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Abstract

The rapid manufacturing of highly accurate synthetic DNA is crucial for its use as a molec-

ular tool, the understanding and engineering of regulatory elements, protein engineering, genetic

refactoring, engineered genetic networks and metabolic pathways, and whole-genome syntheses

[1,2]. Recent efforts in the development of enzyme mediated oligonucleotide synthesis have shown

much potential to benefit conventional DNA synthesis [3–5]. With its success in applications as

chemical microreactors [6–10], biological assays [8–14], and clinical diagnostic tools [10,15–19],

digital microfluidic (DMF) devices are an attractive platform to apply the promising benefits of en-

zymatic oligonucleotide synthesis to the manufacturing of synthetic DNA. This thesis work aims

to demonstrate automated DNA assembly using oligonucleotides on a DMF device through the

demonstration and validation of an automated DNA assembly protocol.

The prototyping process performed through this work revealed various important design

considerations for the reliability of fluid handling performance and the mitigation of failure modes.

To prevent dielectric breakdown or electrolysis, a relatively thick SU-8 3005 dielectric is used to

remove the sensitivity of the device to variances in dielectric thickness and quality. To enable

droplet creation, the gap distance between the DMF chip and top-plate is created and minimized

using a thick SU-8 2100 layer. Reliable droplet creation is achieved through the use of electrode

geometry that targets predictable fluid delivery and cutting. Reliable droplet transport is achieved

through the use of a electrode interdigitation geometry that targets lower total electrode surface area

and higher interdigitation contact area. The testing of DNA laden fluids revealed that biofouling

can be a large concern for the demonstration of DNA assembly on a DMF device if droplets are

moved through an air medium. To mitigate its effects, the final DMF device design featured the use

of a permanently bonded top-plate with bored inlet/outlet ports as well as a silicone oil medium.



The final DMF device design was used to demonstrate automated DNA assembly. This

demonstration involved the creation, transport, and mixing of DNA brick samples. These sam-

ples are subsequently incubated on a chemical bench or on the DMF chip to create recombinant

DNA containing genetic information. DNA gel imaging of DNA assembly products from on-chip

protocols compared to protocols performed on a chemical benchtop revealed comparable results.

Through the course of this work, the applicability of automated DNA assembly on a DMF device

was validated to provide preliminary results in the ultimate goal of DNA synthesis using enzymatic

oligonucleotide synthesis.
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1 Introduction

Digital microfluidic (DMF) devices commonly use electrowetting on dielectric (EWOD) to

apply asymmetric electric fields to manipulate droplets [10,20–22]. These devices have been used

to automate chemical and biological processes at a microscopic scale by creating and individu-

ally manipulating discrete volumes of fluid [8, 9, 23]. Often referred to as a lab-on-a-chip (LOC)

platforms, DMF devices have demonstrated much success in LOC applications as chemical mi-

croreactors [6–10], biological assays [8–14], and clinical diagnostic platforms [10, 15–19]. One

LOC application that has the potential to benefit from DMF devices is the manufacturing of syn-

thetic deoxyribonucleic acid (DNA).

DNA is comprised of a sequence of nitrogenous bases that governs the development, func-

tion, growth, and reproduction of living cells. The rapid manufacturing of highly accurate synthetic

DNA is crucial for applications in synthetic biology such as: molecular tools, understanding and

engineering regulatory elements, protein engineering, genetic refactoring, engineering genetic net-

works and metabolic pathways, whole-genome syntheses, and DNA nanotechnology [1, 2]. The

manufacturing of custom sequences of synthetic DNA typically consists of two main processes:

(1) the synthesis of short single stranded molecules called oligonucleotides and (2) the annealing

and assembly of oligonucleotides into long chains of double stranded DNA [1, 24, 25].
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While the amplification and assembly of DNA is done using a combination of various tech-

niques, the synthesis of oligonucleotides is primarily done through a high-throughput process en-

abled by phosphoramidite chemistry [26,27]. A limitation in this chemical process is its sensitivity

to the presence of water. While it is required during the oxidation step, the presence of water causes

decreased reactivity during the coupling step [28–30]. Because of this sensitivity to the presence

of water, this chemistry relies on the use of an acetonitrile solvent to achieve high solubility of

nucleoside carrying phosphoramidites as well as the accuracy and robustness of synthesis [31–33].

Because EWOD manipulation of acetonitrile has seen mixed success [7, 34–36], DMF devices

have not previously been used as a platform for oligonucleotide and DNA synthesis.

Recent research efforts in enzyme mediated oligonucleotide synthesis has shown potential

as a promising successor to phosphoramidite chemistry for oligonucleotide synthesis due to its im-

provements to strand length, error rate, throughput, and cost of production [3–5]. Among these im-

provements, a key advantage of enzymatic oligonucleotide synthesis is its ability to be performed

using a water solvent [3,4]. Because DNA assembly is typically conducted in water [1,24,37,38],

a new manufacturing scheme that integrates both oligonucleotide synthesis and DNA assembly on

one platform has become possible.

Digital microfluidic (DMF) devices are an attractive platform to automate DNA synthesis. In

comparison to continuous flow microfluidic platforms, DMF devices offer various advantages in its

cost of manufacturing, flexibility in configuration, as well as the speed and efficiency in operation

[9, 10, 23, 39]. By creating a device and manipulation scheme able to support the necessary fluid

functions and chemistry, DMF devices may be able to complement the advantages offered by

enzymatic oligonucleotide synthesis for the manufacturing synthetic DNA.
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2 The Research Question

This thesis seeks to answer the question: Can digital microuidic devices be used to automate

DNA assembly? Answering this research question is the first step toward integrating enzymatic

oligonucleotide synthesis and DNA assembly on a single, disposable EWOD DMF device. If the

current work is successful, it will pave the way for future work to implement enzymatic oligonu-

cleotide synthesis in order to demonstrate the entire DNA synthesis process.

This thesis will answer the research question by (1) taking insight from published works to

design and fabricate a suitable DMF device, (2) examining the compatibility of DNA laden droplets

on those devices, and (3) demonstrating successful automated DNA assembly by comparing on-

chip results to those from traditional benchtop methods.
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3 Background & Theory

The primary goal of this thesis work is to develop a digital microfluidic (DMF) to automate

DNA assembly. DMF devices perform fluid handling functions through the application of asym-

metric electric field to manipulate droplets [20,22,40]. To understand how these devices work, we

must understand how droplets typically wet surfaces and how that behavior can be manipulated by

electrowetting.

3.1 Wetting

The shape of a fluid sitting on a surface is determined by the interaction of various forces

such as gravity and surface tension [41–43]. Surface tension is the force that results from the bal-

ance of cohesive forces from each constituent phase state and adhesive forces from each interface

in a system. As the size of a fluid approaches microscopic length scales, surface tension forces

begin to dominate the influence of gravity to shape the fluid into a droplet [44, 45]. In this sense,

gravity and surface tension compete to determine the shape of a fluid. The resultant shape of a

microscopic droplet sitting on a surface can therefore be described as a spherical cap containing

the surface tension forces within the system. This droplet shape is depicted in Figure 3.1.

Figure 3.1: Illustration of a common droplet wetting scenario depicting a spherical cap which consists of
the equilibrium contact angle θ resultant from the force balance of the solid-liquid γSL, liquid-gas γLG, and
solid-gas γSG surface tensions that make up the triple contact line
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3.1.1 Young’s Equation

In the system seen in Figure 3.1, three interfaces exist: solid-liquid, liquid-gas, and solid-

gas. This system is at equilibrium when the solid-liquid γSL, liquid-gas γLG, and solid-gas γSG

surface tension forces are balanced. The resultant shape of the droplet from this force balance is

commonly described by the contact angle [46–48]. A common method for relating the contact

angle to the surface tension forces is through a mechanical force balance

γLG(cos θ) = γSG − γSL. (1)

Equation (1) expresses the equilibrium condition where the vector sum of the surface tension forces

are balanced as seen in Figure 3.1. The resultant angle between the solid-liquid γSL and liquid-gas

γLG surface tension forces is known as the equilibrium contact angle θ. The line where this triple

interface exists is known as the triple contact line. Equation (1) is often rearranged to describe the

system through the equilibrium contact angle

cos θ =
γSG − γSL

γLG
. (2)

The relationship shown in Equation (2) is known as Youngs equation [46] and can be used to

describe the equilibrium contact angle of a droplet on a surface. If the fluid wetting a surface is

small enough to be modeled as a spherical cap, the shape of the droplet can be estimated using the

equilibrium contact angle and any other geometric parameter (e.g. volume, height, contact radius,

radius of curvature, etc.). Surfaces and materials in wetting systems can be primarily described

by this equilibrium contact angle. In short, a water droplet wetting a surface with an equilibrium

contact angle below 90° would indicate a hydrophilic surface while greater angles would indicate

a hydrophobic surface.
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3.1.2 Contact Angle Hysteresis

Young’s equation only concerns the basic thermodynamic relations to describe an system

in static equilibrium [47, 49]. Due to this fact, factors such as surface roughness, heterogeneity,

adsorption/desorption are not considered [50–53]. These non-ideal factors contribute to large vari-

ances in wetting behaviors of systems that consist of the same solid, liquid, and gas. The effects

of these factors can be observed in Figure 3.2 where the measured contact angle of advancing and

receding edges of a fluid in motion diverge from the equilibrium contact angle.

To account for these non-ideal factors, the measured static contact angle is referred to as the

apparent contact angle. For a fluid in motion, the difference in advancing and receding contact

angles is referred to as contact angle hysteresis. The measurement of these wetting characteristics

are often used to describe degree of the random pinning forces and the relative wetting performance

of the system [54–58].

The detection of this divergence of the apparent contact angle from equilibrium as well as the

increase in contact angle hysteresis is an important consideration for the success of a DMF device.

This is due to these effects being attributed to random pinning forces from surface roughness,

heterogeneity, and adsorption/desorption. The origins and effects of these phenomenon is analyzed

elsewhere [47, 50–53, 55, 57, 58]. Understanding the general role of random pinning forces, the

DMF devices used in this work will attempt to mitigate its effects.

Figure 3.2: Example of contact angle hysteresis scenario in a mobile droplet depicting the apparent contact
angles of the advancing θA and receding θR triple contact lines
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3.2 Electrowetting on Dielectric

Electrowetting describes the modification of liquid wetting behavior through the interaction

of an electrolyte or polar solvent with the induced charges on a conductive surface. By including

a dielectric to the system, the induced charge density is enhanced. The processes involved in

Figure 3.3 can be summarized through the following steps:

1. An electric field is applied between the droplet and conductor to accumulate charges on the

conductor surface;

2. The accumulated conductor charge polarizes the dielectric and subsequently induces an ac-

cumulation of charge, ions, and dipoles in the droplet near dielectric surface;

3. The induced accumulation of charges, ions, and dipoles rearrange and spread the contact

area between the droplet and dielectric interface; and

4. Static equilibrium is reached when the interfacial forces are balanced at the triple contact

line between the droplet, dielectric, and medium.

