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Abstract  

This project proposed that given a basic model of the decisional logic driving stable 

adherence it might be possible to reliably anticipate increased vulnerability to discontinuation 

and use such a mode to design behavioral interventions that are specifically tailored to deliver 

course corrections that are temporally and contextually optimal. A logistic regression was coded 

and run using the core model predicted by the experts as a base for how the variables interact to 

make predictions. Then a logistic regression with stepwise selection was coded and run using the 

core model as a base for how the variables interact and to allow for variables to be added to 

make the prediction more accurate. The logistic regression with stepwise selection produced both 

an augmented core model and a de novo model. There were two nodes that had a variable added 

over 75% of the time to the augmented core. These nodes were health literacy and treatment 

fatigue.  The accuracy for the core model, augmented core model, and de novo model were all 

accurate with respective overall accuracies being 63.5%, 66.3%, and 67.4%. However, it is 

important to note that we were able to outperform the expert model by doing the logistic 

regression with stepwise selection. The results show that the causal interaction diagram predicted 

by the experts was fairly accurate. These results then can be used to further the research needed 

to make a program that will help predict the chances of adherence and to be able help doctors 

work with the patients to stay adherent. 

Introduction 

Breast cancer is the most common type of cancer in women, there are about 1,200,000 

new cases of breast cancer each year worldwide.[Lumachi et al., 2013] Though there are several 

different subtypes of breast cancer [Russnes et al., 2017] distinguished by histological and 



 

molecular profiles. The current project focuses on estrogen receptor positive (ER+) breast 

cancer, a molecular subclass capturing over 70% of breast cancers.  

Adjuvant endocrine therapy for stage I-III estrogen receptor positive (ER+) breast cancer 

provides a substantial survival benefit[EBCTCG, 2011]. Evidence suggests that despite the 

benefits of adherence to adjuvant hormonal treatment (ET) for the full duration, in the first year 

discontinuation of adjuvant ET is between 7% to 14% and that may increase to between 31% to 

60% by the end of the fifth year. [Winer 2005, Moore, Hadji 2010, Ma 2008] Some of the 

benefits of sustained adherence to ET include an increase in the overall chance of survival and 

reduced cancer specific mortality, decreased risk of recurrence, and decreased risk of 

contralateral breast cancer, which is finding a tumor in the opposite breast of the first 

cancer.[Burstein 2014] There are also a number of risks associated with ET as well as significant 

deterrents to continued adherence. Though relatively rare, such risks vary from one therapeutic 

agent to another and can include developing endometrial cancer, menopausal symptoms, deep 

vein thrombosis, pulmonary embolism, ischemic heart disease, osteopenia/osteoporosis, and 

uterine cancer.[Chay et al., 2016] Other significant drivers of discontinuation of ET are the 

significant side effects which include hot flushes, muscle and joint pain, weight gain, fatigue, 

depression, difficulty concentrating, numbness or tingling in the extremities, vaginal dryness, 

and hair loss.[Paranjpe et al., 2019]. More recently, Shinn et al. [2019],reported on changes in 

the patterns of concerns over the first 5 years of ET in 216 individuals and found that leading 

concerns or behaviors driving discontinuation such as forgetfulness, cognitive fatigue, and worry 

over treatment cost evolved over time. The results that Shinn et al. found bring up important 

questions of how would you intervene early in treatment and late in treatment. Also, what 

variables would change based on at what point of treatment the patient is. 



 

There are many different therapies that require adherence to a specific treatment regimen 

whether it is a medication or specific exercises.  Simpson et al. [2006] studied the connection 

between adherence to drug therapy and mortality. They found that good adherence for patients 

that were adhering to either placebo or beneficial drug therapy had half the risk of mortality than 

those with poor adherence. However if the drug proved harmful, the patients with good 

adherence had a higher mortality rate than those with poor adherence. [Simpson et al., 2006]. 

