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Abstract  
 

The growth of android applications is causing a threat and a serious issue towards Android’s 

security. The number of malware targeting the Android operating system is increasing daily. As a 

result, in recent days the traditional ways that are being used to detect malware are not able to 

defend alone against the rapid development of hackers attacking techniques and novel malware. 

This capstone project focuses on using predictive analytics toward detecting malware from the 

network traffic. In this capstone project, we aim to train and test our data to find the best machine 

learning model with the highest accuracy of detecting malware in the network traffic. Through a 

variety of machine learning algorithms and models, we focused on 5 models starting with the 

logistic regression that was successfully able to predict malware by 67%. Moving to the decision 

tree that was effectively able to predict malware by 69% which was exactly equal to the random 

forest prediction ability. The AdaBoost came about 84% exactness, and KNN came with the 

highest anticipation of 86% between all the models. This shows us the advantage of adopting 

predictive analytics in malware detection within the traditional approaches to build a strong and 

defendable Android operating system against malware. 
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1. Statement of the Problem  
 

The Android operating system has become a glamorous and attractive target for cybercriminals. 

Although Android is applying its security mechanisms, it is still facing security threats because of 

the vulnerabilities it is having. This is due to the open-source operating system and multiple stores 

that applications can be downloaded from. For this, since the device is always connected to the 

internet, it makes it easier and more vulnerable to multiple sorts of malicious attacks. Although 

Google and anti-virus companies are making huge efforts into implementing the latest 

technologies to defend against malware targeting Android, it is still challenging to defend 100% 

successfully. Hackers are always one step ahead. Thereby, using predictive analytics might be used 

to assist with understanding the behavior of malware within the network traffic and either block it 

or notify the end user before it reaches the device and starts its malicious behavior by spreading 

into the device, collect information, spy on the user, etc. 
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2. Background of the Problem  
 

With the widespread of smartphones, over one million Android applications around the world such 

as social media applications, mobile banking applications, and others are used and continue to play 

an increasingly important role in our everyday lives. Most of these apps have access to personal 

details of the users, such as their names, location, credit card numbers, and contact information. 

Almost all apps access the private data of the users, as this offers better-customized services for 

users. It could also result in lots of visible and non-visible issues. It is important to note that 

Android Operating System is Linux-based, which means that Linux operates its core functions 

(S.Sharma, 2014). The OS is mainly built for mobile devices and receives input through touch 

actions. It is considered as the popular open-source platform worldwide, allowing anyone with the 

skills required to modify and re-distribute its versions, and the ability to download from official 

and non-official stores and third-party apps. 

 Previously, attackers’ main target was to attack computers to get some information. However, 

with the mobile era, the target has been moved or distributed between both computers and 

smartphones. With the use of mobile phones, people are holding a lot of data in their hands which 

is more valuable to the attacker to get. Therefore, targeting the mobile device is much more 

valuable than it was ever. Malware targets devices in different ways such as advertisements, scams, 

and spying, etc.  The infected devices can misbehave or perform activities the owner has not 

authorized, which can come as a great inconvenience. Some cases have shown malware soliciting 

ransom payments from the users, usually after encrypting and blocking access to the device (T. 

Yang Y.Yang K.Qian, 2015). Other cases might be impossible to remove, as they embed 

themselves deep into the system. Security companies have created antivirus and anti-malware 

programs that help weed out the malware. However, the traditional ways of tackling malware are 

becoming harder than before because of the enormous growth of applications and the new 

mutations of the malware.  

The traditional way of detecting android malware has become time-consuming and subject to 

human error. Static and dynamic tests of detecting android malware are effective but might not be 

efficient as the platform becomes popular and new applications are being downloaded by the user 

or uploaded to the store every day. Adopting new technologies is important to keep pace with 

malware mutations. To defend against Android malware, adopting new technologies is highly 

recommended to be proactive towards defending against different types of malware based on 

previous studies related to machine learning and the different models applied by researchers 

toward finding the best model that replaces the traditional methods or to integrate with it to build 

a strong system that detects malware while moving in the network before it reaches to the android 

operating system.    
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3. Project Definition and Goals  

The main goal of this proposed project is to build a model that can detect Android malware using 

predictive analytics.  In this project, we aim to use previous data on android network traffic and 

train it on different machine learning algorithms to find the best model that can detect malware in 

the network traffic by analyzing its behavior. 

