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Abstract

Two of the most promising computational models for quantum computing are the

qubit-based model and the continuous variable model, which result in two different

computational approaches, namely the qubit gate model and boson sampling. The

qubit gate model is a universal form of quantum computation that relies heavily

on the principles of superposition and entanglement to solve problems using qubits

based on technologies ranging from magnetic fields created from superconducting

materials to the spins of valence electrons in atoms. Boson sampling is a non-universal

form of quantum computation that uses bosons as continuous-variable values for its

computation. Both models show promising prospects for useful quantum advantages

over classical computers, but these models are fundamentally different, not only on

their technologies but on their applications. Each model excels in different sets of

applications.

A direct comparison for solving a problem using qubit gate models and boson sam-

pling allows one to better understand not only the individual technologies, but how to

decide which model is better suited to solving a given problem and how to start devel-

opment on solving the given problem. This thesis uses the maximum clique problem

to examine the application development process in the qubit gate model and boson

sampling as well as a comparison of other known algorithms to the maximum clique

problem. The maximum clique problem is an NP-Hard problem concerned with finding

the largest fully-connected subgraph. The qubit gate model algorithm to the maximum

clique problem is a novel algorithm.
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Chapter 1

Introduction

1.1 Motivation

Quantum Computing (QC) is the method of using quantum mechanics, namely super-

position, entanglement, and quantum tunneling, to perform calculations [2] [3]. QC

is on track to change the world of computing in the near term [4]. It has applications

in cybersecurity, medicine, and solving classically superpolynomial problems. QC has

the potential to change cybersecurity by breaking standard encryption schemes we

currently use and imposing new encryption schemes that cannot be broken with our

current knowledge of quantum physics [5]. New medications are currently incredibly

difficult to create with our slow classical algorithms to simulate molecule interactions

[6]. There are several superpolynomial problems, like logistical problems, that can

easily be solved using quantum algorithms, but not classical algorithms [7]. Quan-

tum computing will change the world, but it is still a new technology and there are

several models at the forefront of the race, each with their own advantages. Knowing

which model is best for a particular application will allow engineers to optimize their

quantum advantages.
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CHAPTER 1. INTRODUCTION

1.2 Quantum Computing

QC solves some problems in far fewer steps than classical algorithms can ever real-

istically hope to achieve [5]. QC uses computing methods that are fundamentally

different from classical computing. Using entanglement and superposition in the

quantum gate model, a single operation can potentially do 2n times more calculations

than a classical computer can do with a single operation, where n is the number of

qubits entangled [2]. The long term effects of quantum computing on the world are

not completely clear at this point. There are frequent hardware advances and soft-

ware advances that bring the reality of quantum computing being faster and cheaper

than classical computing closer and closer. This thesis seeks to aid in the develop-

ment of applications using different computational models of QC, namely qubit-based

and continuous variable. Qubit-based quantum computing is currently at the stage

of allowing flexible implementations through the use of quantum gates. Although

continuous variable quantum computing also aims for flexible quantum gate imple-

mentation in the highly dimensional domain (continuous variable), the current state

of the art is based on a versatile but less flexible implementation called boson sam-

pling. Therefore, these two models, the qubit gate model and boson sampling, are

the target of this work.

1.3 The Maximum Clique Problem

A clique is a fully connected subgraph. The maximum clique problem is the task of

finding the largest clique in a given graph. For example, in a social network modeled

as a graph, a clique would be a group of people who all know each other and a

maximum clique would be the largest clique of a given population. This problem is

classically hard to compute and is in the set of NP-hard problems [8]. This problem

was chosen as the main subject of this research because it was relatively simple to solve

3



CHAPTER 1. INTRODUCTION

using Grover’s algorithm in the qubit-based model and because there was already an

algorithm using boson sampling available publicly. There are also a few other classical

algorithms and an algorithm using quantum annealing described in Section 2.2.

1.4 Contribution

The maximum clique problem is an important NP-Hard problem that is still difficult

to solve. This thesis proposes a QC solution to this problem with the potential of high

speedup when compared to classical algorithms with the same results. This problem

was chosen because of its importance in a few fields, the algorithms are relatively

simple, and now there are algorithms in every form of QC examined in this thesis.

The contribution of this thesis to the field of computer engineering is threefold:

1. We created an algorithm for the maximum clique problem using

Grover’s algorithm using a qubit-based quantum computer.

It is worth noting that although Bojić proposes an outline that

can be used to solve the maximum clique problem, no implementation

was provided [9]. This thesis work proves that the implementation is

possible.

2. We created novel method to compare different one-hot encoded num-

bers with binary numbers that results in more efficient qubit utiliza-

tion and circuit simulation.

3. We provided a unique comparison of application development using

the qubit-based model of QC, boson sampling, and classical comput-

ing.

Each of these advancements have the potential to spur further development in

this field and related fields.
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Chapter 2

Background

2.1 Quantum Computing

Currently, there are several models of computation using quantum properties. Two

of the most promising are the qubit-based model and boson sampling. While both of

these models use the properties of quantum mechanics to perform their computations,

they are inherently different in the methods they use for computation.

2.1.1 The Qubit-Based Model

The qubit-based model (QB) is the most popular and widely known form of universal

quantum computing. Shor’s algorithm and Grover’s algorithm, arguably two of the

most famous quantum algorithms, were designed to use this model. This model is the

method of isolating singular objects (qubits) that exhibit quantum properties. These

singular objects can be the spin of the outermost electron in a phosphorus atom, the

spin of a nucleus, or the magnetic field produced from superconducting materials, to

name a few examples [10] [11] [12]. The qubits are then controlled through the physical

implementation of a Hamiltonian that governs the time evolution of the system. The

Hamiltonian is mathematically represented as a unitary operator, which can in turn

be decomposed into smaller unitary operators. These are abstracted as quantum

gates. These gates are very different from their classical computing counterparts.

5



CHAPTER 2. BACKGROUND

Quantum gates interact with the qubits to change their value, entangle them, or

collapse their superposition to measure their values, to name a few uses [13].

2.1.1.1 Grover’s Algorithm

In this thesis, Grover’s algorithm is used to solve the maximum clique problem.

Grover’s algorithm utilizes several properties of the qubit-based model, specifically

superposition, entanglement, and phase kickback. By utilizing these properties,

Grover’s algorithm can be used to solve some problems much faster than classical

computing can ever realistically solve these problems.

Grover’s algorithm [14] was proposed by Lov K. Grover in 1996 and is one of

the first quantum algorithms to show true potential in its speedups. It is a way of

finding specific elements in an unsorted list of elements using a qubit-based quantum

computer. Grover’s algorithm can search a list of N elements using O(
√
N) steps,

compared to the O(N
2

) steps needed for the average number of comparisons to search

an unordered list using a classical computer.

Grover’s algorithm works by iteratively increasing the amplitude of the solution

states in a superposition of states. The maximum amplitude of the probability for

the solution states is achieved at
√
N iterations. Grover’s algorithm uses an oracle

function to determine which states will be amplified in each iteration. Given a quan-

tum register |x〉, the oracle uses quantum gates to flip the target qubit if |x〉 is a

solution state. If |x〉 is not a solution state, the target qubit is unaffected. If the

target qubit is in the state |0〉, then the quantum register |x〉 is left unaffected and

the target qubit reacts to the function |f(x)〉, as shown in Figure 2.1a. If the target

qubit is in the state |−〉, then the target qubit is unaffected and the phase kickback

effect transforms the quantum register |x〉 to be (−1)f(x) |x〉, depicted in Figure 2.1b.

