
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

7-7-2021

Monocular 3D Object Detection via Ego View-to-Bird’s Eye View Monocular 3D Object Detection via Ego View-to-Bird’s Eye View

Translation Translation

Atharva Arun Tembe
at2216@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Tembe, Atharva Arun, "Monocular 3D Object Detection via Ego View-to-Bird’s Eye View Translation" (2021).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10854&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10854?utm_source=repository.rit.edu%2Ftheses%2F10854&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Monocular 3D Object Detection via Ego
View-to-Bird’s Eye View Translation

Atharva Arun Tembe

Monocular 3D Object Detection via Ego
View-to-Bird’s Eye View Translation

Atharva Arun Tembe

July 07, 2021

A Thesis Submitted

in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in

Computer Engineering

Department of Computer Engineering

i

Monocular 3D Object Detection via Ego
View-to-Bird’s Eye View Translation

Atharva Arun Tembe

Committee Approval:

Dr. Guoyu Lu | Advisor Date

Chester F. Carlson Center for Imaging Science

Dr. Andres Kwasinski Date
Department of Computer Engineering

Dr. Alexander Loui Date

Department of Computer Engineering

ii

Acknowledgement

I would like to take this opportunity to thank my advisor Dr. Guoyu Lu for his support

and guidance in academics. I am thankful to Dr. Andres Kwasinski and Dr. Alexander

Loui for being on my thesis committee. I am grateful for the members of the Intelligent

Vision and Sensing Lab who were all so welcoming and helpful. I would also like to

thank my family and friends for their love and support during this challenging endeavor.

iii

Abstract

The advanced development in autonomous agents like self-driving cars can be

attributed to computer vision, a branch of artificial intelligence that enables software to

understand the content of image and video. These autonomous agents require a three-

dimensional modelling of its surrounding in order to operate reliably in the real-world.

Despite the significant progress of 2D object detectors, they have a critical limitation in

location sensitive applications as they do not provide accurate physical information of

objects in 3D space. 3D object detection is a promising topic that can provide relevant

solutions which could improve existing 2D based applications. Due to the

advancements in deep learning methods and relevant datasets, the task of 3D scene

understanding has evolved greatly in the past few years. 3D object detection and

localization are crucial in autonomous driving tasks such as obstacle avoidance, path

planning and motion control. Traditionally, there have been successful methods towards 3D

object detection but they rely on highly expensive 3D LiDAR sensors for accurate depth

information. On the other hand, 3D object detection from single monocular images is

inexpensive but lacks in accuracy. The primary reason for such a disparity in performance

is that the monocular image-based methods attempt at inferring 3D information from 2D

images. In this work, we try to bridge the performance gap observed in single image input

by introducing different mapping strategies between the 2D image data and its

corresponding 3D representation and use it to perform object detection in 3D. The

performance of the proposed method is evaluated on the popular KITTI 3D object detection

benchmark dataset.

Contents

Signature Sheet i

Acknowledgement ii

Abstract iii

Contents iv

List of Figures vi

List of Tables 1

Introduction 2

1.1 Introduction .. 2

1.2 Motivation .. 5

1.3 Contributions .. 6

1.4 Document Structure .. 6

Background 8

2.1 Convolutional Neural Networks ... 8

2.1.1 Generative Adversarial Networks .. 9

2.1.2 CenterNet: Objects as Points .. 10

2.1.3 PSMNet .. 12

2.2 LiDAR and its Data Representation ... 13

2.2.1 Pseudo-LiDAR ... 13

2.3 3D Object Detection Methods .. 15

Methodology 19

3.1 Proposed Method Overview .. 19

3.2 3D Point Cloud to BEV Image Projection ... 20

3.3 Dense BEV Image Generation ... 23

3.4 Image-to-BEV Translation Network .. 25

3.5 3D Object Detection ... 28

3.5.1 Heatmap Variant Focal Loss .. 30

3.5.2 Smooth L1 Loss ... 32

Implementation 34

4.1 Datasets .. 34

4.1.1 KITTI Dataset .. 34

4.1.2 Scene Flow Dataset .. 36

4.2 Evaluation Metric ... 37

4.3 Implementation ... 39

4.3.1 RGB Image-to-BEV Translation ... 39

4.3.2 3D Object Detection .. 40

Results and Analysis 42

5.1 Results .. 42

Conclusions 52

6.1 Conclusions and Future Work .. 52

Bibliography 54

vi

List of Figures

Figure 1.1: Basic difference between a 2D and a 3D bounding box 3

Figure 2.1: Sample architecture of a Convolutional Neural Network 9

Figure 2.2: Sample architecture of a Generative Adversarial Network 10

Figure 2.3: CenterNet model workflow. ... 11

Figure 2.4: Architecture overview of PSMNet ... 12

Figure 3.1: Overview of the proposed method. The training process of the network is

enclosed in the green dash line box. The testing process is enclosed by the orange dash line

box. ... 22

Figure 3.2: Street view RGB image (top) and corresponding BEV image features (below)

 .. 22

Figure 3.3: Workflow of the generation of dense BEV images prior to training. The newly

generated dense BEV images are used as ground truth for training the RGB image-to-BEV

translation network. .. 23

Figure 3.4: Sparse BEV (left) and dense BEV (right) image projection of a sample image

(top) from the KITTI dataset... 25

Figure 3.5: Framework of the image-to-BEV translation network (left) and U-net

generator model having skip connections (right). ... 26

Figure 3.6: The image-to-BEV translation network predicts a sparse or a dense BEV

representation of the given input street view RGB image. ... 28

Figure 3.7: 3D object detection framework. .. 29

Figure 3.8: Effect of different γ value on the focal and the cross-entropy (CE) loss 31

Figure 3.9: Smooth L1 loss ... 33

Figure 4.1: Sample image and 3D bounding boxes of the KITTI dataset 35

Figure 4.2: Sample stereo images from Scene Flow driving dataset 36

vi

Figure 4.3: Visualization of the Intersection over Union (IoU) 37

Figure 5.1: Qualitative results of the image-to-BEV translation model when trained on

dense BEV (50m) images. .. 43

Figure 5.2: Qualitative results of the image-to-BEV translation model when trained on

sparse BEV (20m) images. The sparse BEV images are clipped to objects at a distance of

20m in the front view. .. 44

Figure 5.3: Qualitative results of the 3DOD model on the KITTI validation images when

trained on the dense BEV (50m) predicted images. On the top are the RGB images and

bottom are their BEV representations. Predicted boxes are in red and ground truth boxes

are in green. ... 47

Figure 5.4: Qualitative results of the 3DOD model on the KITTI validation images when

trained on the sparse BEV (20m) predicted images. On the top are the RGB images and

bottom are their BEV representations. Predicted boxes are in red and ground truth boxes

are in green. ... 48

Figure 5.5: Qualitative comparison of our 3DOD model trained on dense BEV predicted

images (left) and the Deep3DBox method (right). Predicted boxes are in red and ground

truth boxes are in green. .. 51

1

List of Tables

Table 4.1: Configuration of point cloud to BEV image projection 40

Table 5.1: Comparison of the 3DOD model when trained and evaluated on dense (50m)

and sparse BEV (20m) for the ‘car’ object class. Results are shown on the KITTI 3D object

detection validation set. .. 45

Table 5.2: Comparison of the 3DOD model trained on the predicted dense BEV with other

monocular 3DOD methods. Results are shown on the KITTI 3D object detection validation

set on the ‘car’ category. The results are reported by considering objects which are within

50m in front of the camera. ... 49

2

Chapter 1

Introduction

1.1 Introduction

An autonomous intelligent agent requires an accurate perception of its environment in order

to operate reliably. A typical framework of an autonomous system consists of environment

perception, self-localization, mapping, path planning and control. The perception system

of an autonomous vehicle (AV) converts sensory information into semantic data such as to

identify road agents like vehicles, pedestrians, cyclists etc. Object detection constitutes an

important function of the perception system. There has been a lot of work in object

detection with most of them using 2D detection methods. The 2D object detection has

shown great progress however, the task of 3D object detection (3DOD) has been a difficult

challenge. The 2D methods detect objects on the image plane lacking depth information of

the scene which is important for tasks such as object perception and localization. The

3DOD on the other hand introduces a third dimension revealing the depth information

which further helps in determining the object size and position in 3D space.

The 3DOD methods use a wide variety of artificial sensors for the task of perception.