Narayanan et al. [2017] studied adherence to cystic fibrosis therapies and the effects of not 

adhering to treatment. The authors found that for most patients the adherence was subpar, but 

this did vary according to the treatment, age of the patient, and even the season. They found that 

when patients are adherent to cystic fibrosis therapies, they can experience a lower disease 

burden and improve the patient outcomes. However, in patients who did not have good 

adherence it was seen that there was a clinical and economic burden of the disease because they 

had to receive more treatment later on as a result of not being adherent to their treatment. 

Another study of the adherence of oral anticoagulation therapy found that for one treatment there 

was an adherence level of 40% and for the other treatment there was an adherence of 47% [Chen 

et al., 2020]. Oates et al. [2019] studied the objective versus self-reported adherence rates in 

airway clearance therapy in cystic fibrosis. They found that while there was a mean adherence of 

61% in the objective findings, the amount of highly adherent subjects was 31% and 28% were 

low adherent. The self-reported adherence levels showed 65% of subjects reported themselves as 

high adherence and only 8% of them reported low adherence. [Oates et al., 2019] This 

overestimated actual adherence could affect other treatments not just cystic fibrosis.  

The study done by Chen et al. [2020] found that there were many variables that interacted 

with the patient’s decision to discontinue use of the medication or have varying levels of 



 

adherence. Ghembaza et al. [2014] asked if the patient’s knowledge of hypertension 

complications on adherence to therapy impacted the patient’s adherence to treatment. While this 

is not the same disease that my project is studying, there could be reasons for staying adherent or 

becoming non adherent that are not specific to one disease. Ghembaza et al. [2014] found that 

there is a positive relationship between what is known about hypertension complications and 

adherence to treatment. [Ghembaza et al., 2014]. There have also been studies into predicting if a 

patient will stay adherent to therapy. Essery et al. [2016] found a number of factors that 

influenced the patient’s adherence to home-based physical therapies. Those factors include 

intention to engage in the therapy, self-motivation, self-efficacy, previous adherence to exercise-

related behaviors, and social support.[Essery et al., 2016]. Some of these factors could probably 

be applied to other therapies and social support is one that is important in most therapies 

including this project.  

To increase adherence, the researchers must first find out why the patients are not 

adhering to treatment. The consequences for not adhering to the treatment plan can range from 

very small to quite large. One disease that has a larger consequence for non-adherence was breast 

cancer. It was found in breast cancer patients that those who are non-adherent have a higher 

mortality rate. The estimated survival for those who discontinued treatment was 73.6% after 10 

years versus 80.7% for those who were adherent to treatment[Hershman et al. 2010]. They found 

that the survival at 10 years for those who continued the study had a survival rate of 81.7% if 

they were adherent and 77.8% if they were non adherent. This is not a large difference, but it 

does prove that those who discontinued early or were non-adherence did have an increased 

mortality rate. [Hershman et al., 2011]. Having a predictive program that can account for the 

different variables that affect adherence to treatment could be helpful with increasing adherence 



 

to the treatment, thereby improving patient outcome. Being able to predict the next stage that a 

variable might be when a person is on a treatment plan can be very helpful to prevent non-

adherence. It could be possible that once the program can predict the next stages of the variable 

accurately, that it could be developed to accurately predict if a patient will stay adherent to a 

medication. This could help doctors prepare for if a patient might become non-adherent and 

work with the patient to keep them adherent to the treatment. Keeping a patient adherent to a 

treatment could be beneficial to the patient. In patients with cystic fibrosis, adherence to 

medication can decrease cost of treatment in the long run and lower disease burden [Narayanan 

et al., 2017]. In patients with breast cancer, adherence to treatment leads to an increase in life 

expectancy over those who are not adherent[Hershman et al., 2010]. What has been found in all 

therapies that have been discussed so far is that staying adherent to any treatment that has been 

discussed so far is beneficial to the patient whether it helps them live longer or have reduced 

medical bills or just simply have a better quality of life. 

