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Abstract

As computing appliances increase in use and handle more critical information and

functionalities, the importance of security grows even greater. In cases where the

device processes sensitive data or performs important functionality, an attacker may

be able to read or manipulate it by accessing the data bus between the processor

and memory itself. As it is impossible to provide physical protection to the piece of

hardware in use, it is important to provide protection against revealing confidential

information and securing the device’s intended operation. Defense against bus attacks

such as spoofing, splicing, and replay attacks are of particular concern.

Traditional memory authentication techniques, such as hashes and message au-

thentication codes, are costly when protecting off-chip memory during run-time. Bal-

anced authentication trees such as the well-known Merkle tree or TEC-Tree are widely

used to reduce this cost. While authentication trees are less costly than conventional

techniques it still remains expensive. This work proposes a new method of dynami-

cally updating an authentication tree structure based on a processor’s memory access

pattern. Memory addresses that are more frequently accessed are dynamically shifted

to a higher tree level to reduce the number of memory accesses required to authenti-

cate that address. The block-level AREA technique is applied to allow for data con-

fidentiality with no additional cost. An HDL design for use in an FPGA is provided

as a transparent and highly customizable AXI-4 memory controller. The memory

controller allows for data confidentiality and authentication for random-access mem-

ory with different speed or memory size constraints. The design was implemented on

a Zynq 7000 system-on-chip using the processor to communicate with the hardware

design. The performance of the dynamic tree design is comparable to the TEC-Tree

in several memory access patterns. The TEC-Tree performs better than a dynamic

design in particular applications; however, speedup over the TEC-Tree is possible to

achieve when applied in scenarios that frequently accessed previously processed data.
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Chapter 1

Introduction

1.1 Motivation

With the recent rapid growth of modern cyber infrastructure, devices that process

sensitive data and perform essential services have become extremely widespread. In-

stead of using expensive general-purpose computers, a wide variety of applications

employ low cost and low power devices to perform specific applications. Appliances

that do not require extensive amounts of computing power routinely employ smaller

processing systems to act as a control unit. Often referred to as embedded systems,

these devices usually consist of a microprocessor, a limited amount of off-chip memory,

and methods of interfacing with a broader system. Embedded systems are present in

various critical applications such as smart homes, medical devices, and automobiles

[2]. These devices are less susceptible to traditional software attacks as their appli-

cations are comparatively simple and more difficult to exploit [3]. Therefore, attacks

on the hardware of an embedded device are oftentimes more effective. Physical se-

curity is often too costly and difficult to achieve for many applications, leaving the

embedded system vulnerable to examination by an attacker.

Embedded devices are employed in creating a system called the ”Internet of

Things” (IoT). The IoT consists of numerous devices that share a network in order to

quickly pass information about their application to other devices on the network [4].

2



CHAPTER 1. INTRODUCTION

IoT networks have evolved to the point of controlling devices that can have signifi-

cant impact on a consumer’s life. For example, smart homes often use a number of

connected computing devices to provide various impactful services to the user. There

is a growing concern about the security of these devices as they may handle private

information and can perform life saving functionality [5]. A security breach into a

single device in an IoT can cause serious danger to an individual utilizing the network.

The devices that create an IoT network are often extremely susceptible to memory

attacks and it is imperative that their data and functionality is secured effectively.

In addition to embedded systems, other forms of small scale computing devices

are often used in similar applications that may additionally require protection. A

system on a chip (SoC) often consists of one or multiple hard-core processors and

programmable logic. The same kind of programmable logic is also found in a field-

programmable gate array (FPGA). A processor can interface with programmable logic

in order for software applications to offload specific functionality to the hardware

design. While hard-core processors are physically implemented on a silicon chip,

additional soft-core processors can be generated as needed using the programmable

logic of SoCs. Soft-core processors are able to run software applications and interface

with the other on-chip components but are limited in resources by the FPGA fabric.

These All Programmable SoCs (APSoC) use Random Access Memory (RAM) to

help store software and data. An attacker with physical access to a SoC device is

able to interface with this memory bus, allowing them to read or modify any data

sent through the bus [6]. This allows for memory attacks such as spoofing, slicing,

and replay attacks to be performed. Despite this vulnerability to physical attacks,

many modern SoC FPGAs leave the memory unprotected, allowing attackers to access

sensitive data or modify device behavior.
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CHAPTER 1. INTRODUCTION

1.2 Objective

The goal of this work was to provide a transparent and simple to integrate design

that can be utilized by those aiming to secure memory. While the design proposed in

this work is concerned with the protection of an SoC that has available programmable

logic, the concepts introduced can be extended to various embedded system platforms.

The focus of the protection is the integrity of data transferred from the processor of an

SoC to off-chip memory. Particularly, providing data confidentiality and protection

against man-in-the-middle (MITM) attacks are the main concerns of the design. An

authentication tree design is used to detect any invalid data modification before the

data is forwarded to the central processing unit (CPU).

A new method of data authentication was developed by extending concepts of ex-

isting authentication tree designs. The performance and data overhead of this method

was compared to current memory protection techniques. A Zynq-7020 APSoC was

utilized for design prototype implementation and evaluation. The design is intended

to be implemented in programmable logic and used as a memory controller that in-

tercepts and modifies communication between the processor and memory. An AXI-4

interface protocol was used for the memory controller in order to interface with the

Zynq processor and memory components; however, this design can be implemented

in a variety of unique applications. Customizability and scalability are built into

the design. For example, the data sizes and the algorithms used for authentication

and encryption are interchangeable themselves. The relatively low overhead and easy

to customize nature of the design provides value for a range of different operations,

depending on the constraints of the application.

4



Chapter 2

Background

2.1 Threat Model

The device to be protected is assumed to be in an environment where physical access

is possible, and the memory bus is exposed to an attacker. Attacks on memory are

performed as the adversary has the capability to read or modify any data traveling

between the processor and RAM. For the purposes of this threat model, it is assumed

the device being protected is an APSoC that can interface with the processor and

RAM. The processor itself is considered secure, implying that the on-chip caches

contained within the processor are unable to be attacked. Additionally, it is assumed

that the OS running on the processor is trusted and the on-chip caches cannot be

monitored by the attacker.

As securing embedded devices remains the area of focus, traditional software at-

tacks while still a threat are not as pertinent to defend against. Most embedded

systems perform specific and simple applications that are not as susceptible to many

common software attacks. However, many software threats do exist and must be heav-

ily considered to protect against [7], but the work in this thesis focuses on hardware

attacks. Physical attacks on embedded systems are often possible as the processing

system of these devices is generally operating in insecure environments where physical

access is possible. The methods of attack that this work is most concerned with are

5



CHAPTER 2. BACKGROUND

hardware MITM attacks that focus on the external memory of an embedded device.

Off-chip memory is especially vulnerable to numerous attacks because the bus be-

tween the processor and memory can be exposed. Data and address values sent to

external memory are able to be probed and can be read by an attacker [8]. An encryp-

tion algorithm is necessary to provide data confidentiality and protect sensitive data

transmitted on this memory bus from exposure. Many existing data ciphers allow

for adequate protection of data, such as AES [9]; however, data confidentiality is not

enough to adequately secure the system. Data authentication is additionally required

in order to prevent attacks that modify the data in ways that allow an attacker to

manipulate the functionality of the device.

2.1.1 Spoofing Attacks

The focus of spoofing attacks is not to reveal protected data, but instead to disrupt

the intended functionality of the device. In the most basic spoofing attack, an attacker

has access to the bus between the processor and memory then waits for a memory

fetch instruction to be sent. The attacker does not decrypt any memory blocks but

instead sends fake information to the processor [10]. This fake memory block disrupts

the normal program flow and can cause instability in the system if not detected.

2.1.2 Splicing Attacks

Splicing attacks are another type of bus attack in which the attacker replaces a

memory block with a modified block. Instead of replacing the memory block with

an arbitrary fake block, the block is replaced with a block of memory taken from a

different address [8]. The fake block is ensured to be properly encrypted and contain

valid data. Additionally, this adds complexity to defend against as the authentication

must take memory addresses into account.

6



CHAPTER 2. BACKGROUND

2.1.3 Replay Attacks

A memory replay attack consists of an attacker reading and saving a valid memory

block for injection into the system at a later time. The memory block is ensured

to contain valid data and can be injected into the same memory address [11]. These

attacks allow for previous states of the system to be accessed, prolonging functionality,

or allowing now illegal functionality to be repeated. Replay attacks are generally

the most costly attacks to protect against and are the primary area of focus for

authentication trees.

2.2 Memory Authentication Techniques

2.2.1 Hashes

One of the simplest forms of data authentication can be performed using crypto-

graphic hashes. A hash function creates a unique fixed-size output given a unique

variable-sized input [12]. A block of data can be hashed and that hash can be stored

securely on-chip in order to prevent attackers from accessing it. Every time data

is read, a newly computed hash of the data can then be compared with the hash

stored on-chip. This comparison is used to ensure that the data integrity has not

been compromised.

2.2.2 Message Authentication Codes

Message Authentication Codes (MACs) are an authentication technique that utilizes

a hash function and a secret key in order to generate a small block of data that is

used for comparison. This method differs from simple hashing as the MAC itself does

not need to be hidden from an attacker. Both the message and secret key are used

to generate the code, as such only the secret key must be hidden [13]. Commonly,

the MAC is appended to the end of a block of data, as the attacker cannot reproduce

7



CHAPTER 2. BACKGROUND

it themselves. If the block is corrupted, the data receiver’s newly calculated MAC

wouldn’t match the expected MAC stored with the data.

2.2.3 Block-Level AREA Authentication

The block-level AREA Authentication scheme uses the diffusion proprieties of block-

level encryption to additionally provide authentication. The principle of this system

relies on utilizing the Added Redundancy Explicit Authentication (AREA) technique

[14]. In the AREA technique, a unique nonce is appended to the end of a plaintext

block, and the entire block is encrypted. On decryption, this added nonce is checked

in order to determine if the data block has been corrupted. This method relies on the

Shannon diffusion property to work properly. If even a single bit on the ciphertext is

modified, then it is statistically improbable that the correct nonce will be retained on

decryption. Traditionally in implementations of a block-level AREA authentication

technique, the nonce and the secret key must be stored securely while the ciphertext

is visible to an attacker. An encryption mode that has infinite error propagation,

such as AES in the cipher block chaining (CBC) mode, must be used. This error

propagation is used to ensure that if an error does occur that it is propagated to the

rest of the ciphertext.

2.3 Authentication Trees

Authentication trees are a method of providing memory encryption and authentica-

tion during run-time. They are used as an attempt to limit authentication overhead

compared to traditional authentication techniques. Oftentimes, the term “Integrity

Tree” is used in place of “Authentication Tree”. The fundamental design of this

authentication method is a tree structure that stores additional encrypted metadata

that must be decrypted in order to access further memory blocks [15]. Authentication

trees are used for protection against third-party intervention such as replay attacks

8



CHAPTER 2. BACKGROUND

and memory tampering. The main advantage of this technique over alternative au-

thentication methods is the lower performance overhead; however, the speed of each

memory transaction is still significantly negatively affected. The size of data stored

off-chip is also significantly increased depending on the method employed. Table

2.1 contains a summary of the main features and overheads for each authentication

method.

