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Abstract

Modern engineering systems collect large volumes of data measurements across diverse sensing

modalities. These measurements can naturally be arranged in higher-order arrays of scalars which

are commonly referred to as tensors. Tucker decomposition (TD) is a standard method for tensor

analysis with applications in diverse fields of science and engineering. Despite its success, TD

exhibits severe sensitivity against outliers –i.e., heavily corrupted entries that appear sporadically in

modern datasets. We study L1-norm TD (L1-TD), a reformulation of TD that promotes robustness.

For 3-way tensors, we show, for the first time, that L1-TD admits an exact solution via combinatorial

optimization and present algorithms for its solution. We propose two novel algorithmic frameworks

for approximating the exact solution to L1-TD, for general N-way tensors. We propose a novel

algorithm for dynamic L1-TD –i.e., efficient and joint analysis of streaming tensors. Principal-

Component Analysis (PCA) (a special case of TD) is also outlier responsive. We consider Lp-

quasinorm PCA (Lp-PCA) for p < 1, which promotes robustness. Before this dissertation, to the

best of our knowledge, the exact solution to Lp-PCA (p < 1) was unknown. We show, for the first

time, that the problem of one principal component can be solved exactly through a combination of

convex problems and we provide corresponding optimal algorithms. We propose a novel near-exact

algorithm for jointly extracting multiple components. In a different, but related, research direction,

we propose new theory and algorithms for robust Coprime Array (CA) processing. In Direction-

of-Arrival estimation, CAs enable the identification of more sources than sensors by forming the

autocorrelation matrix of a larger virtual uniform linear array which is known as coarray. We

derive closed-form Mean Squared Error (MSE) expressions for the Coarray Autocorrelation Matrix

(CAM) estimation error. We develop a novel approach for estimating the CAM that is designed

under the Minimum-MSE optimality criterion. Finally, we propose a novel CAM estimate which,

in contrast to existing estimates, satisfies the structure-properties of the nominal (true) CAM.
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Chapter 1

Introduction

In this doctorate dissertation, we propose new theory and algorithms for multimodal (tensor) data

analysis, machine learning, and sparse array processing.

Modern engineering systems collect large volumes of data measurements across diverse sensing

modalities. These measurements can naturally be arranged in higher-order arrays of scalars which

are commonly referred to as multiway arrays or tensors. For instance, a 1-way tensor is a standard

vector, a 2-way tensor is a standard matrix, and a 3-way array is a data cube of scalars. For higher-

order tensors, visualization is not a trivial task and is left to the imagination. Storing, processing,

and analyzing tensor data in their natural form enables the discovery of patterns and underlying

data structures that would have otherwise stayed hidden. This is often attributed to the fact that

tensors naturally model higher-order correlations among the data. Tucker Decomposition (TD)

and Canonical Polyadic Decomposition (CPD) are the most popular tensor analysis approaches

in the literature. TD focuses more on compression and multilinear subspace analysis while CPD

aims at extracting sets of non-rotatable features that promote interpretability. Both TD and CPD

find applications in diverse fields of science and engineering. In this dissertation, we focus on TD.

Despite its success, TD exhibits severe sensitivity against outliers –i.e., heavy magnitude peripheral

entries within the processed tensor. Accordingly, applications the performance of which relies on

TD may attain compromised performance. We consider outlier resistant reformulations of TD, set

the theoretical foundations for these formulations, and propose new algorithms.

Principal-Component Analysis (PCA) –a special case of TD– is a standard method for data analysis

with a plethora of applications among fields of science and engineering. Similar to TD, it has been

well documented that PCA is outlier-responsive. Thus, applications that rely on PCA may attain

1
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compromised performance when outliers are found among the processed data. To remedy the

impact of outliers, researchers have proposed an array or outlier resistant reformulations of PCA.

Arguably, L1-norm PCA (L1-PCA), which derives by simple substitution of the L2-norm in the

PCA formulation by the more robust L1-norm, is the most straightforward one. This change in

norm promotes robustness. L1-PCA is, in fact, a special case of the general Lp-norm PCA (Lp-

PCA) formulation for p = 1. For general values of p ≤ 1, before this dissertation, to the best

of our knowledge, the exact solution to Lp-PCA was unknown. In this dissertation, we focus on

the special case that p ≤ 1 and pursue the exact solution to Lp-quasinorm Principal-Component

Analysis.

In a different, but related, research direction, we propose new theory and estimation algorithms

for robust coprime array processing. Coprime Arrays (CAs) are sparse arrays which offer an

increased number of Degrees-of-Freedom (DoF) when compared to equal-length Uniform Linear

Arrays (ULAs). CAs have attracted significant research interest over the past years and have been

successfully employed in numerous modern applications.

The main contributions of this dissertation are organized in the following Chapters.

In Chapter 2, we develop theory and algorithms for reliable tensor data analysis. Standard tensor

analysis approaches in the literature are formulated based on the L2/Frobenius norm which has

been shown to exhibit severe sensitivity against peripheral heavy-magnitude/tail noise points. We

consider L1-norm tensor analysis formulations and set the theoretical foundations that allow us

to develop, for the first time, exact and approximate algorithms that are accompanied by formal

complexity and convergence analyses. Furthermore, we also consider the problem of streaming

tensor data and develop a new scalable algorithm that remains robust against outliers. The merits

of L1-norm tensor analysis are clearly documented in an extensive array of numerical experiments

with both synthetic and real-world datasets.

Next, in Chapter 3, we study the problem of Lp-quasinorm Principal-Component Analysis (Lp-

PCA) for p ≤ 1. Before this dissertation, to the best of our knowledge, the solution to Lp-PCA

was unknown. We show, for the first time, that the problem of one principal component can be

solved exactly through a combination of convex problems and we provide corresponding optimal

algorithms. Moreover, we propose a novel near-exact algorithm for jointly extracting multiple com-

ponents. Extensive numerical studies on both synthetic and real-world medical datasets corroborate

the merits of Lp-PCA compared to the standard PCA.

Finally, in Chapter 4, we steer our focus on sparse array processing. Briefly, processing at a spare
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array receiver can be summarized in the following steps: physical-array autocorrelation estima-

tion, autocorrelation combining, and spatial smoothing, after which an autocorrelation matrix that

corresponds to a larger virtual uniform linear array is formed. We specifically focus on the auto-

correlation combining step and develop new theory and a novel autocorrelation combining method

that relies on the Minimum-Mean-Squared-Error optimality criterion. In addition, we propose an

algorithm for computing improved autocorrelation estimates, compared to standard counterparts,

by leveraging known structure properties that derive from the received-signal model. The new

theory is validated by means of numerical simulations. The performances of the new autocorrela-

tion combining approach and the new autocorrelation matrix estimate are evaluated by means of

extensive numerical experiments.



Chapter 2

L1-norm Tensor Analysis

2.1 Introduction

Data collections across diverse sensing modalities are naturally stored and processed in the form

of N -way arrays, also known as tensors. Introduced by L. R. Tucker [1] in the mid-1960s, Tucker

decomposition (TD) is a standard method for the analysis and compression of tensor data. TD finds

a plethora of applications across fields of science and engineering, such as communications [2–6],

data analytics [7, 8], machine learning [9–14], computer vision [15–20], biomedical signal processing

[21], social-network data analysis [22, 23], and pattern recognition [24, 25], among other fields. TD

is typically used for compression, denoising, and model identification, to name a few. Notably,

an alternative paradigm for tensor analysis, particularly popular for data mining, is the Canonical

Polyadic Decomposition (CPD), also referred to as Parallel Factor Analysis (PARAFAC) [8, 26].

In contrast to TD that focuses more on compression and multilinear subspace analysis, CPD aims

at extracting sets of non-rotatable features that promote interpretability.

In many applications of interest, an N -way data tensor is formed by concatenation of (N − 1)-

way coherent (same class, or distribution) tensor samples across its, without loss of generality

(w.l.o.g), N -th mode –i.e., the data tensor comprises (N − 1) feature modes and 1 sample mode.

For such applications, TD is accordingly reformulated to Tucker2 decomposition (T2D) [27], which

can be described as joint TD of the (N − 1)-way tensor samples. That is, T2D strives to jointly

decompose the collected (N − 1)-way tensors and unveil the low-rank multilinear structure of their

class, or distribution. For the special case that N = 3 (collection of matrix or 2-way measurements),

TD/T2D take the familiar form of Principal-Component Analysis (PCA). For the same case, T2D

4
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has also been presented as Generalized Low-Rank Approximation of Matrices (GLRAM) [28, 29],

or 2-D Principal Component Analysis (2DPCA) [18, 30]. For N = 2 (collection of vector samples),

both TD and T2D boil down to standard matrix Principal-Component Analysis (PCA), computable

by means of Singular-Value Decomposition (SVD) [31].

In general, conventional TD tries to minimize the L2-norm of the residual-error in the low-rank

approximated tensor that derives by multi-way projection of the original tensor onto the spans of N

sought-after orthonormal bases –or, equivalently, TD tries to maximize the L2-norm of this multi-

way projection. Higher-Order SVD (HOSVD) and Higher-Order Orthogonal Iteration (HOOI)

algorithms [32] are well-known solvers for TD and T2D. Note that both types of solvers can gen-

erally only guarantee a locally optimal solution. Furthermore, a plethora of TD variants have also

been presented in the literature. Truncated HOSVD (T-HOSVD) [33, 34], Sequentially Truncated

HOSVD (ST-HOSVD) [35], Hierarchical HOSVD [36], and Nonnegative Tucker [37, 38], are just a

few.

TD and T2D have also been studied for applications in which the tensor measurements arrive in a

streaming way. In such applications, the sought-after TD bases have to be computed incrementally.

Incremental solvers are also preferred, from a computational standpoint, when there are too many

collected measurements to efficiently process them as a batch. Researchers have proposed an array

of algorithms for incremental TD, including Dynamic Tensor Analysis (DTA), Streaming Tensor

Analysis (STA), Window-based Tensor Analysis (WTA) [39, 40], and Accelerated Online Low-Rank

Tensor Learning (ALTO) [41], to name a few. Scalable, parallelized, streaming, and randomized

algorithms for TD have also been proposed in [42–46].

The merits of TD have been demonstrated in a wide range of applications. However, it is well

documented that TD is very sensitive against faulty measurements (outliers). Outliers appear

often in modern datasets due to sensor malfunctions, errors in data storage/transfer, and even

deliberate dataset contamination in adversarial environments [47–52]. The same sensitivity has

also been amply documented in PCA/SVD, which is a special case of TD for 2-way tensors. For

the case of matrix decomposition, researchers have shown that the impact of faulty entries can be

effectively counteracted by substituting SVD with L1-norm-based PCA (L1-PCA) [53, 54]. L1-

PCA is formulated similar to standard PCA as a projection maximization problem, but replaces

the corruption-responsive L2-norm by the robust L1-norm. L1-PCA has exhibited solid robustness

against heavily corrupted data in an array of applications [55–58]. Extending this formulation to

tensor processing, one can similarly endow robustness to the TD and T2D by substituting the

L2-norm in their formulations by the L1-norm (not to be confused with sparsity-inducing L1-norm
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regularization schemes). An approximate algorithm for L1-norm-based Tucker2 (L1-T2D) was

proposed in [52] for the special case that N = 3 and data are processed as a batch. However,

L1-T2D and L1-TD remain to date unsolved and largely unexplored.

In this Chapter, we study the theoretical foundations of L1-norm TD and T2D and develop algo-

rithms for their solutions. Specifically, our contributions are as follows:

Contribution i. We deliver, for the first time, the exact solution to rank-1 L1-T2D decomposition

by means of two novel algorithms.

Contribution ii. We present generalized L1-TD decomposition for N -way tensors and review

its links to PCA, TD/T2D, and L1-PCA. We propose two new algorithmic

frameworks for the solution of L1-TD/L1-T2D, namely L1-norm Higher-Order

SVD (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI),

which are accompanied by complete convergence and complexity analyses.

Contribution iii. We present Dynamic L1-Tucker: a scalable method for incremental L1-TD anal-

ysis, with the ability to (1) provide quality estimates of the Tucker bases, (2)

detect and reject outliers, and (3) adapt to changes of the nominal subspaces.

Contribution iv. In all the above cases, we offer numerical studies that evaluate the performance of

L1-TD and compare it with state-of-the-art counterparts. Our numerical studies

corroborate that L1-TD performs similar to standard TD when the processed

data are nominal/clean, while it exhibits sturdy resistance against corruptions

among the data.

The rest of this Chapter is organized as follows. In Section 2.2, we introduce notation and review

existing tensor analysis methods. Next, in Section 2.3, we present the general formulation of L1-

norm Tucker (L1-Tucker) analysis. In Section 2.4, we present, for the first time, the exact solution

to rank-1 L1-norm Tucker2 Analysis. Thereafter, in Section 2.5, we offer the proposed L1-HOSVD

and L1-HOOI algorithmic frameworks for the solution to L1-Tucker/L1-Tucker2. In Section 2.6,

we present Dynamic L1-Tucker (D-L1-Tucker) for incremental and dynamic analysis of streaming

tensor measurements.

The contributions presented in this Chapter have also been presented in [59–65].
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2.2 Technical Background

Notation and Tensor Preliminaries

In this Chapter, vectors and matrices are denoted by lower- and upper-case bold letters, respectively

–e.g., x ∈ RD1 and X ∈ RD1×D2 . N -way tensors are denoted by upper-case calligraphic bold letters

–e.g., X ∈ RD1×...×DN . An N -way tensor X ∈ RD1×D2×...×DN can also be viewed as an M -way

tensor in RD1×D2×...×DM , for any M > N , with Dm = 1 for m > N . Collections/sets of tensors are

denoted by upper-case calligraphic letters –e.g., X = {X ,Y}. The squared Frobenius/L2 norm,

‖ · ‖2F , returns the sum of squared entries of its tensor argument while the L1-norm, ‖ · ‖1, returns

the sum of the absolute entries of its tensor argument. SD×d = {Q ∈ RD×d : Q>Q = Id} is

the Stiefel manifold of rank-d orthonormal matrices in RD. Each entry of X is identified by N

indices {in}Nn=1 such that in ≤ Dn for every n ∈ [N ] = {1, 2, . . . , N}. For every n ∈ [N ], X can

be seen as a collection of Pn =
∏
m∈[N ]\nDm length-Dn vectors known as mode-n fibers of X . For

instance, given a fixed set of indices im∈[N ]\n, X (i1, . . . , in−1, :, in+1, . . . , iN ) is a mode-n fiber of

X . A matrix that has as columns all the mode-n fibers of X is called the mode-n unfolding (or,

flattening) of X and will henceforth be denoted as mat(X , n) ∈ RDn×Pn . The reverse procedure,

known as mode-n “tensorization”, rearranges the entries of matrix X ∈ RDn×Pn to form tensor

ten(X;n; {Di}i 6=n) ∈ RD1×D2×...×DN , so that mat(ten(X;n; {Di}i 6=n), n) = X. X ×n A is the

mode-n product of tensor X with matrix A of conformable size and X×n∈[N ]Q
>
n compactly denotes

the multi-way product X ×1 Q>1 ×2 Q>2 . . .×nQ>N . In accordance with the common convention, the

order in which the mode-n fibers of X appear in mat(X , n) is as specified in [66]. For more details

on tensor preliminaries, we refer the interested reader to [12, 66].

Tucker Decomposition

Tucker tensor decomposition factorizes X into N orthonormal bases and a core tensor that con-

stitutes a compressed version of X . Specifically, considering {dn}n∈[N ] with dn ≤ Dn ∀n ∈ [N ],

Tucker decomposition is compactly formulated as

max.
{Un∈SDn×dn}n∈[N ]

∥∥X ×n∈[N ] U>n
∥∥2

F
. (2.1)
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If {Utckr
n }n∈[N ] is a solution to (2.1), then

Gtckr 4= X ×n∈[N ] Utckr
n
>

(2.2)

is the corresponding Tucker core of X , and X is “low-rank” approximated by

X̂ 4
= Gtckr ×n∈[N ] Utckr

n = X ×n∈[N ] Utckr
n Utckr

n
>
. (2.3)

If dn = Dn∀n, it trivially holds that X = X̂ . The minimum values of {dn}n∈[N ] for which X = X̂
are the respective mode ranks of X . For general values of {dn}n∈[N ], the exact solution to (2.1)

remains unknown and it is commonly approximated/pursued by means of the HOSVD [17] or HOOI

algorithms [32], reviewed briefly below.

In HOSVD, the N bases are optimized disjointly, setting the n-th basis, Uhosvd
n , to the dn principal

components (PCs) of the mode-n unfolding mat (X , n), computed by means of standard SVD.

HOOI is a converging iterative procedure that, when initialized at HOSVD, it can provably attain

a higher value to the metric in (2.1) [32, 67]. For each n ∈ [N ], the n-th basis is typically (but not

necessarily) initialized as Uhooi
n,0 = Uhosvd

n . Then, HOOI updates the bases iteratively. At the t-th

iteration, t = 1, 2, . . ., the n-th basis Uhooi
n,t is updated to the dn dominant left-singular vectors of

mat(X ×m∈[n−1] U
hooi
m,t ×k∈[N−n]+n Uhooi

k,t−1, n) –thus, in contrast to HOSVD, HOOI optimizes the N

bases jointly.

Data Corruption

Large datasets often contain heavily corrupted, outlying entries due to various causes, such as er-

rors in data storage, heavy-tail noise, intermittent variations of the sensing environment, sensor

malfunctions, and even intentional contamination [68]. Regrettably, such corruptions that lie far

from the sought-after subspaces, are known to significantly affect Tucker [49, 54, 59]. Accord-

ingly, the performance of any application that relies on Tucker can be significantly compromised

if the processed data are corrupted. To a high extent, this corruption sensitivity of Tucker can

be attributed to its L2-norm-based formulation, which places squared emphasis on each entry of

the core, thus benefiting corrupted fibers of the data tensor. To demonstrate this, we present the

following numerical study. We consider tensor X ∈ R10×10×10 with entries independently drawn

from N (0, 1). Then, we corrupt additively the single entry X (3, 3, 4) with a point from N (0, µ2).

We apply HOSVD on X to obtain the single-dimensional bases u1 ∈ R10×1, u2 ∈ R10×1, and
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Figure 2.1. Fitting of HOSVD-derived bases to corrupted fibers, versus corruption variance µ2.

u3 ∈ R10×1 and measure the aggregate normalized fitting of the bases to the corrupted fibers of X
as f(µ2) = 1

3

∑3
i=1 |u>i xi|2‖xi‖−2

2 , where x1 = X (:, 3, 4), x2 = X (3, :, 4), and x3 = X (3, 3, :). We

repeat this study on 3000 distinct realizations of X and plot in Fig. 2.1 the average value of f(µ2),

versus µ2 = 0, 10, . . . , 100. We observe that, as µ increases, ui tends to the corrupted fiber xi, for

every i, and f(µ2) increases towards 1.

To counteract the impact of corruptions, researchers have resorted in “robust” reformulations of

PCA and Tucker. One popular approach seeks to approximate the processed data matrix/tensor

as the summation of a sought-after low-rank component and a jointly optimized sparse component

that models corruption [50, 69–71]. This approach relies on weights that regulate approximation

rank, sparsity, and iteration step-size.

An alternative approach in matrix analysis replaces the corruption-responsive L2-norm in PCA by

the L1-norm, resulting to L1-PCA [54]. The meaningful formulation of L1-PCA and its documented

robustness in an array of applications have largely motivated the tensor-processing developments

of this Chapter. Next, to set the technical background of our work, we briefly present L1-PCA.
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The L1-PCA Paradigm

Given a data matrix X ∈ RD1×D2 and d1 ≤ rank(X), L1-PCA is defined as [54]

max.
U∈SD1×d1

‖U>X‖1, (2.4)

where the L1-norm ‖ · ‖1 returns the summation of the absolute entries of its matrix argument.

L1-PCA in (2.4) was solved exactly in [54], where authors presented the following Theorem 2.1.

Theorem 2.1. Let Bnuc be an optimal solution to

max.
B∈{±1}D2×d1

‖XB‖∗. (2.5)

Then, UL1 = Φ(XBnuc) is an optimal solution to L1-PCA in (2.4). Moreover, ‖X>UL1‖1 =

Tr
(
U>L1XBnuc

)
= ‖XBnuc‖∗.

Nuclear norm ‖·‖∗ in (2.5) returns the sum of the singular values of its matrix argument. For any tall

matrix A ∈ Rm×n that admits SVD WSn×nQ
>, Φ(·) in Theorem 2.1 is defined as Φ(A)

4
= WQ>.

Moreover, by the Procrustes Theorem [72], it holds that Φ(A) = argmaxU∈Sm×n Tr(U>A) =

argminU∈Sm×n ‖U−A‖F .

By means of Theorem 2.1, the solution to L1-PCA is obtained by solving the Binary Nuclear-norm

Maximization (BNM) in (2.5), with an additional SVD step. BNM can be solved by exhaustive

search in its finite-size feasibility set, or more intelligent algorithms of lower cost, as shown in [54].

Computationally efficient, approximate solvers for (2.5) and (2.4) were presented in [55, 58, 73–76].

Incremental solvers for L1-PCA were presented in [77, 78]. Algorithms for L1-PCA of complex-

valued data were recently presented in [79, 80]. To date, L1-PCA has found many applications in

signal processing and machine learning, such as radar-based motion recognition and foreground-

activity extraction in video sequences [56, 57].

Existing Methods for Incremental and Dynamic Tucker

Streaming and robust matrix PCA has been thoroughly studied over the past decades [77, 81–85].

However, extending matrix PCA (batch or streaming) to tensor analysis is a non-trivial task that

has been attracting increasing research interest. To date, there exist multiple alternative methods

for batch tensor analysis (e.g., HOSVD, HOOI, L1-HOOI) but only few for streaming/dynamic
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tensor analysis. For example, DTA [39, 40] efficiently approximates the HOSVD solution by pro-

cessing measurements incrementally, with a fixed computational cost per update. Moreover, DTA

can track multilinear changes of subspaces, weighing past measurements with a forgetting factor.

