
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

5-2021 

Introducing Handwriting into a Multimodal LATEX Formula Editor Introducing Handwriting into a Multimodal LATEX Formula Editor 

Yancarlos Diaz 
yxd3549@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Diaz, Yancarlos, "Introducing Handwriting into a Multimodal LATEX Formula Editor" (2021). Thesis. 
Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10781?utm_source=repository.rit.edu%2Ftheses%2F10781&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Introducing Handwriting into a Multimodal LATEX Formula

Editor

by

Yancarlos Diaz

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in Computer Science

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

May 2021



MASTER’S IN COMPUTER SCIENCE

ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

MS DEGREE THESIS

The MS degree thesis of Yancarlos Diaz
has been examined and approved by the
thesis committee as satisfactory for the

thesis required for the
MS degree in Computer Science

Dr. Richard Zanibbi, Advisor

Dr. Joe Geigel, Reader

Dr. Reynold Bailey, Observer

Date

ii



Introducing Handwriting into a Multimodal LATEX Formula

Editor

by

Yancarlos Diaz

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Department of Computer Science
in partial fulfillment of the requirements for the

Master of Science Degree
at the Rochester Institute of Technology

Abstract

Handwriting has been shown to be a useful input modality for math. However,
math recognizers are imperfect, especially when recognizing complex expres-
sions. Instead of improving the recognizer itself, we explore ways to best vi-
sualize the recognizer’s output to help the user fix recognition mistakes more
efficiently. To do this, we propose changes to the visual editing operations
in MathDeck, a math-aware search engine and formula editor, as well as the
addition of an n-best list of results for each symbol in the recognizer’s output.
We present two experiments to help us find good ways to help users fix errors
in the recognizer, and to test whether these changes help novices input for-
mulas more efficiently than they would if they did not have handwriting as an
input modality. In the first experiment, users had the option to fix errors with
an in-place drop-down menu of alternate symbols, a side symbol correction
panel, or by typing the symbols themselves or dragging them from a symbol
palette. In our experiment, most users preferred to fix the errors manually
by typing the correct symbols or using the symbol palette. In the second ex-
periment, participants entered formulas using handwriting and/or LaTeX. We
found evidence that suggests that novices can input formulas faster when they
have access to handwriting, but experts still do better when they can just type
LaTeX.

iii



Contents

Contents iv

List of Figures vi

List of Tables ix

1 Introduction 1
1.1 Why Recognition of Handwritten Math is Useful . . . . . . . . 3
1.2 Questions and Contributions . . . . . . . . . . . . . . . . . . . 4

2 Background 6
2.1 Interfaces With Handwriting Recognition of Math . . . . . . . 6
2.2 Fixing Recognition Errors . . . . . . . . . . . . . . . . . . . . . 9
2.3 Showing Recognition Result Confidence . . . . . . . . . . . . . 11
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Methodology 14
3.1 Design Goals: Editing, Handwriting, and Error Correction . . . 14
3.2 Working in Small pieces . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Structure Operations . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Handwritten Formulas . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Correcting Recognizer Errors . . . . . . . . . . . . . . . . . . . 21
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Experiments 24
4.1 Experiment 1: Correction Mechanisms . . . . . . . . . . . . . . 24

4.1.1 Experiment Tasks . . . . . . . . . . . . . . . . . . . . . 24

iv



CONTENTS v

4.1.2 Participants and Blocking Design . . . . . . . . . . . . . 27
4.1.3 Experiment Protocol . . . . . . . . . . . . . . . . . . . . 29
4.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Experiment 2: Handwriting vs No Handwriting . . . . . . . . . 38
4.2.1 Experiment Tasks . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Participants and Blocking Design . . . . . . . . . . . . . 39
4.2.3 Experiment Protocol . . . . . . . . . . . . . . . . . . . . 42
4.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion 50
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 52

6 Appendices 58
6.1 Appendix A - Correction Experiment Exit Questionnaire . . . 58

6.1.1 Appendix B - Handwriting vs. No Handwriting Exper-
iment Exit Questionnaire . . . . . . . . . . . . . . . . . 69



List of Figures

1.1 A screenshot of the current MathDeck interface. The interface
uses formula chips that users can download, edit, reuse, and
insert into other formulas. Users can input formulas by typing
LaTeX, drawing on the canvas, or by uploading an image of the
formula they want to recognize. . . . . . . . . . . . . . . . . . . 2

2.1 One limitation of MathDeck’s handwriting recognizer is that
it is hard for the recognizer to combine typeset formulas with
handwriting. The image on the left shows

√
x in typeset and

a 2 drawn on top of the x. When the recognizer is triggered,
it returns the result of the right, which is not what would be
expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 One common way to quickly fix symbol misrecognition is to give
the user a drop-down of options to choose from based on the
recognizer’s output . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Three ways to show recognition confidence. . . . . . . . . . . . 11

3.1 The new MathDeck Search Interface. . . . . . . . . . . . . . . . 15
3.2 The Deck. (a) Shows the Wikicards tab, while (b) shows the

tab containing formulas entered and favorited by the user. A
third tab provides a symbol palette with chips for symbols and
common subexpressions. Users may filter tabs: in (a) cards
with a title beginning with ‘pyt’ are shown, and in (b) formulas
containing ‘γ’ are shown. . . . . . . . . . . . . . . . . . . . . . . 16

vi



LIST OF FIGURES vii

3.3 Inserting Formulas with Visual Operations. (a) Inserting ‘2’ as
an exponent to ‘c’ using a LATEX string. (b) Inserting ‘γ’ in a
chip as subscript of x. . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Inserting Formulas in the Editing Panel. (a) A chip containing
‘cosx’ hovering over the LATEX panel (at right in Fig. 3.1) -
the cursor is at the end of the LATEX string. (b) After dropping
‘cosx’ on the panel, appending ‘cosx’ at the cursor location. . 18

3.5 The new handwriting recognition window. . . . . . . . . . . . . 19
3.6 Viewing result in-context, before inserting in LATEX panel. Cor-

rections can be made if needed. . . . . . . . . . . . . . . . . . . 19
3.7 The Symbol Correction Panel. Users can filter results by sym-

bol. Alternatives are rendered when the mouse hovers over them. 21
3.8 Alternate Symbol Drop-down. Alternatives are rendered when

the mouse hovers over them. . . . . . . . . . . . . . . . . . . . . 21
3.9 Correcting Structure Using Visual Operations. If the recognizer

returns the wrong structure like in the left image, users can
select sub-expressions and drag them to the correct place . . . 22

4.1 The interface for the Correction Mechanisms experiments. Users
have access to the handwriting window and the Deck. . . . . . 25

4.2 Participants’ answers when asked how easy were the tasks (Top
Left), how easy to use was the interface (Top Right), and how
easy it was to correct entire formulas (Bottom Left) and indi-
vidual symbols (Bottom Right). For most questions, the most
frequent response for “Somewhat easy” among novices and ex-
perts alike. Results not broken by expertise can be found in
Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Average Completion Time and Average Number of Operations
across Conditions and Tasks in Experiment 1 . . . . . . . . . . 35

4.4 Box plot of the Completion Time and Number of Operations
for the entire experiment. . . . . . . . . . . . . . . . . . . . . . 36

4.5 Summary of Correction Mechanisms used in each tasks. The
Alternate Results drop-down was used more often that the Sym-
bol Correction Panel in most tasks. These numbers represent
the total number of times each correction mechanism was used
across all conditions combined. . . . . . . . . . . . . . . . . . . 36



LIST OF FIGURES viii

4.6 The interface for the Handwriting Interface experiments. . . . . 40
4.7 Participants answers when asked how easy were the tasks (Top

Left), how easy to use was the handwriting interface (Top Right),
and how easy it was to correct entire formulas (Bottom Left)
and individual symbols (Bottom Right). For most questions,
the most frequent responses were “Somewhat easy” and “Ex-
tremely easy” among novices and experts alike. Results not
broken by participants can be found in Appendix B . . . . . . 43

4.8 Average Completion Time and Average Number of Operations
across conditions and tasks in the Handwriting vs. No Hand-
writing experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Box plots of the Completion Time and Number of Operations
for the entire experiment. . . . . . . . . . . . . . . . . . . . . . 47



List of Tables

3.1 Changes to the editing operations in the MathDeck interface.
The left column lists the existing operations. Rows without a
left cell indicate new editing features.
23

4.1 Correction Mechanisms Experiment Tasks. . . . . . . . . . . . . 26
4.2 Participant Demographics for the Correction Experiment. We

aimed to have an even distribution of novices and experts. . . . 28
4.3 Summary of Average Completion Time and Average Number

of Operations across tasks and condition. . . . . . . . . . . . . 37
4.4 Handwriting vs. No Handwriting Experiment Tasks. . . . . . . 39
4.5 Summary of Average Completion Time and Average Number

of Operations across tasks and condition. . . . . . . . . . . . . 46
4.6 Summary of Times Handwriting and the Alternate Symbol Drop-

down Was Used Across Tasks. Users used handwriting at least
half of the time it was available for some tasks (Task 2) and as
many as 78% of the time for other tasks (Task 5). Handwriting
was not available equally across tasks because of our blocking
design and because not all of the invited participants completed
the experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



Chapter 1

Introduction

Everyone first learns to write math on a piece of paper. Writing on paper is
fast and it feels natural. However, many math-aware search engines use LaTeX
or MathML1(like WolframAlpha and SearchOnMath). This requires people to
learn a different language to represent things they know how to represent in
writing. Learning these languages takes time and writing formulas using these
languages requires a bigger cognitive effort than writing in a language you’re
comfortable with [27]. We want to introduce handwriting recognition to the
MathDeck interface ( [19]) to allow novice LaTeX users to write expressions
intuitively and turn them into a language that these math-aware search engines
can understand.

The current MathDeck interface (shown in Figure 1.1) allows users to input
formulas by typing LaTeX, drawing on the canvas, or by uploading an image
of the formula they want to recognize.2 Once a formula is entered, users can
change the LaTeX string and the version of the formula on the canvas will
change accordingly. Users can also draw additional strokes on the canvas and
have the recognizer interpret the whole formula, including the new strokes.
However, this approach often results in the formula being misrecognized since
the recognizer is not optimized to recognize a mix of handwritten and typeset
symbols. Furthermore, like most recognizers, the recognizer used in MathDeck
struggles to recognize complex formulas.

1MathML is a specification for math content on the web. https://www.w3.org/Math/
2At the time of this writing, this version of the interface is live at http://mathdeck.cs.

rit.edu/

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: A screenshot of the current MathDeck interface. The interface
uses formula chips that users can download, edit, reuse, and insert into other
formulas. Users can input formulas by typing LaTeX, drawing on the canvas,
or by uploading an image of the formula they want to recognize.

Instead of recognizing big formulas directly, one possible solution is to
recognize small pieces and put them together. MathDeck allows users to make
and reuse formula chips throughout the interface. For example, users can
highlight the second x in the LaTeX string and they can click on the chip
with

√
x in the symbol palette at the bottom to replace x and end up with

x2+
√
x. This is relatively easy to do, but it becomes more complex if you want

to replace a subscript, or the bounds of an integral, especially if you don’t know
LaTeX. Nishizawa et al. added visual operations to the MathDeck interface,
allowing users to change formulas without having to directly manipulate the
LaTeX string [17]. These operations are described in Chapter 3, but it suffices
to know that these operations allow the user to simply drag the formula chip
with

√
x directly to the top-right corner of the x to add

√
x as an exponent

and end up with x2 + x
√
x instead. Other operations include the ability to

select, copy, move, or delete sub-expression on the canvas. Nishizawa et al.
did not find that the operations help the user input formulas faster, but they
found that it does not make them any slower when compared to text-only



CHAPTER 1. INTRODUCTION 3

input, and users reported finding some of the operations useful. In particular,
the delete operation seemed to help users delete sub-expressions faster than if
they had to edit the LaTeX string.

The visual operations help users edit formulas even if they don’t under-
stand the LaTeX, but they still do not solve the issues we described above
regarding handwriting recognition. We propose some changes to the Math-
Deck interface to make it easier for users to input formulas using handwriting.
Before we describe those changes in Chapter 3, we discuss why we think hand-
writing can be useful in Section 1.1 and discuss the specific questions we want
to answer in Section 1.2.

1.1 Why Recognition of Handwritten Math is Use-
ful

Anthony et al. have looked at the benefits of handwriting recognition of math
in the context of intelligent tutoring systems for students learning algebra
[1] [3] [2]. They have found that handwriting input, although imperfect, can
provide benefits to students learning math. One of their studies looked at
middle and high school students (ages 11 to 17) solving algebra problems
in three modalities: typing, handwriting, and handwriting-plus-speaking. For
this last modality, students were asked to speak aloud as they solved problems.
The study found that students can solve the same equations and learn the
same amount in half the time using handwriting input vs typing input. Many
others have looked at the positive effects that pen-based devices can have in
learning [9] [20].

Handwriting recognition of math can also be useful for teachers, even if
their students do not use it directly. For example, Gross et al. introduced a
system to scan and recognize students’ work [10]. The system could then au-
tomatically grade the students’ work and provide the teachers with summaries
to assess class performance. Mendes et al. and others present handwriting sys-
tems that could be beneficial to professors teaching a lecture [16] [28]. Mendes
et al. reported that when asked if their system’s features helped them teach
mathematics, 62.5% of teachers agreed, and 37.5% strongly agreed. 85% of the
students reported that the features helped them understand the mathematical
manipulations involved. One reason why handwriting recognition of math is



CHAPTER 1. INTRODUCTION 4

not widely adopted by teachers is that recognizers are not perfect and may
slow down teachers if they can’t recover quickly.

Handwriting has proven efficient in other fields too. Subramonyam et al.
showed that handwritten annotations in digital systems can help people learn
more from complex text [26]. In their system, users can highlight important
phrases and create diagrams from the words that the system identifies as
key causal terms in the text. Similarly, Rodriguez et al. showed that digital
annotations can also be useful for real-time document editing where users can,
for example, draw a line between two words to merge them or in the middle
of a word to split it into two words [21]. Handwriting recognition has been
used even in course-of-action military diagrams as a way to allow commanders
to draw symbols that are specific to this domain on a map shown in a tablet
display to depict battle scenarios [12] [13].

1.2 Questions and Contributions

We would like to answer the following questions regarding handwriting recog-
nition of math:

1. What are good ways to allow users to easily fix errors in a recognizer’s
output?

2. Can novice LaTeX users input formulas faster when they have a hand-
writing recognizer available?

Our work will contribute to the field of math input in a few ways. We’re
looking to discover ways to make math handwriting recognizers useful in real-
life applications by acknowledging their weaknesses and working with them.
Once we’ve done that, we hope to find evidence indicating that
adding handwriting operations into MathDeck can improve effi-
ciency for novices. This would be of great help for high school and college
students who don’t know LaTeX but need to enter and/or search for math
content.

To test this hypothesis we run two experiments using a modified version
of the MathDeck interface. For the first experiment, we look at effective
ways to help users correct issues in the recognizer’s output and find that
most users prefer to manually fix the errors by typing the correct symbols



CHAPTER 1. INTRODUCTION 5

or dragging them from a symbol palette. The second experiment tries to
answer the question of whether handwriting can help novices input formulas
faster and/or only require a small number of editing operations to correct the
recognizer’s errors. We find this to be true for novices, but experts seemed to
input formulas faster if they’re simply allowed to type LaTeX than if they’re
forced to use handwriting.