Table 2.1: Authentication Methods

Hashes MACs AREA Authentication Trees
Performance Overhead High High High Medium

Off-chip Overhead None High Medium High
On-chip Overhead High High None Low

Provides Encryption No No Yes Varies
Provides Authentication Yes Yes Yes Yes

2.3.1 Merkle Trees

A Merkle tree is an authentication tree structure that requires a cryptographic hash

function to be computed for each internal node of the tree [16]. It is a balanced tree

that uses equal-sized memory blocks as the leaves of the tree. A hash function is

applied to the concatenation of the values of both children nodes of an intermediate

node. The resulting hash is used as the value for that intermediate node. A hash is

calculated recursively for each node until the root of the tree is formed. Every node’s

value is subsequently dependent on the values of its children nodes as illustrated by

the structure in Figure 2.1.

The authentication calculations start at the leaves of the tree, which contains the

data being protected. During a read transaction, the target memory block’s hash is

computed then compared to the expected value contained in the internal nodes. This

process is then repeated until the root of the tree is reached. If the calculated hash

differs from the expected hash at any point, an exception can be raised to indicate that

data may have been tampered with. While the internal nodes are able to be safely

9



CHAPTER 2. BACKGROUND

Figure 2.1: Merkle Tree Structure

stored off-chip, the root hash must be stored securely on-chip. Protection against

replay attacks is provided as each time the contents of memory are modified, the root

hash is updated. It is infeasible for an attacker to supply tampered data that will

match the hash of the root node. Cryptographic hash functions are designed to be

resistant to collisions, that is it is impractical to calculate two different messages that

generate the same hash. The chances of two hashes colliding when using the SHA256

algorithm is statistically insignificant. Given the computing power of modern day

processors, on average it would take longer than the lifetime of the universe to brute

force search for a collision. Therefore it is safe to assume that an attacker would be

unable to tamper the data in a manner that would match the root hash.

Merkle trees cause a significant memory and computation overhead as each mem-

ory block requires hash values to be stored. On a write operation, the data is read

and authenticated, the data block is updated, and the hashes are recalculated for

each node related to the data block. A secure cache can be utilized to store tree data

in order to reduce the performance overhead of the authentication method. If the

10



CHAPTER 2. BACKGROUND

data stored in the cache is considered secure, an internal node can also act as a root

node for data blocks. This is performed to reduce the number of operations required

to validate memory [17].

2.3.2 The Parallelizable Authentication Tree

The Parallelizable Authentication Tree (PAT) is an attempt to increase the perfor-

mance of the Merkle tree by allowing the hash computations to be run in parallel

[18]. Each node of a Merkle tree is dependant on the value of their children’s hashes

requiring multiple dependant computations to be performed before retrieving the tar-

get hashes. PATs remove this dependence by instead generating numbers-used-once

(nonces) and Message Authentication Codes (MACs) for each node. The nonce value

can be generated randomly or deterministically, and it is updated each time the node

is written to. The MAC value of a node consists of a hash value computed using the

nonce value of both the node and its children nodes. Each node can then generate

the MAC independently of other nodes because the nonce of each node is always

available without computation. Data verification computations and tree updating

computations for PATs do not rely on each other and can be parallelized to increase

performance. As a nonce must be stored in addition to the hashes, the metadata

size of PATs is greater than the metadata size of Merkle trees. This extra storage

requirement adds additional memory costs to the authentication.

2.3.3 Tamper Evident Counter Tree

While previous methods only incorporate authentication into the design, the Tam-

per Evident Counter Tree or “TEC-Tree” [19] provides both data confidentiality and

authentication. The TEC-Tree aims to reduce the memory overhead of PATs and pro-

vide data encryption while allowing for the same performance benefits. The TEC-Tree

employs the block-level AREA scheme for data authentication. On a write operation,
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Figure 2.2: Parallelizable Authentication Tree Structure

a nonce consisting of the memory address and a counter value is concatenated to the

data block being encrypted and written to memory. This nonce allows for a unique

tag to be checked each time memory is accessed to provide the authentication. To

reduce memory overhead and allow for parallelization, the counter values used in

the nonces are then encrypted and stored off-chip together in their data block. The

counter blocks are decrypted and utilized for verification when a value from memory

is read. The only value necessary to store securely on-chip is the counter value used to

create new nonces for each block of memory. A tree structure is formed as displayed

in Figure 2.3.

The counter value stored on-chip acts as the root, and the counter blocks serve

as the children nodes of the root. Leaves of the tree consist of ciphertext blocks that

contain the original data being protected and the additional nonce encrypted with the

block. As the nonce is encrypted in each block, Shannon’s diffusion property states

that any change at all in the encrypted block will cause the nonce value to not decrypt

properly. Any modification of the nonce will subsequently cause the authentication
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Figure 2.3: TEC-Tree Structure

to fail. When a read operation is performed, multiple instances of a decryption

engine can be used to decrypt information in parallel, consequently reducing the

performance overhead of this method. MITM attacks are able to be detected after

the first decryption of the counter block as the nonce value will not match what is

expected. A cache for the tree’s most recently accessed nodes can be added in order to

avoid reading tree data from memory to increase read speeds. An additional benefit of

the TEC-Tree is the ability to change the arity of the tree structure to accommodate

the requirements of the system it is being utilized in. Increasing the arity adds a larger

additional memory overhead, but reduces the amount of time required to access the

leaf nodes.

2.3.4 Dynamically Skewed Authentication Tree

2.3.4.1 Method One

Traditional authentication tree methods rely on static balanced tree structures to

protect memory. A balanced tree approach introduces excessive overhead for real
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time memory verification based on different memory access patterns. The Dynami-

cally Skewed Authentication Tree attempts to increase the performance of traditional

authentication tree methods by reorganizing the structure of the tree dynamically.

Nodes that were more frequently accessed are placed closer to the root of the tree

during runtime[20]. Shifting frequently accessed nodes to higher levels allows for

less tree traversal time to authenticate those data blocks by reducing the number of

verification computations and intermediate node accesses. Less frequently accessed

data blocks take significantly longer to authenticate; however, the time saved by re-

ducing authentication time of more frequently accessed nodes with typical memory

access patterns outweighs the negative performance impact of the lower weighted

nodes. Similar to the TEC-Tree, data block nodes are concatenated to the plaintext

implementing the block-level AREA technique providing memory encryption and au-

thentication. Nonces are generated in the same fashion as in the TEC-Tree, a simple

counter is stored securely on-chip to ensure each nonce is unique and never reused.

Conventional approaches store a group of individual memory blocks in a leaf node,

while this dynamic approach instead stores groups of memory blocks as sets. Each

node stores the locations in memory that share the same frequency of access. Memory

elements are stored on the lowest branch of the tree as leaf nodes and are referred to

as data chunks. A structure represented by Figure 2.4 is established.

Each data chunk stores a unique nonce that additionally contains the data nec-

essary to traverse to the root of the tree. Unlike the TEC-Tree, the first memory

block accessed is the leaf node of the tree. The data is authenticated up from the leaf

to the root of the tree. Traversal in this fashion impacts performance because the

intermediate counter chunk data must be fully read before the next parent node can

be accessed. The TEC-Tree does not suffer from this problem as the node protection

addresses stay the same every time memory is accessed. A look-up table is required

to map a node number to which data element is being protected. This differs from
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Figure 2.4: Dynamically Skewed Authentication Tree Structure: Method 1

the balanced tree whose natural ordering is used to determine which data block is

being protected by a node. An index for each data block is stored, along with the

corresponding node number protecting that data block. An element number is ad-

ditionally required to indicate which element in the node’s set represents the data

block. This look-up table incurs an additional on-chip memory cost as it must be

stored securely.

Dynamic restructuring of the tree requires two operations, set migration and re-

balancing. Set migration occurs when the frequency of a data block is increased and

needs to move to a different set. Since data blocks with the same frequency are

grouped, whenever a block is accessed it must be moved to a set that is one frequency

count higher. The algorithm for set migration is described in Algorithm 1.
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Algorithm 1: Dynamically Skewed Authentication Tree Set Migration [20]

Data: a : data element

Q,P : pointers to Nodes;

P ← find(a);

Q← find(P ′sfrequency + 1);

if Q 6= ∅ then

remove a from P ’s set;

P ’s weight = P ’s weight - P ’s frequency;

add a to Q’s set;

Q’s weight = Q’s weight + Q’s frequency;

ShiftUp(Q);

if P 6= ∅ then

remove P from the tree;

else
Shift Up(P ’s Sibling)

end

else

create a new node T ;

T ’s right child is a new node N ;

T ’s left child is P ;

N ’s set = a;

N ’s weight = P ’s frequency + 1;

N ’s frequency = P ’s frequency + 1;

replace the old P in the tree by T ;

remove a from P ’s set;

P ’s weight = P ’s weight - P ’s frequency;

if P 6= ∅ then

remove P from the tree;

else

ShiftUp(P ’s Sibling);

ShiftUp (T );

end

end

Rebalancing must also occur when the nodes with a higher probability to be

accessed are lower down in the tree than a node with a lower probability of access.

In this case, nodes are shifted to fit the results of a Huffman encoding algorithm, as

described in Algorithm 2. This algorithm is further discussed in Section 2.4.1.
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Algorithm 2: Dynamically Skewed Authentication Tree Rebalance [20]

while T is not the root do

T’s weight = T’s right child weight + T’s left child weight;

if (T’s weight > T’s sibling weight +1) ∧ (T’s weight > T’s uncle weight)

then

Q ← parent of parent of T;

exchange T with T’s uncle;

exchange Q’s right and left children;

update T’s ancient parent’s weight;

end

T ← T’s parent;

end

2.3.4.2 Method Two

A second and similar method of implementing dynamically skewed authentication

trees is proposed in [21]. The most significant difference between this implementation

and the first is that data nodes are no longer stored in sets. Alternatively, a single

data node protects a single data element in memory. Eliminating the method of

storing data in sets allows the look-up table to no longer be necessary and eliminates

the added on-chip overhead costs associated with it. The block-level AREA concept is

still applied, with each data element being protected by a nonce. The nonce contains

the count of data accesses of that node and additional information to allow upwards

tree traversal. Leaf nodes of the tree are capable of protecting a configurable number

of data elements in order to reduce the storage overhead of the design. The structure

generated by this method is depicted in Figure 2.5

With the removal of the look-up table and data element sets, the restructuring

condition of set migration described by Algorithm 1 is no longer necessary. Instead,

all restructuring is performed by the rebalance operation outlined in Algorithm 2. As

with the previous method, on a write operation, the leaf node’s count is incremented
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Figure 2.5: Dynamically Skewed Authentication Tree Structure: Method 2

and the tree is rebalanced if necessary. This is applied recursively until the root of

the node is reached. If at any point, the nonce information does not correctly match

the expected count, then an authentication error is raised.

