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Abstract

Matching As Color Imaging: Thermal Feature Detection

Bhavesh Deshpande

Supervising Professor: Dr. Guoyu Lu

Feature detection and extraction is considered to be one of the most important aspects when

it comes to any computer vision application, especially the autonomous driving field that

is highly dependent on it. Thermal imaging is less explored in the field of autonomous

driving mainly due to the high cost of the cameras and inferior techniques available for

detection. Due to advances in technology the former is not a major limitation and there lies

tremendous scope for improvement in the latter. Autonomous driving relies heavily on mul-

tiple and sometimes redundant sensors, for which thermal sensors are a preferred addition.

Thermal sensors being completely dependent on the infrared radiation emitted are able to

frame and recognize objects even in the complete absence of light. However, detecting fea-

tures persistently through subsequent frames is a difficult task due to the lack of textures in

thermal images. Motivated by this challenge, we propose a Triplet based Siamese Convo-

lutional Neural Network for feature detection and extraction for any given thermal image.

Our architecture is able to detect larger number of good feature points on thermal images

than other best performed feature detection algorithms with superb matching performance

based on our extracted descriptors. To demonstrate our aforementioned claim, we compare

the performance of the proposed CNN scheme with traditional as well as state-of-the-art
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feature detection and extraction schemes. Future work involves extending the pipeline for

motion tracking, SLAM, SFM and many other applications.
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Chapter 1

Introduction

Extracting features on visible images is well established. Features such as SIFT [1], SURF

[2], and ORB [3] provide us with good and distinct local image descriptions. There are

also several other well-defined edge and corner detection algorithms such as Canny edge

detector [13], Harris corner detector [12] etc. These detectors form a core part for SFM

and SLAM [8][9] methods. However, these same techniques fail to yield good quality fea-

ture detection results when used on thermal images. For the case of autonomous driving

or navigation in general, visible images should be sufficient for most of the time, but in

conditions of low to no visibility caused by the environment such as rain, fog, snow, night

etc., even a good quality high resolution camera is not sufficient. On the other hand, ther-

mal imaging is robust to all these aforementioned conditions and provides us with high

quality information of the scene. Nevertheless, there are certain drawbacks when it comes

to thermal imaging - the high texture quality observed in visible images is lost in case of

thermal images, which also forms the basis for standard feature detection and extraction

algorithms. Thermographic cameras detect infrared radiation emitted from the body of an

object making it possible to have good visibility even in the absence of illumination. Warm

blooded animals or object thus become easy to detect making thermal imaging useful in
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military and surveillance applications and has a great potential in the field of autonomous

driving as well.

In the deep learning era, obtaining unique, better and more accurate features from im-

ages has improved immensely. But almost all the approaches based on images from the

visible spectrum which are rich in feature textures failing to completely tackle the afore-

mentioned problems. BRISK [36], SIFT [1], SURF [2], ORB [3], FAST [4] and WADE

[11] algorithms are able to detect some features in thermal images, but the quality of de-

tection is rather unsatisfactory, especially for those raw thermal images without further

post-processing.

Image-to-image translation using Adversarial networks for thermal-visible domain trans-

fer can be used as a workaround, but the generated images are based on assumptions and

also may add additional artifacts which are not desirable.

In this paper, we introduce a feature detection and extraction architecture based of

Triplet neural network. For detection network, it takes in three image patches namely

Anchor, Positive and Negative. These patches are passed through a series of convolutional

and fully connected layers.

The network attempts to project patches with similar embedding together and dissimilar

embeddings further away from each other thereby enforcing the distance loss for similar

patches to a minimum and a high value for dissimilar patches. The resulting vector is

kept being 128-dimensional helping the network retain valuable feature information from

the patches. Feature detection and description could be considered as a single step where

midpoints for the image patch with a high feature embedding response is saved for feature
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matching purpose. However, in order to acquire the high feature response, we introduce

an intermediate step by adding fully connected layers to previously trained model weight

values. The network is trained on 32 ∗ 32 patches corresponding to features obtained from

KAIST [32] and CSS [10] datasets. The network is able to learn high-quality feature de-

scriptor for given patches and then classify good distinct features which can be identified

very accurately through subsequent frames.

To summarize, the main contributions of our work are as follows:

1. I propose a novel Triplet based network to train robust feature detection on thermal

scenes.

2. I propose a patch-based feature extraction network to learn 128-dimensional descrip-

tor vectors to overcome the texture and context limitation of the thermal scenes.

3. I integrate both proposed detection and extraction networks into a full pipeline to

enable stable and reliable feature matching on thermal images.

4. The proposed method achieves a superior performance in visual and quantitative com-

parison compared with other widely used classical and most recent deep learning al-

gorithms.
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Chapter 2

Related Work

A feature in computer vision and image processing can be defined as a piece of information

about the contents in an image determining whether a region has certain properties in them.