Figure 3.3: Illustration of electrowetting on dielectric depicting the modification of the apparent contact
angle θ0 to the electrowetting contact angle θ (a) before and (b) after the application of an electric field
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3.2.1 Young-Lippmann Equation

The most common method for describing electowetting performance is through the analysis

of the apparent contact angle of the droplet caused by the application of an electric field [59–62].

Applying an electric field to an EWOD system adds an electrowetting force to the force balance

at triple contact line. Figure 3.3 depicts droplet profiles (a) before and (b) after the application

of an electric to modify the apparent contact angle θ0 to the electrowetting contact angle θ. To

understand the effects of this induced electrowetting force, Young’s equation must be revised. The

contact line of a general EWOD system is represented in Figure 3.4 as a trapezoidal wedge that is

displaced [54]. The following derivation summarizes the work conducted by Verheijen, Kang, and

Mugele and Baret [54, 59, 63].

A droplet will spread in all directions until it has reached a minimum in free energy where

γSL, γLG, γSG and the electrowetting force are balanced. With the addition of an applied potential,

an electric charge density σL will be created in the liquid and induce an image charge density σS

in the conductor to modify the force balance triple contact line as a resolution to the change in

free energy of the system. This total change in the Helmholtz free energy dF of the system can be

written as

dF = γSLdA− γSGdA+ γLGdA cos θ + dU − dWB (3)

where dA is the change in contact area between the solid/liquid interface, dU is the stored potential

energy from the electric field created between the electrical charge densities, and dWB is the work

done by the voltage source to redistribute the created charge densities. Throughout this derivation,

it is assumed that the system is in equilibrium at a constant potential V and that mechanisms for

every dissipation are negligible.
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Figure 3.4: Representation of EWOD system as a trapezoidal wedge and the displacement of the triple
contact line by dA

By first considering the case where there is no applied potential, it is understood that dU =

dWB = 0. At steady state, the free energy of the system is unchanged and therefore, dF/dA = 0.

With this understanding, Equation (3) can be rewritten in the form of the Young’s Equation to

describe the contact angle with no applied potential θ0:

cos θ =
γSG − γSL

γLG
= cos θ0 (4)

In the case with a nonzero applied potential, the potential energy resultant from the created charge

densities must be included. The electrostatic potential energy per unit area in the EWOD system

can be represented by
U

A
=

∫ d

0

1

2
E⃗D⃗dz (5)
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where E⃗ is the electric field, D⃗ is the displacement field, z is perpendicular to the surface, and d

is the thickness of the dielectric layer. With the assumption that these charge distributions create a

perfect parallel plate capacitor at a potential V , E⃗ = V
d

and D⃗ = σL. The change in the electrostatic

potential energy as a function of the change in the contact area can be as:

dU

dA
=

1

2
dED =

1

2
V σL (6)

In addition to the electrostatic potential energy, the voltage source performs work to redistribute

the created charge distribution. This work can be represented by

dW

dA
= V σL (7)

By substituting Equation (6) and (7) along with Gauss’s Law (σL = ϵ0ϵrV/d) into Equation (3) at

a steady state where dF/dA = 0, the following equation can be derived:

cos θ =
γSG − γSL

γLG
+

ϵ0ϵr
2dγLG

V 2 (8)

Finally combining Equation (4) and (8) the Young-Lippmann or electrowetting equation is derived

in order to describe the electrowetting contact angle as a function of the apparent contact angle and

the applied potential:

cos θ = cos θ0 +
ϵ0ϵr

2dγLG
V 2 (9)

The Young-Lippmann equation is a powerful tool in the analysis of the potential of EWOD

performance with its ability to describe the wetting behavior of the system in terms of material

dependent characteristics such as cos θ0, ϵr, d, and γLG as well as device control parameters such

as V . Using this equation, a DMF device can be designed to ensure the success of fluid handling

functions through EWOD.

10



3.2.2 Contact Angle Saturation

Because the Young-Lippmann equation is derived from the original work by Young, this

equation again only concerns the basic thermodynamic relations to describe a system in static

equilibrium. In reality, increasing the applied voltage does not decrease the contact angle at the

rate described by the Young-Lippmann equation [59, 61, 64–66]. This phenomenon is referred to

as contact angle saturation and is depicted in Figure 3.5.

The detection of contact angle saturation is an important consideration for the success of a

EWOD DMF device. Beyond the point of saturation, additional applied potential would not be

able to further change the contact angle and therefore provide no benefits to droplet manipulation.

Additionally, without the detection of contact angle saturation, the applied potential could eventu-

ally cause permanent breakdown of the dielectric and fluid. While the exact origin of contact angle

saturation is not yet fully understood, several works have hypothesized that the effects may be due

to charge leakage, dielectric charge trapping, contact line charge repulsion [67–69]. Though this

work does not attempt to model contact angle saturation [63,64,70], the DMF devices used in this

work will attempt to prevent the occurrence of breakdown.

Figure 3.5: Effects of contact angle saturation depicting the theoretical Young-Lippman electrowetting
equation and experimentally measured contact angles θ as a function of the applied external potential V
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3.3 Digital Microfluidics

Microfluidics refers to devices and methods for controlling and manipulating fluid flows at a

microscopic scale. Driven by efforts to create micro total analysis or lab-on-a-chip (LOC) systems

[71], these devices primarily consist of a continuous flow configuration where fluid channels are

fabricated on an inexpensive substrate and commonly driven through the use of a system of external

mechanical pumps and valves. While they have seen much success in performing various physical,

chemical, and biological processes [72], continuous microfluidic devices are limited as a complete

LOC system due to its lack of reconfigurability, potential for cross-contamination, and trade-off

between throughput and control complexity [39].

Digital microfluidics (DMF) in contrast refers to devices and methods for controlling and

manipulating discrete volumes of fluid in the form of a droplet. The most common method for

droplet manipulation is electrowetting on dielectric (EWOD). EWOD DMF devices are primarily

constructed using (a) a chip comprised of a two-dimensional array of electrodes covered in a di-

electric and hydrophobic coating that is encapsulated by (b) a top-plate comprised of a transparent

grounding electrode covered in a hydrophobic coating.

In contrast to the general EWOD device that use an open configuration, DMF devices use

asymmetric electric fields on confined droplets to perform the manipulations necessary for various

fluid handling functions. As seen in Figure 3.6, this process consists of the use of electrowetting

to selectively modify the wetting behavior of the contact line in specific directions.

With the inclusion of this selective directionality, EWOD DMF devices are able to integrate

key fluid handling functions to create, transport, and mix droplet samples to enable a higher level

flexibility as a complete LOC system [10]. By integrating of these key functions, EWOD DMF

devices are able to provide numerous advantages LOC system [9, 10, 19, 39]:
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Figure 3.6: Depiction of (a) asymmetric electrowetting on a DMF device and (b) splitting, transport, and
mixing fluid handling functions

• High speed manipulation

• Compatibility with many electrolyte solutions

• Compatibility with optical and capacitive sensing for process monitoring

• Minimization of droplet evaporation through the use of a fluid medium

• Lack of mechanical parts that may fail

• Lack of microfabricated channels that increase design complexity and costs

• Lack of direct currents that cause undesired heating and reactions

With these advantages, DMF devices have demonstrated success in LOC applications as

chemical microreactors [6–10], biological assays [8–14], and clinical diagnostic platforms [10,

15–19]. While the potential of EWOD DMF devices as a LOC system is promising, it is important

understand the governing principles that enable the droplet creation and transport functions. With

numerous works focusing on modeling droplet dynamics [21, 73–78], the following sections will

provide an overview of the droplet transport models from Ren et al. [73] and creation models from

Cho et al. [10] that focus on important device design considerations that ensure the success of DNA

assembly.
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3.3.1 Droplet Transport

Droplet transport is the basis for all droplet handling on a DMF device. To ensure reliable

operation of the device, it is important to understand the factors that affect its performance. In an

EWOD device, an electric field is applied between the droplet and conductor. Electrowetting will

increase the contact area between the droplet and dielectric until the interfacial forces are balanced

at the triple contact line [21, 54, 59, 63]. In the case of DMF devices, the conductor is separated

into a two-dimensional array of electrodes. As seen in Figure 3.7, an electric field is applied to

an adjacent electrode in order to induce the accumulation of charge, ions, and dipoles only in the

direction of this adjacent electrode [40, 79].

Ren et al. describes the instantaneous force created in this direction as an electrowetting

force is created which persists until the droplet is transported to cover this adjacent electrode to

balance the interfacial forces at the triple contact line [73]. By applying this electric field in a

step wise manner, droplets can be simultaneously transported among the two-dimensional array of

electrodes to perform multiple processes in parallel. The basic one-dimensional force generated

from electrowetting FEW can be determined by reorganizing the Young-Lippmann equation or

Equation (9).

FEW = γLG(cos θ − cos θ0) =
ϵ0ϵr
2d

V 2 (10)

Figure 3.7: Illustration of triple contact line during droplet transport depicting the addition of an electrowet-
ting force FEW
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Equation (10) depicts the electrowetting force in terms of the liquid-gas surface tension force

γLG scaled by the difference in the electrowetting contact angle θ and the apparent contact angle

θ0 as a function of the vacuum permittivity ϵ0, relative permittivity of the dielectric ϵr, thickness

of the dielectric d, and the applied potential V . It is clear from this description that the electrowet-

ting force can be increased through several methods: maximize γLG through droplet liquid and

medium material selections, minimize θ and maximize θ0 through the choice of surface material

selection, maximize ϵr through dielectric material selection, minimize d during device fabrication,

and maximize V during device operation.

While it does not account for energy dissipative and frictional forces from factors such as

contact angle hysteresis or saturation [59, 63], Equation (10) does serve as a basic framework for

successful droplet transport. With this understanding, the DMF device can be designed within

the constraints of the available materials and manufacturing costs to ensure functionality for LOC

applications.

Another key consideration for droplet transport is electrode geometry. Because EWOD re-

lies on Coulombic attraction, the layout and design of transport electrode design therefore must

be able to maintain a minimal separation. While the separation can be minimized through gen-

eral microfabrication techniques, various groups have instead attempted to optimize the transport

electrode geometry. The strategies used include the use of various electrode shapes [80–82], in-

terdigitation of electrode edges [80, 82, 83], and the reduction of electrode surface area [80–83].