After the oracle is run, the inverse of the oracle must be run in order to reset the

oracle’s ancilla qubits back to their starting states. After this, Grover’s algorithm

6



CHAPTER 2. BACKGROUND

(a) Calculating f(x) on Target Qubit

(b) Using Phase Kickback to Change the Input
State of |x〉

Figure 2.1: The Effects of Phase Kickback by Changing the Target Qubit

requires a diffuser to transform the probabilities from (−1)f(x) |x〉 to positive and

amplified probabilities. Figure 2.2 depicts the general process of using Grover’s algo-

rithm. It shows that the oracle and diffuser combination must be repeated O(
√
N)

times to have the largest probability of sampling a solution state.

Figure 2.2: Summarizing representation of Grover’s algorithm circuit. The qubit register
is placed in a superposition state. The oracle applied to the superposition state results in
|f(x)〉. If the target qubit is in the |−〉 state, the phase kickback effect then leaves the tar-
get qubit unaffected and changes the quantum register’s states’ probabilities to (−1)f(x) |x〉.
The diffuser —or amplitude amplifier— through multiple executions amplifies the ampli-
tudes of the states out of the superposition that meet the oracle.

2.1.2 Boson Sampling

Boson sampling (BS) is a non-universal model of quantum computation with the abil-

ity to solve many difficult problems that quantum computers will be used to target

7



CHAPTER 2. BACKGROUND

in the future. BS is a problem that is difficult for classical computers to simulate,

but natural for bosons to solve. BS is a method of generating bosons, interfering

with them to create a pattern, then sampling from the output of this interference

to measure the effect of the interference on the input [15]. This can be used to per-

form computation. The physical implementation by the leading company Xanadu

Quantum Technologies Inc. implements BS using photons [8]. They use photonic

quantum hardware, linear evolution, and photodetection to perform controlled calcu-

lations. Currently, the hardware is limited to Gaussian Boson Sampling (GBS). GBS

is a type of BS in which all of the gates can only perform Gaussian operations, such

as displacement and squeezing. These operations keep the probability of measuring

a photon in a Gaussian shape. Because of this limitation of keeping the probability

of measuring a photon in a Gaussian shape, GBS cannot solve all problems and is

therefore non-universal. BS is not restricted to Gaussian operations and is a uni-

versal form of quantum computing that is not limited to any set of problems. BS

has a few practical uses, including the potential to speed up a major area of interest

for computer scientists: graph-based algorithms. Graph-based algorithms are inher-

ently difficult for classical computers to solve because of how many vertices and edges

graphs can have. Researchers have figured out how to use boson sampling to find

dense subgraphs, among other problems [8].

2.1.2.1 Boson Sampling for Dense Subgraphs

The densest k-subgraph (DkS) problem is the task of finding the densest subgraph

of k < n vertices with the largest density in the graph G. This problem is NP-Hard

[16].

Gaussian boson sampling (GBS) has been shown to enhance classical heuristic

algorithms for finding the densest k-subgraphs [17]. The core aspect of this work

was to realize that GBS devices can be programmed to naturally favor sampling

8



CHAPTER 2. BACKGROUND

dense subgraphs. GBS devices can be controlled to sample an output pattern, S =

(s1, s2, ...sn) where si is the number of phtotons detected by output mode i and P(S)

is the probability of S being sampled, according to

P (S) = |σQ|−
1
2
c2|Haf(AS)|2

pkcf

where AS is the adjacency matrix corresponding to the subgraph of A associated with

S, c is the user’s choice of an optimization value, σQ is a biased covariance matrix

of the Gaussian state, and pkcf := p(k ∧ cf) = p(cf |k) ∗ p(k) is the collision-free

probability of a photon in a mode times the probability of the number of photons

per mode, where k is the number of photons per mode and cf is the Boolean value

of whether or not the mode is collision free [17]. A crucial item to note is that the

Hafnian of an adjacency matrix is the same as the number of perfect matchings in

adjacency matrix A’s graph. The number of perfect matchings in a graph is the

number of unique sets of edges where every vertex is connected to exactly one edge

[8].

The second item to note is that the greater the number of perfect matchings in a

subgraph, the denser the subgraph is. These two facts can be used to sample dense

subgraphs of a specified size.

2.2 Algorithms for the Maximum Clique Problem

A clique is a fully connected subgraph and a maximum clique is the largest clique of

a graph. The maximum clique problem is the task of finding the largest clique in a

given graph.

There are two main approaches to solving the maximum clique problem: brute

force (exact and computationally expensive) or heuristic (approximate and computa-

tionally cheap). There are benefits and drawbacks to both approaches.

9



CHAPTER 2. BACKGROUND

2.2.1 Brute Force Algorithm

In the worst case scenario, the brute force algorithm has to check if 2|V | subgraphs are

cliques. On average, there are |V |
2

vertices per subgraph. Depending on the density of

the graph, there can be up to |V |∗(|V |−1)
2

edges to check in the subgraph. Putting this

all together, the classical complexity of the brute force approach requires O(|V |32|V |)

operations to find the exact maximum clique. The brute force algorithm for solving

this problem follows the steps:

1. Initialize k = |V |

2. Check if any subgraphs of size k are cliques

If a subgraph is a clique, return the subgraph and exit.

If there are no subgraphs of size k that are cliques, go to step 3.

3. Decrement k. Go to step 2.

Since this algorithm starts with k = |V | and decrements, the maximal clique will

always be found upon completion of the algorithm.

2.2.2 Simulated Annealing Algorithm

Simulated annealing is a probabilistic algorithm for approximating the global min-

imum for a given optimization function. This algorithm is a heuristic because the

process does not guarantee finding a maximum clique. When computational speed is

more important than global optimality, simulated annealing can be a good alterna-

tive to the brute force algorithm. Simulated annealing is based off of the metallurgy

process of annealing in which the temperature of a metal is slowly cooled to allow the

metal atoms to form a low energy crystalline structure. Simulated annealing follows

this approach by having a temperature variable, T, that decreases for each iteration

of the algorithm. For each iteration, a random neighboring state is selected. If the

10



CHAPTER 2. BACKGROUND

neighboring state is more optimal, the current state is updated to the neighboring

state. If the neighboring state is less optimal, there is a probability that the current

state is updated to this selected neighboring state. The probability depends on the

difference between the current state’s optimization energy, the neighboring state’s op-

timization energy, and the temperature T. When the temperature T is small enough,

the algorithm returns its current state as the optimal solution it found [18].

The steps to finding maximum cliques using simulated annealing are:

1. Perform simulated annealing with an initial random subset of vertices σ and an

optimization function shown in Equation 2.1, where G(V,E) is a graph with |V |

vertices, AG(ak,l is the adjacency matrix of G(V,E), k, l = 0, 1, ..., n− 1, σ is a

subgraph of G(V,E) that is a clique, and m is the size of the subgraph. This

objective function increases when a vertex is exchanged with a vertex of lower

rank relative to the subgraph [19].

F (G, σ) =
m−2∑
k=0

m−1∑
l=k+1

(1− aσ(k),σ(l)) (2.1)

2. Removing the least-dense vertices until a clique is achieved. This has a worst-

case time complexity of O(|V |).

3. Greedily adding vertices that are fully connected to the subgraph in order to

maintain the clique status for the graph [20]. This has a worst-case time com-

plexity of O(|V |).

