
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

6-2021

Securing in-memory processors against Row Hammering Attacks Securing in-memory processors against Row Hammering Attacks

Sahil K. Gogna
sxg4060@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Gogna, Sahil K., "Securing in-memory processors against Row Hammering Attacks" (2021). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10863?utm_source=repository.rit.edu%2Ftheses%2F10863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Securing in-memory processors against Row
Hammering Attacks

Sahil K. Gogna

Securing in-memory processors against Row
Hammering Attacks

Sahil K. Gogna
June 2021

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

COE_hor_k https://www.rit.edu/engineering/DrupalFiles/images/site-lockup.svg

1 of 1 1/9/2020, 10:42 AM

Department of Computer Engineering

Securing in-memory processors against Row
Hammering Attacks

Sahil K. Gogna

Committee Approval:

Dr. Amlan Ganguly Advisor Date
Department of Computer Engineering

Dr. Cory Merkel Co-Advisor Date
Department of Computer Engineering

Mr. Mark Indovina Co-Advisor Date
Department of Electrical Engineering

i

Acknowledgments

I would like to take this opportunity to thank Dr. Amlan Ganguly for guiding me

throughout my academic career; without his involvement, I would not have reached

this point and I am ever grateful for the support and guidance he has given me to

succeed in this environment. In addition, I also want to express my gratitude in

always establishing a positive and joyous environment in which not only I thrive in,

but other students can thrive in.

I would also like to thank my colleagues Purab Suthradhar, Mark Connolly, Prangon

Das, and Sayed Ashraf for helping and brainstorming alongside me to grow and

develop in the environment, allowing me to understand complex and unique problems

that affect the modern world today.

In addition, I would like to thank my parents, Mr. Pardeep Kumar and Mrs. Alpana

Gogna, who have always supported me and given me the tools to succeed. Without

them, I would not have been able to garner and achieve a higher level of education.

They have ultimately shaped who I am today and have lead me to a path of success

up to this point.

Finally, I would like to thank all the students and faculty I have met along the way.

They have all helped and inspired me to reach this point of my education. They gave

me the confidence to believe in myself to succeed and they deserve the credit as well.

ii

I dedicate this to my parents, Mr. Pardeep Kumar and Mrs. Alpana Gogna. Thank

you for always guiding and helping me be a better me everyday.

iii

Abstract

Modern applications on general purpose processors require both rapid and power-

efficient computing and memory components. As applications continue to improve,

the demand for high speed computation, fast-access memory, and a secure platform

increases. Traditional Von Neumann Architectures split the computing and memory

units, causing both latency and high power-consumption issues; henceforth, a hybrid

memory processing system is proposed, known as in-memory processing. In-memory

processing alleviates the delay of computation and minimizes power-consumption;

such improvements saw a 14x speedup improvement, 87% fewer power consumption,

and appropriate linear scalability versus performance. Several applications of in-

memory processing include data-driven applications such as Artificial Intelligence

(AI), Convolutional and Deep Neural Networks (CNNs/DNNs). However, processing-

in-memory can also suffer from a security and reliability issue known as the Row

Hammer Security Bug; this security exploit flips bits within memory without access,

leading to error injection, system crashes, privilege separation, and total hijack of a

system; the novel Row Hammer security bug can negatively impact the accuracies of

CNNs and DNNs via flipping the bits of stored weight values without direct access.

Weights of neural networks are stored in a variety of data patterns, resulting in either

a solid (all 1s or all 0s), checkered (alternating 1s and 0s in both rows and columns),

row-stripe (alternating 1s and 0s in rows), or column-striped (alternating 1s and 0s in

columns) manner; the row-stripe data pattern exhibits the largest likelihood of a Row

Hammer attack, resulting in the accuracies of neural networks dropping over 30%. A

row-stripe avoidance coding scheme is proposed to reduce the probability of the Row

Hammer Attack occurring within neural networks. The coding scheme encodes the

binary portion of a weight in a CNN or DNN to reduce the chance of row-stripe data

patterns, overall reducing the likelihood of a Row Hammer attack occurring while

improving the overall security of the in-memory processing system.

iv

Contents

Signature Sheet i

Acknowledgments ii

Dedication iii

Abstract iv

Table of Contents v

List of Figures vii

List of Tables 1

1 Introduction 2

1.1 Processing-in-Memory (PIM) . 2

1.2 Row Hammering (RH) Security Attack 5

1.3 The Effects of Row Hammer Attack on In-Memory Processing 10

2 Background 14

2.1 In-memory Processing . 14

2.2 Row-Hammering . 21

3 Vulnerability Analysis of a Programmable In-memory Architecture 30

3.1 Programmable In-memory Processing core 31

3.2 Programmable In-memory Processing Cluster 32

3.3 Programmable In-memory Processing Router 33

3.4 Programmable In-memory Processing Function Word Generation . . 34

3.5 In-memory Processing Multiply and Accumulate Operations 34

3.6 In-memory Processing Activation Operations 35

3.7 Field Programmable Gate Array Implementation 36

3.7.1 Technology Resources . 37

3.7.2 Machine Learning Model . 37

3.7.3 In-memory processing Implementation 37

3.7.4 Communication . 38

3.8 Results . 39

v

CONTENTS

3.8.1 pPIM characteristics . 39

3.8.2 Performance Evaluation . 40

3.8.3 Vulnerability Analysis of In-memory Processing Architectures 42

4 Row Hammer Reducing Encoding Scheme 45

4.1 In-memory Data Mapping . 46

4.2 Encoding Connectivity . 46

4.3 Encoding Scheme . 47

4.3.1 Alternative Encoding Schemes 48

4.3.2 Comparisons with Error-Correction Codes 50

4.3.3 Comparisons to logic/counter based approaches 51

4.4 Operation Mapping . 53

4.5 Results . 54

4.5.1 Encoding and pPIM architecture characteristics 54

4.5.2 Encoding Functionality . 56

4.5.3 Encoding/Decoding Performance Evaluation 57

4.5.4 Pipelined RH-encoding scheme 58

4.6 DRAM Design Analysis . 60

5 Conclusion and Future Work 63

5.1 Future Work . 65

Bibliography 67

vi

List of Figures

1.1 In-memory Processing Architecture 4

1.2 3D Integration Stack [1] . 5

1.3 Row Hammering Example . 6

1.4 Row Hammering Data Pattern . 8

1.5 Row Hammering Data Pattern Statistics [2] 8

1.6 Attack and Defense Model . 12

2.1 Hybrid Memory Cube Integration Stack 17

2.2 Single Tesseract Core . 18

2.3 Message Triggered Prefetching . 20

2.4 Weight Sensitivity of MLP and LeNet with Iris and MNIST Datasets 26

2.5 TWiCe Architecture . 28

3.1 Hierarchical view of the pPIM Architecture 30

3.2 Layout of the pPIM core architecture [3] 31

3.3 Layout of the pPIM cluster architecture [3] 32

3.4 Interconnect Router Architecture for n cores in a cluster [4] 33

3.5 MAC Operation Multiplication and Accumulation Stages 35

3.6 Dataflow model within a pPIM cluster for both (a) 8-bit full precision

and (b) 4-bit half precision unsigned MAC operations [3] 35

3.7 Dataflow Model within a pPIM cluster for both (a) 16-bit precision

and (b) 8-bit precision ReLU activation operations [3] 36

3.8 Dataflow Model within a pPIM cluster for both (a) 16-bit precision

and (b) 8-bit precision Saturated ReLU activation operations [3] . . . 36

3.9 FPGA MAC and Classification Regions within FPGA Implementation

of pPIM architecture . 38

3.10 Communication Model between ZC702 Evaluation Board and End Device 39

3.11 Comparison of (a) throughput and (b) power consumption of various

architectures . 40

3.12 Comparison of (a) area and (b) efficiency/area of various architectures 41

3.13 Weight Vulnerability Heatmap on the MNIST dataset 43

4.1 Proposed Encoding Scheme for handling RH attacks 45

vii

LIST OF FIGURES

4.2 Model of the interface between the RH-encoding scheme with pPIM

Clusters and memory elements . 47

4.3 Original Encoding Scheme . 49

4.4 Dual 3-to-4 Encoding Scheme . 49

4.5 Uncorrectable multi-bit errors (in bold) [2] 51

4.6 Sequential model of both encoding and decoding operations on the

pPIM architecture including (a) encoding sequential model and (b)

decoding sequential model. The inputs ‘a’, ‘b’, and ‘c’ indicate input

to the cluster from memory with the high and low segments of memory

dictated by the subscripts ‘H’ and ‘L’, respectively. The input and the

output of the encoding and decoding schemes are dictated by ‘A’ for

encoding and ‘U’ for decoding. 55

4.7 Encoding Functionality Comparison of (a) AlexNet, and (b) VGG-16,

with and without encoding . 57

4.8 Comparison of (a) throughput and (b) power consumption of various

CNN algorithms with and without RH-encoding scheme 58

4.9 Pipelined Sequential model of both encoding and decoding operations

on the pPIM architecture including (a) encoding sequential model and

(b) decoding sequential model. The inputs ‘a’, ‘b’, and ‘c’ indicate

input to the cluster from memory with the high and low segments of

memory dictated by the subscripts ‘H’ and ‘L’, respectively. The input

and the output of the encoding and decoding schemes are dictated by

‘A’ for encoding and ‘U’ for decoding. 59

4.10 Comparison of throughput of various CNN algorithms with and with-

out pipelined RH-encoding scheme 61

4.11 DRAM Coupling Capacitance vs. Number of Row Hammer Attacks . 62

viii

List of Tables

3.1 Synthesis Results for pPIM Architecture 39

4.1 Row Hammer Encoding Truth Table Samples 48

4.2 Read Core Functionalities . 54

4.3 Synthesis Results . 56

4.4 Pipelined Synthesis Results . 60

1

Chapter 1

Introduction

1.1 Processing-in-Memory (PIM)

Traditional von Neumann Architectures consist of a central processing unit (CPU)

and memory unit separated via interconnects; data is transferred between these units

in which one involves computation and the other storage. Interconnects are responsi-

ble for transporting data from one unit to the other to allow the architecture to func-

tion properly. As the technology node improves, interconnects have higher amounts

of resistivity, capacitance, and inductance; in addition, the rate at which processing

speed is improving is significantly higher than the rate at which memory speed is im-

proving. The constant transfer of data over interconnects results in large latency and

high power-consumption, leading to the proposal of an in-memory processing unit.

A limitation of the von Neumann Architecture involves the rates at which both

processing speed and memory are improving. Computing power has sped up in the

recent years whereas fetching data from memory has lagged behind, instead, focusing

on memory density; processors are improving at a rapid pace but are trivial if data

is not fetched at an appropriate rate. Moore’s Law exhibits that a gap of about 50%

between computing and memory power is growing per year, creating a memory wall

scenario [5]. As applications continue to improve in parallel with the technology node,

the demand for both higher computational and memory performance increases. Data-

2

CHAPTER 1. INTRODUCTION

driven applications such as artificial intelligence and brain-inspired computing utilize

CNNs and DNNs which require intense and exhaustive computations; these processes

include video or image processing purposes and utilize linear algebra multiplication

of vectors and matrices. Data is continuously offloaded from and written to memory

with CNN and DNN operations, incrementing latency.

Another issue that deals with von Neumann Architectures includes the resistiv-

ity, capacitance, and inductance of interconnects [6]. Resistivity increases as a result

of the length and thinness of the wire as the technology node scales; in addition,

metal lines run over thick oxide covering the substrate, resulting in both higher lev-

els of resistance and capacitance. Capacitance increases as results of area, lateral,

and fringe capacitance within wire dimensions. Furthermore, Miller’s Effect, which

involves coupling capacitance creates additional capacitance based on signal values in

adjacent wires. If signals do not switch in the same direction amongst adjacent wires,

additional or parasitic capacitance is tacked onto to the base capacitance of intercon-

nect, resulting in higher capacitance and overall higher delay and power-consumption.

As the technology node improves, interconnects get thinner, resulting in fewer resis-

tance but larger inductance, increasing frequency and the use of coppers in wires [1].

These three factors positively correlate with latency and power consumption; more-

over, the usage of CNNs and DNNs involve millions of operations in which data is

continuously transported over interconnects, causing a greater amount of latency and

power-consumption added to the traditional von Neumann Architecture.

In-memory processing is a proposed solution to the memory and interconnect

bottlenecks exhibited in contemporary Von Neumann Architectures, as operating

within or near memory reduces both the distance data has to travel from and to

memory along with quicker data fetching. Processing in or near memory utilizes

accelerators, or small cores or processors on memory, typically DRAM, allowing logic

to occur within the memory unit [5]. In the fabrication process, in-memory processors

3

CHAPTER 1. INTRODUCTION

and memory are closely coupled, in which a machine has several processors that share

the same amount of memory, consequently improving the memory transfer rate and

memory bandwidth while both latency and power-consumption can be minimized.