Typically features could be considered as specific structures in an image such as points,

edges, corners, or objects. Features can also be related to motion in image sequence, or

shapes defined in terms of curves or boundaries. They can also be a result of neighborhood

operation on an image. Typically, the detected features from images are desired to be

invariant to changes to be able to detect the same feature over several image frames making

it more robust to changes. The changes may include, Translation, Euclidean, Similarity,

Affine or Projective transform carried out on an image.

Figure 2.1: Similar feature detected after various transformation performed on an image.

With no exact definition of what represent a feature, we could define it based on the
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application being performed. We could say a feature is an interesting region in an image

and is a starting point for many image processing and computer vision applications both

2D and 3D.

Figure 2.2: Operation performed on images.

2.1 Classic feature detection and extraction methods

Keypoint detection and feature point matching using Canny [13] for edge, Harris [12] for

corner detection and Histogram of Oriented Gradients (HOG) [14] had been typically done

in the past and were used in applications such as recognition and image matching. Later

SIFT was introduced, and due to its high robustness SIFT enjoys the benefits of high ac-

curacy irrespective of the image scale, orientation, or rotation. SIFT localized and learnt

good features using Difference of Gaussian (DoG) at multiple scales which made it more

popular among the existing feature detection algorithms with the drawback being its higher

computing time. In the later years, faster implementations similar to SIFT were introduced

namely Features from Accelerated Segment Test (FAST), Binary Robust Independent Ele-

mentary Feature (BRIEF), Oriented FAST and Rotated BRIEF (ORB), Speeded up Robust

Feature (SURF) which had their share of advantages and disadvantages compared to the
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SIFT extractor.

2.1.1 SIFT

Scale Invariant Feature Transform as mentioned earlier is one of the popular feature detec-

tion and extraction techniques available which stood the test of time. As the name suggests

the detected features are robust to change in scale, rotation, translation, or any other affine

transform. For feature detection SIFT implements Difference of Gaussian (DoG) which

approximates Laplacian of Gaussian (LoG) mainly because it is a costly process. Differ-

ence of Gaussian is obtained as the difference of Gaussian blurring of an image with two

different Gaussian kernels. The process is carried out for different octaves of the image in

the Gaussian Pyramid which is represented in the figure 2.3:

Figure 2.3: Difference of Gaussian operation performed on different octaves of an image.

After Difference of Gaussian, images are searched for local extrema over scale and space

i.e., a pixel location is compared with its 8 neighboring pixels as well as with 9 pixels in the

previous and next scales. If the pixel is an extremum, it is a potential keypoint. A Taylor
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series expansion of scale space is used to obtain more accurate locations of the previously

found potential keypoints which is done based on a threshold value (0.03). Further removal

of low-contrast and edge keypoints is also carried out to refine the detection. An orientation

is assigned to each keypoint by taking a neighborhood around it depending on the scale,

where the gradient magnitude and direction are calculated in that region. From that region

an orientation histogram is created.

Figure 2.4: Histogram of gradients in 16 ∗ 16 block around the keypoint

For keypoint description, a 16 ∗ 16 neighborhood around the keypoint is divided into 16

sub-blocks of 4 ∗ 4 size and for each sub-block an 8-bin orientation histogram is created

resulting in a 128-bin valued vector.

2.1.2 SURF

Speeded Up Robust Features as the name suggests is a fast and robust algorithm for feature

detection and extraction. It implements box filtering approach enabling real-time applica-

tions like object recognition and tracking. For feature extraction SURF detects keypoints

using Hessian approximation. Scale and location are selected using determinant of Hessian

matrix. Given a pixel, the Hessian of pixel is:
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� ( 5 (G, H)) =


m2 5

mG2
m2 5

mGmH

m2 5

mGmH

m2 5

mH2

 (2.1)

The image is filtered by a Gaussian kernel to adapt to any scale. The Hessian matrix

H(x, f) is defined as:

� (G, f) =


!GG (G, f) !GH (G, f)

!GH (G, f) !HH (G, f)

 (2.2)

To further reduce the computational cost an integral image approach is carried out. Re-

producible orientation for the interest points is achieved by calculating Haar-wavelet re-

sponses in x, y directions in a circular neighborhood around the keypoint. Sum of vertical

and horizontal wavelet responses are calculated till the orientation with largest sum is found

to denote the main orientation of the feature. Descriptor values are obtained by taking a

rectangular region around the previously found keypoints and a 64 ∗ 64 length vector is

obtained from it.

2.1.3 ORB

Oriented FAST and Rotated BRIEF combines the FAST keypoint detector and the BRIEF

descriptor. Keypoints are detected using FAST algorithm, followed using Harris corner

detection to find top N points. FAST computes the intensity weighted centroid of the patch
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with corner at its center and moments are computed for rotation invariance (Fig. 2.5). A

rotation matrix from the orientation of the patch is found and then BRIEF descriptor for the

same is computed.

Figure 2.5: Patch corresponding to ORB feature detected.

