
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

4-22-2021

Android Malware detection using predictive analytics. Android Malware detection using predictive analytics.

Amira Mohammed Albalooshi
ama6472@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Albalooshi, Amira Mohammed, "Android Malware detection using predictive analytics." (2021). Thesis.
Rochester Institute of Technology. Accessed from

This Master's Project is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10821?utm_source=repository.rit.edu%2Ftheses%2F10821&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

 i

Android Malware detection using predictive analytics.

by

Amira Mohammed Albalooshi

A Capstone Submitted in Partial Fulfilment of the Requirements for the Degree of Master

of Science in Professional Studies:

Data Analytics

Department of Graduate Programs & Research

Rochester Institute of Technology

RIT Dubai

22-04 2021

 i

RIT

Master of Science in Professional Studies:

City Science or Data Analytics

Graduate Capstone Approval

Student Name: Amira Mohammed Abdulla Albalooshi

Graduate Capstone Title: Android Malware detection using predictive analytics

Graduate Capstone Committee:

Name: Dr. Sanjay Modak Date:

 Chair of committee

Name: Dr. Boutheina Tlili Date:

 Member of committee/Mentor

 2

Acknowledgements

I would like to express my appreciation to lots of people who helped me reaching here. Starting

with my colleagues who were always there for support, my colleagues at my workplace who

inspired me to start this journey, and special thanks to my family for their support and

encouragement during this journey.

This paper would not be possible without my mentors’ support, Dr. Sanjay Modak and Dr.

Boutheina Tilili who were always there to support and guide me. Thank you to all of you.

 3

Table of Contents

Table of Contents .. 3

Abstract .. 5

1. Statement of the Problem ... 6

2. Background of the Problem ... 7

3. Project Definition and Goals .. 8

4. Literature Review ... 9

5. Methodology Used ... 12

6. Sources of Data .. 13

7. Analysis .. 14

Importing required Libraries .. 14

Load the data and check head values .. 14

Data cleaning ... 15

Exploratory data analytics ... 15

Anomaly Detection & Treatment .. 18

Feature Selection ... 21

Statistical feature selection using ANOVA Test ... 21

Relationship exploration: categorical vs. categorical.. 22

Statistical feature selection (Categorical vs. Categorical) using Chi-Square Test 23

Data Pre-processing .. 24

Machine Learning: Splitting the data into Training and Testing sample ... 25

Logistic Regression ... 25

Decision Tree .. 25

Random Forest .. 26

AdaBoost .. 27

KNN .. 27

9. Conclusions/Future Work .. 30

10. Bibliography .. 31

Appendix .. 32

 4

Figure 1 – checking the column information and finding NULL valuse .. 13

Figure 2 - checking head values and column information. ... 14

Figure 3 – Five-point summary results ... 15

Figure 4 – bar plot of ‘type’ variable .. 16

Figure 5 – bar plot of ‘name’ variable .. 16

Figure 6 – bar plot of urgent flagging in TCP header ... 17

Figure 7 – continuous variables visualization using histogram .. 18

Figure 8 – tcp_packets outlier detection ... 19

Figure 9 – Histogram of all continuous variables after detecting outliers. ... 19

Figure 10 – bar plot of dns_query_times .. 19

Figure 11 – bar plot of external_ips .. 20

Figure 12 – visualizing all bar plots together and check their skewness .. 20

Figure 13 – bar plot of ‘type’ variable after treating outliers .. 20

Figure 14 – visualizing (name) and ‘type’ variables using bar plot ... 22

Figure 15 visualizing (external_ips) and ‘type’ variables using bar plot .. 22

Figure 16 - visualizing (dns_query_times) and (type) variables using bar plot .. 23

Figure 17- preprocessing variable (type) .. 24

Figure 18 – logistic Regression accuracy ... 25

Figure 19 – Decision Tree accuracy ... 25

Figure 20 – Decicsion tree plot ... 26

Figure 21 – Random Forest Accuracy.. 26

Figure 22 – AdaBoost Accuracy ... 27

Figure 23 – KNN Accuracy ... 27

Figure 24 – feature importance chart .. 28

Figure 25 -box plot of observations with dist_port_tcp >30 should be dropped because of high outliers 32

