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Abstract

While both processing and memory architectures are rapidly improving in per-

formance, memory architecture is lagging behind. As performance of processing ar-

chitecture continues to eclipse that of memory, the memory architecture continues

to become an increasingly unavoidable bottleneck in computer architecture. There

are two drawbacks that are commonly associated with memory accesses: i) large de-

lays causing the processor to remain idle waiting on data to become available and

ii) the power consumption required to transfer the data. These performance issues

are especially notable in research and enterprise computing applications such as deep

learning models. Even when data for an application such as this is transferred to a

cache before processing to avoid the delay, the large power cost of the transfer is still

incurred.

Processing-in-memory (PIM) architectures offer a solution to the issues in modern

memory architecture. The inclusion of processing elements within the memory archi-

tecture reduces data transfers between the host processor and memory, thus reducing

penalties incurred by memory accesses. The programmable-PIM (pPIM) architec-

ture is a novel PIM architecture that delivers the performance enhancements of PIM

while delivering a high degree of reprogrammability through the use of look-up tables

(LUTs).

A novel instruction set architecture (ISA) for the pPIM architecture facilitates

the architecture’s reprogrammability without large impacts on performance. The

ISA takes a microcoded approach to handling the control signals of the pPIM control

signals. This approach allows variable-stage instructions at a low additional cost to

the overall power and area of the architecture.

The versatility of the pPIM architecture enables MAC operations and several

common activation functions to be modeled for execution on the architecture. As a

measure of performance, post-synthesis models of both the pPIM architecture and the
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ISA are generated for CNN inference. As a proof-of-concept an FPGA model of the

pPIM architecture is developed for representations of a single layer neural network

(NN) model for classification of MNIST images.
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Chapter 1

Introduction

1.1 Motivation

Computer architecture is continually pushing to improve their performance where

possible. Most of this improvement is focused on the improvement of computer pro-

cessors which improve at a rate of approximately 60 percent every year. Meanwhile,

Dynamic random-access memory (DRAM) architecture is only improving at a rate

of 10 percent every year [3]. The large difference in improvements made leads to a

growing divide that throttles the overall computer system’s performance. Still, the

main focus of DRAM architectural design is on reducing sizes and increasing capaci-

ties. The differing focus of these two groups continually increases the divide between

performance improvement at an exponential rate creating a problem that is com-

monly referred to as the ”memory wall”[4]. The ”memory wall” is best defined by a

growing divide between processing power and memory bandwidth, depicted in Figure

1.1. This has lead to multiple improvements that remedy the issue brought on by

this ”memory wall”. The memory wall has become so prevalent that the avoidance

of it has driven a great deal of research and innovations.

When a miss occurs that requires memory access there are multiple downsides

that can occur. The most commonly considered downside is the delay that occurs.

In the case that a miss occurs, several communications are required with memory in

2



CHAPTER 1. INTRODUCTION

Figure 1.1: The growing divide between processor speeds and memory bandwidth that
leads to a throttling of processor performance [1]

addition to the desired data. This can lead to delays that could take hundreds of

cycles. Each memory access also incurs a large power cost to transfer the data from

the DRAM over to the processor. The power required for this data transfer can reach

up to 42% [5] of the total power cost. Even if the data is transferred over to the

memory before it is accessed, the downside of the power cost for the data transfer is

still incurred on the system. Each of these problems become especially burdensome

with data-intensive applications such as machine learning models that require large

transfers of data to be processed.

While the average consumer might not see heavy impacts of delays from mem-

ory accesses, enterprise and research computing frequently collide with the ”memory

wall”. Commercial and scientific computing will often deal with much larger quanti-

ties of data that the average consumer which can present itself in various ways. These

applications can vary from large databases of user data to datasets and weight infor-

mation for training machine learning models. This causes commercial and scientific

computing to see idle times that average around 65 percent and 95 percent[1].

With the bottleneck of the ”memory wall” approaching and increase in data-
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CHAPTER 1. INTRODUCTION

intensive applications, architectures that subvert the issue of communication latency

and power consumption are increasingly important. Technologies that are capable

of performing processing within the memory will be able to subvert these issues by

performing bulk operations without the need of transferring the data from the memory

to the processor. A reprogrammable processing in memory (PIM) architecture will

improve computer systems by providing an adaptable hardware accelerator within

memory and reduce idle times spent waiting on data transfers from memory.
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Chapter 2

Background

2.1 Processing-in-Memory

PIM is a type of processing architecture that takes a step away from traditional Von

Neumann techniques. In Von Neumann architecture there is generally a separation

between processing power and the memory architecture. Instead of introducing pro-

cessing power closer to memory, caches are built into the processor to reduce the

number of memory accesses. Large portions of the die are dedicated to the cache, but

memory accesses still result in misses. If a large dataset is required and is not present

in the cache at processing times, large latencies will occur and reduce the perfor-

mance. PIM architectures attempt to subvert this problem by introducing processing

elements to the memory. Instead, commands can be sent to the PIM architecture to

handle the processing so that a large data transfer is not necessary.

There have been various PIM architectures proposed over previous years that focus

on different aspects of processing. Certain approaches attempt to avoid introducing

new hardware for processing. These architectures instead propose methods that take

advantage of existing DRAM architectures by reading multiple rows at once [6, 7].

This is limited in that it is useful only for bitwise operations and that any data must

be row-aligned.

Other PIM architectures propose the introduction of new processing elements

5



CHAPTER 2. BACKGROUND

Figure 2.1: The various types of processing with respect to their interaction with memory.
Traditional architectures include a cache coupled with processors. More recent architectures
have attempted to reduce the distance of memory from the processing power to reduce delays
with ’near memory’ approaches. PIM goes a step beyond and introduces the processing
power within the memory architecture for further reduced latencies[2].

into the memory that are focused at improving the performance of specific operations

similarly to hardware acclerators. LUT-based Fast and Accurate Vector Multiplica-

tion in DRAM-based CNN Accelerator (LAcc) improves upon multiplication speeds

through the use of LUT-based multipliers within memory[8]. Another architecture,

Latch-up Based Processing In-Memory System (LUPIS), performs operations such

as addition and multiplication within non-volatile memory with lower latencies [9].