The most commonly used are passive sensors such as monocular, stereo cameras and active

sensors such as LiDAR. The monocular cameras are readily available and inexpensive

sensors. They provide scene information in the form of pixel intensities revealing the

texture and shape properties. One disadvantage of monocular camera is that they lack depth

information which is vital for object size and position inference. A stereo camera

configuration could be used to recover the depth channel information using more

3

computationally expensive procedures. The LiDAR sensors emit laser beams and calculate

the time difference to reach the obstacle and back. With the help of the time difference, the

distance and position of the obstacle is determined and stored in a 3D form called as a point

cloud. This point cloud representation is sparse with samples not uniformly distributed.

Although LiDAR sensors provide precise depth measurements, they are expensive and

constitute a large equipment.

Figure 1.1: Basic difference between a 2D and a 3D bounding box [23]

Due to the availability of fully annotated and synchronized 3D LiDAR-camera datasets

such as KITTI [15], nuScenes [17] and Waymo Open Dataset [16], the research for 3DOD

has shifted more towards data driven deep learning techniques. The 3DOD methods could

be divided into two categories- monocular image and point cloud-based methods. The

monocular image-based approach uses only a single RGB image to predict a 3D bounding

box. In monocular images, there is no availability of depth information. Hence, most

approaches first predict 2D bounding boxes and then infer 3D bounding boxes using

geometrical constraints [2], neural networks [1] or 3D model matching [3], [4] methods.

4

Most of the monocular methods only predict objects from a front facing camera ignoring

those on the side and the rear. The main drawback of the monocular methods is they lack

depth channel, limiting the object detection accuracy especially for faraway or occluded

objects. Wang et al. [39] in their work try to address this drawback by using a

Convolutional Neural Network (CNN) [5] architecture to predict the dense depth maps of

the monocular images prior to regressing the 3D object bounding box.

The point cloud-based methods for 3DOD could be divided into two subcategories-

projection and volumetric convolution methods. The projection methods transform the 3D

point cloud representations into 2D images via plane [6], spherical [7] or bird eye view

(BEV) [8], [9], [10] projections. A standard 2D object detection model is used to process

the 2D projection images and a 3D bounding box is predicted using position and dimension

regression. The volumetric methods assume the objects to be present in a fixed size voxels

or 3D grids [11], [12] and transform the raw point clouds into volumetric structures. As the

data is in 3D, the volumetric methods require computationally expensive 3D convolutions.

The projection category among the point cloud methods is more popular due to its

propinquity to image object detection models. Also, it offers better trade-off between time

complexity and object detection performance.

The point clouds do not provide any texture information while monocular images do not

capture depth information. In order to improve the performance, some methods [13], [14]

use fusion of point clouds and image modalities using different fusion schemes. Due to the

combination of different sensor modalities, these methods achieve state of the art results.

They exploit accurate depth information obtained from sparse LiDAR and texture

information from monocular images to enhance the 3DOD performance. Although, the 3D

sensor-based methods show promising results, they are expensive, significantly increasing

the overall manufacturing cost. Hence, a need to develop accurate 3DOD detection

methods that rely only on inexpensive sensors such as a single monocular camera is highly

practical.

5

1.2 Motivation

Given an image, the task of an object detector involves localization of all the object

instances in the scene and determining the bounding boxes of a certain class. Object

detection is widely used in many applications including robotics, augmented reality and

autonomous driving. Recently, due to the advancements in deep learning methods and

relevant datasets, 2D object detection, classification and semantic segmentation solutions

have greatly improved. Despite the significant progress achieved by 2D object detection

methods, the 3D understanding of the real-world objects is still an open problem. The 3D

based systems are more complicated as compared to the 2D systems mainly due to the

convoluted representation of 3D data. The 3D data of the scene is represented using point

clouds, volumes, meshes as compared to pixel grid representation of 2D images. The 2D

detection methods have a limitation in applications such as autonomous driving and robot

manipulation which are location sensitive and require physically accurate information of

objects in 3D space.

 Successful modern 3DOD methods heavily rely on highly expensive 3D sensors such

as LiDAR and depth cameras which provide 3D information of the entire scene. Major

disadvantages of 3D sensor-based methods are- (1) calibration process required for

LiDAR-camera synchronization; (2) expensive LiDAR equipment; (3) limited working

range of depth cameras. On the contrary, a single camera is much cheaper and can capture

the scene up to 80 meters. Although, there has been some research on monocular 3DOD

[1], [18], [19], the performance of monocular methods is drastically low as compared to

the LiDAR based methods. This makes monocular 3DOD an unsolved problem with a

scope of improvement especially in terms of accuracy.

 There are state of the art 3DOD methods [8], [10], [25] which project the 3D point cloud

data into its corresponding 2D BEV image representation as an intermediate step before

feeding them to an object detection network. The accuracy of these methods depends on

6

the quality of the generated BEV images. Generative Adversarial Networks (GANs) have

become very popular recently in image-to-image translation tasks. Hence, by leveraging

GANs, a monocular RGB image to BEV image translation would be possible. The quality

of training data affects the final performance of a GAN network. This thesis aims at

developing better training strategies for the GAN network for a better BEV image inference

given a single monocular image. By enhancing the quality of the generated BEV images,

the 3DOD accuracy would be boosted. The performance of our method is evaluated using

KITTI 3D object detection benchmark dataset [15].

1.3 Contributions

The principal contributions of this thesis research are outlined as below:

• Examine 3D object detection methods that predict bounding boxes based on point

cloud BEV image projection of the monocular RGB image.

• Introduce a novel method to predict a BEV image given a monocular RGB image

as input using a GAN based network.

• Compare the effect of using dense versus sparse BEV image projection on the

performance of a GAN based network

• Compare and evaluate the effect of using dense versus sparse BEV image

projection on the 3DOD performance.

• Analyze and compare the proposed method with other monocular image-based 3D

object detection methods.

1.4 Document Structure

Chapter 2 discusses the related work on 3DOD along with a background on Convolutional

Neural Networks, Generative Adversarial Networks and an object detection network. It

also provides an overview of different sensor modalities used in 3DOD such as LiDAR

7

and its data representation like Pseudo-LiDAR. Chapter 3 will discuss the methodology,

that includes the RGB image-to-BEV translation network along with the training data

preprocessing and the 3D object detection network used for the experimentation. Chapter

4 outlines the training dataset, the hyperparameters used along with the implementation

details. Chapter 5 will analyze the qualitative and quantitative results from

experimentations on the proposed 3DOD method. Chapter 6 will summarize with a

conclusion giving directions for future work.

8

Chapter 2

Background

2.1 Convolutional Neural Networks

The Convolutional Neural Networks (CNN) are deep learning algorithms that take an

image as an input and learn appropriate features of the image using different operations for

the required learning task. The CNN architecture is inspired by the connectivity pattern of

the neurons in the human brain. It consists of a convolutional layer, pooling layer,

activation layer and a fully connected layer. The role of convolutional layer is to extract

the high level and low-level features such as edges, color, gradient from the image. The

element responsible for the convolutional operation is called as the filter. There are

multiple filters which slide with a predefined stride and apply convolution on every region

of the image.

The pooling layer is responsible for reducing the spatial size of the convolved features

of the input image. This dimensionality reduction helps in reducing the computational

power required to process the image data. The pooling operation also helps in training of

the model by extracting dominant features which are rotational and positional invariant.

There are two types of popularly used pooling methods namely max pooling and average

pooling. The max pooling returns the maximum value while the average pooling returns

the average value of the image region covered by the filter. The activation function is

applied at the end of the convolutional layer. It is used to output a non-linear transformation

of the input signal. The output of the last convolutional or pooling layer is flattened and

9

fed to a fully connected layer. The fully connected layer does a non-linear combination of

all the features and transforms them into an n-dimensional representation.

Figure 2.1: Sample architecture of a Convolutional Neural Network [21]

2.1.1 Generative Adversarial Networks

Generative Adversarial Networks or GANs, are generative models based on deep learning

methods such as CNN. They were first introduced by GoodFellow et. al. [22] in 2014.

Generative modelling is an unsupervised learning task which involves learning the patterns

in the input data in such a way that the model could generate new samples that could

plausibly represent those drawn from the original dataset. The GAN model architecture

consists of two CNNs namely a generator model and a discriminator model. The role of

the generator model is to generate new plausible examples from the problem domain while

the discriminator is responsible to classify whether the generated examples are real or fake.