Processing-in-memory (PIM) is a quite innovative idea that explores the union of both

memory and processing units, decreasing latency and reducing power consumption.

Figure 1.1 illustrates a type of architecture of in-memory processing.

Figure 1.1: In-memory Processing Architecture

Some novel forms of interconnects may be used to serve a purpose within in-

memory processing such as 3D, photonic, and on-chip wireless interconnects. 3D

Integration is an emerging interconnect that involves stacking chips, creating multiple

layers; this saves both space and power consumption within an integrated chip [7].

However, heat dissipation is a common problem within 3D Integration since chips

are stacked closely and densely as possible. Figure 1.2 shows a 3D Integration stack

example.

In addition to 3D integration, photonic networks utilize electronic packet-switched

networks to operate network on chip (NOC) architectures, which is typically used and

integrated via 3D integration, further reducing power-consumption. However, ongoing

4

CHAPTER 1. INTRODUCTION

Figure 1.2: 3D Integration Stack [1]

research is required to investigate photonic NOCs [8]. On-chip wireless interconnects

utilize wireless or RF signals to communicate parts of a processing unit without

interconnects via transmission lines. Although interconnect-less, long transmission

line routing may cause latency issues and signal drops through transmission. Several

of these solutions can be implemented to form an in-memory processing unit.

1.2 Row Hammering (RH) Security Attack

As the technology node scales, the separation between memory cells decreases, forcing

rows of memory to be closer to one other. As rows are continually accessed, the charge

within cells of certain rows can leak due to continual pre-charge and activation of the

memory cell capacitors, flipping bits within cells of adjacent rows without accessing

them [2] .

Row-hammering (RH) occurs between two consecutive refreshes of DRAM; this

is due to capacitive interference between two adjacent memory rows [9]. Whenever a

row is switched or accessed frequently, the capacitive interference causes the cells in

5

CHAPTER 1. INTRODUCTION

adjacent rows to slightly charge or discharge. When repeatedly toggling/accessing a

certain row, due to how close the rows are (typically below 35 nm) and how charge

can easily jump due to electrical interference, adjacent rows can be activated without

access due to charge affecting their wordlines (electromagnetic coupling) [2]. Using

this, a complete attack model can be designed in which the attacker program con-

tinuously and repetitively activates and precharges a certain row(s) of DRAM. This

repetitive action eventually alters the values stored in the cells of adjacent rows (upper

or lower). Figure 1.3 exhibits a double-sided row hammer attack.

Figure 1.3: Row Hammering Example

In addition to Figure 1.3, a simple x86 Assembly Code, shown below also simulates

the Row Hammer Attack as it can only occur in the same bank of memory [2].

code1a:

mov (X), %eax // read from address X

mov (Y), %ebx // read from address Y

clflush (X) // flush cache for address X

clflush (Y) // flush cache for address Y

mfence

6

CHAPTER 1. INTRODUCTION

jmp code1a

The code above alternates the accesses to two different rows (but on the same bank

of memory); in addition, memory read is not from the same row and the content of the

row cannot be used. Since an activation to both rows occur via the ’mov’ commands

are right after one another, a Row Hammer Attack can occur. However, alternating

the code below such as below will not simulate a Row Hammer Attack [2].

code1b:

mov (X), %eax // read from address X

clflush (X) // flush cache for address X

mfence

jmp code1b

The code above does not simulate the Row Hammer attack because there is no

access to another row in memory; the data will be served from the row buffer in

memory since there is no need to reactivate the row; therefore, the Row Hammer

attack only occurs via activation, not accessibility. In addition, the Row Hammer

attack occurs within the refresh window, typically 64 ms, only in the same bank of

memory but different rows [2].

In commodity DRAM chips, around 9600 row activations are required to simulate

the RH attack [10]; the bug can attack via two methods: single-sided and double-

sided; the effects of RH attacks are similar to those of cross-talk effects displayed

between interconnects [11]. In the double-sided case, rowhammer occurs via continu-

ous activation and pre-charge of the two outer rows, causing bits flips in the middle

row or the inner or middle row is the aggressor row, causing bits to flip without being

accessed in the above or below rows. In the single-sided case, rowhammer occurs

via only one aggressor row and one victim row, with one aggressor row ’hammering’

the victim row. Attackers can either have the information of the virtual to psychical

7

CHAPTER 1. INTRODUCTION

mapping of the system (Whitebox RH Attack), allowing for a less brute-force tactic

and higher chance of successful data corruption or they may not have the mapping,

which may also corrupt data in a more forceful manner (Blackbox RH Attack) [12].

Furthermore, the rowhammer security bug has a data pattern dependence, indicat-

ing that the organization of data in DRAM is critical to the security of the system.

Four data patterns exist: Solid, ColStripe, RowStripe, and Checkered. Figure 1.4

below displays the four data patterns [2].

Figure 1.4: Row Hammering Data Pattern

Amongst all data patterns, the RowStripe pattern exhibits the worst-case scenario

for rowhammer attacks. In 2014, commodity DRAM were put under the rowhammer

attack with all four data pattern dependencies to indicate which data pattern had the

highest number of bit flips [2]. Figure 1.5 below shows the results of the rowhammer

attack on all four data pattern dependencies on three manufacturers of DRAM [2].

Figure 1.5: Row Hammering Data Pattern Statistics [2]

Row-hammering induces errors such as privilege separation, system crashes, a

8

CHAPTER 1. INTRODUCTION

hijack of control of the system, and error injection. Google has actually exploited

the poor scaling of DRAM via the Row Hammer bug to gain kernel privileges by

repeatedly accessing rows causing bit flips; such privileges can be given to the wrong

user, potentially causing a reverse-engineering based security issue.

Inspired by [13], researchers from Google Project Zero demonstrated that row

hammer attacks can be exploited at the user-level to gain kernel privileges on real

systems. One exploit involved running a Native Client (NaCl) program and escalated

privilege to escape the x86-64 sandbox environment. Another exploit runs as a normal

x86-64 process on Linux and escalates privilege to gain access to all of the physical

memory mapping and hijack the entire system. The attacker hammers a page table

entry (PTE) in memory. This changes the PTE to point to a page table owned by the

attacking process. This gives the attacking process full read-write access to its own

page table and hence to all of physical memory, which enables the attacking process

to take over the entire system.

Drammer investigates the vulnerability of mobile devices to the RH attack [14].

Drammer investigates the effects of row hammer attacks on ARM-based mobile de-

vices. [14] takes advantage of the deterministic memory allocation patterns in the

Android Linux Operating System. Via deterministic memory allocation patterns, a

methodology is proposed for forcing a victim process to allocate its PTE in a RH-

vulnerable region of memory. This involves the attacker process to allocate all possible

memory regions for a page table allocation and then release the page table allocation

that contains the RH-vulnerable DRAM cells at bit offsets that enable exploitation.

[14] discovered 18 out of 27 phone models to be vulnerable to the RH attack and have

since released a mobile application that tests memory for RH-vulnerable cells and

aggregates statistics on how widespread the RH phenomenon is on mobile devices.

This work shows that existing mobile systems are widely vulnerable to RH attacks

[14].

9

CHAPTER 1. INTRODUCTION

[15] involves RH attacks that includes hijacking mobile systems by triggering the

RH attack using the WebGL interface on a mobile GPU, takeover of a remote system

by triggering the attack through the Remote Direct Memory Access (RDMA) protocol

and various other attacks [15]. The RH attack has widespread and profound real

implications on system security, as it breaks memory isolation on top of which modern

system security principles are built.

Various solutions such as counter and probabilistic based approaches, along with

new additional components, have been taken to address row-hammering issues. Counter-

based approaches involve placing counters along each DRAM row to monitor the

amount of activations until a threshold has been met [16]; probabilistic solutions in-

volves auto-refresh techniques within DRAM such that the topmost entry is reset to

its original value regularly. Pruning is also a technique in which the aggressor rows

are recorded in a table and the least aggressive rows are pruned out continuously from

the table to find the most aggressive row [17].

1.3 The Effects of Row Hammer Attack on In-Memory Pro-

cessing

Security of data is essential to any architecture, network, or system of operations;

recently, the novel row hammering security bug was discovered in which bits of data

can be flipped without access [9]. The continuous pre-charge and activation of rows

causes charge to propagate to adjacent rows and flip bits of data, causing host privilege

escalation issues, incorrect qualitative/quantitative information, and possibilities of

attacks on networks, including CNNs and DNNs [13].

Weights stored in both CNNs and DNNs are subject to security vulnerabilities such

as the Row Hammer Attack, as they are stored within memory, typically DRAM; as

the Row Hammer Attack flips bits of memory without access, the weights are vulner-

10

CHAPTER 1. INTRODUCTION

able to this, comprising memory information as well as manipulating the accuracy of

a network.

An attack model composes of an attacker that either knows or does not know the

virtual to physical memory mapping. If the attacker does not the know mapping, a

brute-force tactic would occur, effectively pre-charging and activating random rows to

damage the network. However, if the attacker does know virtual to physical memory

mapping, with a knowledge of the data pattern dependency, the attack on the network

can be severe as the structure in which the weights stored in memory can influence

the manner in which the Row Hammer Attack can occur.

Weights can be stored in a plethora of ways in memory, either horizontally or

vertically; however, the way they are stored can influence the likelihood of a Row

Hammer Attack occurring on the network. The four data pattern dependencies as

exhibited in Figure 1.4 shows all types of data patterns of weights. Out of the four

data patterns, the RowStripe data pattern, which exhibits rows alternating in 1s

and 0s, has a significantly highest probability of a Row Hammer Attack occurring

as compared to other three data patterns [2]. Investigating the effects of the data

patterns on the weights stored in the network can mitigate the effect of the Row

Hammer Attack, particularly looking into the effects of the RowStripe data pattern.

As the RowStripe data pattern has the highest likelihood of a Row Hammer Attack

occurring on a network, minimizing the effects of this data pattern specifically can

significantly reduce the chances of a Row Hammer attack affecting on a network.

Henceforth, we explore the the performance of a neural network along with the

sensitivity of its layers. In addition to layer sensitivity, a weight vulnerability analysis

is performed to determine which weights are subject to the RowStripe data pattern. A

RowStripe Avoidance Coding (RAC) scheme is proposed to encode the weights in the

network to remove the RowStripe data pattern in certain bit positions, specifically the

most vulnerable positions of the weight. An attack and defense model is represented

11

CHAPTER 1. INTRODUCTION

below in Figure 1.6.

Figure 1.6: Attack and Defense Model

The attack and defense model shown in the figure below is to be implemented to

avoid any RowStripe vulnerable data patterns in memory. The weights of a neural

network are encoded in the cloud and then stored within memory such that the

attacker cannot exploit the RowStripe vulnerable weights. Memory on the edge device

will store the encoded weights with the RowStripe Avoidance Coding Schemes and

decoding will be done within the cloud. The main contributions of this work are

the design of an original and unique coding mechanism as well as a creation of a

performance benchmark for the scheme to evaluate its effectiveness. In addition,

an evaluation of the bit error rate as well as additional hardware is implemented

to allow for proper data-flow of information securely, taking into consideration the

12

CHAPTER 1. INTRODUCTION

Rowhammer attack on networks.

13

Chapter 2

Background

2.1 In-memory Processing

In-memory processing is a potential solution to the von Neumann bottleneck, in which

both speed and energy are compromised due to the use of interconnects. Recently,

there has been an explorative effort on various PIM architectures.

LAcc is a look-up-table (LUT) based in-memory accelerator utilized to multiply

data in a unique manner [18]; many designs of PIM for multiplication do exist yet

many are not efficient as LAcc. LAcc utilizes multiplication decomposition as shown

below in Equation 2.1.

A ∗B + C ∗D = (A ∗B0 ∗ 20 + A ∗B1 ∗ 21) + (C ∗D0 ∗ 20 + C ∗D1 ∗ 21) (2.1)

In the above equation, A and C are the addends whereas B and D are the select bits

selected by the LUTs when performing multiplication decomposition; these calcula-

tions are used for CNN or DNN applications and are typically vector-based operations.

The table size of the LUT depends on the bit-length of the values to be multiplied.

To achieve proper multiplication decomposition and save LUT table space, LAcc uti-

lizes horizontal and vertical partitioning to split the vectorized values to multiply. An

14

CHAPTER 2. BACKGROUND

example of this is shown below in Equation 2.2.

(
1 1 0 1 0 1 0 0

)



1

0

1

0

1

0

1

0



=

(
1 1 0 1

)


1

0

1

0


+

(
0 1 0 0

)


1

0

1

0


(2.2)

The LUT size for the equation above would be 28 (24 ∗ 24 = 28) bits. Without

horizontal or vertical partitioning, the LUT table size would have been 216 (28 ∗ 28 =

216) bits, saving a significant amount of space. LAcc is a PIM DRAM accelerator

that computes multiplicaton 6.3x fast than the current method of multiplication on

traditional Von Neumann Architectures [18].