STA [39, 40] is a fast alternative to DTA, particularly designed for time-critical applications. WTA

is another DTA variant which, in contrast to DTA and STA, adapts to changes by considering only

a sliding window of measurements. The ALTO method was presented in [41]. For each new mea-

surement, ALTO updates the bases through a tensor regression model. In [86], authors presented

another method for Low-Rank Updates to Tucker (LRUT). When a new measurement arrives,

LRUT projects it on the current bases and few more randomly chosen orthogonal directions, form-

ing an augmented core tensor. Then it updates the bases by standard Tucker (e.g., HOSVD) on this

extended core. In [45], authors consider very large tensors and propose randomized algorithms for

Tucker decomposition based on the TENSORSKETCH [87]. It is stated that these algorithms can

also extend for processing streaming data. Randomized methods for Tucker of streaming tensor

data were also proposed in [42]. These methods rely on dimension-reduction maps for sketch-

ing the Tucker decomposition and they are accompanied by probabilistic performance guarantees.

More methods for incremental tensor processing were presented in [88–91], focusing on specific

applications such as foreground segmentation, visual tracking, and video foreground/background

separation.

Methods for incremental CPD/PARAFAC tensor analysis have also been presented. For instance,

authors in [92] consider the CPD/PARAFAC factorization model and assume that N -way mea-

surements are streaming. They propose CP-Stream, an algorithm that efficiently updates the CPD

every time a new measurement arrives. CP-stream can accommodate user-defined constraints in the

factorization such as non-negativity. In addition, authors in [93] consider a Bayesian probabilistic

reformulation of the CPD/PARAFAC factorization, assuming that the entries of the processed ten-

sor are streaming across all modes, and develop a posterior inference algorithm (POST). Further,

the problem of robust and incremental PARAFAC has also been studied and algorithms have been

presented in [94, 95]. Typically, the application spaces of CPD and TD are complementary: CPD

is preferred when uniqueness and interpretability are needed; Tucker allows for the latent compo-

nents to be related (dense core) and it is preferred for low-rank tensor compression and completion,

among other tasks [8, 14].
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Figure 2.2. Schematic illustration of L1-Tucker decomposition for N = 3.

2.3 Problem Statement

Motivated by the corruption resistance of L1-PCA, we study L1-Tucker decomposition. L1-Tucker

derives by simply replacing the L2-norm in (2.1) by the corruption-resistant L1-norm,1 as

max.
{Un∈SDn×dn}n∈[N ]

∥∥X ×n∈[N ] U>n
∥∥

1
. (2.6)

That is, L1-Tucker in (2.6) strives to maximize the sum of the absolute entries of the Tucker

core G 4
= X ×n∈[N ] U>n –while standard Tucker maximizes the sum of the squared entries of the

core. A schematic illustration of L1-Tucker decomposition for N = 3 is offered in Fig. 2.2. An

interesting observation is that, for any m ∈ [N ],
∥∥X ×n∈[N ] U>n

∥∥
1

=
∥∥U>mAm

∥∥
1
, where Am =

mat(X ×n<m U>n ×k>m U>k ,m).

In many applications, X emerges as collection of DN coherent (N − 1)-way tensor measurements

that are to be jointly decomposed. Defining Xi
4
= X (:, . . . , :, i)∀i ∈ [DN ], the joint L1-Tucker

analysis of {Xi}i∈[DN ] is formulated as

max.
{Un∈SDn×dn}n∈[N−1]

DN∑
i=1

∥∥Xi ×n∈[N−1] U>n
∥∥

1
. (2.7)

This formulation is henceforth referred to as L1-Tucker2, a name deriving by the special case

of N = 3 (joint collection of 2-way matrices). Certainly, L1-Tucker2 can be expressed as L1-

Tucker in (2.6), with the additional constraint UN = IDN , since
∑DN

i=1

∥∥Xi ×n∈[N−1] U>n
∥∥

1
=∥∥X ×n∈[N−1] U>n ×N IDn

∥∥
1
. Conversely, L1-Tucker can be trivially written as L1-Tucker2, since

1The change of the projection norm from L2 in (2.1) to L1 in (2.6) should not be confused with the standard
L1-norm regularization approach that is commonly employed to minimization imposed sparsity [96].
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∥∥X ×n∈[M−1] U>n
∥∥

1
=
∑DM

i=1

∥∥Yi ×n∈[M−1] U>n
∥∥

1
, for M = N + 1, DM = 1, and Y1 = X .

2.4 Contribution 1: Exact Solution to Rank-1 L1-norm Tucker2

For the special case that N = 3, X can, w.l.o.g., be treated as a collection of Ns real-valued matrices

of equal size, X1,X2, . . . ,XNs ∈ RD×M . For any rank d ≤ min{D,M}, a Tucker2 decomposition

strives to jointly analyze {Xi}Nsi=1, by maximizing
∑Ns

i=1 ‖U>XiV‖2F over U ∈ RD×d and V ∈ RM×d,
such that U>U = V>V = Id; then, Xi is low-rank approximated as UU>XiVV>. Among

other methods in the tensor-processing literature, Tucker2 coincides with Multilinear PCA [97] (for

zero-centered matrices) and the Generalized Low-Rank Approximation of Matrices (GLRAM) [28].

Clearly, for Ns = 1, Tucker2 simplifies to the rank-d approximation of matrix X1 ∈ RD×M , solved

by means of the familiar singular-value decomposition (SVD) [31]; i.e., the optimal arguments U

and V are built by the d left-hand and right-hand singular vectors of X1, respectively.

To counteract against the impact of any outliers in {Xi}Nsi=1, in this work, we consider the L1-norm-

based Tucker2 reformulation

maximize
U∈RD×d; U>U=Id
V∈RM×d; V>V=Id

Ns∑
i=1

‖U>XiV‖1. (2.8)

The problem in (2.8) was studied in [52] under the title L1-Tensor Principal-Component Analysis

(TPCA-L1).2 Authors in [52] presented an approximate algorithm for its solution which they

employed for image reconstruction. To date, (2.8) has not been solved exactly in the literature,

even for the special case of rank-1 approximation –i.e., d = 1. We deliver, for the first time, the

exact solution to L1-Tucker2 for d = 1, by means of two novel algorithms. In addition, we provide

numerical studies that demonstrate the outlier-resistance of exact L1-Tucker2, and its superiority (in

joint-matrix decomposition and reconstruction) over L2-norm-based (standard) Tucker2, GLRAM,

TPCA-L1, PCA, and L1-PCA.

We commence our solution by showing how L1-Tucker2 (d = 1) can be reformulated as a combina-

torial problem.

2In this work, we refer to the problem as L1-Tucker2, so as to highlight its connection with the Tucker2 formulation
(instead of the general TUCKER formulation).
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Reformulation Into Combinatorial Optimization

For rank d = 1, L1-Tucker2 in (2.8) takes the form

maximize
u∈RD×1; v∈RM×1; ‖u‖2=‖v‖2=1

Ns∑
i=1

|u>Xiv| (2.9)

First, we focus on the absolute value in (2.9) and notice that, for any a ∈ RNs ,
∑Ns

i=1 |ai| =∑Ns
i=1 sgn (ai) ai = sgn (a)> a = maxb∈{±1}Ns b>a, where sgn (·) returns the {±1}-sign of its (vector)

argument. In view of the above, Lemma 2.1 follows.

Lemma 2.1. For any given u ∈ RD and v ∈ RM , it holds that

Ns∑
i=1

|u>Xiv| = max
b∈{±1}Ns

u>

(
Ns∑
i=1

biXi

)
v. (2.10)

The maximum in (2.10) is attained for b = [sgn
(
u>X1v

)
, sgn

(
u>X2v

)
, . . . , sgn

(
u>XNsv

)
]>.

In addition, the following well-known Lemma 2.2 derives by the matrix-approximation optimality

of SVD [31].

Lemma 2.2. For any given b ∈ {±1}Ns, it holds that

max
u∈RD×1; ‖u‖2=1

v∈RM×1; ‖v‖2=1

u>

(
Ns∑
i=1

biXi

)
v = σmax

(
Ns∑
i=1

biXi

)
(2.11)

where σmax(·) returns the highest singular value of its matrix argument. The maximum in (2.11)

is attained if u and v are the left-hand and right-hand dominant singular vectors of
∑Ns

i=1 biXi,

respectively.

To compact our notation, we concatenate {Xi}Nsi=1 into X
4
= [X1,X2, . . . ,XNs ] ∈ RD×MNs . Then,

for any b ∈ {±1}Ns , it holds
∑Ns

i=1 biXi = X(b ⊗ IM ), where ⊗ denotes the Kronecker matrix

product [98]. Then, in view of Lemma 2.1 and Lemma 2.2, we can rewrite the L1-Tucker2 in (2.9)
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as

max
u∈RD×1; ‖u‖2=1

v∈RM×1; ‖v‖2=1

Ns∑
i=1

|u>Xiv| (2.12)

= max
b∈{±1}Ns

u∈RD×1; ‖u‖2=1

v∈RM×1; ‖v‖2=1

u> (X(b⊗ IM )) v (2.13)

= max
b∈{±1}Ns

σmax (X(b⊗ IM )) . (2.14)

It is clear that (2.14) is a combinatorial problem over the size-2Ns feasibility set {±1}Ns . The

following Proposition 2.1 derives straightforwardly from Lemma 2.1, Lemma 2.2, and (2.12)-(2.14)

and concludes our transformation of (2.9) into a combinatorial problem.

Proposition 2.1. Let bopt be a solution to the combinatorial

maximize
b∈{±}Ns

σmax(X(b⊗ IM )) (2.15)

and denote by uopt ∈ RD and vopt ∈ RM the left- and right-hand singular vectors of X(bopt ⊗
IM ) ∈ RD×M , respectively. Then, (uopt,vopt) is an optimal solution to (2.9). Also, bopt =

[sgn
(
u>optX1vopt

)
, . . . , sgn

(
u>optXNsvopt

)
]> and

∑Ns
i=1 |u>optXivopt| = u>opt(X(bopt ⊗ IM ))vopt =

σmax (X(bopt ⊗ IM )). In the special case that u>optXivopt = 0, for some i ∈ {1, 2, . . . , Ns}, [bopt]i

can be set to +1, having no effect to the metric of (2.15).

Given bopt, (uopt,vopt) are obtained by SVD of X(bopt ⊗ IM ). Thus, by Proposition 2.1, the

solution to L1-Tucker2 for low-rank d = 1 is obtained by the solution of the combinatorial problem

(2.15) and a D-by-M SVD.

Connection to L1-PCA and Hardness

In the sequel, we show that for M = 1 and d = 1, L1-Tucker2 in (2.9) simplifies to L1-PCA

[53, 54, 58]. Specifically, for M = 1, matrix Xi is a D × 1 vector, satisfying Xi = xi
4
= vec(Xi),

and (2.9) can be rewritten as

max
u∈RD; v∈R; ‖u‖2=|v|=1

Ns∑
i=1

|u>xiv|. (2.16)
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It is clear that for every u, an optimal value for v is trivially v = 1 (or, equivalently, v = −1); thus,

for X = [x1,x2, . . . ,xNs ] ∈ RD×Ns , (2.16) becomes

max
u∈RD; ‖u‖2=1

Ns∑
i=1

|u>xi| = max
u∈RD; ‖u‖2=1

‖X>u‖1, (2.17)

which is the exact formulation of the well-studied L1-PCA problem [53, 54, 58]. We notice also

that for M = 1 the combinatorial optimization (2.15) in Proposition 1 becomes

max
b∈{±1}Ns

σmax(X(b⊗ 1)) = max
b∈{±1}Ns

‖Xb‖2, (2.18)

since the maximum singular-value of a vector coincides with its Euclidean norm, which is in ac-

cordance to the L1-PCA analysis in [54, 58]. Based of the equivalence of L1-PCA to (2.18), [54]

has proven that L1-PCA of X is formally NP -hard in Ns, for jointly asymptotic Ns and rank(X).

Thus, by its equivalence to L1-PCA for d = 1 and M = 1, L1-Tucker2 is also NP -hard in Ns, for

jointly asymptotic Ns and rank(X).

Exact Algorithm 1: Exhaustive Search

Proposition 2.1 shows how the solution to (2.9) can be obtained through the solution to the com-

binatorial problem in (2.15). Our first exact algorithm solves (2.15) straightforwardly by an ex-

haustive search over its feasibility set. In fact, noticing that σmax(·) is invariant to negations of

its matrix argument, we obtain a solution bopt to (2.15) by an exhaustive search in the size-2Ns−1

set Bex = {b ∈ {±1}Ns : b1 = 1}. For every value that b takes in Bex, we conduct SVD to

X(b⊗ IM ) to calculate σmax(X(b⊗ IM )), with cost O(min{D,M}DM) [31]. Since it entails 2Ns−1

SVD calculations, the cost of this exhaustive-search algorithm is O(2Ns−1 min{D,M}DM); thus,

it is exponential to the number of jointly processed matrices, Ns, and at most quadratic to the

matrix sizes, D and M .

Exact Algorithm 2: Search With Cost Polynomial in Ns

In the sequel, we focus on the case where Ns is low-bounded by the constant DM and present an

algorithm that solves (2.9) with polynomial cost in Ns. DM < Ns emerges as a case of interest

in signal processing applications when {Xi}Nsi=1 are measurements of a D ×M fixed-size sensing

system (e.g., D×M images). By Proposition 2.1, for the optimal solutions bopt and (uopt,vopt) of
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(2.15) and (2.9), respectively, it holds

bopt = [sgn
(
v>optX

>
1 uopt

)
, . . . , sgn

(
v>optX

>
Nsuopt

)
]>, (2.19)

with sgn
(
u>optXivopt

)
= +1, if u>optXivopt = 0. In addition, for every i ∈ {1, 2, . . . , Ns}, we find

that

v>optX
>
i uopt = Tr

(
X>i uoptv

>
opt

)
= x>i (vopt ⊗ uopt). (2.20)

Therefore, defining Y = [x1,x2, . . . ,xNs ] ∈ RDM×Ns , (2.19) can be rewritten as

bopt = sgn
(
Y>(vopt ⊗ uopt)

)
. (2.21)

Consider now that Y is of some rank ρ ≤ min{DM,Ns} and admits SVD Y
svd
= QSW, where

Q>Q = WW> = Iρ and S is the ρ× ρ diagonal matrix that carries the ρ non-zero singular-values

of Y. Defining popt
4
= S>Q>(vopt ⊗ uopt), (2.21) can be rewritten as

bopt = sgn
(
W>popt

)
. (2.22)

In view of (2.22) and since sgn (·) is invariant to positive scalings of its vector argument, an optimal

solution to (2.15), bopt, can be found in the binary set

B = {b ∈ {±1}Ns : b = sgn
(
W>c

)
, c ∈ Rρ}. (2.23)

Certainly, by definition, (2.23) is a subset of {±1}Ns and, thus, has finite size upper bounded by 2Ns .

This, in turn, implies that there exist instances of c ∈ Rρ that yield the same value in sgn
(
W>c

)
.

Below, we delve into this observation to build a tight superset of B that has polynomial size in Ns,

under the following mild “general position” assumption [99].

Assumption 2.1. For every I ⊂ {1, 2, . . . , Ns} with |I| = ρ−1, it holds that rank([W]:,I) = ρ−1;

i.e., any collection of ρ− 1 columns of W are linearly independent.

For any i ∈ {1, 2, . . . , Ns}, define wi
4
= [W]:,i and denote by Ni the nullspace of wi. Then, for every

c ∈ Ni, the (non-negative) angle between c and wi, φ(c,wi), is equal to π
2 and, accordingly, w>i c =

‖c‖2‖wi‖2 cos (φ(c,wi)) = 0. Clearly, the hyperplane Ni partitions Rρ in two non-overlapping

halfspaces, H+
i and H−i [100], such that sgn

(
c>wi

)
= +1 for every c ∈ H+

i and sgn
(
c>wi

)
= −1

for every c ∈ H−i . In accordance with Proposition 2.1, we consider that H+
i is a closed set that

includes its boundary Ni, whereas H−i is open and does not overlap with Ni. In view of these
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Figure 2.3. For ρ = 3 and Ns = 4, we draw W ∈ Rρ×N , such that WW> = I3 and Assumption 1
holds true. Then, we plot the nullspaces of all 4 columns of W (colored planes). We observe that
the planes partition R3 into K = 2(

(
3
0

)
+
(

3
1

)
+
(

3
2

)
) = 2(1 + 3 + 3) = 14 coherent cells (i.e., 7 visible

cells above the cyan hyperplane and 7 cells below.)

definitions, we proceed with the following illustrative example.

Consider some ρ > 2 and two column indices m < i ∈ {1, 2, . . . , Ns}. Then, hyperplanes Nm and

Ni divide Rρ in the halfspace pairs {H+
m,H−m} and {H+

i ,H
−
i }, respectively. By Assumption 2.1,3

each one of the two halfspaces defined by Nm will intersect with both halfspaces defined by Ni,
forming the four halfspace-intersection “cells” C1 = H+

m ∩ H+
i , C2 = H+

m ∩ H−i , C3 = H−m ∩ H−i ,

C4 = H−m ∩H+
i . It is now clear that, for any k ∈ {1, 2, 3, 4}, [sgn

(
[W]>c

)
]m,i is the same for every

c ∈ Ck. For example, for every c ∈ C2, it holds that [sgn
(
[W]>c

)
]m = +1 and [sgn

(
[W]>c

)
]i = −1.

Next, we go one step further and consider the arrangement of all N hyperplanes {Ni}Nsi=1. Similar

to our discussion above, these hyperplanes partition Rρ in K cells {Ck}Kk=1, where K depends on ρ

and Ns. Formally, for every k, the k-th halfspace-intersection set is defined as

Ck
4
=
⋂
i∈I+k

H+
i

⋂
m∈I−1

k

H−m, (2.24)

3If wm and wi are linearly independent, then Nm and Ni intersect but do not coincide.
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for complementary index sets I+
k and I−k that satisfy I+

k ∩ I
−
k = ∅ and I+

k ∪ I
−
k = {1, 2, . . . , Ns}

[101, 102]. By the definition in (2.24), and in accordance with our example above, every c ∈ Ck
lies in the same intersection of halfpsaces and, thus, yields the exact same value in sgn

(
W>c

)
.

Specifically, for every c ∈ Ck, it holds that

[
sgn

(
W>c

)]
i

= sgn
(
w>i c

)
=

{
+1, i ∈ I+

k

−1, i ∈ I−k
. (2.25)

In view of (2.25), for every k ∈ {1, 2, . . . ,K} and any c ∈ Ck, we define the “signature” of the k-th

cell bk
4
= sgn

(
W>c

)
. Moreover, we observe that Ck ∩Cl = ∅ for every k 6= l and that ∪Kk=1Ck = Rρ.

By the above observations and definitions, (2.23) can be rewritten as

B =
K⋃
k=1

{sgn
(
W>c

)
: c ∈ Ck} = {b1,b2, . . . ,bK}. (2.26)

Importantly, in [101, 103], it was shown that the exact number of coherent cells formed by the

nullspaces of Ns points in Rρ that are in general position (under Assumption 2.1) is exactly

K = 2

ρ−1∑
j=0

(
Ns − 1

j

)
≤ 2Ns , (2.27)

with equality in (2.27) if and only if ρ = Ns. Accordingly, per (2.27), the cardinality of B in (2.23)

is equal to |B| = 2
∑ρ−1

j=0

(
Ns−1
j

)
. For clarity, in Fig. 2.3, we plot the nullspaces (colored planes)

of the columns of arbitrary W ∈ R3×4 that satisfies both WW> = I3 and Assumption 2.1. It is

interesting that exactly K = 14 < 24 = 16 coherent cells emerge by the intersection of the formed

halfspaces. In the sequel, we rely on (2.26) to develop a conceptually simple method for computing

a tight superset of the cell signatures in B.

Under Assumption 2.1, for any I ⊆ {1, 2, . . . , Ns} with |I| = ρ − 1, the hyperplane intersection

VI
4
= ∩i∈INi is a line (1-dimensional subspace) in Rρ. By its definition, this line is the verge

between all cells that are jointly bounded by the ρ − 1 hyperplanes in {Ni}i∈I . Consider now a

vector c ∈ Rρ that crosses over the verge VI (at any point other than 0ρ). By this crossing, the

value of [sgn
(
W>c

)
]I will change so that sgn

(
W>c

)
adjusts to the signature of the new cell to

which c just entered. At the same time, a crossing over VI cannot be simultaneously over any of

the hyperplanes in {Ni}i∈Ic , for Ic 4= {1, 2, . . . , Ns}\I; this is because, under Assumption 2.1, it is

only at 0ρ that more than ρ−1 hyperplanes can intersect. Therefore, it is clear that [sgn
(
W>c

)
]Ic

will remain invariant during this crossing and, in fact, equal to [sgn
(
W>v

)
]Ic , for any v ∈ VI with
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Input: {Xi}Nsi=1

Output: bopt ← bt, uopt ← u, and vopt ← v

Y ← [vec(X1), vec(X2), . . . , vec(XNs)]
(Q,Sd×d,W)← svd(Y), mt ← 0
For every I ⊆ {1, 2, . . . , Ns}, |I| = d− 1

Build BI in (2.28)
For every b ∈ BI

(U,Σ,V)← svd(X(b⊗ IM ))
m← max{diag(Σ)}
if m > mt,

mt ← m, bt ← b, u← [U]:,1, v← [V]:,1

Algorithm 2.1 Polynomial in Ns algorithm for the exact solution of rank-1 L1-Tucker2 in (2.9),
with cost O(Nρ+1

s ).

v>c > 0. In view of the above, for any v ∈ VI \ 0ρ, the set

BI
4
= {b ∈ {±1}Ns : [b]Ic = [sgn

(
W>v

)
]Ic} (2.28)

contains the signatures of all sets that are bounded by the verge VI . Moreover, it has been shown

(see, e.g., [103]) that, for every cell, there exists at least one such verge that bounds it. Therefore,

it derives that the set

Bpol =
⋃

I⊂{1,2,...,Ns}; |I|=ρ−1

BI (2.29)

includes all cell signatures and, thus, is a superset of B. We notice that, for every I, BI has size

2ρ−1. Since I can take
(
Ns
ρ−1

)
distinct values, we find that Bpol is upper bounded by 2ρ−1

(
Ns
ρ−1

)
.

Thus, both |Bpol| and |B| are polynomial, in the order of O(Nρ−1
s ).