The generator model takes in a random vector of a fixed length as input and generates a

sample in the domain. The discriminator takes a sample from the domain created by the

generator and outputs a binary class label as real or fake. Both the generator and the

10

discriminator models are trained together in a zero-sum game or in an adversarial way. The

discriminator is updated in order to get better at discriminating between real and fake

samples while the generator is updated based on how well its generated samples fool the

discriminator. Some compelling application of GANs include image-to-image translation,

generating super resolution images, generating realistic faces even though the face does

not belong to any real person.

Figure 2.2: Sample architecture of a Generative Adversarial Network [24]

2.1.2 CenterNet: Objects as Points

There are two types of approaches used to regress bounding boxes around an object in

anchor free object detection namely the center-based approach and the keypoint based

approach. The center-based approach [28], [29] uses the object center or any object point

to define positive and negative samples. From the predicted positive samples, the distance

to the four bounding box coordinates is regressed. On the contrary, the keypoint based

approach [26], [27] first predicts the predefined key points from the network which are

11

then used for the task of object detection. Objects as Points [30] also called as CenterNet

is an object detection method which follows the keypoint based approach. In this, the center

of the box is considered as an object as well as a keypoint and from the predicted box

center, the object bounding box features are estimated.

Figure 2.3: CenterNet model workflow. [33]

Figure 2.3 proposes the workflow of the method. The input image is passed through a

CNN feature extractor such as ResNet [31] or a Deep layer Aggregation Network [32] to

deduce feature maps which are further down sampled using a predefined stride. For every

forward pass through the network, three heads are predicted namely the heatmap head,

dimension head and the offset head. The heatmap head is used for the estimation of the box

center (keypoint) for a particular class. This is achieved with the help of a heatmap variant

focal loss. The heatmap head keypoint connects the dimension and the offset head for

bounding box prediction. The dimension head predicts the dimension of the bounding box

12

viz. height and width. The box dimensions are regressed using a standard L1-norm loss of

the ground truth and the predicted width and height. The offset head is used to recover any

discretization error introduced due to the down sampling of input features. It predicts the

offset observed between the box center coordinates in a high-resolution image and that

predicted in a low-resolution feature map. A standard L1-norm loss function is used to

solve for the predicted and ground truth offset values.

2.1.3 PSMNet

Figure 2.4: Architecture overview of PSMNet [43]

Chang et al. propose a pyramid stereo matching network (PSMNet) [43] for the task of

depth estimation from stereo images. Figure 2.4 denotes the PSMNet architecture. The

network takes left and right stereo images as input and predicts feature maps using a CNN

based module. The feature maps are then provided to a spatial pyramid pooling (SPP)

module which extracts hierarchical context information and learns the relationship between

different object features and their subregions. The SPP module involves and concatenates

different levels of features to achieve stereo matching. The SPP feature maps generated

from the left and right images are then connected across each disparity level resulting in a

13

4D cost volume (height × width × disparity × feature size).

 The 3D CNN module facilitates the cost volume regularization using a stacked hourglass

(encoder-decoder) based architecture. It has three main hourglass networks having three

outputs each of which generates a disparity map. All the hourglass networks are trained

using a smooth L1 loss and the total loss is calculated as the weighted summation of all the

three losses. The final disparity map is the output from the last network.

2.2 LiDAR and its Data Representation

LiDAR or light detection and ranging is a remote sensing method which collects

measurements used to create 3D models of the objects and their surrounding environment.

The LiDAR uses light energy to gauge the spatial relationships and shapes of the objects

by measuring the time taken by the signal to bounce off an object and return to the scanner.

The data provided by the LiDAR is rich in-depth information but lacks in texture and color

information.

 Point clouds are dynamic information storage technology which can handle and

manipulate large spatial data for varying downstream tasks. Once the LiDAR readings are

measured and processed, they are stored in the form of 3D point clouds. The 3D point

clouds are a large collection of 3D coordinates, which include x, y, z along with additional

attributes such as reflectance values. Unlike image data representation, the 3D point cloud

is sparse and unbounded.

2.2.1 Pseudo-LiDAR

Depth estimation is the task of estimating the scene depth using monocular or stereo

images. In this, the per pixel depth value of the image is derived using stereo vision,

geometry or deep learning methods. Wang et. al. [39] introduced the concept of Pseudo-

14

LiDAR, where the pixelwise image depth information is lifted to a 3D point cloud

representation, mimicking the original 3D LiDAR point clouds.

Given a disparity map 𝑌 of stereo images, the depth map 𝐷 is derived using the

transform as shown in (1).

D(u, v) =
fu ∗ b

Y (u, v)

(1)

where, fu is the horizontal focal length and 𝑏 is the baseline (horizontal offset) of the pair

of cameras. Using depth information D, the 3D coordinates (x, y, z) of every image pixel

(u, v) is derived in camera coordinates using the following transforms in (2), (3), and (4).

 z = D(u, v) (2)

x =
(u − cu)∗z

fu

(3)

y =
(v – cv)∗z

fv

(4)

where, fv represents the vertical focal length and (cu, cv) is the pixel location

corresponding to the camera centre. In addition to depth, the original LiDAR also provides

the reflectance value. As there is no such information in Pseudo-LiDAR, the reflectance

value is set to 1.0 for every pseudo-LiDAR points.

15

Pseudo-LiDAR++ [40] is an extension of Pseudo-LiDAR where the scene depth is

updated by correcting the predicted depth values with a low-cost yet accurate sparse (4

beams) LiDAR. It proposes a graph-based depth correction (GDC) algorithm that

effectively combines the stereo depth and the sparse LiDAR measurements to get a

corrected dense depth map. The GDC uses a weighted K-nearest-neighbor (KNN)

approach to connect and correct each 3D point with the value of its nearest neighbors. To

construct the KNN graph, the weight matrix is chosen as coefficients that reconstruct the

depth of any point from the corrected depth to its neighbors. For the points which have

corresponding LiDAR measurements, the depth values are updated to the ground truth

values. The remaining depth points are updated based on the learned weight matrix and the

ground truth depth points. Eventually, all the depth points are corrected as the depth

correction propagates across the entire graph.

2.3 3D Object Detection Methods

Accurate and robust object detection in 3D plays an indispensable role in robotics and

computer vision. Recently, due to the emergence of CNNs and large annotated image

datasets, object detection research has progressively moved towards feature learning

approaches thereby producing robust representation of the objects. The 3DOD methods

could be broadly divided into three categories namely monocular image, 3D point cloud

and fusion based methods.

Since, monocular image methods do not have any depth information, most approaches

first detect 2D candidates and then predict a 3D bounding box over the object using

geometric constraints [2] or CNNs [1]. Mono3D [1] introduces a region proposal algorithm

based on semantics, context, shape features and location priors. These features are

computed and scored for any given proposal using an energy model. The proposals are

generated using an exhaustive search in the 3D space and further filtration using non-

16

maxima suppression techniques. Mono3D is an extension to the authors previous work

3DOP [34] which uses depth images to generate proposals in a similar framework. Deep

MANTA [4] in their work use a many task network to predict vehicle position, localization

and shape using only monocular images. The vehicle shape consists of a set of keypoints

which characterize the 3D dimensional vertices of the vehicle. Initially, a 2D bounding box

is regressed using a two-level region proposal network. Using the inferred 2D shape, the

3D object pose is predicted using 3D model matching techniques. Most monocular methods

rely on first learning region proposals and then 3D model matching and reprojection in the

second stage for 3DOD.

3D sensors such as LiDAR are naturally represented as 3D point clouds. Many 3D point

cloud methods first project the 3D points into 2D images using plane [6], spherical [7] or

BEV [8], [9], [10] projections before feeding them to a standard 2D object detection model.

The availability of good datasets and state of the art architectures for 2D images have made

the projection-based methods more popular. Li et. al. [35] uses a cylindrical projection of

the 3D point clouds along with CNNs to predict 3D bounding boxes. The projection image

has channels encoding the points height and distance from the 3D sensor. This image is fed

as an input to a fully convolutional network which first down-samples and then uses

transposed convolutional layers to up-sample the map to predict bounding boxes. Since

there are many bounding box predictions, a non-max suppression is used to filter the

overlapping predictions based on score and distance.