The computational ideas shown in [18] resonate with that of approximate comput-

ing, in which a dynamic bit-width is used to compute to the accuracy of a machine

learning program (MLP) [19]. Using a shorter, or dynamic bit width, may aid in

improving power-consumption and limit accuracy loss. In-memory processors can

leverage the idea of having dynamic bit-widths to compute to further increase power-

consumption savings as well as limit latency in calculations all while minimizing

accuracy loss. Data can be split into segments, allowing for faster computation and

minimal power-consumption, used in multiple in-memory processing architectures.

pPIM is a programmable PIM architecture that combines processing of machine

learning networks such as CNNs and DNNs. CNNs and DNNs, such as AlexNet,

use millions of multiplication operations to compute image and video processing [4].

To simplify the operations, partial products are made out of the multiplication op-

15

CHAPTER 2. BACKGROUND

erations and all possible solutions are construed within a Lookup Table (LUT). For

example, two four-bit values are to be multiplied; therefore, the total number of pos-

sible outcomes of the multiplication operations is 256, or (24)2, since each value is

of four bits in binary. The LUT would be populated with all potential outcomes,

ranging from 0 to 255. The partial products of the two inputs would be created via

multiple addition operations, reducing the cycles needed to complete each addition

operation. Albeit there may be multiple additional operations within the core which

may cause further delay, the reduction of interconnects and use of LUTs will not only

compensate for the millions of operations, but it will also improve the performance

as compared to previous Von Neumann Architectures.

The Hybrid Memory Cube (HMC) is a hybrid Dynamic Random Access Memory

(DRAM) memory/logic structure created via 3D Integration in Very-large-scale in-

tegration (VLSI) [20] [1]. 3D Integration is an emerging interconnect that involves

stacking chips, creating multiple layers; this saves both space and power consumption

within an integrated chip [7]. However, heat dissipation is a common problem within

3D Integration since chips are stacked closely and densely as possible.

The Hybrid Memory Cube utilizes this architecture to communicate between mem-

ory and logic in a revolutionary, faster, and power-efficient manner; furthermore, the

HMC is scalable, allowing for better bandwidth consumption as the system scales [1].

The Hybrid Memory Cube utilizes crossbar switching to communicate between

cores, or typically called vaults, within its own architecture. Each vault, or partition,

contains the logic implementation of the HMC, allowing for processing-in-memory to

occur, Figure 2.2 shows the Hybrid Memory Cube Integration Stack.

Computation occurs within each partition, which is within each bank of DRAM

chip. DRAM structure is composed of ranks, which is also known as a group of

chips. Within each chip, there are multiple banks; each bank has rows and columns

of memory cells, which are composed of a pass transistor and capacitor to store charge

16

CHAPTER 2. BACKGROUND

Figure 2.1: Hybrid Memory Cube Integration Stack

and access bit-/word-lines via charge stored in capacitors. Within the HMC’s banks,

there exist partitions where each processing unit lies, underneath the memory cells;

this completes the layering of the HMC.

Tesseract is a programmable PIM architecture that combines processing of ma-

chine learning networks such as CNNs and DNNs within graphs, such as traversals

and data collection of edges and vertices [21]. Tesseract utilizes the Hybrid Mem-

ory Cube Architecture via 3D Integration and its memory unit; however, it begins

to differ when it comes to its logic unit. Unlike the HMC, which utilizes a simple

logic system within its vault via multiple multiplexers over crossbar communication,

Tesseract’s processing unit contains a single-issue in-order core using message buffers

and prefetching techniques in order to utilize memory bandwidth in an efficient man-

ner. Furthermore, the programming interface allows for greater control over each core

in a vault [1].

Tesseract is composed of 8 GB DRAM layers, eight 40 Gb/s high speed serial

links, 32 slices (or vaults), and a single-issue in-order cube [21]. Figure 2.3 below

shows a Tesseract core within an HMC vault.

Tesseract has two ways of handling function calls: blocking function call and

17

CHAPTER 2. BACKGROUND

Figure 2.2: Single Tesseract Core

non-blocking function call.

Blocking function calls involve the core retrieving function arguments via the

network interface; upon retrieving the arguments, the core goes into interrupt mode

to isolate that process and computes its result in a special register. Once the result has

been computed within the special register, the core exits interrupt mode and transmits

the output to the remote core that requested the computation. The blocking function

call is typically used to check for global state changes; for example, a check on two

variables such as ”diff > a” [21]. A drawback to the blocking function call is that

each interrupt executed has latency since it is per one core at one time, not multiple

functions for multiple cores; furthermore, local cores are blocked until responses arrive

from the remote core [1].

Non-blocking function calls involve the core retrieving function arguments via the

network interface; however, the core will use its message queue feature to success-

fully complete not only one task at a time, but multiple tasks at a time. Function

arguments will continue to accumulate at the message queue until it is full; once the

queue is full, a “batch” interrupt will be executed to complete all the tasks in the

18

CHAPTER 2. BACKGROUND

queue, as well as taking into account dependence of tasks. The non-blocking function

has no return value and is typically used to update values within registers only [21].

Tesseract offers two methods of prefetching to retrieve function arguments (or

instructions): list prefetching and message triggered prefetching.

List prefetching involves traversing strides of a graph; a stride is a chronological

sequence of vertices or edges [21]. A stride prefetcher is used based on a reference

prediction table (RPT) that prefetches multiple cache blocks ahead to utilize high

memory bandwidth. The prefetcher operates on a loop-based mechanism that allows

storage of the address. Within the loop, the address is put into a list; it is then put

into the RPT as an entry if it conforms to a hint for the processor. This entry may

be removed if the processor is at the end of memory or stride and then removed from

the general list [1].

Message triggered prefetching is typically used over list prefetching; realistically,

stride access pattern is not the commonly used traversal [21]. Random access pattern

is used in more common-day graph processing. Furthermore, this works well with

non-blocking function calls because data is literally being prefetched to be accessed

by the function call. Initially, the network interface retrieves a message. This message

is then enqueued into the message queue and is requested by the message queue for a

prefetch; the message is then marked as “ready” and is then to be processed within

the core. Figure 2.4 shows the action of the message triggered prefetching [1].

A performance and energy comparison between conventional architectures (non

Von Neumann) and Tesseract was conducted, with Tesseract having a speedup of 9x

without prefetching techniques and 14x with prefetching techniques [21]. It has an

87% fewer energy consumption as compared to [20] and a bandwidth usage (perfor-

mance scalability) of 17.2 GB/s and 512 cores from 8.5 GB/s and 128 cores, respec-

tively [21]. The scalability of Tesseract gives PIM the ability to expand and scale

easily for larger environments [1].

19

CHAPTER 2. BACKGROUND

Figure 2.3: Message Triggered Prefetching

PIMSim is a flexible and detailed in-memory processing simulator that allows

users to evaluate and test actual processing-in-memory applications [22]. The advent

of heterogeneous aspects of processors have led to the rise of PIM simulators as pro-

cessing in data has two main advantages. In-memory computing logic has a much

higher internal bandwidth as compared to off-chip bandwidth and data movement

between the CPU and memory is reduced significantly, saving both power consump-

tion and latency issues. PIMSim allows users to track instructions per cycle (IPC)

dynamically to compare how fast an instruction is computed in-memory as compared

to a traditional Von Neumann Architecture; in addition, the in-memory logic can also

be very flexible such that either logic gates or a full processor core can be used to

simulate in-memory computing.

20

CHAPTER 2. BACKGROUND

2.2 Row-Hammering

As the technology node improves, memory components gradually become denser and

closer to one another, leading to issues such as charge leakage and movement. When

repeatedly toggling/accessing a certain row of memory, due to how close the rows are

and how charge can easily jump, adjacent rows can be activated without access due

to charge affecting their wordline (electromagnetic coupling) on the same banks of

memory but different rows, known as the rowhammer security bug [2]. This novel

security bug can attack either one row or two rows of memory, with the worst case

as one row, the middle row as the victim, and the two adjacent rows surrounding

it as the aggressors, known as a double-sided rowhammer attack; other attacks can

occur where only one aggressor and one victim row, known as a one-sided rowhammer

attack.

The rowhammer attack is a large problem that affects memory devices, typically

newer DRAM chips are far more susceptible to RH attacks since fewer activations on

rows are required to induce the attack, typically around 9600 activations [10]. [10]

investigates three types of DRAM to analyze how the rowhammer attack affects each

one: DDR3, DDR4, and LPDDR4. Between the three types of memory, DDR4, the

newest of the three, suffers the most from rowhammer issues because of feature scaling

via technology nodes. However, DDR3 did not suffer as much as it an performing

on a significantly older technology node; therefore, some measurement values do not

include DDR3 as some cases did not exhibit RH attacks at all. Initially, data pattern

dependency is first checked with four types of data pattern exhibited in memory:

solid (either all 0’s or all 1’s), row-stripe (alternating rows of 1’s and 0’s), col-stripe

(alternating columns of 1’s and 0’s), and checkered (alternating rows and columns

of 1’s and 0’s). The row-stripe data pattern exhibits the worst case data pattern

(highest vulnerability to the rowhammer attack) [10]. This is mainly due to opposite

21

CHAPTER 2. BACKGROUND

magnitudes of charge in rows as compared to other ones which exhibit more similar

magnitudes of charge. Another vulnerability aspect looked into was hammer count

(HC). [10] shows a linear relationship between the number of attempts of RH attacks

along with HC, indicating that as there are a larger number of potential RH attempts

as the HC count increases. In addition to HC count, RH spatial effects were looked

into as well with DDR3 data values only affected in the victim row location, DDR4

mainly affected in the victim row location (20% on two rows away), and LPDDR4

mainly affected in rows further away from victim rows (20% two rows away, 10% four

rows away, and 60% six rows away). DRAM cells that fail with the least amount

of accesses were also looked into with newer chips, such as DDR4, experiencing only

20,000 HC counts for the first bit flip as compared to DDR3 and LPDDR4, which had

bit flips at around 65,000 and 25,000, respectively [10]. The effects of error correcting

codes (ECC) were also analyzed on the three different types of memory, with HCfirst

counts decreasing by 2.78x in DDR4-old and DDR4-new DRAM chips, and 1.65x in

DDR3-new DRAM chips [10].

Attackers can exploit the rowhammer security bug, leading to privilege escala-

tion, shell injection, memory and disk corruption, and advanced Denial of Service

(DoS) attacks. If the specific state of a privileged software module is vulnerable

to a rowhammer attack, an attacker can repeatedly try to corrupt that state via

’hammering’ the cells which store that target state in memory. The Rowhammer

Attack Injection (RAI) serves as a framework created to identify, validate, and eval-

uate rowhammer attacks target states [12]. The rowhammer attack can be classified

into two categories: Whitebox RH attacks and Blackbox RH attacks. Whitebox RH

attacks consist of attackers having prior knowledge of the virtual to physical mapping

of the system and allowing for less brute force attacks, typically leading to a higher

chance of successful corruption of data. Blackbox RH attacks involve attackers not

having prior knowledge of virtual to physical mapping information, creating more

22

CHAPTER 2. BACKGROUND

brute forced attacks, typically leading to lower chances of successful corruption of

data [12].

The rowhammer attack injection (RAI) methodology consists of multiple steps

beginning with the attacker identifying the memory blocks, having at least one ag-

gressor row and victim row. The attacker can then pressure that state of memory

by allocating nearly all of its available physical memory space such that no one else

can allocate the aggressor and victim rows. Once the aggressor and victim rows are

selected and allocated, a fork process on that target state of memory is introduced

to store data structures of targeted states where the victim cell is. The rowhammer

attack is then introduced onto the memory, exploiting and corrupting the state of

memory. Finally, the attacker ends with concealing and cleaning up the data after

tampering with the data [12].

Security aspects of machine learning algorithms are also overlooked in terms of

the RH attacks. Attackers with access to CNN or DNN weight values stored in mem-

ory can cause significant system malfunction or disruption such as accuracy drops,

damaging the effectiveness of the classifier. Both CNNs and DNNs store weights in

memory, which are subject to the RH attacks. A vulnerability analysis of neural

networks using weight sensitivity was pursued to study the effects of the rowhammer

security bug on the memory. Both a weight sensitivity analysis and weight replace-

ment attack were implemented to simulate a rowhammer attack on a CNN’s or DNN’s

stored weights [23]. The weight sensitivity analysis allows attackers to analyze the

vulnerablity of weights of trained neural networks with respect to accuracy and mis-

classification. The weight sensitivity algorithm as shown below indicates an amount

value which is used to scale the weights in a certain layer of the neural network and

verify the accuracy of the network based on that scaling. By going through each layer

via the vulnerability algorithm, the layer with the largest accuracy drop indicates it

has the most sensitive weights.

23

CHAPTER 2. BACKGROUND

Weight Sensitivity Analysis

amount = 0.5;

layer_i = FC_1;

for W in layer_i do

W’ = W * amount

model’ = save(W’);

accuracy’ = test(model’,test_set)

return(accuracy’, W)

end

The weight replacement attack below replaces few weights based on their sensitivity

during run-time for misclassification in neural networks. The algorithm below shows

the Weight Replacement Attack as described in [23].