Practically, for every I, v can be calculated by Gram-Schmidt orthogonalization of [W]:,I with cost

O(ρ3). Keeping the dominant terms, the construction of Bpol costs O(Nρ−1
s ) and can be parallelized

in
(
Ns
ρ−1

)
processes. Then, testing every entry of Bpol for optimality in (2.15) costs an additional

O(Ns). Thus, the overall cost of our second algorithm, taking also into account the O(Ns) (for

constant DM) SVD cost for the formation of W, is O(Nρ
s ). The presented algorithm is summarized

in Algorithm 2.1.
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Figure 2.5. Reconstruction MSE versus corruption variance σ2
c (dB).

2.4.1 Numerical Studies

Consider {Xi}14
i=1 such that Xi = Ai + Ni ∈ R20×20 where Ai = biuv> and ‖u‖2 = ‖v‖2 = 1,

bi ∼ N (0, 49), and each entry of Ni is additive white Gaussian noise (AWGN) from N (0, 1). We

consider that Ai is the rank-1 useful data in Xi that we want to reconstruct, by joint analysis

(Tucker2-type) of {Xi}14
i=1. By irregular corruption, 30 entries in 2 out of the 14 matrices (i.e., 60

entries out of the total 5600 entries in {Xi}14
i=1) have been further corrupted additively by noise

from N (0, σ2
c ). To reconstruct {Ai}14

i=1 from {Xi}14
i=1, we follow one of the two approaches below.

In the first approach, we vectorize the matrix samples and perform standard matrix analysis. That

is, we obtain the first (d = 1) principal component (PC) of [vec(X1), vec(X2), . . . , vec(XNs)], q.

Then, for every i, we approximate Ai by Âi = mat(qq>ai), where mat(·) reshapes its vector

argument into a 20 × 20 matrix, in accordance with vec(·). In the second approach, we process

the samples in their natural form, as matrices, analyzing them by Tucker2. If (u,v) is the Tucker2

solution pair, then we approximate Ai by Âi = uu>Xivv>. For the first approach, we obtain q

by PCA (i.e., SVD) and L1-PCA [54]. For the second approach, we conduct Tucker2 by HOSVD

[17], HOOI [32], GLRAM [28], TPCA-L1 [52], and the proposed exact L1-Tucker2. Then, for

each reconstruction method, we measure the mean of the squared error
∑14

i=1 ‖Ai − Âi‖2F over

1000 independent realizations for corruption variance σ2
c = 6, 8, . . . , 22dB. In Fig. 2.5, we plot the

reconstruction mean squared error (MSE) for every method, versus σ2
c . We observe that PCA and

L1-PCA exhibit the highest MSE due to the vectorization operation (L1-PCA outperforms PCA

clearly, across all values of σ2
c ). Then, all Tucker2-type methods perform similarly well when σ2

c



CHAPTER 2. L1-NORM TENSOR ANALYSIS 22

is low. As the outlier variance σ2
c increases, the performance of L2-norm-based Tucker2 (HOSVD,

HOOI) and GLRAM deteriorates severely. On the other hand, the L1-norm-based TPCA-L1

exhibits some robustness. The proposed exact L1-Tucker2 maintains the sturdiest resistance against

the corruption, outperforming its counterparts across the board.

2.5 Contribution 2: L1-norm HOVSD and L1-norm HOOI for L1-

Tucker

L1-Tucker in the general form of (2.6), for N ≥ 2, has not been thoroughly studied to date. In this

work, we present two algorithmic frameworks for the approximate solution of (2.6), which can also

be modified to tackle L1-Tucker2 of N -way tensors, as defined in (2.7).

2.5.1 L1-norm HOSVD Algorithm

The first proposed algorithm, L1-HOSVD, seeks to disjointly optimize the N bases. Specifically,

for every n ∈ [N ], we set the mode-n basis Un to the L1-PCA solution (exact or approximate)

of the mode-n matrix unfolding mat(X , n). That is, L1-HOSVD approximates the jointly-optimal

mode-n basis in (2.6) by

Ul1-hosvd
n = argmax

U∈SDn×dn

∥∥∥U>mat(X , n)
∥∥∥

1
. (2.30)

Clearly, (2.30) is an L1-PCA problem on mat(X , n) and, thus, it can be solved exactly by means of

the algorithms of [54], with cost O(PDndn−dn+1
n ). Other possible L1-PCA solvers were discussed in

Section 2.2. As a tensor decomposition framework, L1-HOSVD allows for the use of any solver for

(2.30), allowing for different performance/cost trade-offs. For the sake of computational efficiency,

in the sequel we pursue the solution to (2.30) approximately, by means of a fixed-point iteration

(FPI) algorithm. According to [54], it holds

max
U∈SDn×dn

‖U>mat(X , n)‖1 (2.31)

= max
U∈SDn×dn

B∈{±1}Pn×dn

Tr
(
U>mat(X , n)B

)
(2.32)

= max
B∈{±1}Pn×dn

‖mat(X , n)B‖∗. (2.33)
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Input: X ∈ RD1×...×DN , {dn}n∈[N ]

Output: {Un}n∈[N ]

Initialize {Un}n∈[N ] by HOSVD of X for {dn}n∈[N ]

For n = 1, 2, . . . , N
Until convergence/termination

Un ← Φ
(
mat(X , n)sgn(mat(X , n)>Un)

)
Algorithm 2.2 L1-HOSVD algorithm for L1-Tucker (L1HOSVD(X , {dn}n∈[N ])).

For fixed B, (2.32) is maximized by U = Φ(mat(X , n)B). At the same time, for fixed U, (2.32)

is maximized by B = sgn(mat(X , n)>U). Accordingly, a solution to (2.30) can be pursued in

an alternating fashion, as Bt = sgn(mat(X , n)>Ut−1) = argmaxB∈{±1}Pn×dnTr
(
U>t−1mat(X , n)B

)
and Ut = Φ(mat(X , n)Bt)=argmaxU∈SDn×dn Tr

(
U>mat(X , n)Bt

)
, for t = 1, 2, . . ., and arbitrary

initialization U0 ∈ SDn×dn . Interestingly, the alternating optimization above, can be rewritten in

the compact FPI form

Ut = Φ
(
mat(X , n)sgn(mat(X , n)>Ut−1)

)
. (2.34)

A proof of convergence for the recursion in (2.34) is offered in the Appendix A. If Tn is the index

of the converging iteration, then Ul1-hosvd
n is approximated by UTn . Similarly, the N − 1 first bases

{Ul1-hosvd
n }N−1

n=1 can be used as an approximate solution to L1-Tucker2 in (2.7).

Complexity of L1-HOSVD

For any given t and n, the computational cost of (2.34) is O(dnP ), where P
4
=
∏
m∈[N ]Dm. In

practice, we have observed that, for any n, it suffices to terminate iterations at a linear multiple of

Dn. Thus, for any n, Ul1-hosvd
n is approximated with cost O(DndnP ). Accordingly, the total cost

of L1-HOSVD is O(maxn∈[N ] dnDnP ). Considering, for simplicity in presentation, that Dn = D

and dn = d for every n, then the complexity of L1-HOSVD can be rewritten as O(dDN+1).

A pseudocode of L1-HOSVD is offered in Algorithm 2.2.
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Input: X ∈ RD1×...×DN , {dn}n∈[N ]

Output: {Un}n∈[N ]

Initialize {Un}n∈[N ]

Until termination/convergence
For n = 1, 2, . . . , N

A← mat
(
X ×m<n Um

> ×k>n Uk
>, n

)
Until termination/convergence

Un ← Φ(Asgn(A>Un))

Algorithm 2.3 L1-HOOI algorithm for L1-Tucker (L1HOOI(X , {dn}n∈[N ]))

2.5.2 L1-norm HOOI Algorithm

Next, we present L1-HOOI, an alternative method for jointly optimizing the L1-Tucker bases. First,

L1-HOOI is initialized to N feasible bases (e.g., those returned by L1-HOSVD). Then, it conducts

a sequence of iterations across which it updates all bases such that the objective value of L1-Tucker

increases. Thus, when initialized to the L1-HOSVD bases, L1-HOOI is guaranteed to outperform

L1-HOSVD in the L1-Tucker metric. A detailed description of L1-HOOI follows.

First, we initialize {U(0)
n ∈ SDn×dn}n∈[N ]; for instance, one can set U

(0)
n = Ul1-hosvd

n . Then, at the

q-th iteration, q = 1, 2, . . ., all N bases are successively optimized in order of increasing mode-index

n = 1, 2, . . . , N . Specifically, at a given iteration q and mode index n, we fix U
(q)
m for m < n and

U
(q−1)
k for k > n and seek the mode-n basis U

(q)
n that maximizes the L1-Tucker metric. That is,

for given (q, n), we update

U(q)
n = argmax

U∈SDn×dn

∥∥∥U>A(q)
n

∥∥∥
1
, (2.35)

where A
(q)
n
4
= mat

(
X ×m<n U

(q)
m

>
×k>n U

(q−1)
k

>
, n

)
∈ RDn×pn and pn

4
=
∏
i∈[N ]\n di for every n.

We notice that, in contrast to (2.30), the metric of (2.35) involves the jointly optimized bases of

the other modes. Similar to L1-HOSVD, an array of L1-PCA solvers, as discussed in Section 2.2,

can be used for solving (2.35), attaining different performance/cost trade-offs. For simplicity in

presentation, here we employ the FPI in (2.34). That is, for any (q, n), we set U
(q)
n to the converging

argument of the sequence

Ut = Φ
(
A(q)
n sgn(A(q)

n

>
Ut−1)

)
, (2.36)

where for every n, U0 = U
(q−1)
n . A pseudocode of the proposed L1-HOOI method is offered in
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Algorithm 2.3. Similar to L1-HOSVD, L1-HOOI can be used for the approximate solution of L1-

Tucker2 simply by fixing U
(q)
N to IDN for every q. A convergence analysis of the L1-HOOI iterations

is presented below.

Convergence of L1-HOOI

We commence our convergence analysis with Lemma 2.3, which shows that the q-th update of the

mode-n basis increases the L1-Tucker metric.

Lemma 2.3. For given {U(q)
m }m<n and {U(q−1)

k }k>n (and, thus, given A
(q)
n ), it holds that∥∥∥U(q)

n

>
A(q)
n

∥∥∥
1
≥
∥∥∥U(q−1)

n

>
A(q)
n

∥∥∥
1
. (2.37)

Lemma 2.3 derives straightforwardly from the convergence proof of (2.34), presented in the Ap-

pendix. Moreover, we note that Lemma 2.3 would also hold if, instead of the FPI of (2.34), we

solved (2.35) by means of the bit-flipping algorithm of [58]. Also, Lemma 2.3 holds true if U
(q)
n is

computed by the exact solution of (2.35) obtained by the algorithms of [54]. The following Lemma

2.4 shows that, within the same iteration, the metric increases as we successively optimize the

bases.

Lemma 2.4. For any q > 0 and every n > m ∈ [N ], it holds that

∥∥∥∥U(q)
n

>
A

(q)
n

∥∥∥∥
1

≥
∥∥∥∥U(q)

m

>
A

(q)
m

∥∥∥∥
1

and

∥∥∥∥U(q)
1

>
A

(q)
1

∥∥∥∥
1

≥
∥∥∥∥U(q−1)

N

>
A

(q−1)
N

∥∥∥∥
1

.

In view of Lemma 2.4, the following Proposition 2.2 holds true and summarizes the L1-Tucker

metric increase across the L1-HOOI iterations.

Proposition 2.2. For any n ∈ [N ] and every q′ > q∥∥∥U(q′)
n

>
A(q′)
n

∥∥∥
1
≥
∥∥∥U(q)

n

>
A(q)
n

∥∥∥
1
. (2.38)

Defining p
4
=
∏
n∈[N ] dn, the following Lemma 2.5 provides an upper bound for the L1-Tucker

metric.



CHAPTER 2. L1-NORM TENSOR ANALYSIS 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iteration index q

8.6

8.8

9

9.2

9.4

9.6

9.8

10

L
1
-T

u
c
k
e
r 

m
e
tr

ic

L1-HOOI
L1-HOSVD iniatialization

Figure 2.8. L1-Tucker metric across L1-HOOI iterations.

Lemma 2.5. For any {Un ∈ SDn×dn}n∈[N ], it holds that

‖X ×n∈[N ] U>n ‖1 ≤
√
p‖X‖F . (2.39)

Lemma 2.5 shows that the L1-Tucker metric is upper bounded by
√
p‖X‖F . This, in conjunc-

tion with Proposition 2.2, implies that as q increases the L1-HOOI iterations converge in the

L1-Tucker metric. To visualize the convergence, we carry out the following study. We form 5-

way tensor X ∈ R10×10×...×10 that draws entries independently from N (0, 1). Then, we apply

to it L1-HOOI initialized at L1-HOSVD. In Fig. 2.8, we plot the evolution of the L1-Tucker

metric ‖X ×n∈[N ] U
(q)
n

>
‖1, versus the L1-HOOI iteration index q. In accordance to our for-

mal analysis, we observe the monotonic increase of the metric and convergence after just 16

iterations. In practice, one can terminate the L1-HOOI iterations when the metric-increase ra-

tio ζ(q)
4
=

∥∥∥∥X ×n∈[N ] U
(q)
n

>
∥∥∥∥

1

∥∥∥∥X ×n∈[N ] U
(q−1)
n

>
∥∥∥∥

1

−1

− 1 drops below a predetermined threshold

τ > 0, or when q exceeds a maximum number of permitted iterations.

Next, we discuss the computational cost of L1-HOOI.
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Complexity of L1-HOOI

For simplicity in presentation, we consider again Di = D and di = d, for every i ∈ [N ]. As shown

above, initialization of L1-HOOI by means of L1-HOSVD costs O(dDN+1). Then, at iteration q,

L1-HOOI computes matrix A
(q)
n in (2.35) and its L1-PCA, for every n. Matrix A

(q)
n can computed

by a sequence of matrix-to-matrix products as follows. First, we compute the mode-k product of

X with U
(zk)
k , for some k 6= n (zk = q if k < n and zk = q − 1 if k > n), with cost O(dDN ).

Next, we compute the l-mode product of X ×k U
(zk)
k with U

(zl)
l , for some l /∈ {n, k}, with cost

O(d2DN−1). We observe that the second product (l-mode) has lower cost than the first one (k-

mode), for any selection of k and l. Similarly, each subsequent mode product will have further

reduced cost. Keeping as dominant term the cost of the first product, the computation of A
(q)
n

costs O(dDN ). After A
(q)
n ∈ RD×dN−1

is computed, the solution to (2.35) is approximated by

fixed point iterations with cost O(D2dN ). Thus, the cost of a single iteration of L1-HOOI is

O(dDN +D2dN ). Denoting by T the maximum number of iterations permitted, the overall cost of

L1-HOOI is O(T (dDN + D2dN )), comparable to the costs of standard HOSVD and HOOI which

are O(DN+1) and O(TdDN ), respectively. These computational costs are summarized in Table

2.1.

2.5.3 Numerical Studies

Tensor Reconstruction

We set N = 5, D1 = D3 = D5 = 10, D2 = D4 = 15, d1 = d2 = 6, d3 = d4 = d5 = 4, and generate

Tucker-structured X = G ×n∈[5] Un. The core tensor G draws entries from N (0, 9) and, for every

n, Un is an arbitrary orthonormal basis. Then, we corrupt all entries of X with zero-mean unit-

variance additive white Gaussian noise (AWGN), disrupting its Tucker structure. Moreover, we

corrupt No out of the 225, 000 entries of X by adding high-variance outliers from N (0, σ2
o). Thus,

we form X corr = X +N +O, where N and O model AWGN and sparse outliers, respectively. Our

objective is to reconstruct X from the available X corr. For that purpose, we Tucker decompose

X corr by means of HOSVD, HOOI, L1-HOSVD, and L1-HOOI and obtain bases {Ûn}n∈[5]. Then,

we reconstruct X as X̂ = X corr ×n∈[5] ÛnÛ>n . The normalized squared error (NSE) is defined as

‖X − X̂‖2F ‖X‖
−2
F . In Fig. 2.9a, we set No = 300 and plot the mean NSE (MNSE), evaluated over

1000 independent noise/outlier realizations, versus outlier standard deviation σo = 4, 8, . . . , 28. In

the absence of outliers (σo = 0), all methods under comparison exhibit similarly low MNSE. As

the outlier standard deviation σo increases the MNSE of all methods increases. We notice that the
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Table 2.1: Computational costs of PCA, L1PCA-FPI, HOSVD, L1-HOSVD (proposed), HOOI,
and L1-HOOI (proposed). PCA/L1PCA-FPI costs are reported for input matrix X ∈ RD×D
and decomposition rank d. Tucker/L1-Tucker costs are reported for N -way input tensor X ∈
RD×D×...×D and mode-n ranks dn = d ∀n. T is the maximum number of iterations conducted by
HOOI and L1-HOOI.

Method Cost

PCA (SVD) O
(
D3
)

L1-PCA (FPI) O
(
D2d

)
HOSVD O

(
DN+1

)
L1-HOSVD O

(
dDN+1

)
HOOI O

(
TdDN

)
L1-HOOI O

(
T (dDN +D2dN )

)

performances of HOSVD and HOOI markedly deteriorate for σo ≥ 12 and σo ≥ 20 respectively.

On the other hand, L1-HOSVD and L1-HOOI remain robust against corruption, across the board.

In Fig. 2.9b, we set σo = 26 and plot the MNSE versus number of outliers No = 0, 40, . . . , 400.

Expectedly, in the absence of outliers (No = 0), all methods exhibit low MNSE. As the number of

outliers increases, HOSVD and HOOI start exhibiting high reconstruction error, while L1-HOSVD

and L1-HOOI remain robust. For instance, the MNSE of L1-HOSVD for No = 400 outliers is lower

than the MNSE of standard HOSVD for No = 40 (ten times fewer) outliers.

Finally, in Fig. 2.9c, we set σo = 28, No = 150 (≈ 0.07% of total data entries are corrupted)

and plot the MNSE versus dn∀n while dm is set to its nominal value for every m ∈ [N = 5] \ n.

We observe that, even for a very small fraction of outlier corrupted entries in X corr, standard

Tucker methods are clearly misled across all 5 modes. On the other hand, the proposed L1-Tucker

counterparts, exhibit sturdy outlier resistance and reconstruct X well, remaining almost unaffected

by the outlying entries in X corr.

A robust tensor analysis algorithm, specifically designed for counteracting sparse outliers, is the

High-Order Robust PCA (HORPCA) [50]. Formally, given X corr, HORPCA solves

min.
X̂ ,Ô∈RD1×...×DN

∑N
n=1 ‖mat

(
X̂ , n

)
‖∗ + λ‖Ô‖1

subject to X̂ + Ô = X corr
. (2.40)

Authors in [50] presented the HoRPCA-S algorithm for the solution of (2.40) which relies on a
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Figure 2.9. (a) MNSE versus standard deviation σo for No = 300. (b) MNSE versus number of
outliers No for σo = 26. (c) MNSE versus dnn∈[N=5] for No = 150 and σo = 28; for every m, dm is
set to its nominal value and dn variance, n ∈ [5] \m.

specific sparsity penalty parameter λ, as well as a thresholding variable µ. The model in (2.40) was
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Figure 2.10. MNSE versus λ for varying µ.

introduced considering that, apart from the sparse outliers, there is no dense (full rank) corruption

to X (see [50], subsection 2.6). In the case of additional dense corruption, HORPCA is typically

refined by HOSVD [50, 70, 71]. In the sequel, we refer to this approach as HORPCA+HOSVD.

In our next study, we set N = 5, Dn = 5, and dn = 2 for every n, and build the Tucker-structured

data tensor X = G×n∈[5] Un, where the entries of core G are independently drawn from N (0, 122).

Then, we add both dense AWGN and sparse outliers, creating X corr = X+N+O, where the entries

of noise N are drawn independently from N (0, 1) and the 15 non-zero entries of O (in arbitrary

locations) are drawn from N (0, 202). Then, we attempt to reconstruct X from the available X corr

using HOOI, HORPCA (for λ = 0.2, 0.6, . . . , 3 and µ = 300, 500), HORPCA+HOSVD (same λ and

µ combinations as HORPCA), and the proposed L1-HOOI.

In Fig. 2.10, we plot MNSE computed over 50 data/noise/corruption realizations, versus λ for

the four methods. In addition, we plot the average noise-to-data benchmark ‖N ‖2F ‖X‖
−2
F . In ac-

cordance with our previous studies, we observe that L1-HOOI offers markedly lower MNSE than

standard HOOI. In addition, we notice that for specific selection of µ and λ (µ = 300 and λ = 0.6)

HORPCA+HOSVD attains MNSE slightly lower than L1-HOOI. However, for any different selec-

tion of λ L1-HOOI attains markedly better reconstruction. In addition, we plot the performance of

HORPCA when it is not refined by HOSVD. We notice that, expectedly, for specific selections of µ

and λ the method is capable of removing the outliers, but not the dense noise component –thus, the

MNSE approaches the average noise-to-data benchmark. This study corroborates the corruption-

resistance of L1-HOOI, while, similar to HOOI, it does not depend on any tunable parameters,

other than {dn}n∈[N ].
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Classification

Tucker decomposition is commonly employed for classification of multi-way data samples. Below,

we consider the Tucker-based classification framework originally presented in [104]. That is, we

consider C classes of order-N tensor objects of size D1 ×D2 × . . . ×DN and Mc labeled samples

available from the c-th class, c ∈ [C], that can be used for training a classifier. The training data

from class c are organized in tensor Xc ∈ RD1×D2×...×DN×Mc and the total of M =
∑C

c=1Mc training

data are organized in tensor X ∈ RD1×...×DN×M , constructed by concatenation of X1, . . . ,XC across

mode (N + 1).