2.2 Deep learning-based detection and extraction methods

With the increase in popularity of deep learning-based methods, focus was shifted towards

learning based feature detection and description. Patch based feature descriptor learning

has been also implemented using Siamese network however most of the work has been

done in the RGB domain. Faiz et al. [5] depicted a Siamese network trained for detection

of change in satellite imagery with the network architecture containing two VGG16 [17]

networks. PN-Net [24] took a Triplet based approach to generate descriptors which could

be used in traditional matching setup. In contrast to Hinge Embedding loss [25, 28], they

introduced SoftPN loss where the pairs of patches represented a soft negative mining. An-

other Siamese network L2-Net [6] specifically trained for descriptor learning from patches

in Euclidean space showed state of the art performance. They had an all-convolutional
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structure with a stride of 2 to achieve down sampling, and a loss function having three

error terms. Their loss function included three error terms for obtaining descriptor similar-

ity, descriptor compactness and one to obtain intermediate feature maps. SuperPoint used

an encoder-decoder based approach having a shared encoder and two different decoders

for description and detection of features. Having a good performance, it was limited to

RGB images and failed to produce comparable results for thermal images. All the above-

mentioned methods can be used for feature descriptor extraction but only on RGB/grayscale

images. Our model can be considered as the first patch-based descriptor learning scheme

designed for more challenging thermal image data.

2.2.1 PN-NET

PN-Net is a patch-based feature descriptor learning method where the goal is to compute

representation vector for image patch. The descriptor vector size matches the feature di-

mensionality which is obtained from the final layer of a convolutional neural network.

Unlike traditional Siamese networks which accept two parallel inputs and share parameters

across the network, PN-Net takes a triplet-based approach wherein the input to the net-

work is triplet of patches. In their work they introduce a novel loss function called SoftPN

Loss. Any training triplet includes two negative and one positive distance with the goal to

converge the positive distance to 0 and the two negative distances to infinity. The SoftPN

objective is shown in equation 2.3:

; (g) =
[(

4Δ(?1,?2)

4<8=(Δ(?1,=),Δ(?2,=)) + 4Δ(?1,?2)

)2

+
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(
( 4<8=(Δ(?1 ,=) ,Δ(?2 ,=))

4<8=(Δ(?1 ,=) ,Δ(?2 ,=))+4Δ(?1 , ?2)
− 1

)2
.(2.3)

The network with the SoftPN loss achieves better performance compared to SoftMax

and Hinge loss functions.

2.2.2 SuperPoint

SuperPoint is a self-supervised interest point detection and description framework. A fully

connected neural network operating on full sized images producing interest point detection

and fixed length description in a single forward pass. It is an encoder decoder architec-

ture where the network consists of a single, shared encoder to reduce the input image

dimensionality. Following the encoder there are two separate decoders each learns task

specific weights, one for interest point detection and other for description. The SuperPoint

uses a VGG style encoding consisting of convolutional layers, spatial downsampling and

non-linear activation functions where pixels in lower dimensional output are referred as

cells. For every pixel input, the output pixel corresponds to the probability of “point-ness”.

Descriptor learning is done in a semi-dense grid reducing the training memory. Later a

bi-cubic interpolation is performed by the decoder network followed by L2-normalization.

The Loss function is the sum of two intermediate losses, respectively for the interest point

detector and descriptor. Both the losses are optimized simultaneously by using a pseudo-

ground truth interest point location and ground truth corresponding to generated homogra-

phy between two images. The loss function is given in equation 2.4:
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! (-, -′, �, �′;.,. ′, () = !? (-,. ) + !? (-′, . ′) + _!3 (�, �′, (). (2.4)

!? (-,. ) =
1

�2,2

�2 ,,2∑
ℎ=1,F=1

;? (GℎF; HℎF), (2.5)

where,

;? (GℎF; H) = −;>6(
4G?(GℎFH)∑65
:=1 4G?(GℎF: )

). (2.6)

2.2.3 Siamese Neural Network

A Siamese neural network (sometimes called a twin neural network) is a type of convolu-

tional neural network that uses the same weights while working in conjunction with two

different input vectors to compute comparable output vectors (Fig. 2.6). Parameters are

updated in a mirrored fashion across both sub-networks and the network is used to find

the similarity of the inputs by comparing its feature vectors, thereby having a variety of

applications.

2.2.4 SuperThermal

In this work [33], authors introduce a siamese based approach for feature detection and de-

scription on thermal images. They design a network to learn an efficient matching strategy
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Figure 2.6: Siamese neural network.

with an aim of achieving a robust learning. In their work firstly they introduce an image en-

hancement module. This module is used to enhance the edge and other detail information

in the thermal image since the images are of comparatively low resolution. Once enhanced

the patches are fed into the network to effectively extract patches and learn detection and

description. The learning is done on multi-scaled patch input information making the ar-

chitecture and learning more robust. Further image pairs are generated and loss constrained

is applied with the image canny detection map to better constrain on thermal images and

have more candidates for better matching performance. Data augmentation is also applied

to the input data to the network. The architecture pipeline is shown in Fig. 2.7.

