
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

4-2021

API Recommendation Using Domain And Source Code Knowledge API Recommendation Using Domain And Source Code Knowledge

Rana Kareem Talib Al-Rubaye
ra9118@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Al-Rubaye, Rana Kareem Talib, "API Recommendation Using Domain And Source Code Knowledge"
(2021). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10819?utm_source=repository.rit.edu%2Ftheses%2F10819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

API Recommendation Using Domain And Source Code Knowledge

by

Rana Kareem Talib Al-Rubaye

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in Software Engineering

Department of Software Engineering
B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology
Rochester, New York

April, 2021

API Recommendation Using Domain And Source Code Knowledge

by
Rana Kareem Talib Al-Rubaye

Committee Approval:

We, the undersigned committeemembers, certify thatwe have advised and/or supervised the candidate on thework de-
scribed in this thesis. We further certify that we have reviewed the thesis manuscript and approve it in partial fulfillment
of the requirements of the degree of Master in Software Engineering.

J Scott Hawker Date
SE Graduate Program Director

Mohamed Wiem Mkaouer Date
Advisor

Christian Newman Date
Committee Member

ii

iii

©2021, Rana Kareem Talib Al-Rubaye
All rights reserved.

API Recommendation Using Domain And Source Code Knowledge

by
Rana Kareem Talib Al-Rubaye

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences Master Program in

Software Engineering
in partial fulfillment of the requirements for the

Master Degree
at the Rochester Institute of Technology

Abstract

The process of migration the old retired API(Application Programming Interface) with
new and most to up to date one, know as API migration. Developers need to fully un-
derstand the documentation for the retired (replaced) library and the new (replacing)
library to do the appropriate migration. This manual process is complex, error-prone,
and costly for companies. There have been many studies focused on the automation rec-
ommendation between different methodmapping for different libraries. These studies fo-
cused on the recommendations between methods from different programming languages
while non of them focused on the recommendations between methods of libraries that
belong to the same programming language. At times, one of the studies indicates auto-
matic recommendation when mapping two different methods libraries that belong to the
same programming language by using domain knowledge(method description, method
parameters|name). In this thesis, we investigated the mapping between two methods of
library migrations by using the domain knowledge and source code documentation. In
order to be able to obtain these scenarios, we propose the RAPIM++ machine learning
approach which recommends a correct mapping between source and target methods of
three-party libraries using domain knowledge and source code knowledge. Ourmain con-
tribution in this studywas, build amodel which depends on existing library changes done
manually from previous developers in different open source projects in java programming
language then use features related to source code implementation, the similarity between
method signatures and methods documentation to predict correct method mapping be-
tween two methods level library migration. Our result was RAPIM++ was able to suc-
cessfully mapping between two methods from different third-party libraries with the rate

iv

v

of accuracy score 84.4%. Additionally, our approach could able to recommend the libraries
that absent the documentations since it relies on the source code knowledge along with
the main knowledge. We can conclude from these results that RAPIM++ able to recom-
mend third-party libraries with or without documentation, so though libraries that are
not well known and do not belong to popular frameworks, can find comprehensive rec-
ommendations when using our model. Furthermore, RAPIM++ provides the research
and industry community with a lightweight web service that available publicly to make
method mapping between third - part libraries an easy task for developers.

Acknowledgments

Throughout my research and study period, many people helped and encouraged me to
achieve this milestone. First,I would like to express my deep sense of thanking my men-
tor and my soul my husband Dr. Hussein Al-rubaye to his support and encouragement
because without him this mission was impossible to become a reality.

Next, It is my pleasure to thank my advisor Dr. Mohamed Wiem Mkaouer for his schol-
arly advice and knowledge-based approaches which helped me to accomplish this study.
And I would like to thank the software engineering department and Dr.J Scott Hawker
for providing excellent resources and kind assistance during my study journey.

Next, I would like to thank my four little girls Jena, Laya, Dora, and Yasmine to inspire
me in my all study journey and motivate me to do my best in order to make them happy
and proud. Wishing to achieve my entire life goal and be such a good role model for them
in their life journey.

Finally, I would like to thank my Mom and my Dad Zahrah and Kareem to motivate me
in every phone call and never forget me in their prayer. Thank you for my all family and
love you all.

Thanks,
Rana,

vi

Contents

1 Introduction and Background 1

1.1 Introduction . 1

1.1.1 Contribution . 2

1.2 Background and Terminology . 3

1.2.1 Library . 3

1.2.2 Library Migration . 4

1.2.3 Migration Example . 5

1.2.4 Library Upgrade . 5

1.2.5 Migration Rule . 6

1.2.6 Method Mapping. 6

1.2.7 Text Reprocessing (TR) . 6

1.2.8 Vector Space Representation . 7

1.2.9 Words Extraction (WE). 8

1.2.10 Machine Learning . 9

vii

CONTENTS viii

Model. 10

Model tuning. 10

Feature selection. 10

1.2.11 Principal Component Analysis (PCA) 11

Recurrent neural network(RNN) . 11

1.2.12 Method-level Vector space representation. 11

2 Literature Review 12

2.1 Abstract . 12

2.2 Popular API recommendation techniques . 12

2.3 API mapping between two different programming languages 13

2.4 API mapping at method level . 14

3 Methodology 15

3.1 An Approach Overview . 15

3.2 Domain Knowledge . 16

3.2.1 Extract Method Mapping Documentation 18

3.2.2 Feature Engineering . 18

Method Description Score ϕ1 . 18

Return Type Description Score ϕ2 . 19

Input Parameters Description Score ϕ3 19

Input Parameters Signature Score ϕ4 20

CONTENTS ix

Return Type Signature Score ϕ5 . 20

Method Name Score ϕ6 . 21

Number of Input Parameters Score ϕ7 21

Package Name Score ϕ8 . 22

3.3 Source Code Knowledge . 22

3.3.1 Extract Method Mapping Source Code 23

3.3.2 Mapping Code2Vector . 23

3.3.3 Principal Component Analysis . 24

3.4 Classifier Model . 24

4 Results 27

4.1 Abstract . 27

4.2 Experiment Design Setup . 27

4.2.1 Method Mapping Implementation . 29

4.2.2 Learning to Rank (LTR) . 29

4.2.3 Function Signature (FS) . 30

4.2.4 TMAP . 30

4.3 Tuning . 31

4.4 Results of RQ1. 32

4.5 Results of RQ2. 34

4.6 Discussion and Challenges . 35

CONTENTS x

4.7 PCA Discussion . 37

4.7.1 PCA Feature Selection . 37

4.7.2 PCA Vs CNNModel . 38

4.7.3 Why PCA Is Helping? . 40

4.8 Threats to validity . 41

5 Future works 42

5.1 Abstract . 42

5.2 Conclusion . 42

5.3 Future works . 43

List of Figures

1.1 Sample of dependency file during Library migration from json and gson. . . 4

1.2 Sample of migration between json and gson. 5

3.1 The proposed RAPIM++ approach for method-level recommendation. . . . 17

3.2 Comparative study Different number of features and accuracy. 25

4.1 True positive and false positive ratio in ROCCurvewith tuning andwithout
tuning. 32

4.2 Comparison five different studies in case of accuracy, over 6 migrations rule . 33

4.3 Effect of the size of the training data set . 35

4.4 Samples of RAPIM++ outperform RAPIM which illustrate method map-
pings between json and gson. 36

xi

List of Tables

4.1 Confusion Matrix for 30% of dataset . 31

4.2 PCA Features impact . 38

4.3 Comparing results using with and without using PCA 39

xii

Chapter 1

Introduction and Background

1.1 Introduction

Today, software developers rely heavily on third-party liberties for software maintenance
purposes due to not consuming time on implementation and produce high-quality soft-
warewhich has up-to-date features. Thismaintenance process for the software expanding
up to 70% of a given software product life-cycle[1]. The process of replacing the old ver-
sion of a retired third-party library with a new third-party library while keeping the same
behavior for the code is called library migration[2]. The migration process between li-
braries used to be time-consuming, error-prone, and difficult, especially for developers
who have not enough knowledge of coding skills. In the same context, one of the pre-
vious studies showed that the developers should have at least five years of experience to
assigned to migration processes tasks to avoid low performance in the migration process
[3]. For that reason, previous studies showed that the companies rely on developers with
high coding skills when it comes to migration [3] to avoid any possibility of not delivering
high-quality performance, which might be a costly situation for some of the companies.
Also, another study shows, developers spendup to 42 daysmigrating fromone third-party
library to another [4].

There are a number of recent studies proposed of identifying techniques and processes in
order to better replacement the obsolete library with the recent up to date version of the

1

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

same API that keeps the same behavior [1, 2, 3, 4]. There are other studies that have at-
tempted to use library recommendation, where they choose themost appropriate adapted
library with the obsolete one [5, 6, 7]. While the previous studies did a good work with
recommending the same library method between two different languages, non of them
focuses on the need for an inclusive techniques at method level recommendation which
takes as an input two different libraries and provide the possible mapping between them
and how we replace the new version with the retried one at method level [8, 9, 10].