In the first processing step, X is Tucker decomposed, obtaining feature bases {Un ∈ SDn×dn}n∈[N ]

for the first N modes (feature modes) and the sample basis Q ∈ SM×M for the (N + 1)-th mode

(sample mode). The obtained feature bases are then used to compress the training data, as

Gc = Xc ×n∈[N ] U>n ∈ Rd1×...×dN×Mc (2.41)

for every c ∈ [C]. Then, the Mc compressed tensor objects from the c-th class are vectorized

(equivalent to mode-(N + 1) flattening) and stored in the data matrix

Gc = mat (Gc, N + 1)> ∈ Rp×Mc , (2.42)

where p =
∏
n∈[N ] dn. Finally, the labeled columns of {Gc}c∈[C] are used to train any standard

vector-based classifier, such as support vector machines (SVM), or k-nearest-neighbors (k-NN).

When an unlabeled testing point Y ∈ RD1×...×DN is received, it is first compressed using the

Tucker-trained bases as Z = Y×n∈[N ]U
>
n . Then, Z is vectorized as z = vec(Z) = mat (Z, N + 1)>.

Finally, vector z is classified based on the standard vector classifier trained above.

In this study, we focus on the classification of order-2 data (N = 2) from the MNIST image dataset

of handwritten digits [105]. Specifically, we consider C = 5 digit classes (digits 0, 1, . . . , 4) and

M1 = . . . = M5 = 10 image samples of size (D = D1 = 28) × (D = D2) available from each class.

To make the classification task more challenging, we consider that each training image is corrupted

by heavy-tail noise with probability α. Then, each pixel of a corrupted image is additively corrupted

by a noise component w ∼ unif(0, v), with probability β. Denoting the average pixel energy by

E = 1
D2M
‖X‖2F , we choose v so that

√
E

E{w2} = 10. We conduct Tucker-based classification as

described above, for d = d1 = d2, using a nearest-neighbor (NN) classifier (i.e., 1-NN), by which
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Figure 2.11. Classification accuracy versus d, for α = 0.2 and β = 0.5.

testing sample z is assigned to class4

c∗ = argmin
c∈[C]

{
min
j∈[Mc]

‖z− [Gc]:,j‖22
}
. (2.43)

For a given training dataset, we classify 500 testing points from each class. Then, we repeat

the training/classification procedure on 300 distinct realizations of training data, testing data,

and corruptions. In Fig. 2.11, we plot the average classification accuracy versus d for α = 0.2

and β = 0.5, for HOSVD, HOOI, L1-HOSVD, L1-HOOI, as well as PCA, L1-PCA,5 and plain

NN classifier that returns the label of the nearest column of mat (X , N + 1)> ∈ RP×M to the

vectorized testing sample vec(Y). We observe that, in general, the compression-based methods can

attain superior performance than plain NN. Moreover, we notice that d > 7 implies p > M and,

thus, the PCA/L1-PCA methods attain constant performance, equal to plain NN. Moreover, we

notice that L1-PCA outperforms PCA, for every value of d ≤ 7. For 4 ≤ d ≤ 7, PCA/L1-PCA

outperform the Tucker methods. Finally, the proposed L1-Tucker methods outperform standard

Tucker and PCA/L1-PCA, for every d, and attain the highest classification accuracy of about 89%

for d = 6 (5% higher than plain NN).

Next, we fix d = 5 and β = 0.8 and plot in Fig. 2.12 the average classification accuracy, versus α.

This figure reveals the sensitivity of standard HOSVD and HOOI as the training data corruption

4We consider a simple classifier, so that the study focuses to the impact of each compression method.
5Denoting by U the min{p,M} PCs/L1-PCs of mat (X , N + 1)> ∈ RP×M , we train any classifier on the labeled

columns of U>mat (X , N + 1) and classify the vectorized and projected testing sample U>vec(Y).
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Figure 2.12. Classification accuracy versus α, for d = 5 and β = 0.8.
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Figure 2.13. Classification accuracy versus β, for α = 0.2 and d = 5.

probability increases. At the same time, the proposed L1-Tucker methods exhibit robustness against

the corruption, maintaining the highest average accuracy for every value of α. For instance, for

image-corruption probability α = 0.3, L1-HOSVD and L1-HOOI attain about 87% accuracy, while

HOSVD and HOOI attain accuracy 75% and 71%, respectively.

Last, in Fig. 2.13, we plot the average classification accuracy, versus the pixel corruption probability

β, fixing again α = 0.2 and d = 5. We observe that, for any value of β, the performance of the L1-

HOSVD and L1-HOOI does not drop below 86% and 87.5%, respectively. On the other hand, as β

increases, NN and PCA-based methods perform close to 85%. The performance of standard Tucker

methods decreases markedly, even as low as 76%, for intense corruption with β = 0.8. The above



CHAPTER 2. L1-NORM TENSOR ANALYSIS 34

studies highlight the benefit of L1-Tucker compared to standard Tucker and PCA counterparts.

Compression

Standard Tucker decomposition is often employed for compression of tensors. In this study, we

consider that a small fraction of the entries of the processed tensor has been outlier corrupted

by high magnitude/peripheral entries. We explore the capacity of standard Tucker solvers, the

proposed L1-Tucker solvers, and other popular tensor decomposition approaches in the literature,

in compressing the processed tensor in the presence of outliers. In order to evaluate the success

of each method, we reverse the compression operation by reprojecting the compressed tensor to

a tensor estimate with size equal to the the size of the processed tensor. Then, we measure the

normalized reconstruction error attained by the reconstructed tensor in estimating the nominal

tensor.

We work on a dataset from the Formidable Repository of Open Sparse Tensors and Tools (FROSTT)

[106]. Specifically, we consider the “Uber Pickups” tensor which is a (N = 4)-way array of size

(D1 = 183 days)× (D2 = 24 hours)× (D3 = 1140 latitudes)× (D4 = 1717 longitutes). Each entry

of this tensor models number of Uber pickups in New York City over a period of time in a specific

area of the city. The Uber Pickups tensor can be treated as a collection of 183 (N = 3)-way

tensors each of which is obtained by fixing the day index (mode-1 index). We fix the day index

to 1 and retain a (N = 3)-way tensor of size 24 × 1140 × 1717. Then, for a fixed hour index we

split each horizontal slab of size 1140×1717 in 20-by-20 blocks and carry out undersampling of the

resolution in the latitude and longitude modalities by summing all entries comprising each block.

We repeat this procedure for each of the 24 horizontal slabs. After the last operation we obtain

tensor Xuber ∈ R(D1=24)×(D2=57)×(D3=86) which we will henceforth treat as the ground truth tensor.

Visual illustrations of the 1-st, 7-th, 13-th, and 20-th horizontal slabs of Xuber are offered in Fig.

2.14.

In this study, we employ the following methods for compression of the processed tensor: (i) Stan-

dard Tucker implemented by means of the HOSVD and HOOI algorithms; (ii) L1-Tucker imple-

mented by means of the proposed L1-HOSVD and L1-HOOI algorithms; (iii) HORPCA followed by

HOSVD as described previously in subsection 2.5.3; and (iv) Robust Tucker Tensor Decomposition

(RTTD) [107] the performance of which, similar to HORPCA, depends on an ad-hoc parameter µ

in accordance with [107].

By a visual inspection at the horizontal slab samples of Xuber in Fig. 2.14, we observe that the
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Figure 2.14. Visual illustration (in logarithmic scale) of the 1-st, 7-th, 13-th, and 20-th horizontal
slabs of Xuber.

Figure 2.15. Compression error versus compression ratio on the nominal tensor Xuber.

slabs have sparse structure and that the positive counts of each slab are concentrated in a small

portion of the slab close to its center. These observations in turn imply that each slab has low-rank

structure. In support of this low-rank structure intuition, we first compress the nominal/clean

ground-truth tensor and evaluate the performance of each method. That is, we consider processed

tensor X = Xuber, fix U1 = I24, d2 = d3 = d, and carry out tensor decomposition with HOSVD,

HOOI, L1-HOSVD, L1-HOOI, HORPCA+HOSVD, and RTTD. Each method returns bases U2 ∈
RD2×d,U3 ∈ RD3×d, and core tensor G ∈ R24×d×d. Accordingly, for each compressed tensor

the total number of stored variables is 24d2 + d(D2 + D3) while the total number of entries in
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Figure 2.16. Normalized reconstruction error versus compression ratio in the presence of No = 12
outliers.

the ground truth/processed tensor is D1D2D3. In view of the above, we define the compression

ratio CR(d) = D1D2D3
24d2+d(D2+D3)

.To measure the success of each method, we obtain low-rank tensor

estimate X̂ = G ×2 U2 ×3 U3 and measure the normalized reconstruction error (NRE) ‖Xuber −
X̂‖2F ‖Xuber‖−2

F .

In Fig. 2.15, we report the NRE versus compression ratio when the compression ratio varies,

as d varies in {10, 8, 6, 4, 2}. We observe that for compression ratio less that 69, all methods

reconstruct the nominal tensor well attaining similar performance. For compression ratio greater

than 124 the reconstruction error of all methods increases but the reconstruction performance

remains high. In this case where the data are nominal/clean, standard Tucker solvers attain slightly

higher performance than the other counterparts.

Next, we consider that No entries of a single arbitrarily chosen horizontal slab of Xuber with index

scor are additively corrupted by pseudorandom scalar integers between 1 and 500. That is, we

consider processed tensor X = Xuber + Xcor, where [Xcor]scor,:,: has No non-zero entries between 1

and 500 and for any index s ∈ {1, 2 . . . , 24}\scor it holds [Xcor]s,:,: = 057×86. As before, we compute

a set of bases and core tensor with each method. Then, we compute the reconstructed tensor X̂
and measure the NRE in approximating the nominal tensor Xuber. In Fig. 2.16, we fix No = 12 and

report the mean NRE (MNRE) computed based on 1000 distinct realizations of corruption (Xcor

and scor). We observe that for low compression ratio 30.71 all methods exhibit large reconstruction

error with L1-HOSVD attaining the lowest. As the compression ratio increases (d decreases) the

performance of all methods improves. For compression ratio up to 123.06 L1-HOSVD outperforms
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Figure 2.17. Normalized reconstruction error versus number of outliers. Compression ratio is set
to 182.40 (d = 3).

all counterparts while for compression ratio 307.97 L1-HOOI attains the highest reconstruction

performance among all compared methods. Moreover, we observe that different ad-hoc parameter

selections for HORPCA+HOSVD and RTTD yield different reconstruction performances. Favor-

able ad-hoc parameter selections may exist such that HORPCA+HOSVD and RTTD attain high

reconstruction performance but these parameters require fine tuning. To the best of our knowledge,

there is no prescribed way of setting these parameters in favor of high performance, the selection

of which depends on the decomposition rank, the data distribution of the processed tensor, the

number of outliers, the magnitude of outliers, the sparsity of the processed tensor, etc. Finally, we

fix the compression ratio to 182.40 (d = 3), let the number of outliers No vary in {0, 3, 6, 9, 12},
and for each value No compute the MNRE based on 1000 independent and distinct realizations

of corruption. In Fig. 2.17, we illustrate the computed MNRE. Expectedly, in the absence of

outliers (No = 0) all methods attain high, similar performance. As No increases the reconstruction

error of all methods increases along. L1-HOSVD attains the highest reconstruction performance

for any No > 0. L1-HOOI and RTTD (µ = 0.0038) follow with almost identical performance.

Standard Tucker solvers HOSVD and HOOI attain low reconstruction performance for any No > 0.

Regarding HORPCA+HOSVD and RTTD, once more we observe that different reconstruction

performances are attained for different ad-hoc parameters selections.
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2.6 Contribution 3: Dynamic L1-norm Tucker

Focusing on outlier-resistant tensor processing, we wish to estimate the L1-Tucker bases of a tensor-

data model, as formulated in (2.7). We assume, however, that the measurements {Xt}Tt=1 are

originally unavailable and collected in a streaming fashion, one at a time.

To set our algorithmic guidelines, we start by considering two simplistic antipodal approaches. On

the one hand, an instantaneous approach would L1-Tucker-decompose each new measurement to

return new bases, independently of any previously seen data. While this approach is memoryless

and computationally simple, its bases estimation performance is bound to be limited, especially in

low Signal-to-Noise Ratio (SNR). On the other hand, an increasing-batch approach would append

the new measurement to the already collected ones and re-solve the L1-Tucker problem from scratch.

As the data collection increases, this method could attain superior bases estimation performance

at the expense of increasingly high computational and storage overhead.

Both these extreme approaches exhibit an unfavorable performance/cost trade-off. In contrast, a

preferred method would leverage each new measurement, together with previous ones, to efficiently

update the existing bases. The development of such a method is the main contribution of this

Section, as presented in detail in the following Section 2.6.1.

In the algorithmic developments of this Section, we implement L1-Tucker (batch processing) with

L1-norm Bit-Flipping (L1-BF) algorithm [58] as the underlying L1-PCA solver. For the sake of

completeness, a brief description of L1-BF follows.

Consider matrix X ∈ RZ×Q, for Q ≥ Z, and the L1-PCA

max.
Q∈SZ×z

∥∥∥X>Q
∥∥∥

1
. (2.44)

L1-BF is based on the following Theorem, presented in [54].

Theorem 2.2. [54] Let Bopt ∈ {±1}Q×z be a solution to max.B∈{±1}Q×z ‖XB‖∗. Proc(XBopt)

is an exact solution to L1-PCA in (2.44).

The nuclear norm ‖ · ‖∗ returns the sum of the singular values of its argument and, for any tall

matrix A ∈ RZ×z that admits SVD A = UΣz×zV
>, Proc(A) = UV>.

In view of Theorem 2.2, [58] proposed to initialize at arbitrary B0 ∈ {±1}Q×z and iteratively

conduct optimal single-bit flips (negations). Let eq,Q denote the q-th column of the size-Q identity
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Input: X , {Qn}n∈[N ]

Output: Q1,Q2, . . . ,QN

Until convergence/termination
For n ∈ [N ]

A← mat(X ×m∈[n−1] Q>m ×k∈[N−n]+n Q>k , n)

B← sgn(A>Qn)
Qn ← L1-BF(A,B)

Function: L1-BF(A,B), % B ∈ {±1}Q×z
Output: Q

Until convergence/termination

(k̄, l̄)← argmax
(k,l)∈[Q]×[z]

∥∥∥A(B− 2ek,Qe>l,z[B]k,l

)∥∥∥
∗

B← B− 2ek̄,Qel̄,z[B]k̄,l̄
UΣV> ← svd(AB)
Q← UV>

Algorithm 2.4 L1-norm Tucker Decomposition algorithm for batch-processing.

matrix IQ. Then, at iteration i ≥ 1, L1-BF solves

(k′, l′) = argmax
(k,l)∈[Q]×[z]

∥∥∥X(Bi−1 − 2ek,Qe>l,z[Bi−1]k,l

)∥∥∥
∗

(2.45)

and updates Bi = Bi−1 − 2ek′,Qel′,z[Bi−1]k′,l′ . Among all possible single bit-flips, negation of

the (k′, l′)-th entry of Bi−1 offers the maximum possible value in ‖XBi‖∗. Importantly, L1-BF is

guaranteed to monotonically increase the metric and converge in finite (in practice, few) iterations.

A pseudocode of L1-Tucker (batch processing), implemented by means of L1-HOOI relying on

L1-BF is offered in Algorithm 2.4.

2.6.1 Dynamic L1-Tucker Algorithm

The proposed Dynamic L1-Tucker Decomposition (D-L1-Tucker) is a method for incremental es-

timation of the L1-Tucker bases. D-L1-Tucker is designed to (i) attain high bases estimation

performance, (ii) suppress outliers, and (iii) adapt to changes of the nominal subspaces. In this

Section, we present D-L1-Tucker in detail, addressing bases initialization, bases updates, parameter

tuning, and modifications for long-term efficiency.
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Figure 2.19. A schematic illustration of the proposed algorithm for streaming L1-norm Tucker
decomposition.

Batch Initialization

Considering the availability of an initial batch of B � T measurements, B = {X1, . . . ,XB}, we run

on it L1-HOSVD or L1-HOOI to obtain an initial set of L1-Tucker estimates Q0 = {Q(0)
1 , . . . ,Q

(0)
N }.

Apart from Q0, we also initialize a memory set M0 = Ω(B,M), for some maximum memory size

M ≥ 0. For any ordered set I and integer Z ≥ 0, we define

Ω(I, Z) =

I, if |I| ≤ Z,

[I]|I|−Z+1:|I|, if |I| > Z,
(2.46)

where | · | denotes the cardinality (number of elements in a set) of its input argument. That is,

Ω(B,M) returns the last min{M,B} elements in B.

If an initialization batch B is not available, the bases in Q0 are chosen arbitrarily and the initial

memory M0 is empty. In this case, D-L1-Tucker becomes purely streaming.

Streaming Updates

When a new measurement X̄t 6= 0, t ≥ 1, is collected,6 we first perform a check on it to assess its

reliability based on the most recently updated set of bases Qt−1. Motivated by [55, 77, 108, 109],

6A bar over a tensor denotes that it is streaming.
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we define the reliability as

rt =
∥∥∥X̄t ×n∈[N ] Q(t−1)

n

>∥∥∥2

F

∥∥X̄t

∥∥−2

F
∈ [0, 1]. (2.47)

After some algebraic manipulations, (2.47) can be rewritten as

rt= cos2(φ(vec(X̄t×n∈[N ]Q
(t−1)
n Q(t−1)

n

>
), vec(X̄t))), (2.48)

where φ(·, ·) returns the angle between its two vector arguments. Intuitively, rt quantifies how much

measurement X̄t conforms to the multi-way subspace spanned by {Q(t−1)
n }n∈[N ], or, the angular

proximity of vec(X̄t×n∈[N ]Q
(t−1)
n Q

(t−1)
n

>
) to vec(X̄t). This check of reliability/conformity inherits

its robustness from the L1-Tucker-derived bases upon which it is defined. Moreover, if an outlier

happens to pass the reliability check, L1-Tucker will try to suppress it, providing again robust

bases. By definition, the value of rt will be between 0 and 1. If rt = 1, then the bases in Qt−1

perfectly describe X̄t. In contrast, if rt = 0, then the set Qt−1 does not capture any component of

X̄t. Then, we introduce a user-defined parameter τ and consider that X̄t is reliable for processing

if rt ≥ τ . Otherwise, X̄t is considered to be an outlier and it is rejected.

If X̄t passes the reliability check, we use it to update the bases and memory as follows. First, we

append the new measurement to the most recent memory set Mt−1 by computing the extended

memory M′ = Φ(Mt−1, X̄t) = Mt−1 ∪ X̄t. Then, we update the set of bases to Qt by running

L1-HOOI on M′, initialized to the bases in Qt−1. Finally, we update the memory by discarding

the oldest measurement, as

Mt = Ω(M′,M). (2.49)

In view of the above, the cost of the L1-HOOI algorithm remains low across updates because, at

any given instance, the extended memory M′ will comprise at most M + 1 measurements.

If X̄t fails the reliability check, we discard it and update the bases and memory by settingQt = Qt−1

and Mt =Mt−1, respectively. A schematic representation of the proposed algorithm is offered in

Fig. 2.19. Here, it is worth noting that the proposed approach focuses on temporal coherence of

streaming measurements. That is, temporally sporadic points from a second nominal source of

measurements could be perceived as outliers.
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Zero Centering

In some applications –most notable in image processing– we are interested in subspaces of zero-

centered data. To this end, we can modify the proposed algorithm so that, at every update

instance (t − 1), it computes and maintains the mean Ct−1 = (1/M)
∑M

m=1[Mt−1]m. Then, when

X̄t is collected, it will first be zero-centered as X̄ c
t = X̄t − Ct−1. If X̄ c

t passes the reliability check,

then it will be used to update the bases, as described above.

Adaptation to Subspace Changes

In many applications of interest, the underlying data subspaces change across time. In such cases,

an ambiguity naturally rises on whether a rejected measurement was actually an outlier or the

nominal data subspaces have changed and need to be tracked. To resolve this ambiguity and allow

D-L1-Tucker to adapt, we work as follows.

First, we make the minor assumption that outlying measurements appear sporadically. Then, we

introduce a buffer of ambiguous measurements, W, with capacity W > 0. When a streaming

measurement fails the reliability check, we insert it to W. If a measurement passes the reliability

check, then we empty W. If at any update instance |W| reaches W –i.e., W consecutive streaming

measurements were rejected as outliers– then we detect a change of the nominal subspaces.

In order to adapt to these changes, we empty the memory, set B =W, and re-initialize (reset) the

bases and memory, as described in Section 2.6.1. Next, the updates proceed as described in Section

2.6.1. A pseudocode of the proposed D-L1-Tucker algorithm is presented in Algorithm 2.5.

Long-Run Efficiency

As measurements are streaming, D-L1-Tucker keeps refining the bases estimates. Naturally, after a

sufficiently large number of measurements have been processed, the enhancement rate of the bases

estimates can be so low that does not justify the computational effort expended for the update.

In view of this observation, we can enhance the long-run efficiency of D-L1-Tucker by introducing

an exponentially decreasing probability ρt to determine whether or not the t-th measurement will

be processed. Intuitively, when a large number of reliable measurements have been processed, ρt

should be low enough to limit the number of updates performed. For example, let us denote by αt−1
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Input: {X̄t}t∈[T ], B, M , W , τ , Q ← ∪n∈[N ]Qn

Output: Q → {Q1,Q2, . . . ,QN}

B ←
⋃

t∈[B] X̄t

(Q,M,W)← batch-init(B,Q,M)
For t > B

(Q,M,W)← online-updates(X̄t,M,Q,W, τ)

Function: batch-init(B,Q,M)
Output: Q,M,W

Q← L1-Tucker(B,Q)
M← Ω(B,M)
W ← ∅
Function: online-updates(X̄t,M,Q,W, τ)
Output: Q,M,W

rt ← ‖X̄t ×n∈[N ] Q>n ‖2F ‖X̄t‖−2
F

If rt > τ
M′ ← Φ(M, X̄t)
Q ← L1-Tucker(M′,Q)
M← Ω(M′,M)
W ← ∅

Else
W ←W ∪ X̄t

If |W| = W
(Q,M,W)← batch-init(W,Q,M)

Algorithm 2.5 Proposed Dynamic L1-Tucker Decomposition algorithm.

the number of consecutive measurements that have passed the reliability check at update instance

t − 1. Then, if X̄t passes the reliability check, it will be processed with probability ρt = ραt−1+1,

for some initial probability ρ > 0, close to 1. If X̄t fails the reliability check, then it is rejected and

αt is reset to 0.