Weight Replacement Attack

threshold = 0.1; amount= 0.5 ;Configurable by the user

input = (accuracy’, W)

sort(accuracy’, W);

for W, i in layer _i do

if accuracy’[i] < threshold then

break;

else

W’ [i] = W[i] * amount;

model’ = save(model’, W’ [i]);

cascaded_accuracy’ = test(model’, test_set);

if cascaded_accuracy < threshold then

W’[i] = W[i] * amount;

24

CHAPTER 2. BACKGROUND

model’ [i] = save(model’, W’ [i]);

else

if cascaded_accuracy > threshold then

continue;

else

return model’

end

end

end

end

In the algorithm above, a random preset value ’amount’ is used to scale weights in

the most vulnerable layer to see accuracy per layer. The weights are then sorted in

terms of significance with the loop going across each weight in every layer to find

which specific weight decreases accuracy to pre-selected accuracy chosen via the user.

The algorithm ends when the accuracy, based on the scaled weight, matches the pre-

selected accuracy value. A cascaded array of accuracy values is used to store the

accuracies calculated via each weight modification. If the cascaded accuracy value is

less than the threshold, the algorithm stops and returns the most recent model with

the weight modifications.

In [23], both algorithms were tested upon two DNN’s, LeNet and a simple Multi-

layer Perceptron (MLP), with Iris and MNIST as training datasets. Both algorithms

were used to see how manipulating weights, such as simulating a row hammer attack,

on both neural networks would affect the accuracies of both of these networks. Scal-

ing weights with values such as 0.0 - 1.0 on both networks resulted in accuracy drops

over 30% for the MLP network with Iris dataset for both input and output layers,

but very little accuracy drop for LeNet’s convolutional layer. A collection of plots

from [23] below show the accuracy drops based on weight scaling in Figure 2.5.

25

CHAPTER 2. BACKGROUND

Figure 2.4: Weight Sensitivity of MLP and LeNet with Iris and MNIST Datasets

Input and output layers seemed to be the most vulnerable layers in neural networks

as compared to the inner layers such as convolutional or pooling layers. Moreover,

accuracy drops in neural networks increase linearly with the number of weights mod-

ified with more complex networks taking longer times to attack to achieve a desired

accuracy drop.

Various solutions to correcting damages done by the row hammer attack have

been implemented, ranging from counter-based techniques, register clock drivers, row

shuffling, and encoding [9].

Counter and probabilistic based approaches have been taken to address row-

hammering issues. A counter-based approach involves placing a counter along each

DRAM row and incrementing each activation until it reaches the threshold value; at

this moment, the row would then be refreshed, preserving the values of the bits in

that row. Although this method is logical, the placement of counters along each row

would increase the area overhead, causing a larger die and higher power consumption

[24] [9].

Another counter based approach dealt with assigning counters to the top and

bottom rows, respectively [16]. Based on the row activations, rows are marked as

either “warm” or “cold”. Rows marked as “warm” will then be further investigated via

child counters spawned by the parent counter within adjacent rows. These counters

will continually monitor the row activations for that row and those adjacent around

it; once a row reaches the row that has hit the row-hammering threshold, all child

26

CHAPTER 2. BACKGROUND

and parent counter-monitored “warm” rows will be refreshed, allowing for a reduction

of power and fewer counters as compared to counter per row based method in [24].

However, both of these methods require using a row-hammering threshold value which

can be reverse-engineered by an adversary [9].

In addition, disturbance bin counters (DBCs) are another counter-based mecha-

nism used to aid in row hammer attacks [25]. DBCs recieve copies of every row activa-

tion or auto-refresh command issued via DRAM. The disturbance counters maintain

the number of ’disturbances’ of every row in the bin (a set of rows) since the row’s

last refresh. DBCs have a 1,024-entry DBC table that can be installed into a mem-

ory controller to track the detection of DRAM disturbance errors or row hammering

errors. A simple hashing function, using the rank index, bank index, and generated

row address, are used to create the bin address in the DBC table. If the DBC table

accumulates the number of disturbances in the bin to be over a certain threshold, an

alarm is set and the row is auto-refreshed such that no values are harmed due to any

disturbances. Grabbing a larger set of rows, compared to looking at one at a time,

allows for a quicker time to identify if a row hammer attack occurs [9].

TWiCe, an alternative solution, utilizes fewer counters and proposes a method to

counter row-hammering using a register clock driver. A table is used to store entries of

rows which are to be pruned if these rows are not accessed that much; furthermore, a

buffer and control logic scheme are also implemented within the register clock driver.

Figure 2.6 displays the architecture of TWiCe [17] [9].

DRAM would receive a command and address from the memory controller such

as an activation or access command. If the address has never been seen before, a

new table entry is allocated within the TWiCe table for the entry (typically 6 bytes)

[17]. Pruning is then done to ensure only a certain number of addresses are stored

to avoid table over-sizing. If the row activation count, which is checked via the

TWiCe counter, exceeds the row-hammering threshold, adjacent rows are refreshed

27

CHAPTER 2. BACKGROUND

Figure 2.5: TWiCe Architecture

and the entry is deallocated. For each entry in the table, the row is considered to

be an aggressor candidate if the number of activations exceed the pruning interval

threshold; otherwise, the row is not considered a valid entry within the table. The

number of counters required for TWiCe is limited as compared to other counter based

approaches since row-hammering only occurs during the refresh window. Electrons

are reset during the refresh window; therefore, electrons could be piled up due to

row-hammering attack. TWiCe uses the register clock driver to avoid table over-

sizing, per-DIMM protection, and is scalable for multiple types of environments. The

addition of TWiCe between the memory controller and memory component requires

a minimal additional energy of 82 pJ per count and 663 pJ per table update and

there is a negligible amount of performance overhead [17] [1].

DRAM address remapping improves both hardware efficiency of row and column

decoders as well as hides DRAM address spaces better, improving overall security.

[26] discusses a novel solution to the row hammer attack which involves a two-level

DRAM address remapping to reduce the rowhammer errors. It involves remapping

address in the chip-level and remapping addresses inside a chip via two remapping

matrices which keep track and shuffle the bits via splitting the input address into

most significant bits (MSBs) and least significant bits (LSBs), making every but in

28

CHAPTER 2. BACKGROUND

a word to be originated from a different address. Finally, it uses an error correcting

code (ECC) to correct any errors detected. Eleven memory modules were tested on

to verify if the swapping of arrays was sufficient enough to detect and reduce the

number of row hammer attacks.

Bit-Flip Attack (BFA) detection framework is proposed via weight encoding by

leveraging spatial locality of bit flipping as well as fast encoding for vulnerable weights

[27]. Initially, a weight sensitivity analysis is done via gradient information within

the weights of the neural network. A detection secret-key, or encoding of the weight,

is generated to encode sensitive weights and a detection code is generated to calculate

the hamming distance between the current detection code and original detection code

on the cloud compared to the edge device. The Hamming distance tells the number of

positions at which corresponding symbols are different, allowing for a false bit to be

detected during transmission, indicating a row hammer attack. If the model is under

a BFA, then retraining the DNN model for a few epochs aids in recovering the original

accuracy. Three networks, ResNet-20, Resnet-34, and MobileNet were run under the

BFA framework with transmission between the cloud and edge device, taking into

account the hamming distance and number of bit-flips [27]. Figure 2.7 below shows

the plot of the three networks, ten models of each, under the BFA detection framework

with both CIFAR-10 and ImageNet as datasets. The Hamming Distance and number

of bit-flips did not differ by much, indicating that accuracy of detection of BFA could

be higher for malicious networks (more vulnerable weights) as compared to benign

networks (less vulnerable weights) which exhibited little to few bit-flips, indicating the

gradient information may be a plausible method in determining sensitivity of weights

and layers. Accuracy recovery was also measured in which the three networks were

modeled under significant bit-flip attacks and then retrained for a few epochs to

recover back up from around 0.1%-10% to 67.68%-88.58% [27].

29

Chapter 3

Vulnerability Analysis of a Programmable In-memory
Architecture

Subarray Interlinks

Subarray

Subarray Interlinks

Subarray

Local Row Buffer

Local Row Buffer

Cluster Cluster Cluster

Cluster Cluster Cluster

Core
1

Core
2

Core
9

Ex
te

nd
ed

 B
itl

in
es

Read
Ptr.

Write
Ptr.

R
/ W

 B
uf

fe
r

DRAM Bank

pPIM Cluster

(a)

(b)

n= 0,1, 2 ... 12; n ≠ k

Core k/
 Acc

4 n:1
MUX

 n:1
MUX

Core
 1

Core
 2

 Router
Microarchitecture

(c)

Router

Function-word

Function-word

Function-word

Function-word

LUT Core

From
Bitlines

Reg A

Reg B

256:1

Router

(d)

256:1

4

8

256

I/O

Acc.

Figure 3.1: Hierarchical view of the pPIM Architecture

pPIM is the proposed PIM architecture used for for computing data-intensive

applications. It operates via reprogrammable LUTs to perform a wide variety of

applications with very little overhead. The hierarchy of the proposed architecture

is depicted in Figure 3.1. The pPIM architecture is composed of a pPIM cluster at

the top level. Each cluster contains multiple pPIM cores that can be reprogrammed

within the architecture.

30

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

3.1 Programmable In-memory Processing core

Figure 3.2: Layout of the pPIM core architecture [3]

The pPIM core is the base computing element of the pPIM architecture. The

pPIM core design is shown in Figure 3.2. The pPIM core handles a majority of the

computational power within the pPIM architecture. Processing within the core is

handled through the LUTs into the multiplexers. Repgrommability is also handled

within the pPIM core via a register file that feeds into the LUTs.

A plethora of functions can be used via the pPIM core(s). A function of either two

4-bit inputs or a single 8-bit input can be programmed into the pPIM core. Inputs

can be viewed as either the high or low segments if containing a single operand.

The usage of an array of LUTs that form eight 256-to-11 multiplexers allows for this

functionality. The register file contains the data to be served as the input to the

multiplexers. However, the select lines of the multiplexers are determined by the two

input vectors to the pPIM core.

Eight function words exist within the pPIM core’s register file. Each of the func-

31

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

tion words are eight bits in length to fit the input to the 256-to-1 multiplexers. Each

of function words are then associated with a single bit position within the output of

the pPIM core.

3.2 Programmable In-memory Processing Cluster

Figure 3.3: Layout of the pPIM cluster architecture [3]

The pPIM cluster serves as the top-level element in the pPIM architecture. Figure

3.3 shows the layout of the pPIM cluster architecture. The pPIM cluster contains

nine pPIM cores, interconnected via a router. The router is implemented via a group

of multiplexers that replicates a SPIN interconnect model. The pPIM cluster can

perform more complex operations over a single or multiple stages via multiple pPIM

cores operating in tandem. Operations that require greater resolution can exist via

32

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

the usage of multiple pPIM cores operating together.

Each pPIM cluster contains nine pPIM cores used for computation. The pPIM

cores within a pPIM cluster are separately programmed, creating a flexible design for

various applications. An all-to-all communication network with minimal overhead is

used to regulate the dataflow in the pPIM cluster via the usage. A crossbar switch

architecture is used to accomplish this task. The crossbar switch routing architecture

allows each pPIM core to receive input(s) from output(s) of any other pPIM cores

within the pPIM cluster. To match the size of the inputs and output of the pPIM cores

within the routing architecture, the 8-bit outputs are treated as two 4-bit segments.

3.3 Programmable In-memory Processing Router

Figure 3.4: Interconnect Router Architecture for n cores in a cluster [4]

The pPIM router handles the data-flow between nine cores in the pPIM architec-

ture. Figure 3.4 shows the interconnect router architecture for n cores in a cluster.

The routing mechanism aids in data communication amongst the cores. It is imple-

mented with 10:1 4-bit MUXes which form a SPIN interconnection fabric.

33

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

3.4 Programmable In-memory Processing Function Word Gen-

eration

The functionality of the pPIM core is generated via eight function words. The output

of the pPIM core is based on the eight function words. The process must pass over 256

possible input pairings to determine an entire function word. During each pass, the

bits of the output are split up and set in their respective function words at the index

of the current iteration. Although some operations require a greater resolution and

may not be achievable via one set of function words, the usage of smaller operations

can achieve the desired output resolution.

3.5 In-memory Processing Multiply and Accumulate Oper-

ations

The pPIM architecture is responsible for data-intensive operations such as CNN infer-

ences. CNN inferences consist of MAC (Multiply and Accumulate) operations. Both

functionality and flexibility can be observed in the pPIM architecture through MAC

operations.

MAC operations consist of both multiplication and accumulation. Multiplication

is computed through the usage of partial products. Accumulation is done via addition

of the partial products. Figure 3.5 shows the calculation of the MAC operation.

All upper and lower segments of the inputs are multiplied with each other to form

partial products. These partial products are then aggregated to determine the result.