The state of the art RAPIM [11]was able building that niche byproviding an automatically
tool which be able to do the potential mapping at method level between two different
third party libraries. RAPIM (Recommending API Migrations) [11] uses and take an
advantage of pre-defined features related to the domain knowledge which the similarity
between the method signatures and method textual documentation. This features has
defined manually and they provide the appropriate recommendations mapping at API
method level. from the developers. The main idea behind RAPIM [11] is to take as input
twomigration libraries, and provide as an output the appropriate mapping between there
API methods.

Although RAPIM [11] build a novel machine learning model, that utilized the Domain
Knowledge and learn from the API method signatures and its corresponding documenta-
tions, there is still the need to more global approach, which will be able to use theDomain
Knowledge (the similarity between the source code and its corresponding documenta-
tions) and the Source Code Knowledge. Our study RAPIM++ will extend the state of the
art study RAPIM [11] and fulling the gap of the current study.

1.1.1 Contribution

Our main contribution in this study we summarized in three steps:

1.We conducted RAPIM++ a machine learning technique, working automatically for li-
brary migration purposes. The basic idea behind RAPIM++, it takes two inputs at the
API method level, which is the domain knowledge and the source code knowledge along
with their method signatures and documentation and source code implementation and

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

delivers as an output the corresponding mapping between two API libraries. RAPIM++
learns and takes advantage of previous migrations that were reported manually from the
developers. RAPIM++builds its model depending on the numerous features like domain
knowledge and source code knowledge.

2. To evaluate the performance of our study RAPIM++ in detecting the correct mapping
between different API libraries, we conducted an empirical study on 8 popular migra-
tions. The result indicates that RAPIM ++ was able to detect the correct mapping be-
tween libraries and perform in an efficient way in comparing to the state-of-the-art tech-
nique RAPIM. Despite RAPIM showed a high percentage of accuracy 80.56%when it uses
just the domain knowledge, RAPIM++was able to increase the accuracy to 84.4%where it
uses both domain knowledge and source code knowledge alongwith their documentation
for method level API library migrations.

3. We provide an easy to access web service which include all the implementation and the
data set for the RAPIM++ . In this case, we provide the community of researchers and
developers a good free resource to take an advantage from it or improve it.

1.2 Background and Terminology

In this section, we are going to provide background information for all algorithms that
current studies rely on. This will help to understand the algorithms that been used in
coming chapters and how these algorithms work. In addition, in this section we will give
brief introduction for main concepts that we will use in this study

1.2.1 Library

Library is a combination of the non volatile resources. Can accesses it easily since it is
available for a public use over library’s Application Programming Interface(API) used by
general purpose languages for write high level program so instead of request the server
over and over, we can use a library to give high performance implementation. However,
the library is set of behaviour which structured to be able to reuse it by different computer

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

programs for software development. These computer programs will call the library in
different mechanism depend on the structure for each programming language. Just like
any classic software, API has many versions. Each version consider as the upgrading of
the old one and it has the enhancing features.

1.2.2 Library Migration

Library migration is the process of exchanging the existing library with the new one with-
out changing the code performance.The existing library or the old library Will consider
as a retired in two cases. One:if the liberties that depends on the existing library are not
updated. Second: or when there are competition between two libraries, then the library
which appear in better performance or which has more feature will win in this competi-
tion and will consider the other one as a old library. A migration process occurs when a
new library is replacing a retired library. The retired library is considered retired if all of
functions dependencies are removed from the project source code. As shown in Figure 1.1
developer migration json version 20090211 to gson version 2.2.4 in the java_mega_api1.

Figure 1.1: Sample of dependency file during Library migration from json and gson.
1https://github.com/danbrough/java_mega_api/commit/cb057c4696d95a9a9da99eb4cf88f60aaf0e9ee2

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

1.2.3 Migration Example

In this section we will explain an example for migration at method-level. Figure 1.2 elab-
orate one of the popular library migration rule process when we replacing the library json
with the gson library2. The process of changing group of source codes from removed li-
brarywith group of source code changes in target library, it called Migration fragment [12].
The Figure 1.2 below explains twoMigration fragment: First Fragment, we can observe one
mapping, where the class named JSONObject replacedwith class named JsonObject, while
twomethods they have same named but different capitalization letters. Second Fragment,
we have two mappings, in the first mapping, The method JSONException(string) has been
replaced with methods, namely RuntimeException(string). In the second mapping, The
method getLong(string) has been replaced with two methods, namely get(string).

Figure 1.2: Sample of migration between json and gson.

1.2.4 Library Upgrade

For the refactoring purpose, developers may attempting library upgrade. There are differ-
ent goals for library upgrade, it could be for adding new classes and methods, updating
the functionality for the existing system, or adding new classes to the existing packages.

2https://github.com/danbrough/java_mega_api/commit/cb057c4696d95a9a9da99eb4cf88f60aaf0e9ee2

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

Deprecating methods or classes during the upgrade process, may has dis advantage for
the API since its prevent API developers from the evaluation because they are restricted
by the old version of the API. All the modification that the upgrading makes should not
effect the utilization in the client software side.

1.2.5 Migration Rule

A migration rule represent by a pair of a source (retired) library and a target (replacing)
library, i.e., source → target. For example, json→ gson represent a migration rule where
the library json3 is migrated to the new library gson4.

1.2.6 Method Mapping.

Source library has listed methods that have been used in code, and the target library has
a list of methods that need to be used in the code. The process of mapping the methods
from source library to method from target library called Method Mapping. Given method
from source library may be mapped to zero or many methods in the target library. Also, a
method from the target library can be a target for zero or many methods from the source
library. Zeromeans that methods don’t have amappingwith anothermethod from source
or target.

1.2.7 Text Reprocessing (TR)

Text processing is one of the popular tasks in machine learning applications. The goal
of text processing is that it could help to increase the accuracy of the Natural Language
Processing (NLP) task when we use it correctly. There are different examples where text
processing used inmachine learning applications, for instance it could be used filtering the
spam messages by detecting unwanted messages and move it to spam organization.The
way that we use the text processing is for filtering unwanted words and characters from

3https://www.json.org/
4https://github.com/google/gson

CHAPTER 1. INTRODUCTION AND BACKGROUND 7

the method description. Let consider d as a description for the library at the method level.
d has undesirable words like "is", "the" and characters like dot and colon. We use Nature
Language Processing to remove this words and characters in order to get method descrip-
tionwith reducing the noiseswhen trying to calculate the similarity between twomethods
and get high accuracy.

d̂ = TR(d) (1.1)

1.2.8 Vector Space Representation

In our methodology, we want to find patterns between the description (documentation)
of source and target libraries, and the measure of these data can be related to each either.
Howwe can generate features from these text data. To do so, we need to find the similarity
between the description of methods, descriptions of parameters, descriptions of return
types. All these data are text data. To generate features from these data, we need to be
converted text to numeric data, then apply mathematics equations such as to measure
similarity score and consider this score as a feature.

To convert text (sentence) to numeric, we use Vector Space Representation. This represen-
tation generates the weight vector Wd, which is a vector of numeric numbers for given
words in a sentence. This vector has weight for every word in given sentence wt,d. We
calculated this weight using Frequency-Inverse Document Frequency (TF-IDF) as shown in
equation 1.2. The weight for every word wt,d calculates by dividing the number of times
word appear in sentence t ft,d by the number of words in a sentence. To reduce the noise of
word that appears many times in document such as (is, are), This data get to multiply by
log for the number of documents N which her number of methods descriptions divided
by the number of document d ft were given the word appear.