In the next chapters, we describe the work leading up to our experiments
and conclusions: To learn from related work, we look at other math interfaces
and intelligent systems in other domains in Chapter 2. Based on lessons
learned from others’ work, we propose changes to the MathDeck interface and
describe those changes in Chapter 3. We describe our experiments to test
the effectiveness of our changes and to answer the questions posed above in
Chapter 4. We conclude by talking about our findings and future work in
Chapter 5.



Chapter 2

Background

Others have studied ways to help users write mathematical expressions more
easily. Many existing math interfaces use handwriting as an input modality
alongside text. Each interface uses a slightly different paradigm; some are
closer to writing on paper, while others pursue something different. Naturally,
these interfaces have different ways of dealing with recognition errors. This
chapter describes and compares these interfaces. Additionally, we look at
intelligent interfaces outside of the math domain to learn about things that
have not been explored in the math domain. We use our findings to make
decisions about how to best present recognition results and help users fix
recognition errors.

This chapter is split into 3 sections. Section 2.1 talks about different
interfaces that use handwriting as an input modality, including MathDeck,
the interface this work will build on. Section 2.2 focuses on how some of those
interfaces handle handwriting recognition errors and how recognition errors
are handled in other domains. Section 2.3 discusses what others have found
about showing recognition confidence to aid users outside of the math domain.

2.1 Interfaces With Handwriting Recognition of Math

Many other interfaces use handwriting as a way to input mathematical ex-
pressions. Some interfaces try to make the user feel like they’re truly writing
on a piece of paper, while others push a completely different analogy that may
help users beyond what pen-and-paper can provide.

6



CHAPTER 2. BACKGROUND 7

Zeleznik et al. fully push the pen-and-paper analogy to a screen [36].
Hands-On-Math is a multi-touch, pen-based system that aims to provide the
benefits of Computer Algebra Systems while maintaining the flexible and free-
form input of pencil and paper. Their results found that users were not par-
ticularly receptive of the bi-manual interaction required to operate the sys-
tem. Additionally, the system often failed to recognize the difference between
math notations from diagrams and free-form annotations. Nevertheless, users
still reported that the system has “great potential” to help them do math-
related work. Similarly, Zhelezniakov et al. [37] presented SMath, a pen-centric
user interface with interactive input and automatic calculation of handwritten
math. In this application, the user can draw small sub-expressions and assign
the result to a variable to allow for quick reuse. In this way, it helps provides
the pen-and-paper feel, while also taking advantage of automatic calculations
that the system offers.

Other interfaces use very different design metaphors. Taranta et al. intro-
duce Math Boxes, a pen-based user interface with the goal of making the task
of writing difficult math expressions simpler [29]. As its name implies, Math
Boxes draws bounding boxes around sub-expressions as the system detects re-
lationships between the sub-expressions. MathDeck, on the other hand, stores
formulas as “chips” that can be reused and manipulated individually [19] [8].
Users can input formulas by typing LaTeX, drawing on the canvas, or by up-
loading an image of the formula they want to recognize. The interface has a
deck that provides the user with a collection of commonly used expressions
as chips, as well as a list of the formulas the user has created in the past.
The deck also contains a list of ‘cards’ that are made up of a formula chip, a
title, and a description. As the user inputs formulas, the interface searches for
related concepts and returns them in the form of cards. Users can also make
their own cards.

MathDeck’s main limitation regarding handwriting is that it’s hard for
users to combine handwriting with typeset formulas. For example, if the user
has the expression

√
x and wants to change it to

√
x2 by drawing a two on top

of the x, they will be disappointed to find that the recognizer fails to recognize
the two as an exponent, and actually throws off the whole expression (See
Figure 2.1 for sample result). Chapter 3 describes the steps we’re taking to
try to address this issue.

MathDeck’s chips can be seen as a combination of the variables created



CHAPTER 2. BACKGROUND 8

Figure 2.1: One limitation of MathDeck’s handwriting recognizer is that it is
hard for the recognizer to combine typeset formulas with handwriting. The
image on the left shows

√
x in typeset and a 2 drawn on top of the x. When

the recognizer is triggered, it returns the result of the right, which is not what
would be expected.

in [37] as well as the boxes in [29]; they’re automatically generated and saved
in the user’s history, and they can be reused as sub-expressions to build big-
ger expressions. The use of small and reusable mathematical expressions is
so common because allowing users to work in small pieces is likely to help
them reduce the number of recognition mistakes they have to deal with. Some
interfaces provide the user with common symbols to utilize instead of hand-
writing [7]. MathDeck provides the same common symbols but it also allows
the user to create new, reusable expressions using text or handwriting.

One thing that all these interfaces have in common is that their handwrit-
ing uses in-place ink that displays strokes right where the user draws them on
the screen. The alternative to in-place ink is indirect writing, which makes
the user draw in a separate window from where their drawing is shown. Gu
et al. showed that users are more effective when using in-place ink [11], and
we see that most interfaces follow this mode of input.

Something to note about these interfaces is that they mainly target non-
disabled users. In fact, many of these interfaces are very hard to use for blind
users or users with motor skill disabilities in particular. Attanayake et al.
present TalkMaths, an interface that uses speech-to-text to create mathemat-
ical expressions as a replacement for typed input [5]. They also introduced
SWIMS, a system that assists users by predicting what will appear next and
identifying errors as the user interacts with the interface. While these are fea-



CHAPTER 2. BACKGROUND 9

Figure 2.2: One common way to quickly fix symbol misrecognition is to give
the user a drop-down of options to choose from based on the recognizer’s
output

tures that could improve MathDeck’s power, we choose to not focus on them
as they would increase the complexity of the interface tremendously.

A common theme found in most of these interfaces is that they encourage
users to build large expressions one piece at a time [29] [19] [37] [5]. We pro-
pose to also add a tab system analogous to web browser tabs to MathDeck to
encourage users to work on different sub-expressions in parallel. Another im-
portant feature in many of these interfaces is the ability to reuse components,
whether it’s common symbols such as the Greek letters and relational sym-
bols ( [5]) or symbols and expressions created by the user ( [19] [7]). However,
many of these interfaces do not handle input misrecognition very well as seen
in MathDeck and as reported from Hands-on-Math. The next section looks
closely at ways others have chosen to handle these recognition errors.

2.2 Fixing Recognition Errors

Handwriting recognizers are imperfect, and they tend to be less effective as
the complexity of our input increases. Many have looked at ways to help users
spot and fix recognition mistakes easily. When the top result is incorrect,
interfaces tend to help users fix the errors in one of two ways. One way is
to simply give the user the freedom to change anything they want to change.
Another approach is to use the recognizer’s n-best results as suggestions for
what the user actually meant to write.

Smithies et al. propose an interface that allows users to delete, group, or
separate symbols with gestures after their handwritten input has been rec-



CHAPTER 2. BACKGROUND 10

ognized [24]. For every symbol, it also provides an n-best list for individual
symbols that users can use to replace the recognition output. Tran Minh
Khuong et al. propose an interface that also allows for correcting symbols by
replacing them from a list of n-best results [31]. This is a common approach
that assumes that providing the user with a list of likely results will help them
fix errors quicker. Figure 2.2 shows how this list of n-best results is often
displayed to the user.

Another obvious solution to this problem is to improve the recognizers
themselves, but that is easier said than done. Many have even tried to use
multimodal input to increase the accuracy of handwriting recognizers [4] [34].
In most of these studies, users have to speak out loud as they draw to give the
recognizer another way to guess what the user is trying to input. While their
experiments show promising results, relying on a second modality like sound
is not always possible or practical, especially in loud places or in situations
where users don’t have access to a microphone. Schrapel et al. took a slightly
different approach to this multimodal input. Instead of using the user’s voice,
they make use of a special pen that uses the pen’s tip motion and sound
emission when stroking to identify the digits the user is drawing [22]. The
main limitation to this approach is the need for a special type of pen.

We are a long way from speech or handwriting recognizers that are close
to perfect. For this reason, assisted error correction is a well-studied topic
in other domains such as speech-to-text systems [30] [33]. These studies have
shown that providing a list of n-best results helps users arrive at their intended
input faster than if they did not have the list.

Stedman et al. showed that having the original input near the recognized
output can help users spot and correct errors faster in the context of form
filling [25]. Zanibbi et al. looked at a similar problem in the math domain, [35].
They showed that if users are presented with a style-preserving morph of
their original strokes instead of the typeset equivalent of the expression, users
identify errors in their input more easily and they can enter expressions just
as quickly as if the strokes were turned into their typeset equivalent instead.

In most domains, showing a list of n-best recognition results has proven to
help users. In speech-to-text, it is common to show a list of n-best results for
every word as well as for the whole sentence [30] [33]. Some math interfaces
take the same approach by providing a list of n-best symbols as well as different
relationships between the symbols [24] [31]. Our interface will provide the user



CHAPTER 2. BACKGROUND 11

Figure 2.3: Three ways to show recognition confidence.

with an n-best list of recognition results for their whole expression as well as
for every individual symbol. If individual symbols are misrecognized, users can
choose from the list of n-best symbols, or they can type the correct symbol.

2.3 Showing Recognition Result Confidence

Some believe that one possible way to help users fix mistakes quicker is to show
them how confident the system is in its output. Outside of the math domain,
researchers have looked at whether showing confidence actually helps users.
Some studies have found that the way in which confidence is displayed plays an
important role in whether it’s useful or simply distracting. Furthermore, others
have found that in order for this approach to be useful, the confidence measure
must be accurate. In other words, low confidence must actually indicate that
the results are likely wrong and high confidence must indicate that results are
likely correct.

In the context of search engines, Shani et al. studied the effect of showing
confidence values in search results [23]. They found that when users were
given a graphical representation of the confidence (like a loading bar), users
were more likely to explore more results. Figure 2.3 shows different ways in
which we could display recognition confidence in our interface.

However, in the context of automatic captioning, Berke et al. showed that
visually displaying confidence in captions in various forms did not directly



CHAPTER 2. BACKGROUND 12

help users get more information from the captions [6]. This is perhaps because
changing the way captions are displayed based on the system’s confidence can
be distracting to users. To complement this finding, Shani et al. also found
that displaying the confidence as a number did not help users as much as the
graphical representation. This seems to indicate that showing confidence can
sometimes be helpful, but one has to be careful about the way it’s displayed
and whether it helps or simply distracts the user.

Vertanen et al. Looked at showing confidence in the result of a speech-
to-text system. The system marked low confidence areas by underlining them
in red [32]. They found that when the system’s confidence is accurate, it can
help users fix mistakes quicker. However, when the system’s confidence isn’t
an accurate representation of the actual errors, it actually slows down users
when compared to users who didn’t have the visual indications at all.

Some studies have found that displaying the recognizer’s confidence can
help users, but others have found that it doesn’t. What we know for sure
is that the accuracy of the confidence value plays an important role in how
useful it can be. These mixed findings have led us to avoid using recognition
confidence as a feature to help users fix recognition mistakes. Instead, we
simply list our recognition results from most confident to least confident. This
allows users to focus on the top, most likely correct results without getting
distracted by how confident our recognizer is.

2.4 Summary

In Section 2.1 we talked about interfaces with handwriting input and features
that aim to help users input expressions easily. Some interfaces push a pen-
and-paper analogy, while others use different design paradigms such as chips
in MathDeck and boxes in MathBoxes. Most of these interfaces have a way to
reuse components to prevent the user from having to do the same thing more
than once.

Section 2.2 explored ways to help fix recognition errors both in math and
in other domains. We find that an n-best list of results can help the user arrive
at their intended input faster than they would if they didn’t have one. Most
of the time, these lists are presented in a drop-down menu.

In Section 2.3 we looked at showing recognition confidence as a way to help
users fix their mistakes. Studies in other domains show conflicting results;



CHAPTER 2. BACKGROUND 13

some find confidence useful, while others find it distracting.
These findings have helped us make decisions about the new design of

the MathDeck interface. The next chapter describes the state of the Math-
Deck interface after Nishizawa’s work in [17] and our proposed changes to the
interface.



Chapter 3

Methodology

We hypothesize that novices will be able to input formulas faster in Math-
Deck if they have access to handwriting. To test this hypothesis, we made
considerable changes to the MathDeck interface. Those changes include both
small modifications to the structure operations and the interface layout, as
well as the re-introduction of handwriting to the interface. In this chapter, we
describe our design goals and the changes we made to achieve those goals.

3.1 Design Goals: Editing, Handwriting, and Error
Correction

We had four design goals in producing the new formula editor for MathDeck:

1. Building Large Formulas from Smaller Ones: As formulas get larger and
more complex, it becomes harder to edit them. Users can become lost in
a long LATEX string when they are perhaps just looking to edit a small
part of a formula. A possible solution to this problem is helping users
build formulas in pieces. This requires an interface that allows the user
to easily define, use, and combine those pieces. We attempt to address
this in MathDeck with formula chips and tabs

2. Direct Manipulation of Rendered Formulas: In existing LATEX formula
editors, there is a disconnect between the LATEX formula in text and the
formula appearance, which is presented separately from the LATEX string.

14



CHAPTER 3. METHODOLOGY 15

Figure 3.1: The new MathDeck Search Interface.

If users see they have an error in the rendered version of the formula,
they must search the LATEX string for the location of the error. It would
be easier if they could change the rendered formula image directly. We
use and improve the structure editor introduced by Nishizawa et. al. to
alleviate this problem [18].

3. Simple Handwriting in Context: An issue with handwriting in previous
versions of the MathDeck interface was that it was not easy for the user
to quickly use handwriting to write a sub-expression; they had to juggle
between a “draw” mode and a “select” mode. We have reworked the in-
terface to remove the modes and allow users to easily insert handwritten
formulas in context.

4. Intuitive Error Correction: Since the recognizer will often make mistakes,
users must be able to correct errors with ease. We have implemented
two new correction mechanisms that use the n-best lists of results from
the recognizer to help users get to their desired formulas quickly. Users
can fix misrecognized symbols with these new mechanisms and they can
correct the structure of the formula using the visual operations.

The next sections outline the existing features and the changes we made
to the interface to achieve our design goals.



CHAPTER 3. METHODOLOGY 16

(a) Wikicards tab, showing titles starting with ‘pyt’

(b) Formulas tab, showing chips containing gamma

Figure 3.2: The Deck. (a) Shows the Wikicards tab, while (b) shows the tab
containing formulas entered and favorited by the user. A third tab provides
a symbol palette with chips for symbols and common subexpressions. Users
may filter tabs: in (a) cards with a title beginning with ‘pyt’ are shown, and
in (b) formulas containing ‘γ’ are shown.

3.2 Working in Small pieces

MathDeck provides two ways for users to work in small pieces and then com-
bine them. The first is through formula ‘chips.’ As the user enters formulas,
the interface saves them as chips that can be moved around the interface. Mul-



CHAPTER 3. METHODOLOGY 17

tiple chips may sit on top of the formula editing canvas for later use (see Fig.
3.1), and appear in the deck at the bottom of the interface. Combined with
the direct formula image manipulation the interface provides, chips may be
used to build big expressions by dragging the chip onto control points located
around symbols on the formula canvas, or into the editing panel for the full
LATEX string.

Users can favorite formula chips they use often, to make them more readily
accessible (see Fig. 3.2), and chips can be downloaded as jpeg images for later
use, and to share with others. Dragging a chip image file onto MathDeck
restores the formula chip, as all chip information is serialized in metadata
fields of the formula jpeg file, including the associated LATEX string. All chips
have a context menu, allowing them to be duplicated, inserted in the LATEX
panel, copied as a chip onto the canvas, and deleted. Additionally, all formula
chips may be searched using the currently selected search engine.