This solution is not guaranteed to be optimal, but can certainly be much faster

than the brute force algorithm. This algorithm has a worst-case time complexity of

O(|V |). This algorithm relates best to the boson sampling algorithm in Section 4.

11



CHAPTER 2. BACKGROUND

2.2.3 Quantum Annealing

While not reviewed in detail in this thesis, quantum annealing is another form of

quantum computing. Quantum annealing is a form of quantum computing that uses

quantum physics to probabilistically find the minimum energy state of a system or en-

ergy landscape [3]. Quantum annealing uses adiabatic quantum computing. Though

the gate model of quantum computing is not identical to quantum annealing, there is

a polynomial time and resource mapping from the gate model approach to adiabatic

quantum computing for Shor’s algorithm and Grover’s algorithm. The most promi-

nent quantum annealing machines are from D-Wave. D-Wave’s quantum annealers’

qubits are superconducting niobium rings with magnetic fields used as qubits. To

use this for computation, the energy landscape is established, and the qubits are al-

lowed to settle. Depending on the energy landscape, the qubits usually settle into

local minima or global minima. Quantum annealing is used to solve two different

types of problems: optimization and sampling. Optimization problems are coverted

into an energy landscape and hope to find the best or a ”good enough” solution to

the optimization problem. This energy landscape is often in the form of a Hamil-

tonian [21]. Sampling problems are those that have the goal of characterizing the

energy landscape by sampling many low energy states. To use a quantum annealer to

solve sampling problems, the energy landscape must be made similar to the energy

landscape in question and sampled many times.

Quantum annealing has been used to solve the maximum clique problem [21]. The

Hamiltonian used to solve the maximum clique problem is

H = H(x1, ..., xN) =
∑
i∈V

aixi +
∑

(i,j)∈E

aijxixj

where variables xi ∈ {0, 1} and coefficients ai, aij ∈ IR, V = {1, ..., N} and E = V ×V

[21]. The coefficients ai and aij are the values associated to the weights of each

12
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individual vertex and edge, respectively. This can be simplified to

H = −A
N∑
i=1

xi +B
∑

(i,j)∈E

xixj

where A = 1 and B = 2, when written as a quadratic unconstrained binary opti-

mization (QUBO) problem. This equation places a negative value on the number of

vertices to maximize the number of vertices favored when sampled and places a posi-

tive value on the number of edges not in the graph. Effectively, this is a cost function

similar to the simulated annealing cost function, except it includes the number of

vertices as well. When using this QUBO to solve the maximum clique problem, for

the graph illustrated in Figure 3.1a, the solutions measured after 10 executions are

AB and AC, which are the maximum cliques of the graph.
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Chapter 3

Qubit-Based Model

3.1 Grover’s Algorithm Outline for the Maximum Clique

Problem

The approach to solve the Maximum Clique problem using Grover’s Algorithm is

proposed in [9] by A. Bojić. The main steps are as follows:

1. Define k as the minimum acceptable |V | for the clique. Define |x〉 as the quan-

tum register that defines the subgraph being examined. Initialize k = 1 and

|x〉 = |0〉.

2. Define an oracle function f(|x〉) that flips the target qubit if the base state |x〉

represents a clique and its size is larger than the value stored in the variable k.

Otherwise, f(|x〉) does not flip the target qubit.

3. Initialize the quantum register to a superposition of every possible subgraph of

the graph.

4. Run Grover’s algorithm for
√

2|V | steps. Recall that Grover’s algorithm can

search through an unsorted list of N elements in
√
N steps. Since there are

2|V | elements that are being searched, one can set N = 2|V | for this problem.

Therefore, Grover’s algorithm must run for
√

2|V | iterations.

14
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5. Measure the |x〉 quantum register. If the outcome is a clique with |V | > k, store

|x〉, let k = |V |, and go to step 2. Otherwise go to step 6.

6. Return |x〉

In this work [9], the definition for the oracle function is mentioned but it does not

provide an implementation. Section 3.2 provides this implementation.

3.2 Grover’s Algorithm Oracle for the Maximum Clique Prob-

lem

The oracle for this problem needs to output a |1〉 if a subgraph is a clique AND if the

subgraph is larger than k. Otherwise, the oracle needs to output a |0〉. To do this,

the problem can be broken into two parts and their outputs can be combined in a

logical AND using a Toffoli gate.

To start, a simple graph is chosen to explain this algorithm. A three vertex graph

with two edges is best for this explanation, shown in Figure 3.1a. This graph has

two maximum cliques: AB and AC. To encode this graph into the hardware, the

associated edges in the q edge register have an X gate applied to them, as shown in

Figure 3.1b. This figure shows that q edge 0, q edge 1, q edge 2 are associated with

edges AB, AC, and BC, respectively.

(a)
(b)

Figure 3.1: (a) Simple graph with edges AB and AC. (b) Edge and vertex encoding for
the example graph.
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According to Bojić’s outline for this problem, a quantum register |x〉 needs to be

initialized to a superposition of every possible subgraph of the graph. This can be

done by applying a Hadamard gate to every qubit in the q vert quantum register,

where q vert represents the quantum register |x〉 from Bojić’s outline. As Figure

3.1b depicts, q vert 0, q vert 1, q vert 2 are associated with vertices A, B, and C,

respectively.

The goal of this algorithm is to identify which subsets of this graph’s vertices are

(a) a fully connected subgraph, or clique, and (b) the subgraph’s |V | ≥ k.

3.2.1 Is the subgraph a clique?

The first part of the oracle is meant to determine if the subgraph is a clique. First, for

each pair of vertices, the edge is generated that would connect them if they exist in

the subgraph. Even if that specific pair of vertices does not really exist in the graph,

we want to be able to identify an edge that would connect them, which will later be

used in comparison with the actual existing edges in q edge to verify if the subgraph

is a clique or not. A quantum register q check edge is created for that purpose. If

vertices A and B were connected, then q check edge 0 should be set to |1〉, and a

Toffoli gate can implement this function.

To check that all of the edges that the subgraph can possibly have existed in the

graph, the values in q check edge to q edge should be compared. In this case, the best

way to implement this is to aim at having an output q or=|111〉 only when the edges

defined by the vertices are also existing in the q edge register. The name q or comes

from the fact that a quantum operand behaving as a logical OR gate can achieve

this behavior. If this quantum OR operand acts on the inverted q check edge and

non-inverted q edge, the q or register will return |111〉 only when the subgraph in

q vert is a clique. If the outcome is anything else, then the subgraph in q vert is not

a clique. According to boolean logic, let q edge = |011〉 and q check edge = |001〉,

16



CHAPTER 3. QUBIT-BASED MODEL

then if we invert q check edge, we get |110〉. Applying a QOR gate to q edge and

q check edge we get |111〉. This is correct because q check edge corresponds to AB,

and AB is a clique.

According to the logical expression, a ∨ b = ¬(¬a ∧ ¬b), the implementation of

the quantum or gate is depicted in Figure 3.2. We will show that this implementation

does in fact produce the right results in the quantum solution of the problem.

Figure 3.2: Quantum OR gate Where q2 = q0 OR q1

The q check edge register is reduced to a single qubit output using two Toffoli

gates as shown in Figure 3.3. The simulation results of this portion of the oracle are

summarized in Figure 3.4. The qubits displayed are the clique qubit (1 if the subgraph

is a clique and 0 if it is not) followed by the three vertices qubits q vert(2,0). For

example, for the first case (0110), the vertices BC (110) do not constitute an existing

subgraph or clique. On the other hand, the last case (1101) represents subgraph AC

(101) which is one of the graph’s cliques. The equal probabilities simply indicate that

the right combination of clique+q vert exist with approximately equal probability.