2.2.5 Per chapter Synopsis

In Chapter 1, we introduce our work on thermal image feature detection and extraction

using neural networks. We briefly describe the available methods for feature extraction and

their limitations on the current task. We discuss the motivation for the work and the need

for the same in various computer vision applications.

In Chapter 2, we describe in detail classical as well as learning-based feature extraction



14

Figure 2.7: Overview of SuperThermal Architecture pipeline.

methods. We discuss the procedure used for obtaining different feature extraction and

address the loss functions implemented for the learning-based extraction.

In Chapter 3, we introduce the concepts of 3D multivew geometry and develop a math-

ematical understanding of the traditional concepts. We discuss the concept of camera pro-

jection matrix, homography, Essentianl and Fundamental matrix for pose estimation.

In Chapter 4, we discuss the dataset we used and the specifications for individual camera

for each dataset. We further introduce the different types of data augmentations applied to

increase the size of the dataset.

In Chapter 5, we introduce our methodology and approach to solve the given task at

hand. We discuss the various constraints we implemented from patch selection to the loss

function. We also provide an insight on the hyper parameter settings implemented for our

learning.

In Chapter 6 and 7, we summarize the results and discuss the experimentations we

performed throughout the work. We further discuss the potential work for the future that
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can be explored to improve upon the current performance.
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Chapter 3

Multiview Geometry Concepts

3.1 Projective Transformation and Homography

Projective transform gives the translation between points in an image or planes in the scene

and is one of the fundamental concept in multi view geometry. Homography is a projective

transformation where a point in image coordinate x(u,v,1) is mapped onto a point x’(u’,v’1).

Figure 3.1: Demonstrates the homography relation between two planes.

This can be achieved by a 3∗3 matrix know as homographic matrix H given by the form

shown in equation 3.1 below:
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� =


�11 �12 �13

�21 �22 �23

�31 �32 �33


(3.1)

A point in x can be projected onto the other plane x’ using the equation 3.2:

G′ =


G′1

G′2

G′3


=


�11 �12 �13

�21 �22 �23

�31 �32 �33




G1

G2

G3


(3.2)

Point x = [x1,y1,1] denotes a point at (x1,y1) location in its Homogeneous coordinate

system. The point (x’2,y’2) in the coordinate system of the second plane are given as:

G′2 =
G′1
G′3
=
�11G1 + �12G2 + �13

�31G1 + �32G2 + �33
(3.3)

3.2 Essential and Fundamental matrix

3.2.1 Essential matrix

For a pair of stereo cameras viewing the same point Xi in the world space, a 3D point is

projected onto two image planes xi and x’i as shown in the figure below:
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Figure 3.2: Projection of point onto a pair of cameras. Epipoles and epipolar line corresponding to the
projection and the two camera centers.

For calibrated cameras, xi and x’i are normalised. If the camera matrices (P,P’) are

known then an estimate of Xi can be obtained by the process of triangulation. The estimated

points satisfy the camera projections equations given below:

G8 = %-8 0=3 G
′
8 = %

′-8 5 >A 402ℎ ?>8=C 8 (3.4)

where P, P’ are the estimated camera projections.

The true camera projections are related to the estimated projections by:
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% = %̂�−1 0=3 %
′ = %̂′�−1. (3.5)

where,

%̂ =  [' |C] (3.6)

%̂′ =  ′ ['′|C′] (3.7)

If the two cameras are calibrated i.e., we know the intrinsic matrix (K) parameters for

both the cameras, then xi and xi’ are given in normalized coordinates i.e, they differ from

true points by scale, rotation and translation. Multiplying eqn 3.4 by K-1 we get:

Ĝ8 =  
−1G8 = [' | C] -̂8 (3.8)

Ĝ′8 =  
′−1G′8 = ['′ | C′] -̂8 (3.9)

The transformation matrix corresponding to the points (x̂i, x̂’i) is called the Essential
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matrix and is given as:

Ĝ
′)
8 �Ĝ8 = 0. (3.10)

3.2.2 Fundamental matrix

In the case of uncalibrated cameras where the intrinsic parameters of the camera are not

determined, we could not multiply K-1 to the equation 3.4. This gives us an equation of the

form:

G
′)
8 �G8 = 0. (3.11)

where F is the fundamental matrix.

From the above equation we can derive a relation between the Essential and Fundamen-

tal matrix as follows:

� =  
′−)� −1 ⇒ � =  

′)� . (3.12)
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3.3 Visual Odometry

In the field of robotics and computer vision, Visual Odometry is a process to estimate

the orientation of the robot/vehicle and its position. This is achieved by extracting useful

information from a pair of camera images or by using multiple frames of images from

the same camera. This can be achieved by a feature based matching method. For stereo

cameras, the relation between the two cameras can be found using the finding out point

correspondences based on any type of feature detection algorithm. (Eg. section 2)

Figure 3.3: Triangulation performed between two cameras extracting information from the same point