The second way MathDeck helps users work in small pieces is the new
tab system. Tabs in MathDeck are analogous to browser tabs - each formula
currently being edited has a different tab, and the formula in the currently
selected tab appears on the editing canvas (see Fig. 3.1). Users can create as
many tabs as they like, and they can move between them to quickly change
context and work on a different formula. As the user switches between tabs,
the chips on top of the canvas remain in place. Additionally, users can directly
drag a tab onto the canvas or onto the editing panel to insert the contents of
the tab at the specified location, as they can do with formula chips. Fig.
3.1 shows the MathDeck interface with two tabs. The first tab contains the
formula ‘a2 + b2 = c2 − 2ab cos γ’ and the second one contains the formula
‘2ab cos γ.’ The first tab is actually the result of dragging the second tab onto
the canvas when it contained only the formula ‘a2 + b2 = c2 − .’

3.3 Structure Operations

Nishizawa et al. created operations to directly edit the rendered formula in
place, reducing the disconnect between the LATEX string for a formula and the
formula’s appearance [18]. Operations include the ability to select subexpres-
sions of formulas and view, edit, delete, move and copy into a new formula
chip (‘lift’), or replace the selection with a formula chip or a formula entered
as LATEX.



CHAPTER 3. METHODOLOGY 18

(a) LATEX insertion (b) Chip insertion

Figure 3.3: Inserting Formulas with Visual Operations. (a) Inserting ‘2’ as an
exponent to ‘c’ using a LATEX string. (b) Inserting ‘γ’ in a chip as subscript of
x.

(a) Chip over LATEX panel (b) After dropping chip in (a)

Figure 3.4: Inserting Formulas in the Editing Panel. (a) A chip containing
‘cosx’ hovering over the LATEX panel (at right in Fig. 3.1) - the cursor is at the
end of the LATEX string. (b) After dropping ‘cosx’ on the panel, appending
‘cosx’ at the cursor location.

Rendered formula images may be edited directly by using control points
around symbols and selections to insert formulas provided as LATEX strings or
in formula chips and tabs (see Fig. 3.3). In Fig. 3.3 part (a) we see LATEX
being entered after clicking a blue dot on the canvas (i.e., in place). As the
user types the formula, they can preview the rendered version. If LATEX is
invalid, this is indicated during typing by turning the text box border red. As
shown in Fig. 3.3 part (b), users can drag a formula chip to any of the control
points on the canvas to insert the formula at the position indicated. They
can also drag the chip to the center point to replace a sub-expression. Chips
and tabs can also be used to insert LATEX in the LATEX panel of the interface
(Figure 3.4 ).

The structure operations introduced by Nishizawa et al. proved to be an
effective way to edit rendered formulas. But one clear visual operation that
was missing was the ability to replace all instances of a particular symbol.
For example, if we have the formula pa(

→
x)pb(

→
y )pc(

→
x), the user may want to



CHAPTER 3. METHODOLOGY 19

Figure 3.5: The new handwriting recognition window.

Figure 3.6: Viewing result in-context, before inserting in LATEX panel. Cor-
rections can be made if needed.

replace all the Ps by the Greek letter ρ. They can now do that by clicking on
‘p’, typing in \rho and hitting the “Replace All” button, which would result

in the formula ρa(
→
x)ρb(

→
y )ρc(

→
x). We have added this operation along with a

keyboard shortcut to delete symbols and sub-expressions using the Backspace
key.

In the context of handwriting, these operations can be used to quickly
replace symbols that the recognizer fails to recognize correctly in multiple
parts of the formula. The next section describes the new handwriting interface
and how it interacts with the existing features.

3.4 Handwritten Formulas

We have added a new handwriting interface to MathDeck. This new interface
uses a new version of the QDGGA system presented by Mahdavi et al. [15].
The recognizer itself has faults, but our goal is to overcome those faults by



CHAPTER 3. METHODOLOGY 20

introducing an intuitive interface that allows users to correct recognizer mis-
takes easily. The details of the implementation are described in the rest of
this section.

To insert a new handwritten expression, users can click the pen button
in the LATEX editing panel at the bottom left. Users can then draw on the
canvas, as seen in Fig. 3.5. Upon clicking ‘recognize’, the interface replaces
strokes with the recognized formula.

Users do not need to enter the entire formula using handwriting. Instead,
they can type whatever they feel comfortable with, and then enter the piece
they do not know how to write using handwriting. For example, Most users
would be able to enter the (x − a)n in the Taylor series in Fig. 3.6 even if
they do not know LATEX. However, the fraction and the summation might be
harder to write.

Assume the user has entered everything but the summation. The user
places their cursor at the beginning of the formula’s LATEX string and presses
the pen button. They then draw the summation with its limits, and the
recognizer returns its interpretation. Users can see how the complete formula
looks if the formula were to be inserted in the LATEX panel where their cursor
was (Fig. 3.6). In this figure, the context appears in gray, and the recognized
formula appears in black. If this is the desired result, they can click “insert” to
add the recognized sub-expression. If the user wishes to place the recognized
formula somewhere else, they can click on the chevron in the insert button to
insert the formula in a chip or tab instead. The user would then be able to
drag the chip or tab into any control point or to any point in the LATEX string.

In addition to inserting a handwritten formula, users can highlight some
part of the LATEX string of a formula and then click on the pen button. This
allows them to replace the highlighted string with a handwritten formula. Just
like how the user can view the context before inserting (as in Fig. 3.6), they
can also view the context before replacing the selection.

Inserting handwritten formulas in context allows users to quickly switch be-
tween using text and handwriting instead of committing to one input method.
For example, the user could input the fraction in the Taylor series using hand-
writing, they could type (x − a)n, and then choose to input the summation
using handwriting. This also addresses the issue of having a recognizer try to
recognize a mix of handwritten and typeset symbols, which was an issue in
previous versions of MathDeck.



CHAPTER 3. METHODOLOGY 21

Figure 3.7: The Symbol Correction Panel. Users can filter results by symbol.
Alternatives are rendered when the mouse hovers over them.

Figure 3.8: Alternate Symbol Drop-down. Alternatives are rendered when the
mouse hovers over them.

3.5 Correcting Recognizer Errors

No recognizer is perfect, so users need intuitive ways to correct errors. In pre-
vious versions of MathDeck, if the recognizer had errors, users had to correct
the errors by either editing symbols and their placement and then attempting
to recognize the formula again, or by typing in the correct symbols. This is
an issue, as we want to use handwriting to help users who do not know how
to write the symbols in LaTeX in the first place.

The new MathDeck interface provides a list of alternative results for the
formula, as seen in Fig. 3.7 in the form of what we call the “Symbol Correction
Panel”. Users can hover over the list of alternatives to see the rendered version
of each recognition alternative represented as a LATEX string. To quickly find
the correct result, users can filter the list by the symbols they expect the
final formula to have. For example, if the user knows they want a summation
symbol, they would click on the \sum to make sure all the results contain that



CHAPTER 3. METHODOLOGY 22

Figure 3.9: Correcting Structure Using Visual Operations. If the recognizer re-
turns the wrong structure like in the left image, users can select sub-expressions
and drag them to the correct place

symbol. If they’re looking to change the ‘a’ in the formula, they would leave
that filtered unchecked to see all the alternatives to that symbol.

Alternatively, the user could click on one of the symbols that were rec-
ognized incorrectly on the canvas to find a list of alternate symbols. In the
example shown in Fig. 3.8, the user is trying to replace the ‘a’ with an infinity
symbol. This means that even if the symbol returned is not the correct sym-
bol, there is a high chance the user will be able to find the correct symbol in
the list of alternate results, even if they do not know how to type it, provided
it is a symbol in the recognizer’s set of 101 classes [15]. In the future, we will
expand this to a larger set to a larger set like the one used un Detexify1, a
well-known tool for symbol search using handwriting.

If none of the alternatives provided contain the correct result but the user
knows how to type it, they can always choose to type it themselves. They can
also use any of the structure operations available in MathDeck to correct the
structure in the recognizer output. For example, if the recognizer returned
the ‘x = 0’ as a subscript as seen in Fig 3.9, the user could select the sub-
expression and drag it to the correct control point. They could do this before or
after correcting the symbols. The changes in structure will be reflected in the
Symbol Correction Panel and they will still be able to use the Alternate Results
drop-down for each symbol even after changing the structure of the formula.

1https://detexify.kirelabs.org/classify.html



CHAPTER 3. METHODOLOGY 23

Table 3.1: Changes to the editing operations in the MathDeck interface. The
left column lists the existing operations. Rows without a left cell indicate
new editing features.

PreviousOperations New Operations

Replace expression visually
via LaTeX or formula chip

Replace all instances of a sub-expression

Insert Expression in LaTeX
string

Insert the LaTeX string of a handwritten for-
mula.

Replace selected substring Add ability to replace a LaTeX substring from
handwritten formula

N-best results from the recognizer when insert-
ing handwritten formulas. See Figure 3.8 and
Figure 3.7

Use different tabs to work on formulas sepa-
rately

This means that users may change both symbols and formula structure flexibly
in the correction interface.

3.6 Summary

Table 3.6 shows the summary of changes made to the interface. We add the
Replace All visual operations and re-introduced handwriting into the interface.
Along with the new handwriting interface, we added the Symbol Correction
Panel and the Alternate Symbols drop-down as mechanisms to quickly fix
errors in the recognizer. In the next chapter, we describe the experiments we
ran to test these new features and how they support our hypotheses.



Chapter 4

Experiments

We ran two experiments to test our hypothesis that novice users will be able
to input formulas faster if they have access to handwriting. The first exper-
iment asked users to use handwriting to input small formulas. We looked at
how users corrected errors from the recognizer when given different correction
mechanisms. The second experiment looked at how participants completed
tasks when they had access to handwriting vs when they did not. This chap-
ter describes each experiment’s design, protocol, participant pool, and results.

4.1 Experiment 1: Correction Mechanisms

Before we looked at how handwriting can help users input formulas when
compared to instances when they don’t have access to handwriting, we wanted
to make sure our handwriting interface was easy to use, even if the recognizer
was imperfect. More specifically, we wanted to study different ways to allow
users to fix errors from the recognizer.

We looked at two possible ways to correct errors: using the new Alternate
Symbols drop-down shown in Fig 3.8 and using the Symbol Correction Panel
that uses faceted search, shown in Fig. 3.7.

4.1.1 Experiment Tasks

To measure which mechanism worked best, we presented users with 18 tasks
where they had to enter formulas using handwriting (shown in 4.1). These

24



CHAPTER 4. EXPERIMENTS 25

Figure 4.1: The interface for the Correction Mechanisms experiments. Users
have access to the handwriting window and the Deck.

formulas, which came from Nishizawa’s experiment ( [18]), contain many spe-
cial symbols and structures that non-expert mathematicians might have a
hard time typing using LaTeX. We chose these tasks because we hoped to see
how participants would perform when presented with unfamiliar symbols and
structures.

To complete these tasks, users had access to a modified version of the
new MathDeck interface (See Fig 4.1.) This version of the interface hides
the LaTeX Panel, which encourages users to use handwriting to input the
formula. Once they get a result from the recognizer, they have different ways to
make corrections which include the Alternate Symbols drop-down, the Symbol
Correction panel, and the use of visual operations in combination with the
symbol palette in the deck.

Each participant was exposed to 3 different conditions:

1. Symbol only: Participants had access to the Alternate Symbols drop-
down but did not have access to the Faceted Symbol Correction panel.



CHAPTER 4. EXPERIMENTS 26

Table 4.1: Correction Mechanisms Experiment Tasks.

Task # Target Formula

1 φ = 1+
√

5
2

2 A+AA+ = A+

3 ρa(
→
x)ρb(

→
y )

4 γ1x1 + γ2x2 + · · ·
5 (a / b) / (a / c)

6 Q = −k dTdz
7 x = b0 + a1

b1

8 F = B2A
2µ0

9 f(λx) = λ∆f(x)

10
∫ 1
−1(1− x)αdx

11 RiF (X) = 0∀i > 0

12 c0 + c1x+ · · ·
13 a2b2z2 − x4yc

14 ∇2A+ k2A = 0

15 ∂u
∂t −

∂u
∂x

16 c
2πσ∇U

17
∫

Ω fr(x)

18 x2

a2
= z + y2

b2

2. Faceted only: Participants had access to the Faceted Symbol Correction
panel, but did not have access to the Alternate Symbols drop-down

3. Both: Participants had access to both the Alternate Symbols drop-down
and the Faceted Symbol Correction panel.



CHAPTER 4. EXPERIMENTS 27

4.1.2 Participants and Blocking Design

We hoped to have at least 30 participants so we invited 40 participants to
complete the experiment. Half of those participants are what we considered
experts (self-identified as being “Moderately familiar”, “Very familiar” or “Ex-
tremely familiar” with LaTeX), and the other half were novices (self-identified
as being “Not familiar at all” or “Slightly familiar” with LaTeX.) Within those
two groups, half of the participants were from RIT’s College of Science and
the other half were part of the Golisano College of Computing.

To minimize order effects across participants, we changed the order in
which participants were presented with the different experiment conditions
(Symbol-only, Faceted-only, and Both). The first 6 participants saw the
Symbol-only condition, then the Faceted-only, and finally the Both condi-
tion. The next 6 participants saw Faceted-only before Symbol-only, but still
saw the Both condition last. This pattern is repeated every 6 participants.

We also changed the order in which formulas are presented. We split the
18 tasks into 3 blocks of 6 formulas each. The first block contained formulas
7, 8, 9, 10, 11, and 12, the second block had formulas 13, 14, 15, 16, 17, and
18, and the third block had formulas 1, 2, 3, 4, 5, and 22. We tried to place
formulas into blocks so that every block would have about 3 formulas that
contained more than one special symbol, and 3 formulas that did not.

We then changed the order of tasks in each of these blocks. That is, the
first block for participant 1 may contain tasks 1, 2, 3, 4, 5, and 6, in that
order. The second participant’s first block would then consist of tasks 2, 3, 4,
5, 6, and 1, in that order. Additionally, we changed the order in which the
blocks are presented to the user. The block order for participants 1-6 would
be A-B-C, the order for participants 7-12 would be B-C-A, and the order for
participants 13-28 would be C-A-B. The block order then repeats starting with
participant 19.

Participant Demographics
Table 4.2 shows the level of education, current college at RIT, gender,

and age range of the participants who completed the study. We invited 40
participants and tried to have an equal distribution of novices and experts as
well as students from the College of Science and students from the College of
Computing. 30 participants completed the experiment and completed the exit
questionnaire. 3 participants did not complete the experiment but completed
the questionnaire; their responses are not considered here. Out of those 30



CHAPTER 4. EXPERIMENTS 28

Table 4.2: Participant Demographics for the Correction Experiment. We
aimed to have an even distribution of novices and experts.

Highest Level of School Completed

Novices Experts Total
High School 6 8 14
Associate’s 2 1 3
Bachelor’s 5 4 9
Master’s 1 2 3
PhD 0 1 1

College

Novices Experts Total
College of Science 7 9 16
College of Computing 7 7 14

Gender

Novices Experts Total
Female 6 6 12
Male 6 10 16
Non-binary 1 0 1
Prefer not to say 1 0 1

Age

Novices Experts Total
18-24 10 10 20
25-34 4 6 10

Total 14 16 30



CHAPTER 4. EXPERIMENTS 29

participants, 14 (47%) were novices and 16 (53%) were experts, which is very
close to our goal. From those 14 novices, 7 reported being “Not familiar at
all” with LaTeX and the other 7 reported being “Slightly familiar.” 4 experts
reported being “Moderately familiar,” 8 reported being “Very familiar,” and
4 reported being “Extremely familiar” with LaTeX.