Wd =

wt1,d

wt2,d
...

wtn ,d

 , wt,d =
t ft,d

tn
∗ log

(
N
d ft

)
(1.2)

CHAPTER 1. INTRODUCTION AND BACKGROUND 8

Now we have weight vector Wd for a description of source/target methods, the weight
vector Wd for descriptions of parameters for source/target methods, the weight vector Wd

for descriptions of return types source/target methods. We use cosine similarity cos(s, t)
to calculate the similarity score between given two vectors and consider it as a feature as
shown in equation 1.3. For example, we calculate cosine similarity between weight vector
Wd for sourcemethod description andweight vector Wd for target method description that
will generate a single score we consider that score as a feature. The same method applied
for measuring cosine similarity between weight vectors Wd for descriptions of source/tar-
get methods parameters, cosine similarity between weight vectors Wd for descriptions of
source/target methods return types.

cos(s, t) =
Ws ·Wt

||Ws|| · ||Wt||
(1.3)

1.2.9 Words Extraction (WE).

Let d be string has a number of words combined, for example, combined names in the
method signature, such as we have a method named getAsLog this just sentence "get as
long". We can extract this type of sentence then apply text processing. Also combined
names in package import, for example org.apache.maven.enforcerwhich is "org apache maven
enforcer". In this step, we extract d∗ which represent words in a string, using the function
that we named Words Extraction WE as follows:

d∗ = WE(d) (1.4)

For example, if d is method signature in easymock5, then d∗ is generated using WE which
is described as follows:

5https://github.com/apache/maven-enforcer/commit/12b3260071b94f66c078ca4bfef07fe8d28fdea7

CHAPTER 1. INTRODUCTION AND BACKGROUND 9

Words Extraction (WE)
input (d): ’evalControl.expectAndDefaultThrow’.
1- Special Characters Cleanup: In this step, we search for dots and replace then
with spaces. If we apply this approach on the current example, the output for this
step is ′evalControl < space > expectAndDe f aultThrow′.
2- Camel Case Splitter: In this step, find all words in a given string by splitting the
string base on a camel case. We assume every new word in a combined string start
with a capital letter The output for this step is ′eval < space > Control < space >

expect < space > And < space > De f ault < space > Throw′. We know different
languages using different coding standard, but we used java, and camel case is very
common in java code..
Output(d∗): ’eval Control expect And Default Throw’

1.2.10 Machine Learning

machine Learning is the process to make the computer to learn and advance from the pre-
vious data set an automatically without being explicitly programmed and it is a subset of
AI(Artificial Intelligence). Training model is a sample data which we can use it to build
our machine learning model on it. The goal of the training model is that to make predic-
tion or decisions. There are various approach that the discipline machine learning uses in
order to complete the tasks that may not specific algorithm available to finish it. One of
this approach is labeling the data set manually then we can name it training data set. The
goal of the training data set is that make the model learn from the training data set in or-
der to improve the performance of the algorithm to determine the correct answers. There
are three approaches for machine learning depending on the feedback that learner pro-
vided: unsupervised machine learning, supervised machine learning and reinforcement
learning. One example of machine learning is email filtering, when we want to filters the
emails as a spam and not spamwe shouldmanually executewhich the spam and not spam
emails is and write tons of if statements which will turn out by not effective way to solve
this particular problem,in this way we can use machine learning algorithms, so the goal
of machine learning algorithms are solve problems which are infeasible being solve it by
other way.

CHAPTER 1. INTRODUCTION AND BACKGROUND 10

Model.

There are two important terms in machine learning which are algorithm and model. Al-
gorithm is a series of steps which we can execute it in code and run it in data set. However
themodel is the outcome(output) of the algorithm and it consist of themodel data and the
algorithm that responsible on the prediction. In other word a model is a representation
of what was detected by the algorithm which can deliver kind of an automatic program-
ming. So a training data set is a model which we can use it to predict data that has not
seen before to make decisions whether our real model predict correctly or not.

Model tuning.

Themain goal of doingmodel tuning for ourmodel is to maximise the performance of our
model in same time avoid the over fitting and too high differences. The tuning process
can be done by changing the hyper parameters for instance the number of trees based
algorithms or the number of values in linear based algorithms, re run the algorithms on
the data set that we have again, finally in order to determine which model is an accurate
one, we make comparison between the model performance and the validation data set
that we have.

Feature selection.

Feature selection is the procedure that selecting the most relevant features(variables, at-
tributes) from the data set that we have to develop the predictive model and avoiding
the irrelevant or redundant from the data set. there are many purpose of using feature
selection, one of them is that avoid the over fitting by customizing the data and enhance
it. Most of the data set that using in any experiment the data could contain redundant
or irrelevant features,So the goal here, how we can use remove the redundancy without
removing the relevant information from the data set. Using feature selection technique
will do this job

CHAPTER 1. INTRODUCTION AND BACKGROUND 11

1.2.11 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [13] is one of the most valuable approach which
can analyze the data statistically. PCA can compact and convert the m numbers of data
by m numbers of data. It eliminate the potential numbers of data set and keep the same
value of information at same time. The goal of using PCA is to reduce the complexity and
simplify the structure of the data set. In our study PCA take very important role when
we extract features from the source code knowledge. After we use Code2vec [14] we will
extraxt a huge numbers of the features. Then we will feed this major numbers of feature
to the PCA algorithm in order to avoid over-fitting issues and make the model run faster.

Recurrent neural network(RNN)

Recurrent Neural Network(RNN) is the a machine learning algorithm which intended to
take a series of input, which the size of input is not predetermined and provide the series
of output. One or more input could provide one or more output, where the input could
be effected by by the hidden state vector which we can update it and use it as the input for
the next output in the series. Each input has relationship with others and its influenced by
the other inputs. The basic idea of how (RNN)working is that the (RNN) algorithm learn
from the past and its decision is depending and influenced by the past. Its learning from
the first look from the training data set then using this knowledge to make an appropriate
generation in the output.

1.2.12 Method-level Vector space representation.

The main idea behind the code2vec [14] is that takes data already labeled it at method
level and convert it to vector. The main purpose of this step is that to represent a method
code source implementation as a vectors

Chapter 2

Literature Review

2.1 Abstract

This section will provide a number of related literature that describes the migration pro-
cess between different API and how the machine learning process plays an important role
in facilitating the migration from one library to another.

2.2 Popular API recommendation techniques

It is very important to understand how the migration process can occur between different
APIs. There are many studies have been discussed a numbers of tools and techniques in
order to facilities the migration process between different APIs. Most of theses research
studies took advantage of the documentations for the API to do more appropriate rec-
ommendation. One of these studies focused on the code examples between deprecated
and the new API [15]. In this paper Lamothe et al. attempted to use open source re-
pose tries for API android applications written in java to recommend APIs mapping. This
study propose A3 tool that can automatically generate API migration patterns from code
example from public repositories.This tool was successfully able to generate API migra-
tion patterns with ratio 96.7% precision. Another study focused on mapping between

12

CHAPTER 2. LITERATURE REVIEW 13

deprecated and target APIs by using heuristics and source code analysis [16]. This study
proposed NEAT which is automatic tool to recommend mapping between the library mi-
grations APIs without using th code change examples. This study assumes the availability
for APIS documentations and it uses the android APIs that available publicly. Also giving
the edits with replacing API was interesting topic for previous work [17]. This study sug-
gested the API migration mapping between old version of API with new release and up
to date one along with the edits with the new version of API . Although, this automation
approach provide list with all edits and suggest the most appropriate one to the client was
good attempts, but it edit can not handle big changes like recommend change the concrete
class with abstract class. We can obvious from previous work that most of the API library
migration techniques relies heavily on the documentations which might not well written
from some developers, despite of popular APIs and framework include all appropriate
documentations.

2.3 API mapping between two different programming lan-
guages

Different studies focused on the API library migration mapping between different pro-
gramming languages at the same API. Pandita et al. [9] suggested the recommendation
mapping same API by using different programming languages which is Java and C#.
The goal of this paper is detecting the method mapping between the source and target
library by automatically locating the potential method mapping between their APIs.All
the techniques applied by using text mining on the functions textual descriptions. This
work has been extended to involve more classes and include C# language and an android
projects [10]. Although previous work focused on the static analysis and the correspond-
ing mapping between the method between two different library across the same API, the
dynamic analysis has been the focus for the researcher in their work [8]. In this paper the
authors focused on a developing strategy to develop relevant method mapping between
Java2 mobile edition and an Android graphics. Object Oriented style standard was an in-
teresting topic for many researchers. Martinez et al. [18] followed in his research the style
of object oriented programming standard as a general and the migration process between

CHAPTER 2. LITERATURE REVIEW 14

programming languages C|C++ and mobile applications in specifically.

2.4 API mapping at method level

Xu et al. [19] propose MULAPI which recommends the API mapping at method level by
using description and historical use for API andwhere has been used. MULAPI takes into
account the information stored in the codebase and addoneAPI usage location component
for API recommendation.

Haung et al. [20] present BIKER an automatic techniques uses stack overflow posts and
API documentation to give an appropriate API mapping at class and method level. This
study leverage the gap between API documentation which might missing the relevant
information and stack overflowposts that describe all thematerial to use themost relevant
API in programming tasks. This study uses word embedding methods in order to convert
all the sentences in both API documentation and SO posts to vectors and find the relevant
similarities between them. This research was good step to right direction. The gap of this
study is that it uses just the description feature of API to recommendAPImapping at class
and method level.

Alrubaye et al. [11] propose RAPIM primary inspiration in our work, which is a ma-
chine learning technique that recommendsmapping between two different libraries at the
method level. The finding for this study is that RAPIM was successfully able to recom-
mend the mapping between two unknown libraries by extracting an important features
from the lexical similarity from the domain knowledge for methods along with the docu-
mentation for the libraries. RAPIM was able to recommended correct mapping and score
good ratio of accuracy 87%. Furthermore, Other studies by Alrubaye [12,21,22,23,24,25]
have studied the library migration at method-level as well.