The extracted feature points can be used to find the projection matrices for the two

cameras and their relation between each other can be computed using the Fundamental

matrix for uncalibrated and Essential matrix for calibrated cameras as discussed in the
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previous section. Additionally Random Sample and Consensus (RANSAC) algorithm is

performed to improve the accuracy of the estimated Fundamental/Essential matrix based

on the number of in-liers. Once matrix between the camera pairs has been found, by the

process of triangulation we can estimate the relative pose of the camera (in another word,

camera motion) which in turn determines the rotation and orientation of the carrier with the

camera mounted. There are additional edge cases where the projected points differ from

their true locations. This is mitigated by calculating the re-projection error between the

estimated and actual points and minimizing the error, which is called bundle adjustment.
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Chapter 4

Datasets and Data Pre-Processing

4.1 KAIST Dataset

The KAIST (Fig. 4.1) a multispectral dataset was developed by Soonmin Hwang and his

colleagues from Korea Advanced Institute of Science and Technology (KAIST). Multispec-

tral ACF, an extension of aggregated channel feature (ACF) is introduced in the dataset.

The hardware for imaging includes a color camera, a thermal camera, a beam splitter, and

a three-axis camera. The PointGrey Flea3 global shuttered color camera and FLIR-A35

thermal camera are used. The color camera has 640 ∗ 480 spatial resolution with a 103.6°

field of view while the thermal camera has 320 ∗ 256 spatial resolution with 39° field of

view. Both the cameras have a frame rate of 20 fps. Both the cameras are mounted on

a hardware and a translation is computed between them using stereo calibration. Further,

color correction is also applied to the color camera due to uneven reflection ratios of the

visible band from the beam splitter.

4.2 CSS Dataset

The dataset (Fig. 4.2) setting consists of a non-verged geometrical setting of pair of cam-

eras: one camera in the visible spectrum and the other in the infrared. The visible camera is

an ACE from Basler and has a resolution of 658∗492 pixels. The infrared camera is a Long
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Figure 4.1: KAIST dataset: Top color images and bottom thermal infrared images

Wavelength Infrared (LWIR) device which detects radiation in the range of 8 - 14 μm. Both

cameras are synchronized and calibrated. Different video sequence are obtained in urban

and semi-urban scenarios.

Figure 4.2: CSS dataset: Top color images and bottom thermal infrared images
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4.3 Data Preprocessing and Augmentation

The data from both KAIST and CSS datasets are series of consecutive frames. Learning in

our network is performed from these consecutive frames, where there is not much changes

between the frames. This results in overfitting of the model to specific patches and false

learning. To compensate for this issue the dataset is augmented, which not only increases

the data size but also adds regularization to the learning helping the network to generalize

better. The data augmentations include:

Figure 4.3: Horizontal flip

Figure 4.4: Vertical flip

Figure 4.5: Zoom
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Figure 4.6: Jitter

4.4 Patch Selection

The input to our network is patches cropped from the images. The image patches are

selected such that they contain feature information which are robust to scale and illumi-

nation changes. The size of the extracted patches is set to 32 ∗ 32 to encapsulate enough

information to be identified as a strong feature. For selection of patches, we make use of

SIFT keypoints obtained on visible images and extract a 32 ∗ 32 patch around it. Another

patch with the same spatial coordinates is extracted from the corresponding thermal image,

thus allowing to build visible - thermal patch correspondences for feature extraction. This

method of extracting patches is not entirely accurate as there are many features that are

observed in visible images which are absent in thermal images. To overcome this situation,

we further filter the image patch pair by taking into account the variance observed on ther-

mal patches as shown in Fig. 4.7 below, thus only selectively choosing patches for finer

training.

We also make use of heavy data augmentations on these patches to increase robustness.
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Figure 4.7: Variance based patch selection.

Figure 4.8: Data augmentation for patches given at the time of input.
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Chapter 5

Proposed Method

5.1 Feature Detection and Extraction

Feature detection in thermal images is a difficult task mainly due to the high uniformity

in those images. Convolutional neural networks have facilitated a deep network-based

feature learning in color domain. We implement the same principle in our methodology.

To enable the network to learn meaningful features on thermal images, we make use of

the concept of Triplet based Siamese Neural Network and design our network in a way,

which is trained on image pair patches extracted from visible-thermal image pairs from

the KAIST and CSS datasets. For training Triplet Network, we require two images, but 3

Figure 5.1: An illustration of the three types of image patch inputs to the detection network: Anchor from
RGB images; Positive and negative patches from thermal scenes.
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patches: Anchor, Positive Negative. The Anchor is the patch containing feature keypoint

extracted from the visible image. The Positive is the thermal patch corresponding to the

Anchor and the Negative is any patch but Positive as seen in Fig. 5.1. The Triplet network

learns embeddings of the positive patches but also of the negative patches thus allowing us

to accurately localize the keypoint.

5.2 Network Architecture

The network architecture consists of two networks for better keypoint and feature vector

learning namely: Feature Description Network and Keypoint Detection Network. The over-

all network architecture is shown in Fig. 5.2. The individual components of the network

are explained in the subsections.