Currently, the underlying behavioral processes that govern changes in the relative 

importance afforded to these concerns as well as their role in driving an upcoming 

discontinuation of therapy are poorly understood. We propose that given a basic model of the 

decisional logic driving stable adherence it might be possible to reliably anticipate increased 

vulnerability to discontinuation and use such a model to design behavioral interventions that are 

specifically tailored to deliver course corrections that are temporally and contextually optimal.  

Approaches for extracting such mechanisms or decisional processes from data de novo 

include statistical methods based on conditional probabilities such as those initially proposed by 

Pearl [2003] however such methods require substantial amounts of numerical data to infer causal 

relationships with high confidence. This project does not have a large amount of numerical data 



 

which could make the methods that Pearl discussed more difficult to apply because those 

methods are most successful with lots of data. Another approach more suitable to limited data 

consists of proposing a set of causal decisional processes, formulating these into a logic network 

and comparing the predicted dynamic responses against observed behaviors. This project would 

work off of a logical framework similar to what Abou-Jaoude et al. did[2016]. They started with 

a logical framework and then defined models and their dynamics where most common variants 

are presented focusing on updating schemes and their impacts on dynamical properties. With a 

logical framework it is important to take the updating schemes and their impacts on dynamical 

properties into account to create an accurate prediction. If the model does not take into account 

the dynamics of the model and the data into account when making a prediction the prediction 

will not be as accurate as it could be [Abou-Jaoude et al., 2016]. Toole et al. discuss using a logic 

model applied to depression that can then be used by a computer program to help make better 

predictions or computer simulations[Toole et al., 2018 depression]. Using a preliminary logic 

model can give a program a starting point and depending on how accurate the logic model is it 

could help the program to make more accurate predictions. Toole et al. used an optimization-

based trial and error to discover novel relationships between well-being and dopamine and 

acetylcholine. This allowed for the authors to be able to make a specific feedback network that 

would promote well-being by dopamine and acetylcholine levels and promoted norepinephrine 

while inhibiting cortisol [Toole et al., 2018 optimization].  

Research Question: How would I intervene early in treatment and late in 

treatment? What variables would change based on what point of treatment the patient is 

at?  



 

The overarching aim of this study was to make a model that predicts the decision to 

discontinue treatment based on data from a pilot study. Within that aim, we set out to complete a 

decisional network model by comparing the core relationships proposed by a domain expert to 

those extracted from the data using a simple logistic regression with stepwise selection based 

approach.  

Methods  

Data. 

The data that has been collected on many different variables that may impact the 

continuation of therapy, such as cost, side effects, sense of urgency, and others that affect 

adherence to adjuvant ET. The data that was collected can be used to look for trends and 

determine why people were or were not adhering to the treatment.[GriffinS, 2006]  

Events resulting in a change of adherence status were of specific interest. A total of 26 

changes in status were observed, namely 5 decisions to resume adherence and 21 decisions to 

discontinue. These occur at various phases of ET as outlined  in Table 1. Timepoints 9->11 and 

11->13 are when most switches to nonadherence occurred. Many more patients became 

nonadherent and there were very few that became adherent.  

  



 

Table 1: Changes in Adherence 

 

Table 1: Adherence changes over time during adjuvant ET. 55/82 subjects entered 

adherent and stayed adherent, 4/82 subjects entered non-adherent and stayed non-

adherent, 21/82 subjects had at least one change in adherence. There was a total of 26 

changes in adherence.  

The discretized data needed to be rearranged in a way that the regression would be able to 

predict the next time point for the variables from the current time point. For each subject the data 

had to be set up so within each subject the timepoints go in pair of two from the first time point 

to the next time point, for example time point 1 to 3 then timepoint 3 to 5. The first time point is 

listed as the original names of the variable and the second time point has _y added to the end of 

the variable names. It is important to note that in Figure 1, there is a node called adherence which 

refers to adherence from timepoint x to timepoint y not the overarching adherence to the 

medication.  