Parameter Configuration

The performance of D-L1-Tucker largely depends on three parameters: the initialization batch

size B, the memory size M , and the reliability threshold τ . Here, we discuss how to select these

parameters.

Batch size B: B determines the quality of the initial set of bases. That is, higher values of B will

generally offer better set of bases. Naturally, a very large B would contradict the streaming nature

of the method.
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Memory size M : M determines how many measurements L1-Tucker will process at each time

instance. Similar to B, higher values of M can enable superior estimation performance. At the

same time, high values of M increase the overhead of storage and computation (cost of L1-Tucker

updates). Thus, a rule of thumb is to set M as high as the storage/computation limitations of the

application permit.

Reliability threshold τ : For τ = 0, all measurements will be processed (including outliers); for τ = 1,

all measurements will fail the reliability check and no bases updates will take place. Appropriate

tuning of τ between 0 and 1 may ask for some prior knowledge on the SNR quality of the nominal

data. Alternatively, in the sequel we present a data-driven method for setting τ .

We start with the reasonable assumption that the initialization batch B is outlier-free. Then, we

conduct on B a leave-one-out cross-validation to tune τ . For every i ∈ [B], we first form Bi = B\Xi.

Then, we obtain the set of basesQi by running L1-HOOI on Bi. Next, we capture in ri the reliability

of Xi evaluated on Qi (notice that Xi did not participate in the computation of Qi). Finally, we

set τ to the minimum, median, or maximum value of the cross-validated reliabilities {r1, . . . , rB},
depending on the noise-tolerance/outlier-robustness level that we want to enforce.

2.6.2 Experimental Studies

Testing Parameter Configurations

We first study the performance of the proposed D-L1-Tucker algorithm across varying parameter

configurations. We consider T N -way measurements X̄1, . . . , X̄T , where

X̄t = Gt ×n∈[N ] Qnom
n + Nt + Ot ∈ RD×D×...×D, (2.50)

for a nominal set of bases Qnom = {Qnom
n ∈ SD×d}n∈[N ]. The core tensor Gt ∈ Rd×d×...×d draws

entries independently from N (0, σ2
s). Nt models Additive White Gaussian Noise (AWGN) and

draws entries from N (0, σ2
n). Ot models sporadic heavy outlier corruption and is non-zero with

probability po. When non-zero, Ot draws entries from N (0, σ2
o). In order to measure data quality,

we define the SNR as

SNR =
E{‖Xt‖2F }
E{‖Nt‖2F }

=
σ2
s

σ2
n

(
d

D

)N
(2.51)
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Figure 2.21. MANSSE vs memory size. N = 3, D = 10, d = 5, B = 5, T = 30, SNR = 0dB, ONR
= 14dB, 3000 realizations.
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Figure 2.22. MANSSE vs reliability threshold. N = 3, D = 10, d = 5, B = 5, M = 10, T = 30,
SNR = 0dB, ONR = 14dB, 3000 realizations.

and the Outlier-to-Noise Ratio (ONR)

ONR =
E{‖Ot‖2F }
E{‖Nt‖2F }

=
σ2
o

σ2
n

. (2.52)

Our objective is to recover Qnom by processing the measurements {X̄t}t∈[T ] in a streaming way.

Denoting by Q̂n the estimate of Qnom
n , we quantify performance by means of the Mean Aggregate

Normalized Subspace Squared Error (MANSSE)

MANSSE =
1

2Nd

∑
n∈[N ]

∥∥∥Qnom
n Qnom

n
> − Q̂nQ̂

>
n

∥∥∥2

F
. (2.53)

First, we set N = 3, D = 10, d = 5, B = 5, and T = 30. Moreover, we set σ2
s , σ

2
n, and σ2

o such

that SNR = 0dB and ONR = 14dB. In Fig. 2.21, we plot the MANSSE metric versus varying

M ∈ {5, 10, 15, 20} and fixed (p0, τ) ∈ {(0.1, 0), (0.06, 0.4), (0.1, 0.6), (0.06, 0.7)}. We observe that
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Figure 2.23. Frequency of rejection vs reliability threshold. N = 3, D = 10, d = 5, B = 5, M = 10,
T = 30, SNR = 0dB, ONR = 14dB, 3000 realizations.
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Figure 2.24. Frequency of rejection vs outlier probability. N = 3, D = 10, d = 5, B = 5, M = 10,
T = 30, SNR = 0dB, ONR = 14dB, 3000 realizations.

the curves corresponding to τ ≥ 0.6 are almost horizontal. This implies that these values of τ

are too strict, rejecting almost all measurements. For τ = 0, all measurements are processed

(outliers and nominal ones); therefore, we see that the estimation performance improves as M

increases, however, the estimation error is somewhat high because of the processed outliers. The

curve corresponding to τ = 0.4 exhibits the best performance across the board.

Next, motivated by the above observations, we fix SNR = 0dB and let τ vary in [0.0, 0.7] with 0.1

increments. In Fig. 2.22, we plot the MANSSE versus τ for different values of outlier probability

po. We notice that for any τ ∈ [0.3, 0.5], D-L1-Tucker exhibits high, almost identical MANSSE

performance independently of po. This, in turn, suggests that the SNR plays an important role in

determining the optimal value of τ , for which nominal measurements will be processed and outliers

will be rejected with high probability. For the same study, we present the frequency of rejection

versus τ in Fig. 2.23. Again, we notice that for very low values of τ , most measurements are

accepted for processing. In contrast, for very high values of τ , most measurements are rejected.
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Figure 2.25. Empirical convergence. N = 3, D = 10, d = 3, T = 100, B = 2, M = 12, W = 0,
SNR = −6dB, data-driven τ , 20000 realizations.

Interestingly, this figure suggests that for any given parameter configuration there will be an optimal

value of τ for which the frequency of rejection will approach the probability of outliers po –which,

in turn, implies that in general outliers will rejected and nominal data will be processed.

Finally, we let po vary in {0, 0.02, 0.06, 0.08, 0.1} and, in Fig. 2.24, we plot the frequency of rejection

versus po. In accordance with previous observations, we see that high values of τ result in high

rejection frequency, independently of the value of po. Interestingly, we see that values of τ within

[0.3, 0.4] appear to be near-optimal for this particular SNR and parameter configuration, as their

performance almost coincides with the 45◦ slope, at all points of which the frequency of rejection

equals the outlier probability po.

Convergence

At any fixed update index, D-L1-Tucker is guaranteed to converge. That is, when a measurement

is deemed reliable, the proposed algorithm processes the measurements in memory after appending

the new measurement by means of L1-HOOI the convergence of which has been formally proven [63].

Further, due to the sturdiness of L1-Tucker it is expected that, after many updates, the replacement

of a single nominal measurement in the memory set will not cause much of a shift to the bases.

To illustrate this, we conduct the following study. We process measurements X̄1, . . . , X̄T in the

form of (2.50). D-L1-Tucker returns Q̂t = {Q̂n,t ∈ SD×d}n∈[N ]. In order to evaluate convergence

across updates, we measure e(t) = 1
2Nd

∑
n∈[N ] ‖Q̂n,tQ̂

>
n,t − Q̂n,t−1Q̂

>
n,t−1‖2F . In Fig. 2.25, we plot
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Figure 2.26. MANSSE vs update index. N = 3, D = 10, d = 3, T1 = 70, T2 = 30, B = 2, M = 12,
W = 4, SNR = −6dB, ONR = 18dB, data-driven τ , 20000 realizations.

e(t) versus update index t for a single realization of measurements. Moreover, we plot e(t) when it

is sample-average computed over 20000 statistically independent realizations of measurements. As

expected, we see that after enough measurements have been processed, e(t) remains low and very

close to the average expected performance. We conclude that, upon nominal operation and large

enough M , bases changes will be minuscule in the long run. This will be even more emphatic for

high SNR. Finally, the long-run efficiency feature of D-L1-Tucker, introduced in Section 2.6.1, can

also enforce convergence/termination.

Dynamic Subspace Adaptation

We consider a total of T = T1 + T2 streaming measurements, in the form of (2.50). The first

T1 measurements are generated by nominal bases Qnom,1. For t > T1 and on, the measure-

ments are generated by bases Qnom,2. The angular proximity of Qnom,1
n to Qnom,2

n , defined as

1 − ‖Qnom,1
n Qnom,1

n
> − Qnom,2

n Qnom,2
n

>‖2F (2d)−1, is set between 30% and 40% for every n ∈ [N ].

Moreover, we consider that the outlier is only active at instance t = to = 45. We set N = 3,

D = 10, d = 3, T1 = 70, and T2 = 30. The SNR and ONR are set to −6dB and 18dB, respectively.

We process all measurements by the proposed D-L1-Tucker algorithm for B = 2, M = 12, W = 4,

and data-driven τ (median of cross-validated batch reliabilities). We also process the streaming

measurements with DTA (λ = 0.2, 0.8), LRUT (additional core dimensions k = D − d − 2), and
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Figure 2.27. Reliability and rejection frequency vs update index. N = 3, D = 10, d = 3, T1 = 70,
T2 = 30, B = 2, M = 12, W = 4, SNR = −6dB, ONR = 18dB, data-driven τ , 20000 realizations.

instantaneous HOSVD7 counterparts.

In Fig. 2.26, we plot the MANSSE versus update index t. All methods, except for the instanta-

neous HOSVD, start from a higher MANSSE value and refine their bases by processing streaming

measurements until they reach a low plateau. At t = 45, when the outlier appears, we observe

that all competing methods suffer a significant performance loss. In contrast, the proposed D-L1-

Tucker algorithm discards the outlier and its performance remains unaffected. When subsequent

measurements are streaming, the competing methods start recovering until they reach again a low

plateau, which is largely determined by the SNR and the parameter configuration of each method.

Interestingly, the instantaneous HOSVD recovers rapidly, after just one measurement, because it is

memoryless. DTA (λ = 0.2) recovers faster than DTA (λ = 0.8) but its MANSSE plateau is higher.

LRUT also recovers and reaches its plateau performance after it has seen about 10 measurements

after the outlier. At time instance 71 the nominal data subspaces shift, affecting all methods ex-

pect for the memoryless/instantaneous HOSVD. D-L1-Tucker attains a high value of MANSSE for

about W time instances while its ambiguity window is being filled. Right after, it rapidly recovers

to a low MANSSE value and keeps refining as more measurements are streaming. DTA and LRUT

are also adapting to the new underlying structure after processing a few measurements. Another

interesting observation is that the low plateau level for each method appears to be the same in the

two distinct coherence windows.

In Fig. 2.27, we plot the reliability of the streaming measurements across updates in accordance

7At update instance t, instantaneous HOSVD returns the HOSVD solution of X̄t, independently of any previous
measurements.
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Figure 2.28. Time (sec.) vs update index. N = 3, D = 10, d = 3, T1 = 70, T2 = 30, B = 2,
M = 12, W = 4, SNR = −6dB, ONR = 18dB, data-driven τ , 20000 realizations.
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Figure 2.29. MANSSE vs update index. N = 3, D = 10, d = 3, T1 = 75, T2 = 85, B = 2, M = 12,
W = 4, SNR = −6dB, ONR = 18dB, data-driven τ , 20000 realizations.

with (2.47). At the same figure, we illustrate the frequency of rejection; that is, the frequency

by which measurements fail the reliability check. We notice that the outlier at t = 45 and the

W measurements following the change of subspaces are rejected with probability close to 1. In

addition, we observe the instantaneous reliability drop when the outlier appears and when nominal

subspaces change. For this value of SNR = −6dB, the reliability level for nominal measurements

is about 0.2 and our data-driven τ is accordingly low.

We conclude this study by comparing the run time of each method across updates. In Fig. 2.28,
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Figure 2.30. Reliability and rejection frequency vs update index. N = 3, D = 10, d = 3, T1 = 75,
T2 = 85, B = 2, M = 12, W = 4, SNR = −6dB, ONR = 18dB, data-driven τ , 20000 realizations.

we plot the instantaneous run times. We observe that the instantaneous HOSVD and DTA exhibit

constant run time across updates independently of outliers or changes of subspaces. D-L1-Tucker

also exhibits about constant runtime after its memory has been filled. Moreover, we notice an

instantaneous drop in the runtime at index t = 45 which is because D-L1-Tucker discarded the

outlier and did not process it. In contrast, when the outlier appears and when the subspaces

change, LRUT attains an increase in runtime, as it tries to adapt.

Next, we repeat the above study. This time, instead of having a fixed outlier at an index, every

measurement with index t > B is outlier corrupted with probability po = 0.1. Moreover, T1 = 75

and T2 = 85. This time, we include a curve which corresponds to a method we label D-Tucker.

D-Tucker is identical to D-L1-Tucker with the exception that standard Tucker by means of HOOI

is employed instead of L1-Tucker.

In Fig. 2.29, we plot the MANSSE versus update index. We observe that the estimation perfor-

mance of the DTA curves degrades due to the outliers until a plateau is reached. Their estimation

error increases at the subspaces change index and returns to its plateau performance after a few

measurements. Expectedly, the instantaneous HOSVD appears to exhibit constant performance for

any index t > B. A similar observation is made for the LRUT curve with the exception of update

indices 75 to 80 where it adjusts to the new underlying data structure. D-Tucker starts from a low

MANSSE value and improves for a while, however, its performance slowly drops as measurements

are streaming. This is because outliers are passing the reliability check of the L2-norm derived

bases which, in turn, affects the performance of the memory batch processing. In contrast, we see

that D-L1-Tucker keeps improving its performance up to update index 75 where the underlying
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Figure 2.31. Dynamic video foreground/background separation experiment. (a) Original 75-th
frame (scene 1). Background extracted by (b) Adaptive Mean (λ = 0.95), (c) DTA (λ = 0.95), (d)
DTA (λ = 0.7), (e) LRUT, (f) OSTD, (g) HOOI (increasing memory), (h) L1-HOOI (increasing
memory), and (i) D-L1-TUCKER (proposed). Foreground extracted by (j) Adaptive Mean (λ =
0.95), (k) DTA (λ = 0.95), (l) DTA (λ = 0.7), (m) LRUT, (n) OSTD, (o) HOOI (increasing
memory), (p) L1-HOOI (increasing memory), and (q) D-L1-TUCKER (proposed).

data structure changes. Then, after the ambiguity batch windows of D-Tucker and D-L1-Tucker

are filled, they both reset based on the measurements in their window –each measurement of which
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Figure 2.32. Dynamic video foreground/background separation experiment. (a) Original 150-th
frame (scene 2). Background extracted by (b) Adaptive Mean (λ = 0.95), (c) DTA (λ = 0.95), (d)
DTA (λ = 0.7), (e) LRUT, (f) OSTD, (g) HOOI (increasing memory), (h) L1-HOOI (increasing
memory), and (i) D-L1-TUCKER (proposed). Foreground extracted by (j) Adaptive Mean (λ =
0.95), (k) DTA (λ = 0.95), (l) DTA (λ = 0.7), (m) LRUT, (n) OSTD, (o) HOOI (increasing
memory), (p) L1-HOOI (increasing memory), and (q) D-L1-TUCKER (proposed).

is outlier corrupted with probability po. Due to its inherent L1-norm robustness, D-L1-Tucker is

able to recover and learn the underlying data structure of the new coherence window. In contrast,
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we see that D-Tucker fails to recover due to the outlying measurements in its ambiguity window.

In Fig. 2.30, we illustrate the reliability values and rejection frequencies as they were computed by

the proposed D-L1-Tucker and its counterpart D-Tucker. We observe that during the first coherence

window (t ≤ T1), both methods exhibit almost identical reliabilities and rejection frequencies.

However, in view of Fig. 2.29, we infer that D-L1-Tucker is more successful at rejecting outliers

compared to D-Tucker. A few measurements after the change of subspaces at index t = 75, we

see that D-L1-Tucker converges to reliability and rejection frequency values similar to those of the

first coherence window which implies that it has adapted nicely to the new coherence window.

On the other hand, the reliability and rejection frequency values to which D-Tucker converges in

the second coherence window, both diverge from their corresponding values in the first coherence

window which, in turn, implies that D-Tucker was not able to adapt well. This is also depicted

in Fig. 2.29 where we see that in the second coherence window D-Tucker converged to a high

MANSSE value.

Dynamic Video Foreground/Background Separation

Foreground-background separation is a common task in video processing applications, including

moving object tracking, security surveillance, and traffic monitoring. The omnipresent background

in a static camera scene determines a nominal subspace, while any foreground movement –e.g.,

by vehicles or people– represent intermittent outliers. In this experiment, we use D-L1-Tucker to

estimate the background and foreground of incoming video frames and compare its performance

with that of state-of-the-art alternatives.

For this experiment, we use videos from the CAVIAR database [110]. Specifically, we use two

videos, each containing 100 frames of size (D1 = 173)× (D2 = 231) and capturing a different scene.

Each video is viewed as collection of frames –i.e., 2-way tensor measurements. We collate the two

videos, one behind the other to form the data stream X ∈ RD1×D2×(T=200). Below, we denote by

X̄t the t-th frontal slab of X (i.e., the t-th video frame).

We apply the proposed algorithm on X by setting dn = d = 3 ∀n ∈ [2], B = 5, M = 10,

W = 20, and τ by the proposed batch reliability cross-validation. For every t ∈ [T − B] + B, we

obtain bases Q
(t)
1 and Q

(t)
2 and the mean frame Ct. Accordingly, we estimate the background as

XBG
t = Q

(t)
1 Q

(t)
2

> (
X̄t − Ct

)
Q

(t)
2 Q

(t)
2

>
+ Ct and the foreground as XFG

t = Xt −XBG
t .
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We compare the performance of the proposed algorithm with that of DTA, LRUT, OSTD,8 HOOI

(increasing batch), and L1-HOOI (increasing batch). For the last two benchmark approaches, at

any frame index t, we run HOOI/L1-HOOI on the entire batch {X̄j}j∈[t], starting from arbitrary

initialization. We notice that DTA is capable of tracking scene changes using a forgetting factor λ.

Since the background estimation involves mean subtraction, for a fair comparison with the proposed

method, we enable mean tracking for DTA by computing CDTA
t = λCDTA

t−1 +(1−λ)X̄t, for CDTA
1 = X̄1.

For all other methods, we compute the mean incrementally at any t as Ct =
(
(t− 1)Ct−1 + X̄t

)
/t.

For DTA, we use two values of forgetting factor, λ = 0.95, 0.7 and for LRUT we set the number of

additional core dimensions to kn = Dn − d− 3 ∀n ∈ [2].

In Fig. 2.31 and Fig. 2.32, we present the backgrounds and foregrounds obtained by the proposed

method and existing counterparts at the 75-th frame (scene 1) and the 150-th frame (scene 2),

respectively. We observe from Fig. 2.31 that HOOI (increasing batch), LRUT, and OSTD perform

similarly leaving a trail of a ghostly appearance behind the person in their respective foreground

frames. We notice that OSTD and L1-HOOI (increasing batch) perform better with a smoother

trail behind the person in their foreground frames. DTA with λ = 0.7 captures the person in

its background, leading to an undesirably smudged foreground estimate. DTA with λ = 0.95

demonstrates a cleaner foreground estimate, similar to that of the adaptive mean (background

estimated by the same adaptive mean that we use for DTA), however their backgrounds contain

a ghostly appearance of the person. The proposed method extracts a cleaner background and

foreground owing to its outlier rejection capability.

In Fig. 2.32, we demonstrate the performance after the scene changes at t = 100 by presenting the

estimated backgrounds and foregrounds at frame index t = 150. We observe that HOOI, L1-HOOI,

OSTD, and LRUT perform poorly because they are not designed to track changes in the scene.

DTA with λ = 0.95 demonstrates better performance compared to that of λ = 0.75 at frame 75,

however, at frame 150, we observe that DTA with λ = 0.9 captures some of the background from

scene 1, while DTA with λ = 0.7 obtains a clean background and hence a smooth foreground,

wherein the person appears slightly blurry. The proposed method is capable of tracking scene

changes and we observe that it obtains a good estimate of the background and a clear foreground.

To quantify the background/foreground estimation performance, we compute, for every frame, the

Peak Signal-to-Noise Ratio (PSNR) defined as PSNR = 10log10

(
2552

MSE

)
, where MSE is the mean

squared error of the estimated background and the ground truth (clean) background. In Fig. 2.33,

we plot the PSNR versus frame index and observe that all methods begin with high PSNR and, as

8OSTD –i.e., Online Stochastic Tensor Decomposition– was specifically designed for background/foreground sep-
aration in multispectral video sequences [91].
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Figure 2.33. Dynamic video foreground/background separation experiment. PSNR (dB) versus
frame index.
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Figure 2.34. Online tensor compression and classification experiment. Average classification accu-
racy versus update index.

they process frames with foreground movement, the PSNR drops. We observe that the PSNR of the

proposed method is the highest after approximately frame 25. When the scene changes, the PSNR

of all methods drops instantaneously. The PSNR values of HOOI, L1-HOOI, LRUT, and OSTD

increase at a low rate as they process frames from the new scene. Adaptive mean and DTA with

λ = 0.95 demonstrate better performance with faster PSNR increase. DTA with λ = 0.5 adapts

to the new scene very quickly, but it is affected by foreground movement (depicted by oscillations

in its PSNR values). The proposed method adapts to the new scene after it processes W = 20
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measurements and attains the highest PSNR values across all frame indices thereafter. Certainly,

after adaptation, the proposed method is straightforwardly capable of accurately extracting the

background and foreground of all ambiguous frames inW in a retroactive fashion, as shown in Fig.

2.33.

Online Tucker and Classification

In this experiment, we perform joint Tucker feature extraction and online classification. We use

the Extended Yale Face Database B [99], consisting of face images of many individuals, captured at

varying illumination. For this experiment, we use the face images of subject 02 and subject 23 to

perform binary classification. Each class has 64 images in total, out of which, at every realization,

we choose 45 for training and the remaining 19 for testing. The size of each image is originally

192 × 168 and we down-sample it to 96 × 84. Therefore, at every realization, we have a tensor

with training data X ∈ R96×84×90 containing 90 measurements in total (45 from each class) and a

tensor with testing data Y ∈ R96×84×38 containing 38 measurements in total (19 from each class).

At every realization, we arbitrarily shuffle the training data and follow a parallel online feature

extraction and classification approach as follows.