Chapter 3

Methodology

3.1 An Approach Overview

The main idea of our approach RAPIM++ is try to take an advantage from the migration
mapping that done manually in different open source projects from previous developers
and try to reuse the past experience.In this chapter wewill go over our approach overview,
then we will explain in detail all the methodology in a different steps. Migration rule
means that the migrating process between a pair of libraries which is the source library
(Removed) and the target library (replaced). Let say Ls is the source library and the Lt is
the target library. The representation for the the process for the migration rule will be like:
Ls →Lt. There are many of open source projects on GitHub that represent the migration
rule, one of the popular which represent the migration rule is easymock→ mockito . For a
migration rule where Ls is a source method let consider it an equivalent for a Ms where
m(i)

s = {m1, m2, ..., mLs}, , and Lt is a target method where a Lt is an equivalent to Mt

and the m(i)
t = {m1, m2, ..., mLt}. Our main goal is that to find an appropriate mapping

between both Ls and Lt.
f : Ls → Lt (3.1)

The process of mapping the source method m(i)
s ∈ Ls with the equivalent target method

m(i)
t ∈ Lt we call it Method Mapping. In our approach,we used Microsoft azure machine

learning studio in order to generate ourmodels. We use this platform because it has all the

15

CHAPTER 3. METHODOLOGY 16

pre-build machine learning techniques, which not required us to build all the algorithms
from the scratches. This property saved us a lot of time. Also it is easy to access from
different users

Figure 3.1 gives an overview of our approach, which made the collaboration done with an
efficient way. , which consist of the collection of two main feature stages: the first stage is:
Domain knowledge: in this phase, we looking for the domain knowledge, which consist of
the significant information that gathered from the method signatures and library docu-
mentations. To extract all the features whichwe need to build ourmodel, we used the data
set [12], which contain all the library mapping. There are different steps to complete the
domain knowledge stage: First, we collect all the APIs from the data set [12] alongwith its
matching documentation; Second, we do the text prepossessing for documentation. The
main goal of this step is that to reduce the noise when we calculating the similarity value
between the source/target documentation; Third, we do feature engineering for the fea-
tures ϕ1...ϕ8, the goal of this step is that to generate numeric features from the text features
that we have, in order to gain more accurate result. The second stage of our approach is
that Source code Knowledge: There are different steps for this phase: First, from the data
set that we have [12] which include all the mapping, we gathered all the APIs with its
matching methods source code implementation; Second, we need to build a model which
be able to predict the similarity score (feature ϕ9) between the given code vectors of the
Source/target methods, for this purpose, we use the CNN learner. This model trained to
learn from the J2EE interfaces implementation. Third, to decrease the number of features
from 384 * 2 to five featureswhich is ϕ9...ϕ13, we need to apply Principal Component Anal-
ysis(PCA). The purpose of this step is that to avoid the over fitting issues, since we have
a huge numbers of features as an input. So reducing the number of input to five only will
reduce the noise and makes the model run faster. In order to build our recommendation
model, we use all the mentioned features alongside with output class passed.

3.2 Domain Knowledge

In This section we describe how we collect and extract features (ϕ1...ϕ8) from domain
knowledge (library documentation, and method signatures).

CHAPTER 3. METHODOLOGY 17

Figure 3.1: The proposed RAPIM++ approach for method-level recommendation.

CHAPTER 3. METHODOLOGY 18

3.2.1 Extract Method Mapping Documentation

In this phase, we collect library documentation for given method mapping in alrubaye
dataset [12]. As show in Figure 3.1 where we collection documentation for following
methods JSONObject put(String key, Map value), from json, to the method
void addProperty(String property, String value), offered by gson. Thanks forAlrubaye [11]
study that offerDocumentation Collector thatwe used to collects documentation for both the
source methods and the target methods. Given a migration rule as input to the Documen-
tation Collector. The tool collects the method’s documentation associated with all meth-
ods in source/target libraries. Then we search for documentation of methods that involve
method mapping.

Our goal in this section is generating eight different features ϕ1(s, t) to ϕ8(s, t) for source
(s) and target (t) method’s documentation and signatures. To do so, first, we need to
convert this documentation from text data to numeric data. We discuss in the background
how we can do that using Vector Space Presentation with cosine similarity. Next, We will
discuss in detail next how we generate every feature one by one.

3.2.2 Feature Engineering

In this section, we describe how we extract every feature from domain knowledge.

Method Description Score ϕ1

In this section, we want to extract feature ϕ1(s, t) which represents a score of how similar
the source method description mds to the target method description mdt. To extract this
feature, first, we just measure the cosine similarity between the source method descrip-
tion mds with the target method description mdt without any prepossessing TR as shown
below. We find that if we apply TR on the text before applying cosine similarity will lead
to noise and reduce the accuracy by 3%.

CHAPTER 3. METHODOLOGY 19

ϕ1(s, t) = cos(mds, mdt) (3.2)

For example, if we measure ϕ1(s, t) for the example in Figure 3.1, we apply the cosine
similarity between mds ("Put a key/value pair in the JSONObject, where the value will be a
JSONObject which is produced from aMap."), and mdt ("Convenience method to add a primitive
member. The specified value is converted to a JsonPrimitive of String."). The output will be a
similarity score of (0.52).

Return Type Description Score ϕ2

In this section, we want to extract feature ϕ2(s, t) which represents a score of how similar
the source method return type description rtds to the target method return type descrip-
tion rtdt. To extract this feature, first, we apply text reprocessing TR on the source/target
method return type description to clean sentences beside description. That will gener-
ate r̂tds from source method return type description and r̂tdt target method return type
description. then we just measure the cosine similarity between r̂tds and r̂tdt.

ϕ2(s, t) = cos(r̂tdS, r̂tdt) (3.3)

For example, to measure ϕ2(s, t) from the example in Figure 3.1, we apply TR on both rtds

(" this. ") and rtdt ("No description) to get r̂tds and r̂tdt. We then apply the cosine similarity
between r̂tds and r̂tdt. The output will be a similarity score of (0.81).

Input Parameters Description Score ϕ3

In this section, we want to extract feature ϕ3(s, t) which represents a score of how similar
the source method input parameters description ipds to the target method input param-
eters description ipdt. To extract this feature, first, we apply text reprocessing TR on the
source/target method input parameters description to clean sentences beside description.
That will generate îpds from source method input parameters description and îpdt target

CHAPTER 3. METHODOLOGY 20

method input parameters description. then we just measure the cosine similarity between
îpds and îpdt.

ϕ3(s, t) = cos(îpds, îpdt) (3.4)

For example, to measure ϕ3(s, t) from the example in Figure 3.1, we apply TR on both ipds

("key - A key string. | value - A Map value."), and ipdt ("property - name of the member.| value
- the string value associated with the member.") to get îpds, and îpdt, then We measure the
cosine similarity between îpds, and îpdt. IThe output will be a similarity score of(0.75).

Input Parameters Signature Score ϕ4

In this section, we want to extract feature ϕ4(s, t) which represents a score of how similar
the source method input parameters ipss to the target method input parameters ipst. To
extract this feature, first, we apply word extraction WE on the source/target method input
parameters to extract words from parameter names. That will generate ips∗s from source
method input parameters and ips∗t target method input parameters. then we just measure
the cosine similarity between ips∗s and ips∗t .

ϕ4(s, t) = cos(ips∗s , ips∗t) (3.5)

For example, to measure ϕ4(s, t) from the example in Figure 3.1, we apply word extraction
WE on both ipss ("String key, Map value"), and ipst("String property, String value") to get
ips∗s , and ips∗t , thenWe apply the cosine similarity between ips∗s , and ips∗t . The output will
be a similarity score of(0.71).

Return Type Signature Score ϕ5

In this section, we want to extract feature ϕ5(s, t) which represents a score of how similar
the source method return type signature rtss to the target method return type signature
rtst. To extract this feature, we just compare if the return types of source/target methods

CHAPTER 3. METHODOLOGY 21

are the same we return one otherwise we return zero, as shown below.

ϕ5(s, t) =

1 if rtss is equal to rtst

0 if rtss is not equal to rtst

(3.6)

For example, to measure ϕ5(s, t) for example in Figure 3.1, both rtss return JSONObject,
while rtst returns JSONObject, The output will be (0).

Method Name Score ϕ6

In this section, we want to extract feature ϕ6(s, t) which represents a score of how similar
the source method name methodNames to the target method name methodNamet. To ex-
tract this feature, first, we apply word extraction WE on the source/target method name
to extract words from names. That will generate methodName∗s from source method name
and methodName∗t target method name. then we just measure the cosine similarity be-
tween methodName∗s and methodName∗t .