DRISA and DrAcc both use bit shifters to accelerate the MAC operations of CNN

[10, 11]. Some PIM architectures even look into the use of RAM types other than

DRAM. The PRIME takes an application specific approach to the problem by accel-

erating the performance of Neural Networks within resistive random access memory

(ReRAM)-based main memory [12].

While these architectures provide an improvement on specific operations of exist-

ing computer architectures, they lack the ability to adpat or be reprogrammed for

alternative applications. The programmable-PIM (pPIM) architecture is a look-up

table (LUT)-based PIM provides greater adaptability [13, 14]. The pPIM avoids re-

6



CHAPTER 2. BACKGROUND

stricting the user to accelerating specific functions by allowing the reconfiguration of

LUTs with function words. The pPIM architecture has been published previously in

Computer Architecture Letters(CAL) and is currently submitted with minor revisions

for Transactions on Parallel and Distributed Systems (TPDS).

2.2 Instruction Set Architectures

The instruction set architecture (ISA) associated with a hardware is an integral com-

ponent that bridges the gap between the hardware and the software applications

that can be used with the hardware. DUe to the nature of both memory and PIM

these ISAs are designed to take instructions from external host processors[15, 16, 17].

Memory is already a passive element that operates off instruction from an external

hoss[18]. Implemention of an ISA with memory will see less difficulty if the ISA also

has a passive design. Additionally, PIM architecture is often focused on accelerating

big data applications, such as neural networks, which often perform repetitive opera-

tions over bulk quantities of data[2, 19]. An ISA for PIM should reflect this focus of

the architecture. Instead of executing entire programs the ISA should be focused on

accelerating computations required by the host in a single-instruction multiple-data

manner. It is also important to design a PIM ISA with a low level of complexity. If

the ISA becomes too complex, the ISA could take up large swaths of area or power

and become too costly to reasonably include within the DRAM.

Microcode offers a viable solution to the problem of over complexity and area.

Microcode is a form of programming that is done at the control signal level. This

form of coding is capable of performing operations that otherwise would require the

introduction of new hardware. Microcode usage for an ISA is especially useful in

the DRAM where a reduction in the hardware will reduce the area that will be taken

from the DRAM memory to integrate the component. Instead of using physical space

required for hardware copmonents of the ISA, the microcode of a PIM architecture

7



CHAPTER 2. BACKGROUND

could be stored into the memory. This also allows for a reprogrammable ISA that

can be changed to suit the needs of the host processor.

2.3 Neural Networks

Neural networks are abundantly common in machine learning models for their abil-

ity to perform classification. These layers appear in varying formats such as dense

layers and convolutional neural networks. These variations do have in common that

they perform matrix multiplications on datasets that are often large in size. Perform-

ing such an operation requires that a multiply accumulate operations be repeated

throughout the datasets and the weights of the model.

Other components involved with neural networks in machine learning models in-

clude the functions used for classification and activation. Classification of the final

output layer can be done by determining the index of max value in the set.

The activation layer of a neural network is used to remove the linear relationship

between the input and the output of a neural network layer. If a linear activation layer

is used, displayed in Equation 2.3, the output will maintain a linear relationship with

the input and not necessarily be the best representation of the relationship between

the input and the expected output. Non-linear relationships are used to avoid this

problem when training neural networks. Some of the most common activation layers

being sigmoid, tanh, and Rectified Linear Unit (ReLU).

f(x) = x (2.1)

Equation 2.3 depicts the sigmoid activation function that scales an output between

0 and 1. With the range from 0 to 1, the output can be interpreted similar to a

probability which is useful in a classification. Due to the high derivative in the center

8



CHAPTER 2. BACKGROUND

of the functions, the model is also very useful in training. In backpropagation, the

high derivative forces the weights towards the extremes.

f(x) =
1

1 + e−x
(2.2)

The tanh is a trigonometrical activation function that improves upon the sigmoid

function. Instead of scaling to a range from 0 to 1, the tanh function scales from a

range from -1 to 1. This is useful in classifications where the presence of a certain

input may lead to strong confidence that a classification should not be made.

The ReLU activation function was introduced due to the high complexity of the

sigmoid and tanh activation functions that led to longer training times. ReLU takes

the simplicity of the linear unit and introduces a non-linear behavior to the function

by rectifying it, or producing an output of 0 for any negative input.

f(x) = max(0, x) (2.3)

The ReLU activation is currently one of the most commonly used activation lay-

ers in neural networks. The ReLU activation activation, depicted in Equation 2.3,

requires very little computation power. Since the only operation it performs is setting

negative values to zero, it often leads to quicker training. It also will also often output

sparse matrices, which are matrices with a large presence of zeros throughout it.

The tanh function is an activation that is used to scale the outputs of a layer to

a value between -1 and 1.

9



CHAPTER 2. BACKGROUND

2.4 Supporting Work

Introducing a PIM architecture can often be difficult due to the lack of existing

architecture that leaves DRAM in a position to under-perform in processing. One

reason for this is the lack of existing architecture for efficient data movement among

subarrays. It is restricting for a PIM architecture to be limited to only using the data

within a single subarray. Even with access to data external to the coupled subarray,

data accesses can be costly in terms of power and latency. RowClone tackles this

issue by proposing an efficient method for copying bulk data between subarrays at

low energy cost [5]. Low-Cost Inter-Linked Subarrays (LISA) further expands on the

RowClone architecture by proposing an architecture that is capable of providing fast

memory copying between subarrays at low cost to power[20].

Introducing a PIM architecture must also provide a sufficient boost in the perfor-

mance that provides a benefit to a system. A design that is either slow or has a high

power will likely diminish the performance benefits that are produced by reducing

the memory transfer between the host and memory. For this reason, LUTs have been

frequently used in PIM designs. LUTs have shown that they are capable of produc-

ing fast designs at low power costs[11, 10, 8]. The use of LUTs can also provide

reconfigurability to a design so that it can be adapted to multiple applications.