Figure 26 - box plot of observations with vulume_bytes>30000 should be dropped because of high

outliers .. 32

Figure 27 - box plot of observations with source_app_packets>150 should be dropped because of high

outliers .. 32

Figure 28 - box plot of observations with remote_app_packets>150 should be dropped because of high

outliers .. 33

Figure 29 - box plot of observations with source_app_packets>70000 should be dropped because of high

outliers .. 33

Figure 30 - box plot of observations with remote_app_packets>30000 should be dropped because of

high outliers .. 34

Figure 31 - box plot of observations with external_ips>14 should be dropped because of high outliers 34

Figure 32 - box plot of observations with dns_query_times>20 should be dropped because of high

outliers .. 35

file:///C:/Users/Amira/Desktop/RIT/Capstone%20Project/Amira's%20CAPSTONE.docx%23_Toc68602192
file:///C:/Users/Amira/Desktop/RIT/Capstone%20Project/Amira's%20CAPSTONE.docx%23_Toc68602201

 5

Abstract

The growth of android applications is causing a threat and a serious issue towards Android’s

security. The number of malware targeting the Android operating system is increasing daily. As a

result, in recent days the traditional ways that are being used to detect malware are not able to

defend alone against the rapid development of hackers attacking techniques and novel malware.

This capstone project focuses on using predictive analytics toward detecting malware from the

network traffic. In this capstone project, we aim to train and test our data to find the best machine

learning model with the highest accuracy of detecting malware in the network traffic. Through a

variety of machine learning algorithms and models, we focused on 5 models starting with the

logistic regression that was successfully able to predict malware by 67%. Moving to the decision

tree that was effectively able to predict malware by 69% which was exactly equal to the random

forest prediction ability. The AdaBoost came about 84% exactness, and KNN came with the

highest anticipation of 86% between all the models. This shows us the advantage of adopting

predictive analytics in malware detection within the traditional approaches to build a strong and

defendable Android operating system against malware.

 6

1. Statement of the Problem

The Android operating system has become a glamorous and attractive target for cybercriminals.

Although Android is applying its security mechanisms, it is still facing security threats because of

the vulnerabilities it is having. This is due to the open-source operating system and multiple stores

that applications can be downloaded from. For this, since the device is always connected to the

internet, it makes it easier and more vulnerable to multiple sorts of malicious attacks. Although

Google and anti-virus companies are making huge efforts into implementing the latest

technologies to defend against malware targeting Android, it is still challenging to defend 100%

successfully. Hackers are always one step ahead. Thereby, using predictive analytics might be used

to assist with understanding the behavior of malware within the network traffic and either block it

or notify the end user before it reaches the device and starts its malicious behavior by spreading

into the device, collect information, spy on the user, etc.

 7

2. Background of the Problem

With the widespread of smartphones, over one million Android applications around the world such

as social media applications, mobile banking applications, and others are used and continue to play

an increasingly important role in our everyday lives. Most of these apps have access to personal

details of the users, such as their names, location, credit card numbers, and contact information.

Almost all apps access the private data of the users, as this offers better-customized services for

users. It could also result in lots of visible and non-visible issues. It is important to note that

Android Operating System is Linux-based, which means that Linux operates its core functions

(S.Sharma, 2014). The OS is mainly built for mobile devices and receives input through touch

actions. It is considered as the popular open-source platform worldwide, allowing anyone with the

skills required to modify and re-distribute its versions, and the ability to download from official

and non-official stores and third-party apps.

 Previously, attackers’ main target was to attack computers to get some information. However,

with the mobile era, the target has been moved or distributed between both computers and

smartphones. With the use of mobile phones, people are holding a lot of data in their hands which

is more valuable to the attacker to get. Therefore, targeting the mobile device is much more

valuable than it was ever. Malware targets devices in different ways such as advertisements, scams,

and spying, etc. The infected devices can misbehave or perform activities the owner has not

authorized, which can come as a great inconvenience. Some cases have shown malware soliciting

ransom payments from the users, usually after encrypting and blocking access to the device (T.