This will be used later to find the largest clique.

Figure 3.3: Circuit to determine if a subgraph is a clique

17
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Figure 3.4: Histogram showing the simulation results of the circuit to determine if a
subgraph is a clique, verifying this portion of the implementation. The X axis represents
the measurement of the clique qubit (indicating whether the subgraph is a clique or not)
followed by the three q vert qubits for all possible combinations of these last three.

3.2.2 Is the subgraph larger than k?

Once the implementation is able to identify cliques in the graph, identifying the

maximum clique requires comparing their sizes against an integer k, according to the

algorithms described in Section 3.1. This will be done with an integer comparator

for which the k value is updated before each run of Grovers algorithm [22].

The encoding of the vertices in a given subgraph is a one-hot encoding, meaning

that each position in the string corresponds to one vertex. Since the size of the

subgraph is given by the number of 1s in the encoding of the vertices, regardless of

their order in the string of qubits, comparing the size requires counting the number

of 1s. For example, 110, 101 and 011 are all of size two.

Comparing the number of 1s in the clique can easily be done by counting the 1s

with a full adder then using an integer comparator against k. The full adder simply

adds all the 1s in the one-hot encoded number of vertices into a binary number n,

and the integer comparator flips a target qubit when n ≥ k [22]. k is updated and

the comparator redefined in between every
√

2|V | iterations of Grover’s algorithm, as

explained in Section 3.1.

To implement the full adder using quantum gates, CNOT and Toffoli gates are

used as shown in Figure 3.5 [23]. In this full adder, the CNOT gates in this configura-
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tion are logically equivalent to a single XOR and the Toffoli gates in this configuration

are logically equivalent to a single AND gate.

Figure 3.5: Quantum full adder

3.3 Complete Oracle

The complete oracle combines the clique identification and the size comparison with

a logical AND using a Toffoli gate. This is shown in Figure 3.6.

In order to be able to use this oracle within Grover’s algorithm, all of the ancilla

qubits must be returned to the |0〉 state. This is done by applying the inverse of the

oracle, before the final Toffoli gate. This is shown in Figure 3.7.

3.4 Complete Grover’s Algorithm Implementation

In order to solve the maximum clique problem, phase kickback is applied by placing

q answer into the |−〉 to the oracle. These qubits in superposition are changed from

the state |x〉 to the state (−1)f(x) |x〉. As defined in Grover’s algorithm, the imple-

mentation of the oracle is followed by the diffuser, which is the amplitude amplifier.

This combination of steps amplifies the correct answers out the the original super-

position of all possible sets of vertices. For the final implementation, the circuit has

been sectioned using barriers. There are four barriers on the left and right of the

oracle and diffuser. This has no impact on the circuit but helps with its visualization.
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Figure 3.6: Implementation for the first half of the oracle for graphs with three vertices

Figure 3.7: Complete oracle for graphs with three vertices

In addition, all of the elements affecting q edge are moved before the oracle. This

circuit is shown in Figure 3.8.

This circuit is regenerated and executed every
√

2|N | runs in order to update k

with the next largest size found. The final result is shown in Figure 3.9. The AB

(011) and AC (101) subgraphs are the only standing results after the execution with

approximately equal probability. These are the expected results and show that this

circuit correctly finds the maximum cliques in the graph.

While this implementation seems relatively straight forward, there were

some challenges that needed careful thought in this work. It is important

to note that the design of quantum circuits requires an understanding of

the particular behavior of the quantum gates. Although certain paral-

lelisms can be found with classical computers, such as X gates behaving
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Identifying clique

Phase kickback

Clique size comparison

Diffuser

Oracle

Figure 3.8: Grover’s algorithm implementation to find maximum cliques. This circuit
follows the structure presented in 2.2. Uc and its conjugate transpose along with the cor-
responding Toffoli gate in between. The qubit q answer is initialized as |−〉. This can be
done with a combination of the Hadamard and X-gate, however, since |−〉 = 1√

2
(|0〉 − |1〉),

this can also be expressed with a phase factor of ( 1√
2
,− 1√

2
) as shown in the Phase kick-

back detail. After the oracle, the diffuser is applied, as show in the figure’s detail. The
redundant X-gates are shown in the circuit just for clarity, as they are part of the OR logic
implementation described in Section 3.2.1

Figure 3.9: Grover’s algorithm implementation to find maximum cliques simulation re-
sults. AB (011) and AC (101) are equally probable solutions for the example graph in
3.1a
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as inverters or CNOT resembling XOR logic behavior, they are particular

in other ways. The most notable ones being:

1. the requirement of ancilla qubits to help with the computation’s com-

pletion, while preserving information and

2. the understanding of the behaviors of these gates on states in super-

position, in addition to the |0〉 and |1〉.

3.5 A New Shuffling Algorithm and Conjecture

Since quantum computers currently have very few qubits, any reductions in the num-

ber of qubits required for an algorithm can be very helpful. In this section we

propose a novel, more qubit-efficient version of the oracle described above

Currently the process of counting the number of vertices using the full adder

requires additional qubits. Finding a way to perform the subgraph size comparison

against k without requiring extra qubits would allow this maximum clique algorithm

to be run on larger graphs while requiring fewer qubits. To do this comparison without

requiring more qubits, consider the question:

Given two randomly shuffled one-hot encoded numbers, i and j, what is

the probability that the binary comparison equals the one-hot comparison

of i and j?

First, one needs to understand one-hot encoded numbers and binary numbers.

The value of a one-hot encoded number is the number of ones in the number, e.g.

the value of the number 1001one−hot is 2 because there are two one in the number.

The value of a binary number is the value of the number in base 2, e.g. the value

of the number 10012 is 23 + 20 = 9. To compare number using these encodings

requires two different comparators: ≥one−hot and ≥ which correspond to the one-hot

comparator and the binary comparator. To better understand this problem, refer to
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Table 3.1: Shuffle Comparision Example with Two Bit Numbers

i j i ≥one−hot j i ≥ j Comparisons Agree
00 00 True True True
00 01 False False True
00 10 False False True
00 11 False False True
01 00 True True True
01 01 True True True
01 10 True False False
01 11 False False True
10 00 True True True
10 01 True True True
10 10 True True True
10 11 False False True
11 00 True True True
11 01 True True True
11 10 True True True
11 11 True True True

Table 3.1. There are 22n combinations of i and j, when the numbers to be compared

are n-bit numbers. This table shows that when i and j are two-bit numbers there are

16 possible combinations of i and j. In the third column, this table is showing the

one-hot comparison between i and j (i ≥one−hot j). In the fourth column, this table

is showing the binary comparison between i and j (i ≥ j). In the final column, this

table is showing where these two comparisons agree. This table shows that for 15
16

combinations of i and j, the one-hot comparison and the binary comparison agree.

These results are significant because they show that if two randomly shuffled one-

hot encoded two bit numbers are compared using an binary comparator, there is only

a 1
16

chance that the binary comparator would measure incorrectly. When the number

of bits in each number increases, the probability of the one-hot encoded comparison

and the binary comparison being the same decreases. This decreasing function is

plotted in Figure 3.10.

Shuffling Conjecture: Given two randomly shuffled one-hot encoded numbers

i and j, the probability that the binary comparison equals the one-hot comparison of
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Figure 3.10: Comparison agreement probabilities as the number of bits in each number
increases

i and j is greater than 1
2

for all lengths of the two numbers.