The predictive analytics includes acquiring android malware and its infection from a related 

dataset. The information will go through phases of cleaning and organizing to decrease the 

likelihood of the model making mistakes in future data. Using a training dataset about how the 

malware acts, the exercise will then turn towards developing the research model. The training 

phase is critical, as the entire models rely on their high accuracy. For this, we will be using Google 

Colab to apply data cleansing, exploratory data analysis, feature selection, data processing, and 

several machine learning algorithms such as logistic regression, decision tree, random forest, 

AdaBoost, and ANN model to find the best model that is having successful high predictions of 

malware traffic.  
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4. Literature Review  
 

Android is a platform that has progressively grown to be the largest smartphone operating system 

by the number of devices. These many devices are becoming a target of attackers seeking to obtain 

the personal information in them. Detecting Android malware is still in its infancy stages but is 

picking up quickly to find better ways. For instance, (Zhu, Jin, Yang, Wu, & Chen, 2017) outlines 

a method of detecting malware by deep learning methods. Machine learning algorithms, in this 

case, look for differences between the flow of data. The resulting tool is called Deep Flow, which 

analyzes the information by extracting it from running applications (Zhu, Jin, Yang, Wu, & Chen, 

2017). The analytics can predict whether the application is a possible malware since malicious 

cases can be looking for information in the wrong places. The researcher builds the model with 

thousands of applications, allowing the algorithm to understand what to look for in malware. The 

results indicated that Deep Flow is much better at classifying the malware from normal 

applications, with a chance to improve and perform much better. The research concludes that the 

typical way of looking for malware through their signatures is currently ineffective, as the dynamic 

nature of the tools sails through the filters. The best approach is to apply dynamically changing 

predictors and detectors to adapt to the changes in attacks and flag down potential threats before 

they spread. A combination of the traditional method and a dynamic one can also yield more 

efficient results if applied correctly. 

Clustering and classification form a large part of predicting algorithms in statistics. These 

techniques allow the grouping of items with similar traits. The working of Android means that 

malware target specific areas for certain information. (Chakraborty, Pierazzi, & Subrahmanian, 

2017) Seeks to combine these classification methods in predicting malicious software in Android. 

The approach seeks to target malware families rather than individual ones. Malware families are 

sets of malicious apps that share the same origin. By bundling up these characteristics of the 

families and feeding them to a classifier, (Chakraborty, Pierazzi, & Subrahmanian, 2017) indicates 

that it is possible to flag down larger numbers of malware than individual inspections. The 

approach shows great potential for expansion and adaptation to a large-scale detector. Grouping 

based on similar features such as author, the activity of app, characteristics, required permissions, 

and dynamic features, among others, builds an excellent overview for a prediction model—the 

approach results in a better prediction process with high accuracy. Further, the classification also 

applies smoothly to malware families with smaller numbers. The researchers also indicate that the 

prediction models allow easy detection of newer malware with modifications but originating from 

previous ones. Such results indicate that the mass detection of malware can get rid of a large 

percentage of dangerous applications and leave enough room for the experts to keep building on 

upcoming malware. Automation is possible in building wider classification features and makes it 

tougher for the attackers to avoid detection through complex hiding techniques. 

The dynamic detection mentioned above is not a new concept but rather an ongoing improvement 

of malware predictors. One of the key reasons malware is hard to handle is its constantly changing 

nature. The dynamic characteristic allows attackers to keep infecting more devices by altering their 

working. (Singh & Hofmann, 217) Analyzes this dynamic nature to detect malware in Android. 
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The process focuses on the behavior of the application and malware to uncover which ones are 

suspicious or not. The system calls of Android applications reveal what goes on as it processes 

data on different levels. Building a classifier on different approaches such as k-NN, Neural 

Networks, SVM, and random forest and deep learning provides a unique look into the differences. 