ϕ6(s, t) = cos(methodName∗s , methodName∗t) (3.7)

For example, to measure ϕ6(s, t) from the example in Figure 3.1, we apply WE on both
methodNames ("put"), andmethodNamet ("addProperty") to getmethodName∗s , andmethodName∗t ,
then We measure the cosine similarity between methodName∗s , and methodName∗t . The
output will be a similarity score of (0.79).

Number of Input Parameters Score ϕ7

In this section, we want to extract feature ϕ7(s, t) which represents a score of how simi-
lar the number of parameters in source method inputParamCounts to the number of pa-
rameters in target method name inputParamCountt. To extract this feature, we apply the
following equation.

CHAPTER 3. METHODOLOGY 22

ϕ7(s, t) = 1− |inputParamCounts − inputParamCountt|
inputParamCounts + inputParamCountt

(3.8)

For example, to measure ϕ7(s, t) from the example in Figure 3.1, we find different between
inputParamCounts which has twoparameterswhich are key,and value, and inputParamCountt

that has two input parameters which is (property,and value), so The output will be a simi-
larity score of (1).

Package Name Score ϕ8

In this section, we want to extract feature ϕ8(s, t) which represents a score of how simi-
lar the source method package name packageNames to the target method package name
packageNamet. To extract this feature, first, we apply word extraction WE on the source/-
target method package name to extract words from package names. That will generate
packageName∗s from sourcemethod package name and packageName∗t from targetmethod
package name. then we just measure the cosine similarity between packageName∗s and
packageName∗t .

ϕ8(s, t) = cos(packageName∗s , packageName∗t) (3.9)

For example, to measure ϕ8(s, t) from the example in Figure 3.1, we apply word extrac-
tion WE on both packageNames ("org.json"), and packageNamet ("com.google.gson") to get
packageName∗s which is ("org json"), and packageName∗t which is ("com google gson"), then
Wemeasure the cosine similarity between packageName∗s , and packageName∗t . The output
will be a similarity score of (0.96).

3.3 Source Code Knowledge

In This section, we describe how we collect and extract features (ϕ9...ϕ13) from source
code knowledge (methods source code implementation).

CHAPTER 3. METHODOLOGY 23

3.3.1 Extract Method Mapping Source Code

In this phase, we collect method source code implementation for given method mapping
in alrubaye dataset [12]. As show in Figure 3.1 where we collection source code imple-
mentation for following methods JSONObject put(String key, Map value), from json, to
the method void addProperty(String property, String value), offered by gson. To do so, We
first download the source/target third-party libraries jar files. Then we reverse engineer
jar files to source code using cfr_0_114.jar 1. Then we wrote parser to parse all classes and
their associated methods. Then for give method mapping we search for source code for
bothmethods in source/target libraries. We notice that there amethod is just awrapper for
other methods. These types of wrapping developers avoid breaking changes for projects
that upgrade to a new version of API, and their calls for old API methods continue work-
ing. For our work, having a wrapper is not be helpful to extract similarity information
from source code that is just one line call to another method. Our parser can handle these
issues by un-wrappingmethods that justwrapper. For example, ifmethod A() implement-
ing has one call B(), we just consider code implementing for B() is code implementing for
method A() source code. So instead return B() as source code body for method A(), we
return the code source code body implementation for B() as A() source code body.

3.3.2 Mapping Code2Vector

In this step we apply code2Vec [14] on method source code implementation for given
method mapping in alrubaye dataset [12]. As show in Figure 3.1 where we generate code
vector form following methods source code implementation for
JSONObject put(String key, Map value), from json, and source code implementation for
method
void addProperty(String property, String value), offered by gson. By end this step, we have
384 features generate for ever method source code body. Since method mapping is pair of
methods so we will have 384*2 features generated by this step for given method mapping.

1https://github.com/hussien89aa/AdsVulnerablilty/blob/master/cfr_0_114.jar

CHAPTER 3. METHODOLOGY 24

3.3.3 Principal Component Analysis

The code2Vec [14] generates 384 features from a method source code. Since a migration
rule has two methods, so we have 384*2 features generated from source/target methods’
source code implementations per method mapping. Having such a huge number of fea-
tures as input to the machine learning model will make the model slow and lead to much
noise that may lead to overfilling issues where the model learns from source code knowl-
edge more than what it learns from domain knowledge. We need to represent these 768
features with a fewer number of features while preserving the same feature contribution
to the model. Principal Component Analysis (PCA) is a concept in machine learning that
can help us here. It is used when we have a large number of features, and we want to
represent them with N Component(features) to reduce the noise and make the model
run faster. We feed 768 features to PCA and set up the number of a component to five.
PCA can generate five components (features) from 768 features. The new features are
(ϕ9...ϕ13).

3.4 Classifier Model

As we mentioned earlier, we used azure machine learning in order to build our tool. In
machine learning techniques, there are a number of classification algorithms that designed
specifically to serve our case to reach better result. One of the previous study conducted
that an algorithm which takes the classifier that works on instances [26]. We divided our
data to training and testing data set. In the training part, we trained our classifier on a
set of features besides the output which was manually labeled as a valid (the method
mapping is done correctly) and in valid(the method mapping not done correctly). Then
we applied normalization to our data set in order to put all the data set in same scale of
value and avoid outfitting issue since it makes the model runs slow. We specifically used
z-score method. After we done from this step, we have our model and it is prepared to
use. What we do next is feed our model with data set which has never seen before in
order to make sure our model is able to detect unknown data. In all our process of our
work where we build our models, we used Microsoft Azure machine learning studio 2.

2https://studio.azureml.net/

CHAPTER 3. METHODOLOGY 25

Figure 3.2: Comparative study Different number of features and accuracy.

To make sure our model work perfectly, we conducted an empirical study by trying and
running different types of classifiers and make comparison between them then we take
the most optimal one.

As obvious in Figure 3.2, we compare different machine learning models on our dataset
such as, RandomForest, neural networks, Decision Forest, Decision Jungle,Support Vector
Machines (SVM), and Boosted Decision Trees (BDT).from our study, we find that that
different algorithms give different accuracy. For example, Neural network is a machine
learningmodel which works as humane brains and take binary inputs and provide binary
outputs which we call it perceptron. When we run neural network model classifier, we
utilized multi-layer perceptron architecture along with one single hidden layer. To check
if this model give use good result, we tested it with different numbers of neurons (we
started with five neurons and we ended up with the 50) in the hidden layer. Our result
for this study showed that when we increase the number of neurons in the hidden layer,
we obtained that the accuracy of testing data set will decrease. The reducing of accuracy

CHAPTER 3. METHODOLOGY 26

refers to over fitting for the model and the main causes for it lack amount for the data
set value. Second, we used Support Vector Machine (SVM) which was wort performance
classifier between all. SVM got its best 84.7% accuracy.

Third, we used A Two-Class Boosted Decision Tree (BDT) which is machine learning
model belongs to ensemble learning where the new tree correcting from the errors that
occurred in first tree. BDT was the optimal and best fit machine learning model for our
data set with an accuracy rate of 91.9%. BDTs performed the best specially when trying it
on small datasets due to it use of an ensemble of Decision Trees and weighted voting.

Chapter 4

Results

4.1 Abstract

4.2 Experiment Design Setup

In our study we proposed two following research questions:

• RQ1: Is RAPIM++ able to generate the correct method mapping? And how we can
compare the accuracy of the result to the state of the art approach RAPIM? To give
a full answer for this question, we should make sure RAPIM++ will able to recom-
mend the correct method mapping in chosen 8 popular library migrations. We used
the same data set [12] of RAPIM in order to justice comparison between RAPIM and
RAPIM++. As discussed earlier, RAPIM uses just 8 features generated from domain
knowledge while RAPIM++ uses 14 features generated from domain knowledge
and source code knowledge along with the output which is a binary classification
for the method valid or invalid. Since our training data set is already labeled it, we
will use supervised machine learning. We split the data set that we have to training
and testing data set as: 1) We used K fold cross validation model to a achieve the
desire result. The numbers of fold we insert it was 9. We choose one of the migra-
tion rule for testing and the 8 migrations rule for training set. For example, we used

27

CHAPTER 4. RESULTS 28

json→gson for testing and the remaining migrations for training by feeding the all
the combination of method mapping as an input to the model in training phase. In
the training phase the model lerans how to recommend the correct patterns in both
studies RAPIM++ and RAPIM [11]. After our models are trained, we will move
to the testing part which is important to make sure our model recommend the cor-
rect method mapping across all the third party libraries. We use the migration rule
json→gson and provide all the possible method mapping between them and decide
if it is valid mapping or in validmapping. In validmapping situationmeans that the
mapping between source and target method is done by correct way, while in in valid
case means that the mapping between source and target method done by in correct
way or there is no mapping between these method. We will repeat all this process
over 9 folds in order to better recommendation for any new data to the model. 2) To
make sure RAPIM++ able to estimate the correct mapping between the libraries, we
used data set from Teyton et al. [27] done from previous developers manually. Our
goal in this step to know weather RAPIM++ able to do the same mapping as done
from data set [27] by indicating the correct and incorrect mapping . We challenge
the algorithms in RAPIM++ in order to recognize the mapping weather is correct
or incorrect as same as the previous developers done manually.
To measure the Accuracy we calculated the percentage of all correct method map-
ping divided by the summation of correct and incorrect mapping. Down below the
representation for Accuracy equation:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn

Tp(True positive): Is all the numbers of valid method mapping recommended as
valid mapping.
Tn(True negative): Is all the number of invalid method mapping recommended as
invalid mapping.