2.4 Static Optimal Binary Search Trees

2.4.1 Huffman Encoding

Huffman encoding is a technique of constructing an optimal binary search tree that

is widely used in the generation of lossless data compression using prefix codes [22].

Each leaf node of the tree consists of a weight used to guide the construction of the

tree. Compared to similar methods, this tree is uniquely generated from the bottom

up, ensuring optimality. The fundamental principle of the construction of a Huffman

tree is the recursive combination of a pair of nodes that will result in the lowest weight.

This new weight is then used to establish a new intermediate node of the tree, which

is then added to the pool of nodes for the subsequent combination. Combinations

18



CHAPTER 2. BACKGROUND

are continued until the root of the tree is formed, and the result is an optimal binary

search tree. Figure 2.6 demonstrates the construction of an optimal tree with the

Huffman algorithm.

Figure 2.6: Huffman Tree Construction

In this example, the tree construct begins with an initial set of terminal nodes

with varying weights. The pair of nodes resulting in the lowest weight (in this case,

nodes with weights 1 and 2) are combined to create an intermediate node with a

weight of three. Due to the unordered nature of the Huffman tree construction, the

leaf nodes can be rearranged to construct this node. In step 3, the pair resulting in

the lowest weight uses the terminal node with weight 4, and the newly constructed
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intermediate node. Finally, the last node is combined with the node created in step

3 and the root of the tree is formed.

2.4.2 Hu-Tucker

The Hu-Tucker algorithm generates an optimal binary search tree in a similar fashion

as the Huffman encoding algorithm with one key difference, the order of the leaf nodes

is preserved. Order preservation allows for nodes with both a frequency of access

count and an additional weighted constraint to remain ordered and still construct an

optimal search tree [23]. Historically, these ordered trees had been used for alphabetic

search trees. The weighted priority of the algorithm could potentially be capitalized

on to increase the speed of authentication trees. The construction of a Hu-Tucker tree

consists of three phases: combination, level assignment, and recombination. An initial

set of terminal nodes acts as the leaves of the tree and are combined to construct the

intermediate nodes. Each node contains a value and a weight associated with it. A

greedy algorithm is implemented to combine the two neighboring nodes that result

in the lowest weight into a single node. This process is repeated until all nodes are

combined and the root of the tree is formed. If there is more than one pair of nodes

with an equal combined weight, the pair with the leftmost node is selected. Figure

2.7 demonstrates the construction of an optimal tree with the Hu-Tucker algorithm.

In a process similar to Huffman encoding, the tree construction begins with an

initial set of weight terminal nodes. The key difference in this algorithm is that

the order of these terminal nodes must be preserved in the tree. Therefore, when

constructing the first intermediate node in step 2 the lowest weight pair would be a

node with weights two and one. However, these nodes are not directly next to each

other causing that pairing to be invalid. Instead, the lowest weighted pair of nodes

that are neighboring each other would be nodes 4 and 1. This pairing process is

applied until the root of the tree is formed.
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Figure 2.7: Hu-Tucker Tree Construction
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Flexible Ordered Dynamic Authentication Tree

3.1 Data Protection

3.1.1 Applied Block Level AREA

The data protection scheme employed in this authentication method relies on the

diffusion property proposed by Shannon in [24]. Diffusion expresses the statistical

relationship between the input plaintext and the resulting ciphertext of a given en-

cryption cipher. Particularly, if a single bit of the input plaintext is changed while

using the same key, the resulting ciphertext on average changes half of the ciphertext’s

bits. Routinely used modern ciphers, such as AES, are extensively studied to ensure

the diffusion properties are sufficient enough for the cipher to be secure. For this data

protection method, it is assumed any cipher in use meets this diffusion requirement.

In both the TEC-Tree and the Dynamic Authentication Tree designs, a nonce is ap-

pended to any plaintext to be encrypted and stored in memory. On decryption, this

nonce is compared to a previously stored nonce value that should match if data has

not been tampered with. If even a single bit of the data is modified in an encrypted

data block, on decryption the nonce has a negligibly low chance of remaining the

same. The number of possible plaintext blocks with the same nonce resulting from

the decryption of a tampered ciphertext is equal to 2b−n, where b is the size of the

data block in bits, and n is the size of the nonce in bits. The probability of the nonce
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remaining the same after decryption if memory is tampered with is then 2b−n

2b
= 1

2n

[19]. With this fact, the size of the nonce can then be increased to increase security.

Intuitively, increasing the nonce size will also increase the extra memory overhead

of the authentication. This nonce size can then be tuned to specific applications in

order to balance security concerns versus extra storage costs.

3.1.2 Example

Considering an example case, assume we are using 128-bit blocks. A data block before

encryption is composed of a 96-bit payload and a 32-bit nonce. The nonce contains

an arbitrary value for this example, and in a real application, a larger nonce value can

be used with deterministic single-use values. The hex value 0xAD is being written to

memory, and the entire data block must be accessed in order to write this value. The

original value of the data block is all zeros. The data is encrypted using AES in ECB

mode with a secret key of 0x0. Figure 3.1 displays a case in which the ciphertext

data is not tampered with and the authentication succeeds.

Figure 3.1: Block-Level AREA Example: Pass

First, the original 128-bit data block is encrypted, producing a ciphertext that is

secure from the attacker’s analysis. Once this data block is necessary to be read again,

the data is decrypted, and as expected the original nonce matches the decrypted nonce
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value. Since the nonces match, it is safe to assume the data is untampered and the

authentication is successful. The data would then be forwarded to the CPU for further

processing as usual. In the opposite case, Figure 3.2 displays an authentication failure

using the block-level AREA technique.

Figure 3.2: Block-Level AREA Example: Failure

Just as in the previous example, the original data block is encrypted and produces

the same ciphertext. Here an attacker flips a single bit in an attempt to disrupt the

system. The now corrupted ciphertext is decrypted, and the resulting plaintext does

not match the original data block. Most importantly the decrypted nonce is different

than the original nonce. These nonces are then compared and the authentication

fails because of the mismatch. An authentication error can be raised, and the CPU

is notified that the data has been corrupted.

3.2 Tree Nodes

The leaf nodes of the authentication tree structure contain the data blocks that are

directly being protected by the tree. For the rest of this thesis, the leaf nodes will be

referred to as data nodes. Numerous ways to relate the data blocks being protected

to the leaves of the tree are possible. For example, the TEC-Tree [19] originally

proposes that a 192-bit data block is used for each leaf node. 128 bits of this node
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store the original data to protect, while the additional 64 bits are used to store a

nonce for authentication. AES with a 128-bit key in ECB mode then serves as the

encryption engine for the design. While this is a viable option, the memory overhead

for this method is considerable. Since the nonce used is half the size of the original

data, this implementation requires a significant storage overhead of 1.5 times the

original data size. The implementation suggested in [21] employs a similar design,

recommending a 256-bit data block. 128 bits of that block would contain the original

data while the other 128-bits contain a nonce storing tree metadata. This design

requires an even larger 2 times storage overhead. In an attempt to address this issue,

the approach used in this authentication tree design uses an implementation similar

to that applied in [25]. Instead of limiting the data block size to be aligned with a

cipher’s size requirements, different cipher mode implementations are used to allow

for variable data block sizes. Applicable modes of operation are further discussed in

Section 4.4. This customization option allows for a more flexible design that is able to

address various use cases. Intermediate nodes are generated using the frequencies of

access for each data node as specified in Section 3.6. Due to the fact that the counts

for each child node are stored in each intermediate node, these nodes are referred

to as counter nodes. Figure 3.3 displays the general structure of a data node and

counter node as used by the dynamic authentication tree.

Figure 3.3: Data and Counter Node Contents

The data node is separated into two parts, the data that is being protected and the
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nonce. The nonce contains the tree metadata required for tree traversal and a count

of the number of times the node has been accessed. Each data node protects a block

of data that can be any length specified by the application. As for the metadata,

the size requirements are less flexible. Both the counter node and data node share

the same metadata that stores the relationship between other nodes. When data is

accessed, the authentication begins at the bottom of the tree with the data nodes. In

order to traverse the tree from the bottom up, the parent node ID is required to be

stored by each node except the root node. This ID is represented by “Parent” field

in the metadata. The “Sibling” field represents the sibling ID of that node and is

utilized in checking rebalancing conditions for dynamic restructuring of the tree. The

ID of the node itself is also stored in the “Node ID” field, but this is an optional field

depending on the implementation of this design. The “Node ID” field is included

to allow for easier rebalancing but is not necessary if performed differently. As the

frequency of access is required for the block-level AREA scheme, this is also stored in

the metadata of each node as the “Counter” field. Whenever the tree is traversed, the

node’s current count is compared to its parent’s stored count. The parent node must

be a counter node that stores both the left and right children counts in the “Counter

Left” and “Counter Right” fields. There are two counters stored per counter node

and the “LR” is used to specify which counter must be compared. This value is

stored to indicate whether or not the current node is a left or right child node to its

parent. As the block-level area scheme utilizes the metadata as a nonce, additional

data may be added to the nonce if a design requires a larger level of security. For most

cases, simply comparing the counts of the node provides adequate authentication. For

applications with a large security risk, it may be desirable to increase the nonce size

and compare more information.
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3.3 Tree Data Addresses

It is required by the block-level AREA technique for the data node metadata to

be stored in the same area of memory as the data it is protecting. This causes

the actual location of the data stored in memory may vary from what the processor

expects when it sends requests. The memory controller must account for the data size

differences and provide the processor with the appropriate information. In this case,

the originally requested address that the processor expects is referred to as the virtual

address. The offset memory address where the data is actually stored is referred to

as the physical address. Every time memory is accessed, the entire memory block

needs to be read to properly decrypt the data; therefore, a memory block address

needs to be calculated. When a request is generated for a specified data block, the

data modification or data read is handled by the Data Modifier and the Data Filter

components specified in 4.3, respectively. The virtual address for the start of each

data block can then be calculated using Equation 3.1 and the physical address is

calculated using Equation 3.2. In this tree, the size of protected memory is N bytes

and the size of data blocks is D bytes, the size of a counter is C bytes, and the size

of the metadata is M bytes.

virtual address = address− (address (mod D + M)) (3.1)

physical address = virtual address +

⌊
virtual address

D + M

⌋
∗ (D + M) (3.2)

To simplify memory address calculations, it is recommended to store the counter

node information together at the end of the protected memory area. The start address

of all counter node data would then merely be the memory size N . With this method,
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each counter node address can be calculated using Equation 3.3.

Counter Node Address = N + (2C + M) ∗Node ID (3.3)

3.4 Ordered Dynamic Authentication Tree

A dynamic authentication tree is a 2-arity tree consisting of data nodes as the leaf

nodes and counter nodes as the intermediate nodes. The structure of the tree depends

on the weighted frequency accesses of each data node. As previously discussed, the

block-level area scheme is applied to each node of the tree when data is accessed.