This work will attempt to use a combination of these various strategies to achieve reliable droplet

transport performance.
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3.3.2 Droplet Creation

The integration of the droplet creation function enables LOC protocols to be performed on

DMF devices. To ensure reliable demonstration of these protocols, it is important to understand

the factors that affect its performance. Droplet creation is enabled through the use of the top-plate

to create hydrodynamic instability [21, 23, 39, 84–86]. As seen in Figure 3.8, droplets are created

by splitting a large volume fluid through the use of three electrodes.

In this scenario, potential is applied to two end electrodes while the middle cutting electrode

is left grounded. Upon actuation, the triple contact line at both ends are pulled in opposite direc-

tions. With continued contact line displacement, a pressure difference is created to cause the center

of the fluid to neck. With a sufficiently large enough pressure difference, the fluid is split into two

droplets.

Figure 3.8: Illustration of droplet splitting depicting the (a) top down, (b) longitudinal, and (c) latitudinal
cross sectional areas of the fluid
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Various groups have attempted to model the criterion for splitting droplets in a DMF system

[55,75,77,86,87]. Cho et al. examines the reliance of droplet creation on hydrodynamic instability

by considering the pressure difference created between the two ends and center of the fluid column

[83]. When the electrowetting force is applied to stretch the fluid column to the point of necking,

the induced pressure difference can be related to the difference in contact angles cos θb2 − cos θb1

and the respective radii of displacement R1 and R2 of the two regions

P1 − P2 = γLG

(
1

R1

− 1

R2

+
cos θb2 − cos θb1

t

)
(11)

where γLG is the liquid-gas surface tension and t is the channel gap within the DMF device. At

static equilibrium where no necking occurs, the pressure of the two regions are equal. With this

understanding, Equation (11) can be rewritten as the following:

R2

R1

= 1− R2

t
(cos θb2 − cos θb1) (12)

Understanding that the ends of the fluid column are undergoing electrowetting while the center is

not, it can be assumed that the difference between cos θb2 and cos θb1 is the same as the relation-

ship described in the Young-Lippmann equation or Equation (9). Equation (12) can therefore be

rewritten as the following:
1

R1

=
1

R2

−
(
1

t

)
ϵ0ϵr

2dγLG
V 2 (13)
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Equation (13) provides key insight into the necessary factors for the successful creation of a

droplet. Necking is initiated when R1 becomes non-zero and negative. This condition can be

satisfied through a variety of methods: increase R2 continued displacement of the ends of the

fluid column, decrease t nad d during device fabrication, increase ϵr through dielectric choice, and

increase V during device operation. While it does not account for the effects of contact angle hys-

teresis [50–53, 55, 57, 58] or saturation [63, 64, 70], Equation (13) is able to clearly represent the

reliance of droplet creation on both geometric factors and EWOD.

Even when the criterion in Equation (13) is met, a common issue that occurs during the

droplet creation process is non-uniform splitting [39]. This issue is caused by a necking region

that is created off center in the cutting electrode. Various groups have attempt to address this issue

through the use of various creation electrode geometries [87, 88]. The strategies used include the

use of a modified cutting electrode geometry or off-center displacements of the contact line during

EWOD. This work will attempt to use a combination of these strategies to achieve reliable droplet

creation performance.

3.3.3 Biofouling

A general issue for microfluidic devices that perform biological protocols is biofouling [89–

92]. Biofouling concerns the adsorption and accumulation of biological materials onto the active

surfaces of the device. General mechanisms that contribute to biofouling are surface roughness,

electrostatic interaction, and van der Waals forces [93, 94]. Because these devices rely on surface

tension to drive fluid manipulation, surface fouling can greatly contribute to random pinning points

and eventual device failure. The issue of biofouling is addressed using various strategies: surface

structure engineering [95, 96], antifouling surface or bulk materials [97, 98], surfactant additives

[99], lubricant additives [100], and a combination of these strategies [101]. This work will attempt

to use a combination of these various strategies to mitigate observed biofouling.
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3.4 DNA Synthesis

To put this thesis work into context it is necessary to understand the details regarding DNA

synthesis. The rapid manufacturing of synthetic DNA relies on the use of short single-stranded

chains of nucleobases called oligonucleotides [102]. Oligonucleotides are primarily synthesized

using nucleoside phosphoramidite chemistry. This chemistry relies on the use of a protecting

group to enable and disable the synthesis process. By performing subsequent DNA amplification

and assembly, this conventional process has paved the way for the automation of high-throughput

DNA synthesis [2]. With growing demands high strand length and throughput with low error rates

and cost of production cost, the limits of phosphoramidite chemistry poses on the manufacturing

of DNA is becoming more apparent [1].

Recent research efforts to address the length, cost, and throughput limits of the phospho-

ramidite method have seen a large push for the use of enzymatic oligonucleotide synthesis [3–5].

Figure 3.9 summarizes the difference between the conventional phosphoramidite (Figure 3.9a) and

the enzyme mediated oligonucleotide synthesis process (Figure 3.9b).

Figure 3.9: Example of (a) conventional oligonucleotide synthesis and (b) enzyme mediated oligonucleotide
synthesis
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Enzymatic oligonucleotide synthesis is an attractive alternative over the phosphoramidite

method due to its robustness of enzymes, potential for process optimization through enzyme en-

gineering, ability to initiate synthesis from natural DNA [3]. The crucial element that makes this

process an attractive candidate for EWOD DMF devices is its ability to be performed in an aque-

ous medium [4, 5]. With previous success in DNA-based applications such as the purification

and extraction of DNA samples, DNA hybridization assays, polymerase chain reaction, and pyro

sequencing [10], DMF devices are a promising platform to complement the potential benefits of

enzymatic DNA synthesis.

Synthesized oligonucleotides are transformed into DNA molecules through anneal and as-

sembly processes [103–105]. Figure 3.10 summarizes the complete DNA synthesis process. These

processes rely on Watson-Crick base pairing (guanine-cytosine and adenine-thymine) to form DNA

molecules. Complementary strands of oligonucleotides are first annealed to form short DNA frag-

ments with single strand overhangs (Figure 3.10a-b). To form long DNA products, DNA fragments

are assembled using complementary single strand overhangs and a ligase enzyme (Figure 3.10b-c).

This work will attempt to perform DNA assembly on a DMF device using bench annealed oligonu-

cleotides. This preliminary work will be able to validate the compatibility of DMF devices for a

DNA synthesis protocol that implements both the oligonucleotide synthesis and DNA assembly

process.
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Figure 3.10: Example of complete DNA synthesis process that uses (a) oligonucleotide samples that are (b)
annealed into DNA fragments and (c) assembled into DNA products
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4 Experimental Methodology

The following sections outline the experimental methodology used for the demonstration of

DNA assembly on a DMF device. The various materials, processes, and tools used in the design,

fabrication, and testing of the DMF device will be described.

4.1 Device Design & Fabrication

The layout and design of the DMF device was key for reliable droplet creation and transport.

To achieve this goal, an iterative process of device design, fabrication, and testing was used. In

general, the DMF device layouts were designed in Adobe Illustrator or KLayout. These devices

used an array of contact pads that were connected to the corresponding transport and reservoir

electrodes. Electrodes designs took insight from the previous work of others. In general, key

design considerations included electrode geometry and method of interdigitation. Device layouts

maintained a minimum of 30 um line and 20 um space dimensions to ensure successful device

fabrication. DMF device fabrication was conducted using conventional techniques in the Semi-

conductor & Microsystems Fabrication Laboratory (SMFL).

4.1.1 Air Medium DMF Prototype

DMF prototypes were all tested with an air medium. DMF prototype chips were fabricated

on a bare 100 mm Eagle XG (Corning) wafer as the starting substrate (Figure 4.11a-i). Device

wafers were first prepared by performing a piranha etch process. The aluminum electrode layer

was sputter deposited onto each wafer (Figure 4.11a-ii). OiR 620 10 (Fujifilm) i-line photore-

sist was spin coated onto each wafer before performing contact lithography with a high-resolution

transparency photomask. Each following lithography process was conducted using a similar pho-

tomask and process. The electrode pattern was transferred to the aluminum layer using an alu-
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minum wet etch (Fujifilm) (Figure 4.11a-iii). A silicon dioxide dielectric layer was then deposited

through chemical vapor deposition (Figure 4.11a-iv). OiR 620 10 photoresist was spin coated and

patterned using contact lithography to be used as a contact cut mask. The silicon dioxide dielectric

layer was patterned using a 16:3:3 pad etch (Fujifilm) (Fujifilm) (Figure 4.11a-v). Each wafer was

then coated with OiR 620 10 photoresist to protect the surface. DMF chips were then diced from

each wafer. After the protective OiR 620 10 photoresist was stripped, a polyimide adhesive (Kap-

ton) was to mask the contact pads. A 50 nm hydrophobic layer of a diluted Teflon AF solution

(Chemours) was then spin coated on the surface of each chip (Figure 4.11a-vi). In order to ensure

that contact pads remained undamaged, the polyimide adhesive was left on the chips until it was

time to encapsulate the devices.

Figure 4.11: Microfabrication process flow depicting (a) prototype DMF chip, (b) top plate, and (c) the
completed device
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Device top-plates were fabricated using starting substrates consisting of 50 x 75 mm micro-

scope slides with a 200 nm film of Indium Tin Oxide (Delta Technologies) (Figure 4.11b-i). Each

top-plate used a polyimide adhesive to mask the corners of the top-plate. A 50 nm hydrophobic

layer of a diluted Teflon AF solution was then spin coated on the surface of each top-plate (Fig-

ure 4.11b-ii). In order to ensure that contact areas remained undamaged, the polyimide adhesive

was left on the top-plate until it was time enclose the devices for testing. The DMF chip and top

plate were then bonded to form a completed DMF device. DMF device prototypes loaded the test

fluid on to the reservoir electrodes and used a double-sided adhesive to bond the chip to the top

plate. A copper adhesive was used to provide electrical contact to the uncoated corners of the

top-plate. An example cross section of a completed device can be seen in (Figure 4.11c).
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4.1.2 Oil Medium Final DMF Device

The final DMF device chips were fabricated on 50 x 75 mm microscope slides with a 100

nm aluminum film (Deposition Research Laboratory Inc.) as the starting substrate (Figure 4.12a-

i). Each chip was first surface treated using a mild oxygen plasma and dehydration bake prior to

the spin coating of an AZ MIR 701 i-line photoresist (Merck). Each following surface treatment

was conducted using the same process. The electrode layer was patterned using contact lithog-

raphy with a high-resolution transparency photomask. Each following lithography process was

conducted using a similar photomask and process. The electrode layer pattern was transferred to

the aluminum layer using an aluminum wet etch (Figure 4.12a-ii). Each chip was then again sur-

face treated prior to the spin coating of SU-8 3005 negative photoresist (Microchem) that is used

as the device dielectric. The SU-8 3005 dielectric was patterned using contact lithography (Fig-

ure 4.12a-iii). For the final DMF device chip, an SU-8 2100 negative photoresist (Microchem) was

used as the gap and gasket template. The SU-8 2100 was spin coated and subsequently patterned

using contact lithography (Figure 4.12a-iv). Each chip was then again surface treated prior to the

use of a polyimide adhesive to mask the contact pads. A 50 nm hydrophobic layer of a diluted