4.1.3 Experiment Protocol

We emailed students of all levels (both undergraduate and graduate) in the
College of Science and the Golisano College of Computing and Information
Sciences to recruit participants. We asked them to fill out a questionnaire
asking about their experience with LaTeX and mathematics.

If selected, participants received an email with a URL and instructions to
begin the experiment on their personal computers. They were presented with
an overview of the system and instructions to record their screen if they chose
to.

After the overview, participants completed 5 practice tasks to familiar-
ize themselves with the interface. The practice tasks focused on the visual
operations, the handwriting input, and the correction mechanisms. For each
of these practice tasks, the user was presented with a video showing how to
complete the task.

The first practice tasks had participants replace two numbers in a formula
using the visual operations. The second task asked participants to move a
sub-expression, copy and sub-expression, and place it somewhere else using
the visual operations. The third practice task taught participants how to
drag the chips in the Deck to the formula on the canvas to insert a symbol
and to replace an existing symbol. The fourth practice task introduced the
recognizer and the Symbol Correction Panel to teach participants how to make
corrections using the panel. The last practice task made participants use the
recognizer and fix misrecognized symbols using the Alternate Symbol drop-
down.

After the 5 practice tasks, participants began completing the real 18 tasks.
Before each task, they were told whether the Alternate Symbol drop-down
and/or the Symbol Correction Panel were available.

Data Collection. The interface logged whenever the formula on the
canvas changed. This allowed us to calculate the number of changes, or opera-



CHAPTER 4. EXPERIMENTS 30

tions, the user performed in each task. Operations that require multiple clicks
(i.e drawing and recognizing, dragging a chip to a control point, selecting an
alternate symbol, etc), are counted as one operation.

Additionally, we log specific, relevant actions regarding the correction
mechanisms. We log when users:

1. Make a recognition request

2. Select a symbol from the Alternate Symbols drop-down

3. Select a symbol in the Symbol Correction panel

4. Select a formula in the Symbol Correction panel

5. Use a visual Operation (Replace, Replace All, Delete, Copy, etc.)

Each logged event is accompanied by the user id that triggered it, a times-
tamp, the target formula, and the current experiment condition. This allows
us to easily distinguish and analyze how participants act under different con-
ditions. These actions still count as just one operation; they are not double-
counted.

We calculate how long it takes a participant to complete a task by getting
the difference between the time the user starts the tasks and when they hit
”Done” in the interface. The number of operations is calculated by counting
the number of times the formula on the canvas changed. By this definition,
handwriting counts as one operation when the user hits the recognize button.

Post Questionnaire
Figure 4.2 shows a summary of participants’ answers to the following ques-

tions:

1. How difficult were the provided formula editing tasks?

2. How easy to use was the handwriting interface?

3. How easy was it to correct the formula if it didn’t display what you
expected?

4. How easy was it to correct individual symbols in the formula?



CHAPTER 4. EXPERIMENTS 31

Figure 4.2: Participants’ answers when asked how easy were the tasks (Top
Left), how easy to use was the interface (Top Right), and how easy it was to
correct entire formulas (Bottom Left) and individual symbols (Bottom Right).
For most questions, the most frequent response for “Somewhat easy” among
novices and experts alike. Results not broken by expertise can be found in
Appendix A.



CHAPTER 4. EXPERIMENTS 32

For the first 3 questions, the most frequent answer among novices and
experts alike was ”Somewhat easy,” which indicates that many participants
found the interface was easy to use. However, a fair number of experts (4) an-
swered that the tasks, using the interface, and correcting symbols was “Some-
what difficult.” While this does not constitute a majority, it’s worth noting
that some experts and a similar number of novices found the experiment dif-
ficult.

Reading the open-ended responses we learned that some participants were
frustrated because the recognizer rarely recognized formulas correctly. The
frustration was not helped by the fact that sometimes they could not find the
correct symbols in the Alternate Symbols drop-down or the Symbol Correction
panel. One user shared that the recognizer “never detected the correct formula
and correcting it is so difficult.”

Other users seemed to have trouble with the visual operations. One user
shared that they wished “you could drag the symbol and place it in the center
dot to replace what was there,” which was one of the features we presented in
the practice tasks. A handful of users asked for shortcuts such as being able to
hit the enter key instead of clicking “Replace” in the visual operations drop-
down or being able to delete symbols more easily by selecting a symbol and
pressing the backspace key. The interface already has both of those features,
but they were hard to convey during the videos in the practice tasks where
users cannot see the keys being pressed in the demonstration videos.

Other users reported being positively surprised with the recognizer. One
user reported that “even with a mouse, the handwriting was pretty accurate”
and another reported that “Even using a mouse to draw, the system was
surprisingly painless compared to similar drawing recognition tools I’ve used
in the past,” while others reported that drawing with a track-pad was difficult.

4.1.4 Results

Rather than rely on questionnaire data alone, we look at two metrics to mea-
sure performance across conditions: completion time and the number of oper-
ations. The ideal condition would be a condition with the lowest completion
time and number of operations.

For the results discussed in the section, we’re considering 29 out of the
30 participants described in the previous sections. We removed the data from



CHAPTER 4. EXPERIMENTS 33

one of the participants because their completion times seemed to indicate they
left their computer in the middle of the experiment, which would throw off
the averages reported here.

Not all participants were able to successfully complete every task; some
participants clicked “Done” without matching the goal formula. 97% (28) of
participants completed tasks 6 and 13. 93% (27) completed tasks 2, 3, 7, 8
and 11, 89% (26) completed tasks 1, 5, 14, 16, 17, and 18. 86% (25) completed
tasks 9, 10, and 15. The two tasks with the lowest completion rate were tasks
4 and 12 with a completion rate of 48% (14) and 66% (19) respectively. The
reason why so few participants finished tasks 4 and 12 is because many of
them could not differentiate between the center dots (· · · ) in the goal tasks
and the plain dots (. . . ) the recognizer returned.

Looking at the average completion time and number of operations shown in
table 4.3 we can observe a few things. The first important observation we can
make is that, for most formulas, users were able to complete the tasks faster in
the “Symbol Alternative only” condition when compared to the “Alternative
Results Panel (Faceted) only” condition. Participants in the “Both” condition
did better than participants in the Symbol and Faceted conditions overall, as
seen in Figure 4.4), where the Both condition has the lowest median in both
Completion Time and Number of Operations for both novices and experts. As
seen in table 4.3, participants in the “Both” condition completed tasks 1, 2,
4, 5, 7, 8, 9, 10, 14, 17, and 18 faster than participants who completed those
tasks in the “Symbol” or “Faceted” conditions. This makes sense considering
the “Both” condition always came last and participants would be more used
to the interface at that point.

Furthermore, we cannot say that the differences in performance across
conditions are solely due to the condition. In fact, we found that users in the
“Symbol Correction Panel (Faceted)” condition often did not use the panel at
all. Figure 4.5 shows the number of users that used the Symbol Correction
panel and the Alternate Symbols drop-down. We can see, for example, that
even though the Faceted condition has the best average performance in task
6 (as seen in table 4.3), only 3 users actually used the panel in that task (as
seen in Figure 4.5). This means that the difference in performance across these
conditions cannot be solely based on the conditions themselves.

Figure 4.5 also shows that participants used the Alternate Symbol drop-
down more than the Symbol Correction panel. The task where most users (7)



CHAPTER 4. EXPERIMENTS 34

used the Alternate Symbols drop-down were tasks 10, 16, and 17. Those tasks
also happened to have a lower average completion time in the Symbol condition
than in the Faceted condition. The average completion time for task 10 was
48.5 in the symbol condition, and 75.9 in the Faceted condition. The average
times for task 16 were 99.1 seconds (Symbol) and 136.6 seconds (Faceted.)
The average times for task 17 were 74.8 (Symbol) and 111.3 (Faceted.)

Many participants shared that they used the symbol palette in the Deck
to find symbols that they did not know. This would explain why the Alter-
nate Symbol drop-down and the Symbol Correction panel were not used as
often; participants felt that the deck was reliable and a good-enough solu-
tion. However, the numbers shared above tend to indicate that when users
actually used the Alternate Symbol drop-down the average completion time
was lower. Perhaps if the recognizer could provide the correct symbols more
reliably, more users would be able to use the Alternate Symbol drop-down as
a quick solution instead of having to scroll through the symbol palette.

Some participants were able to complete the experiment relatively quickly,
but others took much longer than we anticipated. The shortest time for com-
pleting all experiment tasks was 16 minutes. The longest time to complete
all experiment tasks was 42 minutes. These times do not include the training
tasks or time spent on the exit questionnaire, which means some participants
spent over an hour in the entire experiment, even though we expected them
to spend 30 minutes.

The reason some tasks took so much longer than other tasks is that partic-
ipants came across unexpected problems. One such problem was the problem
in tasks 4 and 12 where participants could not differentiate between the center
dots and the plain dots. This caused a lot of confusion in Task 4, as easily seen
in Figure 4.6. Other issues stemmed from the fact that the recognizer would
often not return the expected symbols, even if the user drew them perfectly.

One interesting pattern we found was that sometimes experts were per-
forming considerably worse on average than novices in terms of completion
time. For example, the completion time for tasks 10, and 18 in the Symbol
condition is more than twice as large for experts, as seen in Fig 4.6. Upon
further investigation, we found that this is due to a few outliers spending more
than 3 minutes on those tasks. Typically, we found that those outliers made
more than one recognition request, which means they had to draw the formula
multiple times.



CHAPTER 4. EXPERIMENTS 35

Symbol Condition

Faceted Condition

Both Condition

Figure 4.3: Average Completion Time and Average Number of Operations
across Conditions and Tasks in Experiment 1



CHAPTER 4. EXPERIMENTS 36

Figure 4.4: Box plot of the Completion Time and Number of Operations for
the entire experiment.

Figure 4.5: Summary of Correction Mechanisms used in each tasks. The
Alternate Results drop-down was used more often that the Symbol Correction
Panel in most tasks. These numbers represent the total number of times each
correction mechanism was used across all conditions combined.



CHAPTER 4. EXPERIMENTS 37

Table 4.3: Summary of Average Completion Time and Average Number of
Operations across tasks and condition.

Average Completion Time Average Number of Operations

Task Symbol Faceted Both Symbol Faceted Both

1 42.1 (30.0) 48.7 (47.6) 50.0 (80.5) 5.4 (6.8) 6.2 (7.0) 2.3 (1.0)
2 70.3 (41.1) 71.6 (64.2) 65.7 (31.1) 7.1 (4.4) 6.9 (7.3) 5.1 (2.7)
3 135.5 (65.7) 119.2 (27.4) 145.4 (34.2) 16.6 (7.6) 19.2 (5.7) 20.6 (3.6)
4 189.2 (157.4) 207.3 (138.1) 197.7 (136.4) 24.7 (17.4) 36.1 (30.3) 33.1 (27.1)
5 103.9 (36.9) 128.0 (59.2) 92.7 (50.7) 7.3 (2.5) 9.4 (4.3) 9.8 (7.8)
6 105.6 (78.8) 75.9 (41.9) 84.3 (64.0) 10.3 (4.5) 12 (8.6) 12.6 (9.9)
7 38.3 (17.6) 49.8 (27.8) 39.3 (23.3) 4 (2.3) 4.7 (2.2) 3.8 (1.2)
8 52.1 (22.3) 54.2 (45.0) 54.2 (20.9) 5.9 (3.5) 5.8 (5.5) 7 (3.4)
9 72.8 (35.6) 91.9 (69.5) 66.2 (54.3) 8.3 (5.3) 7.7 (3.0) 7.4 (8.5)
10 48.5 (28.7) 75.9 (72.5) 49.8 (21.3) 6.4 (5.0) 10 (8.7) 7.9 (5.1)
11 55.8 (27.4) 65.2 (32.8) 63.1 (35.8) 4.8 (4.0) 6.8 (5.1) 4.6 (2.1)
12 123.6 (71.8) 117.4 (49.2) 73.2 (27.2) 18.2 (9.1) 13.6 (5.8) 14.3 (11.8)
13 32.0 (6.8) 98.3 (126.0) 34.0 (11.8) 3 (1.5) 12.1 (18.8) 4.6 (1.3)
14 92.2 (56.7) 99.8 (69.3) 63.0 (36.3) 7.4 (4.0) 5.1 (2.5) 5.9 (3.2)
15 94.3 (38.4) 179.6 (149.1) 94.8 (56.1) 15.4 (6.9) 20.9 (16.3) 15.6 (9.0)
16 99.1 (52.6) 136.6 (88.9) 118.5 (100.3) 12.6 (4.9) 11 (3.6) 12 (6.4)
17 74.8 (47.2) 111.3 (100.9) 44.0 (27.4) 14.7 (11.8) 12.4 (8.9) 6.4 (2.8)
18 81.2 (82.9) 82.1 (64.1) 66.8 (58.2) 5.1 (3.2) 5.8 (6.1) 6.6 (6.0)

4.1.5 Summary

The goal of this experiment was to learn about good ways to make corrections
to the formulas returned by the recognizer. Our results indicate that most
participants used the symbols in the symbol palette or simply typed their
correction. Many users also used the alternate symbols drop-down, but only a
few used the alternate results panel. One possible reason for this could be that
the recognizer could not recognize many of the symbols in some of the formulas
because some of the symbols in the formulas were not part of the recognizer’s
vocabulary. This means that users would often not find their desired output
in the list of alternate symbols.

Since we did not see strong evidence suggesting that participants found
the Alternate Results Panel useful, we decided to remove it for the second ex-
periment. It is possible that the results may have been different if we had only
used symbols that the recognizer could handle, making users more likely to
use the new correction mechanisms to more quickly fix issues without looking



CHAPTER 4. EXPERIMENTS 38

through the deck to find a symbol. But for the sake of time, we decided to
move on without this feature and reconsider the tasks for the next experiment
with the recognizer’s limitations in mind.

4.2 Experiment 2: Handwriting vs No Handwriting

The second experiment was designed to test whether having handwriting
would help users complete more tasks than if they did not have handwrit-
ing. We also wanted to see what impact it would have on the speed at which
they completed tasks. Would using handwriting slow things down? Or would
it make it faster for novices? Additionally, we wanted to look at the number
of operations it would take for participants to complete tasks. Would hand-
writing help reduce the number of operations required to complete a task? Or
would it require more operations because of the errors users would have to
correct?

For this experiment, we counted the number of operations the same way
we did for the first experiment. That is, any action that changes the formula
displayed on the canvas counts as an operation. This includes any of the visual
operations including dragging chips from the canvas and using a symbol from
the alternate symbols drop-down. Entering a handwritten formula counts as
one operation.

4.2.1 Experiment Tasks

Having learned how long it took participants to complete the first experiment,
we reduced the number of tasks for the second experiment to 9. These tasks,
shown in table 4.2.1, were designed so that the recognizer could recognize all
the symbols and structures required to complete the tasks. This would allow
novices to use handwriting if they were not familiar with special structures
like fractions or special symbols like the Greek letters.

Like in the first experiment, users had to complete these tasks in a modified
version of the interface, shown in Fig 4.2.1. This version of the interface brings
the LaTeX Panel back and now users have to click the Handwriting button
in the LaTeX Panel to enter a handwritten formula. The Alternate Results
button in the handwriting recognition window is hidden as well as the option
to insert a formula in context as shown in Figure 3.6.



CHAPTER 4. EXPERIMENTS 39

Table 4.4: Handwriting vs. No Handwriting Experiment Tasks.