10
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pPIM Architecture
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Figure 3.1: Heirarchical view of the pPIM architecture

The proposed pPIM architecture’s is a PIM architecture design focuses on per-

forming data-intensive applications. The hierarchy of the proposed architecture is

depicted in Figure 3.1. An additional goal of the design is to be reprogrammable to

fit a wide variety of applicatinos. The design accomplishes this in architecture with

a LUT-based design. The pPIM architecture consists of a pPIM cluster at the top

level. Within each cluster are multiple pPIM cores that enable reprogrammability

within the architecture.
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CHAPTER 3. PPIM ARCHITECTURE

3.1 pPIM Core

Figure 3.2: Layout of the pPIM core architecture.

The base processing element of the pPIM architecture is the pPIM core. The

design of the pPIM core is shown in Figure 3.2. The pPIM core is responsible for

a majority of the computational power within the pPIM architecture. Processing

within the core is handled through the congregation of LUTs into multiplexers. A

majority of the reprogrammability is also handled within the pPIM core through the

use of a register file that feeds into the LUTs.

Various functions are capable of being represented by the pPIM core. A function

that is capable of being programmed into the pPIM core is any function that consists

of two 4-bit inputs and a single 8-bit output. The two inputs can also be treated as

a high and low segment of the input if a function contains a single operand. This

functionality is accomplished by the pPIM core through the use of an array of LUTs

that form eight 256-to-11 multiplexers. Input to the multiplexers is determined by

the data within the register file of the pPIM core. Conversely, the select lines of the

multiplexers are determined by the two input vectors to the pPIM core.

Within the pPIM core’s register file are eight function words. Each of the function

words are eight bits in length to fit the input to the 256-to-1 multiplexers. Each of
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CHAPTER 3. PPIM ARCHITECTURE

the functions words are then associated with a single bit position within the output

of the pPIM core.

3.2 pPIM Cluster

Figure 3.3: Layout of the pPIM cluster architecture.

At the top level of the pPIM cluster is the pPIM cluster. The structure of the pPIM

cluster is displayed in Figure 3.3. The pPIM cluster combines the use of multiple pPIM

cores, interconnected by a router. Combining functionality of multiple pPIM cores

allows the pPIM cluster to perform more complex operations over a single or multiple

stages. The added functionality includes performing operations that require greater

resolution than the inputs and operations that require more than two operands.

Each pPIM cluster contains nine pPIM cores that that provide computational

power. The pPIM cores within a pPIM cluster are individually programmed, max-

imizing the flexibility of the design to adapt to various applications. The dataflow

within the pPIM cluster requires an all-to-all communication network with minimal
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CHAPTER 3. PPIM ARCHITECTURE

overhead. This is accomplished through the use of a crossbar switch architecture.

Through the use of a crossbar switch routing architecture, each pPIM core can re-

ceive input from the outputs of any other pPIM core within the pPIM cluster. To

match the size of the inputs and outputs of the pPIM cores within the routing archi-

tecture, the 8-bit outputs are treated as two 4-bit segments.

3.3 pPIM Function Word Generation

Adaptation of a pPIM core to perform a specific function requires the generation of

eight function words. This requires determining the output of the pPIM core for

each possible input pairing. The process must pass over 256 possible input pairings

to determine an entire function words. During each iteration, the bits of the output

are split up and set in their respective function words at the index of the current

iteration. While not all functions can be fully realized on the pPIM core due to

the resolution, additional steps can be taken for approximation on the architecture.

For approximation, an output can be quantized so that it is represented by an 8-bit

output format.

3.4 pPIM MAC Operations

As a demonstration of the capability of the pPIM to be used in data-intensive opera-

tions, functionality for MAC operations is mapped onto the architecture. Flexibility

is additionally demonstrated through mapping MAC operations for multiple data

types and precisions. MAC operations for both unsigned and signed integers at 8-bit

and 4-bit precision dataflows are generated.

Performing a MAC operation with inputs restricted to 4-bits requires the cal-

culation of the result through partial products. The calculation of a multiplication

through partial products is outlined in Figure 3.4. This requires multiplying 4-bit
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Figure 3.4: Calculation of the result of an unsigned multiplication through the calculation
and summation of partial products.

segments of the operands to generate partial products. Each of the partial products

are then summed together to determine the value of the result. The resulting seg-

ments are then accumulated into the value of the accumulator to perform the MAC

operation.

Figure 3.5: Model of dataflow within a pPIM cluster for both (a) 8-bit full precision and
(b) 4-bit half precision unsigned MAC operations

When mapping the MAC operation to the pPIM architecture, each individual

computation with a segment can be associated with an single computation on a

pPIM core. This produces the dataflow for both 8-bit and 4-bit precisions displayed
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in Figure 3.5.

Figure 3.6: Calculation of the result of a signed multiplication through the calculation
and summation of partial products.

Calculating the result of a signed MAC operation requires additional steps to

handle the polarity of the integer. This is due to differences in the multiplication of

signed and unsigned integers. Handling the multiplication for the signed integers is

done by first finding the magnitude of each operand. The magnitude of each operand

can be handled with the unsigned multiplication configuration. Summation is handled

the same with both the signed and unsigned numbers. Once the summation of the

partial products is completed, the polarity of the integer is determined based off

of the polarity of the operands. Figure 3.6 outlines the process taken to reach the

final product of the multiplication. The result is then accumulated with into the

accumulator.
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Figure 3.7: Model of dataflow within a pPIM cluster for both (a) 8-bit full precision and
(b) 4-bit half precision signed MAC operations

Similarly to the unsigned integer MAC dataflow, the signed integer MAC dataflow

can be constructed from the partial products calculation. Figure 3.7 displays the

dataflow for a signed MAC operation with both 8-bit and 4-bit precision.

3.5 pPIM Activation Operations

Versatility of the pPIM architecture to adapt to represent multiple operations was

demonstrated through the mapping of several common activation operations used

with CNNs. The mapped operations include ReLU, Linear, sigmoid and tanh.

Performing the ReLu activation operation only requires a single pPIM core. Figure

3.8 depicts the dataflow for the ReLu activation. Output of the ReLu operation is

only set to zero if the input is negative. Due to this, the highest segment is used for

determining the output at each segment.
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Figure 3.8: Model of dataflow within a pPIM cluster for both (a) 16-bit precision and (b)
8-bit precision ReLu activation operations.

Figure 3.9: Model of dataflow within a pPIM cluster for both (a) 16-bit precision and (b)
8-bit precision saturated ReLu activation operations.