Yang Y.Yang K.Qian, 2015). Other cases might be impossible to remove, as they embed

themselves deep into the system. Security companies have created antivirus and anti-malware

programs that help weed out the malware. However, the traditional ways of tackling malware are

becoming harder than before because of the enormous growth of applications and the new

mutations of the malware.

The traditional way of detecting android malware has become time-consuming and subject to

human error. Static and dynamic tests of detecting android malware are effective but might not be

efficient as the platform becomes popular and new applications are being downloaded by the user

or uploaded to the store every day. Adopting new technologies is important to keep pace with

malware mutations. To defend against Android malware, adopting new technologies is highly

recommended to be proactive towards defending against different types of malware based on

previous studies related to machine learning and the different models applied by researchers

toward finding the best model that replaces the traditional methods or to integrate with it to build

a strong system that detects malware while moving in the network before it reaches to the android

operating system.

 8

3. Project Definition and Goals

The main goal of this proposed project is to build a model that can detect Android malware using

predictive analytics. In this project, we aim to use previous data on android network traffic and

train it on different machine learning algorithms to find the best model that can detect malware in

the network traffic by analyzing its behavior.

The predictive analytics includes acquiring android malware and its infection from a related

dataset. The information will go through phases of cleaning and organizing to decrease the

likelihood of the model making mistakes in future data. Using a training dataset about how the

malware acts, the exercise will then turn towards developing the research model. The training

phase is critical, as the entire models rely on their high accuracy. For this, we will be using Google

Colab to apply data cleansing, exploratory data analysis, feature selection, data processing, and

several machine learning algorithms such as logistic regression, decision tree, random forest,

AdaBoost, and ANN model to find the best model that is having successful high predictions of

malware traffic.

 9

4. Literature Review

Android is a platform that has progressively grown to be the largest smartphone operating system

by the number of devices. These many devices are becoming a target of attackers seeking to obtain

the personal information in them. Detecting Android malware is still in its infancy stages but is

picking up quickly to find better ways. For instance, (Zhu, Jin, Yang, Wu, & Chen, 2017) outlines

a method of detecting malware by deep learning methods. Machine learning algorithms, in this

case, look for differences between the flow of data. The resulting tool is called Deep Flow, which

analyzes the information by extracting it from running applications (Zhu, Jin, Yang, Wu, & Chen,

2017). The analytics can predict whether the application is a possible malware since malicious

cases can be looking for information in the wrong places. The researcher builds the model with

thousands of applications, allowing the algorithm to understand what to look for in malware. The

results indicated that Deep Flow is much better at classifying the malware from normal

applications, with a chance to improve and perform much better. The research concludes that the

typical way of looking for malware through their signatures is currently ineffective, as the dynamic

nature of the tools sails through the filters. The best approach is to apply dynamically changing

predictors and detectors to adapt to the changes in attacks and flag down potential threats before

they spread. A combination of the traditional method and a dynamic one can also yield more

efficient results if applied correctly.

Clustering and classification form a large part of predicting algorithms in statistics. These

techniques allow the grouping of items with similar traits. The working of Android means that

malware target specific areas for certain information. (Chakraborty, Pierazzi, & Subrahmanian,

2017) Seeks to combine these classification methods in predicting malicious software in Android.

The approach seeks to target malware families rather than individual ones. Malware families are

sets of malicious apps that share the same origin. By bundling up these characteristics of the

families and feeding them to a classifier, (Chakraborty, Pierazzi, & Subrahmanian, 2017) indicates

that it is possible to flag down larger numbers of malware than individual inspections. The

approach shows great potential for expansion and adaptation to a large-scale detector. Grouping

based on similar features such as author, the activity of app, characteristics, required permissions,

and dynamic features, among others, builds an excellent overview for a prediction model—the

approach results in a better prediction process with high accuracy. Further, the classification also

applies smoothly to malware families with smaller numbers. The researchers also indicate that the

prediction models allow easy detection of newer malware with modifications but originating from

previous ones. Such results indicate that the mass detection of malware can get rid of a large

percentage of dangerous applications and leave enough room for the experts to keep building on

upcoming malware. Automation is possible in building wider classification features and makes it

tougher for the attackers to avoid detection through complex hiding techniques.