The shuffling Conjecture is a novel contribution, especially important

in the NISQ era [4]. The NISQ era is currently severely limited by the

number of qubits available in current hardware. By providing a way to

reduce the number of qubits required for a circuit to run, the Shuffling

Conjecture can be used for many problems in the near future.

3.6 Applying the New Shuffling Algorithm to Grover’s Al-

gorithm for the Maximum Clique Problem

Assuming that the Shuffling Conjecture is correct, this can be integrated into the

oracle implementation for the maximum clique problem, described in Section 3.2.

To compare two one-hot encoded numbers, the numbers i and j must first be

identified. With this problem, i can represent the number of vertices in q vert, which
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represents the number of vertices in the subgraph. The number j can represent the

k value represented as a one-hot encoded number. Looking at Figure 3.10, one can

gather that the probability of the correct one-hot encoded comparison agreeing with

the integer comparison is 87.5%. To further understand how this shuffling will affect

the outcome of the program, one can evaluate the probabilities of the comparisons

agreeing with respect to the difference of the number of ones in the one-hot encodings,

as Figure 3.11 depicts. This figure shows that when the two numbers have the same

number of ones there is a 2
3

chance that the one-hot comparison and the integer

comparison agree. When there is a single bit difference, there is a 8
9

chance that the

two comparisons agree. When there is a two bit difference, there is a 100% chance

that the two comparisons agree.

Figure 3.11: Comparison agreement probabilities as the difference of the one-hot encoded
numbers increases

Since the simulations run in this paper use many trials, the shuffling can be

declared classically for each run. This means that when the circuit is being defined,

swap gates can be inserted before and after the integer comparator. This is depicted
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in Figure 3.12.

Figure 3.12: Grover’s algorithm to solve the maximum clique problem using the novel
shuffling algorithm

The simulation results for the circuit shown in Figure 3.12 are shown in Figure

3.13. Unlike the implementation of Grover’s algorithm that used counting to compare

the size of the subgraph to the value k, these results are not perfect. These results

do, however, show that there is approximately a 70% chance that the correct value

will be measured. The values with a single one in their one-hot encoding have a much

smaller chance of being measured because 8
9

times their comparison when k = 2

registers as smaller than k. The rest of the values are not cliques so they have a

smaller probability of being measured.

Figure 3.13: Simulation results for Grover’s algorithm to solve the maximum clique prob-
lem using the novel shuffling algorithm
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3.7 Finding the Maximum Clique using Grover’s Algorithm

for a Graph with Four Vertices using the Shuffling Algo-

rithm

This algorithm works for all graphs, not just three vertex graphs. To run the algorithm

on a four vertex graph, more qubits are needed. As an example, examine the four

vertex graph in Figure 3.14. There are two maximal cliques: ABD and ACD.

Figure 3.14: Example Four Vertex Graph

To encode this graph into qubits, q vert 0, q vert 1, q vert 2, and q vert 3 corre-

spond to vertices A, B, C, and D, respectively. Also, q edge 0, q edge 1, q edge 2,

q edge 3, q edge 4, and q edge 5 correspond to edges AB, AC, AD, BC, BD, and

CD, respectively. The complete circuit for this algorithm is shown in Figure 3.15.

Simulating this circuit produces the histogram shown in Figure 3.16.

Figure 3.15: Circuit for Four Vertices
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Figure 3.16: Simulation Results for the Four Vertex Circuit

These simulation results show that the circuit produces the output of ABD and

ACD with the largest probabilities. These are the maximum cliques for the graph,

so these results are expected. It is important to note that this solution uses far fewer

qubits than the solution that uses counting to determine with 100% certainty that

|V | ≥ k.

It is important to note that this shuffling approach reduced the circuits

complexity to the point of making the simulation possible, a simulation

that was not possible otherwise. This simulation ran successfully on a system

with 32GB of memory. This is because the shuffling version of this algorithm requires

fewer qubits than the version that counts the number of vertices. The counting

version of the algorithm was also implemented, shown in Figure 3.17. This circuit

could not be simulated on the same system that the shuffling version of the circuit

was simulated on. This is because the counting version of the circuit has more qubits

and requires more memory to simulate. This circuit required more than 256GB of

memory to run successfully. This was not accessible at the time of this development.
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Figure 3.17: Counting Version of the Circuit for Four Vertices

3.8 Quantum Cost of the Grover’s Algorithm Implementa-

tion

To understand the current and future capabilities of this algorithm, the quantum cost

of the counting version of the circuit, shown in Figure 3.7, is analyzed. The shuffling

version of the circuit is analyzed after this analysis. The two most important factors

in the NISQ era are the number of qubits required and the depth of the circuit.

The circuit is analyzed as-is. This circuit is not decomposed into primitive gates or

optimized for execution. However this is still a good estimation of the scalability of

this implementation.

3.8.1 Number of Qubits Required

Before determining the number of qubits required, it is important to understand the

scalability of the number of edges with the size of the graph. There are |E| = |V |∗(|V |−1)
2

edges in any fully connected graph. As an upper bound, this is O(n2) where n is the

number of vertices in the graph. This is an important upper limit to take into account

since finding the maximum clique involves exploring all possible edges in the graph

for |V | vertices, whether those are truly connected or not in the specific graph.

The breakdown of qubits is as follows:
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• q edge: This register scales directly with the number of edges in the graph.

This register requires |E| qubits.

• q vert: This register scales directly with the number of vertices in the graph.

This register requires |V | qubits.

• q check edge: This register requires |E| qubits.

• q compare: This register requires |E| qubits.

• q output: This register requires 1 qubit.

• q cmp anc: This register requires dlog2(|V |)e qubits.

• q answer: This register requires 1 qubit.

• q count: This register requires O(|V | ∗ log2(|V |)) qubits. Conceptually this can

be understood by two facts:

1. |V | can be represented with log2(|V |) qubits.

2. Performing the addition operation for each qubit in q vert would require

|V | full adders.

3. This can be optimized by removing extra full adders in steps that cannot

have that large of an output. For example, if the operation is on the third

vertex being added, only two qubits are required for the output.

For a graph with three vertices, q count requires two qubits. For a graph with

four vertices, q count requires six qubits.

Putting this all together, the circuit requires

3 ∗ |V | ∗ (|V | − 1)

2
+ |V |+ dlog2(|V |)e+O(|V | ∗ log2(|V |)) + 2
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qubits to use this algorithm for a graph with |V | vertices, which is O(|V |2) qubits.

For a graph with three vertices, this algorithm requires 18 qubits. For a graph

with four vertices, this algorithm requires 34 qubits. Figure 3.18 summarizes the

potential growth of this metric with the number of vertices.

The shuffling version of this solution very similar, for the most part. The differ-

ences are that q cmp anc requires O(|V |) qubits and q count is unnecessary. This

results in a total qubit requirement of

3 ∗ |V | ∗ (|V | − 1)

2
+ 2 ∗ |V |+ 2

qubits, for a graph with |V | vertices, which still has the complexity of O(|V |2), but

has a smaller actual value as |V | scales.