BirdNet [8] uses a BEV image projection to generate the 3D proposals. It encodes the

BEV image as height, intensity and density channels. They also propose a novel encoding

that normalizes the density channel based on the type of LiDAR being used. The density

normalization creates a uniform representation making the detection model generalize to

LiDAR sensors with different specifications and number of beams. ComplexYOLO [10]

also uses a BEV projection with three channels encoding the minimum, median and

maximum height values of the points associated with a pixel. It introduces real time

17

operation capability using a YOLO [36] based architecture with extensions to predict the

extra dimension and orientation angle. Its architecture is categorized as a single shot

detector allowing ComplexYOLO to achieve a runtime of 50 fps, five times more efficient

than comparable methods. BirdGAN [41] uses a GAN based approach towards generating

a sparse BEV map given a monocular image as input. The method uses a mapping

mechanism between an RGB image and its corresponding BEV projection to train a GAN

based network. The network further uses existing 3DOD methods which utilize BEV

projection for its bounding box estimation. BirdGAN requires only a single RGB image as

input at test time and achieves high performance for nearby objects. But, one major

disadvantage of their method is that they restrict the frontal distance by clipping the

generated sparse BEV map to 25 meters, severely limiting the 3D detection to only objects

which are close.

The 3D point clouds consist of a variable number of sparse 3D points distributed over

the space. Hence, it is not possible to incorporate their structure to standard feed forward

CNNs which assume fixed input sizes. PointNet [37] introduced a method to handle these

irregularities by using raw points as inputs to their network. The network takes segmented

3D point clouds as input to perform object classification and part-segmentation. It performs

pointwise transformation and feature extraction using fully connected and max pooling

layers. PointNet++ [38] is an extension to PointNet and outperforms it by encoding more

complex features at every layer of its model architecture.

MV3D [13] introduces different fusion strategies of camera and LiDAR modalities in

order to improve the 3DOD performance. They propose three types of fusion strategies

namely early fusion, late fusion and deep fusion. In early fusion, the modalities are

combined initially creating a new representation which is dependent on all the participating

modalities. The late fusion scheme processes the modalities separately and independently

until the last process, where fusion occurs. In deep fusion scheme, the modalities are mixed

hierarchically in CNN layers such that their features interact over the layers to produce

18

more general fusion scheme. MV3D combines the RGB image of the camera along with

the BEV and front view projection of the LiDAR points for its prediction. The authors

conclude that the deep fusion scheme obtains the best performance due to hierarchical

feature aggregation from different modalities. AVOD [14] uses a similar input

representation as MV3D except that only BEV projection and camera RGB image are used.

They propose an early fusion scheme to merge the feature maps obtained from both the

modalities to achieve a high proposal recall from their region proposal network.

Wang et. al. [39] introduced the concept of Pseudo-LiDAR, where initially the depth of

a monocular image is estimated and later is converted into 3D dense point clouds

mimicking the original LiDAR point cloud representation. The Pseudo-LiDAR

representation is used instead with any 3D point cloud-based method to achieve comparable

results. Some methods [19] often treat image depth as a fourth channel, Pseudo-LiDAR

uses it to lift 2D image pixel to its 3D coordinates. Pseudo-LiDAR++ [40] is an extension

to Pseudo-LiDAR in which the generated pseudo-LiDAR is corrected using sparse but

accurate measurements from a low-cost LiDAR.

19

Chapter 3

Methodology

3.1 Proposed Method Overview

Figure 3.1: Overview of the proposed method. The training process of the network is

enclosed in the green dash line box. The testing process is enclosed by the orange dash line

box.

20

The proposed method could be divided into training and testing phases. For the training, a

depth estimation network is used to predict the depth of a given pair of stereo RGB images.

The predicted depth map is then corrected using a depth correction algorithm. The depth

correction algorithm takes the predicted depth maps and with the help of the ground truth

depth values obtained from a sparse 64-beam LiDAR corrects them. The corrected dense

depth map is then lifted to its 3D point cloud representation using the pseudo-LiDAR

method. This corrected dense 3D point cloud is then projected to a dense BEV image. The

input RGB image and its corresponding dense BEV image consists of the image pair used

to train the Image-to-BEV translation network.

During testing, the Image-to-BEV translation network takes a single image as input and

predicts its corresponding dense BEV projection. The predicted dense BEV image is then

processed by a 3D object detection network which regresses the 3D bounding box

parameters. The 3D object detection network consists of a 2D object detector architecture

with additional object dimension and position regression. Figure 3.1 represents the

overview of our proposed method.

3.2 3D Point Cloud to BEV Image Projection

The BEV image projection is obtained from a 3D point cloud representation and encodes

three channels namely height, intensity and density. The LiDAR sensor scans the region of

interest using laser beams and collects the 3D coordinates (x, y, z) and reflectivity (r) values

for every laser pulse. The collection of the 3D coordinates and reflectivity values are stored

in the form of 3D point clouds. The 3D point cloud representation is projected to a 2D BEV

image of size N x N x 3. The 3D point clouds covering an area of 𝑥 ε [0, 50m],

 y ε [−25m, 25m] and 𝑧 ε [−2m, 1.23m] in front of the LiDAR sensor are discretized and

converted into 2D BEV images with a resolution
50

N
 meters per pixel. The z value range is

chosen considering the LiDAR z position to be 1.73m [44] above the ground level such

21

that it can cover a maximum height of 3m above the ground. The three channels of the

BEV image encode the height, intensity and density values [8].

The height channel represents the maximum height value of the point clouds associated

by the pixel, and is limited to 3 meters above the ground. The intensity channel encodes

the mean reflectance intensity value of the points associated by the pixel. The last which is

the density channel encodes the density of all the points associated by a pixel. It is

computed by dividing the number of points present in a pixel with the maximum possible

number of points. More the number of points associated by a pixel, higher is the density

value of that particular pixel. Figure 3.2 shows an RGB image and its corresponding BEV

image of size 256 x 256 encoding the height, intensity and density channels. The BEV

image is discretized and projected from the 64-beam LiDAR sparse 3D point clouds by

considering an area of 50m x 50m in front with a resolution of about 0.19 meters per pixel

and a height of 3 meters above the ground.

The task of translating the street view RGB image to its corresponding BEV projection

is achieved using a GAN based architecture. The GAN based architectures are a popular

choice in many image-to-image translation applications. The performance of a GAN is

highly dependent on the quality of the training data. Hence, the BEV images used for

training the GAN are first pre-processed, to remove the noise and include the relevant

information, prior to training.

22

Figure 3.2: Street view RGB image (top) and corresponding BEV image features (below)

23

3.3 Dense BEV Image Generation

Figure 3.3: Workflow of the generation of dense BEV images prior to training. The newly

generated dense BEV images are used as ground truth for training the RGB image-to-BEV

translation network.

A 64-beam LiDAR produces sparsely distributed 3D point clouds. The generated points

have accurate location coordinates, however, due to the sparse distribution some important

details present in between two beams are lost. The BEV projection of a sparse 3D point

cloud generates a sparse image with minimum information density in the object regions.

On the other hand, by projecting a dense depth map of the image to a pseudo-LiDAR 3D

point cloud representation, a dense BEV image is obtained. However, the pseudo-LiDAR

point cloud accuracy highly depends on the accuracy of the depth prediction network.

24

For the task of generating ground truth BEV images, a stereo-pair of RGB images are

first passed through a stereo depth estimation network PSMNet [43]. The PSMNet stands

for pyramid stereo matching and consists of a Siamese network for stereo disparity

estimation followed by 3D convolutions for outlier refinement. The estimated depth map

consists of the per pixel depth value of the RGB image. By utilizing the depth values, the

2D image (u, v) is lifted to its 3D coordinates (x, y, z) using the pseudo-LiDAR method.

The newly transformed 3D point clouds have dense representation with size equal to the

image dimensions. However, the point cloud values are not accurate due to the error

introduced by the stereo depth estimation (PSMNet) network.

The predicted dense depth map values are corrected using the graph-based depth

correction (GDC) [40] algorithm. The GDC algorithm takes the predicted dense depth map

and the sparse (64-beam) LiDAR ground truth depth map as input and uses a weighted

KNN approach to correct the predicted dense depth values. In the GDC algorithm, initially

every point of the predicted dense depth is connected to its K nearest neighbor using the

KNN method. An edge weight matrix is then computed between every depth point and its

neighbors by solving a linear matrix equation. The weight matrix is computed such that it

could be used to reconstruct the depth of any point from the depth of its K neighbors. The

depth points which have their corresponding LiDAR values are replaced by their ground

truth depth values. Then by utilizing the pre-computed weight matrix and the ground truth

replaced depth points, the entire dense depth map is corrected. By using the pseudo-LiDAR

method, the corrected dense depth map is projected to its 3D coordinates to get a corrected

dense 3D point cloud representation. A dense BEV image encoding the height, intensity

and density channels is projected from the newly corrected dense point clouds. Figure 3.4

denotes a sparse and a dense BEV projection of a sample image from the KITTI dataset

[15]. The sparse BEV is projected from a 64-beam LiDAR based sparse 3D point cloud

while the dense BEV is obtained from the GDC corrected depth estimated 3D point cloud.