Teflon AF solution was then spin coated on the surface of each chip (Figure 4.12e) (Figure 4.12a-

v). In order to ensure that contact pads remained undamaged, the polyimide adhesive was left on

the chips until it was time to encapsulate the devices.
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Figure 4.12: Microfabrication process flow depicting (a) final DMF chip, (b) top plate, and (c) the completed
device

Device top-plates were fabricated using starting substrates consisting of 50 x 50 mm micro-

scope slides with a 200 nm film of Indium Tin Oxide (Delta Technologies). The surface of the ITO

was covered using a polyimide adhesive before a series of ten 1 mm inlet/outlet ports were bored

using a CNC drill. (Figure 4.12b-i). After removing this adhesive, the corners of the each top-plate

was masked using polyimide adhesive. A 50 nm hydrophobic layer of a diluted Teflon AF solution

was then spin coated on the surface of each top-plate (Figure 4.12b-ii). In order to ensure that

contact areas remained undamaged, the polyimide adhesive was left on the top-plate until it was

time enclose the devices for testing. DMF chip and top plates were bonded to form a completed

DMF device. The final DMF device design used a two part epoxy along the SU-8 2100 gap and

gasket template. A copper adhesive was used to provide electrical contact to the top-plate. An

example cross section of a completed device can be seen in (Figure 4.12c). Encapsulated devices

were filled with 10 cSt silicone oil prior to testing. This was done by filling the device using an

Eppendorf variable micropipette while covering all but two inlet/outlet ports.
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4.2 Device Testing

4.2.1 Control Systems

Through the course of this work, two control systems were used to test DMF devices: a

custom National Instruments control system and SciBots Dropbot system. The custom control

system is a modular system that consists of various components that are controlled by the Lab-

VIEW software. The DropBot system is a fully integrated system controlled by the MicroDrop

software.

DMF devices during the prototyping process were tested using the custom control system.

The control system consisted of a NI PXI 1033 chassis containing a NI PXI 5402 signal generator,

NI PXI 4072 LCR multimeter, and NI PXI 2529 matrix switching card along with a Trek PZT700A

Amplifier. During testing, a sinusoidal actuation signal was generated, amplified, and input into the

matrix switching card and subsequently output into the 32 outputs of a custom 3D printed fixture.

DMF devices were controlled through the use of a custom virtual instrument (VI) in Lab-

VIEW software. By interfacing with the NI PXI 1033 chassis, this VI was able to quickly change

important parameters for DMF device operation. These parameters include: switch matrix loca-

tion, signal amplitude, signal frequency, transport actuation duration, and creation actuation du-

ration. In addition, this VI was able to quickly import simple protocols written in CSV format

denoting the step number, switch matrix location, and actuation state. The custom control system

was used to attempt both manual and automated droplet transport and creation. Videos of testing

attempts were captured using a separate system that consists of a Point Grey Camera and a Zeiss

SteREO Fluorescent Microscope. Videos were analyzed for modes of failure and used to create

changes to the DMF device prototype.
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Testing of the final DMF device design was conducted on the DropBot system. The DropBot

system was chosen as a successor to the custom control system due to its robust hardware and

software with features for troubleshooting, diagnostics, and performance monitoring. Prior to each

automated protocol, a test PCB provided by Sci-Bots was used with the on-board diagnostics tests

of the MicroDrop software to verify the functionality of the DropBot system. A DMF device was

subsequently loaded onto system and tested using DI water and the realtime programming function

of the Microdrop software. This was done in order to verify connection between system pins and

DMF device pin pads. A webcam included in the DropBot control system was used to observe the

DMF device during testing.

4.2.2 DNA Assembly

DNA laden droplets in this work used six oligonucleotides with a length of around 80 nu-

cleotides (Integrated DNA Technologies). These oligonucleotides will be referred as 1A, 1B, 1C,

2A, 2B, and 2C. All oligonucleotides were 5’-phosphorylated with the exception of 1A, which is

labeled with a 5’-Cy3 fluorophore. The sequences of these oligonucleotdes can be seen in Table 1.

In this work, oligonucleotides 1A, 1B, and 1C were hybridized to form DNA Brick 1, and 2A, 2B,

and 2C hybridize to form DNA Brick 2. These oligonucleotides (5 uM strand concentration) were

annealed without ligation at 85 °C for 5 min in 1 x T4 DNA ligase buffer (New England Biolabs)

and snap cooled on ice for 30 min. The following reagents were mixed using the following pro-

portions to create working stock solutions of DNA Brick 1 and DNA Brick 2: 10 uL nuclease-free

water, 0.6 uL of 10x T4 DNA ligase buffer (New England BioLabs), 0.1 uL of T4 DNA ligase

(Thermo Fisher Scientific) and either 4.0 uL of solution containing DNA Brick 1 or 4.1 uL of solu-

tion containing DNA Brick 2. DNA assembly was conducted using Brick 1 and Brick 2 solutions.

The two solutions were mixed on a chemical bench or on DMF devices and subsequently incubated

at room temperature for a minimum of 10 minutes. Proteinase K and calcium chloride were then

added to the mixture and incubated for 30 minutes at 37 °C then 10 minutes at 70 °C.
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Table 1: Summary of oligonucleotide sequences

Name Sequence (5’-3’)

1A
/5Cy3/ATCGATTCTTTCTGCGGACCATGTTGT
TCTGATACTTTGGTCATATTTCCGTTGTAGG
AGTGAATTCACTTAGCTTTGCG

1B
/5Phos/AAGTGGTGTTCAGTTCGGTAACGGAG
AATCTATGCGGCATTCTTATTAATACATTTGA
AACACGCCCAATTGATACTAAA

1C
/5Phos/ATGCCGCATAGATTCTCCGTTACCGAA
CTGAACACCACTTCGCAAAGCTAAGTGAAT
TCACTCCTACAACGGAAATATGA

2A
/5Phos/TATCAAAGCTTGCTACCAATAATTAGC
ATTATTGCCTTGCTGAACGTCGCGTGCGTAC
ACTTTAATCTCCGGTTCAAGCT

2B
/5Phos/GCAAGGCAATAATGCTAATTATTGGTA
GCAAGCTTTGATATTTAGTATCAATTGGGCG
TGTTTCAAATGTATTAATAAGA

2C
/5Phos/GCAGTGTAGGTGTATCAATATAGCATG
TAGCCACATCCTTAGCTTGAACCGGAGATT
AAAGTGTACGCACGCGACGTTCA

Gel electrophoresis using an agarose gel (2% w/v) was used to image the results of DNA

assembly through ligation. 1 g of agarose powder and 50 mL of 1X TAE buffer were mixed

in a medium size beaker. This solution was heated in a microwave in increments of 30 s until

clear in appearance and left to cool. After becoming cool enough to handle, 2 uL of ethidium

bromide was added to the solution. The gel solution was then poured into the middle platform

of an electrophoresis rig. The comb from the rig was then added to create the wells for each

sample. The solution was left to dry for 30 min until the gel forms. After the comb is removed, the

electrophoresis rig was filled with 1X TAE buffer until the surface of the gel is adequately covered.

1 uL of each DNA sample solution was pipetted into each well.
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The ends of the electrophoresis rig was then connected to a power supply and run at 90 V

for 50 minutes. Gel results were visualized using a ChemiDoc XRS+ imager (Bio-Rad). DNA

is negatively charged and therefore reacts to an electric field. The effects of this electric field are

impeded as DNA molecules grow in size. The base pairs lengths of a DNA sample can therefore

be estimated through the use of a reference ladder that contains samples with equal increments of

base pairs. Successful assembly in this work was validated through the use of a DNA reference

ladder with 50 base pair increments to compare samples of DNA brick 1, DNA brick 2, and the

assembled DNA from each protocol.
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4.2.3 Experimental Procedure

The final DMF device in this work must be able to demonstrate a successful DNA assem-

bly process. This DMF device must first be able to successfully demonstrate the necessary fluid

handling functions of droplet transport and creation. The DMF device must then be assessed for

any failure modes concerning DNA laden droplets. To achieve these larger aims, DMF device

prototypes aim to achieve the following protocols:

1. Manual transport of DI water between two electrodes;

2. Manual creation of DI water droplet from the reservoir; and

3. Automated creation, transport, and mixing of DI water droplets.

The success of each protocol was validated when failure modes were not observed. With successful

demonstration of the above protocols, the insight gained was used to create a final DMF device

design supported by the DropBot system. This final design was then used to perform an automated

DNA assembly protocol. This protocol used DNA Brick 1 and Brick 2 solutions to create two

droplets which were transported and mixed together until extraction from the DMF device. The

success of each protocol was validated through the examination of gel electrophoresis results.

Because it is unclear if these DMF devices were compatible with the reagents especially at high

incubation duration and temperatures, devices were tested incrementally as such:

1. Automated creation, transport, and mixing of DNA droplets, off chip incubation;

2. Automated creation, transport, and mixing of DNA droplets with extended exposure, off

chip incubation; and

3. Automated creation, transport, and mixing of DNA droplets and incubation.

31



5 Results & Discussion

5.1 Device Prototyping

The first aim of this work was to validate a device design and fabrication method for a general

DMF device. This was an iterative process that began with the fabrication methodology used in

Schertzer et al. [78, 106]. To achieve a device suitable for DNA assembly, this aim is subdivided

into the following aims: (a) droplet transport and (b) droplet creation.

5.1.1 Manual and Automated Droplet Transport

The demonstration of manual droplet transport was the first goal attempted on DMF proto-

type 1. The DMF device layout can be seen in (Figure 5.13). This design consisted 1 x 1 mm

transport electrodes based on the work of Pollack et al. [79] and 2.5 x 1.75 mm reservoir elec-

trodes. The overlapping edge each transport electrode used a triangle pattern to create electrode

interdigitation and promote droplet transport (Figure 5.13b). This design used only three reservoirs

to allow for more DMF chips to be fabricated on one wafer. DI water was loaded onto the DMF

chip using a variable micropipette prior to device encapsulation.