Data nodes consist of the underlying data being accessed and an injected redundant

nonce, containing metadata required for the traversal of the tree from the bottom

up. In the block level AREA scheme, the nonce data is considered redundant as

the nonce must already be capable of being generated before the memory block is

decrypted. This redundancy is required for the comparison of the generated nonce

with the original nonce in the encrypted data block. When a memory access is per-

formed, the entire data block including the nonce is first read and decrypted. Then

the metadata contained in the nonce is used to determine which counter node is used

as the data node’s parent. The parent node is then also read and decrypted, and the

parent node holds the access count of its child for comparison to apply the block-level

AREA scheme and provide authentication. This authentication process is repeated

recursively until the final root of the tree is reached. Secure on-chip storage is used

to store a master counter that is incremented on every write operation and used to

generate new nonces. The root counter node’s count is compared to this secure root

counter for authentication purposes. If at any point the authentication fails due to a

counter mismatch, the processor is alerted to an authentication error. Otherwise, the

requested data operation is performed as usual. To prevent additional unnecessary

performance overhead, data access frequencies are only updated on a write operation.
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On a write operation, the data node’s frequency count itself must first be updated.

As the tree is traversed upwards, each parent node’s stored left and right counts are

updated accordingly to their child nodes’ weight. The parent’s frequency access count

is incremented in addition. All operations performed on decrypted plaintext are per-

formed in secure programmable logic where an attacker is incapable of observing the

operations and plaintext data. When a write occurs, the tree additionally is inspected

to ensure that the new node weight is not higher than the weight of the nodes above

it. If the lower node’s weight is higher, then the tree is rebalanced and restructured.

While a number of algorithms provide a valid dynamic authentication tree, the focus

of this work is a new dynamic algorithm based on an ordered binary search tree.

The rebalancing condition and restructuring algorithm are detailed in Section 3.6.

The generic dynamic authentication tree structure is represented identically to the

description in Figure 2.5. Figure 3.4 displays the data structure of the authentication

tree that these specifications create with additional metadata information shown.

It is important to note that because the tree’s structure depends on the data

node access frequencies, the structure displayed here contains example information

to help describe them. This information is necessary to help explain the current

balanced state of the tree. As this is a dynamic tree, the particular configuration of a

tree given a memory access pattern is subject to change. Additionally, the dynamic

nature of the tree does provide inconsistent resulting performances depending on the

memory access pattern the tree is operating under, which is discussed further in

Section 3.7.2. It is evident in this example that the tree structure does not allow

a higher weighted node to be lower on the tree than a lower weighted node. This

allows for more rapid access to a data node that contains a higher frequency of

access. On a read operation for every level higher a data node is stored, it requires

one less counter node to be read and compared before it is fully authenticated. This

differs from traditional authentication tree methods which historically rely upon a
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Figure 3.4: Ordered Dynamic Authentication Tree

balanced tree that is agnostic to the number of times a data node has been accessed.

Given most memory access patterns, the more often a data block is accessed, it is

more likely that the node will be accessed again in the future. Thus weighting data

nodes and restructuring the tree as such should provide a substantial improvement

in performance for data blocks that are accessed often.

There are, however, downsides to this design compared to a design such as the

TEC-Tree. Rebalancing provides two extra operations that increase the performance

overhead of the design. Every time a write occurs, the tree must be checked for

rebalancing conditions as the node frequency being accessed is incremented. This

requires at least one additional node per level traversed to be read for a comparison

of their counts. On top of this extra operation, if the tree does in fact need to

be restructured, the counter nodes’ metadata must be updated. Depending on the
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rebalancing condition, which is further outlined in Section 3.6, additional nodes may

need to be read, updated, and written back to memory. If a rebalance condition was

not met, these nodes would not need to be accessed. Compared to a static tree design,

the extra rebalancing calculations provide a significant difference in performance for

each memory write operation. In light of this fact, certain memory patterns will

more favor a dynamic authentication tree structure versus a static authentication

tree structure, which is discussed and analyzed further in Section 3.7.2.

3.5 Tree Initialization

Before any tree accesses can be performed, the tree requires an initial state in order

to allow for dynamic restructuring or tree traversal to properly take place. The rebal-

ancing algorithm implemented allows for zero weighted counts, which then requires

only the metadata specifying the node’s relationship with each other to be initialized.

The tree begins as a balanced tree, with each node containing an equivalent count of

zero. No memory addresses have been accessed yet and each node begins with the

same probability of being accessed. Algorithm 3 contains an initialization routine for

a dynamic skewed tree.

31



CHAPTER 3. FLEXIBLE ORDERED DYNAMIC AUTHENTICATION TREE

Algorithm 3: Dynamic Authentication Tree Initialization Routine

Data: N [T ] : Array of nodes of size T

Result: Dynamic tree nodes initialized

struct {
parent;

sibling;

LR;

ID;

count;

} Node;

for i← 0 to T − 1 do

N [i].ID ← i;

N [i].LR← ¬(i (mod 2));

N [i].parent← ((i + 1)/2)− 1;

if N[i].LR = 0 then

N [i].sibling ← i + 1;

else

N [i].sibling ← i− 1;

end

N [i].count← 0;

end

In this case, to provide easy memory address calculations the counter nodes begin

with the root ID as zero. The node IDs are filled in starting at the highest level of

the tree downwards while assigning each node from left to right. With this method,

the initial tree’s nodes with an even ID will also be a left child node. The sibling

node ID can then be set based on whether or not the node is a left or right child. A

pattern emerges for the parent node ID; each node is originally a child of a parent

with half their ID minus one.

3.6 Dynamic Restructuring

During a program execution, as memory blocks are accessed the tree structure is

dynamically updated to place memory blocks with a higher frequency of access closer
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to the root of the tree. As each node is accessed, the count of that node is incremented

and its parent node’s left or right counter is also updated to ensure authentication

checks function properly. When a node’s weight is incremented, the new weight

needs to be compared to the existing node’s weights. This is done to ensure that

nodes with a lower frequency remain further from the root than nodes with a higher

frequency of access. As node data is stored encrypted in memory, it is infeasible to

read and decrypt all tree nodes and check each weight value on each memory access.

Performance of the memory accessed would be too greatly affected if each node were

to be read; therefore, instead of accessing the entire tree, a small subset of the tree

is validated each time memory is written to. A node contains the ID of that node’s

parent and its sibling node. Using this information, when a node is accessed, both its

parent node and that parent’s sibling are accessed. A parent’s sibling node is referred

to as an uncle node. The uncle node’s weight is compared to the current node’s new

weight. If the current node’s new weight is greater than the uncle node’s weight,

then the tree is flagged for rebalancing. The method of rebalancing in the tree design

presented here consists of three different possible cases used in order to preserve the

order of the data nodes. The first rebalancing case is described by Algorithm 4.
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Algorithm 4: Ordered Rebalancing Method #1

Data: Parent, Uncle, Sibling, Current

if Current’s LR 6= Uncle’s LR then

// Shift Uncle down

Uncle’s Parent ← Parent;

Uncle’s Sibling ← Sibling;

// Rotate Parent

Parent’s sibling ← Current;

Parent’s LR ← ¬ Parent’s LR;

// Update and Rotate Sibling

Sibling’s sibling ← Uncle;

Sibling’s LR ← ¬ Sibling’s LR;

// Shift Current Node Up

Current’s Parent ← Parent’s Parent;

Current’s Sibling ← Parent;

end

If it is desired to retain the order of the data nodes, this rebalancing case is only

valid if the current node’s left/right position is different than its uncle node’s left/right

position. In this case, the current node being accessed is shifted up a level by shifting

the parent node to the side and shifting the uncle node down a level. Figure 3.5

visualizes the steps in this process. To perform these operations, the parent and

sibling relationship stored in each node is able to be updated with the new case.

This allows the operation to be performed quickly and efficiently. It is necessary to

read and decrypt the parent, uncle, sibling, and current node data from memory to

perform these operations.

In the case that the uncle and current nodes do not match the left/right position,

a second rebalancing method must be implemented. If the first rebalancing method

were to be used, the leaf node order would be modified and invaliding the ordered

design. The second rebalancing method is described by Algorithm 5 and visualized

by 3.6.
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Figure 3.5: Ordered Rebalance Method 1

Algorithm 5: Ordered Rebalancing Method #2

Data: Parent, Uncle, Sibling, Current, Grand Uncle, Grand Parent

if (Current’s LR = Uncle’s LR) ∧ (Current’s LR 6= Grand Uncle’s LR)

then

// Shift Parent Up with Current Node

Parent’s Parent ← Grand Uncle’s Parent;

Parent’s Sibling ← Grand Uncle’s Sibling;

// Update Uncle

Uncle’s Sibling ← Current Node;

// Shift Grand Uncle Down

Grand Uncle’s Parent ← Parent;

Grand Uncle’s Sibling ← Sibling;

// Update Grand Parent

Grand Parent’s sibling ← Parent;

// Shift Sibling Up with Current Node

Sibling’s sibling ← Grand Uncle;

Sibling’s LR ← ¬ Sibling’s LR;

// Shift Current Node Up

Current’s Parent ← Grand Parent;

Current’s Sibling ← Uncle;

Current’s LR ← ¬ Current’s LR;

end

The second rebalancing method requires the Grand Uncle and Grand Parent

node’s information in addition to the same information from the first method. When

the current node is shift upwards, the parent node is not shifted downwards but

is instead updated with the grand uncle replacing the current node as a child. To
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Figure 3.6: Ordered Rebalance Method 2

keep the order of the leaf nodes, the grand uncle and the sibling’s left/right positions

are swapped. Both of these methods do not retain leaf node order if applied to the

case where the current node’s left/right value, the uncle node’s left/right value, and

the grand uncle’s left/right value are all equal. To address this final case, a third

rebalancing method is introduced as described in Algorithm 6 and displayed by 3.7.

Algorithm 6: Ordered Rebalancing Method #3

Data: Parent, Uncle, Sibling, Current, Grand Uncle, Grand Parent

if (Current’s LR = Uncle’s LR) ∧ (Current’s LR = Grand Uncle’s LR)

then

// Shift Grand Uncle Down

Grand Uncle’s Parent ← Grand Parent;

Grand Uncle’s Sibling ← Sibling;

// Update Grand Parent

Grand Parent’s sibling ← Parent;

Grand Parent’s LR ← ¬ Grand Parent’s LR;

// Update Uncle

Uncle’s Parent ← Grand Parent;

Uncle’s Sibling ← Grand Uncle;

Uncle’s LR ← ¬ Uncle’s LR;

// Shift Parent Up

Parent’s Parent ← Grand Parent’s Parent;

Parent’s Sibling ← Grand Parent;

end

Methods one and three are very similar, with the main difference being that the
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Figure 3.7: Ordered Rebalance Method 3

node operations are applied to one level above the current node. While the current

node’s information is not updated itself, the parent node is shifted upward, moving

both the current and sibling node up a level as well. Considering the grand uncle

must be accessed for this method as well as method two, when checking the rebalance

condition an additional qualifier must be added to ensure that a great grand uncle

exists and the root has not been reached. The final rebalance checking condition is

then expressed in Equation 3.4.