The newly generated dense BEV images are used as ground truth for training the RGB

25

image-to-BEV translation GAN based network.

3.4 Image-to-BEV Translation Network

The Image-to-BEV translation Network is based on the Pix2Pix [20] architecture. Pix2Pix

is a GAN model designed for the task of image-to-image translation. The conditional GAN

(cGAN) is an extension towards the GAN architecture that allows an image of a particular

class to be generated. Our Image-to-BEV translation Network is an implementation of

cGAN where the image generation is conditional on a given input image. In this, the

generator model takes input an image and generates a translated version of that image. The

discriminator model is given as input a pair of an image and its generator generated image

or a translated real image and must determine whether the paired image is real or fake. The

generator model is trained to fool the discriminator by generating plausible sample images.

Figure 3.4: Sparse BEV (left) and dense BEV (right) image projection of a sample image

(top) from the KITTI dataset.

26

The generator and discriminator models of the architecture use standard convolutional-

batch normalization-ReLU blocks of layers. Unlike a traditional GAN architecture, the

generator model does not take a random point from latent space as input. Instead, it takes

an image as input with the source of randomness coming from the use of dropout layers

applied at several layers of the generator. The generator comprises of a U-net [54] style

model architecture which involves an encoder down sampling the input image for a few

layers until a bottleneck layer and then a decoder up sampling it to get the desired output

size. In order to make the most of any low-level information shared between the input and

the output layers, skip connections are added between layers of the same size of the encoder

and the decoder. Figure 3.5 depicts the U-net generator model. In this, the first layer of the

encoder is merged with the last layer of the decoder and both have the same sized feature

maps. This is repeated for every encoder layer and its corresponding decoder layer, forming

a U-shaped model.

Figure 3.5: Framework of the image-to-BEV translation network (left) and U-net

generator model having skip connections (right).

27

A traditional GAN discriminator model uses a CNN to classify the images, our image-

to-BEV translation discriminator uses a PatchGAN model. The PatchGAN is a CNN

designed to classify patches of the input image as real or fake instead of the entire image.

The output of the PatchGAN model is a single feature map of predictions which can be

averaged to get a single score. From Pix2Pix, it is observed that a patch size of 70 x 70 is

found to be the most effective for the image-to-image translation. Hence, our translation

model uses a patch size of 70 x 70. The PatchGAN discriminator model is trained to

minimize the negative likelihood of identifying real and fake images, conditioned on the

source image. The discriminator loss is halved as the discriminator training is too fast as

compared to the generator. The generator model is trained using both the L1 loss and the

adversarial loss. The L1 loss regularizes the generator to obtain reasonable images which

are translated from the source image. The adversarial loss controls whether the generated

images are plausible in the target domain. Both the L1 loss and the adversarial loss are

combined into a composite cost function such as the contribution of the L1 loss to the

adversarial loss is controlled by a hyperparameter lambda (ℒ).

Generator Loss = Adversarial Loss + ℒ ∗ L1 Loss

The image-to-BEV translation model must be trained on image datasets that constitute

the input images and their translated target images. Hence, the RGB images along with

their corresponding generated sparse/dense BEV images comprises the dataset for training

the image-to-BEV translation network.

28

Figure 3.6: The image-to-BEV translation network predicts a sparse or a dense BEV

representation of the given input street view RGB image.

3.5 3D Object Detection

We extend the CenterNet [30] architecture with a BEV image as input and use it as our

3DOD framework. The model uses a keypoint based approach and considers the center of

the object as the keypoint for connecting all the bounding box features. Figure 3.7 denotes

the overall architecture of the 3DOD pipeline. The RGB image-to-BEV translation model

takes a single RGB image as input and predicts its BEV representation. The BEV image is

further encoded using a variant of ResNet [31] called as ResNet-50 based feature extractor.

Similar to CenterNet, the ResNet-50 feature extractor is augmented with three up

convolutional layers each having 256, 128, 64 channels respectively. It takes the BEV

image of size 256 x 256 as input and down samples it by a stride (S) factor 4 to produce

feature maps of size 64 x 64.

29

Figure 3.7: 3D object detection framework.

In order to predict the 3D bounding box constrains, for every forward pass through the

feature extractor, five heads (keypoints) are regressed. They constitute the object center

heatmap, center offset, dimension, orientation and the z-coordinate head. The center

heatmap is used for the estimation of the object center for each class and has dimensions

64 x 64 x 3 (for classes = 3). To generate the ground truth center heatmaps for training and

loss propagation, the object center is first converted to its low-resolution equivalent by

dividing it by a stride 4 and then splat using gaussian kernels. If two gaussian kernels of

the same class are overlapping, an element wise maximum is taken to decide the target

class. All the values corresponding to the object center and its related 3D box features are

first converted from camera to LiDAR coordinates in order to project them on BEV images.

For the inference, a 3 x 3 max pooling operation is applied on the predicted center heatmaps

30

and only the top predictions whose confidence score is greater than 0.2 are kept.

The center heatmap keypoint connects all the feature heads viz. center offset, dimension,

orientation and the z-coordinate for an object belonging to a particular class. Due to the

down sampling of the input image by stride 4, a discretization error is introduced at the

object center coordinates. The center offset head is used to recover the discretization error

of the predicted object centers. The keypoint coordinates are very position sensitive in

keypoint estimation problems as all the bounding box features are related to it. Hence, the

center offset head is added to adjust for any quantization errors and get more accurate

results. The dimension of the center offset head is 64 x 64 x 2.

The 3D bounding box dimensions such as the height, width and the length are regressed

from the dimension head. The size of the dimension head is 64 x 64 x 3. The orientation

head constitutes the sine and cosine value prediction of the yaw angle displacement of the

object and has dimensions 64 x 64 x 2. The depth of the object or the z-coordinate of the

center of the object is regressed using the z-coordinate head. The size of which is given as

64 x 64 x 1. The object center heatmap uses a heatmap variant focal loss while the bounding

box heads are regressed using a standard smooth L1 loss for the stabilized training of the

network.

3.5.1 Heatmap Variant Focal Loss

The center keypoint heatmap is trained and propagated through the network using a variant

of the focal loss [45] called as the heatmap variant focal loss. Focal loss helps to address

the issue of the class imbalance problem. This issue is observed when information related

to one class in the dataset overrepresents the other classes. The single stage object detectors

produce a large amount of candidate targets out of which very few belong to the positive

samples with rest being background targets. This introduces an imbalance during training

with the loss of the negative samples overpowering that of the positive samples. The focal

31

loss addresses this issue and is given by the equation (5).

FL(p) = {
−α(1 − p)γ log(p) , if y = 1

−(1 − α)pγ log(1 − p) , otherwise

(5)

where p is the class probability of the anchor, α and γ are the hyperparameters with y = 1

representing a positive sample and y = 0 representing a negative sample. The effect of loss

due to the negative samples as compared to the positive samples is balanced by adjusting

the terms (1 − α) and α. Greater the value of γ, more is the importance given to

misclassified samples and hence less loss will be propagated by the well-classified samples.

Figure 3.8: Effect of different γ value on the focal and the cross-entropy (CE) loss [47]

32

The heatmap variant focal loss helps to increase the number of positive samples and

decrease the imbalance by considering the center heatmap values generated by the gaussian

kernels. It is represented by the equation (6).

Lk =
−1

N
 ∑ {

(1 − Ŷxyc)α log(Ŷxyc), if Yxyc = 1

(1 − Yxyc)
β

(Ŷxyc)α log(1 − Ŷxyc) , otherwise
xyc

(6)

where α and β are the hyperparameters and are set to values 2 and 4 respectively. When

Yxyc = 1 and the predicted Ŷxyc is close to 1, it considers a well classified sample and by

the logic of focal loss the propagated loss is decreased. The same logic follows for

misclassified samples when Yxyc = 1 and the propagated loss slope is increased by value

α. When Yxyc! = 1 and Ŷxyc is close to 0, then (Ŷxyc)α will make the overall loss towards

0 and less loss will be propagated. The center heatmap ground truths are gaussian kernels

and hence there is no sudden drop in values close to Yxyc = 1. The values inside the

gaussian outputs are considered candidate positives. For example, if Ŷxyc is not near to 0

and has a value close to 1 but in the vicinity of the peak of the ground truth heatmap, there

will be less loss propagated, even in this condition of misclassification, due to term

(1 − Yxyc)
β
. This is because Yxyc will be close to 1 in the region near the center peaks of

the heatmap.