Initial attempts to manually perform droplet transport resulted in failure. Figure 5.14 depicts

a failed attempt where the advancing edge of the fluid was able to move while the receding end

remained stationary. Factors that could have contributed to this result are the excess fluid volume

and dielectric breakdown/electrolysis.
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Figure 5.13: DMF device layout of prototype 1 showing (a) reservoir and transport electrode dimensions as
well as (b) interdigitation dimensions

The excess DI water volume contributed to this result because the fluid was able to be de-

formed but not transported (Figure 5.14c-f). In this case, the radius of curvature of the DI water is

large in the horizontal plane. This large radius of curvature results in a small surface tension force

that maintains the circular shape of the fluid. With the addition of an electrowetting force, the fluid

is unable to hold its shape and instead deforms. Possible solutions to this problem include the

reduction of fluid volume or the increase of the channel gap. Increasing the channel gap distance

was chosen because volumes under 1.5 uL were unable to be loaded reliably onto the DMF device

prior to encapsulation.

Dielectric breakdown or electrolysis was also observed (Figure 5.14c-f). Dielectric break-

down or electrolysis is a critical failure mode for DMF devices because the device surface can be

permanently modified. This surface modification would create random pinning points that cause

droplets to stick during droplet transport or creation. Possible solutions to this problem include the

use of a higher breakdown strength dielectric or increasing the dielectric thickness. Increasing the

dielectric thickness was chosen to maintain a similar device fabrication process.
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Figure 5.14: Image sequence from manual droplet transport attempt on DMF device prototype 1; Red elec-
trodes are actuated while others are grounded; Green arrows in the images show observations of dielectric
breakdown or electrolysis; This device was fabricated with the following specifications: 270 nm aluminum
electrode layer, 360 nm silicon dioxide dielectric layer, and 60 um device channel gap; Testing was con-
ducted using 1.5 uL of DI water on the custom NI control system with a 35 VRMS 1kHz sinusoidal actuation
signal

Successful droplet transport was demonstrated by moving a DI water test fluid from the

reservoir, out three transport electrodes, back to the reservoir (Figure 5.15a-f). This result was

achieved after the device channel gap was increased and the dielectric thickness was increased. The

device channel gap was increased from 60 to 120 um through the use of an two additional strips

of double-sided adhesive. The dielectric thickness was increased from 360 to 460 nm through the

fabrication process. To further prevent dielectric breakdown/electrolysis, the necessary minimum

actuation voltage was determined by ramping the signal incrementally until the electrowetting was

observed. This strategy was used in all following test protocols. This manual droplet transport

protocol was conducted numerous times to fulfill the goal of manual droplet transport.

Automated droplet transport was successfully demonstrated with the use of the custom Na-

tional Instruments VI. The droplet was transported from one reservoir to another (Figure 5.16a-h).

This automated droplet transport process was conducted numerous times without dielectric break-

down/electrolysis to fulfill the goal of automated droplet transport.
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Figure 5.15: Image sequence from the second manual droplet transport attempt on DMF device prototype
1; Red electrodes are actuated while others are grounded; This device was fabricated with the following
specifications: 216 nm aluminum electrode layer, 460 nm silicon dioxide dielectric layer, and 120 um device
channel gap; Testing was conducted using 1.5 uL of DI water on the custom NI control system with a 35
VRMS 1kHz sinusoidal actuation signal

Figure 5.16: Image sequence from an automated droplet transport attempt on DMF device prototype 1; Red
electrodes are actuated while others are grounded; This device was fabricated with the following specifica-
tions: 216 nm aluminum electrode layer, 460 nm silicon dioxide dielectric layer, and 120 um device channel
gap; Testing was conducted using 1.5 uL of DI water on the custom NI control system with a 35 VRMS 1kHz
sinusoidal actuation signal
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5.1.2 Automated Droplet Creation

Automated creation of DI water droplets using resulted in partial success. In this proto-

col, the test fluid was transported two electrodes from the reservoir (Figure 5.17a-b). All three

electrodes were actuated (Figure 5.17b) until the center electrode was grounded (Figure 5.17c)

to create a droplet (Figure 5.17d). While this attempt resulted in successful creation, the droplet

was unable to be subsequently transported (Figure 5.17e). Factors that contributed to this result

are the inconsistent volume of the created droplet and the sensitivity of the transport electrode to

droplet size. The modification of the reservoir and transport electrodes as well as the method of

interdigitation was chosen as the solution to achieving reliable droplet creation and transport.

Figure 5.17: Images sequence from an automated droplet transport attempt on DMF device prototype 1;
Red electrodes are actuated while others are grounded; This device was fabricated with the following spec-
ifications: 216 nm aluminum electrode layer, 460 nm silicon dioxide dielectric layer, and 120 um device
channel gap; Testing was conducted using 1.5 uL of DI water on the custom NI control system with a 35.5
VRMS 1kHz sinusoidal actuation signal
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The demonstration of reliable automated droplet creation and transport was the next goal of

DMF device prototyping. The second DMF device prototype seen in Figure 5.18 consisted of 1

x 1 mm transport electrodes based on the work of Cho et al. [83] as well as reservoir electrodes

based on the work of Jagath et al. [107]. The transport electrode interdigitation design aimed to

provide increase penetration electrodes in order to reduce the sensitivity to smaller volumes of

droplets. The TC reservoir design aimed to target a consisting necking point to promote robust

droplet creation. The C-reservoir electrode was used to deliver fluid while the T-cutting electrode

was used to create a necking point closer to the center of the electrode. In addition, the creation

electrode was designed to have a larger surface area than the transport electrodes.

Figure 5.18: DMF device layout of prototype 2 showing (a) TC reservoir and transport electrode geometry
as well as (b) key design dimensions

37



Initial attempts to demonstrate automated droplet creation, transport, and mixing on DMF

prototype 2 resulted in partial success. While droplet creation and transport was successfully

demonstrated from one reservoir, the evidence of dielectric breakdown or electrolysis was observed

in the other (Figure 5.19e). This failure was likely due to local defects in the device surface.

Works by Liu [66], Drygiannakis [70], and Papathanasiou [67] show evidence of breakdown that

occurs before actuation voltages are reached in various materials. Future devices used a SU-8 3005

dielectric to prevent dielectric breakdown or electrolysis. SU-8 films are coated using spin coating

and have a relative permittivity of 3.0. Future devices required actuation voltages of 140 and 162

V.

In addition, droplet creation was only able to be achieved by pulling the droplet past the

creation electrode (Figure 5.19d). Droplet creation relies on the pressure difference created be-

tween the ends and center of the fluid. This pressure difference is created when the fluid is pressed

between two surfaces and subsequently stretched by displacing the contact line at both ends. Cho

et al. describes the dependence of the necessary pressure difference to induce necking on the chan-

nel gap distance and contact line displacement [83]. The gap distance was unable to be reduced

because of the minimum volume able to be loaded onto the device. Future devices used a modified

electrode geometry to promote reliable contact line displacement through droplet transport.
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Figure 5.19: Image sequence from an automated droplet transport creation protocol on DMF device proto-
type 2; Red electrodes are actuated while others are grounded; Green arrows in the images show observations
of dielectric breakdown or electrolysis; This device was fabricated with the following specifications: a 572
nm aluminum electrode layer, a 707 nm silicon dioxide dielectric layer, and a 120 um device channel gap;
Testing was conducted with 1.5 uL of DI water at each reservoir using a 76 VRMS 1kHz sinusoidal actuation
signal.

5.1.3 Automated Droplet Creation, Transport, and Mixing

The demonstration of reliable automated droplet creation, transport and mixing was the final

goal of DMF device prototyping. The final device prototype can be seen in Figure 5.20. This pro-

totype was designed in an attempt to perform automated droplet transport and creation with both

DI water and DNA laden fluids. The third DMF device prototype seen in the figure above was

used to fabricate 6 devices with 1.5 x 1.5 mm transport electrodes based on the work of Jang et

al. [80] along with revised reservoir electrodes based on the work of Jagath et al. [107]. The elec-

trode interdigitation design aimed to increase the penetration contact area between electrodes. The

reservoir electrode design used two C-reservoir electrodes in order to more increase the deliverable

fluid volume while maintaining similar reliability. In addition, the creation electrode maintained a

larger contact area than the transport electrode.
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Figure 5.20: DMF device layout of prototype 3 showing (a) TCC reservoir and transport electrode geometry
as well as (b) key design dimensions

Attempts to demonstrate automated droplet creation, transport, and mixing on DMF proto-

type 3 resulted in success. The automated protocol used in Figure 5.21 was able to create droplets

simultaneously from both reservoirs (Figure 5.21a-f), transport both droplets to the center elec-

trode (Figure 5.21g-j), and perform a mixing process (Figure 5.21k-n) without any breakdown or

electrolysis. This DMF device design and protocol was able to fulfill the goal of automated droplet

creation and transport. With this success, DMF prototype 3 was used with DNA laden fluid.
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Figure 5.21: Image sequence from an automated droplet transport and creation protocol on DMF device
prototype 3; Red electrodes are actuated while others are grounded; This device was fabricated with the
following specifications: 443 nm aluminum electrode layer, 5.8 um SU-8 3005 dielectric layer, and 120 um
device channel gap; Testing was conducted with 1.5 uL of DI water at each reservoir and DNA laden fluid
using a 162 VRMS 1kHz sinusoidal actuation signal
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5.2 DNA Assembly

The second aim of this work was to demonstrate automated DNA assembly. This aim is

subdivided into two aims: automated DNA assembly in (a) air-filled DMF device prototypes on

the custom control system and (b) oil-filled DMF devices on the DropBot control system.

5.2.1 Air Medium: On Chip Mixing and Off Chip Incubation

The goal of this test was to examine the effects of DNA laden droplets in a device that

manipulates droplets surrounded by air. The initial attempt to perform DNA assembly on DMF

prototype 3 resulted in success. The automated protocol used in Figure 5.21 was performed using

DNA laden droplets.

Droplets of DNA brick 1 and 2 solutions were first created and mixed together. The resultant

product was extracted and incubated on a conventional chemical bench. Incubation was performed

on a chemical bench because droplets seemed to be pinned to various areas of the device surface

following the automated protocol. DNA gel electrophoresis was used to verify the success of au-

tomated droplet creation, transport, and mixing. Figure 5.22 depicts the imaged DNA gel used to

verify the results of this DNA assembly process. As seen in the gel, each DNA brick is approxi-

mately 125 base pairs long while on-chip and on-bench protocols both resulted in lengths of 250

base pairs. With the validation of droplet creation, transport, and mixing with DNA laden droplets,

the goal of automated DNA assembly in an air medium was fulfilled.
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Figure 5.22: Imaged DNA electrophoresis gel comparing DNA Brick 1, DNA Brick 2, on-bench DNA
assembly, and DNA assembly with on-chip mixing

An issue encountered during this protocol was the pinning of droplets to transport electrodes

where DNA laden droplets were mixed. Due to this issue, this device was unable to run more than

one automated protocol reliably with DNA laden droplets. This issue was likely caused by biofoul-

ing. Biofouling is the adsorption of biological molecules on surfaces. Adsorbed molecules have

the potential to create random pinning points that could cause DMF device failure. Future DMF

device used an oil medium to reduce the potential of biofouling from continuous DNA molecule

and surface interactions [39, 99, 108–110]. An additional benefits of an oil medium is its ability to

decrease droplet evaporation which is key during on chip incubation processes [39, 108].