Each partial product is placed into the accumulator to perform the MAC operation.

This can be done for both 8-bit full precision and 4-bit half precision. A dataflow

model of the MAC operation is shown in Figure 3.6 for both 8-bit full precision and

4-bit half precision.

34

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

AL

AL

AH

AH

BL

BL

BH

BH

X

X

X

X

= C0H C0L

= C1H C1L

= C2H C2L

= C3H C3L

Multiplication Accumulation

AL

AH

AH

BL

BH

BH

X

X

X

=
=
=

Carry C0H C0L

C1H C1L

C2H C2L

C3H C3L

Carry

+
Y3 Y2 Y1 Y0

Figure 3.5: MAC Operation Multiplication and Accumulation Stages

Figure 3.6: Dataflow model within a pPIM cluster for both (a) 8-bit full precision and
(b) 4-bit half precision unsigned MAC operations [3]

3.6 In-memory Processing Activation Operations

CNN inferences also require the usage of activation functions to successfully accom-

plish inference. The mapped operations include ReLU, Linear, sigmoid, and tanh.

The ReLU activation operation can be accomplished within a single pPIM core.

Figures 3.7-3.8 depict the dataflow for the ReLU and saturated ReLU activation

functions.

35

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

Figure 3.7: Dataflow Model within a pPIM cluster for both (a) 16-bit precision and (b)
8-bit precision ReLU activation operations [3]

Figure 3.8: Dataflow Model within a pPIM cluster for both (a) 16-bit precision and (b)
8-bit precision Saturated ReLU activation operations [3]

The pPIM architecture can handle CNN inferences completely with both MAC

operations and activation functions. Other functions such as sigmoid and tanh are

capable on the pPIM architecture as well.

3.7 Field Programmable Gate Array Implementation

An FPGA implementation of the pPIM architecture is proposed for validation. The

processing elements and dataflow through simulation of unsigned 8-bit mAC opera-

tions multiple pPIM cluster is used for validation. Classification is also handled by

36

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

a pPIM cluster with a max-index dataflow. The FPGA implementation is used to

predict numbers within images with a single layer NN.

3.7.1 Technology Resources

The ZC702 base board is used to validate the pPIM architecture. The ZC702 is an

FPGA composed of both a programmable logic (PL) core and a processing system

(PS).

The Modified Standards and Technology (MNIST) dataset is used to train and

test the NN. There are 70,000 handwritten digit images, with 60,000 training images

and 10,000 testing images. Each image is of dimension 28 pixels by 28 pixels.

Google Keras is used to handle the training of the NN before moving on to the

FPGA. The Keras library provides access to the MNIST dataset for training to model

before using the FPGA for simulation and verification purposes.

3.7.2 Machine Learning Model

A single layer NN is used to train the MNIST dataset to be used on the pPIM

architecture. The NN consists of a fully connected layer with a softmax activation

function. The input image size is a 28x28 image. The output layer is a vector of

ten 8-bit unsigned integers, with each index corresponding to the range of possible

prediction outputs. The total number of parameters is 7,850, with 7,840 dedicated to

the single dense layer and 10 dedicated to the activation function. The NN is trained

for 5 epochs with a batch size of 128. A max-index operation is used to determine

the output of the NN.

3.7.3 In-memory processing Implementation

The FPGA implementation of the pPIM architecture is composed of two distinct

operations: MAC operations and classification (max-index) operations. The two

37

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

regions within the FPGA implementation are show in Figure 3.9. Each operation is

allocated a separate region within the FPGA with no reconfiguration. This focuses

on the validation of how the pPIM architecture processes data. Each layer acts as

a finite state machine. Each layer tracks the input and output to the region and

beginning execution. When the cluster has its input ready, the state machine sends

a ‘start signal’ to begin execution. After the inputs are processed, the state machine

sends the output to the next region or memory.

Block Memory DMA

Fully Connected (Dense) NN Layer

Microcode
Table

pPIM Cluster
Arrays

Input DataStart Signal

Weights Image Data

Control Signals

Classification (Max-Index)
Layer

Microcode
Table

pPIM Cluster
Arrays

Input DataStart Signal

Control Signals

Output
Vector

Classification

MAC Cluster Region Classification Cluster Region

Figure 3.9: FPGA MAC and Classification Regions within FPGA Implementation of
pPIM architecture

3.7.4 Communication

Communications between the host computer and elements on the ZC702 FPGA board

requires the use of two communication protocols: direct memory access (DMA) and

universal asynchronous receiver-transmitter (UART). The communication used be-

tween each of the elements is shown in Figure 3.10.

The PS on the board provides hardware for UART communication. Over the

UART communication, the end device is capable of communicating with the PS.

38

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

End
Device

Programmable
Logic

Processing
System

DRAM
Memory

ZC702 Evaluation Kit
DMA
UART

Figure 3.10: Communication Model between ZC702 Evaluation Board and End Device

Image data is passed from the end device to the PS. The PS also handles sending

classification results back to the end device.

Both the PS and PL on the ZC702 board are capable of DMA. DMA on the PL

requires introducing IP provided by Xilinx that communicates the data to the pPIM

architecture. DMA is used to the transfer the image data to the pPIM architecture

and for the pPIM architecture to return a classification result.

3.8 Results

3.8.1 pPIM characteristics

Table 3.1: Synthesis Results for pPIM Architecture

Component Delay
(ns)

Power
(mW)

Active
Area
(µm2)

PIM Core 0.8 2.7 4616.85
PIM Cluster (MAC
Operation)

7.2 5.2 41551.66

The pPIM architecture is characterized using post-synthesis models using the

Synopsys Design Compiler at the 28 nm technology node. The pPIM characteristic

results are shown below in Table 3.1. The model includes both a synthesized model

of the pPIM core and the pPIM cluster. The LUT multiplexers are modelled using

39

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

transmission gates, improving the area overhead of the design. In addition, an 8-

bit unsigned MAC operation is chosen to record the power and delay figures for the

pPIM cluster. Table 3.1 gives an accurate estimate for deep learning applications

that contain MAC operations.

3.8.2 Performance Evaluation

We compare the pPIM with both von Neumann architectures alongside other con-

temporary PIM architectures in terms of throughput (frames per second) and power

consumption for AlexNet inference in Figure 3.11. The representative von Neumann

devices to be compared includes a high-end CPU and GPU such as Intel Knights

Landing (KNL) [28] and Nvidia Tesla P100 [29], respectively. The PIM architectures

used for comparison include DRISA [30] and DrAcc [31], SRAM-implemented Neural

Cache [32], another LUT-based PIM implemented on the DRAM platform: LAcc [18]

and the pPIM itself [4].

1

10

100

1000

KNL
(CPU)

P100
(GPU)

N.
Cache

Drisa DrAcc Lacc pPIM

Th
ro

u
gh

p
u

t
(F

ra
m

es
/s

)

(a)

1

10

100

1000

KNL
(CPU)

P100
(GPU)

N.
Cache

Drisa DrAcc Lacc pPIM

Po
w

er
 (

W
at

ts
)

(b)

Figure 3.11: Comparison of (a) throughput and (b) power consumption of various archi-
tectures

A comparison of area and efficiency/area were also investigated for several archi-

40

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

tectures for the AlexNet CNN in Figure 3.12.

(a)

(b)

0

10

20

30

40

50

60

70

DRISA N. Cache LAcc pPIM

m
m

^2

0

0.5

1

1.5

2

2.5

3

3.5

4

DRISA N. Cache LAcc pPIM

Fr
am

es
/J

ou
le

/m
m

^2

Figure 3.12: Comparison of (a) area and (b) efficiency/area of various architectures

As seen in Figures 3.11-3.12, the PIM architectures, especially pPIM, outper-

form the von Neumann architectures by a significant margin in throughput, power-

consumption, and area overhead. This is because, the PIMs can largely avoid the

overhead and latency associated with off-chip communications, unlike those of CPUs

and GPUs. pPIM offers 12.8x and 45x higher throughput and 125x and 107.5x more

power efficiency compared to P100 GPU and Knights Landing Processor, respectively.

The Look-up Table (LUT) based architectures, LAcc [18], and pPIM offers high

41

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

throughput for the least amount of power consumption. DRISA [30], a DRAM-based

bitwise processing accelerator, outperforms LAcc and pPIM, albeit at a higher power

consumption. The pPIM architecture achieves better performance while consuming

less power than LAcc, even with the implementation of the proposed RH-encoding

scheme. This is due to the smaller scale of the LUTs utilized by the pPIM archi-

tecture as well as the efficient mapping of operations of our encoding and decoding

schemes across the parallel processing sequences inside the pPIM architecture. Due

to the superior performance and power efficiency of the pPIM compared to the other

architectures, we choose the pPIM as a case study to evaluate the effect of RH and

encoding.

3.8.3 Vulnerability Analysis of In-memory Processing Architectures

We perform a vulnerability analysis on the weights of a CNN trained under the

MNIST dataset [33]. We investigate the vulnerability of the weights on a single-layer

MLP. It consists of a single dense layer with a softmax activation function. The

input size is a 28x28x1 image. The total number of parameters is 7,850, with 7,840

dedicated to the single dense layer and 10 dedicated to the activation function. The

MLP was trained for 5 epochs with a batch size of 128. The reported accuracy of

the network was 88.45%. The vulnerability analysis looked upon the weights of the

dense layer as the majority of weights to be affected by the RH attack exist there.

For each digit in the MNIST dataset, an bit-flip attack was simulated on the MSB of

the exponent portion of the weights in the single dense layer to simulate a potential

RH attack. The network performance is calculated for each individual bit-flip and

not for all bit-flip attacks accumulated as some weights are found to be more sensitive

than others. Figures 3.13 represents error heatmap on the MNIST dataset using the

single layer MLP.

In Figure 3.13, the performance of the network is shown to degrade for each RH

42

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

Figure 3.13: Weight Vulnerability Heatmap on the MNIST dataset

attack while classifying MNIST dataset. Due to the nature of MNIST frames, some

weights are more vulnerable to the RH attacks than others due to their relative

position within the frame. It can be observed that the largest drop in accuracy was

down to 29.35%, showcasing the potential damage RH can do on simply a single

layer CNN algorithm even for simple data sets like MNIST. The RH attack can

occur on any PIM architecture with larger architectures having a more susceptible

weights; henceforth, it is imperative to secure the weights to ensure the security of

PIM architectures. The MNIST dataset contains multiple frames with either having

the number or white-space in the frame. Some oscillations exist in the heatmap above

due to some weights mapping to white-spaces as compared to other weights mapping

to numbers. Weights that map to white-spaces that are flipped have less significance

to the overall accuracy of the network. This happens at regular intervals because

weights are scanned across the frame. When the weight is selected at edge of frame,

it is not subject to a change in accuracy as there is white-space at edges of frames.

When simulating the row hammer attack on these weights, there is very little impact

on the overall network. However, weights mapped to the actual digit within the frame

that are flipped have a significant impact on the overall accuracy of the network. A

43

CHAPTER 3. VULNERABILITY ANALYSIS OF A PROGRAMMABLE
IN-MEMORY ARCHITECTURE

flip in these bits would cause inference to be more difficult and cause larger accuracy

drops as compared to white-space bit flips.

44

Chapter 4

Row Hammer Reducing Encoding Scheme

Figure 4.1: Proposed Encoding Scheme for handling RH attacks

The proposed RH-encoding scheme is designed to work within the pPIM archi-

tecture in securing data-intensive applications used in deep learning applications.

Figure 4.1 illustrates the input and output of the RH-encoding scheme. When it

comes to implementing the proposed RH-encoding, we found the pPIM [?] to be the

most suitable platform for multiple reasons. First, a PIM architecture is capable of

performing massively parallel encoding and decoded with very low latency and high

energy efficiency which makes it a better alternative than encoding based on an exter-

nal processor. Second, the LUTs in pPIM are programmable which makes it possible

to implement the encoding scheme without modifying the existing architecture or

adding new hardware to the pPIM.

45

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

4.1 In-memory Data Mapping

As shown in Figure 3.1 (a), the pPIM clusters are arranged in rows in-between memory

subarrays. The weights and activations of CNNs are arranged inside the subarrays

and are processed in the nearest cluster. The clusters can each read a large batch of

such data operands (weights and activations) at a time. Since a CNN has a very large

number of parameters, these parameters are arranged across multiple memory rows,

prior to being read and processed inside the clusters. It is during this waiting period

that these data become vulnerable to potential row-hammering attacks. Data bits

across different memory rows can affect each other’s capacitance when a particular

row (attacker row) is activated repetitively. Therefore, the purpose of the encoding

scheme is to ensure that the relative charge state of any two memory cells from two

adjacent memory rows are such that the probability of capacitive interaction between

them and therefore the probability of row-hammering corruption is minimal.

