table 5.1: Comparison of the 3DOD model when trained and evaluated on dense (50m) 

and sparse BEV (20m) for the ‘car’ object class. Results are shown on the KITTI 3D object 

detection validation set. 

 

Method Testing Modality 

mAP (%) 

IoU = 0.7 IoU = 0.5 

Image-to-Sparse BEV (20m)  Mono  3.93 17.73 

Image-to-Dense BEV (50m) Mono 8.34 29.11 
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It is observed from Table 5.1 that the dense BEV (50m) outperforms the sparse BEV (20m) 

in terms of accuracy for all the IoU thresholds (0.7, 0.5). When the model is trained on the 

predicted dense BEV (50m), there is an improvement of more than ~50% over sparse BEV 

(20m) for IoU = 0.7. Figure 5.3 and Figure 5.4 shows the qualitative results of the 3DOD 

model when trained and evaluated on the dense BEV (50m) and sparse BEV (20m) images 

respectively. From Figure 5.4 it can be inferred that although the sparse BEV image is 

clipped at 20 meters, the accuracy decreases significantly for objects which are more than 

15 meters away from the camera. 
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Figure 5.3: Qualitative results of the 3DOD model on the KITTI validation images when 

trained on the dense BEV (50m) predicted images. On the top are the RGB images and 

bottom are their BEV representations. Predicted boxes are in red and ground truth boxes are 

in green.  
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Figure 5.4: Qualitative results of the 3DOD model on the KITTI validation images when 

trained on the sparse BEV (20m) predicted images. On the top are the RGB images and 

bottom are their BEV representations. Predicted boxes are in red and ground truth boxes are 

in green.  
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Table 5.2 shows a comparison of the predicted dense BEV with other monocular image 

based 3DOD methods for the ‘car’ object class. The evaluation is performed for car objects 

which are 50 meters in front of the camera. 

 

Table 5.2: Comparison of the 3DOD model trained on the predicted dense BEV with other 

monocular 3DOD methods. Results are shown on the KITTI 3D object detection validation 

set on the ‘car’ category. The results are reported by considering objects which are within 

50m in front of the camera. 

 

Method Testing Modality Time (s) mAP (%) 

   IoU = 0.7 IoU = 0.5 

Mono3D [1] Mono 4.2 2.38 19.63 

Deep3DBox [2] Mono 2.7 4.19 19.67 

MonoGRNet [53] Mono 0.16 9.07 32.37 

Image-to-Dense BEV Mono 0.044 8.34 29.11 

 

 

From Table 5.2 it is evident that the 3DOD model trained on the predicted dense BEV 

performs better than the Mono3D [1] and Deep3DBox [2] methods for all the IoU 

thresholds (0.7, 0.5). Both the Mono3D and Deep3DBox methods first detect 2D boxes 

and use it as a prior information for 3D object detection. MonoGRNet [53] performs 

slightly better than the predicted dense BEV based model for both the bounding box IoU 

thresholds 0.7 and 0.5. This may be because MonoGRNet uses multiple subnetworks which 

includes depth estimation of the object instances in the monocular image prior to localizing 

the 3D bounding box. However, the 3DOD model trained on the predicted dense BEV 

images is fast with less inference time taken per image as compared to other methods. This 
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is due to the use of a simple CenterNet based anchor free object detector implemented on 

the predicted dense BEV images. 

 Figure 5.5 shows the qualitative comparison of the Deep3DBox [2] method and our 

3DOD model trained on dense BEV predicted images. The sample images are from the 

KITTI validation set. From the comparison, it is observed that the 3DOD model trained on 

the predicted dense BEV images has better bounding boxes aligned with the ground truth 

boxes than the Deep3DBox method. Also, the Deep3DBox method performs poorly for 

objects which are partially truncated or occluded. This is observed for cars which are very 

near to the camera or are partially hidden by another car or an object. The reason would be 

because the Deep3DBox method first detects a 2D bounding box over the object and then 

regresses a 3D bounding box from the detected 2D box coordinates.  

We also test our method on other similar datasets like Cityscapes [55] to determine its 

robustness. However, the image-to-dense BEV translation model is not able to generate 

plausible BEV images of the given RGB front view images especially in the object regions. 

Further, the 3D object detection model fails to generate 3D bounding boxes from these 

predicted dense BEV images. This may be because the testing images from the Cityscapes 

dataset are distinct from the training images of the KITTI dataset. Hence, it could be 

inferred that the GAN based image-to-dense BEV translation model generates plausible 

BEV images with object details only when trained on images from the same dataset.     
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Figure 5.5: Qualitative comparison of our 3DOD model trained on dense BEV predicted 

images (left) and the Deep3DBox [2] method (right). Predicted boxes are in red and ground 

truth boxes are in green. 
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Chapter 6 
    

Conclusions 
 

 

 

 

6.1     Conclusions and Future Work 
 

In this thesis, we introduced a method towards 3D object detection using 3D data 

representation while only using 2D monocular images at test time. We leveraged a GAN 

based architecture for mapping the 2D monocular image to its corresponding BEV 

representation. We demonstrated different training strategies for effective RGB image to 

BEV translation. We modify a CenterNet based object detection architecture to incorporate 

a BEV image as input and use it as our 3D object detection model. We compare the effects 

of different training strategies on the performance of the GAN based network and on our 

3D object detection model. The results indicate that by converting the sparse BEV to its 

dense BEV representation prior to training improves the overall performance of the 3D 

object detection. Finally, we compared the performance of our 3D object detection model 

trained on the GAN predicted dense BEV images with other monocular 3D object detection 

methods. We infer that it is possible to use existing 3D data to train a network such as to 

generate 3D information at test time using only monocular 2D images and get comparable 

results. 

This thesis research focused on introducing a general architecture for effective image to 

BEV translation and use it in a BEV based 3D object detection model. This architecture is 

scalable to be used as a plug-in module with any 3D object detection network which works 

on BEV images. Hence, the possible direction for future work would be to use the proposed 
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architecture with different state-of-the-art BEV based 3D object detection methods such as  

BirdNet [8], BirdNet+ [25] and MV3D [13]. This would further enhance the monocular 

based 3D object detection accuracy. Also, by increasing the resolution i.e., the point cloud  

range covered per pixel of the GAN predicted BEV images would further benefit the 3D 

object detection performance. This would be possible by leveraging a high-resolution 

generative network such as [52] to generate BEV images with higher dimensions such as 

512 x 512.   
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