While DNA assembly was demonstrated, the eventual goal of the DMF device is to be able to

support the assembly of more than two DNA bricks. The DMF device must include more than two

reservoirs to support additional reagents. Future devices will use a modified DMF device design

and control system to support this goal.
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5.2.2 Oil Medium: On Chip Mixing, Parking, and Off Chip Incubation

The demonstration of automated DNA assembly in an oil medium was the first goal of the

final DMF device. The final DMF device design is depicted in Figure 5.23. This design consisted

of two 4 x 17 contact pad arrays that are connected to the various elements using traces with widths

of 30 um and 20 um separations. The location of the array from the edge of chip allowed for easy

alignment of the device to the DropBot control system. The row of contact pads at the top and

bottom of array were configured in order to enable the output of the actuation signal and also

connect the device top-plate to ground. The large top and bottom electrodes were used as waste

collection and outlet electrodes.

Figure 5.23: Full layout of final DMF chip; The inlet/outlet port locations are depicted for clarity
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A close-up view of the reservoir and transport electrodes is depicted in Figure 5.24. The

reservoir electrodes used a modified scheme of the TCC electrode design to support the larger

density of metal traces necessary for a single layer process. The transport electrodes are based on

the work of Fobel et al. [111] to maintain interdigitation between electrodes while supporting the

density of metal traces necessary for a single layer process. This modification resulted in a reduced

potential contact area between adjacent electrodes.

The modified DMF device structure to support the use of an oil medium is depicted in Fig-

ure 5.25. The placement of these port can be seen in Figure 5.24. Each port served as inlet/outlets

to be used for reagent loading and extraction. Prior to testing, the DMF device was filled with

silicone oil though the inlet/outlet ports using a variable micropipette.

Initial testing to demonstrate automated droplet creation on the final DMF device design

with an oil medium resulted in success. The loading of DNA laden fluid into the DMF device is

depicted in Figure 5.26a. This process is illustrated in Figure 5.25. In this process, a micropipette

is used load fluid into the inlet while the reservoir electrodes were actuated. The loaded volumes

of DNA brick 1 and 2 were subsequently used to create two droplets (Figure 5.26c-g).

Figure 5.24: Final DMF device layout showing (a) TCC reservoir and transport electrode geometry as well
as (b) key design dimensions
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Figure 5.25: Schematic of final DMF device structure depicting the use of an oil medium as well as the
method of fluid loading

Figure 5.26: Image sequence from an automated droplet creation protocol using DNA brick 1 (red) and
brick 2 (blue) on the final DMF device design; This device was fabricated using the following specifications:
100 nm aluminum electrode layer, 6.5 um SU-8 3005 dielectric layer, and 97 um SU-8 2100 negative
photoresist device channel gap layer which also creates the channel gap and functions as a gasket template;
Testing was conducted with DNA laden fluids using a 140 VRMS 1kHz sinusoidal actuation signal; Fluid
containing DNA brick 1 is dyed red while brick 2 is dyed blue and both solutions contained 0.1% of a mild
Tween 20 surfactant
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Initial testing to demonstrate automated droplet transport and mixing on the final DMF de-

vice design with an oil medium resulted in success. The automated transport and mixing of DNA

bricks 1 and 2 is depicted in Figure 5.27. Each droplet was transported and subsequently merged

onto one electrode. The merged droplets were then mixed for 10 minutes by performing droplet

transport in a square pattern (Figure 5.27d). During this protocol, droplets seemed to be pinned

continuously in one area (Figure 5.27i). This pinning is likely the attributed to the (i) droplet

path during mixing, (ii) electrode number during mixing, (iii) surface defects/heterogeneity, (iv)

biofouling, etc. When the receding edge of the fluid did not have enough time to catch up to

the advancing edge droplet, droplet splitting occurred (Figure 5.27i). Works by Paik [112] and

Fowler [113] suggest the use of multiple electrodes and a mixing pattern that includes the center

electrode.

Figure 5.27: Image sequence from an automated droplet transport and mixing protocol using DNA brick
1 (red) and brick 2 (blue) on the final DMF device design; Red arrows in the images show observations of
possible device failure modes
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Mixed samples of mixed DNA bricks 1 and 2 were subsequently transported and extracted

Figure 5.28. The mixed droplet was transported into a reservoir to be extracted. Droplets from

a previous attempt was observed on the C-reservoir electrode (Figure 5.28a). Because of the low

volume of this previous attempt, the sample was unable to be extracted at first. An additional

protocol was performed while the first sample was parked on the C-reservoir electrode. With the

added volume, the sample was able to be extracted.

After extracting the mixed DNA solutions, samples were incubated on a chemical bench

for 10 minutes at 70 °C and placed into DNA gels for electrophoresis and imaging. The results

of each protocol were examined by analyzing the DNA gels in order to verify the success of the

assembly protocols. Figure 5.29 depicts results from the protocols performed on the final DMF

device design where DMF1 denoted the sample from normal on-chip mixing process while DMF2

denoted the sample from the addition of droplet parking. As seen in the DNA gel, each DNA brick

resulted approximately 125 base pairs, on-bench protocol resulted in 250 base pairs, and both DMF

protocols resulted in 250 base pairs.

Figure 5.28: Image sequence from an automated droplet transport and extraction protocol using DNA brick
1 (red) and brick 2 (blue) on the final DMF device design
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Figure 5.29: Imaged DNA electrophoresis gel comparing DNA Brick 1, DNA Brick 2, on-bench DNA as-
sembly, DNA assembly with on-chip mixing (DMF1), and DNA assembly with on-chip mixing and parking
(DMF2)

5.2.3 Oil Medium: On Chip Mixing, Parking, and Incubation

The demonstration of on chip incubation was the goal of this additional testing using the

final DMF device. Further testing to demonstrate DNA assembly with on chip incubation resulted

in success. The automated creation of two droplets using loaded volumes of DNA brick 1 and 2 is

depicted in Figure 5.30. In comparison to previous tests, this protocol showed no evidence of air

voids or oil shells that propagate.

Figure 5.30: Image sequence from the second automated droplet creation protocol using DNA brick 1
(red) and brick 2 (blue) on the final DMF device design; This device was fabricated using the following
specifications: 100 nm aluminum electrode layer, 6.5 um SU-8 3005 dielectric layer, and 97 um SU-8 2100
negative photoresist device channel gap layer which also creates the channel gap and functions as a gasket
template; Testing was conducted with DNA laden fluids using a 140 VRMS 1kHz sinusoidal actuation signal;
Fluid containing DNA brick 1 is dyed red while brick 2 is dyed blue and both solutions contained 0.1% of a
mild Tween 20 surfactant
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Testing to demonstrate automated droplet transport and mixing on the final DMF device de-

sign with an oil medium resulted in success. The automated droplet mixing process is depicted

during the beginning (Figure 5.31a-g) and end (Figure 5.31h-n) of the 30 minute room tempera-

ture initial incubation. Compared to Figure 5.27, this protocol used a series of two electrodes to

transport the electrode in a square pattern.

Testing to demonstrate on chip incubation with the final DMF device design in an oil medium

resulted in success. The automated on-chip incubation process is depicted in Figure 5.32. The

mixed droplet was first parked on a single electrode (Figure 5.32a). A resistive foil heater was then

set to 70 °C to perform the on-chip incubation for 60 minutes (Figure 5.32b).

Figure 5.31: Image sequence from the second automated droplet transport and mixing protocol using DNA
brick 1 (red) and brick 2 (blue) on the final DMF device design

Figure 5.32: Image sequence from the parking and incubation protocol using DNA brick 1 (red) and brick
2 (blue) on the final DMF device design
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Testing to demonstrate automated droplet transport and extraction of on the final DMF device

design with an oil medium resulted in success. The automated droplet transport and extraction

of mixed and incubated DNA brick 1 and 2 samples is depicted in Figure 5.33. From the high

temperature incubation, reagents of DNA brick 1 from a previous protocol were observed in the

oulet reservoir (Figure 5.33a). In order to extract the sample an additional volume of DI water was

injected into the reservoir (Figure 5.33g).

DNA gel electrophoresis results confirmed the successful demonstration of on chip mixing

and incubation DNA assembly process on the final DMF device design. The results from auto-

mated protocols performed on the final DMF device design with on-chip incubation is depicted in

Figure 5.34. As seen in the DNA gel, each DNA brick resulted 125 base pairs while on-bench and

on DMF resulted in 250 base pairs. The lower intensity of imaged samples from the DMF device

can be explained by the injected additional volume of DI water used to extract the sample. DNA

assembly on the DMF device was able to produce a product with a similar number of base pairs to

the on-bench protocol. Through the course of this protocol, the successful demonstration of DNA

assembly with on chip incubation was fulfilled.

Figure 5.33: Image sequence from the second automated droplet transport and extraction protocol using
DNA brick 1 (red) and brick 2 (blue) on the final DMF device design
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Figure 5.34: Image sequence from the second automated droplet transport and mixing protocol using DNA
brick 1 (red) and brick 2 (blue) on the final DMF device design
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6 Conclusion

6.1 Summary of Thesis Work

This investigation sought to demonstrate the applicability of DNA assembly on a DMF de-

vice. To achieve this goal, an iterative prototyping strategy was used. This process involved the

design of an electrode layout, the fabrication of the device, and the testing of crucial fluid handling

functions until adequate performance was demonstrated using DI water. Devices were fabricated

using standard microfabrication tools and techniques. Prototype testing was conducted through

the use of a custom LabVIEW virtual instrument while final device design testing was conducted

on the Sci-Bots DropBot platform. DNA assembly was performed on DMF devices through the

creation of two discrete droplets containing DNA Brick 1 and 2 with subsequent transport, mixing,

and incubation steps to create the targeted DNA product. Results were validated through the use

of a DNA gel to compare on-chip to on-bench assembly processes.