Figure 5.2: Thermal image feature detection and extraction architecture. Inputs given are three image cate-
gories: Anchor, Positive and Negative image patches. RGB descriptor values are also provided to regress the
anchor feature descriptor.

5.3 Feature Description Network

The Triplet model requires three inputs (in our case image patches) for learning the simi-

larity between images. The Triplet network learns distributed embedding representation of
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data points where contextually similar data points are projected in the nearby region and

dissimilar data points are projected far away from each other. We use SIFT feature to detect

the keypoints and from those detected keypoints we extract 32 ∗32 patches in the RGB and

thermal image. This patch corresponds to the detected SIFT feature in the RGB image.

On obtaining the anchor patch from RGB image, the keypoint for it is saved. The saved

keypoint location from the anchor patch is used where a 32 ∗ 32 patch with the previously

detected keypoint at the center is chosen as the positive patch in the thermal image. For

the negative patches we randomly generate keypoint locations and patches with the gen-

erated keypoint at the center are selected. Here an additional step is included where we

implement patch selection based on the standard deviation of both RGB and thermal patch

under consideration. Only those patches are selected which have a deviation value above a

threshold indicating a good feature response. This additional step further helps in making

the learning better and more robust. The selected patches are then fed into the Triplet net-

work as shown in Fig. 5.3, for feature description learning. The network consists of five

convolutional layers followed batch normalization and ReLU activation function. Dropout

is used to add regularization in both the models and finally two fully connected layers along

with a Sigmoid function are used to output a 128-dimension vector. 128 is selected as many

applications take SIFT features as input. We select the same dimensionality as SIFT, but

can be changed as necessary.

5.4 Keypoint Detection Network

The 128-dimensional output from the above learned Triplet architecture is connected to

the keypoint detection network as shown in Fig. 5.4, which shares the same structure of
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Figure 5.3: Feature description network. Takes in three inputs with two loss constraints for the learning.
Output is a 128D vector of feature description.

the feature description network, thus allowing one-step detection and description. This

step helps the network classify good and bad feature patches to further improve the feature

description and detection. All the intermediate layers are frozen and two fully connected

layers followed by ReLU activation function dedicated for detection are added. A Sigmoid

activation is used at the end of the fully connected output. The input to this network is

32 ∗ 32 thermal-thermal patch correspondences. The patches here include augmentation by

scaling, flipping etc. Learning is performed on positive and negative patches producing an

output score between 0 and 1.

Once a patch with good feature is detected, mid-points of the patch in the image co-

ordinate are located and stored as keypoint. After the model is successfully trained and
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Figure 5.4: Feature detection network. BCE loss criterion used for feature patch classification.

keypoints are obtained we can simply use Euclidean distance measurement amongst the

output scores of descriptor values to find the corresponding matches in the two thermal

frames. With the shared network and common layers, the feature detection and description

can be much accelerated.

5.5 Training and Loss Functions

For the feature description network, we use Margin Ranking loss with a margin of 0.2, with

ADAM [18] having a learning rate of 0.001 optimizer. The equation for loss is as:

! (�, %, #) = max{| | 5 (�) − 5 (%) | |2 − || 5 (�) − 5 (#) | |2 + U, 0} (5.1)

Margin Ranking loss : The Margin Ranking loss is different from other loss functions,

like MSE or Cross-Entropy. Unlike the mentioned losses which learn to predict directly
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from a given set of inputs, Margin Ranking loss computes a criterion to predict the relative

distances between inputs. For the Margin Ranking loss, the loss is calculated using inputs

x1, x2 where x1 and x2 are the tensor embedding vectors, as well as a label tensor, y

(containing 1 or -1). When y == 1, the first input will be assumed as a larger value i.e., it

is ranked higher than the second input. If y == -1, the second input will be ranked higher.

Along with the above-mentioned loss we also use a MSE constraint by training the anchor

patches with their respective descriptor values as ground truth to improve the learning.

Mean Squared Error Loss : The loss function calculates the average squared difference

between the estimated values and the actual value.

We noticed that, by doing so the model learned features not only based on the pixel

intensity values but also the information embedded in the patch itself. This further improves

the model performance on low resolution dataset such as KAIST. The equation for loss is

given as:

!"(� =
1
<=

<∑
8=1

=∑
9=1

(.8 9 − H8 9 )2 (5.2)

The overall loss function for the feature description learning architecture is given as:

!34C42C8>= = _1! (�,%,#) + _2!"(� . (5.3)
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The keypoint detection network outputs a 0 - 1 valued tensor which is compared to the

ground truth of 0 and 1. Classification is performed on the obtained output tensor where

Binary Cross Entropy loss (BCE) along with Adam optimization is used for classification.

Binary Cross Entropy loss : The loss function also known as Log loss is used for binary

classification problems in the field of machine learning. The loss function tells how good

your model is if the model predictions are closer to the actual values making the loss will be

minimum and if the predictions are away from the original values then the loss calculated

is maximum.