Fp(False positive): Is all the number of invalid method mapping recommended as
valid mapping.

Fn(False positive): Is all the number of valid method mapping recommended as
invalid mapping.

CHAPTER 4. RESULTS 29

• RQ2 How can RAPIM++ make better recommendation for method mapping be-
tween libraries through lowest loading of training data set?
To answer this research question, we utilized k-fold Cross validation model. In our
specific case, 10 fold cross validation used in order to increase the generation of vari-
ous combination of mapping rules in each fold. In our first run, we started with one
fold training and nine remaining fold for testing after each run we increased the fold
for training data size and decreased the fold for testing data size. We ended up by
having nine folding size for training and one folding size for testing. Themain goal of
this research question is that determines the effectiveness of the training model size
for RAPIM++ and measure its accuracy comparing to the state of the art approach
RAPIM [11].Also, by answering this research question, we will able to perform our
solution as a light-weight web service. Furthermore, by evaluating our training data
set on existing migrations rule, we will able to generate more solid model.

4.2.1 Method Mapping Implementation

In this section we will describe how we calculated the method mapping between source
method Ls, and the target method Lt. For each method we calculated cosine similarity
score between Ls, and Lt. And then we return the method that has top matching score
when k=1. We have selected k=1 because because for each target method we choose one
method.

4.2.2 Learning to Rank (LTR)

Is one of the machine learning approaches which solves ranking problems. The function
below will describe the ranking:

LTRscore(s,t) =
8

∑
i=1

WLTR
i ∗ ϕi(s, t) (4.1)

The basic idea of LTR is that learns from weight of features through training set. Each
feature has its own weight. And its weight will specify its rank . the feature which has

CHAPTER 4. RESULTS 30

highweight, will has big impact comparingwith the feature which has lowweight. ϕi(s, t)
in this part we calculate the relationship between the sourcemethod and targetmethod for
each feature. We doing this process across eight features which already discussed earlier.
However, WLTR

i this part is a result for previous solved mapping from the training data
set.

4.2.3 Function Signature (FS)

Function Signature knows as functions for input and output parameters name or return
value. In Function Signature, we calculate the cosine similarity between the name for the
method source and the name for the method target. To reach this goal, We applied the
following equation:

FSscore(s,t) = 0.25 ∗ sim(rtss, rtss) + 0.25 ∗ l f s(ipss, ipst)+

0.5 ∗ l f s(methodNames, methodNamet)
(4.2)

lfs() calculate the most frequent sub-sequence between method name for the target and
method name for the source.And, sim() compute the token similarity between the return
types.

4.2.4 TMAP

Another study that we compared our experiment with it is TMAP [10]. This study relies
on the method description in order to do methodmapping for the third-library documen-
tations. It analysis the API documentation for source and target method by uses method
description. In the following equation, TMAP collect five features that all related to the
each method description:

CHAPTER 4. RESULTS 31

TMAPscore(s,t) = ∑ ϕ1(ŝ, t̂) + ϕ6(s, t) + ϕ8(s, t)+

ϕ9(s, t) + ϕx(s, t)
(4.3)

Where ϕx(s, t) is represents a score of how similar the source method class description
cds to the target method class description cdt. To extract this feature, first, we apply text
reprocessing TR on the source/target method class description to clean sentences beside
description. That will generate ĉds from source method class description and ĉdt target
method class description. then we just measure the cosine similarity between ĉds and ĉdt.
For ϕ1(s, t), ϕ6(s, t), ϕ8(s, t), ϕ9(s, t)We already discussed in methodology howwe extract
these features.

4.3 Tuning

In this section we will elaborate the impact of tuning on the performance of the learner.
Since, the two class boosted decision tree perform the best learner, we start our tuning as:
Maximum Number of leaves=2,Minimum leaf instances=4, Learning rate=0.06, andNumber of
trees=436. And then we repeat the tuning process until we get small error that we cannot
enhance anymore. Figure 4.1 shows the effect the tuning for the input of the decision tree
and when we do tuning the accuracy increase from 87.5% to 91.1%. By applying tuning
for our learner we were able to increase the accuracy for our learner.

Actual/Predicate Yes No
Yes TP=48 FN=5
No FP=7 TN=52

Table 4.1: Confusion Matrix for 30% of dataset

Table 4.1 shows confusion matrix, where we train model on 70% of dataset and we use
30% of dataset for testing. We can see the model we able to predicate 48 correct mapping
as correct mapping (True Positive). The model we able to predicate 5 correct mapping
as not correct mapping (False Negative). The model we able to predicate 7 not correct

CHAPTER 4. RESULTS 32

Figure 4.1: True positive and false positive ratio in ROC Curve with tuning and without
tuning.

mapping as correct mapping (False Positive). The model we able to predicate 52 not cor-
rect mapping as not correct mapping (True Negative). That show the model is good in
predicate the correct mapping as correct and not correct as not correct (True Positive and
True Negative) and the data was distributed correctly between the two classes so there
is no over-fitting issues. The example shows the confusion matrix RAPIM++ which is
very similar to confusion matrix for RAPIM [11] and we will go more depth and do more
comparison when we answering research question 2.

4.4 Results of RQ1.

We compute the accuracy across eight migration rule using five approaches. figure five
4.2 illustrate the result. Our result showed the accuracy diverse across the five rules from
70.3% to 95.8%percentages.Our approachRAPIM++showed increase in accuracy by 2.9%
comparing to state of art RAPIM which we extend our study from. This increase of accu-
racy approve that our approachwas able to enhance the performance of themodel. As, we
discussed earlier our main contribution in this study is that to improve the recommenda-

CHAPTER 4. RESULTS 33

Figure 4.2: Comparison five different studies in case of accuracy, over 6 migrations rule .

tion of methodmapping for libraries by using domain knowledge and source code knowl-
edge. So lets take an example Figure 1.2 to see the impact of our approach to recommend
the best mapping by switch method put(String key, Map value) by addProperty(String key,
String value) while we utilize one of the 8 migration rules to migrate json library to gson
library. Figure 4.4 illustrate source code implementation for put(String key, Map value)
and addProperty(String key, String value). As shown in the figure addProperty(String key,
String value) is not more than wrapper between two method, we used our parser that
we discussed previously in order to spread the content of method add(String property,
JsonElement value) as source code implementation for addProperty(String key, String value).
Then we repeat the same process for put(String key, Map value) since it is just a wrapper

CHAPTER 4. RESULTS 34

to for put(String key, Object value). Then We applied code2vec on both method source
code implementation which creates that generate predicate topics for both methods. We
also noticed that method signature for domain knowledge has different implementation
addProperty and putwhile methods for source code implementation has same implementa-
tion put,add,set. Wewere able to indicate that source code knowledge allowmore vision for
the similarities between two methods. When we examine our result manually, we found
some limitations. First: Method Overloading. this context means that when we have two
methods in same name but different name of parameters, different type of parameters
and different order of parameters. Second: Polymorphic Methods. this context means that
when we have different types of subclass which has same name and same number of pa-
rameters of main class method. Third: when we have source method and target method
that both different name, parameters and return type. Finally, the harder case was when
the methods absence the documentations, that makes RAPIM, RAPIM++, LTR hard to
recommend the correct mapping between the source and target method. By the end of
this section, we can conclude that our approach was able to achieve the maximum ac-
curacy by 84% , while the maximum accuracy that other approaches have achieved was
80.65%.

4.5 Results of RQ2.

Comparing to the state of the art RAPIM [11], RAPIM++ approved improving in terms
of accuracy and Figure 4.3 showed the differences. We illustrate that, when we use 10% of
the training data set we get 82% of accuracy,while there is a slightly different increasing
the accuracy by 40% which give us 90% of accuracy. We can indicate that our approach
is more stable and can recommend the correct method mapping though with sub-set of
training data set. Also, our light weight web service will be more useful for users since
even with sub-set training size will get a high accuracy.

CHAPTER 4. RESULTS 35

Figure 4.3: Effect of the size of the training data set .