Task # Target Formula

1 F = B2A
2µ0

2 f(λx) = λ∆f(x)

3
∫ 1
−1(1 + x)βdx

4 RiF (X) = 0∀i > 0

5 du
dt −

du
dx

6 x2

a2
= z + y2

b2

7 φ = 1+
√

5
2

8 F = − c
12πσ

9 X = −k dTdz

Each participant was exposed to 3 conditions:

1. Handwriting Only: Participants had access to the handwriting button
but they could not edit the formula through the LaTeX Panel

2. LaTeX Only: Participants had access to the LaTeX Panel but could not
insert formulas using Handwriting.

3. Both: Participants had access to both the LaTeX Panel and the Hand-
writing button.

4.2.2 Participants and Blocking Design

We again aimed to have at least 30 participants. After going through the first
experiment, we decided to invite 50 participants to get enough responses in
a timely manner. Just like in the first experiment, half of those participants
are what we considered experts and the other half were novices. We tried to
recruit an equal number of participants from the College of Science and the
College of Computing.



CHAPTER 4. EXPERIMENTS 40

Figure 4.6: The interface for the Handwriting Interface experiments.

We replicated the blocking design from the first experiment: The first 3
participants saw the following order of conditions: Handwriting only, LaTeX
only, and Both. The next 3 participants saw LaTeX only before they saw
Handwriting. We split the 9 tasks into 3 blocks of 3 formulas each. The first
block contained formulas 1-3, the second block had formulas 4-6, and the third
block had formulas 7-9. We tried to place formulas into blocks such that every
block had at least one formula with more than one special symbol and at least
one formula with at most one special symbol.

We also changed the order in which they saw the formula blocks and
changed the order in which the blocks were presented. That is, if the first
block for participant 1 contains tasks 1, 2, and 3, in that order, then the sec-
ond participant’s first block would have tasks 2, 3, and 1, in that order. The
third participant would see task 3, then 2, and then 1. The block order for
participants 1-3 would be A-B-C, the order for participants 4-6 would be B-
C-A, and the order for participants 7-9 would be C-A-B. The pattern repeats
starting with participant 10.

Participant Demographics



CHAPTER 4. EXPERIMENTS 41

Highest Level of School Completed

Novices Experts Total
High School 16 10 26
Associate’s 1 0 1
Bachelor’s 0 7 7
Master’s 0 3 3

College

Novices Experts Total
College of Science 6 8 14
College of Computing 11 12 23

Gender

Novices Experts Total
Female 3 10 13
Male 11 8 19
Non-binary 2 1 3
Prefer not to say 1 1 2

Age

Novices Experts Total
18-24 16 17 33
25-34 1 3 4

Total 17 20 37

Table 4.2.2 shows the highest level of education achieved by participants
who completed the experiment, their current college, gender, and their age
range. Out of the 50 participants we invited, 37 completed the experiment
and the exit questionnaire. 17 (46%) of those participants were novices and 20
(54%)) were experts. Of those 17 novices, 14 reported being “Not familiar at
all” with LaTeX and the other 3 reported being “Slightly familiar.” Out of the
20 experts, 6 experts reported being “Moderately familiar,” 11 reported being
“Very familiar,” and 3 reported being “Extremely familiar” with LaTeX. The
split between colleges was not as even as we would have liked it to be because
there were not as many participants who identified as novices in the College
of Science.



CHAPTER 4. EXPERIMENTS 42

4.2.3 Experiment Protocol

Like in the first experiment, selected participants received an email with a
URL and instructions to begin the experiment. They were given an updated
overview of the system and instructions to record their screen if they wanted
to share their experience.

This time participants had 7 practice tasks to familiarize themselves with
the interface. For each practice task, they could watch a video to learn how
to complete the task. Each practice task covers a different feature in the
interface. The features covered by each task are the following:

1. Using the LaTeX panel to edit formulas

2. Using visual operations to replace and delete symbols

3. Copying and moving sub-expressions with visual operations

4. Dragging chips from the symbol palette to insert and replace symbols

5. Using the recognizer and the Alternate Symbol drop-down

6. Using the recognizer to create a new chip

7. Using the recognizer to create a new tab

After the practice tasks, they completed the 9 real tasks. Before each task,
they were told which condition they were in. At the end of the experiment,
they completed an exit questionnaire about their experience in the experiment.

Post Questionnaire
Figure 4.7 shows a summary of participants answers to the following ques-

tions:

1. How difficult were the provided formula editing tasks?

2. When using handwriting, how easy to use was the handwriting interface?

3. When using handwriting, how easy was it to correct the formula if it
didn’t display what you expected?

4. When using handwriting, how easy was it to correct individual symbols
in the formula?



CHAPTER 4. EXPERIMENTS 43

Figure 4.7: Participants answers when asked how easy were the tasks (Top
Left), how easy to use was the handwriting interface (Top Right), and how
easy it was to correct entire formulas (Bottom Left) and individual symbols
(Bottom Right). For most questions, the most frequent responses were “Some-
what easy” and “Extremely easy” among novices and experts alike. Results
not broken by participants can be found in Appendix B



CHAPTER 4. EXPERIMENTS 44

For the first 3 questions, the most frequent answer among novices and
experts alike was “Somewhat easy,” which indicates that many participants
found the interface was easy to use (See Fig. 4.7.) For the last question,
the most frequent answer was “Extremely easy,” which suggests participants
thought changing individual symbols was much easier than perhaps changing
the structure of the formula.

We also see that 7 experts reported that correcting formulas was “Some-
what difficult” but only expert 1 said that correcting symbols was “Somewhat
difficult.” This is likely the case because, for experts, it’s often easier to change
the LaTeX directly rather than have to use the visual operations. Since they
did not have access to the LaTeX panel in the Handwriting condition, they
may have felt restricted in what they could do.

Some participants shared that they thought the recognizer worked well.
One participant reported that “Even when handwriting did not get the right
symbol, it always had the right one in the replacement options which made it
very easy to change out any wrong symbols.” Another participant shared that
“Sometimes, the handwriting editor didn’t recognize what I had written, but
it just happened 2-3 times. Otherwise, the experience was smooth.”

Many participants thought that drawing using their computer’s track-pad
was not easy. Some experts shared that they preferred writing LaTeX directly
rather than draw the formulas because it was “much faster,” which is to be
expected. This was probably one of the reasons why so many experts reported
that correcting formulas was “Somewhat difficult.”

One participant was quick to appreciate the multi-modal nature of the
tool and shared the following: “I really like that you can enter a formula
via handwriting, LaTeX, and by dragging symbols and notation. I feel like it
caters to a very wide audience. It’s nice to have regular LaTeX editing in there
for people who are acquainted LaTeX. Having the “deck” of symbols to drag
makes it accessible and useful for people who aren’t familiar with LaTeX.”

4.2.4 Results

We again looked at completion time and number of operations to measure
performance. Table 4.5 shows a summary of these metrics across conditions.
As expected, participants performed best in the Both condition because it’s
the last condition, so they have more experience with the interface. In the



CHAPTER 4. EXPERIMENTS 45

Figure 4.8: Average Completion Time and Average Number of Operations
across conditions and tasks in the Handwriting vs. No Handwriting experi-
ment.



CHAPTER 4. EXPERIMENTS 46

Table 4.5: Summary of Average Completion Time and Average Number of
Operations across tasks and condition.

Average Completion Time Average Number of Operations

Task Handwriting LaTeX Both Handwriting LaTeX Both

1 83.0 (50.0) 81.9 (52.8) 112.1 (118.7) 3.8 (2.1) 12.8 (7.1) 12.5 (7.9)
2 99.9 (69.3) 76.5 (37.2) 63.2 (31.9) 3.1 (2.5) 10.9 (11.4) 10.6 (10.7)
3 89.1 (55.6) 91.1 (66.5) 122.6 (149.9) 4.2 (3.0) 4.4 (5.4) 14.2 (15.8)
4 79.4 (43.4) 76.9 (68.5) 115.9 (88.7) 5.9 (7.5) 10.9 (6.5) 7.8 (6.0)
5 104.1 (47.3) 85.8 (119.3) 78.7 (47.7) 8.7 (5.2) 17.8 (14.1) 11.6 (7.3)
6 138.1 (168.5) 66.2 (37.0) 78.9 (42.0) 10.5 (9.9) 20.2 (10.7) 15.1 (11.0)
7 74.1 (48.1) 147.3 (86.3) 60.5 (34.8) 5.6 (3.4) 12.8 (10.1) 6.6 (5.7)
8 116.8 (135.4) 123.9 (147.0) 70.1 (71.8) 6.7 (4.8) 11.7 (4.6) 10.4 (5.6)
9 65.4 (37.7) 52.6 (30.8) 38.5 (23.7) 6.2 (3.4) 11 (6.8) 6 (3.1)

case of novices, it will also mean that they will have learned more about how
to write formulas in LaTeX.

In general, participants successfully completed more tasks in this experi-
ment than they did in the first experiment. All 37 participants completed task
7. 97% (36) participants completed task 8. 95% (35) completed tasks 2, 4,
and 9. 92% (34) completed tasks 3 and 6. 90% (33) of participants completed
task 1. The task with the lowest completion rate was task 5 with a completion
rate of 84% (31). It’s hard to say why this was the case. Only half the cases
can be attributed to errors from the recognizer; for the other half, users were
able to type the formula using LaTeX, which should have been easy to do.

What we care about the most is the difference in completion time and
number of operations between the Handwriting-only and the LaTeX-only con-
ditions because this would indicate if handwriting can be a more efficient way
of inputting formulas when compared to typing LaTeX. Figure 4.9 shows the
overall comparison between the three conditions. We see that novices spent
slightly less time in the Handwriting and LaTeX condition. The median for
novices in the Handwriting condition was approximately 60 seconds while the
median in the LaTeX condition was closer to 80 seconds. The longest time for
novices in both conditions was about 3 minutes. Experts, on the other hand,
spent more time in the handwriting condition, with some experts taking as
long as over 3 minutes per task in the Handwriting condition. This lines up
with the comments in the exit questionnaire reporting that LaTeX was “much
faster” for experts.



CHAPTER 4. EXPERIMENTS 47

Figure 4.9: Box plots of the Completion Time and Number of Operations for
the entire experiment.

Additionally, we see drastic changes in the number of operations. Novices
and experts alike completed tasks in fewer operations in the Handwriting con-
dition. This is likely because handwriting counts as one operation. Most users
would draw the entire formula and fix small errors in the recognizer’s output.
Typing on the LaTeX panel, however, can count as multiple operations. When
the user stops typing in the LaTeX for 2 seconds, the formula on the canvas
re-renders, which counts as an operation. These can stack up pretty quickly
if the user constantly stops to see the new rendered formula.

We investigated why some completion times for experts were so much
higher than for novices in the Handwriting condition. We found that some
of the outlier values come from users who made more than one recognition
request. This adds up a lot of time because drawing formulas takes a lot of
time, especially if the user is using a track-pad to draw, which was the case
for many users, as reported in the exit questionnaire.

Like in the first experiment, we wanted to confirm that the decrease in
completion time and number of operations actually came from differences in
the conditions. Table 4.6 shows the number of users who used the handwriting
feature when it was available. For tasks 3, 4, 5, and 17 the majority of users
used handwriting when it was available. All of those tasks yielded the smallest
average number of operations in the handwriting condition. The handwriting
condition also resulted in the smallest average completion time in task 3.



CHAPTER 4. EXPERIMENTS 48

Table 4.6: Summary of Times Handwriting and the Alternate Symbol Drop-
down Was Used Across Tasks. Users used handwriting at least half of the
time it was available for some tasks (Task 2) and as many as 78% of the time
for other tasks (Task 5). Handwriting was not available equally across tasks
because of our blocking design and because not all of the invited participants
completed the experiment.

Task # Used HW Used Alt. Symbols Total Available

1 15 2 24
2 12 2 24
3 18 3 24
4 17 4 24
5 18 5 23
6 14 2 24
7 16 3 25
8 17 6 25
9 15 4 25

What’s interesting about this task is that it’s the only task that contained an
integral with limits, which may have resulted in more users using the recognizer
if they did not know how to write the limits in LaTeX or using the visual
operations.

For all of the other tasks, at least half of the participants used handwriting
when it was available. A handful of those participants also used the Alter-
nate Symbols drop-down to correct errors in the recognizer, but, as seen in
the first experiment, participants reported that they often chose to write the
correct symbol themselves or drag it from the symbol palette. Additionally,
the recognizer did a better job at recognizing the symbols correctly in these
tasks because we designed the tasks around the classes of symbols we knew
the recognizer could handle.

4.2.5 Summary

We found that when handwriting was available, novices took about 10 seconds
(based on median) less to complete tasks and they did so using few operations
after the handwritten formula was recognized. A reason why handwriting



CHAPTER 4. EXPERIMENTS 49

might not result in even shorter completion times could be that drawing strokes
takes longer than typing LaTeX, especially if participants are using a track-pad
on their laptop as opposed to a computer mouse or a pen.

On the other hand. Experts completed tasks more quickly in the LaTeX
condition than they did in the Handwriting condition. However, just like
novices, they performed fewer operations in the Handwriting condition because
one handwritten formula counts as one operation.

An unexpected result is that participants performed more operations in the
Both condition than they did in the Handwriting condition. This is perhaps
because they saw that typing the formulas was faster, even if it took more
operations like dragging symbols and structures from the symbol palette. We
also found that novices sometimes spent more time in the Both condition
than they did in the Handwriting condition. A possible explanation for this
could be that novices spent some time getting used to the mix of handwritten
formulas and being able to edit the LaTeX directly.

4.3 Summary of Findings

Participants in the correction mechanisms experiment preferred to correct er-
rors in the recognizer by either typing the correct symbols themselves, or by
using the symbol palette. Their next most used strategy was the alternate
symbols drop-down, so we decided to keep this feature for the second experi-
ment.

The second experiment showed that novices spend less time inputting for-
mulas when they use handwriting while experts spend less time if they simply
type LaTeX. However, we also found that the number of operations after in-
putting a handwritten formula is very small, regardless of the level of expertise.



Chapter 5

Conclusion

Typing formulas in LaTeX can be challenging for non-expert mathematicians.
Our main hypothesis was that handwriting could allow for entering formulas
more efficiently in MathDeck.

We presented changes to the MathDeck interface to allow users to enter
handwritten formulas into the system. Most recognizers are imperfect, so
we added an Alternate Symbol drop-down and a Symbol Correction panel to
easily correct errors. We ran an experiment to test the best ways to correct
errors in the recognizer. Users had the option to use the Alternate Symbol
drop-down, the Symbol Correction panel, or to correct errors manually by
typing the correct symbol or finding it in a symbol palette. We found that
participants mostly used the symbol palette or typed the correct symbols to
fix misrecognized symbols.

To test our main hypothesis, we ran a second experiment to see how both
novice and expert users performed when they had access to handwriting com-
pared to when they could only write LaTeX. We found that novices performed
best in terms of completion time when they had access to handwriting and
that experts performed better if they could simply type the formulas using La-
TeX. We also found that both novices and experts could correct handwritten
formulas using very few operations in the new MathDeck interface.

50



CHAPTER 5. CONCLUSION 51

5.1 Future Work

Our results showed evidence that handwriting can help novice users input for-
mulas, but the system could use some improvements to make the process of
entering handwritten formulas even faster. For example, improving our rec-
ognizer to recognize a larger set of symbols and to more accurately classify
symbols can reduce the number of corrections the user has to make. Addition-
ally, the formulas in our second experiment are not very complex. We decided
to make them simple enough so that the recognizer would be able to handle
them properly. Given an improved recognizer, it would be interesting to look
at how users deal with more complex structures such as matrices and nested
structures.