  



 

Computational Approach 

The data were interrogated through a program that performed probabilistic predictions of 

the next state based on data collected at timepoints preceding the current one. The basic 

forecasting model was a logistic auto-regressive moving average with exogenous variables or 

ARMAX. Both the logistic regression and logistic regression with stepwise selection were set up 

to predict the next timepoint based on the previous and current timepoints and the goal was to 

accurately predict the state of the variable in the next timepoint. 

There were three basic sets of exogenous regressor variables used. First a core model was 

proposed by domain experts describing their understanding of cause and effect relationships 

driving adherence. The core model details the variable and the variables that are proposed to 

have  negative or positive causal interactions with that variable. Second, this core model was 

augmented with new statistically inferred interactions using a logistic regression with stepwise 

selection procedure. This second model starts with the core model and then alternates between 

adding and removing new variables until the new variable set is statistically significant in 

reducing prediction error. The last model is a de novo logistic regression with stepwise selection 

model. The de novo model is created using logistic regression with stepwise selection, but starts 

with a blank slate where all of the measured variables are candidates for selection. 

The first step to making the logistic regression was to make a multivariate logistic 

regression on one of the variables to get used to the program that was being used and to learn 

how to have the program allow for multiple variables to interact with the one that was currently 

being predicted. Once this was working a multivariate logistic regression was written to run on 

each node taking all variables that are predicted to affect the node into account. The training/test 



 

split used for the logistic regression was 30 training, 70 test. The logistic regression was coded in 

Python and the sklearn library was used. Using the sklearn library allowed me to use the logistic 

regression method that is built into the sklearn library.  

The logistic regression algorithm with stepwise selection [Rawlings, 1998] was applied at 

each node in turn and new input variables added such that the next state of that node was 

predicted with minimal error. The partial F null probability for inclusion of a new term was set to  

p = 0.05 for elimination of an existing term. The logistic regression with stepwise selection was 

set up in a way that allows for the program to be able to find the highest accuracy for each node. 

The logistic regression with stepwise selection was also set up to be able to be run with either the 

expert predicted interacts as a starting point for what variables the logistic regression with 

stepwise selection should include or with no base suggestions. The logistic regression with 

stepwise selection added variables that helped the program make the highest prediction accuracy 

for the nodes. The training/test split for the logistic regression with stepwise selection was a 30 

training/70 test split like what was done with the logistic regression. The logistic regression with 

stepwise selection was programmed in Python and the library sklearn was used for this program 

as well. The logistic regression method from sklearn was used to run the logistic regression with 

stepwise selection as well because to find the highest prediction a logistic regression was run on 

the node and then the logistic regression with stepwise selection part allows for the logistic 

regression to continue being run on one variable until the highest prediction is found.  

 

 

 



 

Figure 1: Causal interaction diagram 

 

Figure 1: Causal interaction diagram. This circuit diagram describes the decisional logic 

flow across all the variables, how they interact with each other, how they can influence 



 

the overall quality of life and how they influence the patients adherence to the therapy.  

(Shinn et al., 2020). 

A basic logistic regression was run against the basic structure of the expert-informed core 

model to determine its accuracy in reproducing the experimental observations. This was done by 

programming a core set of variables for each node according to the connectivity described in 

Figure 1. The logistic regression used the measured node state and that of its upstream input 

nodes at the current timepoint to predict the node’s state at the next timepoint. The data was 

randomly split into two sets,  70% of observations for testing and 30% of observations for 

training. These training and test sets were repeatedly subsampled and the logistic regression was 

applied 100 times.  

 Similarly, test and training subset selection and the logistic regression with stepwise 

selection were also repeated 100 times  in the case of the augmented core model and the de novo 

model.  