At update index t, we process the t-th training sample in X , X̄t, and update Q
(t)
1 and Q

(t)
2 using

the proposed method (B = 5, M = 10, d1 = 15, d2 = 6, and cross-validated τ). Next, we use

the updated bases to compress all previously seen training data {X̄i}i∈[t] as Zi = Q
(t)
1

>
X̄iQ

(t)
2 .

We vectorize the compressed training measurements and give them as input to the Online Support

Vector Machine (OSVM) classifier of [111].9 We test the performance of the classifier on testing

data, compressed using the same bases, and record the classification accuracy for every update

index t. We repeat the experiment 300 times and plot the average classification accuracy versus

update index in Fig. 2.34. Along with the proposed algorithm, we also plot the performance of

the plain OSVM classifier, i.e., OSVM classifier run on vectorized (uncompressed) data, DTA with

λ = 0.33, and OSTD. In Fig. 2.34, we observe that all compared methods attain almost identical

performance. The classification accuracy starts low and as the update index increases it tends to

1.

Next, we repeat the experiment with the same setting, by corrupting each training measurement

outside the initial memory batch B with noise from N (2, 5), cropping pixel intensities outside

[0, 255]. We compute the average classification accuracy over 300 realizations and plot it versus

9Matlab code available at https://www.cpdiehl.org/code.html.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 2.35. Frame instances per scene for the three videos. Video 1: (a) scene 1, (b) scene 2, and
(c) noisy frame. Video 2: (d) scene 1, (e) scene 2, and (f) noisy frame. Video 3: (g) scene 1, (h)
scene 2, and (i) noisy frame. Probability of noise corruption per pixel is 10% for all noisy frames.

update index in Fig. 2.34. In this case, we notice that plain OSVM is significantly affected by the

noise. DTA, OSTD, and D-L1-Tucker demonstrate resistance to noise corruption, especially for

earlier update indices.

Online Video Scene Change Detection

In this experiment, we demonstrate the efficacy of the proposed method in online video scene change

detection. We operate on Red-Green-Blue (RGB) videos from the benchmark video scene change

detection dataset in [112]. Specifically, we operate on three video frame-sequences from the dataset.

Video 1 (twoPositionPTZCam) captures a street with a single scene change. Video 2 (badminton)

captures badminton players in action with camera jittering. Video 3 (zoomInzoomOut) captures

the backyard of a house with a single scene change. Each video can be seen as a collection of 3-way

tensors X̄t ∈ RD1×D2×D3 which are the video frames streaming across time t = 1, 2, . . .. Videos 1,

2, and 3 are cropped to consist of T = 202, 220, and 172 frames, respectively, and each frame is

of size 85× 143× 3, 94× 144× 3, and 60× 80× 3, respectively. For videos 1 and 3, scene change
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Figure 2.36. Average online video scene change detection accuracy versus probability of noise
corruption per pixel. For videos 1 and 3, the probability of frame corruption pf is set to 0.1 while
for video 2 it is set to 0.25. Video 1 (left), video 2 (middle), and video 3 (right).

occurs at frames 102 and 92, respectively.

We run the proposed algorithm on all three videos with B = 20, M = 10, W = 5, and cross-

validated threshold τ set to 88% of the median reliability of the initialization batch. For all videos

we set d3 = 1. For videos 1 and 2 we set d1 = d2 = 2 while for video 3 we set d1 = d2 = 5.

A scene change is detected when the ambiguity batch overflows. The frame index of the first frame

to enter the ambiguity batch is returned as the index of scene change. We quantify the performance

of the proposed algorithm by means of the standard accuracy metric

TP + TN

TP + FP + TN + FN
, (2.54)

where TP is the number of correct scene change detections, TN is the number of frames correctly

identified as non-scene-changes, FP is the number of falsely identified scene changes, and FN is

the number of missed detections. We compare the performance of the proposed algorithm with

that of the state-of-the-art subspace-based scene change detection (SSCD) method in [113]. In

addition, we extend SSCD to handle multi-way/tensor subspaces and replace the matrix products

in Algorithm 1 of [113] by tensor products. Then, we apply SSCD on the tensor bases obtained

by means of HOOI (batch), L1-HOOI (batch), and DTA (λ = 0.2). The values of d1, d2, and d3

are the same as those used with the proposed algorithm. Other hyper-parameters of SSCD include

positive constants b and c which are optimally tuned, individually for each method. To evaluate the

robustness of each method against corruptions, we corrupt each frame of all videos with probability

pf . To each pixel of a corrupted frame, we add salt-and-pepper noise with probability pn. In Fig.
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2.35, we illustrate a frame instance per scene for each video along with a noisy frame. For every

value of pn, we repeat the experiment 250 times.

For video 1 and pf = 0.1, we illustrate the average detection accuracy of each method in Fig.

2.36 (left). We observe that under nominal conditions (no noise), the proposed algorithm and

the tensor-based SSCD methods (HOOI + SSCD, L1-HOOI + SSCD, and DTA + SSCD), with

c = 107 and b = 1 attain perfect performance by correctly identifying the scene change, without

any false positives. In contrast, the plain SSCD method with c = 107.4 and b = 1 that relies

on the K = 2 orthonormal bases obtained by SVD on the video frames demonstrates slightly

degraded performance. This can be attributed to the loss of spatial context when the video frames

are vectorized. As pn increases in steps of 0.005, we notice that plain SSCD is affected the most,

followed by HOOI + SSCD and DTA + SSCD. L1-HOOI + SSCD exhibits some robustness to

noise, comparatively. The proposed method maintains the best performance across the board.

For video 2 and pf = 0.25, we report the average detection performance of each method in Fig. 2.36

(middle). The tensor-based SSCD methods use the same parameters as before while plain SSCD

uses the same K value, c = 107.5, and b = 1. Because this video is jittery, SSCD methods exhibit

some robustness to noise for small pn. As pn increases in steps of 1%, SSCD methods perceive

camera jitter as scene change. In contrast, D-L1-Tucker remains robust to noise and is not misled.

Finally, for Video 3 and pf = 0.1, we plot the detection performance of all methods in Fig. 2.36

(right). pn varies in steps of 0.01 from 0 to 0.02. We use the same parameters for the tensor-based

SSCD methods while for the plain SSCD method we use the same K, c = 107.25, and b = 1. We

observe similar results to those of Fig. 2.36 (left) and Fig. 2.36 (middle). Although pn is small, the

number of corrupted pixels per frame is significant –e.g., consider video 1 where each frame is of size

85× 143× 3 and, on average, a probability of pixel corruption pn = 0.01 results in approximately

365 noisy pixels per corrupted frame.

Online Anomaly Detection

We consider the “Uber Pickups” tensor of the Formidable Repository of Open Sparse Tensors

and Tools (FROSTT) [106] which is a (N = 4)-way tensor of size D1-by-D2-by-D3-by-D4 where

D1 = 1140 latitudes, D2 = 1717 longitudes, D3 = 24 hours, and D4 = 183 days. Each entry of the

tensor models number of Uber pickups in New York City over a period of about 6 months.

Pre-processing : To make the tensor more manageable in size, we first take a summation across the
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day mode and obtain a size D1-by-D2-by-D3 tensor where D3 = 183 days –i.e., a collection of 183

size 1140-by-1717 matrix measurements. We further reduce the size of the matrix measurements

by retaining a 250-by-250 area centered at Manhattan wherein most of the activity –in terms of

Uber Pickups– occurs. We consider the resulting tensor Xuber ∈ R250×250×183 to be a collection of

183 streaming measurements, one for each day.

Streaming processing : Xuber can be seen as a data stream of matrix measurements each of which

corresponds to a day. Accordingly, 7 successive measurements across the day index must correspond

to a week which, in turn, is separated into weekdays and Saturdays. We assume that traffic during

the weekdays is not the same as traffic on Saturdays and conjecture that weekdays belong to a

coherent class/distribution while Saturdays belong to another.

We assume that we are given B = 5 measurements that correspond to weekdays and use those

measurements to initialize D-L1-Tucker with memory size M = 5 and d = 10 components per

mode. Moreover, we leverage these B measurements to tune τ using the leave-one-out cross-

validation approach that we presented above. We set τ to the median value of the B collected

reliability values in r. Then, we update the decomposition of D-L1-Tucker by processing the rest

of the measurements one by one. In Fig. 2.37, we plot the reliability of streaming measurements

versus day (update) index. Moreover, we add the data-driven value of τ as a horizontal line.

Each measurement with reliability value above this curve is deemed reliable for processing, while

each measurement with reliability value below that curve is considered to be an anomaly (outlier).

For better understanding, we include vertical dotted lines on the day indices which correspond to

Saturdays. The reported curves are averaged over 300 random initializations of bases and runs of

D-L1-Tucker on Xuber. Quite consistently, days that correspond to Saturdays exhibit reliability

values that are clearly below the τ threshold and are considered anomalies. In contrast, almost

all weekdays exhibit reliability values above the τ threshold. A different selection of the threshold

τ may slightly improve the results, however, even with the data-driven tuning of τ , the reliability

check feature of D-L1-Tucker offers high accuracy in identifying anomalies/outliers.

2.7 Conclusions

In this Chapter, we studied L1-Tucker and L1-Tucker2 decompositions for outlier-resistant analysis

of tensors, derived new theory, and proposed new algorithms. Our contributions are summarized as

follows: (i) We showed that L1-Tucker2 decomposition can be cast to combinatorial optimization

and offered the first algorithms for its solution. Numerical studies corroborate the outlier-resistance



CHAPTER 2. L1-NORM TENSOR ANALYSIS 62

20 40 60 80 100 120 140 160 180

Day index

0.4

0.5

0.6

0.7

0.8

0.9

R
el

ia
bi

lit
y

Data-driven 
Saturday

Figure 2.37. Online anomaly detection. B = 5, M = 5, d = 10, 300 realizations, data-driven τ .

of L1-Tucker2 against standard counterparts. (ii) We presented L1-Tucker and L1-Tucker2 decom-

position of general-order tensors and proposed two new algorithmic frameworks for their solution,

L1-HOSVD and L1-HOOI. The presented methods are accompanied by formal convergence and

complexity analyses. Our numerical studies on data restoration and classification demonstrate

that, in contrast to standard Tucker, L1-Tucker decomposition exhibits sturdy resistance against

corruptions among the processed data. (iii) We presented D-L1-Tucker: an algorithm for dynamic

and outlier-resistant Tucker analysis of tensor data. Our experimental studies on real and synthetic

datasets corroborate that the proposed method (1) attains high bases estimation performance, (2)

suppresses outliers, and (3) adapts to changes of the nominal subspaces.



Chapter 3

Lp-quasinorm Principal-Component

Analysis

3.1 Introduction

Principal-Component Analysis (PCA) is a fundamental method for data analysis, machine learn-

ing, and pattern recognition [114]. PCA finds applications in virtually every field of science and

engineering. Computer vision, robotics, neuroscience, signal processing, and medicine are just a few

applications in which PCA has successfully been employed. PCA is typically used for dimensionality

reduction, denoising, classification, clustering, and feature extraction, among others.

PCA is typically formulated as a L2-norm error minimization, or, equivalently, a L2-norm projection

maximization problem. Mathematically, for given matrix X of size D-by-N , PCA seeks a collection

of K D-dimensional unit-norm vectors arranged as columns of a subspace basis matrix Q that

minimizes ‖X−QQ>X‖2F , or equivalently, maximizes ‖X>Q‖2F , where the squared Frobenius/L2

norm ‖·‖2F returns the sum of the squared entries of its argument. The solution to PCA is typically

computed by Singular-Value Decomposition (SVD) of X [115]. Considering that X ∈ RD×N has

rank ρ ≤ {D,N} and admits SVD X = UΣρ×ρV
> such that U>U = V>V = Iρ, Σ = diag(σ), and

[σ]1 ≥ [σ]2 ≥ . . . ≥ [σ]ρ > 0, then the solution to PCA is given by the K left-hand signular-valued

singular vectors of X –i.e., Q = [U]:,1:K solves PCA of X.

Despite its documented success, PCA is known to exhibit severe sensitivity against outliers within

the processed data [47, 48]. Outliers are high-magnitude/peripheral data points that lie far away

63
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from the nominal data subspace and commonly appear in modern datasets –e.g., due to data

storage/transfer errors, faulty sensors, or deliberate data contamination in adversarial environments

[116]. The outlier-sensitivity of PCA is often attributed to its L2-norm-based formulation which

places squared emphasis to each data point, thus promoting the impact of outliers. Accordingly,

applications that rely on PCA are severely affected when outliers exist in the processed data [117].

To counteract the impact of outliers, researchers have proposed an array of “robust” PCA formula-

tions [117, 118]. For instance, one approach considers a L1-norm based residual-error minimization

formulation the (approximate) solution to which is computed by means of alternating-optimization

[119]. Similarly, the authors of [120] study low-rank approximation of a matrix by a residual error

minimization formulation based on the Lp-norm for p ≥ 1. The author of [121] considers the same

problem and presents practical algorithms specifically for p = 1 or p =∞.

A more straightforward approach considers the projection maximization PCA formulation and

replaces the outlier-sensitive L2-norm by the more robust L1-norm (special case of Lp-PCA for

p = 1). This results in the popular L1-norm PCA (L1-PCA) formulation. L1-PCA was solved

exactly in [53, 54]. Efficient [58, 73], adaptive [77], incremental [122], stochastic [123], and complex-

valued data [124, 125] solvers have also been proposed. L1-PCA has been successfully employed

in an array of applications [55–57, 126, 127] where it has been documented that it attains similar

performance to PCA when the processed data are nominal/clean while it exhibits strong resistance

against outliers. L1-norm formulations have recently been proposed for robust tensor analysis –e.g.,

L1-Tucker [59, 63] and L1-Rescal [128]). Similar to L1-PCA, L1-Tucker and L1-Rescal exhibited

significant robustness against data corruptions.

Interestingly, Lp-norm formulations and algorithms have been studied for popular problems other

than PCA. For example, the authors of [129] considered the popular Independent Component

Analysis (ICA) problem and present a variant formulated based on the Lp-norm. Authors in

[130, 131] have studied Linear Discriminant Analysis (LDA) formulations based on the Lp-norm.

Block Principal-Component Analysis has also been studied from the scope of Lp-norm formulations

[132]. Finally, Lp-norm based constraints have been considered for infrared small target detection

[133].

In this work, we study the problem of projection maximization Lp-quasinorm (p ≤ 1) Principal-

Component Analysis, the theoretical foundations of which, remain largely unexplored to date.

This problem was originally studied in [134] where the author considered any general value of p > 0

and presented algorithms for the solution to Lp-PCA. However, the presented algorithms are only

convergent for the special case that p ≥ 1. Moreover, the same problem was also studied in [135]



CHAPTER 3. LP-QUASINORM PRINCIPAL-COMPONENT ANALYSIS 65

where a Grassmann manifold optimization algorithm was proposed for the solution to Lp-PCA.

This algorithm is guaranteed to converge to a locally optimal solution. For p ≤ 1, to the best of

our knowledge, to date there exists no algorithm for the exact solution to Lp-PCA. With this work,

we strive to fill this void.

In this Chapter, we study the theoretical foundations of Lp-quasinorm PCA and propose algorithms

for its solution. Specifically, our contributions are as follows:

Contribution i. We show that, for K = 1, Lp-PCA can always be solved exactly by means of

combinatorial optimization and offer the first algorithms for its solution.

Contribution ii. For the special case of non-negative data, we show that a combinatorial search

can be evaded and finding the dominant Lp-PC of a matrix simplifies to a convex

problem.

Contribution iii. We show that, for general K ≥ 1, the solution to Lp-PCA can also be pursued

by combinatorial optimization and present a novel near-exact algorithm.

Contribution iv. We propose a refining strategy, that, in some cases, can further enhance a near-

exact solution.

The rest of this Chapter is organized as follows. In Section 3.2, we introduce the problem statement.

In Section 3.3, we present exact algorithms for Lp-PCA (K = 1). In Section 3.4, we show that, for

non-negative data, computing the dominant Lp-norm component simplifies to a convex problem.

In Section 3.5, we present a near-exact algorithm for jointly computing multiple Lp-norm PCs. In

Section 3.6, we propose a solution-refinement strategy that, in some cases, can further enhance a

near exact solution. Section 3.7 holds numerical experimental studies on synthetic and real-world

medical data. Concluding remarks are drawn in Section 3.8.

The contributions presented in this Chapter have also been presented in [136–138].

3.2 Problem Statement

Before we present the problem statement, we introduce notation that will facilitate the presentation

of this Chapter.



CHAPTER 3. LP-QUASINORM PRINCIPAL-COMPONENT ANALYSIS 66

Vectors and matrices are denoted by lower-case and upper-case bold letters –i.e., a and A, respec-

tively. SD×K = {Q ∈ RD×K : Q>Q = IK} is the Stiefel manifold of all rank-K orthonormal

matrices in RD. The set BD×K := {Q ∈ RD×K : ‖Q‖2 ≤ 1} is the convex hull of SD×K . For the

special case K = 1, BD×K boils down to the unit-radius hyperball. For any A ∈ RN×K and p > 0,

‖A‖p = ‖vec(A)‖p = (
∑N

n=1

∑K
k=1 |[A]n,k|p)

1
p . For p ≥ 1, ‖ · ‖p is a proper norm function that, for

any x ∈ RD, y ∈ RD, and α ∈ R, satisfies (i) ‖αx‖p = |a|‖x‖p, (ii) ‖x‖p = 0 implies that x = 0D,

and (iii) ‖x + y‖p ≤ ‖x‖p + ‖y‖p. In contrast, for p ≤ 1, ‖ · ‖p is a quasinorm function and satisfies

(i) and (ii) while (iii) is substituted by ‖x+y‖p ≤ C(‖x‖p+‖y‖p), where it holds that the constant

C = 2
1−p
p > 0 [139]. sgn (·) returns the signs of its input argument –i.e, sgn (α) = +1 if α > 0 and

sgn (α) = −1 if α < 0. Without loss of generality, we set sgn (α) = +1 if α = 0. For any positive

integer N , [N ] = {1, 2, . . . , N}. “� ” denotes the element-wise multiplication operation.

We consider a collection of N vector measurements arranged as columns of X = [x1,x2, . . . ,xN ] ∈
RD×N . The problem of interest is Lp-quasinorm Principal-Component Analysis (Lp-PCA) of X, for

any p ≤ 1, –i.e., we seek a column-wise orthonormal matrix corresponding to a lower dimensional

signal subspace such that the Lp-quasinorm derived projection variance is maximized. Mathemat-

ically, for any K < rank(X) ≤ min{D,N}, Lp-PCA is formulated as

max.
Q∈SD×K

∥∥∥X>Q
∥∥∥p
p
. (3.1)

A solution to Lp-PCA exists only for the very special case that p = 1. For the area of interest

–general values of p ≤ 1– the solution to Lp-PCA remains unknown to date.

The problem of finding the exact solution to Lp-PCA in (3.1) (or, nearly-exact in a few cases), is

the main focus of this work. Before we commence our developments, we present Lemma 3.1 which

states that, without loss of generality (w.l.o.g.), it suffices to solve (3.1) for a full row rank matrix.

Lemma 3.1. X has rank-ρ and admits SVD X = UΣV> with U ∈ SD×ρ, V ∈ SN×ρ, and

Σ = diag(σ) ∈ Rρ×ρ. Let Y = ΣV>. If Aopt solves max.A∈Sρ×K ‖Y>A‖pp, then Qopt = UAopt

solves (3.1).

By Lemma 3.1, we henceforth consider that X has full row rank –i.e., ρ = D ≤ N .
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(a) p = 2 (b) p = 1 (c) p = 0.5

Figure 3.1. Metric surface of ‖X>q‖pp for arbitrary X ∈ R2×5 and p ∈ {2, 1, 0.5}.

3.3 Contribution 1: The Lp-quasinorm Principal-Component

First, we steer our focus on the special case K = 1 in which the problem of interest simplifies to

max.
q∈SD×1

∥∥∥X>q
∥∥∥p
p
. (3.2)

For context, we illustrate the cost function of (3.2) for arbitrary X ∈ R2×5 over the unit-radius

hyperball and for p = 2, p = 1, and p = 0.5, in Fig. 3.1a, Fig. 3.1b, and Fig. 3.1c, respectively.

For K = 1, the Stiefel manifold simplifies to the D-dimensional unit-radius hypersphere which

comprises all D-dimensional unit-norm vectors.

Next, we present Lemma 3.2.

Lemma 3.2. For any X ∈ RD×N , solving (3.2) is equivalent to solving max.q∈BD×1
‖X>q‖pp.

Lemma 3.2 states that the solution to Lp-PCA can equivalently be pursued over the closed unit-

radius D-dimensional hyperball. Next, we consider b = {±1}N and define the set

C(b) = {q ∈ BD×1 : sgn
(
X>q

)
= b}. (3.3)

In practice, C(b) is a subset of the unit-radius hyperball. Some instances of b will be such that

C(b) = ∅. Further, every distinct b uniquely identifies a subset of the hyperball in accordance with

the following Lemma 3.3.

Lemma 3.3. For every b,b′ ∈ {±1}N such that b 6= b′, it holds that C(b) ∩ C(b′) = ∅.

All sets C(b) formed by b when it scans the finite-size set {±1}N are, in practice, a partition of
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(a) b = [−1, 1,−1, 1,−1]> (b) b = [1,−1, 1,−1, 1]>

Figure 3.2. Metric surface of ‖X>q‖pp for p = 0.5 and arbitrary X ∈ R2×5 when q scans C(b) for
fixed b.

Input: X ∈ RD×N , b ∈ {±1}N , p ≤ 1
Output: q ∈ RD

Y = X ∗ diag (b ) ;
cvx beg in
v a r i a b l e q (D)
maximize (sum( pow p (Y’ ∗ q , p ) )
q ’ ∗ q <= 1
Y’ ∗ q >= 0
cvx end

Figure 3.3. CVX code (Matlab) for the solution to (3.4).

the hyperball which corresponds to the data matrix X as shown in the following Lemma 3.4.

Lemma 3.4. It holds that BD×1 =
⋃

b∈{±1}N C(b).