With this change in place, we could also add the ability to search for
symbols in the symbol palette by drawing the symbol instead of having to
scroll through a list of symbols if you don’t know the name of the symbol
you’re looking for. Detexify is an example of a tool that allows users to search
for symbols by drawing strokes [14].

The next steps for the MathDeck interface should focus on making the
interface more user-friendly and polishing the existing features. Some users
still found that some of the visual operations are not intuitive or could be
simplified. In the future, we could evaluate better ways to do simple operations
like copying or replacing sub-expressions. Additionally, some parts of the
interface could be reworked to be faster so that there is less wait time between
operations.

For the experiments described here, we removed the interface’s search fea-
tures such as the ability to search for any or multiple formulas using one of 11
different search engines. The full version of the interface also automatically
searches for related formulas and concepts as the user inputs formulas, which
can serve as a way to auto-complete formulas or find related formulas. Once
these search features are brought back into the interface and the issues are
fixed, MathDeck will be a tool that novices and experts alike can leverage to
work with math formulas efficiently.



Bibliography

[1] Lisa Anthony, Jie Yang, and Kenneth Koedinger. Towards the Appli-
cation of a Handwriting Interface for Mathematics Learning. In 2006
IEEE International Conference on Multimedia and Expo, pages 2077–
2080, Toronto, ON, Canada, July 2006. IEEE.

[2] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. Adapting handwrit-
ing recognition for applications in algebra learning. In Proceedings of the
international workshop on Educational multimedia and multimedia edu-
cation - Emme ’07, page 47, Augsburg, Bavaria, Germany, 2007. ACM
Press.

[3] Lisa Anthony, Jie Yang, and Kenneth R. Koedinger. Benefits of hand-
written input for students learning algebra equation solving. In Rosemary
Luckin, Kenneth R. Koedinger, and Jim E. Greer, editors, Artificial Intel-
ligence in Education, Building Technology Rich Learning Contexts That
Work, Proceedings of the 13th International Conference on Artificial In-
telligence in Education, AIED 2007, July 9-13, 2007, Los Angeles, Cal-
ifornia, USA, volume 158 of Frontiers in Artificial Intelligence and Ap-
plications, pages 521–523. IOS Press, 2007.

[4] Xiang Ao, Xugang Wang, Feng Tian, Guozhong Dai, and Hongan Wang.
Crossmodal error correction of continuous handwriting recognition by
speech. In Proceedings of the 12th International Conference on Intel-
ligent User Interfaces, IUI ’07, page 243–250, New York, NY, USA, 2007.
Association for Computing Machinery.

52



BIBLIOGRAPHY 53

[5] Dilaksha Attanayake, James Denholm-Price, Gordon Hunter, Eckhard
Pfluegel, and Angela Wigmore. Intelligent Assistive Interfaces for Editing
Mathematics. pages 286 – 297.

[6] Larwan Berke, Christopher Caulfield, and Matt Huenerfauth. Deaf and
hard-of-hearing perspectives on imperfect automatic speech recognition
for captioning one-on-one meetings. In Proceedings of the 19th Inter-
national ACM SIGACCESS Conference on Computers and Accessibility,
ASSETS ’17, page 155–164, New York, NY, USA, 2017. Association for
Computing Machinery.

[7] Stephen Cummins, Ian Davies, Andrew Rice, and Alastair R. Beresford.
Equality: A Tool for Free-form Equation Editing. In 2015 IEEE 15th
International Conference on Advanced Learning Technologies, pages 270–
274, Hualien, Taiwan, July 2015. IEEE.

[8] Yancarlos Diaz, Gavin Nishizawa, Behrooz Mansouri, Kenny Davila, and
Richard Zanibbi. The mathdeck formula editor: Interace formula entry
combining latex, structure editing, and search. In Proc. ACM CHI, page
to appear, 2021.

[9] Mitsushi Fujimoto. An Interface for Math e-Learning on Pen-Based Mo-
bile Devices.

[10] Eric Gross, Safwan Wshah, Isaiah Simmons, and Gary Skinner. A hand-
writing recognition system for the classroom. In Proceedings of the Fifth
International Conference on Learning Analytics And Knowledge - LAK
’15, pages 218–222, Poughkeepsie, New York, 2015. ACM Press.

[11] Jiseong Gu and Geehyuk Lee. In-Place-Ink: Toward More Direct Hand-
writing Interfaces. In Proceedings of the 2016 ACM on Interactive Sur-
faces and Spaces - ISS ’16, pages 67–76, Niagara Falls, Ontario, Canada,
2016. ACM Press.

[12] Tracy Hammond, Drew Logsdon, Joshua Peschel, Joshua Johnston, Paul
Taele, Aaron Wolin, and Brandon Paulson. A sketch recognition interface
that recognizes hundreds of shapes in course-of-action diagrams. In Pro-
ceedings of the 28th of the international conference extended abstracts on



BIBLIOGRAPHY 54

Human factors in computing systems - CHI EA ’10, page 4213, Atlanta,
Georgia, USA, 2010. ACM Press.

[13] J. Johnston and T. Hammond. Computing confidence values for geometric
constraints for use in sketch recognition. In Proceedings of the Seventh
Sketch-Based Interfaces and Modeling Symposium, SBIM ’10, page 71–78,
Goslar, DEU, 2010. Eurographics Association.

[14] Daniel Kirsch. Detexify: Erkennung handgemalter LaTeX-Symbole.
page 83.

[15] Mahshad Mahdavi, Leilei Sun, and Richard Zanibbi. Visual parsing with
query-driven global graph attention (QD-GGA): preliminary results for
handwritten math formula recognition. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR Workshops 2020,
Seattle, WA, USA, June 14-19, 2020, pages 2429–2438. IEEE, 2020.

[16] Alexandra Mendes, Roland Backhouse, and Joao F. Ferreira. Structure
Editing of Handwritten Mathematics: Improving the Computer Support
for the Calculational Method. In Proceedings of the Ninth ACM Interna-
tional Conference on Interactive Tabletops and Surfaces - ITS ’14, pages
139–148, Dresden, Germany, 2014. ACM Press.

[17] Gavin Nishizawa. Visual Structure Editing of Math Formulas, 08 2020.

[18] Gavin Nishizawa. Visual structure editing of math formulas. Master’s
thesis, Rochester Institute of Technology, USA, 2020.

[19] Gavin Nishizawa, Jennifer Liu, Yancarlos Diaz, Abishai Dmello, Wei
Zhong, and Richard Zanibbi. Mathseer: A math-aware search interface
with intuitive formula editing, reuse, and lookup. In Joemon M. Jose,
Emine Yilmaz, João Magalhães, Pablo Castells, Nicola Ferro, Mário J.
Silva, and Flávio Martins, editors, Advances in Information Retrieval,
pages 470–475, Cham, 2020. Springer International Publishing.

[20] Sharon Oviatt, Alexander Arthur, Yaro Brock, and Julia Cohen. Ex-
pressive pen-based interfaces for math education. In Proceedings of the
8th iternational conference on Computer supported collaborative learning
- CSCL’07, pages 573–582, New Brunswick, New Jersey, USA, 2007. As-
sociation for Computational Linguistics. ISSN: 15734552.



BIBLIOGRAPHY 55

[21] J. Rodriguez, G. Sanchez, and J. Llados. A Pen-Based Interface for Real-
Time Document Edition. In Ninth International Conference on Document
Analysis and Recognition (ICDAR 2007) Vol 2, pages 939–943, Curitiba,
Parana, Brazil, September 2007. IEEE. ISSN: 1520-5363.

[22] Maximilian Schrapel, Max-Ludwig Stadler, and Michael Rohs. Pentelli-
gence: Combining Pen Tip Motion and Writing Sounds for Handwritten
Digit Recognition. In Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems - CHI ’18, pages 1–11, Montreal QC,
Canada, 2018. ACM Press.

[23] Guy Shani and Noam Tractinsky. Displaying relevance scores for search
results. In Proceedings of the 36th international ACM SIGIR conference
on Research and development in information retrieval - SIGIR ’13, page
901, Dublin, Ireland, 2013. ACM Press.

[24] Steve Smithies, Kevin Novins, and James Arvo. A Handwriting-Based
Equation Editor. Proceedings of Graphics Interface, 05 2002.

[25] Ryan Stedman, Michael Terry, and Edward Lank. Aiding human discov-
ery of handwriting recognition errors. In Proceedings of the 15th ACM
on International Conference on Multimodal Interaction, ICMI ’13, page
295–302, New York, NY, USA, 2013. Association for Computing Machin-
ery.

[26] Hariharan Subramonyam, Colleen Seifert, Priti Shah, and Eytan Adar.
texSketch: Active Diagramming through Pen-and-Ink Annotations. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, pages 1–13, Honolulu HI USA, April 2020. ACM.

[27] John Sweller. Cognitive load during problem solving: Effects on learning.
Cognitive Science, 12(2):257 – 285, 1988.

[28] E. Tapia and R. Rojas. Recognition of on-line handwritten mathematical
expressions in the E-Chalk system - an extension. In Eighth International
Conference on Document Analysis and Recognition (ICDAR’05), pages
1206–1210 Vol. 2, August 2005. ISSN: 2379-2140.



BIBLIOGRAPHY 56

[29] Eugene M. Taranta and Joseph J. LaViola. Math Boxes: A Pen-Based
User Interface for Writing Difficult Mathematical Expressions. In Proceed-
ings of the 20th International Conference on Intelligent User Interfaces -
IUI ’15, pages 87–96, Atlanta, Georgia, USA, 2015. ACM Press.

[30] Ryotaro Toba, Tsuneo Kato, and Seiichi Yamamoto. Efficient Speech-
Recognition Error-Correction Interface for Japanese Text Entry on
Smartwatches. In Proceedings of the 21st International Conference on
Human-Computer Interaction with Mobile Devices and Services, pages
1–7, Taipei Taiwan, October 2019. ACM.

[31] Vu Tran Minh Khuong, Minh Khanh Phan, and Masaki Nakagawa. Inter-
active User Interface for Recognizing Online Handwritten Mathematical
Expressions and Correcting Misrecognition. In 2019 International Con-
ference on Document Analysis and Recognition Workshops (ICDARW),
pages 26–30, Sydney, Australia, September 2019. IEEE.

[32] Keith Vertanen and Per Ola Kristensson. On the benefits of confidence
visualization in speech recognition. In Proceeding of the twenty-sixth an-
nual CHI conference on Human factors in computing systems - CHI ’08,
page 1497, Florence, Italy, 2008. ACM Press.

[33] Keith Vertanen and Per Ola Kristensson. Intelligently aiding human-
guided correction of speech recognition. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence, AAAI’10, page
1698–1701. AAAI Press, 2010.

[34] Xugang Wang, Junfeng Li, Xiang Ao, Gang Wang, and Guozhong Dai.
Multimodal error correction for continuous handwriting recognition in
pen-based user interfaces. In Proceedings of the 11th international confer-
ence on Intelligent user interfaces - IUI ’06, page 324, Sydney, Australia,
2006. ACM Press.

[35] Richard Zanibbi, Kevin Novins, James Arvo, and Katherine Zanibbi.
”Aiding Manipulation of Handwritten Mathematical Expressions through
Style-Preserving Morphs”. page 8.

[36] Robert Zeleznik, Andrew Bragdon, Ferdi Adeputra, and Hsu-Sheng Ko.
Hands-on math: a page-based multi-touch and pen desktop for technical



BIBLIOGRAPHY 57

work and problem solving. In Proceedings of the 23nd annual ACM sym-
posium on User interface software and technology - UIST ’10, page 17,
New York, New York, USA, 2010. ACM Press.

[37] Dmytro Zhelezniakov, Anastasiia Cherneha, Viktor Zaytsev, Tetiana Ig-
natova, Olga Radyvonenko, and Oleg Yakovchuk. Evaluating new re-
quirements to pen-centric intelligent user interface based on end-to-end
mathematical expressions recognition. In Proceedings of the 25th Interna-
tional Conference on Intelligent User Interfaces, pages 212–220, Cagliari
Italy, March 2020. ACM.



Chapter 6

Appendices

6.1 Appendix A - Correction Experiment Exit Ques-
tionnaire

58



Default Report
Exit Questionnaire
May 2, 2021 2:37 PM MDT

Q2 - How difficult were the provided formula editing tasks?

Extremely easy

Somewhat easy

Neither easy nor
difficult

Somewhat difficult

Extremely difficult

0 2 4 6 8 10 12 14 16

# Field Minimum Maximum Mean Std Deviation Variance Count

1 How difficult were the provided formula editing tasks? 1.00 5.00 2.70 0.94 0.88 30

Showing rows 1 - 6 of 6

# Field
Choice
Count

1 Extremely easy 3.33% 1

2 Somewhat easy 50.00% 15

3 Neither easy nor difficult 23.33% 7

4 Somewhat difficult 20.00% 6

5 Extremely difficult 3.33% 1

30

CHAPTER 6. APPENDICES 59



Q3 - Have you ever used LaTeX for formulas before this study?

Yes

No

0 2 4 6 8 10 12 14 16 18 20 22

# Field Minimum Maximum Mean Std Deviation Variance Count

1 Have you ever used LaTeX for formulas before this study? 1.00 2.00 1.30 0.46 0.21 30

Showing rows 1 - 3 of 3

# Field
Choice
Count

1 Yes 70.00% 21

2 No 30.00% 9

30

CHAPTER 6. APPENDICES 60



Q4 - Before this study, how much experience did you have using LaTeX?

None

< 1 year

1-2 years

2+ years

0 1 2 3 4 5 6 7 8 9 10 11

# Field Minimum Maximum Mean
Std

Deviation
Variance Count

1
Before this study, how much experience did you have using

LaTeX?
1.00 4.00 2.53 1.20 1.45 30

Showing rows 1 - 5 of 5

# Field
Choice
Count

1 None 26.67% 8

2 < 1 year 26.67% 8

3 1-2 years 13.33% 4

4 2+ years 33.33% 10

30

CHAPTER 6. APPENDICES 61



Q5 - Did you encounter any symbols you didn’t know how to write in LaTeX? If so, how

did you figure out how to write them?

Did you encounter any symbols you didn’t know how to write in LaTeX? If so,...

Yes. I simply drew them, and most of the time it recognized them, and if not, it was an alternate symbol. Otherwise, I could find it in the symbols
box below, although I must say, it was tough to find the right symbol in the box quickly

I was unsure of the nabla and the arrow on top of the x. I did a quick search for the name of the symbols.

Checked on internet for the forumla

Mostly the greek letters - I don't necessarily know them all by name. I figured out how to write them just by looking for their symbols and dragging
and dropping.

Yes, I do not the names of all them by heart so I look it up.

The distinction between the two different kinds of (...) entities was frustrating and took me a second to figure out, but once I had it there wasn't an
issue. Other than that I'm not really sure there were any symbols I strictly didn't know how to write.

To test the handwriting I did most of that, if I did not know how to do it or it took longer than one minute I submitted the results.

No

The x with arrow above was difficult and so I ignored it and added the right arrow in after recognizing the drawing. Also the partial sign got
recognized as a 2 and suggestions for replacement were available.

Yes, the box on the bottom of the page with all symbols listed out proved to be very helpful at times, although all of them being sized differently
added some difficulty. If not, I used the pen tool and filtered the results of the other interpretations.

Nabla was an operator I had never used before, but since it was in the bottom deck it was easy to figure out.

Yes, I did. I just looked to find the matching symbol underneath the canvas.