 A comparative analysis of the model accuracies produced in each case was performed to 

determine if the augmented core model and the de novo models improved prediction accuracy on 

average over that obtained by using the expert-informed variant. Null probability p-values were 

computed with a threshold for significance of 0.002 to determine if there was a significantly 

higher average accuracy from the logistic regression with stepwise selection models compared to 

the expert-informed logistic regression results. Likewise, the overall frequency of selection for 

each of the candidate input variables was analyzed to identify new upstream modes added to the 

core model 75% of the time or more.  



 

All of the calculations for the comparison analysis were performed in Python. The comparison 

was done using a t-test as well as the p values and for the t-test the library scipy.stats was used.  

Results 

Evaluating prediction accuracy an expert-informed model and its variants 

 Using the basic connectivity at each node as described in Figure 1 and applying a logistic 

regression as a state transition function to predict the next state we find that only 3 nodes deliver 

an accuracy above 75%. These are the adherence status, treatment cost worry, and patient-

reported coping deficit. Given the expert-informed model structure the next state of most nodes 

is predicted with an accuracy ranging between 50% and 75%, with the exception of numeracy, 

and beneficial routine for which prediction accuracy is especially poor (<50%) (Figure 2A). The 

addition of novel edges to the core expert model as inferred from the data using a stepwise 

selection routine improved the accuracy of most nodes raising the overall average accuracy from 

63.53% to 66.34% (p=0.05). The most noticeable increase in average accuracy was observed for 

nodes treatment fatigue, adherence, risk perception, cancer worry, health literacy, numeracy, 

quality of life, side effects, general anxiety, patient satisfaction with doctor, treatment cost worry, 

and beneficial routine. All of these nodes had a p value greater than 0.05. (Figure 2B). Finally, 

selecting upstream mediators naively from the data alone, in the absence of any prior structure, 

had the effect of normalizing the accuracy across all nodes to an average of roughly 70%. 

Average accuracy in the structurally naive model increased for some nodes and decreased for 

others but for all nodes the range of accuracy values across the 100 repeated subset selections 

increased noticeable from sigma ~ 63.53% to sigma ~ 67.39%. In figure 2C you can see that the 

boxes on the graph are much wider than graphs 2A and 2B. This suggests that the accuracy is 



 

dependent on the subset selection and that without a base model to go off of the model is not that 

stable.  

Figure 2: Predictive accuracy of network variants 

 



 

        

 

Figure 2: Accuracy in predicting the next state for individual nodes using a logistic 

regression applied to an expert-informed model structure (A), a stepwise selection of upstream 



 

interactions to be added to the core expert model (B), and a de novo stepwise selection of 

upstream from all model nodes (C).  

Figure 3: Consensus voting of augmented core model structure 

 

(A)        (B) 

Figure 3: Two graphs that show a significant node that had a variable added to it during the 

augmented core model run a significant amount of times. The A graph shows the significant 

node is treatment fatigue and the variable adherence was added by the regression about 90 times 

out of the 100 runs. The B graph shows the significant node is health literacy and the variable 

that was added a significant amount of time is anxiety which was about 75% of the time when it 

was run.  

Figure 4: Consensus voting of de novo model  



 

 

(A)      (B) 

Figure 4: Two of the significant nodes from the de novo model.  Graph A represents the 

treatment fatigue node and it showed that the adherence variable was added over 90% of the 

time. The graph  B shows the node for health literacy and the variable anxiety was added to the 

prediction about 50% of the time. 

 

 Figure 3 focuses on two nodes that had a variable added the majority of times to the 

augmented core model out of the 100 runs that were done. Figure 4 focuses on the same two 

nodes from Figure 3, but it is looking to see if the variables that were added the majority of the 

runs to the augmented core model were also added during to the de novo model.  The two nodes 

that are looked at in these figures are health literacy and treatment fatigue. In figure 3A you can 

see that general anxiety is added the majority of the runs to the node health literacy and in figure 

4A general anxiety is added to the health literacy node about 50% of the time which is more than 

any other variable for that node. In figure 3B you can see that the variable, adherence, was added 



 

the majority of the time to the node, treatment fatigue and in figure 4B adherence was also added 

the majority of the runs to the treatment fatigue node.  