By Lemma 3.2 and Lemma 3.4, maxq∈BD×1

∥∥X>q
∥∥p
p

= maxb∈{±1}N maxq∈C(b)

∥∥X>q
∥∥p
p
. Accorid-

ngly, the solution to Lp-PCA can be pursued by combinatorial search over {±1}N –i.e., by sepa-

rately solving

max.
q∈C(b)

∥∥∥X>q
∥∥∥p
p

(3.4)

for every b ∈ {±1}N .

Next, we show that the solution to (3.4) exists and can be found exactly, in accordance with the



CHAPTER 3. LP-QUASINORM PRINCIPAL-COMPONENT ANALYSIS 69

Input: X ∈ RD×N , b ∈ {±1}N , p ≤ 1
Output: q ∈ RD

v ← 0
For every b ∈ {±1}N

q← argminq∈C(b) −
∑

n∈[N ]([b]nq>xn)p

If ‖X>q‖pp > v, v ← ‖X>q‖pp, qLp ← q

Algorithm 3.1 Exhaustive search for the exact solution to Lp-PCA.

following Lemma 3.5 and Lemma 3.6.

Lemma 3.5. For any b ∈ {±1}N , C(b) is a convex set.

Lemma 3.6. Let p ≤ 1 and b ∈ {±1}N such that C(b) 6= ∅. For any q ∈ C(b), [b]nq
>xn ≥

0∀n ∈ [N ]. In turn, ‖X>q‖pp =
∑

n∈[N ] |x>nq|p =
∑

n∈[N ]([b]nq
>xn)p is concave with respect to

q ∈ C(b).

In Fig. 3.2, we plot ‖X>q‖pp for p = 0.5 when q scans C(b) for fixed b where Lemma 3.6 is illustrated

–i.e., ‖X>q‖pp is piece-wise concave for p ≤ 1. By Lemma 3.5 and Lemma 3.6, Proposition 2.25

follows.

Proposition 3.1. The optimization problem in (3.4) is a convex problem and can be equivalently

rewritten as min.
q∈C(b)

−
∑

n∈[N ]([b]nq
>xn)p.

3.3.1 Exact Algorithm 1: Exhaustive Search

By Proposition 3.1, for any b ∈ {±1}N , (3.4) is a convex problem and can be solved exactly –e.g.,

by interior point methods. For instance, considering a standard primal-dual interior-point solver

based on Newton’s method [140, 141], (3.4) can be solved with about cubic cost in D,N . More

sophisticated solvers with lower computational cost can also be derived, but this is beyond the scope

of this Chapter. For simplicity in presentation, in this work we solve (3.4) using CVX [142, 143]. In

Fig. 3.3, we offer a CVX code snippet for Matlab for the solution to (3.4). The proposed algorithm

for exact Lp-PCA via exhaustive search over {±1}N is summarized in Algorithm 1.
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(a) Partition of hypersphere. (b) Partition of hyperball.

Figure 3.5. Partition of the hypersphere/hyperball to a set of halfspaces-intersection “cells” for an
arbitrary X ∈ R(D=3)×(N=4).

3.3.2 Exact Algorithm 2: Search Over Set With Size Polynomial in N

We steer our focus on deriving a more intelligent algorithm for computing the dominant Lp-PC

of X. Specifically, we design an algorithm with asymptotic cost polynomial in N for the special

case of interest that X has rank-ρ and ρ� N . We commence our developments with the following

Lemma 3.7.

Lemma 3.7. Let qopt denote the solution to (3.1). It holds that qopt ∈ C(bopt) where bopt =

sgn(X>qopt). Let sopt = ΣU>qopt. Then, bopt = sgn(Vsopt).

By Lemma 3.7, the optimal binary vector bopt, and thus C(bopt), can be found in

B =
{
b ∈ {±1}N : b = sgn(Vc), c ∈ Rρ

}
. (3.5)

Of course, B is a subset of {±1}N and has finite size which is upper-bounded by |{±1}N | = 2N

–i.e., |B| ≤ 2N . We understand that there exist instances of c ∈ Rρ for which sgn(Vc) remains

invariant. In view of this observation, we work as follows to build a tight superset of B with size

polynomial in N . We make the following mild assumption [144]:

Assumption 3.1. Any collection of ρ rows of V are linearly independent. That is, for every

index-set I ⊆ [N ] with |I| = ρ, it holds rank(VI,:) = ρ.

Next, we define vn = [V]n,:
> for every n ∈ [N ] and denote by N (n) the nullspace of vn –i.e.,
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Input: X ∈ RD×N , p ≤ 1
Output: qopt ∈ RD

v ← 0
(U,Σρ×ρ ,V

>)← svd(X)
For every J ⊂ [N ], |J | = ρ− 1

Build BJ in (3.16)

For every b ∈ BJ
q← arg minq∈C(b)−

∑
n∈[N ]([b]nx>n q)p

If ‖X>q‖pp > v, v ← ‖X>q‖pp,qopt ← q

Algorithm 3.2 Exact Lp-PCA via search over polynomial (in N) size set.

N (n) = span(Iρ − vnv
>
n ). We observe that, for every c ∈ N (n), the non-negative angle between

c and vn, φ(c,vn) = π
2 and, accordingly, c>vn = ‖c‖2‖vn‖2 cos (φ(c,vn)) = 0. This implies that

N (n) divides Rρ into two non-overlapping hyperplanes (halfspaces) H(n)+ and H(n)− such that

[100]

H(n)+ =
{

c ∈ Rρ : sgn(c>vn) = +1
}
, (3.6)

H(n)− =
{

c ∈ Rρ : sgn(c>vn) = −1
}
. (3.7)

By the definition of sgn (·), H(n)+ is an open set including the boundary N (n) while H(n)− is an

open set that does not include the boundary N (n). Accordingly, it holds that H(n)+ ∩H(n)− = ∅.
For example, consider some ρ ≥ 3 and indices m < s ∈ [N ]. N (m) and N (s) divide Rρ in the

halfspaces {H(m)+,H(m)−} and {H(s)+,H(s)−}, respectively. By Assumption 3.1, each of the two

halfspaces defined by N (i) for some i ∈ {m, s} will intersect with each of two halfspaces defined by

N (j), j ∈ {m, s} \ i. These intersections result in the four halfspaces-intersection “cells”

C1 = H(m)− ∩H(s)−, (3.8)

C2 = H(m)− ∩H(s)+, (3.9)

C3 = H(m)+ ∩H(s)−, (3.10)

C4 = H(m)+ ∩H(s)+. (3.11)

Importantly, for any j ∈ [4] and i ∈ {m, s}, [sgn(Vc)]i remains the same across Cj –i.e., for

any c ∈ C3, [sgn(Vc)]m = +1 and [sgn(Vc)]s = −1. To better understand how the halfspaces-

intersection “cells” are formed, in Fig. 3.5, we offer a visual illustration for arbitrary matrix

X ∈ R(D=3)×(N=4).
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Next, we generalize the above discussion and consider the arrangement of all N hyperplanes

N (n)∀n ∈ [N ]. These hyperplanes partition Rρ in L non-overlapping cells for some finite L which

depends on ρ and N . Formally, for every l ∈ [L], the l-th halfspaces-intersection cell is defined as

Cl =
⋂
i∈I+
H(i)+

⋂
j∈I−

H(j)−, (3.12)

where I+ ⊂ [N ], I− ⊂ [N ], I+ ∩ I− = ∅, and I+ ∪ I− = [N ] [145, 146]. By the above discussions,

every c ∈ Cl lies in the same intersection of halfspaces and yields the same sgn(Vc). It holds

[sgn(Vc)]n = sgn(v>n c) =

+1, n ∈ I+,

−1, n ∈ I−.
(3.13)

Thereafter, we define a signature for each cell, bl = sgn(Vc) for some c ∈ Cl. We notice that, for

every (k, l) ∈ [N ]× [N ] such that k 6= l, Ck ∩Cl = ∅ and that
⋃
l∈[L] Cl = Rρ. By the above analysis,

the set B in (3.5) takes the equivalent form

B =
⋃
l∈[L]

{sgn(Vc) : c ∈ Cl} = {b1,b2, . . . ,bL}. (3.14)

It has been shown [103, 145] that L = 2
∑ρ−1

k=0

(
N−1
k

)
≤ 2N with equality attained if and only if

ρ = N . It follows that the cardinality of the signature set B is also L. In the sequel, we rely on

the above discussions and construct a tight superset of B. By Assumption 3.1, for any index-set

J ⊆ [N ] with |J | = ρ− 1 and complementary set J c = [N ] \ J , the halfspaces-intersection

SJ =
⋂
n∈[J ]

N (n) (3.15)

is a line (one-dimensional subspace) in Rρ. By definition, this line is the verge between all cells

that are jointly bounded by the ρ− 1 hyperlanes. Then, we consider a vector c ∈ Rρ that crosses

the verge SJ (at any point other than 0ρ). By this crossing, the value of [sgn(Vc)]J will change

so that it adjusts to the cell it just entered while the value of [sgn(Vc)]J c will remain invariant.

This follows straightforwardly by the fact that a crossing over SJ can not be simultaneous over a

crossing of any of the hyperplanes corresponding to J c. Accordingly, for any c ∈ SJ \ 0ρ, the set

BJ =
{
b ∈ {±1}N : [b]J c = [sgn(Vc)]J c

}
(3.16)

contains all the signatures of all the cells are that are bounded by the verge SJ –i.e., all non-zero
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points c asymptotically close to SJ yield sgn(Vc) that lies in BJ . Moreover, there exists at least

one such verge that bounds it. Therefore, the set

B? =
⋃

J⊆[N ] : |J |=ρ−1

BJ (3.17)

includes all cell signatures and, thus, is a superset of B.

Next, we study the size of B? and the computational effort required for forming it. We notice

that for every instance of J , it holds that |BJ | = 2ρ−1, which derives by the sign ambiguity by

the nullspace of each row of V. Moreover, there exist
(
N
ρ−1

)
distinct instances of J which implies

that |B?| is upper bounded by 2ρ−1
(
N
ρ−1

)
. Both B? and B have polynomial size in N . In practice,

for every instance of J , c can be computed by Gram-Schmidt orthogonalization of [V]J ,:
> with

cost O(ρ3). Retaining the dominant terms, B? can be computed with serial cost O(Nρ−1) or by(
N
ρ−1

)
parallel processes. The exact Lp-PC of X can be found by a search over B?. The proposed

algorithm for exact Lp-PCA via a search over B? is summarized in Algorithm 2.

In view of the above, the Lp-PC of a matrix can be computed exactly by a search over {±1}N

or (more intelligently) by a search over B?. In both cases, multiple instances of (3.4) must be

solved. Accordingly, a discussion on the computational effort required for solving (3.4) is in order.

First, we note that numerous distinct solvers can be developed for solving (3.4) enabling different

performance/complexity trade-offs. For simplicity in presentation and to remain within the scope

of this chapter, we presented a solution to (3.4) via CVX’s [142, 143] standardized algorithms.

For a better understanding with respect to the computational effort required for solving (3.4), we

developed a modified primal-dual Newton’s algorithm the presentation of which is omitted as it

extends well beyond the scope of this chapter: to study the underlying mechanics of Lp-PCA and

develop new theory that enables us to compute the exact solution. The per-iteration cost of this

algorithm is dominated by the inversion of a Jacobian matrix with cost O(N3 +D3) –i.e., cubic in

both the number of features and number of points in X. Letting T denote the number of iterations

required for convergence, the overall complexity becomes O(T (N3 + D3)). In practice, we have

observed that T � min{D,N}. Certainly, more sophisticated algorithms can be designed further

reducing the computational effort required for solving Lp-PCA exactly.
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3.4 Contribution 2: The Dominant Lp-PC of a Non-Negative Ma-

trix

We consider the special case of interest that X has non-negative entries –i.e., for every (i, j) ∈
[D] × [N ], [X]i.j ≥ 0. The following Proposition 3.2 states that the Lp-PC of X can be found

exactly without a search.

Proposition 3.2. If X has non-negative entries, then

max
q∈BD×1

‖X>q‖pp = max
q∈C(1N )

‖X>q‖pp. (3.18)

By Proposition 3.2, forming B? is not necessary when X has non-negative entries. Solving (3.4) for

b = 1N suffices for computing the Lp-PC of X.

3.5 Contribution 3: Joint Extraction of Multiple Lp-quasinorm

Principal-Components

We now consider the problem of jointly computing K Lp-PCs of X, for general K > 1. For

readability, we present again the formulation of Lp-PCA

max.
Q∈SD×K

∥∥∥X>Q
∥∥∥p
p
. (3.19)

First, similar to the presented theory for K = 1, we notice that the Stiefel manifold can be

partitioned into a finite number of non-overlapping sets. That is, for every B ∈ {±1}N×K , we

define

C(B) = {Q ∈ SD×K : sgn
(
X>Q

)
= B}. (3.20)

Accordingly, w.l.o.g., Lp-PCA in (3.1) can equivalently be written as

max.
Q∈
⋃

B∈{±1}N×K C(B)

∥∥∥X>Q
∥∥∥p
p
. (3.21)
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Input: X ∈ RD×N , B ∈ {±1}N×K , p ≤ 1
Output: Q ∈ RD×K

cvx beg in
v a r i a b l e Q(D,K)
co s t = 0 ;
f o r k = 1 :K

Yk = X ∗ diag (B( : , k ) ) ;
c o s t = cos t + sum( pow p (Yk’ ∗ Q( : , k ) , p ) ;
Yk’ ∗ Q( : , k ) >= 0

end
maximize ( co s t )
norm(Q, 2) <= 1
cvx end

Figure 3.7. CVX code (Matlab) for the solution to (3.24).

In view of (3.21), we consider fixed B ∈ {±1}N×K and steer our focus on solving

max.
Q∈C(B)

∥∥∥X>Q
∥∥∥p
p
. (3.22)

By Lemma 3.6 and the fact that ‖X>Q‖pp =
∑

k∈[K] ‖X>qk‖pp for any Q ∈ RD×K , we present the

following Lemma 3.8.

Lemma 3.8. The cost function ‖X>Q‖pp =
∑

k∈[K] ‖X>qk‖pp =
∑

n∈[N ]

∑
k∈[K](x

>
nqk[B]n,k) is

concave with respect to Q ∈ C(B).

Lemma 3.8 derives straightforwardly by applying Lemma 3.6 K times. Even though the cost

function of (3.22) is concave with respect to the maximizing argument, the optimization problem

itself is not convex nor concave because of the Stiefel manifold constraint (orthogonality constraints)

and, accordingly, solving (3.22) is not a trivial task. Similar to standard practice in the literature

[147, 148], we consider a convex relaxation formulation of (3.22) by substituting the Stiefel manifold

constraint –i.e., Q ∈ SD×K– by ‖Q‖2 = σmax(Q) ≤ 1.1 The set {Q ∈ RD×K : ‖Q‖2 ≤ 1} is the

convex hull of SD×K –i.e., the smallest convex set which includes it [149].

Formally, we define the set

C̄(B) = {Q ∈ RD×K : ‖Q‖2 ≤ 1, sgn
(
X>Q

)
= B} (3.23)

1For any matrix A, σmax(A) denotes the maximum singular value of A.
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and consider a convex relaxation formulation of (3.22) of the form

max.
Q∈C̄(B)

∥∥∥X>Q
∥∥∥p
p
. (3.24)

We have already established that the cost function of (3.22) (and, thus, (3.24)) is concave with

respect to the maximizing argument. The following Lemma 3.9 states that the set C̄(B) is a convex

set.

Lemma 3.9. For any B ∈ {±1}N×K , C̄(B) is a convex set.

By Lemma 3.8 and Lemma 3.9, the following Proposition 3.3 naturally follows.

Proposition 3.3. The optimization problem in (3.24) is a convex problem and can be equivalently

rewritten as min.
Q∈C̄(B)

−
∑

n∈[N ]

∑
k∈[K]([B]n,kx

>
nqk)

p.

For simplicity, in this work we solve (3.24) with CVX [142, 143]. In Fig. 3.7, we offer a CVX

code snippet for Matlab for the solution to (3.24). In the sequel, we discuss how solving (3.24),

for a fixed B, can be leveraged for deriving a solution to the original problem of interest (3.1) (or,

(3.21)).

A straightforward yet naive approach would be to solve (3.24) for every B ∈ {±1}N×K (exhaustive

search) and retain the solution that attains the highest metric. While this approach computes the

exact solution to

max.
Q∈RD×K :‖Q‖2≤1

∥∥∥X>Q
∥∥∥p
p
, (3.25)

an exhaustive search is not necessary in accordance with the following Lemma 3.10

Lemma 3.10. Let Q̄opt be the exact solution to maxQ∈C̄(B) maxB∈{±1}N×K ‖X>Q‖pp (equivalently

(3.25)). B̄opt = sgn(X>Q̄opt) is such that, for every k ∈ [K], [B̄opt]:,k ∈ B?.

By Lemma 3.10, the exact solution to (3.25) can be computed by a search over the set

B?,K = {B ∈ {±1}N×K : [B]:,k ∈ B?∀k ∈ [K]}. (3.26)

In practice, B?,K is the K-fold Cartesian product of B?. Moreover, it holds that B?,K ⊆ {±1}N×K

and that |B?,K | = |B?|K ≤ |{±1}N×K |. In view of this discussion, we propose to solve (3.24) for

every B ∈ B?,K . The proposed algorithm the solving (3.25) is summarized in Algorithm 3.
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Input: X ∈ RD×N , K, p ≤ 1
Output: Q̄opt ∈ RD

v ← 0
For every B ∈ B?,K

Q← arg minQ∈C̄(B)−
∑

n∈[N ]

∑
k∈[K]([B]n,kx>n qk)p

If ‖X>Q‖pp > v, v ← ‖X>Q‖pp, Q̄opt ← Q

Algorithm 3.3 Multiple Lp-PCs (convex relaxation) via search over polynomial (in N) size set.

Formally, by Algorithm 3 we obtain the exact solution to (3.25) by solving

max
Q∈C̄(B)

max
B∈B?,K

‖X>Q‖pp. (3.27)

Let Q̄opt denote the exact solution to (3.27). We distinguish two cases for Q̄opt: (i) Q̄opt ∈ SD×K
and (ii) Q̄opt /∈ SD×K . Then, we present the following Proposition 3.4

Proposition 3.4. If Q̄opt ∈ SD×K , then it solves Lp-PCA in (3.1) exactly.

Proposition 3.4 states that when the solution of the convex relaxation formulation is in the Stiefel

manifold, then it is also a solution to the original Lp-PCA formulation. Our numerical studies have

shown that this is often the case. In the sequel, we propose an algorithm for computing a solution

in the Stiefel manifold when Q̄opt /∈ SD×K .

3.6 Contribution 4: Stiefel Manifold Solution Refinement

In this Section, we propose a method for computing a solution to the original problem in (3.1) for

the special case that Q̄opt /∈ SD×K .

In this case, the most straightforward approach would be to refine Q̄opt by solving

arg min
Q∈SD×K

‖Q− Q̄opt‖2F . (3.28)

This problem admits an exact solution by means of the Procrustes Theorem. Our numerical studies

have shown that, although simple, this approach is inferior with respect to the Lp-PCA metric,

when compared with the more sophisticated approach that we propose next as follows.

Even if Q̄opt /∈ SD×K , it provides valuable information about the solution to (3.1). First, we
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understand that v̄ = ‖X>Q̄opt‖pp serves as an upper-bound of the maximum attainable metric of

the cost function of (3.1). That is, if we denote by Qopt the exact solution to (3.1), then it always

holds that ‖X>Qopt‖pp ≤ ‖X>Q̄opt‖pp. Moreover, it is reasonable to expect that Qopt can exhibit

low Euclidean distance from Q̄opt when we consider that the metric surface of the cost function

is concave over C̄(Bopt), where Bopt = sgn(X>Q̄opt). Accordingly, we propose to use Q̄opt as an

“anchor” and search over an area near it while at the same time trying to maximize the metric

of interest. To this end, we propose an iterative algorithm for computing a solution in the Stiefel

manifold by leveraging Q̄opt as follows. First, we initialize Q1 = Q̄opt. Then, at every iteration

i ≥ 1, we update

Qi+1 = arg max
Q∈C̄(Bopt)

1

v̄

∑
n∈[N ]

∑
k∈[K]

([B]n,kx
>
nqk)

p + τTr(Q>Qi), (3.29)

where τ > 0 is a regularization coefficient that promotes orthogonality among the columns of Q.

For any fixed iteration index i, the above problem is, of course, a convex problem. Moreover, at

every iteration the compound metric in (3.29) is increasing. At the same time, the compound metric

is upper bounded. Accordingly, convergence is guaranteed. Importantly, for an appropriate choice

of τ , the term τTr(Q>Qi) will enforce the Stiefel manifold constraint. Interestingly, the proposed

iteration in (3.29) is similar, in formulation, with the general form of proximal algorithms [150],

a special class of optimization algorithms. Furthermore, in view of (3.29), we consider a parallel

stream of matrices each of which are guaranteed to be in the Stiefel manifold, independently of the

choice of τ . That is, at every iteration index i ≥ 1, we compute Wi = arg minW∈SD×K ‖W−Qi‖2F .

Next, we evaluate the performance of the proposed iteration in(3.29) by evaluating the Lp-PCA

metric attained by both Qi and Wi, for every i ≥ 1. As measures of success, we consider two

metrics. First, at any fixed iteration index i, we measure the ratio of the Lp-PCA metric attained

by Qi and Wi with respect to the known upper-bound v̄ by computing vi = 1
v̄‖X

>Qi‖pp and

ṽi = 1
v̄‖X

>Wi‖pp, respectively. Certainly, it holds that vi ≤ 1 and that ṽi ≤ 1. Second, we measure

the proximity of Qi to the Stiefel manifold by measuring e(i) = 1
K ‖Q

>
i Qi− IK‖2F . If e(i) = 0 then

Qi is in the Stiefel manifold. Let I denote the converging iteration of (3.29). If vI = 1 and e(I) = 0

at the same time, then the proposed iteration in (3.29) has returned the exact solution to (3.1).

We consider data matrix X ∈ RD×N drawing entries from N (0, 1). We run Algorithm 3 on X and

compute Q̄opt. If Q̄opt ∈ SD×K , then we discard it. Otherwise, we give it as input to the iteration

in (3.29) for refining its solution to a solution in the Stiefel manifold. We repeat this process until

we collect 30 realizations of X such that Q̄opt /∈ SD×K .
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(a) Attained upper-bound ratio vs iteration index.
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(b) Proximity to Stiefel manifold vs iteration index.