¬((Current Node′s LR = Uncle′s LR) ∧ (Parent′s Parent = 0))

∧(Current Node′s Weight > Uncle Node′s Weight)

(3.4)

3.7 Customizable Overhead Analysis

The authentication tree design presented here is highly customizable and is able to be

modified in order to accommodate a specific application’s needs. Real-time memory

authentication is costly in both performance and memory overheads. However, if one

aspect of an application contains larger performance or memory constraints, these

parameters can be easily tuned to tailor the design to those needs. Generally, there
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is a trade-off between speed and storage requirements, the faster the authentication

time the more extra memory overhead is required and vice versa. The overhead

for this proposed design is compared against the overhead of the base TEC-Tree

implementation described in [19] and the Dynamic Skewed Tree proposed by [21].

3.7.1 Memory Overhead

3.7.1.1 Off-Chip Overhead Cost

The additional off-chip memory costs associated with each design is as follows, where

TEC is a subscript used to denote relation to the TEC-Tree, skewed denotes relation

to the Dynamic Skewed Tree, and DAT denotes relation to the proposed Dynamic Au-

thentication Tree design. Table 3.1 describes the variables contained in the following

equations.

Table 3.1: Off-chip Memory Cost Summary

Variable Description
OTEC Overhead of the TEC-Tree

Oskewed Overhead of the original dynamic skewed tree
ODAT Overhead of the proposed dynamic authentication tree

lp The data payload size in bits
n The bit length of nonces
A The arity of the tree

OTEC =
lp + nTECA

lp(A− 1)
[19] (3.5)

Oskewed =
lp + nskewedA

lp(A− 1)
[21] (3.6)

ODAT =
lp + nDATA

lp(A− 1)
(3.7)

Where lp is the data payload size in bits, n is the bit length of nonces, and A
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is the arity of the tree. The relationship between off-chip memory costs for each

design turns out to be identical besides the variation in nonce sizes. Arity is also

a large contributing factor, as a large arity increases the off-chip storage size. As

the methodology of this design only contains algorithms for a tree arity of two, the

comparisons will focus on all design utilizing an arity of two. It is possible to expand

both the work presented in [21] and the work proposed in this thesis to allow for larger

aritys, but for the scope of this design that is saved for future work. Each overhead

equation can then be simplified as follows.

O =
lp + 2n

lp
(3.8)

The total memory overhead then relies solely on the nonce size of each design. All

authentication trees require a significant off-chip memory overhead, some exceeding

even two times the original data size. The nonce sizes for each design are shown

below.

nTEC = c + log2N (3.9)

nskewed = c + 3 ∗ log2N (3.10)

nDAT = c + 3 ∗ log2N (3.11)

Where c is the bit length of the counters used for authentication, D is the total

number of data nodes used in the tree. In the case of a dynamic tree, the design

relies additional stored metadata in order to traverse the tree structure. The proposed

method’s off-chip memory cost is slightly increased versus the TEC-Tree, but remains

the same as the Dynamic Skewed Tree. The optimal case for each node ID stored in
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the none metadata is a bit length of log2N . However in cases where data size is not

a significant issue, data alignment to 4 byte words can be more easily achieved by

setting the node ID lengths to 4 bytes each.

3.7.1.2 Memory Overhead Example

To put the overhead in perspective, consider a case where 1 KB of memory is to be

protected, and the total number of trees protecting memory is 2. Data nodes have

been configured to protect 64 bytes of memory each. Each tree then protects 512 B

of memory with 8 data blocks per tree. For easy memory alignment, a non-optimal

32 bits per node ID stored is configured, as displayed in the example in Figure 3.4.

A counter size of 32 bits has also been chosen for convenience. For any binary tree,

the number of intermediate nodes is equal to the number of leaf nodes subtracting

one. In this case the number of counter nodes is then 7. Figure 3.8 represents off-chip

memory with these parameters.

Despite containing large counter sizes and node ID sizes, the additional overhead

of this design is comparable to other authentication methods. The extra metadata

stored per node is 16 bytes, and the counter nodes require an additional 8 bytes to

store the left and right counters for comparison. Each tree produces an additional

15∗16+8∗7 = 296 bytes. To protect 1 KB of memory with this method, an extra 592

bytes is required, resulting in a (1024 + 592)/1024 = 1.578 times memory overhead.

The on-chip memory cost is simple. The size of the counter value used for au-

thentication and the root of the tree is customizable. Only a single counter per tree

used to protect memory is required to be stored on on-chip memory. Therefore, the

on-chip memory cost is equal to Equation 3.12. The on-chip memory cost is the same

for the TEC-Tree and both dynamic tree designs. For this example with 2 trees and
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a counter size of 32 bits, the total on-chip memory cost would then be only 64 bits.

Root Storage Size = counter size ∗ number of trees (3.12)

3.7.2 Performance Overhead

A dynamic authentication tree requires additional computational overhead on each

write transaction compared to the TEC-Tree. Every write requires that a recursive

check for rebalancing is applied. An extra counter node must be read for each level

in addition to the information that the TEC-Tree requires. If the tree does need

to be rebalanced there are extra computations and writes to memory that must be

performed. Generally, a dynamic tree rebalance does not happen frequently, espe-

cially with memory access patterns that frequently access certain areas in memory.

This rebalance overhead is usually minimal and is explored further in the implemen-

tation results in Section 4.5.3. Due to the number of extra computations performed,

it is expected that a memory access pattern that utilizes writes to memory more

frequently than reads may perform worse. The worst-case scenario for a dynamic

tree would involve a uniform random distribution of memory accesses through the

entire protected memory address range. If each memory address were accessed with

the same frequency, the tree would statistically diverge to a balanced tree. This tree

would include worse write performance than a TEC-Tree due to the extra rebalancing

calculations. Contrarily, the best-case scenario for this structure would be a mem-

ory design that most frequently accesses a single memory address, and that memory

address is mostly read instead of written. Performance speedup occurs when a read

or write transaction occurs on a data address that has been shifted higher in the

dynamic tree than it would be in the corresponding balanced tree structure. In order

for a dynamic tree to perform better than the TEC-Tree design, this speedup must

outweigh the slowdown caused by the additional tree calculations.
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3.7.3 Counter Bit Length

Counter bit length is an important customizable part of the tree’s design. Whenever

a counter reaches the max value it is able to represent, the authentication tree cannot

allow the counter to simply overflow. If the counter overflowed, a nonce may be

repeated, and this can leak information to an attacker. In order to prevent this,

each time the counter overflows the secret encryption key must be regenerated. All

encrypted tree data must first be decrypted and re-encrypted with the new key,

requiring a large amount of time to complete these operations. A counter length

with a size large enough to prevent too frequent overflows must be chosen in order to

minimize the impact of this performance. For many applications a counter size of 32

bits will take an extremely large amount of time to overflow; however, for applications

that run for long periods of time, it could be a concern. Naturally, increasing the

counter size to reduce the performance head will increase the size of off-chip storage

utilized by the tree.

3.7.4 Leaf Node Data Block Size

The size of the data block per leaf node can be refined to provide a balance between

performance and storage size. Whenever memory is accessed, the entire data block

must be decrypted because the entire block is encrypted together. If only part of the

block was decrypted or re-encrypted without the rest of the block, the encryption

scheme would fail and the data would become corrupted. In light of this, increasing

the data block size per leaf node will reduce the storage required, as fewer leaf nodes

would be required to protect the entire portion of memory; however, the performance

of each memory transaction would be reduced as more data must be accessed each

time.
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Figure 3.8: Off-Chip Memory Overhead Example
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3.8 Optimality Analysis

Optimal binary search trees provide the lowest cost to access each leaf node of the

tree given a set of weights for each node. An unordered optimal tree can be built

using Huffman coding [22] while an ordered optimal tree can be constructed with the

Hu-Tucker algorithm [23]. A software implementation written in the C programming

language was developed for both the Hu-Tucker algorithm and the algorithm pro-

posed in Section 3.6 for comparison of optimality. Due to the nature of the proposed

algorithm, rebalancing conditions only consider adjacent nodes of the nodes being

accessed. It is possible that nodes are accessed in a pattern that the tree is not opti-

mal due to limitations of the algorithm not extending to check the entire tree. 10,000

different trees with different weights for the leaves and different memory accesses were

constructed with both the Hu-Tucker and dynamic tree algorithms. The total cost of

each tree was then calculated and compared to determine the optimality of the dy-

namic tree. As the Hu-Tucker tree is guaranteed to be optimal, these measurements

were used as a baseline for optimality. In 10,000 different cases, only 20 Dynamic

Trees were not optimal, leading to a 99.8% chance of the dynamic tree remaining

optimal. The maximum difference in cost was 38 while the lowest was 1. The average

difference in cost was 5.7; however, this average does not represent a significant statis-

tic as the difference in cost for a tree with 10,000 memory accesses would be higher

than a tree with 10 memory access. Concluding from these results, the difference in

optimality from the proposed dynamic tree algorithm and the Hu-Tucker algorithm

is minimal, with a 99.8% chance of remaining optimal with a sample size of 10,000.

Furthermore, when there is a difference in optimality that difference is minuscule and

insignificant as it may even be corrected in the future with further rebalancing.

44



Chapter 4

Memory Controller Framework

4.1 Security Model

Many embedded systems have an exposed memory bus line from the on-chip processor

to off-chip memory such as DDR RAM. It is possible to observe transactions on this

memory bus or even inject modified data that causes unwanted behavior from the

system. As discussed in Section 2.1 the main focus of protection is bus attacks; in

particular, protection against spoofing attacks, splicing attacks, and replay attacks

are the main concern. Replay attacks are the most costly threat to defend against as it

requires capturing an instance of time in which certain data is invalid. To combat this,

the security model assumes our system’s on-chip memory is secure against attackers

and cannot be observed or tampered with. It is also assumed that the OS kernel can

also be trusted and is resistant to attacks. Memory bus data observation and data

injection is the only weakness that this model attempts to address. Data leakage and

side-channel attacks such as differential power analysis attacks are beyond the scope

of this model. DDR RAM is generally accessed very often and is significantly relied

upon. It is very important that the design to protect memory does not provide large

levels of performance overhead. Any additional performance slowdown is significant in

the execution of a program. As described by Figure 4.1, a custom memory controller

platform placed between the CPU and the DDR Memory facilitates the memory
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encryption and authentication. As speed is a priority, an FPGA’s programmable

logic is used to implement the controller in hardware. A ZedBoard™ development

board with a Xilinx Zynq®-7000 All Programmable SoC is the target platform for

this design. The design can be extended to any comparable platform that can make

use of the full AXI-4 interface. As the ZedBoard is a low cost development kit, more

sophisticated FPGA’s may be able to run the design with higher clock frequencies

and make even better use of the design.