The dynamic detection mentioned above is not a new concept but rather an ongoing improvement

of malware predictors. One of the key reasons malware is hard to handle is its constantly changing

nature. The dynamic characteristic allows attackers to keep infecting more devices by altering their

working. (Singh & Hofmann, 217) Analyzes this dynamic nature to detect malware in Android.

 10

The process focuses on the behavior of the application and malware to uncover which ones are

suspicious or not. The system calls of Android applications reveal what goes on as it processes

data on different levels. Building a classifier on different approaches such as k-NN, Neural

Networks, SVM, and random forest and deep learning provides a unique look into the differences.

The approach indicates an accuracy rate of 97 percent when using the Support Vector Machine is

achieved when using the approach (Singh & Hofmann, 217). The rest of the methods of

classification shows much lower accuracy rates. Adding predictors to such classification methods

shows a great promise of detecting malware in Android. The percentages of false identification of

clean applications are also quite low when investigating the behavioral characteristics. The

researchers also revealed that the method could be expanded to other detection and predicting

methods, as it is flexible enough to accommodate several dimensions. An expansion of the target

applications and data is also a good case for machine learning models, with more promises of

better detection. The process, however, depends on previous identification of system calls that can

be targeted, new techniques from the attackers can at times pass through undetected.

Most Android detection studies are seeking ways of looking for malware. An excellent approach

would be to combine different models of detection and build a process that performs in-depth

detection. (Kim, Kang, Rho, Sezer, & Im, 2018) Proposes such a model, which combines

similarities of features and existing features to feed a deep learning model as a detector. Such an

approach is still not applied widely, indicating much promise in the approach security experts use

to weed out malware. Analysis of static features forms a good start of predicting Android malware,

as the characteristics are already identifiable. However, the dynamic nature of the apps also needs

some consideration. The model calculates the weight of each feature and process and formulates a

combined rating of the possibility of the app being malware (Kim, Kang, Rho, Sezer, & Im, 2018).

The study additionally allows dynamic inclusion of features not previously identified, with the

model adding it to its detection process. The result is an effective process that can adapt to

advantageous changes it meets on the way. The neural network built on several vectors

progressively learns on the data and improves its classification processes. The results show a high

possibility of increasing the detection rate of the model. The accuracy of the multimodal model

also outshines other approaches that focus on individual features. The room for comparison of

different detection methods also allows the neural network to build a much stronger detection

technique than typical approaches. However, the dataset for high accuracy achievement needs is

large, as the progressive learning of neural networks depends on as much data as possible.

(Li, et al., 2018) This reveals that most malware detection methods shine on a particular set of

problems but lack enough room for expansion. This claim is evident when looking at the increasing

rate of malware introduced to Android users. The researchers propose a new approach to detecting

the harmful cases that can effectively keep pace with the increase in malware in the Android

platform. The process approaches by identifying the permissions of the applications and

classifying which ones are more prone to be utilized by malware. Machine learning prediction and

classification split the clean from the malicious cases and a comparison of effectiveness and

performance recorded. The model the study uses is called Significant Permission Identification

and gets the permissions from the listed permissions of the application instead of dynamically

requested ones. Such a path means that early detected permissions possibly misused build a strong

 11

case of prediction and eventual detection. Tree-based machine algorithms result in better detectors

than the rest (Li, et al., 2018). The approach also results in more efficiency in that the valid

permissions can be reduced before analysis, which fastens the detection. By pruning the

permissions and features, the study results in twenty-two permissions, increasing detection

performance by more than eighty-five percent. The detection accuracy increases to ninety percent

compared to typical detectors that analyze requested permissions. The early nature of the approach

shows that highly effective predictors are possible soon, especially with possible levels of

detection and prediction that are possibly built on the approach.