4.6 Discussion and Challenges

For the feature extraction purpose, both case studies: RAPIM [11], and RAPIM++ de-
pend heavily on the documentation for both domain knowledge and source code knowl-
edge for the libraries. The documentations are very important to extract feature Q1,Q2
and Q3. However, we will able to extract all features from source code knowledge with-
out the need for the documentations for libraries. we tested both approach RAPIM [11]
and RAPIM++ for libraries which do not have documentations that were 21.6% of total
numbers of libraries, when 78.4% of the total numbers of libraries include all the corre-
sponding documentations.We build the model again and we excluded the three features
Q1,Q2 and Q3. We named our new model RAPIM++– and we rerun the model again to
calculate the accuracy and see the impact of the documentations on accuracy. Our find-
ing was as fallow: the accuracy for RAPIM [11] 87.3%, while the accuracy for RAPIM++
was 89.99% on average. Our finding indicate that the high impact of documentations for
libraries on the RAPIM [11] while RAPIM++ does not effect much when we exclude the
documentations. This detecting approve that our model will be able to find the correct
method mapping between unknown libraries which may do not have libraries.

CHAPTER 4. RESULTS 36

Figure 4.4: Samples of RAPIM++ outperform RAPIM which illustrate method mappings
between json and gson.

CHAPTER 4. RESULTS 37

4.7 PCA Discussion

In this section, we discuss why using PCA was helpful in our experiment and how using
PCA improves run-time and accuracy compared with not using PCA or using different
models that previous studies used. We will do three different studies here:

4.7.1 PCA Feature Selection

Principal Component Analysis (PCA) is a machine learning concept which takes a huge
numbers of features as an input and provide limited numbers of features as an output.
The goal of the PCA is prevent any over fitting issues and reducing the effectiveness of
noise. In our experiment, we used PCA to reduce the features of source code knowledge
from 384 features for method source code for source method and 384 features for target
method source code and present these huge numbers of features by reasonable numbers
at same time keep the same contribution. We tried to present these features by 8 features
like the same numbers which we extracted from the domain knowledge part. In fact, we
figured out that representing these features by 8 features make our models not perform
very well and run slower. Then we did tuning by trying to present it by 7 features then 6
features until we try one PCA.

In this section, we explain why and how we select the number of PCA features. As we
know, we have 384*2 features from source code knowledge. It would be unfair to compare
these featureswith only eight features fromdomain knowledge. Sowe need away tomake
the number of features that we select from domain/source code knowledge useful and
help in improving the experiment run-time. To do so, we need to rundifferent experiments
to find what is the best number of features that we have to pick from 384*4 source code
knowledge features.

As shown in Table 4.2, We run ten experiments. we split our dataset into 70% training
and 30% testing, and we run ten different experiments. For every experiment, we change
the number of PCAs. We start with 384*2 code knowledge features as input and use PCA
to generate one PCA then two PCAs, until ten PCAs as we can see in the Table 4.2, the
runtime increase when we increase the number of features. Also, Accuracy, f-measure,

CHAPTER 4. RESULTS 38

precision, and Recall change for different numbers of PCAs.

Of PCAs Accuracy f-measure precision Recall Runtime
1 91.1% 90.6% 90.6% 90.6% 50s
2 89.3% 88.7% 88.7% 88.7% 50s
3 88.4% 87.9% 87.0% 88.7% 50s
4 89.3% 88.9% 87.3% 90.6% 50s
5 89.3% 88.9% 87.3% 90.6% 50s
6 87.5% 87.0% 85.5% 88.7% 51s
7 90.2% 89.9% 87.5% 92.5% 51s
8 90.2% 89.7% 88.9% 90.6% 51s
9 86.6% 86.5% 82.2% 90.6% 51s
10 91.1% 91.1% 86.4% 96.4% 52s

Table 4.2: PCA Features impact

Depends on which quality matrix you want to look at to decide what is the best number
of PCAs you want to pick. For our experiment, We pick five PCAs, and we think base on
results in Table 4.2 any number of PCAs between 4-8 is good andworks fine. It depends on
the time you willing to wait for the experiment to run. We pick five PCA for two reasons:
First, it takes less time to run, which is the 50s to run. Second, it gives high accuracy com-
pared with other PCAs. However, we recommend making the number of PCAs features
for source code knowledge the same number of features for domain knowledge, So you
avoid any issues.

Even though ten and one PCAs give better results, however, we avoid them, because in this
case, well can have over-fitting issues. In the case of one PCA, the domain knowledge will
be dominated since we have one feature from source code knowledge and eight features
from domain knowledge. While with ten PCAs, the source code knowledge is dominated,
and the experiment takes more time to run.

4.7.2 PCA Vs CNNModel

In this section, We want to study which approach PCA or CNNModel [25] is better when
we apply them on source code knowledge features. We want to measure them in term the
impact on runtime and the model accuracy.

CHAPTER 4. RESULTS 39

In order to answer this question, we did two experiments where we split our dataset into
70% training and 30% testing. In the first experiment, we use PCA approach, where we
have eight features from domain knowledge and five PCAs features generated from 384*2
source code knowledge features. Thenwe feed these 13 features and one class to a boosted
decision tree (BDT), and results are shown in Table 4.3. In the second experiment, we use
CNN Model [25], where we have eight features from domain knowledge and one CNN
score features that generated by feeding 384*2 features to CNNModel [25] plus one class.
Then we feed these nine features plus output class to BDT.

Table 4.3 shows comparing the results of the two approaches. As we can see PCA outper-
form CNNmodel in two terms:

First, in termof predictionAccuracy (PCA=89.3%>CNN=87.5%), f-measure (PCA=88.9%
> CNN =87.0%), precision (PCA=87.3% > CNN=85.5%), and Recall (PCA=90.6%
> CNN=87.7%). We can see the PCA outperforms the CNN model in all these matri-
ces.

Second, in terms of runtime, we can see PCA took 50 seconds to runwhile the CNNmodel
took 5 minutes and 3 seconds, and that happens because the model needs to build Con-
volutional neural network (CNN) from thousands of interfaces for methods bodies. Base
on these results, there is no need to use an external model. Instead, we use mathematics
equations such as PCA here. PCA would be faster since we do not need to run the CNN
model to build a neural network. Also, less costly since we do not need to collect datasets
to train CNNmodel. So we decided to use PCA here. Also, with CNNModel, the domain
knowledge will be dominated since we have one feature from source code knowledge and
eight features from domain knowledge.
Approach Accuracy f-measure precision Recall Runtime
PCA 89.3% 88.9% 87.3% 90.6% 50s
CNNModel 87.5% 87.0% 85.5% 87.7% 5m,3s
All Features 88.4% 88.1% 85.7% 90.6% 2m,6s

Table 4.3: Comparing results using with and without using PCA

Keep in mind these experiments run on the cloud machine, so the time is lease since the
cloud has powerful hardware. If we run the experiment on a local machine, the run time
will be much more. Furthermore, since we run in the cloud, we don’t know how they

CHAPTER 4. RESULTS 40

run the tasks or how they implement algorithms. They may get run tasks in parallel, so
runtime may not be accurate.

4.7.3 Why PCA Is Helping?

In this section, We want to discuss how using PCA is helpful in terms of the impact on
runtime and model accuracy and what will happen if we donot use PCA and just feed
all 384*4 source code features to learner. To do so, We did two experiments where we
split our dataset into 70% training and 30% testing. In the first experiment, we use PCA
approach, where we have eight features from domain knowledge and five PCAs features
generated from 384*2 source code knowledge features. Then we feed these 13 features
and one class to a boosted decision tree (BDT), and results are shown in Table 4.3. In
the second experiment, we did not use PCA. We feed all 384*2 source code knowledge
features to the model, which means we have eight features from domain knowledge and
384*2 features from source code knowledge. Then we feed these 576 features plus output
class to BDT. We call this experiment All Features (AF)

Table 4.3 shows comparing the results of the two approaches. As we can see PCA outper-
form all features approach in two terms:

First, in terms of predictionAccuracy (PCA=89.3% > AF=88.4%), f-measure (PCA=88.9%
> AF=88.1%), precision (PCA=87.3% > AF=85.7%), while only both have same Recall
(PCA=90.6% = 90.6%). We can see the PCA outperforms the All Features in all these
matrices.

Second, in terms of runtime, we can see PCA took 50 seconds to runwhile the All Features
took 2 minutes and 6 seconds, which makes sense since when we have many features, the
model needs more time to build and generate decision trees.

CHAPTER 4. RESULTS 41

4.8 Threats to validity

Through next parts, we will clarify any possibilities that could impact our result and our
experiment setup. These threats include:Internal Validity, External Validity, and Constrict
Validity

The main threats to our methods is that the measurement that we used to calculate the
features and running the experiment. Through out our experiment we fallowed the stan-
dard for the most popular frame works and libraries such as Microsoft AI [28]. Despite of
this authenticated resources, it might be an error in measurement which we can consider
it as an Internal Validity.