Through the prototyping process, important design considerations for a DMF device struc-

ture were determined. To prevent critical failures such as dielectric breakdown or electrolysis, a

relatively thick SU-8 3005 negative photoresist is used as a dielectric layer. While it would increase

the required actuation voltage, this design choice reduces the sensitivity of the device the variances

in thickness and film quality. To enable droplet creation, the gap distance between the DMF chip

and top plate is created and minimized through the use of a thick SU-8 2100 negative photoresist

as a spacer layer. Using conventional microfabrication techniques allowed for the precise control

and minimization of the device gap distance.
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In addition to the DMF device structure, the device layout and electrode geometry was a

crucial consideration for reliable DMF operation. During the prototyping process, the reservoir

and transport electrode geometry was iterated until adequate performance was observed through

DI water testing. The final reservoir geometry featured a TCC design. The C electrodes targeted

predictable fluid delivery while the T electrode enabled the predictable of droplet cutting. The

final transport electrode geometry featured a pinwheel design. This design targeted the use of a

geometry with lower electrode surface area with higher interdigitation contact area. The final DMF

device design featured a modified TCC reservoir and transport electrode geometry to ensure the

connection of all actuation electrodes to pin pads using a one metal layer fabrication process.

Initial testing performed automated manipulations using DNA laden droplets in an air medium.

DNA bricks were mixed on-chip and incubated on a chemical wet bench. After observing evidence

of surface fouling during this initial testing process, the final DMF device design was supplemented

with the use of a silicone oil medium. This was achieved by permanently bonding the DMF chip

with the top plate with epoxy. The top plate included bored inlet/outlet ports and used the spacer

layer as a gasket template. Followed testing included the use of the oil medium with on-bench

and on-chip incubations. The success of DNA assembly was analyzed through the use of elec-

trophoretic gel imaging. DMF device and bench top protocols yielded similar results with targeted

base pair lengths of the assembly process to validate the demonstration of DNA assembly on a

DMF device. Through this work, a DMF device was designed, fabricated, and to successfully ful-

fill the goal of automated DNA assembly. A summary of the design choices, protocol details, and

observations of each iteration can be seen in Table 2. The successful results achieved in this work

was published in a conference paper [114].
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Table 2: Summary of device design iterations and observations

DMF Design Prototype 1 Prototype 2 Prototype 3 Final Device
Reservoir
Geometry Schertzer et al. Jagath et al. Jagath et al. Jagath et al.

Interdigitation
Geometry

Triangle
Pattern

Cho et al. Jang et al.
Sinusoidal
Pattern

Dielectric
Material Silicon dioxide Silicon dioxide SU-8 3005 SU-8 3005

Channel Gap
Material

Double-sided
adhesive

Double-sided
adhesive

SU-8 2100 SU-8 2100

Medium Air Air Air Oil

Test Fluid DI water DI water
DI water and
DNA solutions

DI water and
DNA solutions

Control
System

Custom NI
control system

Custom NI
control system

Custom NI
control system

Sci-Bots
DropBot
system

Advantages

Repeatable
automated
transport of
large droplet

Repeatable
automated
transport of
created droplet

Repeatable
droplet
creation,
transport,
mixing

Repeatable
droplet
creation,
transport,
mixing and
DNA assembly
with on and off
chip incubation

Disadvantages

Unreliable
transport of
created droplet
and breakdown

Unreliable
droplet
creation and
breakdown

Biofouling and
high actuation
voltage

Random
pinning points
after extended
protocols

Proposed
Changes

Increased
channel gap
distance and
dielectric
thickness

New dielectric
material and
modified
electrode
geometries

New device
design to
support oil
medium and
additional
reagents

Characterization
of random
pinning points
and device
stress testing
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6.2 Future Work

While this work was able to successfully demonstrate DNA assembly on a DMF device,

much work is still necessary to create a complete LoC platform able to reliably demonstrate an

automated full DNA synthesis process. Possible future work include: the integration of an on-

chip resistive heater and sensor for droplet incubation, device stress testing and failure analysis,

optimization of device layout and fabrication, and the integration of oligonucleotide synthesis.

Through the device testing, various failure modes were observed: dielectric breakdown,

electrolysis, and biofouling as seen in Figure 6.35. Though these issues did not prevent the demon-

stration of DNA assembly, droplet interactions with random pinning points commonly caused un-

predictable droplet creation and transport. At times, small satellite droplets were created from the

droplet pinning. For a lengthy protocol that performs many assembly processes, this issue could

be a large failure mode for accurate synthesis. To ensure device would be a suitable platform for

the synthesis of long sequences of DNA, it is critical to quantify and mitigate the effects of random

pinning points from dielectric breakdown, electrolysis, and biofouling.

Figure 6.35: Image sequence from the second automated droplet transport and extraction protocol where a
droplet is spontaneously created from a random pinning point on the device surface
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The effects of random pinning points must be solved by the determination of exact cause

of the problem. This can be done in a number of steps. First, the surface quality at each layer

can be examined through surface roughness measurements or scanning electron microscopy with

energy-dispersive X-ray spectroscopy. By performing this analysis the possibility of fabrication

induced failures can be examined. Secondly, electrical stress testing could provide insight into

the robustness of future device dielectrics. Performing these tests with various dielectric materials

would allow for the determination of an optimal dielectric material. Lastly, testing to characterize

the severity of biofouling would ensure it can be mitigated. These tests can be done on simpler

devices using the same materials.

The integration of an on-chip resistive heater and sensor are key to creating a complete LoC

platform for DNA synthesis. During the course of this work, an external resistive foil heater was

used to perform the incubation processes. Because the DropBot system was unable to support

alternative placements of this heater, the view of the incubation process was obscured. By integrat-

ing this heater and sensor on-chip, higher control of the incubation process can be achieved. With

the need to integrate a separate control system for incubation automation, this heater may better

suited for integration in the control system.
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The ultimate goal that motivated this thesis work is the integration of the entire DNA synthe-

sis process. To do so, enzymatic oligonucleotide synthesis must be demonstrated. Oligonucleotide

synthesis processes use solid support materials to attach nucleotide carrying samples. In order to

ensure synthesis accuracy, solid supports are immobilized to perform necessary washing cycles to

remove synthesis reagents from the solution. Though conventional microarray platform substrates

act as the solid support materials, microfluidic solutions often use polystyrene beads to attach nu-

cleotides carrying samples. To support this application, it is necessary to involve a form of filtra-

tion to immobilize solid supports while allowing the necessary washing cycles. While mechanical

filtration has been used before, an emerging solution is the use of magnetic filtration. Using a

magnetic field, polystyrene beads are immobilized while electrowetting on dielectric performs the

washing cycles. Integration of this protocol may be best suited for the control system.

58



References

[1] S. Ma, N. Tang, and J. Tian, “DNA Synthesis, Assembly and Applications in Synthetic
Biology,” Current opinion in chemical biology, vol. 16, no. 3-4, pp. 260–267, Aug. 2012.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424320/

[2] S. Kosuri and G. M. Church, “Large-scale de novo DNA synthesis: technologies and
applications,” Nature Methods, vol. 11, no. 5, pp. 499–507, May 2014, number: 5 Publisher:
Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/nmeth.2918

[3] S. Palluk, D. H. Arlow, T. de Rond, S. Barthel, J. S. Kang, R. Bector, H. M. Baghdassarian,
A. N. Truong, P. W. Kim, A. K. Singh, N. J. Hillson, and J. D. Keasling, “De novo
DNA synthesis using polymerase-nucleotide conjugates,” Nature Biotechnology, vol. 36,
no. 7, pp. 645–650, Aug. 2018, number: 7 Publisher: Nature Publishing Group. [Online].
Available: https://www.nature.com/articles/nbt.4173

[4] M. A. Jensen and R. W. Davis, “Template-Independent Enzymatic Oligonucleotide
Synthesis (TiEOS): Its History, Prospects, and Challenges,” Biochemistry, vol. 57, no. 12,
pp. 1821–1832, Mar. 2018, publisher: American Chemical Society. [Online]. Available:
https://doi.org/10.1021/acs.biochem.7b00937

[5] H. H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. M. Church, “Terminator-free
template-independent enzymatic DNA synthesis for digital information storage,” Nature
Communications, vol. 10, no. 1, p. 2383, Jun. 2019, number: 1 Publisher: Nature Publishing
Group. [Online]. Available: http://www.nature.com/articles/s41467-019-10258-1

[6] T. Taniguchi, T. Torii, and T. Higuchi, “Chemical reactions in microdroplets by
electrostatic manipulation of droplets in liquid media,” Lab on a Chip, vol. 2,
no. 1, pp. 19–23, 2002, publisher: Royal Society of Chemistry. [Online]. Available:
http://pubs.rsc.org/en/content/articlelanding/2002/lc/b108739h

[7] D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, and R. L. Garrell, “Droplet-based
microfluidics with nonaqueous solvents and solutions,” Lab on a Chip, vol. 6, no. 2, pp.
199–206, Jan. 2006, publisher: The Royal Society of Chemistry. [Online]. Available:
http://pubs.rsc.org/en/content/articlelanding/2006/lc/b515566e

[8] R. B. Fair, A. Khlystov, T. D. Tailor, V. Ivanov, R. D. Evans, V. Srinivasan, V. K. Pamula,
M. G. Pollack, P. B. Griffin, and J. Zhou, “Chemical and Biological Applications of Digital-
Microfluidic Devices,” IEEE Design Test of Computers, vol. 24, no. 1, pp. 10–24, Jan. 2007,
conference Name: IEEE Design Test of Computers.