3.8.2 Depth of Circuit

The depth of the circuit is the other important metric for this algorithm. It is im-

portant in this case to keep in mind that in the real hardware implementation, the

compiler will generate more efficient hardware through optimization and sufficient

scheduling and mapping. For this paper, the calculations bellow have only applied

obvious optimization such as the removal of redundant X-gates. However, this is

nonetheless a good estimate of the scalability of this implementation, given that the

final resulting implementation will only experience a proportional reduction of the

number of levels in the circuit discussed here. Again, the full detail of the depth cal-

culation is not described for the sake of space. It is important to notice that Uc and

Uc
† have the same depth. Within these, some non-obvious portions of the circuit are

the integer comparators, which require 5∗ (|V |−2) logic levels. This can be analyzed

step-by-step as with the number of qubits:

1. The first two levels of operations do not grow with the size of the graph.
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2. The levels to determine all of the possible edges in the given subgraph scale

with |E|.

3. The levels with the double X gates are redundant and unnecessary. They are

only included in this paper to aid understanding.

4. The next three levels scale with |E|.

5. The X gates after the three Toffoli gates do not grow with the size of the graph.

6. The multiple control Toffoli gate requires 1 level.

7. The levels used for counting require three times more levels than the number

of qubits required for q count.

8. The integer comparator requires 5 ∗ (log2(|V |)− 2) levels.

9. The Toffoli gate that targets the q answer qubit requires 1 level.

10. The next few levels are a reverse of the first part of the oracle. This means

we have to add on the depth of our circuit equal to the length of the levels

described in 2-8.

11. Next, we have our diffuser. This requires seven levels.

12. Finally, we measure the qubits. This scales with |V |.

In total, this oracle requires

2 ∗ |V | ∗ (|V | − 1) +O(|V | ∗ log2(|V |))− 7

levels to operate correctly and the pre- and post-processing number of levels required

is |V | + 1. So, for one iteration of the oracle the depth of the circuit is O(|V |2) in

the worst case scenario. For a graph with three vertices, 57 levels are required for a
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single iteration of Grover’s Algorithm. For a graph with four vertices, 98 levels are

required. The number have been verified correct for the four vertex graph. Again,

Figure 3.18 summarizes the potential growth of the circuit’s depth with the number

of vertices.

The shuffling version of this solution very similar, for the most part. The differ-

ences are that levels for counting the vertices are now used to shuffle the vertices,

which requires O(|E|) levels and the integer comparator requires 5 ∗ (|V | − 2) levels.

This results in a total level requirement of

3 ∗ |V | ∗ (|V | − 1)− 7

levels, for a graph with |V | vertices. This still has a complexity of

q cmp anc requires O(|V |) qubits and q count is unnecessary. This results in a

total qubit requirement of

3 ∗ |V | ∗ (|V | − 1)

2
+ 2 ∗ |V |+ 2

qubits, for a graph with |V | vertices, which still has the complexity of O(|V |2), but

has a larger actual value as |V | scales.
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Figure 3.18: Number of qubits and circuit depth growth with the number of vertex in he
graph, according to this implementation
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Chapter 4

Boson Sampling

4.1 Using Boson Sampling to Identify Locally Maximal Cliques

As described in Section 2.1.2.1, GBS can be used to sample dense subgraphs from

a graph. While this may produce subgraphs that are very similar to cliques, they

are not guaranteed to be cliques, or even locally maximally dense subgraphs. This is

when the second and third steps of the simulated annealing algorithm from Section

2.2.2 can be used. To recap, the the second step of the simulated annealing algorithm

is to shrink the dense subgraph into a clique and the third step is to grow the clique

until there are no more vertices possible to add [20].

Since Xanadu Quantum Technologies, Inc. provides cloud access to their devices

with special permissions, sampling dense subgraphs from small graphs can be imple-

mented and run on an actual device. Although the publicly available device has its

limitations, it can still be useful. Right now, it is limited to sampling from bipartite

graphs [1]. The physical device uses beamsplitters, squeezers, interferometers, and

Fock basis measurement gates in a configuration shown in Figure 4.1.

There are several steps required to sample dense subgraphs using the BS device:

1. Extract the adjacency matrix, B, for the graph from which dense subgraphs will

be sampled. Pad the adjacency matrix with zeros until it is a 4x4 matrix.
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Figure 4.1: Xanadu X8 device configuration [1]

2. Convert this adjacency matrix into the form A =

 0 B

BT 0

.

3. Determine the mean photon number per mode. The mean photon number per

mode is the total number of photons divided by the total number of modes. This

value indicates how many photons the BS device needs to create when given

an exact number of modes. Currently, the best method of finding this value is

through trial-and-error from the output of the embedding program to get either

a value of 0 or 1 photon for each mode. To determine a valid mean photon

number per mode, a starting point must be determined. A good starting mean

photon number per mode is to start with the density of the graph. Next, test

if the embedding program determines that the squeezing amplitude is invalid,

either indicating that the mean number of photons per mode is too low or too
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high. Iteratively change the mean number of photons per mode until the mean

number of photons per mode is valid, determined by the embedding program.

This can also be found by backtracking the calculations from the end values of

0 or 1 photon for each mode.

4. Embed the bipartite graph using the publicly available software [8].

5. Compile the program into the blackbird quantum photonics programming lan-

guage [24].

6. Run the device for many samples and take the mean photon count per mode.

There is a trade-off between the compute time and the accuracy that an end

user must determine is ideal, so there is no exact best number of samples to

retrieve.

7. Take the k largest values from the first half of the sampling output. The vertices

associated with these largest values are the vertices associated with the densest

subgraph of size k.

Following these steps for the graph shown in Figure 3.1a, the resulting B matrix

is: B =



0 1 1 0

1 0 0 0

1 0 0 0

0 0 0 0


. This matrix was built by taking the adjacency matrix of the

graph, which is:


0 1 1

1 0 0

1 0 0

 and then zero-padding this matrix until it is a 4x4 matrix.

For this graph, the successful mean number of photons per mode is 0.690566666666664.

This was determined by taking the density of the graph, 2
3
, and iteratively adjust-

ing the mean number of photons per mode until a valid value was achieved. The

embedded bipartite graph is compiled into the blackbird language. This program
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was compiled using Xanadu Quantum Technologies, Inc.’s Blackbird compiler [24].

This listing shows rotation gates (Rgate), two-mode squeeze gates (S2gate), Mach-

Zehnder interferometers (MZgate), and measurement operations (MeasureFock). The

qumodes used are Gaussian probability landscapes with respect to the photons’ mo-

mentum and position. The rotation gate rotates this landscape a specified angle.

Single mode squeeze gates decrease the uncertainty for either the position or the

momentum and therefore increase the uncertainty for either the momentum or the

position, respectively, according to the Heisenberg uncertainty principle. Two-mode

squeeze gates entangle two photons and perform a similar squeezing operation on

the two qumodes according to the Heisenberg uncertainty principle. Interferome-

ters use the interference, either constructive or destructive, of two modes to produce

two separate probability landscapes from the two input probability landscapes. Fock

measurement operations use photon counters to count the number of photons re-

ceived at the output of each qumode. These instructions follow the format of the

architecture shown in Figure 4.1.