A good area to look for malware is in analyzing the network flow. The information shared through

the network can show if sensitive data is leaking through. An approach by (Wang, et al., 2017)

indicates a possible method of detecting Android malware by analyzing the semantics of network

flows. The study proposes a model that studies the flow of HTTP information that applications

generate and applies a natural language process. The textual information of the network

information provides a good overview of the mobile apps. The malware detection occurs upon

extraction and processing of the textual information. Getting rid of words that do not help the

process is also crucial in avoiding errors in accuracy through false classifications. The approach

also removes meaningless symbols such as punctuation. High-frequency words also hold no need

in the study, as (Wang, et al., 2017) indicates, leaving the set with crucial words that can provide

good results after natural analysis. Generated N-gram sets additionally segment the data sets into

sections for training the detection model. Early results indicate that malicious applications do not

always generate malicious texts. Encrypted texts also present a hard time for the model, as they

contain gibberish texts. However, the approach is quite good at detecting malicious applications

and shows much potential in the application on malware detection. The case of encryption is slowly

growing as more applications encrypt their network traffic. A combination with other effective

approaches is possible to improve the overall accuracy rates. A possible combination would be to

provide an analysis of the source and target IP addresses. The study shows the advances Android

Malware detection has taken, alongside the increasing complexity of the malware.

 12

5. Methodology Used

Detecting android malware using predictive analytics requires using certain techniques to achieve

the expected results. In this capstone project, two types of network traffic are labeled in our dataset

as either ‘Malware’ or ‘Benign’. For this, we need to predict, depending on several features

whether network traffic is malware or not using Google Colab.

Data cleaning is the first important step to use to prepare a cleaned dataset for training and testing

with fewer errors. In this part, we loaded the data and checked the head values to identify the

number of entries, columns, and drop the null values.

In Exploratory Data Analysis, we aimed to use a five-point summary to detect data type

(continuous and discrete features). Data visualization was implemented in EDA to check head

values and understand the variables that we are going to deal with during the analysis. Moreover,

in the visualization, we aimed to use charts to understand the overall distributions of continuous

and discrete columns that were detected. Histogram was used for continuous variables, bar chart

was used for discrete variables to check the skew, and boxplot was used to detect outliers and treat

them.

The feature selection method was used to select the final set of features where the statistical testing

hypothesis was applied. The aim of this is to check whether a particular feature is correlated with

the target variable or not. Since the target variable is categorical, the ANOVA technique was used

to test and check the correlation between the continuous variables. Since the target variable is

categorical and the predictor is also categorical, we explored the correlation between them visually

using a bar plot and applying the Chi-Square test.

Before building the model, we pre-processed our target variable which is the ‘type’ ad replaced

benign network traffic with 0 and malware network traffic with 1. Then, we went into splitting the

data into training and testing. Next, the minmax transformation was implemented to make the data

more standard which resulted in having a divided data ratio of 70:30 randomly. After splitting,

4144 records in the training set and 1776 records for the testing set. In this method, different

models were implemented on the training data such as logistic regression, decision tree, random

forest, and KNN. For each of these models, the validation has been made using the testing set.

 13

6. Sources of Data

The dataset was found on the Kaggle website. The data is helpful to conduct the analysis and

deliver the project goals since it was collected based on real network traffic. The dataset describes

what a network packet consists of such as source, destination, DNS query time, and many others

as described in the table below. It was found that data is quantitative. Moreover, it was observed

that the dataset consisted of a total of 17 columns and 7845 rows. We noticed that some columns

have NULL values, so cleaning data must be considered before splitting the data into training and

testing to reduce the chance of errors.

No. Column Name Description

1 name Name of Application

2 tcp_packets transmission control protocol

3 dist_port_tcp distributed port transmission control protocol

4 external_ips External Internet Protocol

5 vulume_bytes Volume of application in bytes

6 udp_packets User Datagram Protocol

7 tcp_urg_packet Urg flag of tcp

8 source_app_packets Source application packet

9 remote_app_packets Remote application packet

10 source_app_bytes Source application size in bytes

11 remote_app_bytes Remote application size in bytes

12 dns_query_times Domain Name System query in times

13 type Type of application, malware or benign (Target variable)

Figure 1 – checking the column information and finding NULL valuse

 14

7. Analysis

Importing required Libraries

In the beginning we will import the data science libraries as mentioned below:

▪ NumPy is used for calculating single summary measures, handling missing values, etc.

▪ Pandas is used for reading data from CSV files, data manipulation, Five-point summary,

cross-tabulation, etc.

▪ MatplotLib is used for data visualization with Pandas visualization methods.

▪ SciPy is also used for performing statistical tests like ANOVA, Chi-Square tests, etc.