The loss function is given as:

!34C (@) = −
1
#

#∑
8=1

H8 · (?(H8)) + (1 − H8) · log(1 − ?(H8)) (5.4)



35

Chapter 6

Experiments and Results

For training we use KAIST and Cross-spectral Stereo (CSS) dataset the details on which

can be found in section 4. These datasets are chosen to make our model more robust to low

resolution (KAIST) as well as much high resolution (CSS) thermal patches. The image

frames are selected such that they consist of unique features for efficient learning. This

does cause reduction in the total number of images in the dataset, but it is compensated by

augmentation where the frames are flipped (horizontally and vertically), scaled and even

jitter is added to the frames before training. The training dataset consists of approximately

10,000 to 15,000 images and 32 ∗ 32 sized patches are extracted from the images taking

our total dataset to increase to more than 150,000 images. For testing we use around 1500

images with patches extracted from them in a similar manner as in training. The testing

dataset is completely different from the training dataset.

Initially we used a simple VGG style-based network with Sigmoid activation and BCE

loss function. We tried simple classification to check if the network learned directly from

a simple solution. The Training loss and accuracy were nearly perfect, but the testing was

worse as shown in the Fig 6.1.

From the Fig 6.1 we observed that the model over-fit to the training dataset as seen in
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Figure 6.1: Training and testing loss accuracy plot for learning based on only Binary classification. Loss plot:
loss value (Y-axis) over the number of epochs (X-axis). Accuracy plot: accuracy (Y-axis) over the number of
epochs (X-axis).

the training and testing Loss/Accuracy curves.

Then we proceeded further and tried a Siamese based approach. The results for training

and testing are shown in the Fig 6.2. We observe that training plot had a smooth and gradual

decrease and the accuracy increased. For the testing initially the network perform well as

seen in the testing plot but performance worsened overtime.

Later using PN-Net as an inspiration we trained the model on a simple triplet-based

architecture with no modifications to the learning methodology. On completion of the

training, we observed that the model learned features based only on the intensity values

of the image under consideration and not learning any good features. Slight changes in

the intensity of the thermal image caused the performance to drop drastically. This also

raised another issue of over-fitting the learning to a particular type of dataset (low reso-

lution/intensity or high resolution/intensity) and resulting in a worse performance for the



37

Figure 6.2: Training and testing loss accuracy plot for learning based on Siamese Approach. Loss plot: loss
value (Y-axis) over the number of epochs (X-axis). Accuracy plot: accuracy (Y-axis) over the number of
epochs (X-axis).

other. The training and testing loss/accuracy plot are shown in the Fig 6.3.

Figure 6.3: Training and testing loss accuracy plot for learning based Triplet based approach without the
use of MSE constraint. Loss plot: loss value (Y-axis) over the number of epochs (X-axis). Accuracy plot:
accuracy (Y-axis) over the number of epochs (X-axis).

To tackle this issue, we then added an additional constraint of MSE loss to the overall
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loss function thereby forcing the anchor description vector to be close to its RGB counter-

part.

Figure 6.4: Training and testing loss accuracy plot for learning based Triplet based approach with the use of
MSE constraint. Loss plot: loss value (Y-axis) over the number of epochs (X-axis). Accuracy plot: accuracy
(Y-axis) over the number of epochs (X-axis).

On addition of the above constraint we observe from the Fig 6.4, the model was able to

perform well on images with both high and low resolutions.

We also tried using a traditional method of SIFT along with Contrast Limiting His-

togram Equalization (CLAHE) applied to the images under consideration. In our experi-

ments we observed that simple modification of the image using a technique like CLAHE

drastically improved the feature detection capability with average feature detection of 980

in CSS dataset and 700 in KAIST dataset. Example CLAHE based detection on thermal

images is shown in the Fig 6.5:

But when we tried the feature matching algorithm, this approach produced good results

for the features matched in the high resolution CSS dataset image with an average of 725



39

Figure 6.5: Feature detection using CLAHE applied on thermal images.

correct feature matches, but failed to do the same in low resolution KAIST dataset images

with an average of only 350 features correctly matched. With these numbers we could

determine that CLAHE and other image pre-processing methods may have a better effect

on high quality thermal images, which are generally easy to process. With the lower res-

olution and sensitivity sensors, the advantages of the developed neural network approach

is more obvious. As high resolution and temperature sensitivity thermal cameras are quite

expensive, the research outcomes could have broader impact on the common market. Also

our method directly operates on original thermal images. The performance of our method

on images after enhancement will also increase.
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Keypoint Detected Keypoint Matched
SIFT KAIST - 121 KAIST - 77

CSS - 274 CSS - 218
Superpoint KAIST - 97 KAIST - 63

CSS - 212 CSS - 163
Our Model KAIST - 562 KAIST - 405

CSS - 778 CSS - 582

Table 6.1: Comparisons on detection and matching.