4.2 Encoding Connectivity

As shown in Figure 3.1, the vertically aligned pPIM clusters are interconnected in

the pPIM architecture via interlinked bitlines [34]. These clusters can communi-

cate data-operands among each other and effectively implement a Stream Processing

architecture. We capitalize on these connectivity to include the Encoding and Decod-

ing process in the stream of operations. A page of data is first encoded by a pPIM

cluster programmed to execute the proposed encoding scheme and then stored in a

memory row to protect it from potential row-hammering attacks. Once the data is

required for the desired computational tasks, it is first send to a cluster programmed

to perform decoding. The decoded data is then forwarded to the actual processing

clusters via the interlinked bitlines. The encoding and the decoding clusters are just

regular-cluster programmed to perform these specific tasks. In fact, since encoding

46

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

Memory
Controller

M
em

or
y

Ac
ce

ss
es

In
st

ru
ct

io
ns

Subarray 1

Encoding/Decoding
Unit 1

HOST
CPU

CNN Inference
Cluster 1

Encoding/Decoding
Unit N

CNN Inference
Cluster N

Subarray 2

Figure 4.2: Model of the interface between the RH-encoding scheme with pPIM Clusters
and memory elements

and decoding is not performed simultaneously, we envision reprogramming the same

cluster dynamically for performing both tasks, sequentially, as shown in Figure 4.2.

4.3 Encoding Scheme

The proposed RH-encoding scheme is aimed at reducing the rate of data-corruption

from row-hammering attacks by encoding the bit-combinations that are the most

vulnerable to this attack. As discussed previously in Section 2, the row-stripe pattern

of the stored bits in adjacent memory rows are the most vulnerable ones. For this

purpose, we develop a coding scheme that investigates and encodes three rows of

weights. The exponent portion of the weights is encoded since a bit-flip produces the

highest amount of error. The coding scheme collects two triplet columns of weights,

particularly two columns of bits at a time, and encodes them into three triplets of

weights, or three columns of bits. The programming scheme for the cores in a cluster

for performing encoding is presented in Table 4.1.

47

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

Table 4.1: Row Hammer Encoding Truth Table Samples

Input Output

01 111
01 100
01 100
00 010
11 010
00 011
11 001
00 000
11 010
11 000
11 000
11 000

Input Output

00 011
00 010
11 010
10 111
10 110
00 110
10 110
11 110
11 100
11 000
11 001
00 001

4.3.1 Alternative Encoding Schemes

Some alternative encoding schemes involved only taking the first two triplet columns

of weights. These two columns would be transposed and encoded into a nine-bit

output. Each triplet column would be encoded to another triplet value that does

not exhibit the row-stripe pattern. The three MSB bits would be a pattern common

to all encoded weights. Some advantages of this design involved fewer computation

achieve this encoding scheme as some values were fixed. However, decoding proves to

be difficult since only two triplet pairs are collected. Not all information is present to

successfully decode weights for inference. In addition, some triplet values could not

be converted to new triplet values as converting a three-bit space to another three-bit

space involved the row-stripe pattern appearing. Figure 4.3 illustrates this encoding

scheme below.

A dual 3-to-4 encoding scheme was also proposed which allow for 1-to-1 mapping

for encoding/decoding purposes. The first and fifth triplet columns would be encoded

but this time to two four-bit values making the total encoded value 8-bits long instead

of 9. The first and fifth triplet pairs were taken to account for both MSB and LSB

bits. Dual encoding allows prioritizing both MSB and LSB bits during encoding.

48

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

Figure 4.3: Original Encoding Scheme

More unique encoding outputs to try and test out for best decrease in chance of

RH attacks. The 8-bit encoded output to substitute for the exponent portion of the

weights. In addition, this scheme allows for better disguising to have 8-bit output

as it can be directly substituted in for the 8-exponent bits in IEEE Floating Point

Format. Some drawbacks associated with this encoding scheme involved difficulty in

decoding as only two triplet columns out of the eight were collected. It would prove

impossible to decode as not all information is gathered. Figure 4.4 shows illustrates

encoding scheme below.

Figure 4.4: Dual 3-to-4 Encoding Scheme

The encoding scheme shown in Table 4.1 shows a six-bit to a nine-bit operation.

A parity of three bits are added during encoding since three rows of weights are

inputted and three rows of weights are outputted. A additional column of three bits

allows for the row-stripe pattern to be checked across every three rows successfully as

49

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

the double-sided RH attack involves three rows of data. Double sided row hammer

attacks are checked by looking at three rows at a time. The addition of three parity

bits allow for proper investigation along with successful decoding.

The proposed encoding scheme will take up additional memory space. The pro-

posed scheme adds four new triplet columns of bits, resulting in 12 new bits for every

three weight values. As more bits of the weight are encoded, more memory space is

taken up. This scheme demands larger memory space to operate successfully. Larger

CNNs would require additional storage space to allow the encoding scheme to take

place, making it more difficult to store encoded weights.

Some alternative encoding schemes could involve encoding one triplet column at

a time to produce either one, two, or more columns of triplets. This could prioritize

more bit positions of weights as compared to the proposed scheme. This would

result at the minimum of eight new columns as compared to four. The addition of

more columns results in more design constraints as new columns consume even more

memory space compared to the proposed scheme. However, encoding larger groups

of triplets may reduce the number of new triplet columns formed. This allows for less

memory space to be consumed potentially at the cost of higher power consumption,

a larger decrease in throughput, and less prioritization of all bit positions.

4.3.2 Comparisons with Error-Correction Codes

In 2014, three DRAM manufacturers (A, B, and C) were subject to the row hammer

attack. All three DRAM manufacturers were equipped with the SECDED ECC

mechanism to correct and detect the row hammer errors. Figure 4.3 below shows the

results of the uncorrectable multi-bit errors (in bold) [2].

Most errors in the rows of A23, B11, and C19 are subject to the row hammer attack.

SECDED (Single Error Correction, Double Error-Detection) can only correct a single-

bit error within a 64-bit word. However, if a row contains two victims SECDED

50

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

Figure 4.5: Uncorrectable multi-bit errors (in bold) [2]

cannot correct the resulting double-bit error. It can only detect them. If there are

three or more victims, SECDED can neither correct nor detect the multi-bit error,

leading to silent data corruption within memory [2]

The advantages of the proposed encoding scheme include securing all weights from

the row-stripe data pattern and can correct multiple bits in multiple segments of

weights. However, the proposed encoding scheme only prevents against row hammer

attacks. In contrast, the DRAM ECC looks into any particular bit flip in memory

and corrects it, regardless of its data pattern type. This could be for any type of

disturbance as well, regardless of row hammer. A significant disadvantage of DRAM

ECC is that errors still linger after one error correction as shown in Figure 4.3. This

means DRAM ECC does not secure data in memory against disturbance errors. A

greater ECC is most likely required to combat row hammer attacks, which come at a

cost of area, energy, performance, throughput, and DRAM capacity overheads.

4.3.3 Comparisons to logic/counter based approaches

A few logic/counter-based approaches to prevent row-hammering attacks have already

been proposed, mostly dominated by the usage of counters and a probabilistic ap-

proach. These approaches include Counter-based Activation (CBA), Counter-based

Tree (CBT), row remapping, probabilistic adjacent row activation (PARA), and Time

51

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

Window Counter (TWiCe). However, common to all these approaches is the involve-

ment of complex and bulky intelligent logic circuitry to monitor and actively prevent

row-hammering corruption. Several works have proposed that actively prevent row-

hammering attacks. The common feature of these works is the presence of counters

to monitor the memory rows to detect an aggressor row and prevent successful row-

hammering attacks by taking interceptive measures.

One such counter-based activation (CBA) approach incorporates an intelligent

logic unit that monitors the activation of DRAM rows. Once the number of repeti-

tive activation reaches a certain threshold value; this intelligent unit refreshes the row

to preserve the stored bits in the row from corruption. Another similar work utilizes

a counter-tree (CBT) to actively prevent row hammer attacks. Based on a number of

activations, different rows are marked as either ‘warm’, or ‘cold’ and are continuously

monitored by the counter-tree. Once a row reaches the row-hammering threshold,

all ‘warm’ rows, in general, are refreshed by the counter-tree. This results in over-

all fewer counters and a reduced footprint compared to the previous work. Another

work leverages the ‘Time-window Counters (TWiCe)’ mechanism which features a

table that stores entries of rows and prunes the number of active memory rows to

track an aggressor row. For each table entry, the row is considered to be an aggressor

candidate if the number of activations exceeds the pruning interval threshold. The

number of counters required for TWiCe is limited as compared to other counter-based

approaches. All of these approaches do not require modifying any data in memory

and use simple hardware to detect row hammer attacks. The TWiCe approach uses

less additional hardware as compared to the other counter-based approaches. Some

downsides to these approaches involve the usage of additional hardware to monitor the

rows of memory. This reduces power consumption and throughput loss significantly.

In addition, more area is required to place the counters. This raises manufacturing

costs. In comparison, the proposed encoding scheme does not need additional hard-

52

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

ware to encode the weights. It works within the existing architecture and can be

scalable to any other architecture.

PARA is a probabilistic logic based approach to counter row hammer attacks.

Each time a row is accessed, one of its adjacent rows is also statistically accessed with

some low assumed probability ’p’ [3]. If one row happens to be accessed repeatedly,

then it is statistically certain that the adjacent row will be accessed as well, assuming

’p’ is chosen carefully. Some advantages of PARA is that it does not require additional

hardware to work successfully, low power-consumption and high performance. In

comparison, the proposed encoding scheme also does not need additional hardware to

work successfully. It also has a low-power consumption and high throughput as well.

However, the proposed encoding scheme does not rely on an assumed probability to

encode data.

The proposed encoding mechanism is adopted such that the overhead translated

to the memory space in the PIM architectures. Memory is relatively abundant in a

majority of architectures whereas logic is expensive. Therefore, overhead in regards to

throughput, energy consumption, and area are minimized with the proposed encoding

scheme.

4.4 Operation Mapping

Our proposed encoding scheme is implemented on multiple stages inside pPIM clus-

ters. This requires the LUT cores in a cluster to be programmed in a specific way

to perform a desired set of operations. For the 8-bit encoding operation, four cores

are programmed as 4-bit read cores, two cores are programmed as 4-bit adders, one

core is programmed as a 4-bit encoding core, and one core is programmed as a 4-bit

write-back core. Each cluster can encode all triplet pairs in a cluster at once.

The three 8-bit inputs of the encoding operation are each split into pairs of 4-bit

segments, each denoting the row and upper or lower half of data. Three rows of data

53

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

are accessed from memory and are split into low and high bits, corresponding to the

upper four or lower four bits of data, respectively. Data is sent through four read

cores of Type 1 (shown in Table 4.2) in which each one receives different bit-segments

of each of the four triplet pairs. The third row of data is then forwarded to the add

cores to concatenate with the different bit-segments for appropriate encoding format.

The triplet pair bits are then collected and sent to the encoding core. The encoded

data is forwarded to the write-back core to generate the ninth bit, identical to the

eighth bit. The encoding is done sequentially for each of the triplet pairs, resulting in

a total of eleven clock cycles to complete. The eleven-stage encoding and nine-stage

decoding routing is shown in Figure 4.6.

Data is decoded prior to performing CNN inference. The cluster previously used

for encoding is reprogrammed to perform decoding now. Two read cores of Type 2

(as shown in Table 4.2) are required for appropriate decoding format. Figure 4.6 (b)

displays the sequential model required for decoding. Three columns of bits represent

one triplet set to be decoded. The decoding core takes the format and recovers original

weight values sequentially.

Table 4.2: Read Core Functionalities

Read Core Type Output Input A Input B
1 0xx0 0xx0 Any 4-bit Value Any 4-bit Value
2 0xxx 0xxx Any 4-bit Value Any 4-bit Value

4.5 Results

4.5.1 Encoding and pPIM architecture characteristics

The encoding/decoding scheme and pPIM are characterized using post-synthesis mod-

els using the Synopsys Design Compiler at the 28 nm technology node. The hardware

synthesis and pPIM results are shown below in Table 4.3. It can be observed that

there is minimal overhead from the encoding scheme thanks to the micro-code-based

54

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

t = 1

aH bHaL bL

t = 2

cH

t = 3

t = 4 t = 5 A0 t = 6

t = 7 A1 t = 8A2

cL

A0 A1

t = 9 A2

t = 10A3 t = 11

A3

A3

A0 A1

A2

4-bit Read Core 1
4-bit Read Core 2
4-bit Add Core 1
4-bit Add Core 2
4-bit Encode Core

 4-bit Writeback Core

aH bHaL bL

cH

Thread 1
Thread 2

4-bit Read Core 3
4-bit Read Core 4
4-bit Decode Core

4-bit Read Core 3
4-bit Read Core 4

aH bHaL bL

t = 7 A1 t = 8A2 t = 9 A2

A2

t = 10A3 t = 11

A3

A3

cH

t = 1

aH bHaL bL

t = 2

cH

t = 3 t = 4 t = 5 A0 t = 6

cL

A0 A1

A0

t = 7 A1 t = 8A2

A2

t = 10A3 t = 11

A3

A3

A1

A2t = 9

t = 1

a1 b1 b1c1 a2 b2

c2
b2 b3c3

b4c4
a4b4

a3 b3

t = 2 t = 3 U1 t = 4 t = 5 t = 6U2

t = 7 t = 8U3 t = 9 U4

(a)

(b)

Legend:
4-bit Read Core Type 1
4-bit Add Core
4-bit Encode Core
 4-bit Writeback Core
4-bit Read Core Type 2
4-bit Decode Core

Figure 4.6: Sequential model of both encoding and decoding operations on the pPIM
architecture including (a) encoding sequential model and (b) decoding sequential model.
The inputs ‘a’, ‘b’, and ‘c’ indicate input to the cluster from memory with the high and
low segments of memory dictated by the subscripts ‘H’ and ‘L’, respectively. The input
and the output of the encoding and decoding schemes are dictated by ‘A’ for encoding and
‘U’ for decoding.

implementation of the Control Unit. The encoding component utilizes more power

due to its higher latency values; however, the decoding component consumes fewer

wattage as it takes fewer clock cycles as compared to the encoding process.