3.5.2 Smooth L1 Loss

The 3D bounding box features such as the box dimension, orientation and the z-coordinate

value is regressed using a smooth L1 loss. It can be observed form Figure 3.9 that the

smooth L1 loss grows linearly with error rather than squarely as observed in L1 loss.

33

Figure 3.9: Smooth L1 loss [46]

Smooth L1 loss combines the advantages of both the L1 and the L2 loss with steady

gradients for large error values and less oscillations to updates when error value is small.

The smooth L1 loss is less sensitive to outliers than L2 loss. It is given by the equation in

(7).

L1;smooth = {
|x| if |x| > α

1

α
x2 if |x| ≤ α

(7)

where α is a hyperparameter and is set to a value 1. The smooth L1 loss behaves as L2

when the absolute value of the error is close to zero and like L1 when it is very high.

34

Chapter 4

Implementation

4.1 Datasets

4.1.1 KITTI Dataset

The KITTI dataset [15] contains a suite of vision tasks such as 3D object detection, stereo,

optical flow, visual odometry, etc. built using an autonomous driving platform. It consists

of 6 hours of real-world road traffic scenarios recorded using different sensors. The KITTI

3D object detection benchmark dataset has about 200k 3D object annotations for image

data captured from four HD cameras as well as their corresponding point cloud data from

a Velodyne 64-beam LiDAR. All the cameras, sensors and localization systems are

calibrated and synchronized. Each image has a maximum of 15 cars and 30 pedestrians.

35

Figure 4.1: Sample image and 3D bounding boxes of the KITTI dataset

For the 3D object detection, the data is split in 7481 training samples and 7581 testing

samples. However, there are no ground truth labels available for the test split. Hence, in

this the train test split followed by BirdNet [8] and other similar works is used. The training

set is further split into a new training and validation set of 3712 and 3769 samples

respectively. The evaluation is done on the validation set. Each annotation label is marked

as easy, moderate and hard depending on the object occlusion, bounding box height and

truncation. The annotations are provided in camera reference frame. Every object in the

image is associated with a class and has 2D, 3D bounding box coordinates and yaw angle

of orientation. Mainly there are 3 dominant object classes namely car, pedestrian and

cyclists. Figure 4.1 shows a sample image from the dataset with 3D bounding boxes.

36

4.1.2 Scene Flow Dataset

The Scene Flow dataset [48] is a synthetic dataset suite that consists of more than 39k stereo

frames rendered from various sequences. It consists of three subsets namely

FlyingThings3D, Monkaa and Driving. The Driving data includes street scenes from the

viewpoint of the driving car. It consists of synthetically rendered car models, tree models

and street lights representing a street view. Each of the subsets has data including RGB

stereo images, object level segmentation, optical flow maps, disparity maps, disparity

change maps along with the extrinsic and intrinsic camera data for each view of the stereo

frame.

Figure 4.2: Sample stereo images from Scene Flow driving dataset [18]

37

4.2 Evaluation Metric

Intersection of Union (IoU) is a measure of the overlap between two boundaries of an

object. It is used to calculate how much the predicted bounding box overlaps with the

ground truth box. A predicted box is considered a true positive (TP) if its IoU exceeds a

predefined threshold for a particular class category. Similarly, if the IoU is less than the

threshold, the predicted box is considered a false positive (FP). A false negative (FN)

occurs when the detector fails to predict an object that is present in the view. Figure 4.3

visualizes the IoU calculation for the object detection.

Figure 4.3: Visualization of the Intersection over Union (IoU) [49]

Average precision (AP) is a popular metric used to evaluate the accuracy of object

detectors. Precision measures how well the network is able to predict accurately. It is given

by the ratio of TP and the total number of predicted positives.

38

Precision =
TP

TP + FP

(8)

Similarly, recall or sensitivity measures how efficient the network is to predict all the

true positives. It is given by the ratio of the TP and the total ground truth positives.

Recall =
TP

TP + FN

(9)

The AP is the weighted sum of precisions at each threshold where the weight is the

increase in recall. When the network has a low precision but a high recall value, then it

classifies most of the positive samples correctly but has a lot of false positives. On the other

hand, if the network has a high precision but low recall, it accurately classifies a sample as

positive but may classify only a few positive samples. A precision-recall curve shows a

trade-off between precision and recall values for different thresholds. The AP is a way of

finding the area under the precision-recall curve. The AP is calculated according to the

equation (10).

AP = ∑ [Recall(i) − Recall(i + 1)] ∗ Precision(i)

i=t−1

i=0

(10)

where 𝑡 is the number of thresholds. In most cases the AP is calculated for each class

and then averaged to get the mean average precision (mAP). In this work, the AP is

calculated for the easy, moderate and hard object labels and then averaged to get the mAP

values.

39

4.3 Implementation

4.3.1 RGB Image-to-BEV Translation

The RGB image-to-BEV translation GAN based network is trained end to end using the

paired RGB image and its corresponding dense and sparse BEV representations. The dense

BEV images are generated from the KITTI [15] 3D object detection training set consisting

of 3712 samples. Initially, a PSMNet [43] disparity estimation model which is pretrained

on the Scene Flow dataset and finetuned on 200 training pairs of the KITTI [15] stereo

dataset is used to predict dense disparity maps of the training samples. The PSMNet model

is trained for 300 epochs with the same strategy as done in Pseudo-LiDAR [39]. The

estimated dense depths of the training samples are first converted into dense 3D point cloud

representations and then corrected by the GDC [40] algorithm using the 64-beam LiDAR

point clouds.

The corrected dense 3D point clouds are then projected to 2D BEV images with the

configuration as shown in Table 4.1. The RGB image-to-BEV translation network is

trained in a similar strategy as done in the original Pix2Pix [20] paper. A 70 x 70 PatchGAN

discriminator model is implemented with a binary cross entropy loss and optimized using

the Adam optimizer. The generator model is updated using a weighted sum of the

adversarial loss and the L1 loss. The weight hyperparameter lambda (ℒ) is set to 100 in

favor of the L1 loss. The network is first trained on the RGB and dense BEV image pairs

and then on the RGB and sparse BEV image pairs for 150 epochs with a batch size value

set to 1.

40

Table 4.1: Configuration of point cloud to BEV image projection

 Configuration Value

Point cloud range

(meters)

Xmin 0

Xmax 50

Ymin -25

Ymax 25

Zmin -2

Zmax 1.23

BEV dimensions

Height 256

Width 256

BEV resolution

(meters)

Xmax − Xmin

Height

0.19

4.3.2 3D Object Detection

All the 3DOD training dataset labels are converted to BEV image coordinates using the

BEV image dimensions and resolution. The down-sampling layers of the ResNet-50

backbone network are initialized with an ImageNet dataset pre-trained model and the up-

sampling layers are randomly initialized. The network uses a heatmap variant focal loss

and a standard smooth L1 loss as discussed in section 3.2 for the training. The network is

trained on the image-to-BEV predicted sparse/dense BEV images of the 3D object

41

detection training set. The network is trained for 120 epochs with a learning rate of 0.001

and a batch size of 16. At inference, a 3 x 3 max pooling operation is applied on the

predicted object center heatmap and only the top predictions with the confidence scores

greater than 0.2 are kept while the rest are discarded. The implementation and training of

the network is done using the Pytorch framework.

42

Chapter 5

Results and Analysis

5.1 Results

The RGB image-to-BEV translation model is trained on the KITTI 3D object detection

training split and then evaluated on the validation images. Figure 5.1 and Figure 5.2

presents the qualitative results of the translation model on some images from the validation

split when trained on two different types of training data. In the first case, the training data

includes the RGB and dense BEV image pairs. For the second, the training consists of the

RGB and the sparse BEV projection as ground truth data.

In sparse BEV representations, as the distance of objects in the image increases the BEV

image becomes extremely sparse making a GAN based model difficult to train. Hence, for

the experimentation, the sparse BEV image data corresponding to points which are more

than 20 meters are removed. This modified sparse BEV (20m) images along with their

corresponding RGB images are used to train the translation model. Figure 5.1 denotes the

results reported when trained on dense BEV images. The dense BEV images are generated

by considering objects which are 50m in the front view. Figure 5.2 denotes the results when

the model is trained on sparse BEV images (20m).

43

Figure 5.1: Qualitative validation set results of the image-to-BEV translation model when

trained on dense BEV (50m) images.

44

Figure 5.2: Qualitative validation set results of the image-to-BEV translation model when

trained on sparse BEV (20m) images. The sparse BEV images are clipped to objects at a

distance of 20m in the front view.