The approach indicates an accuracy rate of 97 percent when using the Support Vector Machine is 

achieved when using the approach (Singh & Hofmann, 217). The rest of the methods of 

classification shows much lower accuracy rates. Adding predictors to such classification methods 

shows a great promise of detecting malware in Android. The percentages of false identification of 

clean applications are also quite low when investigating the behavioral characteristics. The 

researchers also revealed that the method could be expanded to other detection and predicting 

methods, as it is flexible enough to accommodate several dimensions. An expansion of the target 

applications and data is also a good case for machine learning models, with more promises of 

better detection. The process, however, depends on previous identification of system calls that can 

be targeted, new techniques from the attackers can at times pass through undetected. 

Most Android detection studies are seeking ways of looking for malware. An excellent approach 

would be to combine different models of detection and build a process that performs in-depth 

detection. (Kim, Kang, Rho, Sezer, & Im, 2018) Proposes such a model, which combines 

similarities of features and existing features to feed a deep learning model as a detector. Such an 

approach is still not applied widely, indicating much promise in the approach security experts use 

to weed out malware. Analysis of static features forms a good start of predicting Android malware, 

as the characteristics are already identifiable. However, the dynamic nature of the apps also needs 

some consideration. The model calculates the weight of each feature and process and formulates a 

combined rating of the possibility of the app being malware (Kim, Kang, Rho, Sezer, & Im, 2018). 

The study additionally allows dynamic inclusion of features not previously identified, with the 

model adding it to its detection process. The result is an effective process that can adapt to 

advantageous changes it meets on the way. The neural network built on several vectors 

progressively learns on the data and improves its classification processes. The results show a high 

possibility of increasing the detection rate of the model. The accuracy of the multimodal model 

also outshines other approaches that focus on individual features. The room for comparison of 

different detection methods also allows the neural network to build a much stronger detection 

technique than typical approaches. However, the dataset for high accuracy achievement needs is 

large, as the progressive learning of neural networks depends on as much data as possible. 

(Li, et al., 2018) This reveals that most malware detection methods shine on a particular set of 

problems but lack enough room for expansion. This claim is evident when looking at the increasing 

rate of malware introduced to Android users. The researchers propose a new approach to detecting 

the harmful cases that can effectively keep pace with the increase in malware in the Android 

platform. The process approaches by identifying the permissions of the applications and 

classifying which ones are more prone to be utilized by malware. Machine learning prediction and 

classification split the clean from the malicious cases and a comparison of effectiveness and 

performance recorded. The model the study uses is called Significant Permission Identification 

and gets the permissions from the listed permissions of the application instead of dynamically 

requested ones. Such a path means that early detected permissions possibly misused build a strong 
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case of prediction and eventual detection. Tree-based machine algorithms result in better detectors 

than the rest (Li, et al., 2018). The approach also results in more efficiency in that the valid 

permissions can be reduced before analysis, which fastens the detection. By pruning the 

permissions and features, the study results in twenty-two permissions, increasing detection 

performance by more than eighty-five percent. The detection accuracy increases to ninety percent 

compared to typical detectors that analyze requested permissions. The early nature of the approach 

shows that highly effective predictors are possible soon, especially with possible levels of 

detection and prediction that are possibly built on the approach. 

A good area to look for malware is in analyzing the network flow. The information shared through 

the network can show if sensitive data is leaking through. An approach by (Wang, et al., 2017) 

indicates a possible method of detecting Android malware by analyzing the semantics of network 

flows. The study proposes a model that studies the flow of HTTP information that applications 

generate and applies a natural language process. The textual information of the network 

information provides a good overview of the mobile apps. The malware detection occurs upon 

extraction and processing of the textual information. Getting rid of words that do not help the 

process is also crucial in avoiding errors in accuracy through false classifications. The approach 

also removes meaningless symbols such as punctuation. High-frequency words also hold no need 

in the study, as (Wang, et al., 2017) indicates, leaving the set with crucial words that can provide 

good results after natural analysis. Generated N-gram sets additionally segment the data sets into 

sections for training the detection model. Early results indicate that malicious applications do not 

always generate malicious texts. Encrypted texts also present a hard time for the model, as they 

contain gibberish texts. However, the approach is quite good at detecting malicious applications 

and shows much potential in the application on malware detection. The case of encryption is slowly 

growing as more applications encrypt their network traffic. A combination with other effective 

approaches is possible to improve the overall accuracy rates. A possible combination would be to 

provide an analysis of the source and target IP addresses. The study shows the advances Android 