In addition, Table 4.3 compares a MAC operation to the proposed encoding and

decoding operations. The MAC operation characteristics are displayed without the

usage of the encoding and decoding schemes. The encoding and decoding schemes

55

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

Table 4.3: Synthesis Results

Component Delay
(ns)

Power
(mW)

Active
Area
(µm2)

PIM Core 0.8 2.7 4616.85
PIM Encoding 8.8 11.18 6250
PIM Decoding 7.2 10.02 6250
PIM Cluster (MAC
Operation)

7.2 5.2 41551.66

both consume more power and have larger amounts of delay in comparison to the

MAC operation. More clock cycles are used to successfully encode the data. This

contributes to larger amounts of latency. In addition, more cores are used per clock

cycle in transporting data and performing operations. This demands a higher power

consumption. However, the active area consumed is much lower in comparison to the

MAC operation. This allows for minimal overhead to the pPIM architecture.

4.5.2 Encoding Functionality

We evaluate the functionality of the encoding design via number of vulnerable weights

before and after encoding. We evaluate the functionality of the RH-encoding on

two CNNs: AlexNet [35] and VGG-16 [36]. Figures 4.7 (a) and 4.7 (b) present the

comparison of vulnerable weights found within the two networks with and without

encoding for each triplet set (denoted as input/output bit positions) of weights within

AlexNet and VGG-16. It can be observed that the RH-encoding scheme successfully

decrease the number of vulnerable, or row-stripe, weights for a majority of triplet

pairs. However, there is an increase in the number of vulnerable weights for the final

triplet pair as the RH-encoding scheme favors bits towards the MSB as a bit flip

there would be less significant than a bit flip towards the most significant bits. Bit

patterns have a wider variety of data patterns towards the final triplet pair. The

proposed RH-encoding scheme may sometimes create a larger number of row-stripe

56

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

patterns for the final triplet pair, but compensates and secures for the bits towards the

most significant bits, those that can be impacted the most via a bit-flip attack. The

proposed RH-encoding scheme successfully secures bits towards the MSB portion,

preserving the most sensitive bits from the RH attacks.

0.01

1

100

10000

"0-1"/"0-2" "3-4"/"3-5" "5-6"/"6-8" "7-8"/"9-11"

N
u

m
b

er
 o

f
V

u
ln

er
ab

le
 W

ei
gh

ts

fo
r

A
le

xN
et

Unencoded Encoded

0.01

1

100

10000

"0-1"/"0-2" "3-4"/"3-5" "5-6"/"6-8" "7-8"/"9-11"

N
u

m
b

er
 o

f
V

u
ln

er
ab

le
 W

ei
gh

ts

fo
r

V
G

G
-1

6

Unencoded Encoded

(a)

(b)

Figure 4.7: Encoding Functionality Comparison of (a) AlexNet, and (b) VGG-16, with
and without encoding

4.5.3 Encoding/Decoding Performance Evaluation

We evaluate the performance of the pPIM architecture equipped with our proposed

encoding/decoding schemes alongside CNN inference. We evaluate the performance

of the pPIM configurations for four other CNNs: ResNet 18, ResNet 34, ResNet

50, and VGG 16. Figure 4.8 present the comparison of energy consumption and

performance throughput of CNN inferences with and without encoding/decoding.

It can be observed that the proposed encoding/decoding scheme offers both a low-

energy usage and a low drop in throughput due to a low computational workload from

our proposed encoding/decoding design. This highlights the merit of the proposed

encoding/decoding scheme on PIM-based architectures, reducing the total number of

57

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

0

50

100

150

200

250

AlexNet ResNet 18 ResNet 34 ResNet 50 VGG 16

Th
ro

u
gh

p
u

t
(F

ra
m

es
/s

)

FPS (Unencoded) FPS (Encoded)

(a)

(b)

0

0.01

0.02

0.03

0.04

0.05

AlexNet ResNet 18 ResNet 34 ResNet 50 VGG 16
En

er
gy

C

o
n

su
m

p
ti

o
n

Energy (Unencoded) Energy (Encoded)

Figure 4.8: Comparison of (a) throughput and (b) power consumption of various CNN
algorithms with and without RH-encoding scheme

vulnerable weights within CNN algorithms with minimal energy and throughput.

4.5.4 Pipelined RH-encoding scheme

Our proposed encoding scheme can be implemented with fewer states inside the pPIM

cluster in a pipe-lined manner. Certain operations can take up portions of the clock

cycle during a stage. This allows for both encoding and decoding to be done in fewer

cycles and with multi-step operations within a clock cycle. The encoding operation

is reduced from eleven stages to eight stages. The deocoding operation is reduced

from nine stages to six stages. Figure 4.9 shows the pipelined RH-encoding operation

mapping scheme.

The pipelined RH-encoding scheme is characterized using post-synthesis models

using the Synopsys Design Compiler at the 28 nm technology node. The hardware

synthesis and pPIM results are shown below in Table 4.4.

It can be observed that there is a reduction in the latency of the encoding and

decoding operations. As compared to the latency values in Table 4.3, the latency

58

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

t = 1

aH bHaL bL

t = 2

cH

t = 3

t = 4 t = 5 A0 t = 6

t = 7 A1 t = 8A2

cL

A0 A1

t = 9 A2

t = 10A3 t = 11

A3

A3

A0 A1

A2

4-bit Read Core 1
4-bit Read Core 2
4-bit Add Core 1
4-bit Add Core 2
4-bit Encode Core

 4-bit Writeback Core

aH bHaL bL

cH

Thread 1
Thread 2

4-bit Read Core 3
4-bit Read Core 4
4-bit Decode Core

4-bit Read Core 3
4-bit Read Core 4

aH bHaL bL

t = 7 A1 t = 8A2 t = 9 A2

A2

t = 10A3 t = 11

A3

A3

cH

t = 1

aH bHaL bL

t = 2

cH

t = 3 t = 4 t = 5 A0 t = 6

cL

A0 A1

A0

t = 7 A1 t = 8A2

A2

t = 10A3 t = 11

A3

A3

A1

A2t = 9

t = 1

a1 b1 b1c1 a2 b2

c2
b2 b3c3

b4c4
a4b4

a3 b3

t = 2 t = 3 U1 t = 4 t = 5 t = 6U2

t = 7 t = 8U3 t = 9 U4

(a)

(b)

Legend:
4-bit Read Core Type 1
4-bit Add Core
4-bit Encode Core
 4-bit Writeback Core
4-bit Read Core Type 2
4-bit Decode Core

t = 1

aH bHaL bL

t = 2

cH

t = 3 t = 4 t = 5 A0 t = 6

t = 7 A2 t = 8

t = 1

a1 b1 b1c1 a2 b2

c2
b2 b3c3

b4c4
a4b4

a3 b3

t = 2 t = 3 U1 t = 4 t = 5 t = 6

(a)

(b)

Legend:
4-bit Read Core Type 1

4-bit Add Core
4-bit Encode Core
 4-bit Writeback Core

4-bit Read Core Type 2
4-bit Decode Core

cL

A1

A3

U2 U3 U4

Figure 4.9: Pipelined Sequential model of both encoding and decoding operations on the
pPIM architecture including (a) encoding sequential model and (b) decoding sequential
model. The inputs ‘a’, ‘b’, and ‘c’ indicate input to the cluster from memory with the high
and low segments of memory dictated by the subscripts ‘H’ and ‘L’, respectively. The input
and the output of the encoding and decoding schemes are dictated by ‘A’ for encoding and
‘U’ for decoding.

has decreased due to pipelining. This allows for the RH-encoding scheme to be

accomplished in a shorter amount of time with equal functionality on the pPIM

architecture.

We also evaluate the performance of the pPIM architecture equipped with the

pipelined encoding/decoding schemes alongside CNN inference. We evaluate the

performance of the pPIM configurations for four other CNNs: ResNet 18, ResNet

59

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

Table 4.4: Pipelined Synthesis Results

Component Delay
(ns)

Power
(mW)

Active
Area
(µm2)

PIM Core 0.8 2.7 4616.85
PIM Encoding 6.4 11.18 6250
PIM Decoding 4.8 10.02 6250
PIM Cluster (MAC
Operation)

7.2 5.2 41551.66

34, ResNet 50, and VGG 16. Figure 4.10 presents the comparison of performance

throughput and energy consumption of CNN inferences with and without encod-

ing/decoding as energy consumption remains the same. It can be observed that the

proposed encoding/decoding scheme allows for higher throughput and fewer energy

consumption due to the fewer amount of stages as compared to Figure 4.8. This

highlights the merit of the pipelined encoding/decoding scheme on PIM-based ar-

chitectures, reducing the total number of vulnerable weights within CNN algorithms

with minimal energy consumption and throughput.

4.6 DRAM Design Analysis

As the technology node improves, memory cells gradually become closer, with both

rows and columns within memory becoming denser; therefore, as the area of memory

cells reduce, disturbance issues can appear within DRAM, hindering novel ideas such

as Deep Learning (DL) and Artificial Intelligence (AI), which utilize large data sets

to understand applications such as automotive, mobile edge devices, medical imag-

ing applications, and enterprise storage. Some of these disturbance errors can be

associated with DRAM parasitic capacitance as well as Row Hammer attacks. Par-

asitic capacitance can occur due to effects of bit line coupling as the signal between

adjacent interconnect values vary. If two adjacent interconnects switch in the same

direction, no coupling capacitance would occur, however, if one or both neighboring

60

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

(a)

(b)

0
0.01
0.02
0.03
0.04
0.05

AlexNet ResNet
18

ResNet
34

ResNet
50

VGG 16
En

er
gy

Co

ns
um

pt
io

n

FPS (Unencoded) FPS (Encoded)

0
50

100
150
200
250
300

AlexNet ResNet 18ResNet 34ResNet 50 VGG 16Th
ro

ug
hp

ut
 (F

ra
m

es
/s

)

FPS (Unencoded) FPS (Encoded)

Figure 4.10: Comparison of throughput of various CNN algorithms with and without
pipelined RH-encoding scheme

interconnects vary in opposite directions, coupling capacitance is introduced, creating

additional noise and disturbance errors [37]. Equation 1 below shows the RH induced

noise voltage swing, VRH , generated from N number of row hammers both above

and below the victim cell, induced due to the coupling capacitance, Cc between the

memory cells. The DRAM cell capacitance and power supply voltage are denoted by

CDRAM and VDD, respectively.

VRH = NVDD
2Cc

Cc + CDRAM

(4.1)

Row hammer attacks can occur due to continuous pre-charge and activation of

rows of memory, effectively moving charge between rows of memory via coupling

capacitance between cells from adjacent rows. This causes bit flips to occur in memory

61

CHAPTER 4. ROW HAMMER REDUCING ENCODING SCHEME

without directly accessing the victim rows. The ratio of DRAM cell-to-cell coupling

capacitance, defined here as β, versus the potential number of row hammerings, N,

occurring in a DRAM cell is derived via (1) as shown in (2). We considered the noise

margin of the DRAM cells to be 10% of VDD in Equation 2.

N = (0.1)
β + 1

2β
(4.2)

Using (2), the variation of N as a function of β is shown in Figure 4.11.

Figure 4.11: DRAM Coupling Capacitance vs. Number of Row Hammer Attacks

Figure 4.11 shows that a very low β value, typically less than 0.01, the number of

row hammerings vary significantly. however, after the parameter surpasses 0.01, the

number of row hammerings becomes constant. As there is more coupling capacitance

introduced signified by increasing in beta, memory cells are subjected more to the

parasitic effects of coupling capacitance such as adjacent aggressor rows switching

in opposite directions or remaining quiet. On the contrary, with very little coupling

capacitance as signified by a decreasing beta, a higher number of row hammering

attacks are necessary to inject the same 10% noise.