45

Looking at the results, it is evident that the translation model generates better images

with object details when trained on dense BEV in comparison to the sparse BEV. This is

because the dense BEV representation has a greater number of pixels encoding

information/density of the input RGB image as compared to the sparse BEV. This helps

the GAN based translation model to generate more plausible dense BEV images given an

RGB image. In the case of sparse BEV, the performance of the translation model decreases

significantly as the object distance increases. This is due to the fact that as the distance

increases, the sparse BEV points become more and more scattered and scanty making it

hard for the model to train and generate credible images.

The 3DOD model is trained on both the dense (50m) and the sparse BEV (20m) images

for only the ‘car’ category. The model is evaluated for the task of 3D object detection based

on IoU and mAP scores. In this, the AP is first calculated for the easy, moderate and hard

object labels and then averaged to get the mAP scores. Table 5.1 shows the result of the

3D object detection task on the dense (50m) and sparse BEV (20m) representations on the

KITTI validation set. The sparse BEV accuracy is reported by considering only the objects

which are 20m in the front view.

Table 5.1: Comparison of the 3DOD model when trained and evaluated on dense (50m)

and sparse BEV (20m) for the ‘car’ object class. Results are shown on the KITTI 3D object

detection validation set.

Method Testing Modality

mAP (%)

IoU = 0.7 IoU = 0.5

Image-to-Sparse BEV (20m) Mono 3.93 17.73

Image-to-Dense BEV (50m) Mono 8.34 29.11

46

It is observed from Table 5.1 that the dense BEV (50m) outperforms the sparse BEV (20m)

in terms of accuracy for all the IoU thresholds (0.7, 0.5). When the model is trained on the

predicted dense BEV (50m), there is an improvement of more than ~50% over sparse BEV

(20m) for IoU = 0.7. Figure 5.3 and Figure 5.4 shows the qualitative results of the 3DOD

model when trained and evaluated on the dense BEV (50m) and sparse BEV (20m) images

respectively. From Figure 5.4 it can be inferred that although the sparse BEV image is

clipped at 20 meters, the accuracy decreases significantly for objects which are more than

15 meters away from the camera.

47

Figure 5.3: Qualitative results of the 3DOD model on the KITTI validation images when

trained on the dense BEV (50m) predicted images. On the top are the RGB images and

bottom are their BEV representations. Predicted boxes are in red and ground truth boxes are

in green.

48

Figure 5.4: Qualitative results of the 3DOD model on the KITTI validation images when

trained on the sparse BEV (20m) predicted images. On the top are the RGB images and

bottom are their BEV representations. Predicted boxes are in red and ground truth boxes are

in green.

49

Table 5.2 shows a comparison of the predicted dense BEV with other monocular image

based 3DOD methods for the ‘car’ object class. The evaluation is performed for car objects

which are 50 meters in front of the camera.

Table 5.2: Comparison of the 3DOD model trained on the predicted dense BEV with other

monocular 3DOD methods. Results are shown on the KITTI 3D object detection validation

set on the ‘car’ category. The results are reported by considering objects which are within

50m in front of the camera.

Method Testing Modality Time (s) mAP (%)

 IoU = 0.7 IoU = 0.5

Mono3D [1] Mono 4.2 2.38 19.63

Deep3DBox [2] Mono 2.7 4.19 19.67

MonoGRNet [53] Mono 0.16 9.07 32.37

Image-to-Dense BEV Mono 0.044 8.34 29.11

From Table 5.2 it is evident that the 3DOD model trained on the predicted dense BEV

performs better than the Mono3D [1] and Deep3DBox [2] methods for all the IoU

thresholds (0.7, 0.5). Both the Mono3D and Deep3DBox methods first detect 2D boxes

and use it as a prior information for 3D object detection. MonoGRNet [53] performs

slightly better than the predicted dense BEV based model for both the bounding box IoU

thresholds 0.7 and 0.5. This may be because MonoGRNet uses multiple subnetworks which

includes depth estimation of the object instances in the monocular image prior to localizing

the 3D bounding box. However, the 3DOD model trained on the predicted dense BEV

images is fast with less inference time taken per image as compared to other methods. This

50

is due to the use of a simple CenterNet based anchor free object detector implemented on

the predicted dense BEV images.

 Figure 5.5 shows the qualitative comparison of the Deep3DBox [2] method and our

3DOD model trained on dense BEV predicted images. The sample images are from the

KITTI validation set. From the comparison, it is observed that the 3DOD model trained on

the predicted dense BEV images has better bounding boxes aligned with the ground truth

boxes than the Deep3DBox method. Also, the Deep3DBox method performs poorly for

objects which are partially truncated or occluded. This is observed for cars which are very

near to the camera or are partially hidden by another car or an object. The reason would be

because the Deep3DBox method first detects a 2D bounding box over the object and then

regresses a 3D bounding box from the detected 2D box coordinates.

We also test our method on other similar datasets like Cityscapes [55] to determine its

robustness. However, the image-to-dense BEV translation model is not able to generate

plausible BEV images of the given RGB front view images especially in the object regions.

Further, the 3D object detection model fails to generate 3D bounding boxes from these

predicted dense BEV images. This may be because the testing images from the Cityscapes

dataset are distinct from the training images of the KITTI dataset. Hence, it could be

inferred that the GAN based image-to-dense BEV translation model generates plausible

BEV images with object details only when trained on images from the same dataset.

51

Figure 5.5: Qualitative comparison of our 3DOD model trained on dense BEV predicted

images (left) and the Deep3DBox [2] method (right). Predicted boxes are in red and ground

truth boxes are in green.

52

Chapter 6

Conclusions

6.1 Conclusions and Future Work

In this thesis, we introduced a method towards 3D object detection using 3D data

representation while only using 2D monocular images at test time. We leveraged a GAN

based architecture for mapping the 2D monocular image to its corresponding BEV

representation. We demonstrated different training strategies for effective RGB image to

BEV translation. We modify a CenterNet based object detection architecture to incorporate

a BEV image as input and use it as our 3D object detection model. We compare the effects

of different training strategies on the performance of the GAN based network and on our

3D object detection model. The results indicate that by converting the sparse BEV to its

dense BEV representation prior to training improves the overall performance of the 3D

object detection. Finally, we compared the performance of our 3D object detection model

trained on the GAN predicted dense BEV images with other monocular 3D object detection

methods. We infer that it is possible to use existing 3D data to train a network such as to

generate 3D information at test time using only monocular 2D images and get comparable

results.

This thesis research focused on introducing a general architecture for effective image to

BEV translation and use it in a BEV based 3D object detection model. This architecture is

scalable to be used as a plug-in module with any 3D object detection network which works

on BEV images. Hence, the possible direction for future work would be to use the proposed

53

architecture with different state-of-the-art BEV based 3D object detection methods such as

BirdNet [8], BirdNet+ [25] and MV3D [13]. This would further enhance the monocular

based 3D object detection accuracy. Also, by increasing the resolution i.e., the point cloud

range covered per pixel of the GAN predicted BEV images would further benefit the 3D

object detection performance. This would be possible by leveraging a high-resolution

generative network such as [52] to generate BEV images with higher dimensions such as

512 x 512.

54

Bibliography

[1] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun, "Monocular 3d object
detection for autonomous driving", 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2147-2156, 2016.

[2] A. Mousavian, D. Anguelov, J. Flynn, and J. Košecká, “3D bounding box estimation
using deep learning and geometry,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 5632–5640.

[3] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Data-driven 3D voxel patterns for object
category recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
2015, pp. 1903–1911.

[4] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and T. Chateau, “Deep MANTA:
A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from
monocular image,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul.
2017, pp. 1827–1836.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2012, pp. 1097–1105.

[6] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view convolutional
neural networks for 3D shape recognition,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 945–953.

[7] B. Wu, A. Wan, X. Yue, and K. Keutzer. (Oct. 2017). “SqueezeSeg: Convolutional
neural nets with recurrent CRF for real-time roadobject segmentation from 3D LiDAR
point cloud.” [Online]. Available: https://arxiv.org/abs/1710.07368

[8] J. Beltrán, C. Guindel, F. M. Moreno, D. Cruzado, F. García, and A. de la Escalera.
(May 2018). “BirdNet: A 3D object detection framework from LiDAR information.”
[Online]. Available: http://arxiv.org/abs/1805.01195

[9] S. L. Yu, T. Westfechtel, R. Hamada, K. Ohno, and S. Tadokoro, “Vehicle detection
and localization on bird’s eye view elevation images using convolutional neural
network,” in Proc. IEEE Int. Symp. Saf., Secur. Rescue Robot. (SSRR), Oct. 2017,
pp. 102–109.