Malware detection has taken, alongside the increasing complexity of the malware. 
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5. Methodology Used  

Detecting android malware using predictive analytics requires using certain techniques to achieve 

the expected results. In this capstone project, two types of network traffic are labeled in our dataset 

as either ‘Malware’ or ‘Benign’. For this, we need to predict, depending on several features 

whether network traffic is malware or not using Google Colab. 

Data cleaning is the first important step to use to prepare a cleaned dataset for training and testing 

with fewer errors. In this part, we loaded the data and checked the head values to identify the 

number of entries, columns, and drop the null values.  

In Exploratory Data Analysis, we aimed to use a five-point summary to detect data type 

(continuous and discrete features). Data visualization was implemented in EDA to check head 

values and understand the variables that we are going to deal with during the analysis. Moreover, 

in the visualization, we aimed to use charts to understand the overall distributions of continuous 

and discrete columns that were detected. Histogram was used for continuous variables, bar chart 

was used for discrete variables to check the skew, and boxplot was used to detect outliers and treat 

them. 

The feature selection method was used to select the final set of features where the statistical testing 

hypothesis was applied. The aim of this is to check whether a particular feature is correlated with 

the target variable or not. Since the target variable is categorical, the ANOVA technique was used 

to test and check the correlation between the continuous variables. Since the target variable is 

categorical and the predictor is also categorical, we explored the correlation between them visually 

using a bar plot and applying the Chi-Square test.  

Before building the model, we pre-processed our target variable which is the ‘type’ ad replaced 

benign network traffic with 0 and malware network traffic with 1. Then, we went into splitting the 

data into training and testing. Next, the minmax transformation was implemented to make the data 

more standard which resulted in having a divided data ratio of 70:30 randomly. After splitting, 

4144 records in the training set and 1776 records for the testing set. In this method, different 

models were implemented on the training data such as logistic regression, decision tree, random 

forest, and KNN. For each of these models, the validation has been made using the testing set.   
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6. Sources of Data 
 

The dataset was found on the Kaggle website. The data is helpful to conduct the analysis and 

deliver the project goals since it was collected based on real network traffic. The dataset describes 

what a network packet consists of such as source, destination, DNS query time, and many others 

as described in the table below. It was found that data is quantitative. Moreover, it was observed 

that the dataset consisted of a total of 17 columns and 7845 rows. We noticed that some columns 

have NULL values, so cleaning data must be considered before splitting the data into training and 

testing to reduce the chance of errors.  

 

 
No. Column Name Description 

1 name Name of Application 

2 tcp_packets             transmission control protocol 

3 dist_port_tcp           distributed port transmission control protocol 

4 external_ips            External Internet Protocol 

5 vulume_bytes            Volume of application in bytes 

6 udp_packets             User Datagram Protocol 

7 tcp_urg_packet          Urg flag of tcp 

8 source_app_packets      Source application packet 

9 remote_app_packets      Remote application packet 

10 source_app_bytes        Source application size in bytes 

11 remote_app_bytes        Remote application size in bytes 

12 dns_query_times         Domain Name System query in times 

13 type Type of application, malware or benign (Target variable) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – checking the column information and finding NULL valuse 
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7. Analysis  

Importing required Libraries  

In the beginning we will import the data science libraries as mentioned below:  

 

▪ NumPy is used for calculating single summary measures, handling missing values, etc. 

▪ Pandas is used for reading data from CSV files, data manipulation, Five-point summary, 

cross-tabulation, etc. 

▪ MatplotLib is used for data visualization with Pandas visualization methods. 