Listing 4.1: Compiled Blackbird Code to Sample from a Bipartite Graph Embedding

1 S2gate(1, 0) | (q[0], q[4])

2 S2gate(1, 0) | (q[1], q[5])

3 S2gate(0, 0) | (q[2], q[6])

4 S2gate(0, 0) | (q[3], q[7])

5 MZgate (3.142 , 0) | (q[0], q[1])

6 MZgate(0, 0) | (q[2], q[3])

7 MZgate (3.142 , 1.571) | (q[1], q[2])

8 MZgate (1.571 , 0) | (q[0], q[1])

9 MZgate (3.142 , 2.356) | (q[2], q[3])

10 MZgate (1.571 , 0) | (q[1], q[2])

11 Rgate (3.927) | (q[0])

12 Rgate (1.571) | (q[1])

13 Rgate (1.571) | (q[2])

38



CHAPTER 4. BOSON SAMPLING

14 Rgate (0) | (q[3])

15 MZgate (3.142 , 0) | (q[4], q[5])

16 MZgate(0, 0) | (q[6], q[7])

17 MZgate (3.142 , 1.571) | (q[5], q[6])

18 MZgate (1.571 , 0) | (q[4], q[5])

19 MZgate (3.142 , 2.356) | (q[6], q[7])

20 MZgate (1.571 , 0) | (q[5], q[6])

21 Rgate (3.927) | (q[4])

22 Rgate (1.571) | (q[5])

23 Rgate (1.571) | (q[6])

24 Rgate (0) | (q[7])

25 MeasureFock | (q[0], q[1], q[2], q[3], q[4], q[5], q[6], q[7])

Running this on the X8 device produces the results in Listing 4.2. Each row of

the matrix represents a sample from the X8 device. Each value in the row represents

the number of photons measured per mode for that sample. Taking the mean number

of photons per mode for these samples produces the results: [1.2 0.4 0.4 0. 0.5 0.4

0.4 0.]. Taking the 2 largest values from the first half of the array gives the result of

AB or AC, which are the densest subgraphs with |V | = 2 from the three node graph

in Figure 3.1a. Although this is trivial, shrinking (step 2) and growing (step 3) the

graph according to the steps outlined in Section 2.2.2 produce the locally maximal

cliques of AB or AC, which are the maximum cliques in the graph.

Listing 4.2: Samples from the X8 Device

1 [[1 0 0 0 0 0 0 0]

2 [2 0 1 0 1 0 1 0]

3 [0 1 1 0 0 0 0 0]

4 [0 1 1 0 1 0 1 0]

5 [3 1 0 0 0 1 1 0]

6 [0 0 1 0 2 0 1 0]

7 [0 0 0 0 0 0 0 0]

8 [0 0 0 0 0 0 0 0]
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9 [6 0 0 0 0 3 0 0]

10 [0 1 0 0 1 0 0 0]]

4.2 Finding Maximum Cliques by Simulating a More Gen-

eral Version of Gaussian Boson Sampling

Xanadu Quantum Technologies, Inc. provides a framework called Strawberry Fields

(SF) that can be used to simulate more general architectures of GBS. This framework

is much more flexible and can be used to generate dense subgraphs from a graph. The

steps to find the maximum cliques using this simulator are similar to the steps outlined

in Section 4.1. As a working example, assume the graph that the dense subgraphs

are being sampled from is the three node graph shown in Figure 3.1a. The steps are

as follows:

1. Extract the adjacency matrix, A, for the graph.

2. Declare the mean number of photons per mode as the requested size of the

dense subgraph.

3. Embed the graph using the publicly available software [8].

4. Compile the program into the blackbird quantum photonics programming lan-

guage [24].

5. Run the device for a few samples and take the mean photon count per mode.

6. Take the k largest values from the sampling output. The vertices associated

with these largest values are the vertices associated with the densest subgraph

of size k.
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Following these steps, the adjacency matrix, A, is A =


0 1 1

1 0 0

1 0 0


The compiled program is shown in Listing 4.3. This compiled program uses

squeeze gates (Sgate), rotation gates (Rgate), beamsplitters (BSgate), and measure-

ment gates (MeasureFock).

Listing 4.3: Compiled Blackbird Code to Simulate Sampling from a Graph Embedding

1 Sgate ( -0.8814 , 0) | (q[0])

2 Sgate ( -0.8814 , 0) | (q[1])

3 Rgate (1.571) | (q[0])

4 BSgate (0.7854 , 0) | (q[0], q[1])

5 Rgate (5.084) | (q[0])

6 Rgate (4.712) | (q[1])

7 Rgate (1.571) | (q[2])

8 BSgate (-0.7854, 0) | (q[1], q[2])

9 Rgate ( -3.142) | (q[1])

10 Rgate (2.77) | (q[0])

11 MeasureFock | (q[0], q[1], q[2])

After sampling from the simulator 1000 times, the mean number of photons mea-

sured per mode are [0.483 0.316 0.323]. Since the simulated values of 0.316 and 0.323

are so similar, it can be assumed that they are approximately equally likely to be

sampled. Taking the two largest values values yields the subgraphs AB and AC. Per-

forming the shrinking (step 2) and growing (step 3) operations from Section 2.2.2.

produces the locally maximal cliques of AB and AC, which are the maximum cliques

of the graph.

To use BS to find the maximum clique of the graph shown in Figure 3.14, the
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adjacency matrix must be identified as A =



0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0


and the adjacency matrix

must be embedded in the same process as before. After sampling from the simulator

1000 times, the mean number of photons measured per mode are [0.501 0.321 0.333

0.491]. Since the values 0.501 and 0.491 are very close, they can be assumed to have

the same sampling probability. Since the values 0.321 and 0.333 are very close, they

can be assumed to have the same sampling probability. Taking the three largest

values yields the subgraphs ABD and ACD. Performing the shrinking and growing

operations from 2.2.2 produces the locally and globally maximal cliques of ABC and

ACD.

4.3 Quantum Cost

4.3.1 Xanadu X8 Device Program Quantum Cost

Currently, all programs run on the X8 device have the same quantum cost [1]. There

are 8 modes used for each program. Additionally, the layers for this program are the

first squeezing layer, four beam splitters, a rotation layer, four more beam splitters,

another rotation layer, and finally the measurement layer. This results in a total of

12 layers for all programs run on the X8 device. These values do not scale because

this is a fixed-size architecture and can only run on graphs with a maximum of four

vertices.

4.3.2 Simulated Program Quantum Cost

The simulated program requires 3 modes. This is exactly the number of vertices in

the graph. Therefore, the number of modes required to sample dense subgraphs from
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a graph is |V |.

Additionally, the layers for this program are the first squeezing layer, a rotation

layer, a beam splitter, another rotation layer, another beam splitter, a final rotation

layer, and a measurement layer. Therefore, for the graph in Figure 3.1a this program

requires 7 layers to sample its dense subgraphs.

Varying the density of the graph and the size of the graph produces different

depths required. Figure 4.2 shows the depth of the quantum circuit for different

densities and sizes of graphs. This figure shows that the density of the graph does

not have a large effect on the depth of the quantum program but the size of the graph

does have a large effect on the depth of the quantum program.

Figure 4.2: Depth of the circuit required to sample dense subgraphs vs. size of the graph
vs. density of the graph

Using a density of 0.5, the depth of the graph was compared to the plot of |V |2

scaled at 0.8 and 0.85. As one can see, the plot shows an upper bound of 0.85 ∗ |V |2

and a lower bound of 0.8 ∗ |V |2. From these results, one can reasonably assume that

the depth of the quantum program to sample dense subgraphs scales with O(|V |2).
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Figure 4.3: Depth of the circuit required to sample dense subgraphs vs. size of the graph,
compared to a scaled plot of |V |2
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Comparison

5.1 Algorithm Comparisons

Given that the two QC models are incredibly different, it makes sense that their

algorithms to solve the Maximum Clique Problem are completely different. While the

QB model is still imperfect and requires multiple executions to ensure that the correct

values were measured, the number of executions required to get the expected answer

is relatively small compared to the number of subgraphs that must be checked in the

brute force algorithm. For this solution to the maximum clique problem, Grover’s

algorithm was used as the backbone to the problem. Almost all of the work required

to create the algorithm went into defining the oracle for Grover’s algorithm.