[10] M. Simon, S. Milz, K. Amende, and H. Gross. (Mar. 2018). “ComplexYOLO: Real-
time 3D object detection on point clouds.” [Online]. Available:
https://arxiv.org/abs/1803.06199

https://arxiv.org/abs/1710.07368
http://arxiv.org/abs/1805.01195%2051
https://arxiv.org/abs/1803.06199

55

[11] B. Li, “3D fully convolutional network for vehicle detection in point cloud,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 1513–1518.

[12] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner, “Vote3Deep: Fast object
detection in 3D point clouds using efficient convolutional neural networks,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2017, pp. 1355–1361.

[13] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object detection network
for autonomous driving,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 6526–6534.

[14] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. L. Waslander, “Joint 3D proposal
generation and object detection from view aggregation,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), 2018, pp. 1–8.

[15] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–
1237, 2013. [Online]. Available: https://doi.org/10.1177/0278364913491297.

[16] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y.
Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam, H. Zhao, A. Timofeev, S.
Ettinger, M. Krivokon, A. Gao, A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D.
Anguelov, “Scalability in perception for autonomous driving: Waymo open dataset,”
2019.

[17] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan,
G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous
driving,” CoRR, vol. abs/1903.11027, 2019. [Online]. Available:
http://arxiv.org/abs/1903.11027.

[18] M. Oberweger, M. Rad, and V. Lepetit. Making Deep Heatmaps Robust to Partial
Occlusions for 3D Object Pose Estimation. ECCV, 2018.

[19] B. Xu and Z. Chen. Multi-Level Fusion based 3D Object Detection from Monocular
Images. CVPR, 2018.

[20] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” in CVPR, 2017.

[21] Phung, & Rhee, (2019). A High-Accuracy Model Average Ensemble of
Convolutional Neural Networks for Classification of Cloud Image Patches on Small
Datasets. Applied Sciences. 9. 4500. 10.3390/app9214500.

[22] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
C. Courville, and Y. Bengio. Generative adversarial nets. In Proceedings of NIPS,
pages 2672– 2680, 2014.

https://doi.org/10.1177/0278364913491297
http://arxiv.org/abs/1903.11027

56

[23] Z. Qin, J. Wang, and Y. Lu, “MonoGRNet: A Geometric Reasoning Network for
Monocular 3D Object Localization”, AAAI, vol. 33, no. 01, pp. 8851-8858, Jul. 2019.

[24] https://medium.com/@alexrachnog/gans-beyond-generation-7-alternative-use-
cases725c60ba95e8. GANs beyond generation: 7 alternative uses.

[25] A. Barrera, C. Guindel, J. Beltrán and F. García, "BirdNet+: End-to-end 3D object
detection in LiDAR Bird’s eye view", arXiv:2003.04188, 2020, [online] Available:
http://arxiv.org/abs/2003.04188.

[26] H. Law and J. Deng. Cornernet: Detecting objects as paired keypoints. In ECCV,
2018.

[27] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang and Q. Tian, "CenterNet: Keypoint Triplets
for Object Detection," 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 6568-6577, doi: 10.1109/ICCV.2019.00667.

[28] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-
stage object detection. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 9627–9636, 2019.

[29] Lichao Huang, Yi Yang, Yafeng Deng, and Yinan Yu. Densebox: Unifying landmark
localization with end to end object detection. arXiv preprint arXiv:1509.04874, 2015.

[30] X. Zhou, D. Wang and P. Krähenbühl, "Objects as points" in arXiv:1904.07850, 2019,
[online] Available: http://arxiv.org/abs/1904.07850.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[32] F. Yu, D. Wang, and T. Darrell. Deep layer aggregation. arXiv preprint
arXiv:1707.06484, 2017

[33] https://medium.com/visionwizard/centernet-objects-as-points-a-comprehensive-
guide-2ed9993c48bc CenterNet: Objects as Points - A Comprehensive Guide

[34] X. Chen et al., “3D object proposals for accurate object class detection,” in Advances
in Neural Information Processing Systems, C. Cortes, N. D. Lawrence, D. D. Lee, M.
Sugiyama, and R. Garnett, Eds. New York, NY, USA: Curran Associates, Inc., 2015,
pp. 424–432.

[35] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3D Lidar using fully
convolutional network,” in Proc. Robot., Sci. Syst. XII, AnnArbor, MI, USA, Jun.
2016.

[36] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc. IEEE Conf.

https://medium.com/@alexrachnog/gans-beyond-generation-7-alternative-use-cases725c60ba95e8.
https://medium.com/@alexrachnog/gans-beyond-generation-7-alternative-use-cases725c60ba95e8.
http://arxiv.org/abs/1904.07850
https://medium.com/visionwizard/centernet-objects-as-points-a-comprehensive-guide-2ed9993c48bc
https://medium.com/visionwizard/centernet-objects-as-points-a-comprehensive-guide-2ed9993c48bc

57

Comput. Vis. Pattern Recognit., Jul. 2017, pp. 6517–6525.

[37] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet: Deep learning on point
sets for 3D classification and segmentation,” in Proc. Int. Conf. Comput. Vis. Pattern
Recognit., Jun. 2017, pp. 77–85.

[38] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature
learning on point sets in a metric space,” in Advances in Neural Information
Processing Systems. New York, NY, USA: Curran Associates, Inc., 2017, pp. 5099–
5108.

[39] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Weinberger,
“Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object
Detection for Autonomous Driving,” in CVPR, 2019.

[40] Y. You et al., "Pseudo-LiDAR++: Accurate depth for 3D object detection in
autonomous driving", arXiv:1906.06310, 2019, [online] Available:
http://arxiv.org/abs/1906.06310.

[41] Siddharth Srivastava, Frederic Jurie, and Gaurav Sharma, “Learning 2d to 3d lifting
for object detection in 3d for autonomous vehicles,” in IROS, 2019.

[42] Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin. Highly parallel fast kd-
tree construction for interactive ray tracing of dynamic scenes. In Computer Graphics
Forum, volume 26, pp. 395–404. Wiley Online Library, 2007.

[43] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching network. In CVPR, 2018

[44] Geiger, A.: Are we ready for autonomous driving? the kitti vision benchmark suite.
In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). CVPR ’12, Washington, DC, USA, IEEE Computer Society
(2012) 3354–3361

[45] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. ´ Focal loss for dense object
detection. arXiv preprint arXiv:1708.02002, 2017

[46] Chen, Zhong & Zhang, Ting & Ouyang, Chao. (2018). End-to-End Airplane
Detection Using Transfer Learning in Remote Sensing Images. Remote Sensing. 10.
139. 10.3390/rs10010139.

[47] https://towardsdatascience.com/a-loss-function-suitable-for-class-imbalanced-data-
focal-loss-af1702d75d75 A Loss Function Suitable for Class Imbalanced Data: “Focal
Loss”

[48] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. A
large dataset to train convolutional networks for disparity, optical flow, and scene

http://arxiv.org/abs/1906.06310
https://towardsdatascience.com/a-loss-function-suitable-for-class-imbalanced-data-focal-loss-af1702d75d75
https://towardsdatascience.com/a-loss-function-suitable-for-class-imbalanced-data-focal-loss-af1702d75d75

58

flow estimation. In CVPR, 2016.

[49] https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-
5956f1bfa9e2 mAP (mean Average Precision) might confuse you!

[50] B. Xu and Z. Chen, "Multi-level fusion based 3d object detection from monocular
images", The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[51] Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiaogang Wang. Gs3d: An

efficient 3d object detection framework for autonomous driving. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2019.

[52] Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: Highresolution image

synthesis and semantic manipulation with conditional gans. In: CVPR. (2018)

[53] Zengyi Qin, Jinglu Wang, and Yan Lu. Monogrnet: A geometric reasoning network for

monocular 3d object localization. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 8851–8858, 2019.

[54] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks

for biomedical image segmentation." In International Conference on Medical image

computing and computer-assisted intervention, pp. 234-241. Springer, Cham, 2015.

[55] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S.

Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,

pp. 3213–3223.

https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2
https://towardsdatascience.com/map-mean-average-precision-might-confuse-you-5956f1bfa9e2

	Monocular 3D Object Detection via Ego View-to-Bird’s Eye View Translation
	Recommended Citation

	tmp.1627658155.pdf.kVDNW