▪ SciPy is also used for performing statistical tests like ANOVA, Chi-Square tests, etc. 

 

 

Load the data and check head values  

 

Checking head values allows viewing the first few rows to understand the data and how data is 

imported. Moreover, checking the column information identifies the columns that needs to be 

dropped to work with clean data. For example, dropping the columns that contain NULL Values. 

 

Figure 2 - checking head values and column information. 
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Data cleaning  

 

After checking the column information, it has been identified that there are some columns having 

no values (NULL) which needs to be dropped: 

1. duracion 

2. avg_local_pkt_rate 

3. avg_remote_pkt_rate 

4. source_app_packets.1 

After dropping the NULL columns, we check the unique values in each column to help us 

identify discrete, categorical, and continuous columns.  

 

Exploratory data analytics 

 

We explored the data by applying a five-point summary to give us a brief on each variable as 

showing in figure 3 below. 

 

 
Figure 3 – Five-point summary results 

 

 

 

 

 

 



            16  
 

We explore the categorical variables starting with the column (type) by a bar plot which resulted 

in having 4704 benign network traffic and 3141 malicious network traffic. 

 

 
Figure 4 – bar plot of ‘type’ variable  

Another categorical column (Name) has been visualized using a bar plot to see the different names 

that are most repeated and used in the network traffic. As it is showing in figure 5 that the most 

used name is (Reading) but we are still not sure whether it is malware or benign. 

 

Figure 5 – bar plot of ‘name’ variable  
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There is a list of flag types in the TCP header, but when it comes to the (tcp_urg_packet) it is 

mainly being used to inform the receiving station that this packet needs to be prioritized.   

Visualization has been done also by a bar plot for the column (tcp_urg_packet). Which shows 

whether any packet was flagged as urgent by flagging it as = 1 as it is showing in the figure below, 

all traffics were not flagged as urgent since all of them showed as =0. As a result, we understand 

that neither benign nor malware traffic is flagged as urgent packets.  

 
Figure 6 – bar plot of urgent flagging in TCP header  

 

Continuous variable visualization 

we visualized the following continuous variables using histogram plot. 

1. tcp_packets, 

2.  dist_port_tcp,  

3. external_ips,  

4. vulume_bytes, 

5. udp_packets, 

6.  source_app_packets,  

7. remote_app_packets, s 

8. ource_app_bytes, 

9.  remote_app_bytes, 

10.  dns_query_times.  
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Figure 7 – continuous variables visualization using histogram 

As a result, we observed that data has a good number of outliers which needed to be 

detected, and the best way to detect an outlier is using a boxplot.  

 

 

 

Anomaly Detection & Treatment  

 

In this section, a boxplot will be used for each column to detect outliers and treat them. We will 

use a boxplot depending on the two levels of the target variable. That is, there will be two boxplots 

in the same window, one is for type ‘malicious’ and another is for type ‘benign’. Ideally, we will 

remove the outliers that are mainly belonging to benign class. Since we are focusing more on 

detecting malicious applications. The figure below shows an example of how the outliers did were 

removed from each column.  

For example, the tcp_packets outliers were detected after the number of 200. For this, by several 

trials, we get the observation with the tcp_packet >200 should be removed as those are high 

outliers. This process is applied to all the columns with the continuous variables to clean them 

from their outliers.  
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Figure 8 – tcp_packets outlier detection 

 

After detecting and treating the outliers, we visualize the columns again by a histogram plot 

except for dns_query_times and external_ips columns since we noticed that they are discrete 

variables and visualizing them will be using bar plot instead of the histogram.    

 

 

 

 

 

 

 

 

Figure 9 – Histogram of all continuous variables after detecting outliers. 

 

 

 

 

 

 

 

 

Figure 10 – bar plot of dns_query_times 
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Figure 11 – bar plot of external_ips 

In figure 12 below, we visualize all bar plots and check their skewness. We notice that 

udp_packets and tcp_udp_packets are having an extremely skewed distribution, so we discard 

them from further analysis.  

 

Figure 12 – visualizing all bar plots together and check their skewness 

After treating all outliers, data has become more balanced in terms of classes of target variables.  