62

Chapter 5

Conclusion and Future Work

As the technology node advances, the gap between computational and memory per-

formance widens, causing a major performance bottleneck in contemporary comput-

ing devices. As computational power improves at a consistent rate, memory lags

behind, creating a ’memory-wall’ bottleneck. In traditional von Neumann Archi-

tectures, both the computing and storage unit are separated via interconnects over

which data travel for either computation or storage. Both power-consumption and

data-transfer bandwidth are impeded due to the physical separation of the processor

and memory component and constant data-transfer over interconnects, preventing a

processing device from reaching its peak performance.

Processing-in-Memory is a non-von Neumann computing model that aims to al-

leviate the performance bottleneck faced by traditional computing devices for data-

centric applications. The traditional computing devices are based on the von-Neumann

computing model that draws a distinct separation between the processor and the

memory and imposes a sequential or pipe-lined execution model. However, the off-

chip data communications between the memory and the processor are associated with

high latency, high power consumption, and a limited bandwidth. PIM offers a so-

lution to this phenomenon by locating the processing elements inside the memory

chip itself. The benefit of this is that the data-communication latency and energy

consumption are virtually eliminated as the data is processed within the same chip.

63

CHAPTER 5. CONCLUSION AND FUTURE WORK

Moreover, implementation of massively parallel processing within the memory chip is

possible by leveraging its ultra-high internal data-movement bandwidth.

The programmable PIM architecture delivers provides high-performance along

with the use of programmable LUT-based multiplexers in accomplishing a plethora

of applications. In comparison to contemporary PIM architectures, the pPIM archi-

tecture achieves better performance while consuming less power. Due to the superior

performance and power efficiency of the pPIM compared to the other architectures,

we choose the pPIM as a case study to evaluate the effect of RH-encoding.

The past few decades were marked by the rapid downscaling of semiconductor

technologies. This has resulted in a steady growth of the number of transistors and

therefore the processing capabilities of the computing devices. The memory devices

such as the DRAM have also undergone a similar downscaling trend, packing more

storage capacity with lower power consumption, at lower manufacturing costs . How-

ever, the downscaling of the technology has also lead to unique reliability issues in

the DRAM. Capacitive interaction between neighboring cells in the DRAM memory

chips on 35nm or lower technology nodes can lead to data corruption. Termed as

‘Row-Hammering ’, it was shown that severe data corruption and manipulation can

be pulled off by cleverly manipulating this phenomenon in the off-the-shelf commod-

ity DRAM chips. The security concern arising from the possibility of row-hammering

attacks becomes even more critical for the emerging Processing in Memory (PIM)

computing paradigm.

The security and reliability concerns arising from the discovery of Row-Hammering

on the DRAM technology affect all PIM architectures implemented on this memory

platform. A few approaches to prevent row-hammering attacks have already been pro-

posed, mostly dominated by the usage of counters and a probabilistic approach. These

approaches include Counter-based Activation (CBA), Counter-based Tree (CBT), row

remapping, probabilistic adjacent row activation (PARA), and Time Window Counter

64

CHAPTER 5. CONCLUSION AND FUTURE WORK

(TWiCe). However, common to all these approaches is the involvement of complex

and bulky intelligent logic circuitry to monitor and actively prevent row-hammering

corruption.

A method is proposed for preventing the row-hammering attacks on the DRAM

memory by performing RH-encoding of the data. We leverage a recent programmable

PIM architecture called pPIM for implementing the RH-encoding/decoding scheme

with low latency and ultra-high efficiency. The pPIM architecture features clusters of

programmable LUTs that work together to perform virtually any logic or arithmetic

operations. We also evaluate the latency, energy efficiency, and area overhead to

the baseline pPIM architecture caused by the implementation of our proposed row-

hammering preventing coding scheme and benchmark its performance with other

latest PIM architectures. We achieve a reduction in the number of vulnerable bits for

a majority of the bits at the cost of throughput and power consumption. We achieve

a reduction in the number of vulnerable bits for a majority of the bits at the cost of

throughput and power consumption.

5.1 Future Work

The presented work delivers synthesized models for a PIM architecture and the RH-

encoding scheme. In the future, improvements on the DRAM architecture should be

made to minimize the effects of the novel Row Hammer security bug as the technology

node improves alongside finding alternative solutions to counter RH attacks. As the

technology node improves, DRAM architecture will become denser and smaller. Rows

and columns inside the memory architecture may cause higher amounts of induction

and capacitance. In addition, new issues other than row hammer may appear as the

technology node improves. Therefore, an investigation into DRAM design is necessary

to combat and secure against vulnerabilities.

Further steps are needed to minimize the vulnerability of weights in all bit po-

65

CHAPTER 5. CONCLUSION AND FUTURE WORK

sitions of weights from the row hammer attack. An investigation into the encoding

scheme is necessary to combat the row hammer attack further. These steps involve

the development of multiple encoding schemes operating on different sections or por-

tions of the weights in neural networks. The usage of multiple encoding schemes

on different portions of the weights would reduce the number of vulnerable weights

in a CNN. However, multiple encoding schemes may require more multiple opera-

tion mapping configurations of the pPIM architecture. This may incur higher power

consumption and latency issues but aid in securing all of the weights in a network.

66

Bibliography

[1] S. Gogna and A. Ankolekar, “Processing in memory,” pp. 1–6, 2020.

[2] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping bits in memory without accessing them: An experimen-
tal study of dram disturbance errors,” in 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), 2014, pp. 361–372.

[3] M. Connolly, “A programmable processing-in-memory architecture for memory
intensive applications,” Rochester Institute of Technology, vol. 1, no. 1, pp. 1–53,
2021.

[4] P. R. Sutradhar, M. Connolly, S. Bavikadi, S. M. Pudukotai Dinakarrao, M. A.
Indovina, and A. Ganguly, “ppim: A programmable processor-in-memory archi-
tecture with precision-scaling for deep learning,” IEEE Computer Architecture
Letters, vol. 19, no. 2, pp. 118–121, 2020.

[5] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating graph
processing using reram,” in 2018 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), 2018, pp. 531–543.

[6] A. Ganguly, “Interconnect architectures and signal integrity,” in SoC Physical
Design Issues, 2020, pp. 1–38.

[7] J. Jiang, K. Parto, W. Cao, and K. Banerjee, “Monolithic-3d integration with
2d materials: Toward ultimate vertically-scaled 3d-ics,” in 2018 IEEE SOI-3D-
Subthreshold Microelectronics Technology Unified Conference (S3S), 2018, pp.
1–3.

[8] A. Shacham, B. G. Lee, A. Biberman, K. Bergman, and L. P. Carloni, “Photonic
noc for dma communications in chip multiprocessors,” in 15th Annual IEEE
Symposium on High-Performance Interconnects (HOTI 2007), 2007, pp. 29–38.

[9] S. Gogna, “An investigation of the effects of the row hammering bug on
cnns/dnns,” pp. 1–5, 2020.

[10] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa, and O. Mutlu,
“Revisiting rowhammer: An experimental analysis of modern dram devices and
mitigation techniques,” in 2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), 2020, pp. 638–651.

[11] S. Gogna, “Evaluation of crosstalk avoidance coding schemes,” pp. 1–5, 2020.

[12] K. S. Yim, “The rowhammer attack injection methodology,” in 2016 IEEE 35th
Symposium on Reliable Distributed Systems (SRDS), 2016, pp. 1–10.

67

BIBLIOGRAPHY

[13] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 8, pp.
1555–1571, 2020.

[14] V. Van der Veen, “Drammer: Deterministic rowhammer attacks on mobile plat-
forms,” 2016.

[15] P. Frigo, “Grand pwning unit: Accelerating microarchitectural attacks with the
gpu,” 2018.

[16] I. Kang, E. Lee, and J. H. Ahn, “Cat-two: Counter-based adaptive tree, time
window optimized for dram row-hammer prevention,” IEEE Access, vol. 8, pp.
17 366–17 377, 2020.

[17] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “Twice: Preventing row-
hammering by exploiting time window counters,” in 2019 ACM/IEEE 46th An-
nual International Symposium on Computer Architecture (ISCA), 2019, pp. 385–
396.

[18] Q. Deng, Y. Zhang, M. Zhang, and J. Yang, “Lacc: Exploiting lookup table-
based fast and accurate vector multiplication in dram-based cnn accelerator,” in
2019 56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[19] C. Wu, W. Shan, and J. Xu, “ynamic adaptation of approximate bit-width for
cnns based on quantitative error resilience,” in 2019 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), 2019, pp. 1–6.

[20] J. T. Pawlowski, “Hybrid memory cube (hmc),” in 2011 IEEE Hot Chips 23
Symposium (HCS), 2011, pp. 1–24.

[21] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-
memory accelerator for parallel graph processing,” in 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA), 2015, pp.
105–117.

[22] S. Xu, X. Chen, Y. Wang, Y. Han, X. Qian, and X. Li, “Pimsim: A flexible and
detailed processing-in-memory simulator,” IEEE Computer Architecture Letters,
vol. 18, no. 1, pp. 6–9, 2019.

[23] M. Hailesellasie, J. Nelson, F. Khalid, and S. R. Hasan, “Vaws: Vulnerability
analysis of neural networks using weight sensitivity,” in 2019 IEEE 62nd Inter-
national Midwest Symposium on Circuits and Systems (MWSCAS), 2019, pp.
650–653.

[24] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Mitigating wordline crosstalk
using adaptive trees of counters,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), 2018, pp. 612–623.

68

BIBLIOGRAPHY

[25] Y. Wang, Y. Liu, P. Wu, and Z. Zhang, “Detect dram disturbance error by using
disturbance bin counters,” IEEE Computer Architecture Letters, vol. 18, no. 1,
pp. 35–38, 2019.

[26] M. Kim, J. Choi, H. Kim, and H. Lee, “An effective dram address remapping
for mitigating rowhammer errors,” IEEE Transactions on Computers, vol. 68,
no. 10, pp. 1428–1441, 2019.

[27] Q. Liu, W. Wen, and Y. Wang, “Concurrent weight encoding-based detection for
bit-flip attack on neural network accelerators,” in 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2020, pp. 1–8.

[28] A. Sodani, “Knights landing (knl): 2nd generation intel® xeon phi processor,”
in 2015 IEEE Hot Chips 27 Symposium (HCS), 2015, pp. 1–24.

[29] A. A. Awan, H. Subramoni, and D. K. Panda, “An in-depth performance
characterization of cpu- and gpu-based dnn training on modern architectures,”
in Proceedings of the Machine Learning on HPC Environments, ser. MLHPC’17.
New York, NY, USA: Association for Computing Machinery, 2017. [Online].
Available: https://doi.org/10.1145/3146347.3146356

[30] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A
dram-based reconfigurable in-situ accelerator,” in 2017 50th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2017, pp. 288–301.

[31] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “Dracc: a dram based
accelerator for accurate cnn inference,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC), 2018, pp. 1–6.

[32] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration of deep
neural networks,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), 2018, pp. 383–396.

[33] L. Deng, “The mnist database of handwritten digit images for machine learning
research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[34] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-
cost inter-linked subarrays (lisa): Enabling fast inter-subarray data movement in
dram,” in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), March 2016, pp. 568–580.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’12.
Red Hook, NY, USA: Curran Associates Inc., 2012, p. 1097–1105.

69

https://doi.org/10.1145/3146347.3146356

BIBLIOGRAPHY

[36] S. Liu and W. Deng, “Very deep convolutional neural network based image clas-
sification using small training sample size,” in 2015 3rd IAPR Asian Conference
on Pattern Recognition (ACPR), 2015, pp. 730–734.

[37] T. Sakurai, “Closed-form expressions for interconnection delay, coupling, and
crosstalk in vlsis,” IEEE Transactions on Electron Devices, vol. 40, no. 1, pp.
118–124, 1993.

70

	Securing in-memory processors against Row Hammering Attacks
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Dedication
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Processing-in-Memory (PIM)
	Row Hammering (RH) Security Attack
	The Effects of Row Hammer Attack on In-Memory Processing

	Background
	In-memory Processing
	Row-Hammering

	Vulnerability Analysis of a Programmable In-memory Architecture
	Programmable In-memory Processing core
	Programmable In-memory Processing Cluster
	Programmable In-memory Processing Router
	Programmable In-memory Processing Function Word Generation
	In-memory Processing Multiply and Accumulate Operations
	In-memory Processing Activation Operations
	Field Programmable Gate Array Implementation
	Technology Resources
	Machine Learning Model
	In-memory processing Implementation
	Communication

	Results
	pPIM characteristics
	Performance Evaluation
	Vulnerability Analysis of In-memory Processing Architectures

	Row Hammer Reducing Encoding Scheme
	In-memory Data Mapping
	Encoding Connectivity
	Encoding Scheme
	Alternative Encoding Schemes
	Comparisons with Error-Correction Codes
	Comparisons to logic/counter based approaches

	Operation Mapping
	Results
	Encoding and pPIM architecture characteristics
	Encoding Functionality
	Encoding/Decoding Performance Evaluation
	Pipelined RH-encoding scheme

	DRAM Design Analysis

	Conclusion and Future Work
	Future Work

	Bibliography