Table 2: The average accuracy score for each node.  

Nodes Core Model Augmented Core 

Model 

De novo Model 

Treatment fatigue 0.5985 0.6448 0.6653 

Adherence 0.7671 0.7786 0.8126 

Risk Perception 0.5409 0.5751 0.5982 

Cancer Worry 0.5666 0.6016 0.6253 

Health literacy 0.5890 0.6302 0.6316 

Numeracy 0.4095 0.4526 0.4578 

Quality of Life 0.7015 0.7160 0.7349 

Side Effects 0.5734 0.6140 0.6137 

General Anxiety 0.6800 0.7184 0.7187 

Patient Satisfaction 

with Doctor 

0.7010 0.7098 0.7130 

Cost Worry 0.8469 0.8603 0.8582 

Beneficial Routine 0.4213 0.4575 0.4655 

Coping Deficit 0.8635 0.8653 0.8659 

Table 2: Average accuracy score of each node. The first column labeled “Core Model” which is 

the average accuracy of each node when the data was run through the logistic regression. The 

second column “Augmented Core Model” which is the average accuracy of each node when run 

through the logistic regression with stepwise selection. The third column “De novo Model” is the 

average accuracy of each node when run through the logistic regression with stepwise selection.  



 

 Of the 13 nodes re-evaluated by applying stepwise feature selection to augment the 

expert core model, 12 showed significantly improved average prediction accuracy with a less 

than 0.05 p value. These 12 nodes were treatment fatigue, adherence, risk perception, cancer 

worries, health literacy, numeracy, quality of life, side effects, general anxiety, patient 

satisfaction with doctor, treatment cost worry, and beneficial routine.  

In the de novo model assembled without prior knowledge of structure we also found 11 

out of 13 nodes that improved significantly in accuracy compared to the logistic regression 

model. The 11 nodes that are significant are treatment fatigue, adherence, risk perception, cancer 

worries, health literacy, numeracy, quality of life, side effects, treatment cost worry, beneficial 

routine, and coping deficit. In the de novo model there were also 3 nodes that had a 5% or more 

increase in accuracy. Those nodes were treatment fatigue, risk perception, and cancer worry.  

 

 

 

 

 

 

 

  



 

Figure 5: Updated causal interaction diagram 

 

Figure 5: The two new novel edges were added with gray arrows to the original causal 

interaction diagram to make the updated causal interaction diagram. One of the new novel edges 



 

is generalized anxiety’s connection to Health literacy and the other is adherence’s connection to 

treatment fatigue. These are the variables that were added the majority of the times during the 

logistic regression with stepwise selection.  

 The two connections that were added in figure 5 were determined based on what was 

seen in figure 3 and figure 4. The accuracy for the node treatment fatigue increased quite a bit 

during the logistic regression with stepwise selection for both the augmented core model and the 

de novo model and the logistic regression with stepwise selection added the variable adherence 

when it was predicting the outcome for treatment fatigue. When generalized anxiety was added 

to the node health literacy by the logistic regression with stepwise selection to both the 

augmented core model and the de novo model, there was an increase in accuracy seen.  

Model stability and contribution of prior knowledge 

The variability in the de novo model is quite a bit larger than that seen in the core model 

and the augmented core model, seen in Figure 2. Variability increased for a few different nodes. 