Load the data and check head values

Checking head values allows viewing the first few rows to understand the data and how data is

imported. Moreover, checking the column information identifies the columns that needs to be

dropped to work with clean data. For example, dropping the columns that contain NULL Values.

Figure 2 - checking head values and column information.

 15

Data cleaning

After checking the column information, it has been identified that there are some columns having

no values (NULL) which needs to be dropped:

1. duracion

2. avg_local_pkt_rate

3. avg_remote_pkt_rate

4. source_app_packets.1

After dropping the NULL columns, we check the unique values in each column to help us

identify discrete, categorical, and continuous columns.

Exploratory data analytics

We explored the data by applying a five-point summary to give us a brief on each variable as

showing in figure 3 below.

Figure 3 – Five-point summary results

 16

We explore the categorical variables starting with the column (type) by a bar plot which resulted

in having 4704 benign network traffic and 3141 malicious network traffic.

Figure 4 – bar plot of ‘type’ variable

Another categorical column (Name) has been visualized using a bar plot to see the different names

that are most repeated and used in the network traffic. As it is showing in figure 5 that the most

used name is (Reading) but we are still not sure whether it is malware or benign.

Figure 5 – bar plot of ‘name’ variable

 17

There is a list of flag types in the TCP header, but when it comes to the (tcp_urg_packet) it is

mainly being used to inform the receiving station that this packet needs to be prioritized.

Visualization has been done also by a bar plot for the column (tcp_urg_packet). Which shows

whether any packet was flagged as urgent by flagging it as = 1 as it is showing in the figure below,

all traffics were not flagged as urgent since all of them showed as =0. As a result, we understand

that neither benign nor malware traffic is flagged as urgent packets.

Figure 6 – bar plot of urgent flagging in TCP header

Continuous variable visualization

we visualized the following continuous variables using histogram plot.

1. tcp_packets,

2. dist_port_tcp,

3. external_ips,

4. vulume_bytes,

5. udp_packets,

6. source_app_packets,

7. remote_app_packets, s

8. ource_app_bytes,

9. remote_app_bytes,

10. dns_query_times.

 18

Figure 7 – continuous variables visualization using histogram

As a result, we observed that data has a good number of outliers which needed to be

detected, and the best way to detect an outlier is using a boxplot.

Anomaly Detection & Treatment

In this section, a boxplot will be used for each column to detect outliers and treat them. We will

use a boxplot depending on the two levels of the target variable. That is, there will be two boxplots

in the same window, one is for type ‘malicious’ and another is for type ‘benign’. Ideally, we will

remove the outliers that are mainly belonging to benign class. Since we are focusing more on

detecting malicious applications. The figure below shows an example of how the outliers did were

removed from each column.

For example, the tcp_packets outliers were detected after the number of 200. For this, by several

trials, we get the observation with the tcp_packet >200 should be removed as those are high

outliers. This process is applied to all the columns with the continuous variables to clean them

from their outliers.

 19

Figure 8 – tcp_packets outlier detection

After detecting and treating the outliers, we visualize the columns again by a histogram plot

except for dns_query_times and external_ips columns since we noticed that they are discrete

variables and visualizing them will be using bar plot instead of the histogram.

Figure 9 – Histogram of all continuous variables after detecting outliers.

Figure 10 – bar plot of dns_query_times

 20

Figure 11 – bar plot of external_ips

In figure 12 below, we visualize all bar plots and check their skewness. We notice that

udp_packets and tcp_udp_packets are having an extremely skewed distribution, so we discard

them from further analysis.

Figure 12 – visualizing all bar plots together and check their skewness

After treating all outliers, data has become more balanced in terms of classes of target variables.

Figure 13 – bar plot of ‘type’ variable after treating outliers

 21

Feature Selection

Statistical feature selection using ANOVA Test

As our target variable is categorical, we will use the ANOVA technique for checking the

correlation with continuous variables. Analysis of variance (ANOVA) is performed to check if

there is any relationship between the given continuous and categorical variables.