On the other hand, the BS model is designed around sampling. The model relies

on programming the probability distribution and sampling from this. To find dense

subgraphs with BS, the probability distribution needs to have a higher probability

of sampling bosons that coincide with dense subgraphs than with sparse subgraphs.

This was done by arranging the two mode squeezers, beamsplitters, and rotation gates

according to the Autonne-Takagi factorization of the graph’s adjacency matrix [25]. In

this case, there was a clever association between the number of perfect matchings and

the Hafnian of an adjacency matrix, the number of perfect matchings in a subgraph,

and the density of a subgraph.
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5.2 Application Development Comparisons

As illustrated by the solutions to the maximum clique problem, the QB and BS

models are incredibly different. While there are many algorithms that can be used as

the backbone for solving problems using the QB model, Grover’s algorithm is one of

the most common and is the only one used to solve the maximum clique problem in

this thesis. These are the steps used to solve the maximum clique problem and can

be used to solve more problems with Grover’s algorithm:

1. Determine the variables of interest. For graph problems, these are usually the

vertices or the edges.

E.g. for the maximum clique problem, the vertices are the variables of

interest

E.g. for the travelling salesman problem, the edges are the variables of

interest.

2. Put these variables of interest in superposition. This means that the answer

solution will individually either include or exclude the variables of interest.

3. Define the logical conditions that make an answer a solution state.

E.g. for the maximum clique problem, the conditions are (1) the subgraph

must be a clique and (2) the subgraph must have |V | ≥ k.

4. Use quantum gates to define the logical conditions in a quantum circuit. Put

the result into a target qubit. It is helpful to think of the Toffoli gates as a

logical AND, the X gate as a logical NOT, and the CNOT gate as a controlled

logical NOT (XOR).

5. The rest of the circuit must now be defined. The extra necessary items are

putting the target qubit into the |−〉 state, the previous step must be included
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and also reversed, and the diffuser must be added. If desired, the solution state

can also be measured and recorded.

Application development with BS is newer and still less defined than application

development with QB. From the list of applications currently well-understood [8], the

dense subgraph identification, maximum clique, point processes, and vibronic spectra

problems all follow these general steps:

1. Find a connection between a probability distribution that can be sampled by

bosons and the problem.

E.g. for dense subgraph identification, the probability distribution of the

Hafnian of the adjacency matrix was arranged such that the densest subgraphs

were most likely to be sampled.

E.g. the maximum clique problem used the dense subgraph algorithm to

classically refine the samples into a desired solution.

E.g. the point processes are sampling from the Hafnian distribution that

bosons naturally occur in.

E.g. the vibronic spectra solution mimics a molecule’s interaction with light.

2. Set up the BS gates such that they create the desired probability distribution.

3. Sample from this setup. To get more consistent results, sample from the setup

multiple times.

4. Perform any post-processing needed.

E.g. to get the maximum cliques from the dense subgraphs, the samples

have to undergo the shrinking and growing process defined in Section 2.2.2.

While these steps are not as general as the steps for application development using

the QB model, these steps show that the BS model is not limited to solving only a

few problems.
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Since quantum computing is a relatively young field, there are few re-

sources available to help computer scientists and physicists solve problems

using quantum algorithms. Grover’s algorithm is a well-known algorithm,

but developing application specific algorithms is still uncommon. By pro-

viding an outline of how to design oracles for problems in which Grover’s

algorithm can solve them, this document makes it easier for future de-

velopers to design new oracles without having to learn too much about

the physics behind Grover’s algorithm. Currently, BS is a much younger

model of quantum computing and much less research has gone into this

model. By providing this outline of application development for BS, this

document makes it easier for future developers to design new algorithms

based off of this outline.
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Conclusion

In this work, a novel algorithm to the maximum clique problem using the qubit-based

model was presented and compared to the boson sampling model’s algorithm. The

novel algorithm allows the maximum clique to be exactly solved in O(log2(|V |)∗
√

2|V |)

time complexity instead of the current best exact solution to the maximum clique

problem, in classical computing, which has a time complexity of O(2|V |). For re-

searchers interested in the potential of quantum computers as accelerators,

it is important to gain understanding on the different quantum approaches,

their best application matches, and their application development process.

This thesis’ goal was to aid with this understanding through the compar-

ison of the maximum clique problem solution on two different quantum

computing approaches: gate-based and boson sampling.

The new algorithm on the gate-based implementation will be able to find maxi-

mum cliques for graphs with many more vertices before becoming intractable, once

quantum computers grow in qubit numbers. although it was not this proposal thesis

to show better performance than classical computing, the scalability of the problem

was studied. Quantum computers are rapidly increasing in size and in the near future

will be able to solve this problem more quickly than classical computers. The novel

algorithm was simulated and produced the expected results for both three vertex

graphs and four vertex graphs.
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This thesis also proposed a new approach to compare two values using the shuffling

conjecture, resulting in a more efficient implementation in terms of qubits. The

reduction in the number of qubits made it possible to simulate the quantum circuit

for four node graphs, while with the traditional approach, this simulation was not

possible.

The research presented can be expanded upon in numerous ways. The shuffling

conjecture is not limited to use in the maximum clique algorithm and undoubtedly

has uses in other algorithms, given the probabilistic nature of quantum computing.

Another reason the shuffling conjecture is useful is that it can be used to reduce

the number of qubits required to solve some problems. This is especially useful in

the NISQ era. Bojić mentions a potential speedup for the QG algorithm in which k

is updated logarithmically instead of linearly, similar to binary search compared to

linear search [9]. This reduces the complexity of the QG algorithm to O(log2(|V |) ∗
√

2|V |). Implementing this change would be a valuable improvement to the current

algorithm. Furthermore, while one case study comparison between algorithms in the

qubit-based model and the boson sampling model is useful, more case studies would

allow computer scientists to have a better grasp on these relatively new technologies.

50



Bibliography

[1] “Executing programs on x8 devices,” https://strawberryfields.ai/photonics/
demos/tutorialX8.html, accessed : 2021− 03− 25.

[2] C. Eltschka, F. Huber, O. Gühne, and J. Siewert, “Exponentially many
entanglement and correlation constraints for multipartite quantum states,”
Phys. Rev. A, vol. 98, p. 052317, Nov 2018. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevA.98.052317

[3] A. M. G. S. e. a. Johnson, M., “Quantum annealing with manufactured spins,” May
2011. [Online]. Available: https://doi.org/10.1038/nature10012

[4] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2,
p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79

[5] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factor-
ing,” in Proceedings 35th Annual Symposium on Foundations of Computer Science,
1994, pp. 124–134.

[6] S. J. Solenov D, Brieler J, “The potential of quantum computing and machine learning
to advance clinical research and change the practice of medicine,” vol. 115(5), pp.
463–467, 2018.

[7] K. Srinivasan, S. Satyajit, B. Behera, and P. Panigrahi, “Efficient quantum algorithm
for solving travelling salesman problem: An ibm quantum experience,” 05 2018.

[8] T. R. Bromley, J. M. Arrazola, S. Jahangiri, J. Izaac, N. Quesada, A. D.
Gran, M. Schuld, J. Swinarton, Z. Zabaneh, and N. Killoran, “Applications
of near-term photonic quantum computers: software and algorithms,” Quantum
Science and Technology, vol. 5, no. 3, p. 034010, May 2020. [Online]. Available:
http://dx.doi.org/10.1088/2058-9565/ab8504
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