The variability increased for the nodes treatment fatigue, risk perception, health literacy, 

numeracy, quality of life, side effects, patient satisfaction with doctor, and cost worry. The 

standard deviation for treatment fatigue for the de novo model was 0.0343 while the standard 

deviation for the augmented core model was 0.0254. For the node, risk perception, the standard 

deviation of the de novo model was 0.266 and the standard deviation of the augmented core 

model was 0.255. The standard deviation of health literacy of the de novo model was 0.0288 and 

the standard deviation for the augmented model was 0.266. The node numeracy had the standard 

deviation of the de novo model was 0.248 and the augmented core model was 0.214. 0.0190 was 

the standard deviation of the node quality of life for the de novo model and 0.0186 was the 



 

standard deviation for this node for the augmented core model. The node, side effects, when 

looking at the standard deviation from the de novo model it was 0.2655 which is higher than the 

standard deviation of the augmented core model was 0.259. The node, patient satisfaction with 

doctor, had a standard deviation of 0.0189 in the de novo model and this is an increase from the 

standard deviation of 0.0173 in the augmented core model.  Coping deficit was the last node that 

had an increase in variability from the augmented core model to the de novo model when looking 

at the standard deviation. The standard deviation for the de novo model was 0.139 and the 

standard deviation for the augmented core model was 0.123. The standard deviations are fairly 

similar, but there is more variability seen in many of the nodes in the de novo model than the 

variability seen in the augmented core model.  

Discussion 

The experts that created the putative network model were correct about most nodes and 

which variables interact with each node. There were a couple nodes that had variables added 

consistently when the logistic regression with stepwise selection was run. One node where that 

happened is the treatment fatigue node which had adherence added to it almost every run. The 

other node where consistent improvements were made is the health literacy node which had 

general anxiety added to it almost every run. Overall the expert opinions were quite accurate and 

were a very good starting point when it came to predicting the next timepoint for that node.  

 When you look at the average of all nodes when running the logistic regression with 

stepwise selection for either the de novo or the augmented core model the average is higher than 

when the logistic regression is run with the core model. The de novo model had an average node 

score of 67.4% and the augmented core model had an average node score of 66.3% which is 



 

compared to the average node score of 63.5% from the logistic regression. There were some 

nodes that had a very high accuracy for each method and then there were some that had a 

consistently low accuracy for each method. When considering the overall goal of this project it is 

important to have as high a possible accuracy for each node. This is because it will help with a 

better performance in the final program that could be used in a clinical setting.  

 Results presented in Figure 2,  that both the core model and the augmented core model 

produced a relatively consistent accuracy from one subsample of data in predicting the next state 

for each individual node. However, we observed a broad disparity in the average prediction 

accuracy from one node to the next. The opposite was true of the de novo assembled model 

where a much broader range of accuracy values at each node was obtained from one data 

subsample to the next while the average performance across nodes was much more uniform.  

The augmented core model and the core model nodes in Figure 2 do not have much 

variation between the accuracy of each node. For the core model that was expected because the 

accuracy would not be expected to change much since the variables stay the same the whole 

time. The augmented core model also did not change much because for most of the nodes the 

predicted core model from the experts were accurate.  

One frequent reason for that can be traced back to changes in the coordinated patterns 

exhibited in each of the subsampled data sets. For this project, we are trying to find a universal 

model for all subjects, but this type of subset specific results could suggest that it might be more 

appropriate to stratify the subjects and have multiple models which could be either one per 

subject or data subset. In addition, to make this even more complicated the regressor variables 

are not statistically independent - they are more or less coupled as they are all members of a 



 

biological regulatory network and as such their measurements will be expressed in specific 

patterns. These patterns may shift significantly from one data subset to another affecting the 

choice of model terms at each step. However, when we look at the core model and the 

augmented core the accuracy values appear quite consistent and vary over a very narrow range. 

This could mean that the data subsets might also be reasonably consistent. This points to the 

model structure itself and the degrees of freedom with which new terms can be chosen. Figure 3 

and 4 show how in both the augmented core model and the de novo model have a variable added 

consistently to a node. The nodes that have a variable added consistently during the runs in both 

the augmented core model and the de novo model are the health literacy node and the treatment 

fatigue node. There were only two nodes that had a variable added consistently which suggested 

a broad range of statistically equivalent solutions [Rawling, 1988]. By setting a priori a number 

of initial input variables,  the choices available for new terms were limited, which decreases the 

degrees of freedom, and produces a more narrow family of models since most of the model is 

predetermined. This seems to be a more likely culprit.  