Saturated ReLu activation has added complexity to the configuration. Each seg-

ment will have an associated value with the maximum. However, the segment will

not be set to the max value if one of the segments at a higher position did not reach

its maximum value. The dataflow for the saturated ReLu activation is displayed in

Figure 3.9.

Sigmoid and tanh are capable of being approximated on the pPIM architecture.

A single pPIM core can approximate either an 8-bit sigmoid or 8-bit tanh in a single

cycle. Scaling can also be done based on whether the input is a fixed point value and

the placement of the decimal within the input.

Due to the lower complexity of activation operations within a pPIM cluster, mul-
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Figure 3.10: Configuration of a pPIM cluster for quick switching between activation
operations.

tiple activation operations are capable of being configured into a single pPIM cluster.

This eliminates the process of reprogramming a cluster to perform a different acti-

vation operation. Figure 3.10 displays a pPIM cluster configured to perform ReLu,

saturated ReLu, sigmoid, and tanh activation operations.
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t=11 t=12 t=13 t=14
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Figure 3.11: Model of dataflow within a pPIM cluster for a 16-bit max-index operation.

Additionally, the index of a classification is capapble of being determined in the

pPIM cluster. The dataflow for this max-index operation is displayed in Figure 3.11.

The configuration consists of several pass cores, a comparison core, a conditional

core, and a counter core. Since only a single 4-bit segment of a cluster is capable of
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being compared at a time, each segment needs to be compared individually. These

comparisons begin with highest priority given to the most significant segment. If one

segment is greater than the other, the conditional core will prevent the input from

passing its value on to the following stages. Otherwise if the segments are equal, the

values will pass on and continue to be compared. In the final stage, the value of the

counter is passed on to the comparison core if the current operand is the new max

value. The comparison will then update the accumulator stored index if the index is

passed and vice versa.

3.6 FPGA Implementation

An FPGA implementation of the pPIM architecture is proposed for the validation.

Focus of the implemenation is on validating the processing elements and dataflow

through the simulation of unsigned 8-bit MAC operations on multiple pPIM clusters.

Classification is also handled by a pPIM cluster with a max-index dataflow. The final

implementation is used to predict numbers within images with a single layer NN.

3.6.1 Technology & Resources

Implementation of the pPIM architecture is run on the ZC702 base board. The

ZC702 base board delivers a package with both a programmable logic (PL) core and

processing system (PS). Implementation of the pPIM clusters is done solely on the

PL in a hardware descriptive language. Other features, such as communication with

the architecture are handled on the PS.

The dataset chosen for training and testing of the NN is the Modified Standards

and Technology (MNIST) dataset. Examples of images from the MNIST dataset

are displayed in Figure ??. Within the dataset is a compilation of 70,000 images

of handwritten digits, split into a training set of 60,000 images and testing set of

10,000 images. Images in the MNIST dataset are standardized to be in grayscale
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with dimensions of 28 pixels by 28 pixels.

Training of the NN is handled on Tensorflow before exporting into the FPGA

implementation. Tensorflow also provides access to the MNIST dataset for training

the model external to the ZC702 base board and testing the model on the board.

3.6.2 Machine Learning Model

The model trained for the validation of the pPIM architecture is a single layer NN.

The NN accepts input in the format of an imput vector of 784 pixels, each with an

8-bit unsigned integer value. The output of the model is a single numerical prediction

for the digit in the image, ranging from zero to nine.

The single NN layer within the model is a fully connected layer with no biases.

The output of the layer is a vector of ten 8-bit unsigned integers, the index of which

is relative to the digit that its prediction is associated with. The size of the weight

vector to handle an input with a size of 784 and output size of ten is a matrix with

the dimensions 10x784. Classification of the output vector is done with a max-index

operation where the index of the highest value prediction is the classification made

on the image.

3.6.3 pPIM Implementation

The FPGA implementation of the pPIM architecture is divided into two separate

regions: MAC operations and max-index operations. The FPGA implementation of

the two regions is depicted in Figure 3.12. A separate region is allocated to the two

operation types within the FPGA and neither is reconfigured. This is due to the

focus of the implementation on validating the way in which the pPIM architecture

processes data. Instead of requiring additional steps to handle the programming of

each cluster, constants are set into the pPIM cores’ register files.

To handle the dataflow and execution, each of the regions is coupled with a finite
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Figure 3.12: Structure of the multiple region approach to designing an FPGA implemen-
tation of the pPIM architecture.

state machine. The The state machine is responsible for tracking input and output

to the region and beginning execution. When each cluster has its input ready, the

state machine sends a start signal to begin the execution. Once each of the inputs

have been processed, the state machine also sends the output to the next region or

memory.

3.6.4 Communication

Figure 3.13: Communication model between multiple elements within the ZC702 evalua-
tion board and the host CPU.

Communication between the host computer and elements on the ZC702 base board

required the use of two communication protocols: direct memory access (DMA) and

universal asynchronous receiver-transmitter. The communication used between each
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of the elements in the implementation is shown in Figure 3.13.

The PS on the board provides hardware for UART communication. Over the

UART communication, the external host CPU is capable of communicating with the

PS. Over the UART communication the image data is passed from the host CPU to

the PS. The PS is also responsible for sending the image classification back to the

host CPU.

Both the PS and PL on the board are capable of DMA. DMA on the PL requires

introducing IP provided by Xilinx that communicates the data to the pPIM architec-

ture over an advanced extensible interface (AXI). Communication over DMA is used

to transfer the image data to the pPIM architecture and for the pPIM architecture

to return a classification on the image.

3.7 Results

3.7.1 pPIM Characteristics

Table 3.1: Synthesis results for pPIM architecture.

Component
Delay
(ns)

Power
(mW)

Active Area
µm2

pPIM Core 0.8 2.7 4616.85
pPIM Cluster

(MAC Operation)
7.2 5.2 41551.66

The pPIM architecture is modelled in post-synthesis using the Synopsys Design

Compiler at a technology node of 28nm. Characteristics from the post-synthesis

model are recorded in Table 3.1. The model includes both a synthesized model of

the pPIM core and the pPIM cluster. Synthesis of the LUT multiplexers is modelled

using transmission gates, improving the area overhead of the design.