[9] M. J. Jebrail, M. S. Bartsch, and K. D. Patel, “Digital microfluidics: a versatile tool for
applications in chemistry, biology and medicine,” Lab on a Chip, vol. 12, no. 14, pp.
2452–2463, Jun. 2012, publisher: The Royal Society of Chemistry. [Online]. Available:
http://pubs.rsc.org/en/content/articlelanding/2012/lc/c2lc40318h

59

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3424320/
https://www.nature.com/articles/nmeth.2918
https://www.nature.com/articles/nbt.4173
https://doi.org/10.1021/acs.biochem.7b00937
http://www.nature.com/articles/s41467-019-10258-1
http://pubs.rsc.org/en/content/articlelanding/2002/lc/b108739h
http://pubs.rsc.org/en/content/articlelanding/2006/lc/b515566e
http://pubs.rsc.org/en/content/articlelanding/2012/lc/c2lc40318h


[10] K. Choi, A. H. Ng, R. Fobel, and A. R. Wheeler, “Digital Microfluidics,”
Annual Review of Analytical Chemistry, vol. 5, no. 1, pp. 413–440, 2012, _-
eprint: https://doi.org/10.1146/annurev-anchem-062011-143028. [Online]. Available:
https://doi.org/10.1146/annurev-anchem-062011-143028

[11] V. Rastogi and O. D. Velev, “Development and evaluation of realistic microbioassays
in freely suspended droplets on a chip,” Biomicrofluidics, vol. 1, no. 1, p.
014107, Mar. 2007, publisher: American Institute of Physics. [Online]. Available:
https://aip.scitation.org/doi/abs/10.1063/1.2714185

[12] M. J. Jebrail and A. R. Wheeler, “Let’s get digital: digitizing chemical biology
with microfluidics,” Current Opinion in Chemical Biology, vol. 14, no. 5, pp.
574–581, Oct. 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1367593110000955

[13] N. Vergauwe, D. Witters, F. Ceyssens, S. Vermeir, B. Verbruggen, R. Puers, and
J. Lammertyn, “A versatile electrowetting-based digital microfluidic platform for
quantitative homogeneous and heterogeneous bio-assays,” Journal of Micromechanics and
Microengineering, vol. 21, no. 5, p. 054026, Apr. 2011, publisher: IOP Publishing.
[Online]. Available: https://doi.org/10.1088/0960-1317/21/5/054026

[14] A. H. Ng, B. B. Li, M. D. Chamberlain, and A. R. Wheeler, “Digital Microfluidic
Cell Culture,” Annual Review of Biomedical Engineering, vol. 17, no. 1, pp. 91–
112, 2015, _eprint: https://doi.org/10.1146/annurev-bioeng-071114-040808. [Online].
Available: https://doi.org/10.1146/annurev-bioeng-071114-040808

[15] E. Wulff-Burchfield, W. A. Schell, A. E. Eckhardt, M. G. Pollack, Z. Hua, J. L.
Rouse, V. K. Pamula, V. Srinivasan, J. L. Benton, B. D. Alexander, D. A.
Wilfret, M. Kraft, C. B. Cairns, J. R. Perfect, and T. G. Mitchell, “Microfluidic
platform versus conventional real-time polymerase chain reaction for the detection
of Mycoplasma pneumoniae in respiratory specimens,” Diagnostic Microbiology and
Infectious Disease, vol. 67, no. 1, pp. 22–29, May 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0732889309005112

[16] R. S. Sista, A. E. Eckhardt, T. Wang, C. Graham, J. L. Rouse, S. M. Norton, V. Srinivasan,
M. G. Pollack, A. A. Tolun, D. Bali, D. S. Millington, and V. K. Pamula, “Digital
Microfluidic Platform for Multiplexing Enzyme Assays: Implications for Lysosomal
Storage Disease Screening in Newborns,” Clinical Chemistry, vol. 57, no. 10, pp.
1444–1451, Oct. 2011. [Online]. Available: https://doi.org/10.1373/clinchem.2011.163139
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Appendix A DMFL Shared Repository

The DMFL shared google drive contains all the files necessary to recreate this work. This

repository contains files such as device layouts, device fabrication process flows, LabVIEW virtual

instruments, thesis documents and images, and device testing videos.

Appendix B DMF Device Fabrication Process

Details regarding the fabrication process for the final DMF devices used in this thesis work

are provided as reference. This fabrication process can be found in the shared DMFL file repos-

itory. DMF device fabrication was conducted using conventional tools and materials in the RIT

SMFL. The DMF chip is fabricated using the entirety of this process while the top plate only uses

the Teflon spin coat and cure.

Level 1 Lithography:

1. Perform an O2 plasma surface enhancement on device slides by placing in the LAM 490 on
a carrier wafer with the following recipe:

• Step 1: 300 mTorr, 000 W, 100 sccm of O2, 1 min
• Step 2: 300 mTorr, 100 W, 100 sccm of O2, 30 sec
• Step 3: 300 mTorr, 0 sec

2. Perform a dehydration bake at 120řC for 60 sec and cool on heatsink.
3. Coat wafers using the CEE Resist Spinner with AZ MIR 701 i-line positive photoresist using

Program #0.
4. Conduct a post application bake at 90řC for 60 sec and cool on heatsink.
5. Prepare the Suss MA150 Contact Aligner by measuring and recording the irradiance of the

exposure.
6. Using the equation D = I * t, calculate and record the appropriate time to achieve a dose of

300 mJ/cm2.
7. Conduct a post exposure bake at 110řC for 60 sec and cool on heatsink.
8. Using the CEE Resist Developer, develop the substrates using Program #0. MAKE SURE

THE DEVELOPER COVERS THE ENTIRE WAFER!
9. Conduct a hard bake at 140řC for 60 sec and cool on heatsink.

Aluminum Etch & Solvent Strip:
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1. Place the substrates into the only 3 in substrate Teflon boat.
2. Start heating the Al Etch & Solvent Strip bench (Takes approximately 15 45 min).
3. Etch the substrates for at least 5 min.
4. Rinse substrates for 5 min.
5. Rinse and dry one device at Manual Chemistry Bench.
6. Inspect same device under microscope around dense traces to check for shorts or open cir-

cuits. Adjust etch times accordingly.
7. Rinse and thoroughly dry individually on Manual Chemistry Bench.
8. Strip the photoresist for at least 5 min in first bath and 5 min in the second bath.
9. Rinse substrates for 5 min.

10. Rinse and thoroughly dry individually on Manual Chemistry Bench.
11. Measure aluminum thickness using the Tencor P2 Profilometer.

Level 2 Lithography:

1. Perform an O2 plasma surface enhancement on device slides by placing in the LAM 490 on
a carrier wafer with the following recipe:

• Step 1: 300 mTorr, 000 W, 100 sccm of O2, 1 min
• Step 2: 300 mTorr, 100 W, 100 sccm of O2, 30 sec
• Step 3: 300 mTorr, 0 sec

2. Conduct a dehydration bake at 120řC for 60 sec cool on heatsink.
3. Coat devices using the SCS Spin Coater with SU-8 3050 i-line negative photoresist using a

custom program with the following parameters:

• RPM 1 - 1500 RPM
• RAMP 1 - 20 sec
• TIME 1 - 10 sec
• RPM 2 - 4000 RPM
• RAMP 2 - 10 sec
• TIME 2 - 30 sec

4. Conduct a post application bake at 95řC for 2 min and cool on heatsink.
5. Prepare the Suss MA150 Contact Aligner by measuring and recording the irradiance of the

exposure. MASK IS FOIL, MAKE SURE TO ALIGN WELL TO EXPOSE MIDDLE OF
DEVICE AND COVER CONNECTION POINTS.

6. Using the equation D = I * t, calculate and record the appropriate time to achieve a dose of
150 mJ/cm2.

7. Conduct a post exposure bake at 65řC for 60 sec and cool on heatsink.
8. Conduct a second post exposure bake at 95řC for 60 sec and cool on heatsink.
9. On a Manual Chemistry Bench, using SU-8 Developer and Isopropyl Alcohol, develop the

substrates for 2 min with good agitation, spray a puddle of fresh developer for 15 sec, and
rinse both sides of the wafer thoroughly with IPA.

10. Dry the substrate with a Nitrogen gun until visibly dry.
11. Conduct a ramped hard bake by placing on a cool hot plate, setting to 175řC, and baking for

5 min once temperature is reached. Cool on heatsink.
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12. Measure the SU-8 thickness using the Tencor P2 Profilometer.

Level 3 Lithography:

1. Perform an O2 plasma surface enhancement on device slides by placing in the LAM 490 on
a carrier wafer with the following recipe:

• Step 1: 300 mTorr, 000 W, 100 sccm of O2, 1 min
• Step 2: 300 mTorr, 100 W, 100 sccm of O2, 30 sec
• Step 3: 300 mTorr, 0 sec

2. Conduct a prebake at 65řC for 1 min.
3. Conduct a ramped dehydration bake on previous hot plate, setting to 120řC, and baking for

15 min once temperature is reached. Let cool on hot plate after turning off.
4. Coat devices using the SCS Spin Coater with SU-8 2100 i-line negative photoresist using a

custom program with the following parameters:

• RPM 1 - 500 RPM
• RAMP 1 - 5 sec
• TIME 1 - 10 sec
• RPM 2 - 3000 RPM
• RAMP 2 - 15 sec
• TIME 2 - 45 sec

5. Conduct a prebake at 65řC for 5 min.
6. Conduct a ramped post application bake on previous hot plate, setting to 95řC, and baking

for 25 min once temperature is reached. Cool on heatsink.
7. Prepare the Suss MA150 Contact Aligner by measuring and recording the irradiance of the

exposure.
8. Using the equation D = I * t, calculate and record the appropriate time to achieve a dose of

300 mJ/cm2.
9. Conduct a prebake at 65řC for 5 min.

10. Conduct a ramped post exposure bake on previous hot plate, setting to 85řC, and baking for
15 min once temperature is reached. Cool on heatsink.

11. On a Manual Chemistry Bench, using SU-8 Developer and Isopropyl Alcohol, develop the
substrates for 13 min with good agitation, spray a puddle of fresh developer for 15 sec, and
rinse both sides of the wafer thoroughly with IPA.

12. Dry the substrate with a Nitrogen gun until visibly dry.
13. Conduct a ramped hard bake on a cool hot plate, setting to 160řC, and baking for 30 min

once temperature is reached. Let cool on hot plate after turning off.
14. Measure the SU-8 thickness using the Tencor P2 Profilometer.
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Teflon Spin Coat and Cure:

1. Perform an O2 plasma surface enhancement by placing in the LAM 490 with the following
recipe:

• Step 1: 300 mTorr, 000 W, 100 sccm of O2, 1 min
• Step 2: 300 mTorr, 100 W, 100 sccm of O2, 30 sec
• Step 3: 300 mTorr, 0 sec

2. Conduct a dehydration bake at 120řC for 60 sec cool on heatsink.
3. Fully cover the Aluminum electrodes using Kapton tape
4. Coat wafers using the SCS Coater with Fluorinert diluted Teflon (2%) using a custom pro-

gram with the following parameters:

• RPM 1 - 1500 RPM
• RAMP 1 - 10 sec
• TIME 1 - 60 sec

5. Conduct a ramped hard bake on a cool hot plate, setting to 180řC, and baking for 10 min
once temperature is reached. Let cool on hot plate after turning off.

6. Remove the Kapton tape with care.
7. Inspect the final device on microscope at critical features.
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Appendix C LabVIEW Virtual Instrument

Details regarding the custom LabVIEW virtual instrument (vi) used to control DMF device

prototypes are provided as a reference. The custom VI can be found in the shared DMF file

repository. This VI consists of a block diagram and front panel. Programming of the VI is done

in the block diagram using symbols, objects, and boolean logic. Various parameters, settings, and

controls in the front panel are tied to symbols in the block diagram. This VI follows a sequence of

protocol import, system initialization, and protocol execution. The details of each portion of the

VI can be seen in Figure C.1.

Figure C.1: Summary of custom LabVIEW virtual instrument programming and execution logic
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