I searched them at the bottom, use alternatives whenever possible, write it down in letters, or else copy when the symbol is guessed perfectly the
first time and paste it and replace it for second wrong guessed symbol

Yes a couple of greek symbol were difficult to find

All the symbols I did not know how to write were conveniently under the writing box.

No but the program is not very intuitive and has several issues, including the delete button not working the same way in all tasks

nope

I googled the name of the symbol with "LaTeX"

I did, and finding them in the options was easy

CHAPTER 6. APPENDICES 62



Did you encounter any symbols you didn’t know how to write in LaTeX? If so,...

Yes, I looked for them in the symbol table below or I tried to draw them and checked the program results for my drawing.

Yes, The first thing I tried was looking through the provided symbols. If I didn't see it there (whether I just missed it or it wasn't there), I googled what
the symbol looked like and found the name of it there.

The few that I didn't know how to write in LaTeX I used the drag and drop menu from below.

Yes some of the triangles I had never seen before. I found them by scrolling through the symbol list.

Using the symbols provided

Searched it in google

I have never used \triangleleft before. I used the website https://www.codecogs.com/latex/eqneditor.php to figure out the name of a symbol.

I have never used \lefttriangle. I found it in the common symbols menu and copied it from there.

There were a couple that were hard to write, however, they tended to be the greek symbols and they were easy to replace.

CHAPTER 6. APPENDICES 63



Q6 - How easy to use was the handwriting interface?

Extremely easy

Somewhat easy

Neither easy nor
difficult

Somewhat difficult

Extremely difficult

0 2 4 6 8 10 12 14

# Field Minimum Maximum Mean Std Deviation Variance Count

1 How easy to use was the handwriting interface? 1.00 5.00 2.60 1.11 1.24 30

Showing rows 1 - 6 of 6

# Field
Choice
Count

1 Extremely easy 13.33% 4

2 Somewhat easy 43.33% 13

3 Neither easy nor difficult 20.00% 6

4 Somewhat difficult 16.67% 5

5 Extremely difficult 6.67% 2

30

CHAPTER 6. APPENDICES 64



Q7 - How easy was it to correct the formula if it didn't display what you expected?

Extremely easy

Somewhat easy

Neither easy nor
difficult

Somewhat difficult

Extremely difficult

0 2 4 6 8 10 12 14 16 18

# Field Minimum Maximum Mean
Std

Deviation
Variance Count

1
How easy was it to correct the formula if it didn't display what you

expected?
1.00 5.00 2.70 1.16 1.34 30

Showing rows 1 - 6 of 6

# Field
Choice
Count

1 Extremely easy 6.67% 2

2 Somewhat easy 56.67% 17

3 Neither easy nor difficult 6.67% 2

4 Somewhat difficult 20.00% 6

5 Extremely difficult 10.00% 3

30

CHAPTER 6. APPENDICES 65



Q8 - How easy was it to correct individual symbols in the formula?

Extremely easy

Somewhat easy

Neither easy nor
difficult

Somewhat difficult

Extremely difficult

0 1 2 3 4 5 6 7 8 9 10 11

# Field Minimum Maximum Mean Std Deviation Variance Count

1 How easy was it to correct individual symbols in the formula? 1.00 5.00 2.30 1.27 1.61 30

Showing rows 1 - 6 of 6

# Field
Choice
Count

1 Extremely easy 33.33% 10

2 Somewhat easy 33.33% 10

3 Neither easy nor difficult 10.00% 3

4 Somewhat difficult 16.67% 5

5 Extremely difficult 6.67% 2

30

CHAPTER 6. APPENDICES 66



Q9 - Please provide any additional comments that you have below.

Please provide any additional comments that you have below.

The fractions were very difficult to work with, so I just entered it in using LaTeX from what I remembered how to do. There was also a major problem
with one of the questions. I tried to start by entering symbols from the box below, but it didn't like that, and then I was never able to get it to let me
draw, and therefore, I could never submit anything for that question. In general, hand drawing using a trackpad is kind of a pain

I found myself typing in the Latex instead of using the toolbox like in the videos.

It never detected the correct formula and correcting it is so difficult.

It was a little difficult to delete symbols - more steps needed than intuitively expected, and it was also a little difficult to fix subscripts, etc., since I
thought I could drag and drop, but I had to delete, create a new number, etc. I also had a difficult time with the three dots - there seems to be 2
versions of them and they look the same. One works, the other doesn't work.

it was difficult to remove a single symbol from the recognized formula, and I had trouble adding subscripts to the integral symbol

Even using a mouse to draw, the system was surprisingly painless compared to similar drawing recognition tools I've used in the past. I would
definitely seek out a tool with the functionality of this one in the future, if I had need of it.

I encountered an issue where when trying to place a symbol in before drawing it wouldn't allow me to draw anymore. Instead it kept trying to use
the drag select option and clear canvas wasn't allowing drawing mode either. I also couldn't drag objects in without there first doing the drawing and
recognize text option. Otherwise the objects stayed in the upper left and couldn't be dragged in anywhere. Using the insert on canvas option also
made them disappear.

Being someone who prefers to type most things, the second I saw a drawing tool I got scared. I did however find myself using it much more than I
would've thought. I found difficulty in figuring out the difference between different "..." representations. The pen tool was mostly accurate, but for
some equations, I found it much easier to simply type out the LaTeX. I loved the 9-dot system for super and subscripts, and it came in handy many
times. Being able to simply drag chunks of equations around was very nice. Overall, I enjoyed using it, and would recommend it to people with little
to no latex experience, and prefer writing out equations instead of typing them.

The recognize function had some difficulties on certain letters/symbols, such as rho, nabla, and also drawing arrows over letters. I definitely preferred
using the inline character substitutions over using the right sidebar, as it was much quicker to just change certain characters over having to scroll
through the right. Also, I did notice on some letters (namely u/x), it occasionally didn't offer the other capitalization of that same letter under
substitutions. If it always offered that, it would help a lot.

I see how this could be very helpful if I did it on an iPad or with a stylus, but personally, trying to write formulas on my trackpad was difficult.
Inserting the symbols by dragging and dropping was easier.

One who has bad hand writing may face a hard time with this survey

I found this really interesting, though recognition was not perfect but pretty acurate.

When correcting individual symbols, I wish you could drag the symbol and place it in the center dot to replace what was there. The program had a
difficult time detecting \partial, and when I wrote phi it kept changing it to a different symbol.

The handwriting recognition could use some work, for specific things it wouldn't accept certain ways I right things. Like I like to cross my z's but but
the program hated that.

I didn't find very clear how to select the drawing tool after I clicked something else and I had trouble creating my formula when it had nothing on the
board already.

CHAPTER 6. APPENDICES 67



End of Report

Please provide any additional comments that you have below.

There were a few symbols that the handwriting really didn't like, they were mostly the math symbols that look like various triangles. Other than that
it was pretty easy to get it to recognize what I wanted it to say or there were quick fixes to it

Using touchscreen as opposed to a touchpad made it interesting, as some of the menus did not seem to want to work properly (such as the
alternate symbol menu and the drag and drop). Overall, I liked the system. There are many times when being able to hand write the symbol and
then correct things that are incorrectly read would be very useful, especially when doing long equations.

I did not realize there were two "..." symbols leading to me having incorrect answers for some of the tasks though I thought they looked the same.
Also I feel that it would be faster in many cases to type out the LaTeX rather than use the hand writing interface.

The software works pretty well. Found it fun when it recognized my formula exactly what was expected. Minor bugs I faced: 1)Undo isn't working
when I select it. Tapping it multiple times worked. 2) While writing the formula using the pen, I clicked on a symbol. I couldn't write again. I couldn't
find the option to select the pen and continue. 3) Couldn't complete 2 formulas that required me to enter dots. The formula seemed to match what
was expected.

This took me over a hour and a half to complete. Not “30 minutes” as you guys said it would take.

No comments.

On Task 4, I tried to edit the input by deleting something, but the whole input disappeared. When I cleared the canvas to start again, my cursor was
stuck in selection mode, and I could not write anything. There was no restart drawing button either that I could find.

There were a couple times where the website glitched out. There were also a couple of times where, even though the formula I had formed looked
identical to the target formula, it wouldn't be recognized as completed (the one with the bunch of A's for instance). There were also a couple times
where like a plus sign would be slightly lower than it was in the target but I couldn't figure out how to correct it and match them. Overall the system
is pretty intuitive and cool. I kinda wish that, once I had written the formula and got it to convert my handwriting to the symbols, that I could rewrite
only a portion of it (for instance if it got the first half of the equation correct but the second half wrong). Also, the conversion of handwriting to
symbols was a bit sporadic sometimes. For example, sometimes I would accidentally make a stray dot away from the equation and sometimes it
would pick it up and add three dots to the end of the equation and other times it would not pick it up at all.

CHAPTER 6. APPENDICES 68



CHAPTER 6. APPENDICES 69

6.1.1 Appendix B - Handwriting vs. No Handwriting Exper-
iment Exit Questionnaire



Default Report
MathDeck Exit Questionnaire
May 2, 2021 2:39 PM MDT

Q2 - How difficult were the provided formula editing tasks?

Extremely easy

Somewhat easy

Neither easy nor
difficult

Somewhat difficult

Extremely difficult

0 2 4 6 8 10 12 14 16 18 20 22

# Field Minimum Maximum Mean Std Deviation Variance Count

1 How difficult were the provided formula editing tasks? 1.00 4.00 2.11 0.86 0.75 37

Showing rows 1 - 6 of 6

# Field
Choice
Count

1 Extremely easy 21.62% 8

2 Somewhat easy 56.76% 21

3 Neither easy nor difficult 10.81% 4

4 Somewhat difficult 10.81% 4

5 Extremely difficult 0.00% 0

37



Q3 - Have you ever used LaTeX for formulas before this study?

Yes

No

0 2 4 6 8 10 12 14 16 18 20 22 24

# Field Minimum Maximum Mean Std Deviation Variance Count

1 Have you ever used LaTeX for formulas before this study? 1.00 2.00 1.38 0.48 0.24 37

Showing rows 1 - 3 of 3

# Field
Choice
Count

1 Yes 62.16% 23

2 No 37.84% 14

37



Q4 - Before this study, how much experience did you have using LaTeX?

None

< 1 year

1-2 years

2+ years

0 2 4 6 8 10 12 14

# Field Minimum Maximum Mean
Std

Deviation
Variance Count

1
Before this study, how much experience did you have using

LaTeX?
1.00 4.00 2.19 1.11 1.23 37

Showing rows 1 - 5 of 5

# Field
Choice
Count

1 None 35.14% 13

2 < 1 year 29.73% 11

3 1-2 years 16.22% 6

4 2+ years 18.92% 7

37



Q5 - Please describe the strategies you used to edit the starting formula into the target

formula when handwriting was available.

Please describe the strategies you used to edit the starting formula into t...

minimally use handwriting. mostly enter everything in the typing panel on the right. for fractions, the x/y predefined function was inserted and further
edited as per requirement. similar approach was taken was any terms that were squared (the x^2 function in from the tab at the bottom was
inserted. For symbols that could not be typed directly from the keyboard, drag and drop from the bottom tab was used.

things that were intuitive to type I found easier to type, but for more things that weren't so easy to type (fractions, integrals, etc) handwriting was
most efficient.

I wrote the whole formula by hand, and then used the editing features to adjust it

I would select the values that needed to be modified and replace them, click on a point on a value to add something in relation to it, or drag in a
symbol to include. I did not use handwriting.

I tried to handwrite the formula first, then corrected any mistakes made by the recognition tool. When fractions were involved, it would sometimes
pick them up as subscripts, so I would build the formula in pieces and use the fraction bubble.

I used handwriting to copy the equation as I saw it, and changed the letters that were not correctly recognized

I tried writing the formulas by handwriting and then tried to insert them. I also tried to insert into the new tab and then move it to latex column.
However, for one particular task, I was not able to do it.

I wrote the equations and hit recognize. I then edited the pre-existing equation using the editing tools to match it to the required formula.

I used handwriting if there were any symbols that I did not know such as the definite integral or when I had to input numbers when they were in
fractions.

When handwriting was available, I used handwriting first. It recognized my handwriting most of the time, but even when it didn't it was easy to
change it using the suggested alternate symbols. The only time it got it wrong was that it recognized my phi as what I think is \varphi, and my 2 as
an 'a'.

Handwriting worked depending on my penmanship working on a laptop, in addition to whether if i am in a rush. Handwriting worked 80% of the
time.

I used handwriting to write most of the part after which I corrected minor mistakes using latex. I felt that this approach was much easier

I typed it out when I thought typing would be faster than handwriting. If I didn't know a quick way to type it I would use handwriting

I tried to write as clearly as possible and then clicked individual wrong guesses to edit them. The feature that would provide alternative guesses was
helpful.

I would start with handwriting and try a couple times until it was close enough. Then I would replace symbols manually by typing if I could, or by
dragging in the appropriate symbol, often Greek letters.

mostly handwriting; sometimes the text editor



Please describe the strategies you used to edit the starting formula into t...

I tried to first use handwriting to draw the formula, then click on the recognized formula to modify the incorrect symbols.

I would use it only for fractions

I tried to split the formulas into "chunks" because sometimes it recognized part of it well and part of it poorly and I didn't want to redraw the whole
thing.

First using the handwriting function to write most of the function, and then using the replace and lift buttons to make small edits

The handwriting made longer Latex actions like fractions and greek letters easier.

i used handwriting to write the formula first then if i noticed that it had trouble recognizing certain drawings i would clean it up after inserting it

I never used handwriting. I began each formula by trying to type as much out normally as possible then picked out the letters and equations
(particularly the division symbol, because / is not treated the same).

I usually just rewrote the formula myself as that was the easiet.

Most of the time I handwrote the formula then pressed recognize. I replaced any wrong symbols by clicking in the middle of the wrong ones and
either manually typing in the right number or letter variable, or I went into the editing panel on the right and edited them there. However, any greek
or logic symbol I almost always dragged and dropped into the main formula window even when I could handwrite it.

When it is come to handwriting become available, I usually focus on write to the full formula as I can and less depends on the canvas selection.

When handwriting was available, I still defaulted to using LaTeX. For the one case of the upside-down "A," I would have used the handwriting option
if I did not immediately find it on the menu of symbols.

I tried using the handwriting tool, but when it didn't pick up on my handwriting, I simply wrote as much as I could into the editor before looking for
symbols in the lower section and moved things around to get the proper notation.

Click and replace a single symbol with with cursor looking button

I almost entirely edited the formula using handwriting and then I would fix any mistakes that would appear when I clicked recognize. One of the
main fixes would be "X" to "x".

I did not use the handwriting feature. Due to mouse control, I feel this can be hard to control and easy to mess up. If I had an electronic drawing
pad, then I would use that feature more.

I used the handwriting tool as a starting point, then made quick spot corrections where my handwriting wasn't read correctly. In most cases I elected
to use this approach, since I type rather slowly.

I preferred to use anything but handwriting, as I don't have a drawing tablet it was very slow to use. I still preferred it over dragging in symbols one-
by-one though, as naturally finding each symbol took a while.

Make the handwriting precise

I usually just wrote it all out, changed anything that the program mis-recognized, and then hit submit.

I first chalked down the easy-to-write material and then decided to go with the difficult sections of the formula. One inference I deduced was that it
would have been easier and much more convenient to draw if I had a mouse or a stylus. Otherwise, it gets into a lot of re-writing.



Please describe the strategies you used to edit the starting formula into t...

When handwriting was available it was a lot easier to just that and then go through and correct the few mistakes It made. There were a few times I
didn't use the handwriting feature when it was available but that was only when I thought I knew where all the needed functions were.