• Assumption(H0): There is NO relation between the given variables (i.e. The

average(mean) values of the numeric Predictor variable is the same for all the groups in

the categorical Target variable)

• ANOVA Test result: Probability of H0 being true

 22

Relationship exploration: categorical vs. categorical

In figure14 below, we visualized the variable ‘name’ with our target variable (type) to check the

most repeated names in malware network traffic. As it is showing that the name (plankton) and

(DroidKungFu) are the most names used in malware traffic.

Figure 14 – visualizing (name) and ‘type’ variables using bar plot

In figure15 below, we visualized the categorical variable (external_ips) with our target variable

(type) to find the most repeated IP Addresses the network traffic is coming from. As it is

showing that there is more than one external IP used repeatedly in the network traffic, and most

of the network traffic is coming from malicious external IP Addresses

Figure 15 visualizing (external_ips) and ‘type’ variables using bar plot

 23

In figure16 below, we visualized the categorical variable (dns_query_times) with our target

variable (type) to find DNS query times for both benign and malware traffic. As it is showing

that the number of the query times initiated by malware network traffic is more than the benign

network traffic.

Figure 16 - visualizing (dns_query_times) and (type) variables using bar plot

Statistical feature selection (Categorical vs. Categorical) using Chi-Square Test

When the target variable is Categorical, and the predictor is also categorical then we explore the

correlation between them visually using bar plots and statistically using the Chi-square test.

Chi-Square test is conducted to check the correlation between two categorical variables

• Assumption(H0): The two columns are NOT related to each other

• Result of Chi-Sq Test: The Probability of H0 being True

From the above analysis, we get that almost all predictors are statistically significant at 5% level except the

first column (name), which is very high dimensional and not so significant. So, we decide to drop that

column and continue with the rest of the feature.

 24

Data Pre-processing

In this part, we pre-processed the column (type) to reflect benign as 0 and malicious as 1. We

also dropped the column (name) since it is the less significant high-dimensional categorical

column.

Figure 17- preprocessing variable (type)

 25

Machine Learning: Splitting the data into Training and Testing sample

In splitting the dataset, we do not use the full data for creating the model. Some data is randomly selected

and kept aside for checking how good the model is. This is known as Testing Data and the remaining data

is called Training data on which the model is built. Typically, 70% of data is used as training data and the

rest 30% is used as testing data.

Logistic Regression
Logistic regression is used to train or build an algorithm that will predict the target value, and it showed

an accuracy of 0.67 of its ability to predict whether network traffic is malicious or not.

Figure 18 – logistic Regression accuracy

Decision Tree

The decision tree is an additional model used to check its ability to predict the target value, and it showed

an accuracy of 0.69 of its ability to predict whether network traffic is malicious or not.

Figure 19 – Decision Tree accuracy

 26

Figure 20 – Decicsion tree plot

Random Forest
Random forest is another model used to check its ability to predict the target value, and it showed an

accuracy of 0.69 of its ability to predict whether network traffic is malicious or not.

Figure 21 – Random Forest Accuracy

 27

AdaBoost
AdaBoost model showed an accuracy of 0.84 of its ability to predict whether a network traffic is

malicious or not.

Figure 22 – AdaBoost Accuracy

KNN
KNN model showed an accuracy of 0.86 of its ability to predict whether a network traffic is malicious or

not.

Figure 23 – KNN Accuracy

 28

8. Results

From the below table, we can see that AdaBoost algorithm and KNN are giving higher accuracy between

all algorithms used. As a result, we can rely on KNN as the best model to predict malware applications in

Android operation system.

Model Comparison based on overall accuracy:

Algorithms Precision Recall Accuracy

Logistic regression 0.68 0.67 67%

Decision tree 0.72 0.70 69%

Random forest 0.72 0.70 69%

AdaBoost 0.84 0.84 84%

KNN 0.86 0.86 86%

In networking, it is very important to know each traffic’s general name, from where it its coming, and

where it is going. For this, among all 9 features, we found the top 3 important features in the network

traffic are as listed:

- tcp_packets

- dist_port_tcp

- source_app_packets

The feature importance chart is as below:

Figure 24 – feature importance chart

 29

Overall, the results met our expectation by proving the ability of different machine learning

algorithms to predict malware in the network traffic. There were some differences in the

percentage of the prediction for each algorithm, but it was successfully proved to us that machine

learning algorithms can extract meaningful information from the amount of data it receives to

predict malware occurrence. Since the use of Android devices keeps increasing worldwide, it is

the time to limit the chances of failed malware detection by adopting machine learning algorithms

into the operating system. Having a strong operating system in the device will ensure high

performance and security. Building machine learning algorithms in Android operating system will

also ensure that all packets from different sources and stores are being captured, analyzed, and

treated based on the previous and continuous learning of the model. Android users should always

be protected by applying the latest and best technologies on their devices, we assume that build-in

machine learning algorithms in the operating system will help toward fast detection of malware,

taking the required action, and assure high level of security.