Gaining an accurate estimate of the activity of the pPIM cluster during operation

required having an example of the processing performed. An 8-bit unsigned MAC
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operation is chosen to record the power and delay figures for the pPIM cluster. This

gives an accurate estimation for analysis on deep learning models that contain MAC

operations for a majority of operations.

3.7.2 Performance Evalution

The performance of the pPIM architecture is evaluated in a comparison against var-

ious computational architectures. Architectures include contemporary PIM architec-

tures DRISA and LAcc, as well as high-performance computing architectures Intel

Knights Landing CPU (KNL) and Nvidia Tesla P100, and AI accelerators Edge TPU.

For an accurate comparison of each architecture, each architecture is analyzed at

28nm performance. The comparison takes a look at the performance of each of the

architectures in various popular deep learning models. These models include Alexnet,

Resnet 18, Resnet 34, Resnet 50, and VGG16. Evaluation of the pPIM architecture

on each CNN is performed through analysis of how quickly the synthesized model can

perform the computation in the CNN. The results of the analysis of each architectures

throughput, energy, and area is displayed in Figure 3.14, 3.15, and 3.16, respectively.
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Figure 3.14: Comparison of various high-performance architectures on their throughput
with popular deep learning models.

A noticeable gap between exists in the results between the throughput of the PIM

architectures and the traditional architectures. The difference in performance can be

attributed to the delays incurred by accessing memory. Despite being designed to
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Figure 3.15: Layout of the pPIM cluster architecture.
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Figure 3.16: Layout of the pPIM cluster architecture.

have high-performance, these architectures still run into the limitation of memory ac-

cess. Many of these architecture also have low energy efficiency as they require larger

systems to be introduced into the computer system. This is unlike PIM architectures

which are introduced to existing memory architecture, keeping their energy efficien-

cies higher. Even architectures such as the neural stick that deliver a high energy

efficiency have this benefit outweighed by its non-competitive throughput with the

PIM architectures.

Among the PIM architectures, the two highest throughputs were seen with in the

pPIM 512 cluster configuration and DRISA. The DRISA architecture, however, is not

an efficient architecture. DRISA parallelizes operation throughout multiple memory

banks. This increases both the area overhead and power consumption, leading DRISA

25



CHAPTER 3. PPIM ARCHITECTURE

to have the largest area and energy usage among each of the PIM architectures. The

pPIM 512 cluster configuration is able to provide a high throughput while maintaining

the highest area and energy efficiency among the PIM architectures, along with the

pPIM 256 cluster configuration. Even with a lower throughput than that of DRISA,

the pPIM 256 cluster configuration is able to outperform DRISA in terms of its

efficiency. LAcc is slightly more competitive in terms of efficiency than DRISA.

Despite this, the pPIM architectures outperform LAcc in all areas. This can be

attributed to the storage of LUT data within the memory bank, increasing both the

area and power costs.

3.7.3 FPGA Characteristics

Table 3.2: Synthesis results for FPGA implementation

Component
Power
(W)

Clocks 0.026
Signals 0.011
Logic 0.011

BRAM 0.016
InputsOutputs 0.001

PS7 1.566

The pPIM architecture is characterized in a post-implementation model using

the Vivado Integrated Design Environment. The final model is capable of operat-

ing the pPIM architecture at a maximum clock speed of 200MHz. From the post-

implementation model, power statistics are gathered from the system. The division of

power among the elements on the board is listed in Table 3.2. Approximately 0.065W

of the power is consumed by the pPIM architecture within the implementation. The

remaining 1.566W are consumed by the PS in transferring the data between the data

from the host CPU to memory, where it can be accessed by the pPIM architecture.
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3.7.4 FPGA Performance Evaluation

Table 3.3: Timing results for FPGA implementation

Component
Throughput
(Frame/s)

pPIM Architecture 255,102
UART (115200 Baud/s) 14.7

Performance of the FPGA implementation of the pPIM architecture is evaluated

for the single layer neural network. The maximum throughputs of both the UART

and the pPIM architecture are recorded in Table 3.3. The results display that the

performance of the pPIM architecture is high. As expected with data communications

across long distances, the UART throttles the maximum throughput of the implemen-

tation. There are also added delays in the PS that further throttled the performance

of the architecture.

Figure 3.17: Predictions made by the pPIM architecture running on the ZC702 base
board.

Several images from the MNIST dataset are also sent through the board for classi-

fication. The device added use of LEDs to output predictions in the form of a binary

value. Several images of predictions made by the pPIM architecture are displayed in

Figure 3.17.
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pPIM Instruction Set Architecture
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Figure 4.1: Proposed ISA for handling control signals and memory accesses of the pPIM
architecture.

The proposed ISA is designed to drive the pPIM architecture in performing data-

intensive applications such as CNNs used in deep learning models. The design of the

proposed ISA is depicted in Figure 4.1. The envisioned ISA is designed to not be lim-

ited to a set number of operations. Instead, the ISA is capable of being reprogrammed

to handle any operation with a dataflow mapped onto the pPIM cluster. This is ac-

complished through a micro-coded approach that allows for operation specific control

signalling. The instruction received by the ISA handles the three non-operation spe-

cific tasks: i) calling on operation specific control signalling, ii) reprogramming pPIM

cores register files, and iii) memory access by the pPIM clusters.
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4.1 ISA Communication
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Figure 4.2: Model of interface between the ISA with pPIM Clusters and memory elements.

The ISA is in communication with several elements internal and external to the

memory. These elements are the pPIM clusters, memory controller, memory subarray,

and the host CPU. This communication is outlined by Figure 4.2.

An ISA can control up to eight pPIM clusters within a ’column’ in unison. Any

action that the ISA performs on a pPIM cluster is also performed on the other pPIM

clusters within the pPIM column. This allows the ISA to operate with a higher degree

of parallelism while also limiting the overhead introduced into the pPIM architecture.

Communication between the host CPU and the ISA is limited to instructions sent

throught the memory controller. There is no transfer of data from the ISA back to

the host CPU as this is already accomplished by the memory controller. Adding data

transfer between the ISA and host CPU would only add unnecessary complexity to

the design.

4.2 pPIM Microcode

The ISA handles the large number of control signals within the pPIM cluster through

the use of micro-coded control words. The micro-coded control words add to the

reprogrammability of the pPIM architecture by avoiding operation specific hardware
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to determine control signals. Control words can easily be programmed into the mi-

crocode memory to suit a specific operation.