Besides the internal validity, there is another validity related to the scalability. Loss the
documentation for the libraries which which will effect the performance of RAPIM++
since we extract the features from the documentation of the libraries.However, we relied
on the most popular libraries that available on line along with their documentation.This
Construct Validitymay happens when use any library it may miss the method documen-
tation for their libraries.

Finally, the threat that we have related to the performance of our result and we should
mention that not all the methods of the libraries we were able to document it and this will
have impact on our performance but this instances are limited to few numbers ofmethods.
This threats known as External Validity.

Chapter 5

Future works

5.1 Abstract

In this chapter we conclude our main contribution in this study and how the novel ap-
proach RAPIM [11] helped us to extend our work from it. Furthermore, we included our
possible future work in this chapter.

5.2 Conclusion

APImigration always been a challenging task for developers aswell as for companies. The
difficulty for this task occurs because it is hard, error prone and costly. While previous
studies were able to face these challenging by developing such approaches to recommend
mapping between different libraries, non of them tried to focus on the recommendation
at method level for different libraries.

The goal of this study is that indicate the challengeswhen automatically recommendmap-
ping at method level between third part libraries, We have proposed RAPIM++ the exten-
sion of the state of the art RAPIM. We developed an automation approach to recommend
mapping between two unknown libraries at method level. RAPIM++ uses the Domain

42

CHAPTER 5. FUTURE WORKS 43

Knowledge and Source Code Knowledge for both the source library and the target to
generate the important features in order to feed the model. Our model was able to pre-
dict the mapping between the methods of unknown libraries successfully. We conducted
an empirical study to evaluate our result with the novel approach RAPIM where we ex-
tended our study. The comparison study conducted by comparing three algorithms from
the RAPIM along with 8 poplar migration rules. The result showed that RAPIM++ was
able to increase the accuracy by 2.9%where the accuracy was 86.97%. In addition wewere
able to serve the research and industry community by providing a website that include all
the data set and all possible migrations between the APIs

5.3 Future works

Extend the data set that we have and make it more general is part from the future work
for our study. In this case the developers will able to insert any APIs and our tool will be
able to provide the possible mapping between the source and method libraries.

The study also plans to, not limit the java based libraries, when recommend the migra-
tion mapping between third party libraries. Including different programming languages
from different open source projects, like C and python very important since the develop-
ers for different programming languages face challenging in migration mapping between
libraries.

while we were able to build our model by using two boosted decision tree successfully,
there are a numbers of machine learning algorithms that we can use in order to do com-
parisons between our model and other algorithms that designed to serve our problem.
Conducting comparative study between different type of classifiers will be another part
of our future study.

Our approach support One to One method mapping between source and target meth-
ods. We willing in our future work to include any type of mapping in order to provide
comprehensive approach which able to detect the correct mapping between any type of
migrations.

CHAPTER 5. FUTURE WORKS 44

Finally, since the numbers of research papers are limited in this field, we wish to increase
the publications in this specific field because the migration is very important part of soft-
ware refactoring and the developers in industries faces serious problems in softwaremain-
tenance, so it is important to investigate more and build more tools in order to provide the
research and industry community with more comprehensive solution for all current lim-
itations.

Bibliography

[1] M. Kim, D. Notkin, D. Grossman, Automatic inference of structural changes for
matching across program versions, in: ICSE, Vol. 7, Citeseer, 2007, pp. 333–343.

[2] T. Schäfer, J. Jonas, M. Mezini, Mining framework usage changes from instantiation
code, in: Proceedings of the 30th international conference on Software engineering,
ACM, 2008, pp. 471–480.

[3] B. Dagenais, M. P. Robillard, Recommending adaptive changes for framework evolu-
tion, ACMTransactions on Software Engineering andMethodology (TOSEM) 20 (4)
(2011) 19.

[4] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, M. Kim, Aura: a hybrid approach to identify
framework evolution, in: 2010 ACM/IEEE 32nd International Conference on Soft-
ware Engineering, Vol. 1, IEEE, 2010, pp. 325–334.

[5] H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei, Mapo: Mining and recommending api us-
age patterns, in: European Conference on Object-Oriented Programming, Springer,
2009, pp. 318–343.

[6] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, C. Fu, Portfolio: finding relevant
functions and their usage, in: Proceedings of the 33rd International Conference on
Software Engineering, ACM, 2011, pp. 111–120.

[7] J. Härtel, H. Aksu, R. Lämmel, Classification of apis by hierarchical clustering, in:
Proceedings of the 26th Conference on Program Comprehension, ACM, 2018, pp.
233–243.

45

BIBLIOGRAPHY 46

[8] A. Gokhale, V. Ganapathy, Y. Padmanaban, Inferring likely mappings between apis,
in: 2013 35th International Conference on Software Engineering (ICSE), IEEE, 2013,
pp. 82–91.

[9] R. Pandita, R. P. Jetley, S. D. Sudarsan, L. Williams, Discovering likely mappings be-
tween apis using text mining, in: Source Code Analysis and Manipulation (SCAM),
2015 IEEE 15th International Working Conference on, IEEE, 2015, pp. 231–240.

[10] R. Pandita, R. Jetley, S. Sudarsan, T. Menzies, L. Williams, Tmap: Discovering rel-
evant api methods through text mining of api documentation, Journal of Software:
Evolution and Process 29 (12) (2017).

[11] H. Alrubaye, M. W. Mkaouer, I. Khokhlov, L. Reznik, A. Ouni, J. Mcgoff, Learning
to recommend third-party library migration opportunities at the api level, Applied
Soft Computing 90 (2020) 106140.

[12] H. Alrubaye, M. W. Mkaouer, Automating the detection of third-party java library
migration at the function level, in: Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering, IBM Corp., 2018, pp.
60–71.

[13] J. Shlens, A tutorial on principal component analysis, arXiv preprint arXiv:1404.1100
(2014).

[14] U. Alon, M. Zilberstein, O. Levy, E. Yahav, code2vec: Learning distributed repre-
sentations of code, Proceedings of the ACM on Programming Languages 3 (POPL)
(2019) 1–29.

[15] M. Lamothe, W. Shang, T.-H. P. Chen, A3: Assisting android api migrations using
code examples, IEEE Transactions on Software Engineering (2020).

[16] F. Thung, H. J. Kang, L. Jiang, D. Lo, Towards generating transformation rules with-
out examples for android api replacement, in: 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), IEEE, 2019, pp. 213–217.

[17] S. Xu, Z. Dong, N. Meng, Meditor: inference and application of api migration ed-
its, in: 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), IEEE, 2019, pp. 335–346.

BIBLIOGRAPHY 47

[18] L. I. Martínez, C. Pereira, L. M. Favre, Migrating c/c++ software to mobile platforms
in the adm context, International Journal of Interactive Multimedia and Artificial
Intelligence 4 (2017).

[19] C. Xu, X. Sun, B. Li, X. Lu, H. Guo, Mulapi: Improving api method recommendation
with api usage location, Journal of Systems and Software 142 (2018) 195–205.

[20] Q. Huang, X. Xia, Z. Xing, D. Lo, X. Wang, Api method recommendation without
worrying about the task-api knowledge gap, in: 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, 2018, pp. 293–304.

[21] H. Alrubaye, M. W. Mkaouer, A. Ouni, On the use of information retrieval to au-
tomate the detection of third-party java library migration at the method level, in:
2019 IEEE/ACM27th International Conference on ProgramComprehension (ICPC),
IEEE, 2019, pp. 347–357.

[22] M. W. Hussein Alrubaye, Variability in library evolution, Software Engineering for
Variability Intensive Systems: Foundations and Applications (2019) 295.

[23] H.Alrubaye,M.W.Mkaouer, A.Ouni,Migrationminer: An automated detection tool
of third-party java library migration at the method level, in: 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2019, pp. 414–
417.

[24] H. Alrubaye, D. Alshoaibi, E. Alomar, M. W. Mkaouer, A. Ouni, How does library
migration impact software quality and comprehension? an empirical study, in: In-
ternational Conference on Software and Software Reuse, Springer, 2020, pp. 245–260.

[25] H. A. T. Al-Rubaye, Towards the automation of migration and safety of third-party
libraries (2020).

[26] T.Mitchell, B. Buchanan, G.DeJong, T.Dietterich, P. Rosenbloom,A.Waibel,Machine
learning, Annual review of computer science 4 (1) (1990) 417–433.

[27] C. Teyton, J.-R. Falleri, X. Blanc, Automatic discovery of function mappings between
similar libraries, in: In Reverse Engineering (WCRE), 2013 20thWorking Conference
on, IEEE, 2013, pp. 192–201.

BIBLIOGRAPHY 48

[28] E. Loper, S. Bird, Nltk: the natural language toolkit, arXiv preprint cs/0205028
(2002).

	API Recommendation Using Domain And Source Code Knowledge
	Recommended Citation

	tmp.1622566972.pdf.3_os2