6.1 Quantitative analysis

We compared feature description and matching from SIFT and deep network SuperPoint on

CSS datasets. The results of which are shown in Fig. 6.8. It can be observed from Fig 6.8

that our method is able to generate denser and more reliable matchings on the challenging

thermal scenes, compared with classic SIFT algorithm and learning based SuperPoint. We

also compared feature point detection for different techniques. From the feature detection

result in Fig. 6.5, we can see that even though SIFT has a relatively good number of feature

detection for the high-resolution CSS dataset, it is unable to produce a comparable result

for low resolution KAIST dataset. This is mainly because SIFT is designed for images with

high textures and hence gives a poor detection on low resolution and low textured images.

From the Table 6.1 we observe that the number of features detected by our network

exceeds traditional SIFT and a neural network model Superpoint retrained on our dataset

not only in the high-resolution CSS dataset but also in the low resolution KAIST dataset.

Besides the visual comparison, we also report the number of the detected keypoints and the

matched keypoints from our trained model on the two datasets, compared with SIFT and

SuperPoint in Table 6.1.
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Figure 6.6: Feature detection comparison. Top-bottom: Input Images; SIFT matches; Third row: Superpoint
matches; Final row: Our method.

6.1.1 Feature Matching

We use Euclidean metrics between the descriptor values between the frame under consid-

eration and the remaining frames and select the one with the closest match. The matching

mechanism is kept based on Euclidean distance so that much faster searching algorithms

such as KD-tree search can be implemented making the matching in real time. To further

improve the matching capabilities we use Lowe’s ratio test (A test where the ratio of the first

and the second closest match should be smaller than a certain threshold value) algorithm in
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order to be certain no keypoints are mismatched with incorrect correspondences.

Figure 6.7: Feature detection and matching result on high resolution CSS dataset.

From the detected keypoints and their description values obtained from the network,

we performed the task of feature matching to evaluate the model applications of Visual

Odometry (VO), Structure from Motion, Simultaneous Localization And Mapping (SLAM)

etc.

The next corresponding frame is 5-frame after the first frame. The camera capturing

capability is 20 fps, much slower than normal visible video cameras (60-120 fps). As

we targets at video tracking, the 5 frames interval sampling can demonstrate the feature

matching effectiveness, as normal video tracking is performed between adjacent frames.

In our results we clearly see our network outperforms others in the number of keypoints

correctly matched.

We implemented our feature matching on a Visual Odometry application and compared

the results with ones obtained from an optical flow method on RGB and thermal as shown
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Figure 6.8: Feature detection and matching result on high resolution CSS dataset for a scenario without
vehicles.

Fig. 6.6 below:

From the results we can observe that our model performs well in determining the path

traversed. Though it is not perfect, the end result can be improved by further optimizing

through visual odometry neural network.
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Figure 6.9: Feature matching comparisons: Input images (Top), SIFT feature matching (second row), Super-
point matching (third row) and finally our model (Bottom).
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Figure 6.10: Comparison of Visual Odometry outcomes between our model and optical flow based, refer-
enced from the thesis work of Janardhan Choudhary.
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Chapter 7

Conclusion and Future work

In the thesis I investigated a novel approach for feature extraction on thermal images using

a deep convolutional neural network approach. All the feature extraction methods available

are either done traditionally or by CNN that are applied only on visible spectrum images.

However, there are methods fusing multi-spectral image data (visible and infrared) and per-

forming feature detection and extraction on the same. These methods do not solely rely on

the infrared spectrum, but additional information from the visible spectrum is incorporated

in their learning and inference. This approach even though noteworthy but may fail where

visible spectrum cameras fail for example in case of low visibility or low illumination re-

gions.

We first examined feature detection and matching from traditional feature extraction

methods such as SIFT. From the results we see that SIFT detector is able to perform well

comparatively to other available methods but only in the case of high-resolution infrared

images and fails to do so in low resolution images.

Later we evaluated state of the art CNN architectures for feature detection, which even

though produce good detection results on RGB images, performs much worse than the

traditional SIFT when trained on thermal dataset.
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We propose a throughout feature detection and description network for thermal descrip-

tor learning based on Triplet Siamese network, which designs an effective method for ex-

tracting descriptors to be learned along with the intensity images to obtain much better

feature extraction. We initially train on a single loss function without additional augmen-

tation to the data. This displayed an overfitting pattern in the learning. To tackle this issue,

we add regularization to our loss function and incorporate data augmentation. Furthermore,

we add another MSE loss function to our overall training loss. We observe that the learning

improves after the addition of the new loss. Both the learning scheme and loss constraint

demonstrate an effective solution compared to other available methods. Our method is easy

to implement to be used in practical applications where traditional methods would fail.

Our model even though produces great results, still can be improved. This can be

achieved by obtaining much larger and more diverse thermal dataset, which has not been

explored in this area. Moreover, by designing new constraints and tuning the hyper pa-

rameters the model’s performance can be further improved. Also, the use of a different

loss functions can help boost the distinctiveness of detected features and their descriptors.

Since it is a new field, there is significant space for opportunities to explore and research

in the same direction. If achieved, thermal cameras could be a considered as a very well

replacement or an add-on for the visual spectrum cameras in a variety of applications.
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