 

Figure 13 – bar plot of ‘type’ variable after treating outliers 
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Feature Selection  
 

Statistical feature selection using ANOVA Test  

 

As our target variable is categorical, we will use the ANOVA technique for checking the 

correlation with continuous variables. Analysis of variance (ANOVA) is performed to check if 

there is any relationship between the given continuous and categorical variables. 

• Assumption(H0): There is NO relation between the given variables (i.e. The 

average(mean) values of the numeric Predictor variable is the same for all the groups in 

the categorical Target variable) 

• ANOVA Test result: Probability of H0 being true 
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Relationship exploration: categorical vs. categorical  

 

In figure14 below, we visualized the variable ‘name’ with our target variable (type) to check the 

most repeated names in malware network traffic. As it is showing that the name (plankton) and 

(DroidKungFu) are the most names used in malware traffic.  

 

 

Figure 14 – visualizing ( name) and ‘type’ variables using bar plot  

In figure15 below, we visualized the categorical variable (external_ips) with our target variable 

(type) to find the most repeated IP Addresses the network traffic is coming from. As it is 

showing that there is more than one external IP used repeatedly in the network traffic, and most 

of the network traffic is coming from malicious external IP Addresses 

 

Figure 15 visualizing (external_ips) and ‘type’ variables using bar plot  
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In figure16 below, we visualized the categorical variable (dns_query_times) with our target 

variable (type) to find DNS query times for both benign and malware traffic. As it is showing 

that the number of the query times initiated by malware network traffic is more than the benign 

network traffic.  

 

Figure 16 - visualizing (dns_query_times) and (type) variables using bar plot  

 

 

Statistical feature selection (Categorical vs. Categorical) using Chi-Square Test 

 

When the target variable is Categorical, and the predictor is also categorical then we explore the 

correlation between them visually using bar plots and statistically using the Chi-square test.  

Chi-Square test is conducted to check the correlation between two categorical variables 

• Assumption(H0): The two columns are NOT related to each other 

• Result of Chi-Sq Test: The Probability of H0 being True 

 

 

From the above analysis, we get that almost all predictors are statistically significant at 5% level except the 

first column (name), which is very high dimensional and not so significant. So, we decide to drop that 

column and continue with the rest of the feature. 



            24  
 

Data Pre-processing 
 

In this part, we pre-processed the column (type) to reflect benign as 0 and malicious as 1. We 

also dropped the column (name) since it is the less significant high-dimensional categorical 

column.  

 

Figure 17- preprocessing variable (type)  

 

 

 

 

 

 

 

 

 

 

 

 



            25  
 

Machine Learning: Splitting the data into Training and Testing sample  
 

In splitting the dataset, we do not use the full data for creating the model. Some data is randomly selected 

and kept aside for checking how good the model is. This is known as Testing Data and the remaining data 

is called Training data on which the model is built. Typically, 70% of data is used as training data and the 

rest 30% is used as testing data. 

Logistic Regression  
Logistic regression is used to train or build an algorithm that will predict the target value, and it showed 

an accuracy of 0.67 of its ability to predict whether network traffic is malicious or not.  

 

Figure 18 – logistic Regression accuracy 

 

Decision Tree  
 

The decision tree is an additional model used to check its ability to predict the target value, and it showed 

an accuracy of 0.69 of its ability to predict whether network traffic is malicious or not. 

 

Figure 19 – Decision Tree accuracy 
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Figure 20 – Decicsion tree plot  

 

Random Forest  
Random forest is another model used to check its ability to predict the target value, and it showed an 

accuracy of 0.69 of its ability to predict whether network traffic is malicious or not. 

 

 

Figure 21 – Random Forest Accuracy  
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AdaBoost  
AdaBoost model showed an accuracy of 0.84 of its ability to predict whether a network traffic is 

malicious or not. 

 

 

Figure 22 – AdaBoost Accuracy 

 

KNN  
KNN model showed an accuracy of 0.86 of its ability to predict whether a network traffic is malicious or 

not. 