The microcode used by the pPIM architecture is stored into an SRAM memory

table, referred to as the microcode table. Within the microcode table is a 2-D array

of micro-coded control words that determine control signals sent to a pPIM column

for a single cycle. Within the memory, each of the control words are grouped into a

microcode sequence. This is a grouping of control words for a single operation ordered

sequentially in order of execution.

Each micro-coded control word has a fixed length of 120-bits. The format of

the micro-coded control word is shown in Figure 4.3. The control word consists

of 119-bits that are dedicated to various signals responsible for dataflow within the

pPIM cluster. These signals consist of routing signals, core register enable signals, and

output register enable signals. Additionally a single bit is dedicated to communicating

the progress of a microcode sequence back to the ISA, referred to as the ’halt’ bit. The

’halt’ bit is essential to stringing multiple control words into multi-cycle microcode

sequences. When high, the ’halt’ bit is signaling that a microcode sequence is on the

last stage of execution. Conversely, a low ’halt’ bit signals that a microcode sequence

is currently in execution. This behavior also allows the ISA to know when execution

of the next microcode sequence can begin.

Within the microcode table, a program counter is dedicated to stepping through a

microcode sequence. When inactive, the program counter points to the first location

in memory which contains the control word for an ’idle state’. The program counter
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continues to point at this ’idle state’ control word until directed to a microcode se-

quence by the ISA. Once directed to the address of a microcode sequence the program

counter iterates through each stage sequentially, cycle-by-cycle. This process contin-

ues until the program counter reaches a control word with a high ’halt’ bit. The ’halt’

bit results in the program counter returning to the ’idle state’ to await the ISA to

point to the next microcode sequence.

4.3 pPIM Instruction Formatting

Operation READ Ptr. / CORE Ptr.

RD WR ROW ADDRESS
012345678910

1112131415161718
00
01
10
11

Encoding Op
NoOp
PROG
EXE
END

Figure 4.4: Formatting of instruction sent from host CPU to pPIM ISA.

Instructions executed by the ISA are formatted in a fixed length of 19-bits. The

formatting for the instructions is displayed in Figure 4.4. The instruction format

contains two segments dedicated to distinct functions: i) the upper 8-bit segment

reserved for handling processing and programming functionality in the pPIM column

and ii) the lower 11-bit segment dedicated to memory accesses between the sub-array

and pPIM column.

The 8-bit segment of the instruction responsible for the pPIM functionality con-

sists of a 2-bit operation field and a 6-bit pointer field that can address either memory

or the register file of pPIM cores. The operation field of the instruction specifies one

of three possibles operations for the ISA to handle: i) ’PROG’, ii) ’EXE’, and iii)

’END’. When the ’PROG’ operation is specified by an instruction, the ISA begins

programming the register file within a pPIM core of each pPIM cluster within the

pPIM column. The pPIM core that is begin programmed during the ’PROG’ opera-

tion is specified by the lower four bits of the 6-bit pointer. When an ’EXE’ operation
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is specified, the ISA begins execution of microcode sequence within the pPIM column.

The starting address of the microcode sequence to be executed is specified by the 6-bit

pointer. At the end of a stream of executions, the ’END’ operation is sent to the ISA.

When the ’END’ operation is received, the ISA resets the core. This process includes

dumping the output registers of each pPIM cluster to the write buffers, followed by

resetting each of the registers. Doing so prepares the pPIM column to receive another

stream of instructions. An additional ’NoOp’ option is available for selection in the

operation field that performs no operation. This is used when only a memory access

necessary.

The 11-bit segment of the instruction dedicated to memory accesses between the

pPIM clusters and the sub-array consists of a write bit, read bit, and 9-bit row address

pointer. The 9-bit pointer gives the ISA the capability of addressing up to 512 memory

rows within the sub-array. When the read bit is set high, starting at the specified row

address, a byte for each of the pPIM clusters will be written from memory into the

read buffers for use in processing. Conversely, if the write bit is set high each cluster

will write their output register into the write buffers to be written sequentially into

the sub-array at the pointer address. If the write buffers are empty when a request is

made, the ISA will force the pPIM clusters to dump their output register data into

the write buffer without resetting the clusters. In the event that both the write and

read bit are set high, each memory access request is handled individually. First, the

ISA will handled the read request. Once the data is stored into the read buffers, the

ISA will proceed to handle the write request.

4.4 pPIM ISA Operation Mapping

The proposed ISA is capable of instructing a pPIM column to perform any pPIM

compatible operation. As a demonstration of the process of mapping an instruction

to the ISA, the unsigned 8-bit MAC dataflow from Figure 3.5a is mapped onto the
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Table 4.1: Microcode Sequences

Operation Stage Control Word

1 00 00 00 11 8C 20 0F 00 00 00 4E 53 90 3C 00
2 00 00 80 60 00 01 50 80 04 02 80 00 05 42 20
3 30 D2 24 C0 00 01 F0 88 30 0C 00 00 05 42 21
4 18 00 02 00 00 01 10 C3 50 97 80 00 07 C2 30

MAC 5 30 06 1F 00 00 01 70 40 1D 88 80 00 04 C2 32
6 18 0C 01 E0 00 01 50 C0 14 0C 00 00 05 42 00
7 30 C0 00 00 00 01 80 40 00 00 00 00 04 02 04
8 00 00 00 00 00 00 00 03 80 00 00 00 02 01 C0
9 80 00 00 00 00 00 00 00 00 00 00 00 00 01 C8

ISA.

The process of mapping an operation onto the ISA begins with generation of the

microcode sequence from the dataflow. At each stage, each of the control signals are

captured to form a micro-coded control word. This sequence is then stored into the

SRAM memory that makes up the microcode table. Once stored into the microcode

table, the ISA is capable of executing the microcode sequence through an ’EXE’

operation. The microcode required to perform a MAC operation is recorded in Table

4.1.

Each pPIM core configuration will also need to be quantified into function words.

For an unsigned MAC operation, both multiplication and addition function words are

required. These function words are stored into the sub-array to be accessed during

the programming step.