 30

9. Conclusions/Future Work

In conclusion, we understand how important it is to embed new technology to the traditional

techniques which is still used nowadays to defend against malware threats. We never

underestimate the power of any technology, but we believe that integrating those technologies

together will build a strong network and security infrastructure to defend against daily threats and

malware attacks on the Android operating system.

While working on this project, we saw that there where limited work done on analyzing network

traffic using predictive analytics techniques. In addition, machine learning algorithms were applied

wonderfully which showed us how powerful and important it is today to move forward towards

adopting this kind of technology into day-to-day businesses to save time, effort, and provide a high

amount of security, and take better decisions.

Using predictive analytics can help a lot in the information security field including securing the

Android operating system from malware by using machine learning algorithms such as logistic

regression, Decision tree, Random Forest, AdaBoost, and KNN. Although a small dataset of

network traffic was used to apply those models, the accuracy percentage of each algorithm gave

an indication this is possible to be integrated into the Android operating system instead of relying

on third-party applications to scan the device from malware and depending on the end-user to be

aware and careful which will end up one day with malware in the device by a random click.

Huge companies like Google and many more, are working hard to apply those technologies to their

systems. We believe that they are doing a great job in securing their operating system. As

technology gets updated every day, and attackers get a new path to sneak into the Android

operating system, we need to be in the front security layer defending against expected and non-

expected malware which is targeting the Android operating system by predicting it and dropping

it before it reaches the user’s device.

 31

10. Bibliography

Chakraborty, T., Pierazzi, F., & Subrahmanian, V. S. (2017). Ec2: Ensemble clustering and

classification for predicting android malware families. IEEE Transactions on Dependable

and Secure Computing, 17(2), 262-277.

Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A multimodal deep learning method

for android malware detection using various features. IEEE Transactions on Information

Forensics and Security, 14(3), 773-788.

Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., & Ye, H. (2018). Significant permission

identification for machine-learning-based android malware detection. IEEE Transactions

on Industrial Informatics, 14(7), 3216-3225.

Singh, L., & Hofmann, M. (217). Dynamic behavior analysis of android applications for

malware detection. In 2017 International Conference on Intelligent Communication and

Computational Techniques (ICCT) (pp. 1-7). IEEE.

Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., & Conti, M. (2017). Detecting android

malware leveraging text semantics of network flows. IEEE Transactions on Information

Forensics and Security, 13(5), 1096-1109.

Zhu, D., Jin, H., Yang, Y., Wu, D., & Chen, W. (2017). DeepFlow: Deep learning-based

malware detection by mining Android application for abnormal usage of sensitive data.

In 2017 IEEE symposium on computers and communications (ISCC) (pp. 438-443).

IEEE.

 32

Appendix

Figure 25 -box plot of observations with dist_port_tcp >30 should be dropped because of high outliers

Figure 26 - box plot of observations with vulume_bytes>30000 should be dropped because of high outliers

Figure 27 - box plot of observations with source_app_packets>150 should be dropped because of high outliers

 33

Figure 28 - box plot of observations with remote_app_packets>150 should be dropped because of high outliers

Figure 29 - box plot of observations with source_app_packets>70000 should be dropped because of high outliers

 34

Figure 30 - box plot of observations with remote_app_packets>30000 should be dropped because of high outliers

Figure 31 - box plot of observations with external_ips>14 should be dropped because of high outliers

 35

Figure 32 - box plot of observations with dns_query_times>20 should be dropped because of high outliers

	Android Malware detection using predictive analytics.
	Recommended Citation

	tmp.1622636207.pdf.Hmste