 

 

 

Figure 23 – KNN Accuracy  
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8. Results 

From the below table, we can see that AdaBoost algorithm and KNN are giving higher accuracy between 

all algorithms used. As a result, we can rely on KNN as the best model to predict malware applications in 

Android operation system. 

Model Comparison based on overall accuracy: 

Algorithms Precision Recall Accuracy 

Logistic regression 0.68 0.67 67% 

Decision tree 0.72 0.70 69% 

Random forest 0.72 0.70 69% 

AdaBoost 0.84 0.84 84% 

KNN 0.86 0.86 86% 

   

In networking, it is very important to know each traffic’s general name, from where it its coming, and 

where it is going. For this, among all 9 features, we found the top 3 important features in the network 

traffic are as listed: 

-  tcp_packets 

- dist_port_tcp  

- source_app_packets 

The feature importance chart is as below: 

 

 

Figure 24 – feature importance chart  
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Overall, the results met our expectation by proving the ability of different machine learning 

algorithms to predict malware in the network traffic. There were some differences in the 

percentage of the prediction for each algorithm, but it was successfully proved to us that machine 

learning algorithms can extract meaningful information from the amount of data it receives to 

predict malware occurrence. Since the use of Android devices keeps increasing worldwide, it is 

the time to  limit the chances of failed malware detection by adopting machine learning algorithms 

into the operating system. Having a strong operating system in the device will ensure high 

performance and security. Building machine learning algorithms in Android operating system will 

also ensure that all packets from different sources and stores are being captured, analyzed, and 

treated based on the previous and continuous learning of the model. Android users should always 

be protected by applying the latest and best technologies on their devices, we assume that build-in 

machine learning algorithms in the operating system will help toward fast detection of malware, 

taking the required action, and assure high level of security.    
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9. Conclusions/Future Work 
 

In conclusion, we understand how important it is to embed new technology to the traditional 

techniques which is still used nowadays to defend against malware threats. We never 

underestimate the power of any technology, but we believe that integrating those technologies 

together will build a strong network and security infrastructure to defend against daily threats and 

malware attacks on the Android operating system.  

While working on this project, we saw that there where limited work done on analyzing network 

traffic using predictive analytics techniques. In addition, machine learning algorithms were applied 

wonderfully which showed us how powerful and important it is today to move forward towards 

adopting this kind of technology into day-to-day businesses to save time, effort, and provide a high 

amount of security, and take better decisions.  

Using predictive analytics can help a lot in the information security field including securing the 

Android operating system from malware by using machine learning algorithms such as logistic 

regression, Decision tree, Random Forest, AdaBoost, and KNN. Although a small dataset of 

network traffic was used to apply those models, the accuracy percentage of each algorithm gave 

an indication this is possible to be integrated into the Android operating system instead of relying 

on third-party applications to scan the device from malware and depending on the end-user to be 

aware and careful which will end up one day with malware in the device by a random click.  

Huge companies like Google and many more, are working hard to apply those technologies to their 

systems. We believe that they are doing a great job in securing their operating system. As 

technology gets updated every day, and attackers get a new path to sneak into the Android 

operating system, we need to be in the front security layer defending against expected and non-

expected malware which is targeting the Android operating system by predicting it and dropping 

it before it reaches the user’s device. 
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Appendix  
 

 

Figure 25 -box plot of observations with dist_port_tcp >30 should be dropped because of high outliers 

 

Figure 26 - box plot of observations with vulume_bytes>30000 should be dropped because of high outliers 

 

Figure 27 -  box plot of observations with source_app_packets>150 should be dropped because of high outliers 
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Figure 28 - box plot of observations with remote_app_packets>150 should be dropped because of high outliers 

 

 

Figure 29 - box plot of observations with source_app_packets>70000 should be dropped because of high outliers 
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Figure 30 - box plot of observations with remote_app_packets>30000 should be dropped because of high outliers 

 

 

Figure 31 - box plot of observations with external_ips>14  should be dropped because of high outliers 
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Figure 32 - box plot of observations with dns_query_times>20  should be dropped because of high outliers 
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