Before the MAC operation is ready to be run, each pPIM core needs to be pro-

grammed with function words. By running a ’PROG’ operation with a read memory

request, a single pPIM core has its function words written. This process needs to be

repreated for each pPIM core within the pPIM cluster.

Performing a MAC operation on the ISA requires a series of instructions from

the host CPU. An example stream of instructions is depicted in the timing diagram

in Figure 4.6. The first of the instructions is a read request from memory. This
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Figure 4.5: Timing example of two consecutive MAC operations performed on a pPIM
cluster by the pPIM ISA.

reads the operands for the MAC operation into the read buffers of each pPIM cluster.

Once the data becomes abailable to the pPIM column, an ’EXE’ instruction with

the starting address of the MAC operation is sent to the ISA. The process of reading

memory and executing MAC operations can be repeated as many times as needed

to accumulate over multiple calculations. Once execution of the MAC operations

complete, an ’END’ operation stores the output into the write buffers and resets the

pPIM column. Output is then stored into memory with a write request to memory.

4.5 FPGA Implementation

The FPGA implementation described in Section3.6 is further developed on in an

implementation that accepts instructions in the format outlined in Section 4.3. Im-

plementation of the pPIM ISA is used to demonstrate the ability of the ISA to perform

MAC operations.

4.5.1 Technology & Resources

Implementation of the pPIM ISA is run on the Pynq-Z1 board. The board delivers

a package from the same family as the ZC702 board. Additionally, the board had
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several PMOD ports available. This allowed the use of a PMOD compatible UART

component for communication with the board. The PL is then capable of direct

communication with the computer without the need for the UART and DMA of the

PS.

4.5.2 ISA Implementation

Figure 4.6: Timing example of two consecutive MAC operations performed on a pPIM
cluster by the pPIM ISA.

The FPGA implementation of the ISA consists of a pPIM column with an ISA

unit, 4 pPIM cluster, and buffers to feed data from block RAM (BRAM) into the
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pPIM clusters. The structure of the FPGA implementation is outlined in Figure ??.

The implementation demonstrates all of the capabilities delivered by both the pPIM

architecture and the ISA. This includes executing microcode, programming the pPIM

cores, and making memory accesses.

Each BRAM element in the FPGA implementation is attached to the pPIM archi-

tecture with a buffer element. In the design these buffers are responsible for both pass-

ing data to the pPIM clusters and communicating contol information with the ISA.

Control information includes addresses, requests for memory accesses, and whether

the buffer is actively performing a memory access.

4.6 Results

4.6.1 ISA Characteristics

Table 4.2: Synthesis results for pPIM architecture with ISA.

Component
Delay
(ns)

Power
(mW)

Active Area
µm2

PIM ISA 0.549 0.155 968.16
PIM Column

(MAC Operation)
7.2 43.355 333381.44

The proposed ISA is characterized with a post-synthesis model using the Synop-

sys Design Compiler at 28nm to match the process used to characterize the pPIM

architecture. The resulting characteristics produced by the post-synthesis model are

recorded in Table 4.2. The characterization creates a model of both the ISA individ-

ually and combines the ISA resultss with the pPIM clusters to characterize the pPIM

column.

Due to the ability of the ISA to parallelize operations within a column and perform

operations with the same dataflow, the number of cycles spent on an operation within

a pPIM cluster is unaffected by the ISA. The ISA also has a smaller delay than that of
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the pPIM clusters. With the proposed ISA the pPIM clusters are capable of operating

at its fastest possible clock speed. This allowed the impact on throughput within the

pPIM column to be minimized.

The added area overhead has a negligible effect on the overall pPIM architecture.

This is due to the small percentage of the pPIM column that is allocted for the ISA.

Approximately 0.0029% of the pPIM architecture’s area is dedicated to the ISA.

0.00001 0.0001 0.001 0.01 0.1 1

Alexnet

Resnet 18&34

Resnet 50

VGG16

Energy Consumption (J/Frame)

ISA

pPIM Clusters

Figure 4.7: Comparison of power consumption of the ISA and pPIM clusters in various
deep learning models.

A measure of the power consumption of both the ISA and the pPIM processing

elements is run on Alexnet, Resnet 18, Resnet 34, Resnet 50, and VGG16. The results

from the comparison are shown in Figure 4.7. The power consumption of the ISA is

several decades below that of the pPIM clusters for each of the deep learning models.

Due to the low power consumption of the ISA the energy of the pPIM architecture

has a negligible decrease.

The throughput and energy efficiency of the ISA-driven pPIM architecture is

measured on Alexnet. The modeling is done through analysis of the delay of the syn-

thesized models when performing MAC operations. The throughput is compared at

the 28nm technology node to KNL, Intel Neural Stick, Nvidial Tesla P100, and AI ac-

celerators Edge TPU, as well as contemporary PIM architectures, LAcc and DRISA.
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Figure 4.8: Comparison of throughput for inference on Alexnet.

Figure 4.8 displays the results of the throughput comparisons. With the added over-

head of the ISA, the pPIM architecture delivers a highly competitive throughput.

DRISA is capable of outperforming the pPIM 256-cluster configuration, however, the

pPIM 512-cluster configuration outperforms DRISA. Both of the pPIM configurations

outperform LAcc in throughput. This is likely due to the decomposition of MAC op-

erations into 4-bit operand functions. This reduces the size of LUTs that are required

and improves throughput.

4.6.2 FPGA Characteristics

Table 4.3: Synthesis results for FPGA implementation of pPIM ISA

Component
Power
(W)

Clocks 0.033
Signals 0.003
Logic 0.002

BRAM 0.004
MMCM 0.122

Inputs/Outputs 0.001

The resulting FPGA implelentation of the pPIM ISA is capable of correctly per-

forming unsigned 8-bit MAC operations at a clock frequency of 75MHz. While the

clock frequency of the pPIM architecture operates at 75MHz, the design is ultimately
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limited by the UART communication. Since each instruction is capable of perform-

ing a single MAC operation on each cluster, the bottleneck in the computation is

between the time to communicate the instruction and the actual computation. With

a baudrate of 115200 baud/s, 3840 instructions can be communicated per second.

The pPIM implementation operates faster than this with a speed of 16667 MAC

operations that can be computed per second.