Figure 4.1: Target Security Model

4.2 AXI-4 Interface

The Advanced eXtensible Interface (AXI) is a widespread flexible high-performance

bus interface that is commonly used in on-chip communication applications. Zynq

processors incorporate high-performance full AXI-4 interfaces into their design in

order to allow for easy communication with designs in the programmable logic. As

a result of that fact, the AXI interface was chosen for the implementation of the

authentication tree memory controller design. Many optional signals and features

exist for the interface allowing for a versatile number of functionalities depending on

the application [26]. AXI-Lite interfaces reduce the capabilities of AXI into simple 32-

bit read and write transactions. Due to the complexity and versatility of the memory

controller’s design, a full AXI interface was instead chosen in order to provide support

for a wider range of applications.
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4.3 Memory Controller Pipeline

4.3.1 Encryption Pipeline

While individual components of the AXI-4 interface are not by themselves compli-

cated, integrating a completely transparent memory controller design for each possible

combination of AXI capabilities quickly increases the complexity. Aiming to reduce

this complexity, the design presented here utilizes a heavily modified version of the

AXI-4 transparent memory encryption pipeline provided in [25]. Figure 4.2 describes

the original unmodified encryption only pipeline design [25].

Figure 4.2: Transparent Memory Encryption Pipeline

The design incorporates an effective way to implement memory security for a

variety of memory types with little effort required from a user. As the goal is to

remain transparent to the user, the user of the secure memory will not have to perform

any additional steps in order to perform memory transactions. A read-modify-write

approach is followed. When a processor sends a transaction to the controller, first

the controller will read and decrypt the requested data. If a write transaction was

specified, the decrypted plaintext is then forwarded to a data modifier, which is

responsible for merging the requested write data with the data retrieved from memory.

Once the data block is properly modified with the written data, the entire block is

sent to the encryption engine. After the data is properly encrypted depending on
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the cipher implemented, the final encrypted ciphertext is forwarded to memory to be

written. If instead a read transaction was specified, after the decryption stage the

decrypted plaintext is then forwarded to the processor. Before reaching the processor

the plaintext data is filtered to remove any additional data that was necessary to

store depending on the encryption scheme employed. Requests also support bursts as

specified by the AXI protocol, which is handled by the wrap burst cache component

in the pipeline.

4.3.2 Encryption and Authentication Pipeline

The encryption pipeline design provided by [25] was heavily modified in order to pro-

vide support for Dynamic Authentication Trees. Dynamic trees require additional

tree metadata to first be read from memory in order to generate appropriate requests

for new intermediate nodes. Therefore, the pipeline needs to return data read from

memory to the component that generates requests. The modified pipeline including

components required for authentication is described by Figure 4.3. The work pre-

sented in [25] also includes an implementation for a TEC-Tree design using a modified

version of the encryption pipeline; however, due to the large difference in operation be-

tween a dynamic authentication tree and a TEC-Tree, the simple encryption pipeline

was utilized as a base for the design instead. The TEC-Tree authentication pipeline

is used as a performance comparison for the finished design.

Figure 4.3: Transparent Memory Encryption and Authentication Pipeline
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Due to the fact that read requests now need to be returned to the request gener-

ator, the pipeline has been further separated into two paths, a read request pipeline

and a write request pipeline. A master state machine is used in the Tree Request

Generator component in order to determine which tree nodes must be accessed and

updated. True to its name, the Tree Request Generator then generates the appro-

priate requests for tree node processing into the read and write pipelines. When a

request is received from the processor, the root number for the memory address is

calculated. The root of the tree is checked to see if the data node has been accessed

yet. The root itself is stored in BRAM that is embedded in the programmable logic,

as it is can be considered secure against an attacker with physical access. If the root

has not yet been accessed then the data for that tree needs to be initialized. A Tree

Initializer component has been added to correctly populate the initial tree data with

the data specified in Algorithm 3. The Tree Request Generator specifies whether or

not a request is an initialization request. If this is the case, then the Tree Initial-

izer calculates the appropriate data values based on the memory address. Otherwise,

normal requests are simply forwarded through the initializer with no modification.

Both the read and memory write responders were modified to ensure that the master

AXI signal response was generated to the processor only when the original request

was processed. This is necessary because, in the original encryption pipeline, only

the original data block is accessed. The dynamic tree requires multiple intermediate

requests to first be sent to process the tree data before processing the original request.

Figure 4.4 displays the state machine used to process read requests.

The state machine remains at an idle state until a read request is received. Once

a request is issued by the processor, the tree that is being requested to access is

checked to ensure it has been accessed before. If it has not, the tree is initialized to

a balanced tree state. Once the initialization is finished, the data node that contains

the requested data is first read. The data node is then decrypted and the stored
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Figure 4.4: Read Request State Machine

metadata is used to determine which counter node must be read next as the parent

node. That parent node is then read, and the store counts are compared to ensure

data has not been tampered with. If the counts do not match, an authentication error

is raised and sent to the processor. Otherwise, the process is repeated recursively, and

the next parent node is read until the root of the tree is reached. After reaching the

root node, the count contained in the root node is then compared to the secure root

stored on-chip. If these counts do not match, the same authentication error process is

completed and the processor is notified. Finally, if everything authenticates properly,

the original data that was requested is extracted from the original data node and

forwarded to the processor.

4.4 Ciphers and Modes of Operation

Customizability is one of the primary benefits of this design, and in that spirit, any

cipher can be used in the encryption pipeline. The design tested here uses AES as

the encryption engine. AES is a widely adopted standard cipher with quick timings

that is able to be efficiently implemented on an FPGA. The only limitation on the

cipher to be used is that the cipher mode of operation must propagate errors to

later ciphertext blocks. Block cipher modes such as Electronic Code Book (ECB)

and Counter Mode (CTR) do not propagate errors to ciphertext blocks beside the

50



CHAPTER 4. MEMORY CONTROLLER FRAMEWORK

current block being decrypted. Cipher block chaining (CBC) mode was chosen for

the test implementation as each block of ciphertext relies on all plaintext blocks that

have been previously processed. As the payload of a data node is decrypted first,

any change in the payload will result in changes to the metadata, which will then

cause the authentication to fail. A significant drawback of the CBC mode is that

each encryption and decryption operation is sequential, relying on the previously

processed data block before the next block’s processing can begin. Parallelization

of the cryptographic operations is then not possible if it is desired to speed up the

encryption or decryption of data.

CBC mode still requires the data size to be aligned with the limitations of the

block cipher’s size. In the case of using AES as a cipher, the data block must be

a multiple of 128 bits. The implementation example provided in this thesis utilizes

AES for both the data nodes and the counter nodes. In this case, the data nodes

have a size of 80 bytes, which is aligned properly with this cipher, but the counter

nodes have a size of 24 bytes which is misaligned by an extra 8 bytes. The CBC mode

was then modified to take advantage of the ciphertext stealing (CTS) operation that

allows for the processing of data blocks of any size. This is achieved by padding

the last incomplete block with a portion of the second to last’s block ciphertext and

encrypting the padded block. Because the padded block’s plaintext then includes the

partial ciphertext of the second to last block, it is not necessary to store the full block

in memory as it will be recovered later on decryption. Figure 4.5 demonstrates the

behavior of a ciphertext stealing mode.
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Figure 4.5: Ciphertext Stealing [1]

4.5 Results

The results presented in this section are based on an implementation of the proposed

design written in the VHDL hardware description language. Synthesis was performed

with Xilinx Vivado version 2020.1 and targeted the ZedBoard development kit (part

xc7z020clg484-1) using the Xilinx Zynq-7000 All Programmable SoC. Due to the

complexity of the programmable logic design and the limitations of the ZedBoard,

the design was evaluated with a clock frequency target of 50 MHz. This limitation

is due to the routing delay in the critical path of the implementation. The FPGA

used is an entry-level model with a lower speed than more sophisticated platforms.

Running this design on a higher level model will allow for a significant increase in

clock frequency. For programmable logic utilization comparisons, the total number of

resources available for various Xilinx FPGAs is displayed in Table 4.1. Part xc7z2020

is the SoC with FPGA used by the ZedBoard. Compared to the other FPGA parts

available, the resources provided by the Zedboard are relatively small.

Three different designs were implemented for comparison. First the TEC-Tree was

tested as it is currently one of the lowest overhead methods of providing encryption

and authentication. The original dynamic skewed tree was also chosen for evaluation
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Table 4.1: Reference resources available for a sample set of Xilinx FPGAs

Part LUTs Flip Flops DSPs BRAM Tiles

xc7z2020 46,200 92,400 160 95

xczu9eg 274,080 548,160 2,520 912

xcvu9p 1,182,240 2,364,480 6,840 2,160

xcu250 1,341,000 2,749,000 11,508 1,766

as the performance for the proposed design should be similar. Each test performed

was run with the same configuration of 1 MB of memory protected by 2048 trees with

each leaf node protecting 64 bytes of memory. The Zynq processor uses an AXI data

width of 32 bits, while the memory interface uses an AXI data width of 64 bits to

allow for faster memory transactions. The memory controller handles the difference

in memory sizes and generates the appropriate responses for both the master and

slave AXI devices. For the scope of this design, a tree arity of two was tested for

each configuration. The proposed dynamic tree algorithm currently does not support

higher arities, but this can be expanded in future work.

The performances of the dynamic designs were evaluated using AES-128 in CBC

mode with ciphertext stealing to match data block alignments. The TEC-Tree was

evalued using the lightweight ASCON cipher in CBC mode, instead of AES. The

particular version of the AES cipher implemented requires only 12 cycles for decryp-

tion and encryption operations on 128-bit data blocks. The ASCON cipher requires

6 clock cycles for its operation. AES has been chosen for evaluation as it is a stan-

dard and widely used cipher that lends itself well to an HDL implementation. Any

cipher may be chosen for use, for example using a lightweight cipher will increase

performance by requiring fewer clock cycles for each read and write operation. It is

important to note however that the choice of cipher and mode of operation is impor-

tant to ensure proper security. ECB and CTR modes are discouraged as the lack of

error propagation eliminates the effectiveness of the block-level AREA authentication
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technique.

The designs were evaluated for correctness and performance using the Xilinx AXI

Verification IP (AXI VIP). The verification IPs ensure signal behavior and timing are

appropriate for the AXI-4 interface. They do not, however, ensure data written to

and read from memory represent proper values. A wrapper testbench was written in

SystemVerilog to both control the AXI VIP’s and ensure the memory contained the

correct data on a read and write operation. A master AXI VIP was used to simulate

the processor sending initial read or write requests to the memory controller. A second

AXI VIP was configured for slave responses in memory-mapped mode, allowing the IP

to simulate a BRAM with appropriate timings. Figure 4.6 displays the configuration

of the test environment for these performance tests.

Figure 4.6: Test Environment Configuration

4.5.1 Synthesis Results

The design was synthesized in Xilinx Vivado version 2020.1 and compared to the

implementation of the TEC-Tree [25] and the Dynamic Skewed Tree framework [21].

The TEC-Tree implementation uses an Ascon cipher for the encryption and decryp-

tion of data, while the Dynamic Trees both use AES-128 for their encryption engine.

As displayed in Table 4.2, the method of encryption contributes to a large portion

of the programmable fabric usage. In order to better compare the designs, the usage

was measured with and without the encryption.