 The health literacy node had the variable general anxiety added the majority of the runs 

for both the augmented core model and the de novo model. The treatment fatigue node had the 

variable adherence added to the majority of the runs for the augmented core model as well as the 

de novo model. Having these nodes be added more than 75% of the time in the augmented core 

model and about 50% of the time in the de novo model means that these variables make it more 

likely to cause the prediction to be more accurate. Health literacy had general anxiety added the 

majority of the runs and these suggest that node general anxiety interacted with the node health 

literacy and when included in the model for that node it led to better predictions for the next 

timepoint. The same thing is true for the node treatment fatigue and the augmented core model 



 

added the node adherence the majority of the time. This most likely means that the node 

adherence has some interaction with the node treatment fatigue and when it is included in the 

model it increases the number of correct predictions for the next timepoint of treatment fatigue. 

There are a few limitations that could occur with this project. One of the limitations is 

that the sample size of the data is small which means that it could be difficult to use probability 

to reliably predict any changes in drug adherence. Though incomplete these models can serve as 

a basis for adjusting the recruitment and assessment protocols to focus on higher risk individuals 

such that the information content of new data is increased in a specific and premeditated way 

[Vashishtha et al., 2015; Vildela et al., 2015] - picking specific variables to focus and to use 

studies on similar data to make specific assumptions about what data variables are most 

important to focus on. There will have to be a specific type of distribution assigned to the data 

and the specific assumptions will be used to determine how to make the Petri nets based off of 

studies that have been done on similar types of data. [Rawlings J, 1998] 

While there were a few limitations to take into account during this project, the program 

was still accurate for many of the nodes. Using a logistic regression with stepwise selection 

allowed for the discovery for a couple nodes that benefited from having another variable added. 

Other than the couple nodes that benefited from a variable being added, the expert made causal 

interaction diagram that was quite accurate and allowed the logistic regression to make accurate 

predictions for most variables. One variable that had fairly low accuracy was beneficial routine. 

There could be multiple reasons for that, one of which could be that there is not enough 

knowledge about what can affect that node and the variable that would affect it is not currently 

one of the variables that is part of the model. Another factor to consider is that to increase the 

accuracy of some of the nodes there would have to be more timepoints for the node. The current 



 

study used a questionnaire every six months, but some of these variables might have had a higher 

accuracy if the questionnaire was every week, but that is not something that can be done in a 

clinical setting.  

Conclusion 

 Though the addition of new data-informed relationships did improve the predictive 

performance of the state transition function at least somewhat at a majority of nodes the basic 

expert-informed model nonetheless performed surprisingly well. Moreover, the inclusion of this 

baseline prior knowledge as a core model scaffold served to reign in the high degrees of freedom 

and reduce the range of solutions compared to the completely naive de novo approach. This is 

especially important in cases where there is little data to provide such constraints and where 

highly interrelated variables amplify the number of statistically equivalent models. Further 

improvements are needed before accurate predictions of adherence to therapy can be made. 

Additional data would further strengthen the validation and the current models could support the 

design of information recruitment strategies.  

 Predicting the next timepoint of each individual node is the first step in creating a 

program that is able to accurately predict the chance of adherence to the treatment. Having a 

program that is able to accurately predict the chance of adherence from one timepoint to the next 

could be useful in a clinical setting. The program could be used in a clinical setting by entering 

in the patient’s scores for each variable and then using the program to predict if they will 

continue to be adherent to the treatment. Then using the results from the program the patient’s 

doctor would be able to discuss with them reasons why they might not continue treatment and 

the doctor could try to work with the patient so they continue the ET.  



 

 While this project focused specifically on making a model that was able to make 

predictions in relation to variables thought to affect ET, this thinking and application of machine 

learning could be applied to other treatments for cancer and other diseases as well.  
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