Reports on the power consumption of the implementation were gathered on Vi-

vado. The measurements on power consumption of the design are recorded in Table

??. Without the inclusion of the PS in the FPGA implementation, the power con-

sumption of the pPIM architecture dropped drastically to a power consumption of

0.163W.
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Chapter 5

Conclusions & Future Work

The growing divide between processing and memory architecture is driving the need

for high-performance architectures that reduce the penalties incurred by memory ac-

cess. Processing-in-memory (PIM) architectures take a step away from traditional

computer architectures by adding processing elements into memory and reducing the

memory access. The programmable PIM architecture delivers high-performance pro-

cessing while remaining reprogrammable to adapt to various applications. This is

accomplished through the use of LUT-based multiplexers that are capable of being

programmed to suit various functions and larger operations when processing in uni-

son. Compared to contemporary PIM architectures, the pPIM delivers competitive

throughputs with the highest level of efficiency for area and power consumptions.

An Instruction ISA is proposed for enabling the processing of data-intensive ap-

plications on the pPIM architecture. Through the use of a micro-coded approach

to handling the control signals of the pPIM architecture, the ISA is capable of ex-

ecuting any operation that is compatible with the pPIM architecture. The ISA is

capable running without hindering the performance of the pPIM architecture, with

low impact on the area overhead and power consumption.

Additionally a proof-of-concept, an FPGA model of the pPIM architecture is

designed for classification of images. The model implemented on the FPGA is a

single layer Neural Network (NN) that classified MINST images with a prediction of
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the digit within the image. The implementation is capable of correctly classifying

images at a clock frequency of 200 MHz.

5.1 Future Work

The presented work delivers synthesized models for a PIM architecture and its ISA.

Additional steps are needed to further integration for programmers. These steps

include the development of a compiler and developing libraries that are capable of ex-

ecuting deep learning models on the pPIM architecture. The work also focuses on the

use of the pPIM architecture for deep learning applications. Further work is needed

to display the pPIM architecture’s ability to adapt to applications. This includes

developing applications such as encryption and encoding on the pPIM architecture.

The work presented on the proof-of-concept only tests the processing elements of

the pPIM architecture in a single layer NN. Research is needed into finding FPGAs

that will have a higher capacity to represent an entire 8-cluster pPIM column. The

pPIM architecture also needs to be proven to perform more complex machine learning

models. This requires that an FPGA implementation performs machine learning

models such as Alexnet and Resnet.

41



Bibliography

[1] S. McKee, “Reflections on the memory wall,” 2004.

[2] G. S. et al, “A review of near-memory computing architectures: Opportunities
and challenges,” 2018.

[3] D. Patterson, “A case for intelligent ram,” 1997.

[4] M. Wulf and S. McKee, “Hitting the memory wall: Implications of the obvious,”
1994.

[5] V. S. et al, “Rowclone: Fast and energy-efficientin-dram bulk data copy and
initialization,” 2013.

[6] ——, “Buddy-ram: Improving the performance and efficiency of bulk bitwise
operations using dram,” 2016.

[7] ——, “Ambit: In-memory accelerator for bulk bitwise operationsusing commod-
ity dram technology,” 2017.

[8] Q. D. et al, “Lacc: Exploiting lookup table-based fast and accurate vectormul-
tiplication in dram-based cnn accelerator,” 2019.

[9] J. S. et al, “Lupis: Latch-up based ultra efficient processing in-memory system,”
2018.

[10] S. Li, “Drisa: A dram-based reconfigurable in-situ accelerator,” 2017.

[11] Q. Deng, “Dracc: a dram based accelerator for accurate cnn inference,” 2018.

[12] P. C. et al, “Prime: A novel processing-in-memory architecture for neural net-
work computation in reram-based main memory.”

[13] P. S. et al, “ppim: A programmable processor-in-memory architecture with
precision-scaling for deep learning,” 2020.

[14] A. Bear, “A novel processing-in-memory architecture for dense and sparse matrix
multiplications,” 2019.

[15] W. J. L. et al, “Design of processing-’inside’-memory optimized for dram behav-
iors,” 2019.

[16] M. K. et al, “Software platform dedicated for in-memory computing circuit eval-
uation,” 2020.

[17] ——, “Smart instruction codes for in-memory computing architectures compat-
ible with standard sram interfaces,” 2018.

42



BIBLIOGRAPHY

[18] “Hmc-mac: Processing-in memory architecture for multiply-accumulate opera-
tions with hybrid memory cube,” 2018.

[19] P. Sutradhar, “A review of in-memory computing architectures for machine learn-
ing applications,” 2020.

[20] K. C. et al, “Low-cost inter-linked subarrays (lisa): Enabling fast inter-subarray
data movement in dram,” 2016.

Table 1: List of Publications and Submissions on pPIM Architecture

Article Status Venue

pPIM: A Programmable
Processor-in-Memory Architecture

with Precision-Scaling
for Deep Learning

Computer Architecture
Letters

Published

Look-up-Table based
Processing-in-Memory

Architecture with
Programmable Precision-Scaling

for Deep Learning
Applications

Transactions on
Parallel and

Distributed Systems

Published on
Early Access

Instruction Set
Architecture for

Programmable Processing-in-Memory
Architecture with Deep
Learning Applications

Under Blind Review Submitted

43


	A Programmable Processing-in-Memory Architecture for Memory Intensive Applications
	Recommended Citation

	Signature Sheet
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation

	Background
	Processing-in-Memory
	Instruction Set Architectures
	Neural Networks
	Supporting Work

	pPIM Architecture
	pPIM Core
	pPIM Cluster
	pPIM Function Word Generation
	pPIM MAC Operations
	pPIM Activation Operations
	FPGA Implementation
	Technology & Resources
	Machine Learning Model
	pPIM Implementation
	Communication

	Results
	pPIM Characteristics
	Performance Evalution
	FPGA Characteristics
	FPGA Performance Evaluation


	pPIM Instruction Set Architecture
	ISA Communication
	pPIM Microcode
	pPIM Instruction Formatting
	pPIM ISA Operation Mapping
	FPGA Implementation
	Technology & Resources
	ISA Implementation

	Results
	ISA Characteristics
	FPGA Characteristics


	Conclusions & Future Work
	Future Work

	Bibliography