As expected, the TEC-Tree design utilizes the least number of each component

as it uses the simplest design. Most of the differences in utilization can be accounted

for by the added components for the dynamic tree request generation and initializa-
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Table 4.2: Authentication Tree Synthesis Results

TEC-Tree Unordered DAT Ordered DAT

No Encryption

LUTs 3582 8521 12404

Flip Flops 3064 5953 8475

DSPs 0 15 21

BRAM Tile 1 1 1

Encryption

LUTs 9398 11438 15321

Flip Flops 4349 6738 9260

DSPs 0 15 21

BRAM Tiles 1 1 1

tion. The state machine itself requires a significant number of flip-flops and LUTs to

manage state transitions and state outputs. While the TEC-Tree design can simply

generate all necessary requests without reading data from memory, both DAT designs

require logic to both store read data and translate the read data to appropriate re-

quests for tree traversal and modification. The unordered DAT design also requires

fewer resources to implement than the ordered DAT. This can be attributed to the

additional tree structure and rebalancing complexity that comes with the added con-

dition of maintaining terminal nodes’ ordering. While there is only one reblancing

algorithm used in the unordered DAT design, the ordered design requires three differ-

ent algorithms to be implemented based on the current state of the tree to be restruc-

tured. Additionally, the ordered DAT’s state machine contains a larger number of

states that need to be implemented. The unordered algorithm is only concerned with

the current node, the sibling node, the parent node, and the uncle node. While the

ordered algorithm may need to access the grand-parent node, the grand-uncle node,

and even the great grand-parent node’s data. This results in an additional state for

both generating the requests and reading the node data back after the data has been
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retrieved and decrypted. Additionally, each potential node requires more flip-flops

to store the metadata while it is processed and modified. For perspective, Table 4.3

contains the utilization percentage of each component available in the xc7z2020 SoC.

Table 4.3: Authentication Tree Synthesis Results Percentage Utilized

TEC-Tree Unordered DAT Ordered DAT

No Encryption

LUTs 7.75% 18.44% 26.85%

Flip Flops 3.32% 6.44% 9.17%

DSPs 0% 25% 35%

BRAM Tiles 1.05% 1.05% 1.05%

Encryption

LUTs 20.34% 24.76% 33.16%

Flip Flops 4.71% 7.29% 10.02%

DSPs 0% 25% 35%

BRAM Tiles 1.05% 1.05% 1.05%

The number of LUT’s used for all implementations is between 7% to 27%, and

the number of Flip Flops used is between 3% to 10%. While the DAT’s utilization

is considerably higher than the TEC-Tree implementation, the overall usage is still

fairly low as there are many more LUTs and Flip Flops available for additions to the

design or other programmable logic. This programmable logic utilization is notably

low if compared to any of the higher grade models listed in Table 4.1. Interestingly,

the DAT design both use DSPs for their synthesis that the TEC-Tree does not require.

The DSPs are used in the calculation of the write-back addresses for each node after

their metadata has been modified. These address calculations are simple addition and

multiplication operations using the initial tree start address and the node metadata.

If the use of DSPs is not desired, the HDL can be modified or the synthesis tools can

be specified to not use DSPs.

56



CHAPTER 4. MEMORY CONTROLLER FRAMEWORK

4.5.2 Implementation Results

The design’s netlist generated from synthesis was then implemented for the xc7z2020

SoC. Default Vivado 2020.1 implementation and optimization settings were used. The

resulting utilization is contained in Table 4.4.

Table 4.4: Authentication Tree Implementation Results

TEC-Tree Unordered DAT Ordered DAT

No Encryption

LUTs 3270 8394 11649

Flip Flops 2893 5651 7582

DSPs 0 15 21

BRAM Tile 1 1 1

Encryption

LUTs 9018 11251 14506

Flip Flops 4122 6419 8350

DSPs 0 15 21

BRAM Tiles 1 1 1

As expected, the utilization results are very similar to the synthesis results. Over-

all, the component usage is slightly less than that of synthesis due to the optimizations

that took place. Of particular note, the proposed ordered DAT design’s synthesis re-

ports 1,2404 LUTs and 8,475 flip flops used, but the implemented design only requires

1,1649 LUTs and 7,582 flip flops. Additionally, the percentage of components used

was calculated and displayed in Table 4.5. Naturally, the percentage utilization for

each component is reduced as well, with the Ordered DAT still requiring the most

resources. Despite this large utilization, the Ordered DAT design uses a fairly low

number of components given the number of resources available. While the synthesis

and implementation results for all three designs are limited to 50 MHz, it is worth

noting that a target device with more resources and better timings will be able to

achieve higher frequencies and better performance overheads.
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Table 4.5: Authentication Tree Implementation Results Percentage Utilized

TEC-Tree Unordered DAT Ordered DAT

No Encryption

LUTs 7.08% 18.17% 25.21%

Flip Flops 3.13% 6.12% 8.21%

DSPs 0% 25% 35%

BRAM Tiles 1.05% 1.05% 1.05%

Encryption

LUTs 19.52% 24.35% 31.40%

Flip Flops 4.45% 6.95% 9.04%

DSPs 0% 25% 35%

BRAM Tiles 1.05% 1.05% 1.05%

4.5.3 Performance

The designs for all three methods were evaluated for performance in various conditions

with different memory access patterns. The TEC-Tree design tested was provided by

[25], while the dynamic tree implementations were manually implemented and written

in VHDL based on the framework outlined in Section 4.3. As previously discussed,

due to timing limitations in the implementation on the target xc7z2020 SoC, each

design was run at 50 MHz. Each designs’ customizations were standardized to make

direct performance comparisons easier. The master interface of the pipeline was

configured to accept a data length of 32 bits, while the slave interface was configured

for a data length of 64 bits. The size of memory to be protected was configured for

256 MB and a data block size of 64 bytes for each design

The dynamic nature of the proposed tree designs requires different scenarios to

fully explore the different possible performances the design may have. It is important

to test the worst and best case scenarios for the design, in order to help determine

which use cases it may perform better in. First, the designs were tested utilizing a

fully random test suite. As each memory address is random, there is a randomly
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distributed spread of accesses throughout the entire tree. While this type of memory

access pattern is very unrealistic in practical applications, this type of access pattern

is the worst-case scenario for a dynamic tree which makes it important to note. The

results of this performance are displayed in Figure 4.7. Each test was run with 10,000

write and read access to dynamically construct the tree and test timings. While

the TEC-Tree read and write timings remain consistent throughout the tests, the

dynamic trees timings consistently change. In order to provide valid results, the total

average read and write times were calculated for comparison.

Figure 4.7: Authentication Tree Latency: Random Distribution with 8 Leaf Nodes

As expected, the dynamic trees here perform worse compared to the TEC-Tree’s

performance. As a result of the uniform randomly distribution of memory accesses,

the law of large numbers states that each data node is accessed approximately equally.

The end result would then be a balanced tree that has additional data accesses and

authentication computations compared to the TEC-Tree. The additional rebalancing

operations causes significant slowdown in write operations for both dynamic authen-

tication trees, as each rebalance will ultimately be reversed as the tree is uniformly
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accessed in the future. Write operations for the unordered dynamic tree were an

average approximately 1.61 times slower than a static TEC-Tree, while the ordered

dynamic tree’s write accesses were 1.74 times slower. Despite not including extra

authentication calculations, read operations were slower for both dynamic trees as

well. This can be accounted for by both the varying levels of data nodes as the tree

is rebalanced and the fact that dynamic trees require additional metadata to be read

for each read. Due to the additional metadata that must be accessed to traverse the

tree, even if a data node in the dynamic tree structure maintained the same level of

access as the TEC-Tree, the read would be slightly slower than the TEC-Tree’s read.

The average read speed for the unordered dynamic tree was 1.49 times slower than

the TEC-Tree’s read speed and the average read speed for the ordered dynamic tree

was 1.47 times slower. These read speeds aren’t as slow as the average write speed

because each read does not need to additionally access the uncle node for rebalancing

checks as each write operation requires.

These limitations of the dynamic tree design cause a uniform random distribution

of accesses to be the absolute worst-case scenario for authentication performance.

Luckily, in reality a processor with a completely random memory access pattern is

extremely rare. If this access pattern was employed in a real-world scenario, it would

not be recommended to utilize a dynamic tree for authentication, but instead rely on

a balanced tree design.

The previous test was performed with a total of eight leaf nodes protecting mem-

ory. With this configuration the TEC-Tree’s leaf nodes would be at level log2N =

log2 8 = 3 where N is the number of counter nodes and with the 0th level being the

root of the tree. Both dynamic tree’s leaf node levels vary between the 1st level and

the level equivalent to the number of data nodes in the tree minus one in the most

extreme case. In order to test the impact that increasing the number of data nodes

and levels of the tree might have, the same test was rerun with the trees’ configura-
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tions set to include 16 leaf nodes per tree. The results of that this test is contained

in Figure 4.8.

Figure 4.8: Authentication Tree Latency: Random Distribution with 16 Leaf Nodes

Doubling the number of leaf nodes of a balanced tree will increase the number of

levels of the tree by one, as shown by log2 16 = 4. In a dynamic tree, the maximum

level increases significantly more as the max level for a dynamic tree is N − 1 =

16− 1 = 15. It can be then be inferred that the dynamic tree’s performance in both

the extreme worst and best-case scenarios is further heightened by the number of leaf

nodes in the tree. In the worst-case scenario, the dynamic tree adds an additional

15 − 4 = 11 extra levels for the tree traversal. Oppositely, in the best-case scenario,

the dynamic tree reduces the number of levels to traverse by 4 − 1 = 3. While the

worst-case scenario does indeed add a significant number of levels to access compared

to the number reduced by the best-case scenario, due to traditional memory access

patterns the worst-case scenario will almost never happen. The weighted nature of

the tree and memory access means that the nodes that are stored that far down

the tree will be very infrequently accessed compared to those nearer to the root of
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the tree. The time saved by accessing these nearer nodes then may outweigh these

extra performance overheads. As Figure 4.8 demonstrates, increasing the number

of nodes increases the write time of the TEC-Tree by 1.14 times and increases the

read time by 1.18 times. The unordered dynamic tree’s write time is increased by

1.3 times and the ordered is increase by 1.26 times. For read times, the unordered is

increased by 1.197 times, and the ordered is increased by 1.2 times. As expected, the

dynamic trees’ worst-case scenario performance is impacted more significantly more

than the TEC-Tree’s performance when increasing the number of leaf nodes in the

tree structures.

The second test applied to each authentication tree was designed to test the best-

case scenario for a dynamic tree, as opposed to the first test that introduces the worst

case. For this test, only a single data node is accessed to allow the dynamic tree to

restructure it to the top of the tree. 10,000 reads and writes were applied to this

single node and the average read and write times were recorded for each design, as

displayed in Figure 4.9.

Figure 4.9: Authentication Tree Latency: Single Node Access with 8 Leaf Nodes

62



CHAPTER 4. MEMORY CONTROLLER FRAMEWORK

As the TEC-Tree’s tree remains balanced, read and write access times remain

consistent no matter the memory access pattern. The read and write latencies are

then equivalent to those recorded in the first test case. The dynamic trees conversely

increase in performance significantly, with the read speeds beating the read speed

of the TEC-Tree in both dynamic tree designs. For the unordered DAT, the write

latency achieves a 1.5 times speedup compared to the original test case, and the read

latency gains a speedup of 1.76 times. Similarly, the ordered DAT achieves a write

speedup of 1.65 times and a read speedup of 1.74 times. In this scenario, the write

speeds for each dynamic tree are only slightly slower than that of the TEC-Tree,

while the read speeds are significantly less. The performance of the dynamic trees

would then be favored over the TEC-Tree in scenarios where the number of read

accesses outweighs the write operations. Although write-heavy patterns may suffer

slightly. The experiment was also repeated with 16 leaf nodes to measure the effects

of increasing the number of possible tree levels on each tree type. Figure 4.10 contains

the results of this test.