Q6 - Please describe the strategies you used to edit the starting formula into the target

formula when handwriting was not available.

Please describe the strategies you used to edit the starting formula into t...

similar approach as described above.

the formula sheet at the bottom was my go-to when I couldn't use handwriting. I would use those formulas to get the symbols I needed, and then
replace the values with the text editor.

When the LaTeX was available, and there were no fractions/sums, then I prefered to just type the equation out in the LaTeX field. If there were
fractions, then I used the editing panel to do most of the editing

I would select the values that needed to be modified and replace them, click on a point on a value to add something in relation to it, or drag in a
symbol to include.

When I could remember the LaTeX command, I would type them in; otherwise I would look in the lower panel

I typed the formula into the bar and used the presets for formatting and non-numeric symbols (eg: greek letters)

When the handwriting was not available, I selected the symbols, clicked on the typed letter and tried to replace, insert to right, insert super, insert
sub.

I used the symbol selection area and typed the formulas in as well.

I mainly looked for the symbols and dragged them onto the editing screen. If I knew the latex, I would put it in but this is mostly when the symbols
were easy like basic arithmetic operations.

When handwriting was no available, I found it quickest to write out the formula in LaTeX since I am very familiar with the notation.

Without the handwriting tool it make task slightly more difficult. I'd have to first drop in fractions then edit the basic fraction, which is easier then
figure out how to write in fractions in the text part.

I used latex to write Then I used the symbols available to enter in latex. I felt that using latex was a bit more effort than using the handwriting panel.

I would type whatever I could, but sometimes I had to drag formulas or greek letters in when I didn't know how to type them

I mostly used Latex. It was a pain to drag easy numbers over or edit, so when it was just a symbol or letter, i used LaTex.

I would use the LaTeX editor if I knew what to do, or would drag up symbols from the bottom panel.

text editor and inserting symbols

I prefer to directly write latex code.

Latex

I just typed out the formula when I could



Please describe the strategies you used to edit the starting formula into t...

Drag and drop function operators from the bottom, and then editing the LaTeX to include the necessary numbers

When I couldn't draw, if I knew what the command was I would just type it, but if I didn't remember it I would look through the submenus for 'Logic'
or 'Greek'

i wrote everything that didnt require additional symbols first then used the blue dots to add super/sub and dragged the greek letters and symbols not
on my keyboard like integral to the blue dots

I wrote the function normally (see handwriting available answer)

I sometimes used LaTeX to type it in other times I dragged in the appropriate character usually when it was a greek letter or just typed in the
replacement if it was something I could type.

Any easily typed letter variable, number, parenthese, or equality symbol I would type in the edit panel on the right. I would then drag and drop any
greek or logic symbol into the main formula panel. If there was a repeating greek/logic symbol I would select it, copy, and drag it to the other spot
where it was supposed to be. Another strategy I used was with exponents, in which if it was an easily typed number or letter I would type it in the
editing panel on the right. If it was a greek/logic symbol it would be dragged and dropped onto where it was supposed to be.

I will focus on completing the part where it is more complicated by picking what the canvas selection has and edit it. Then, add a new part to the
formula by click the farthest right side of the end. if there is more but nothing left to do, I will use a new tab containing a separate part and plug it
into the main tab with it.

As mentioned, I never defaulted to using the handwriting option when I could do otherwise.

When handwriting was not available, I wrote as much as I could into the editor before looking for symbols in the lower section and moving things
around to get the appropriate notation.

Straight Latex, write it out

I would type some of the formulae out, specifically anything that I could easily do without prior knowledge of LaTeX. If there was a fraction, greek
symbol, or an integral, I would just drag and drop them in rather than typing them. I tried to figure out how to the code for a fraction but I kept on
using a forward slash instead of a backslash and once I realized that it wasn't even used anymore. For a quick example of what I mean: for one of
the last examples with lambda and delta, I wrote out f(x)=f(x) and then added the greek symbols after.

Depending on the formula structure, I would start in the LaTex editing window. If the formula started to get messy in the LaTex window, I would
move to the interactive window to finish the formula.

I used the editor to add the LaTeX that I knew, and dragged appropriate symbols onto the canvas when I did not recognize or know how to write
them.

I always preferred to write the TeX formula in directly when I could, and I found the ability to put some TeX into a particular location visually quite
nice.

Latex formulation

If there was a symbol not on my keyboard, I tried to select it first from the bottom array of symbols; if it was there, I typed it all out to the best of
my ability. If something required a fraction or a square root, I selected it from the array as well.

when the starting formula was not available, I preferred to use latex commands. For those portions that I didn't remember, I preferred to use the
drag and drop and then edit it if necessary.



Please describe the strategies you used to edit the starting formula into t...

When handwriting wasn't available I just typed in/ inserted as much as I knew how to type or things I could easily find and put placeholders in for the
symbols I didn't know how to insert yet. After I had most of the equation set up I went through and replaced or inserted things that were wrong/
missing.



Q7 - Did you encounter any symbols you didn’t know how to write in LaTeX? If so, how

did you figure out how to write them?

Did you encounter any symbols you didn’t know how to write in LaTeX? If so,...

i simply inserted them into the formula from the functions tab at the bottom. i used the search bar to find any symbols i was unsure of, by typing in
the alphabet the symbol most resembled in the search bar.

Yes, I encountered quite a few. I would look to other tools such as the handwriting tool or the formulas & symbols if I didn't know how to type it.

Yes, I located them in the editing panel, and dragged them in, and saw what the LaTeX output was

I encountered some symbols that I didn't know the names of, like the for all operator. I had to look through the available symbols to find it.

I initially couldn't remember the \frac command; using the bubble on the lower panel helped. I also couldn't remember the name of a Greek symbol
so I used the lower bubble as well.

I searched through the given symbols until I found the matching one

I could not figure out the 'belong all" symbol.

Yes I googled the symbol and copied and pasted it in the text editor.

Yes. I either handwrote them but if I did not get it, I would look it up and replace it by dragging.

I did not encounter symbols I did not know how to write in LaTeX.

The I did not figure out how to write symbols.

Yes, there were symbols that I didn't know how to write in latex, I searched for them in the symbols section and then dragged and dropped them in
the editor box in such cases.

I did encounter those symbols. I didn't figure out how to write them, I just dragged them from the helpful menu below.

There were a few Greek symbols I didn't know. I either had the handwriting guess or I looked in the symbols area.

I wasn't sure how to write for all (upside down A) so I filtered the bottom panel to find it.

yes, either used the symbols given below or handwriting

No

Yes, i used the symbols given beow

I couldn't remember how to write a root symbol but I found it in the keyboard after a few minutes of frustrated trial and error. I also couldn't
remember how to write fractions, but I didn't even try with that and went straight to the keyboard.



Did you encounter any symbols you didn’t know how to write in LaTeX? If so,...

I was not sure of some of the greek letter names, but hovering over them at the bottom provided their names

I wasn't sure the commands for 'For all' or 'Integral', so I would draw them if I had the option because I know what they look like, but otherwise I
searched by type like 'Logic' for the 'For All'

i didnt know how to write anything in latex but i realized that i could hover over the symbols in the bottom panel and it showed how to write them in
latex

Yes. I picked them out from the selection below. Also, / should be sufficient for a fraction.

The greek ones couldn't be typed without a code so I dragged them in from the greek letter bank.

There was the upside-down capital A logic symbol I've never seen before. I tried hand drawing it but the LaTeX program wouldn't recognize it after 3
attempts. So I gave up on hand drawing it and went and searched through the symbols pages for a minute or two looking for it and found it
eventually.

There is one character I didn't know in LaTex and I was able to solve it by initially using handwriting which is the easiest to access. Once that
character is done, I then simply highlight and copy it for re-use on the next need.

I did not know the code for the upside-down "A." After finding it on the menu of symbols, the editing window simply displayed that character and not
the code, so I did not learn what the code was.

There were symbols that I did not know how to write, so I figured out how to get them by looking through every symbol in the symbols list at the
bottom until I found the right one.

The upside down looking A. I searched for it visually in the symbols given

Square root, greek symbols, fractions I saw that a lot of the greek symbols were just the greek symbols but I would just drag and drop them in
rather than googling the symbol for pi and then copying/pasting it into the code. For square roots, I saw the code and continued to drag and drop a
square root x in, and I would change the x as needed. For factions, I tried to learn the code because it came up a lot but as I said earlier I did a
forward slash instead of a backslash, and by the time I realized that there were no more questions with fractions. So I just dropped x/y in and
changed x and y as needed.

I usually never remember any symbol besides the common Greek letters. I would always want a symbol bank for easy of access to the symbols.

I relied solely on the provided symbols when handwriting was not available, but in the cases that the handwriting tool was enabled, I quickly wrote
them out and added them.

I found them in the symbol list.

Drag and drop

Most of the symbols I already knew how to draw, and if I didn't I could just guess and correct it later with the symbol array.

yes, there were many. I would either use drag and drop and then edit them, or else I would use the draw option if available.

When I couldn't find the symbol I used the handwriting feature, but most of the time I just spent an extra minute or so looking through the bottom
area to insert what I was looking for.



Q8 - When using handwriting, how easy to use was the handwriting interface?

Extremely easy

Somewhat easy

Neither easy nor
difficult

Somewhat difficult

Extremely difficult

0 2 4 6 8 10 12 14 16 18

# Field Minimum Maximum Mean
Std

Deviation
Variance Count

1
When using handwriting, how easy to use was the handwriting

interface?
1.00 4.00 2.03 0.82 0.67 37

Showing rows 1 - 6 of 6

# Field
Choice
Count

1 Extremely easy 27.03% 10

2 Somewhat easy 48.65% 18

3 Neither easy nor difficult 18.92% 7

4 Somewhat difficult 5.41% 2

5 Extremely difficult 0.00% 0

37



Q9 - When using handwriting, how easy was it to correct the formula if it didn't display

what you expected?

Extremely easy

Somewhat easy

Neither easy nor
difficult

Somewhat difficult

Extremely difficult

0 1 2 3 4 5 6 7 8 9 10 11 12

# Field Minimum Maximum Mean
Std

Deviation
Variance Count

1
When using handwriting, how easy was it to correct the formula if it

didn't display what you expected?
1.00 5.00 2.46 1.29 1.65 37

Showing rows 1 - 6 of 6

# Field
Choice
Count

1 Extremely easy 29.73% 11

2 Somewhat easy 29.73% 11

3 Neither easy nor difficult 10.81% 4

4 Somewhat difficult 24.32% 9

5 Extremely difficult 5.41% 2

37



Q10 - When using handwriting, how easy was it to correct individual symbols in the

formula?

Extremely easy

Somewhat easy

Neither easy nor
difficult

Somewhat difficult

Extremely difficult

0 2 4 6 8 10 12 14 16

# Field Minimum Maximum Mean
Std

Deviation
Variance Count

1
When using handwriting, how easy was it to correct individual

symbols in the formula?
1.00 5.00 1.92 1.07 1.16 37

Showing rows 1 - 6 of 6

# Field
Choice
Count

1 Extremely easy 43.24% 16

2 Somewhat easy 35.14% 13

3 Neither easy nor difficult 13.51% 5

4 Somewhat difficult 2.70% 1

5 Extremely difficult 5.41% 2

37



Q11 - Please provide any additional comments that you have below.

Please provide any additional comments that you have below.

I did not use handwriting because I was confused as to how it was implemented.

It felt like handwriting mode often struggled to understand fractions. Additionally - when placing a symbol next to a subtraction or fraction bar, the
top-right, right, and lower-right bubbles were very close. I attempted to record via zoom meeting but I'm not sure if I did it correctly.

The interface of the software can be better. Some responses are slow.

I really like that you can enter a formula via handwriting, LaTeX, and by dragging symbols and notation. I feel like it caters to a very wide audience.
It's nice to have regular LaTeX editing in there for people who are acquainted LaTeX. Having the "deck" of symbols to drag makes it accessible and
useful for people who aren't familiar with LaTeX. Great work!!

Sometimes, the handwriting editor didn't recognize what I had written, but it just happened 2-3 times. Otherwise, the experience was smooth.

Sometimes it felt like certain symbols would just disappear or change when I went to the main formula after dragging in a handwritten sample. It can
be hard to click on the dot for horizontal lines like minus or the fraction symbol. Also it would be nice to have a quick way to type fractions. This is a
pretty awesome program though, I'd love to use it once it's released!

This is an excellent tool! Can't believe I haven't used it before. I might start using it in my coursework and I'll be sure to share it with others.

1) The website loading is too slow. 2) The code showing in Latex box is a bit lagged behind my typing speed, feels like the typing is not fluent and
would cause typing error.

prefer latex over handwriting. much faster

The drawing was a little difficult to use because I am on a laptop using a trackpad.

if it got the handwriting wrong the first time it seemed like it would never get it right no matter how clearly i tried to write what i wanted so eventually
i stopped trying to rewrite the formula and just instantly clicked insert no matter what it recognized and fixed it afterward. it made the ability to retry
drawing feel useless.

You really ought to fix the division symbol. a/b = a above a horizontal line b below the same horizontal line, but it was too hard to type. I might be
the same with * instead of an x for multiplication, but there wasn't any questions like that.

I know it was for research purposes but I actually found it quite enjoyable.

Writing integrals is really difficult without the handwriting feature. I had to write the numbers separately and drag/lift them and place them on its spot
on the integral symbol. Which, being a brand new LaTeX user was kind of hard/frustrating. I also wanna note that because I was screen recording
using zoom my computer was very slow and laggy which made it hard to aim to place anything in its right spot sometimes. You can view it on the
recording in general and on certain formulas that had a bunch of numbers/variables/symbols in close proximity.

The handwriting tool was very bad at picking up on my admittedly sloppy handwriting, but it made it hard to use for even simple formulas, and
instead of misreading things simply, the misreadings could turn one letter into three. Even for complex formulas, I found it easier to just use the
editor than to struggle with the handwriting tool's recognition software.

I don't know if it's just for me but when I was dealing with fractions and didn't have handwriting available. I would change the x/y in the editing
section on the coding part, and when I would go to type in whatever the formula had in the denominator and numerator, it would throw me into the
search function for the functions (that you could drag and drop in from below) which was annoying.



End of Report

Please provide any additional comments that you have below.

Adding in standard keyboard controls like ctrl+z for undoing or adding in the ability to use the delete key would be nice.

The dot interface became a little dubious when fractions were involved; it looked like superscript and subscript dots overlapped with the right dot on
the fraction bar itself. I did not attempt to try this solution, but in some cases I would have preferred to replace items on the canvas by highlighting
and typing out a replacement, like I would in the LaTeX editor, rather than selecting the middle dot and clicking the replace button.

Being able to pick from a searchable pop-up symbol list when inserting through a blue dot on the visual formula would have been nice

I was surprised how easily the LaTeX writing tool worked with my trackpad, since it's usually pretty finicky when I try to draw on it. Maybe it's the
program, maybe it's just me getting better at it...

All of the options if available were very useful when it comes to an overall experience. Latex was preferred for equations that were hard to draw,
Draw and drag-drop was convenient for confusing latex commands, and the option to add suffix and prefix was excellent.

Even when handwriting did not get the right symbol, it always had the right one in the replacement options which made it very easy to change out
any wrong symbols. Handwriting probably would be the fastest way for most equations for me personally, but I always dislike drawing with my
mouse so I might not always use it.


	Introducing Handwriting into a Multimodal LATEX Formula Editor
	Recommended Citation

	tmp.1621433626.pdf.mnsiz