Figure 4.10: Authentication Tree Latency: Single Node Access with 16 Leaf Nodes
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The TEC-Tree’s read and write speeds are the same as the read and write speeds in

the 16 leaf node random distribution test. This behavior is expected because the TEC-

Tree does not rebalance. The dynamic authentication trees’ performance remains the

same as the previous test with eight nodes. This result can be attributed to the fact

that when accessing a single node, it will quickly be rebalanced to the top level of

the tree. Even though adding additional nodes will add an extra rebalance operation

for the node to reach the top of the tree, with a large enough number of memory

accesses this additional overhead is quickly averaged out and becomes insignificant.

Both the unordered and ordered DAT beat the TEC-Tree’s performance in read and

write operations as the TEC-Tree must access four levels each time while the DATs

only need to access two, the node itself and the root. In this case the unordered DAT

gains a speedup of 1.05 times on write operations and a speedup of 1.39 times on read

operations. The ordered DAT gains a speedup of 1.08 times on write operations and

a speedup of 1.39 times on read operations. While the previous two tests represent

the worst and best-case scenarios for the dynamic tree’s performance, a third test was

run to provide a realistic memory access pattern. In this test, contiguous memory was

accessed in order to simulate reading and writing to a large array in memory. The

previous test may provide an accurate representation of accessing a smaller array in

memory, but it would require the array to remain within the size range of the tree’s

data block configuration. Figure 4.11 demonstrates the results of accessing a large

array in memory that spans the entire tree size.

Once again, the read and write speeds of the TEC-Tree remain consistent with

previous tests. Naturally, the performance of both dynamic trees falls in-between the

cases presented by the previous two tests. Unfortunately, both designs do not quite

achieve the same level of performance as the TEC-Tree. The unordered DATs write

speeds are 1.44 times slower and the write speeds are 1.23 times slower. The ordered

DAT achieves an average write speed that is 1.5 times slower and an average read
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Figure 4.11: Authentication Tree Latency: Contiguous Access with 8 Leaf Nodes

speed that is also 1.23 times slower. This difference in performance can be attributed

to the fact that in this memory access pattern when the first data block is being

accessed it quickly shifts the rest of the data blocks further down in priority than

the current one. Once the next block is accessed, this happens again until the data

block size is exceeded and the process is repeated. However, if this array were to

be accessed again in the future, the performance would be increased as the area of

memory has been accessed before. To compare the performance impact of increasing

the number of nodes in the dynamic tree, the test was run again with 16 leaf nodes,

and the results are displayed in Figure 4.12.

Interestingly, because the array is accessed enough times to maintain the same tree

level configuration for the nodes protecting the array’s memory, the performance of

the read and write operations for the dynamic trees remains the same as the previous

test with eight leaf nodes. While in this scenario the dynamic trees still perform

worse than the TEC-Tree, if the node count is continued to be increased the dynamic

trees will overtake the TEC-Tree in performance. Intuitively, this makes sense as the
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Figure 4.12: Authentication Tree Latency: Contiguous Access with 16 Leaf Nodes

TEC-Tree’s nodes are equally level, which means nodes that are never accessed are

as equally weighted as those that are accessed the most frequently. Increasing the

node count for the dynamic tree allows the nodes that are never accessed to be much

further down on the tree than the TEC-Tree’s unaccessed nodes.

Overall, the TEC-Tree outperforms the dynamic tree designs in scenarios where

memory access patterns do not favor portions of memory over others. The dynamic

tree implicitly contains higher overheads on write operations as there are more cal-

culations that must be done in order to ensure that the tree is properly balanced.

However, the read and write performance on nodes that are frequently accessed have

the potential to increase the overall memory operation speed in certain scenarios. As

processors generally are more likely to access memory that has already been accessed,

this dynamic structure has the potential to massively outperform TEC-Trees. Accord-

ing to the results of the tests presented previously, the DAT has a larger advantage

over the TEC-Tree in configurations with a larger number of leaf nodes per tree. The

application that an authentication tree is used in can then be evaluated for mem-
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ory access patterns, storage requirements, and memory performance requirements in

order to tailor a specific tree type to that application. Additionally, the design pre-

senting in this thesis is a proof of concept with much room for improvement. Further

optimizations and the addition of tree node caches may allow the dynamic tree struc-

ture to overtake the performance TEC-Tree in general use applications. For easier

comparison, a summary of the results of the each timing test is contained in Table

4.6 and Figures 4.13and 4.14.

Table 4.6: Summary of Timing Results

TEC-Tree (ns) Unordered DAT (ns) Ordered DAT (ns)Access
Pattern

Leaf
Nodes Write Read Write Read Write Read

8 2520 1420 4068 2115 4387 2089
Test 1

16 2880 1668.6 5289 2533 5537 2515
8 2520 1420 2707.6 1204.4 2663 1200

Test 2
16 2880 1668.6 2731 1204 2663 1200
8 2520 1420 3625 1750 3778 1750

Test 3
16 2880 1668.6 3625 1750 3778 1750

Figure 4.13: Summary of 8 Node Timing Results
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Figure 4.14: Summary of 16 Node Timing Results
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Chapter 5

Conclusions and Future Work

5.1 Future Work

While the work presented in this paper is complete for multiple configurations and

thoroughly tested, there are still many improvements and optimizations that can

improve upon the design significantly. This framework is a proof of concept for a new

customizable encryption and authentication pipeline based on adding improvements

and options for scalability and customizability of previous works. As detailed in the

previous analysis, the new dynamic ordered algorithm focused on in this work is best

used in specific applications However it can certainly be improved upon in order to

provide more use cases, optimality, and flexibility in future designs.

5.1.1 Tree Arity

Perhaps one of the greatest limiting factors of both the unordered and ordered dy-

namic tree algorithms is the arity of the constructed tree. The largest challenge to

overcome would be to provide more rebalancing algorithms for each case that might

be possible if retaining the order of the leaf nodes is important. While it is definitely

possible to extend the algorithms for customizable arities, the number of checks added

towards restructuring the tree would increase the overhead for write operations sig-

nificantly. For example, if the arity of the tree was increased to four instead of two,
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there would be three more additional uncle nodes that must be read from memory,

decrypted, and compared for rebalancing. In addition, when a rebalance does occur,

additional performance slowdown would be incurred in order to update multiple node

relations per counter node. As for metadata storage, there would be more metadata

stored for the position of each node, instead of just storing a single bit for whether the

node is a left or right node. It would be expected that increasing the tree’s arity would

overall decrease the average height of each node, thus decreasing the total number of

levels that need to be accessed for both read and write operations. All read operations

would then be significantly increased in speed; however, write operations would be

slowed down with the additional tree rebalancing checks and operations. Depending

on the memory access patterns, this could increase overall operational speed or the

extra overhead might be too significant to be useful. As with any increase in authen-

tication tree arity, the overall memory storage would also be increased due to the

added relationships that need to be tracked for each node.

5.1.2 Encryption and Decryption Parallelization

In its current form, the design framework presented only utilizes a single instance of

a cipher’s encryption and decryption engines. It is possible to instantiate multiple

of these components in order to encrypt and decrypt multiple data blocks at the

same time if there are enough resources available in the programmable logic fabric.

Unfortunately, the block level AREA technique employed in this design relies on error

propagating cipher block modes of operation. These error propagating modes rely on

previously processed data blocks in order to begin processing the next block, allowing

for only sequential operation and not enabling parallelization. Separate nodes could

be encrypted and decrypted in parallel if that information was available to the design

at the same time. Generally, the encryption and decryption process is already quicker

to perform than it is to retrieve additional information from memory. A dual-port
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RAM could potentially be utilized to read or write multiple tree nodes at once, and

then multiple cipher components could be used to process this data at the same time.

5.1.3 Caches and Leaf Node Ordering

Caches have widely been used to store frequently accessed data to enable faster re-

trieval of that data to speed up memory operations. This technique has been expanded

to multiple forms of authentication trees in the past, including the work presented

in [19]. This framework currently does not support caching for the dynamic tree

information, but this can be implemented in the future. There are multiple different

types of caches that could be utilized to speed up the overall design’s functionality.

Tree information itself could be stored in a cache in order to prevent the need to

reread more frequently accessed nodes from memory every time the tree is accessed.

As most of the slowdown in the dynamic tree design is caused by requiring the infor-

mation from nodes to be read to traverse the tree, caching these nodes would provide

a considerable increase in performance. A second type of cache could be implemented

that caches payload data. The payload data would be the actual data requested to be

written to memory by the processor. This second cache could be implemented instead

of or in conjunction with tree node caching. This would help increase performance

significantly as this data would be more readily available and external memory would

not have to be accessed every time data is read or modified.

Considering that processors are generally more likely to access data that has

already been accessed, a dynamic tree design with caches could be used to pro-

vide extremely minimal performance overhead compared to traditional authentication

tree methods. Additionally, the ordered dynamic algorithm proposed in this paper

could potentially increase cache performance by providing the caches with informa-

tion about node order and relationships. For example, a cache could predict that a

large array is being accessed in the running program. The nodes are ordered and the
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cache could preemptively store the sequential data blocks that will be accessed in the

future.

5.1.4 Compiler Assistance

Instead of initializing each authentication tree to a balanced tree on startup, the

compiler could communicate memory access patterns to the programmable logic or

a bootloader before the program begins operation [27]. In the case of a dynamic

tree, this would allow improvements in authentication speeds to be available from

the very beginning of the program’s execution as opposed to needing some run-time

for the restructuring to begin. While the dynamic algorithm here performs a form of

dynamic analysis for memory access patterns, a compiler can perform a static analysis

of the program to be run at compile time. This static analysis can then be used to

initialize the tree based on expected memory accesses. In the case that the compiler’s

static analysis does not provide a good prediction, the dynamic tree algorithms can

then be used in order to correct the tree’s optimization on the fly. Additionally, this

analysis could potentially prevent unnecessary rebalancing overhead by telling the

dynamic tree to not rebalance on conditions that will need to be rebalanced back to

the previous configuration.

5.2 Conclusions

The importance of embedded security continues to rise as devices with important

functionality steadily increases in usage. The work presented includes an authen-

tication tree design that improves upon existing techniques to provide an increase

in performance while providing adequate protection against attackers with physical

access to a device. While current memory authentication techniques are expensive,

this design allows for further customizations to further suit the specific application it

is to be employed in. Additionally, a transparent memory controller that allows for
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encryption and authentication is provided. The memory controller contains a large

number of customization and support for platforms with different memory speed and

size requirements. A user is able to integrate the design in their system without a

large amount of prior knowledge or experience.
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