Figure 3.9. Evaluation of the proposed iteration in (3.29) for p = 1, D = 3, N = 5, and K = 2.
Reported curve-values are averages over 30 realizations of data.
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(b) Proximity to Stiefel manifold vs iteration index.

Figure 3.10. Evaluation of the proposed iteration in (3.29) for p = 0.90, D = 3, N = 5, and K = 2.
Reported curve-values are averages over 30 realizations of data.

First, we set D = 3, N = 5, K = 2, and p = 1. In Fig. 3.9a and Fig. 3.9b, we plot (vi,ṽi) and e(i),

respectively, for τ = K and τ = 2K. The reported performances are averages over 30 realizations.

We observe that both streams of matrices attain the maximum attainable metric across the board

and, at the converging iteration I, both QI and WI are in the Stiefel manifold –i.e., the solution

is exact. Next, we repeat the above study, this time for p = 0.9. We present the performance

curves in Fig. 3.10a and Fig. 3.10b, computed again over 30 realizations. We notice that vi ≥ ṽi

for every iteration index. Specifically, in early iterations the matrices of the original stream offer

slightly higher metric compared to the matrices of the parallel stream. However, upon convergence,

the matrices of the two streams coincide and converge to the same metric. We repeat the above

experiment, this time for p = 0.75. We illustrate the average performances in Fig. 3.11a and Fig.

3.11b. The observations we make are the same as above.

Thereafter, we adjust the parameter configuration as follows. We set D = 4, N = 5, K = 3, and
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Figure 3.11. Evaluation of the proposed iteration in (3.29) for p = 0.75, D = 3, N = 5, and K = 2.
Reported curve-values are averages over 30 realizations of data.

0 2 4 6 8 10 12 14 16
Iteration index, i

0.9970

0.9980

0.9990

1.0000

A
tta

in
ed

 u
pp

er
-b

ou
nd

 r
at

io

  K
  2K
  K (parallel stream)
  2K (parallel stream)

(a) Attained upper-bound ratio vs iteration index.

0 2 4 6 8 10 12 14 16
Iteration index, i

0

0.1

0.2

0.3

0.4
  K
  2K

(b) Proximity to Stiefel manifold vs iteration index.

Figure 3.12. Evaluation of the proposed iteration in (3.29) for p = 1, D = 4, N = 5, and K = 3.
Reported curve-values are averages over 30 realizations of data.

repeat the above experiments for p = 1, p = 0.9, and p = 0.75. The average performances are

reported in Fig. 3.12, Fig. 3.13, and Fig. 3.14, respectively. The observations we make are inline

with the observation made the smaller matrix size previously studied.

In view of the above, we infer that, for any matrix X, if we left Qopt denote the exact solution

to Lp-PCA, then the following holds: ‖Q>optX‖
p
p − ‖W>

I X‖pp ≤ α = ‖Q̄>optX‖
p
p − ‖W>

I X‖pp. That

is, the difference of the Lp-PCA metric attained by the solution over the spectral ball and the

converging argument of the parallel stream, serves as a lower bound α of the performance attained

by WI , over the Stiefel manifold, with respect to the Lp-PCA metric. Our numerical experiments

have shown that that the lower-bound α is, in general, very small.
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Figure 3.13. Evaluation of the proposed iteration in (3.29) for p = 0.90, D = 4, N = 5, and K = 3.
Reported curve-values are averages over 30 realizations of data.

0 2 4 6 8 10 12 14 16
Iteration index, i

0.9970

0.9980

0.9990

1.0000

A
tta

in
ed

 u
pp

er
-b

ou
nd

 r
at

io

  K
  2K
  K (parallel stream)
  2K (parallel stream)

(a) Attained upper-bound ratio vs iteration index.

0 2 4 6 8 10 12 14 16
Iteration index, i

0

0.1

0.2

0.3

0.4
  K
  2K

(b) Proximity to Stiefel manifold vs iteration index.

Figure 3.14. Evaluation of the proposed iteration in (3.29) for p = 0.75, D = 4, N = 5, and K = 3.
Reported curve-values are averages over 30 realizations of data.

3.7 Numerical Experiments

In this chapter, we set the theoretical foundations for Lp-quasinorm Principal-Component analysis

and proposed algorithms for its solution. The proposed algorithms are of theoretical value –i.e., they

reveal the underlying properties and mechanics of the problem which, in turn, set the foundations

for developing efficient and scalable algorithms. Nonetheless, the development of such algorithms is

beyond the scope of this Chapter. In the sequel, we conduct numerical experiments on rather small-

sized matrices. The purpose of these studies is to demonstrate the merits of Lp-PCA processing.
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Figure 3.15. Subspace recovery: NSSE vs number of outliers No. D = 7, N = 7, K = 1, p = 0.5,
SNR = 8dB, ONR = 18dB.

3.7.1 Subspace Recovery

We consider availability of matrix

X = Xs + N + O ∈ RD×N . (3.30)

Matrix Xs = QnomU> is the signal-of-interest carrying matrix such that Qnom ∈ SD×K is the signal-

of-interest subspace basis and U ∈ RN×K draws entries fromN (0, 1) –i.e., E{‖U‖2F } = KN . Matrix

N models Additive White Gaussian Noise (AWGN) and draws entries from N (0, σ2
n). Matrix O

models sparse outliers –i.e., it has No non-zero entries drawing values from N (0, σ2
o). The objective

is to recover Qnom from the available for processing matrix X. To measure data quality, we define

the Signal-to-Noise-Ratio (SNR)

SNR = E

{
‖Xs‖2F
‖N‖2F

}
(3.31)

and the Outlier-to-Noise-Ratio (ONR)

ONR = E

{
‖O‖2F
‖N‖2F

}
. (3.32)

As a performance evaluation metric, for any estimate of Qnom, Q̂ ∈ SD×K , we define the Normalized

Subspace Squared Error (NSSE)

NSSE =
1

2K

∥∥∥QnomQ>nom − Q̂Q̂>
∥∥∥2

F
∈ [0, 1]. (3.33)
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Figure 3.16. Subspace recovery: NSSE vs ONR (dB). D = 7, N = 7, K = 1, p = 0.25, SNR = 8dB,
No = 2.
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Figure 3.17. Subspace recovery: NSSE vs p. D = 7, N = 7, K = 1, ONR = 18dB , SNR = 8dB,
No = 2.

In Fig. 3.15, we set D = 7, N = 7, K = 1, SNR = 8dB and ONR = 18dB. We let No vary in

{0, 1, 2} and measure the average NSSE (computed over 1000 statistically independent realizations

of noise and corruption) attained by the proposed Lp-PCA algorithm (p = 0.5) and compare against

standard PCA implemented by means of SVD. We observe that, under nominal operation (No = 0),

both methods attain high basis estimation performance. However, for No > 0, Lp-PCA (p = 0.5)

clearly outperforms standard PCA in subspace basis estimation performance.

In Fig. 3.16, we consider the same parameter configuration as above with the exception that, this

time, we fix No = 2 and let ONR vary in {0, 10, 20}dB. We measure the average NSSE (computed

over 1000 statistically independent realizations of noise and corruption) attained by the proposed

Lp-PCA algorithm (p = 0.25) and compare against standard PCA. For benign corruption (ONR

= 0dB), both approaches exhibit high estimation performance. In contrast, the robustness of Lp-

PCA (p = 0.25) and its superiority against standard PCA are clearly documented when ONR is

greater or equal than 10dB.
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Finally, in Fig. 3.17, we consider again the same parameter configuration. This time, we fix ONR

= 18dB and let p vary in {0.2, 0.5, 0.8}. We illustrate the average NSSE performance vs p (computed

over 1000 statistically independent realizations of noise and corruption). As a benchmark, we

include the performance of standard PCA (horizontal line). Once more, the merit of Lp-PCA

processing and its superiority over standard PCA are clearly documented.

3.7.2 Classification of Biomedical Data

We consider length-(D = 30) vector samples computed from a digitized image of a fine needle

aspirate (FNA) of a breast mass which are available in the Breast Cancer Wisconsin (Diagnostic)

dataset [151, 152]. There are 569 data samples in total, each of which is labeled as malignant

or benign tissue. There are 212 malignant and 357 benign tissue-samples available. We arrange

all the samples in data matrix X ∈ R(D=30)×(N=569) and define label-vector z ∈ {0, 1}569, where

[z]i = 1 if [X]:,i corresponds to a malignant tissue and [z]i = 0 if [X]:,i corresponds to a benign

tissue. We consider availability of Ntrain points from each class for training and Ntest for testing.

We let Xb = [X]:,Ib ∈ RD×Ntrain and Xm = [X]:,Im ∈ RD×Ntrain denote the benign and malignant

training data samples, respectively, where Ib ⊂ [569], |Ib| = Ntrain, Im ⊂ [569], and |Im| =

Ntrain. Similarly, Yb = [X]:,Jb ∈ RD×Ntest and Ym = [X]:,Jm ∈ RD×Ntest denote the benign and

malignant data samples, respectively, for testing, where Jb ⊂ [569], |Jb| = Ntest, Jm ⊂ [569],

and |Jm| = Ntest. There is no overlap between the training and testing data of each class –i.e.,

Im ∩ Jm = ∅ and Ib ∩ Jb = ∅. During training, we compute qb = arg maxq∈BD×1
‖X>b q‖pp and

qm = arg maxq∈BD×1
‖X>mq‖pp by means of the proposed algorithm. Given a testing sample y from

Ym or Yb, we classify it according to

(q>my)2‖y‖−2
benign

≶
malignant

(q>b y)2‖y‖−2. (3.34)

In Fig. 3.18, we set Ntrain = 16 and Ntest = 100. We plot the average classification accuracy

(computed over 1000 distinct realizations of Im, Ib,Jm,Jb) when p varies in

{0.01, 0.05, 0.2, 0.35, 0.50, 0.65, 0.80, 0.95, 1}. (3.35)

Moreover, we include as benchmarks the classification accuracies of the k-nearest neighbor classifier

for k = 1 (NN) and the stanard Principal-Component Analysis implemented by means of SVD.

We observe that all methods exhibit high performance. NN exhibits the best performance, slightly

higher than that of Lp-PCA for p = 0.01. Standard PCA, implemented by means of SVD, exhibits
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Figure 3.18. Breast Cancer Wisconsin (Diagnostic) Dataset: Classification accuracy vs p. Ntrain =
20, Ntest = 100, m = 0.
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Figure 3.19. Breast Cancer Wisconsin (Diagnostic) Dataset: Classification accuracy vs p. Ntrain =
20, Ntest = 100, m = 3.

the lowest performance.

In Fig. 3.19, we repeat the above experiment but this time we consider that m = 3 malignant

samples have mistakenly been labeled as benign samples and m = 3 benign samples have been

mislabeled as malignant. We notice that the performances of NN and SVD are significantly com-

promised by the mislabelings –i.e., the performance of NN dropped to 0.74 from 0.89 and the

performance of PCA dropped to 0.71 from 0.85. On the other hand, Lp-PCA attained classifica-

tion performance as high as 0.88 (p = 0.1) and no lower than 0.825 (p = 1).

Finally, in Fig. 3.20, we set Ntrain = 20, Ntest = 100, and p = 0.1. We let the number of

mislabelings, m, vary in {0, 1, 2, 3, 4}.2 Then, we plot the classification accuracy attained by each

method (computed over 1000 distinct realizations of data and corruptions). Expectedly, when

m = 0 the performances of all methods are similar to their performances in Fig. 3.18. However, as

2That is, m benign samples have wrongly been labeled as malignant and m malignant samples have been labeled
as benign samples.
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Figure 3.20. Breast Cancer Wisconsin (Diagnostic) Dataset: Classification accuracy vs number of
mislabelings. Ntrain = 20, Ntest = 100, p = 0.1.

m increases, the performances of NN and PCA are compromised. Interestingly, the performance of

Lp-PCA (p = 0.1) appears to be affected very little by the mislabelings for all values of m.

3.8 Conclusions

In this Chapter, we proposed new theory and algorithms for Lp-quasinorm Principal-Component

Analysis. Specifically: (i) We showed, for the first time, that rank-1 Lp-PCA admits an exact

solution by means of combinatorial optimization and presented the first algorithms for its solution.

(ii) We proved that, for non-negative data, the dominant Lp-PC can be computed by solving

a convex problem. (iii) We proposed a novel near-exact algorithm for jointly extracting multiple

components. (iv) We proposed a solution-refinement strategy which, in some cases, further enhances

a near-exact solution to Lp-PCA.



Chapter 4

Coprime Array Processing

4.1 Introduction

Coprime Arrays (CAs) are non-uniform linear arrays the element locations of which are derived by

coprime number theory [153]. CAs are a special class of sparse arrays [153, 154] which are often

preferred due to their desirable bearing properties –i.e., enhanced Degrees-of-Freedom (DoF) and

closed-form expressions for element-locations. CAs have attracted significant research interest over

the past years and have been successfully employed in applications such as Direction-of-Arrival

(DoA) estimation [155–166], beamforming [167–169], interference localization and mitigation in

satellite systems [170], and space-time adaptive processing [171, 172], to name a few.

Interpolation methods for CAs which further enhance DoF [173–180] have also been studied. Fur-

thermore, scholars have considered CAs for underwater localization [181, 182], channel estimation

in MIMO communications via tensor decomposition [183], receivers capable of two-dimensional

DoA estimation [184], and receivers on moving platforms which also promote increased number of

DoF [185–187]. Other non-uniform arrays with increased DoF and closed-form expressions are the

nested and MISC arrays [154, 188].

In standard DoA estimation with CAs [153], the receiver conducts a series of intelligent process-

ing steps and assembles an autocorrelation matrix which corresponds to a larger virtual Uniform

Linear Array (ULA) which is commonly referred to as coarray. Accordingly, CAs enable the iden-

tification of more sources than sensors compared to equal-length ULAs [189–195]. Processing at a

coprime array receiver commences with the estimation of the nominal (true) physical-array auto-

87
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correlations. The receiver processes the estimated autocorrelations so that each coarray element is

represented by one autocorrelation estimate. Next, the processed autocorrelations undergo spatial

smoothing, forming an autocorrelation matrix estimate which corresponds to the coarray. By the

received-signal model, the nominal autocorrelation matrix of the coarray has a specific structure:

it is (i) Positive Definite (PD), (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigenvalues

are equal. Finally, a DoA estimation approach such as the MUltiple SIgnal Classification (MU-

SIC) algorithm, for instance, can be applied to the resulting autocorrelation matrix estimate for

identifying the source directions.

In practice, the autocorrelations of the physical-array elements are estimated by processing a col-

lection of received-signal snapshots and diverge from the nominal ones. Accordingly, existing ap-

proaches offer autocorrelation-matrix estimates which diverge from the nominal one, while at the

same time, violate at least one of the above structure-properties. At the autocorrelation pro-

cessing step, the estimated autocorrelations are commonly processed by selection combining [153],

retaining only one autocorrelation sample for each coarray element. Alternatively, an autocor-

relation estimate for each coarray element is obtained by averaging combining [162] all available

sample-estimates corresponding to a particular coarray element. The two methods coincide in

Mean-Squared-Error (MSE) estimation performance when applied to the nominal physical-array

autocorrelations –which the receiver could only estimate with asymptotically large number of

received-signal snapshots. Due to a finite number of received-signal snapshots available at the

receiver and the fact that these methods have been designed under no optimality criterion, the

estimated autocorrelations diverge from the nominal ones and attain arbitrary MSE performance.

In this case, the two methods no longer coincide in MSE estimation performance.

In this Chapter, we focus on the autocorrelation combining step of coprime array processing and

make the following contributions:

Contribution i. For the first time, we present in closed-form the MSE of both selection and averag-

ing autocorrelation combining and show that, for any number of sample support,

averaging combining offers superior MSE estimation performance compared to

selection combining. The theoretical results are validated with numerical simu-

lations.

Contribution ii. Motivated by prior works which treat source angles as statistical random vari-

ables [196, 197], we make the mild assumption that the source directions are inde-

pendently and identically distributed random variables. Under this assumption,

we design a novel coprime array receiver equipped with a linear autocorrelation
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combiner designed under the Minimum-MSE (MMSE) optimality criterion. The

proposed MMSE combiner minimizes in the mean –i.e., for any configuration of

DoAs– the error in estimating the physical-array autocorrelations with respect to

the MSE metric. We conduct extensive numerical studies and compare the per-

formance of the proposed MMSE combiner to existing counterparts, with respect

to autocorrelation estimation error and DoA estimation.

Contribution iii. We propose an optimization framework for computing an improved coarray au-

tocorrelation matrix estimate that satisfies the structure properties (i)-(iv). In

practice, we iteratively solve a sequence of distinct structure-optimization prob-

lems, obtaining upon convergence, an improved estimate that satisfies properties

(i)-(iv). The proposed framework is accompanied by formal convergence analy-

sis. Numerical studies illustrate that the proposed method outperforms standard

counterparts, both in estimation error and DoA estimation.

The rest of this Chapter is organized as follows. In Section 4.2, we present the signal model and state

the problem of interest. In Section 4.3, we review the existing selection and averaging autocorrela-

tion combining methods for coprime arrays and existing coarray autocorrelation matrix estimates.

In Section 4.4, we present the closed-form expressions of selection and averaging autocorrelation

combining approaches. Then, in Section 4.5, we present the proposed MMSE autocorrelation com-

bining. After, in Section 4.6, we present the proposed structured coarray autocorrelation matrix

estimate. Conclusions are drawn in Section 4.7.

The contributions presented in this Chapter have also been presented in [155, 156, 198, 199].

4.2 Signal Model and Problem Statement

Consider coprime naturals (M,N) such that M < N . A coprime array equipped with L = 2M+N−
1 elements is formed by overlapping a ULA with N antenna elements at positions pM,i = (i−1)M∆,

i = 1, 2, . . . , N , and a ULA equipped with 2M − 1 antenna elements at positions pN,i = iN∆,

i = 1, 2, . . . , 2M − 1. The reference unit-spacing ∆ is typically set to one-half wavelength at the

operating frequency. The positions of the L elements are the entries of the element-location vector

p
4
= sort([pM,1, . . . , pM,N , pN,1, . . . , pN,2M−1]>), where sort(·) sorts the entries of its vector argument

in ascending order and the superscript ‘>’ denotes matrix transpose. We assume that narrowband

signals impinge on the array from K < MN + M sources with propagation speed c and carrier
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frequency fc. Assuming far-field conditions, a signal from source k ∈ {1, 2, . . . ,K} impinges on

the array from direction θk ∈ (−π
2 ,

π
2 ] with respect to the broadside. The array response vector

for source k is s(θk)
4
= [v(θk)

[p]1 , . . . , v(θk)
[p]L ]> ∈ CL×1, with v(θ)

4
= exp

(
−j2πfc

c sin(θ)
)

for every

θ ∈ (−π
2 ,

π
2 ]. Accordingly, the qth collected received-signal snapshot is of the form

yq =
K∑
k=1

s(θk)ξq,k + nq ∈ CL×1, (4.1)

where ξq,k ∼ CN (0, dk) is the qth symbol for source k (power-scaled and flat-fading-channel pro-

cessed) and nq ∼ CN (0L, σ
2IL) models Additive White Gaussian Noise (AWGN). We make the

common assumptions that the random variables are statistically independent across different snap-

shots and that symbols from different sources are independent of each other and of every entry of

nq. The received-signal autocorrelation matrix is given by

Ry
4
= E{yqyHq } = S diag(d) SH + σ2IL, (4.2)

where d
4
= [d1, . . . , dK ]> ∈ RK×1

+ is the source-power vector and S
4
= [s(θ1), . . . , s(θK)] ∈ CL×K is

the array-response matrix. We define

r
4
= vec(Ry) =

K∑
i=1

a(θi)di + σ2iL ∈ CL
2×1, (4.3)

where vec(·) returns the column-wise vectorization of its matrix argument, a(θi)
4
= s(θi)

∗ ⊗ s(θi),

iL
4
= vec(IL), the superscript ‘∗’ denotes complex conjugate, and ‘⊗’ is the Kronecker product of

matrices [200]. By coprime number theory [153], for every n ∈ {−L′ + 1,−L′ + 2, . . . , L′ − 1} with

L′
4
= MN +M , there exists a well-defined set of indices Jn ⊂ {1, 2, . . . , L2}, such that

[a(θ)]j = v(θ)n ∀j ∈ Jn, (4.4)

for every θ ∈ (−π
2 ,

π
2 ]. We henceforth consider that Jn contains all j indices that satisfy (4.4). In

view of (4.4), a coprime array receiver assembles a linear combining matrix E ∈ RL2×(2L′−1) and

forms a length-(2L′ − 1) autocorrelation-vector rco, each element of which corresponds to a single

set Jn, for every n ∈ {1 − L′, 2 − L′, . . . , L′ − 1}, by conducting linear processing1 (e.g., E>r) to

1Existing coprime array autocorrelation processing methods in the literature are reviewed in Section 4.3.
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the autocorrelations in r. That is, there exists linear combiner E such that

rco = E>r =

K∑
k=1

aco(θk)dk + σ2eL′,2L′−1, (4.5)

where aco(θ)
4
= [v(θ)1−L′ , v(θ)2−L′ , . . . , v(θ)L

′−1] for any θ ∈ (−π
2 ,

π
2 ], and, for any p ≤ P ∈ N+,

ep,P is the pth column of IP . Thereafter, the receiver applies spatial-smoothing to organize the

sampled autocorrelations as the matrix

Z
4
= Φ (rco)

4
= F(IL′ ⊗ rco) ∈ CL

′×L′ , (4.6)

where F
4
= [F1,F2, . . . ,FL′ ] and Fm

4
= [0L′×(L′−m), IL′ ,0L′×(m−1)] ∀m ∈ {1, 2, . . . , L′}. This ap-

proach is also known as the Augmented Matrix in the coprime array processing literature [162].

Importantly, under nominal statistics Z becomes the autocorrelation matrix of a length-L′ ULA

with antenna elements at locations {0, 1, . . . , L′ − 1}∆. That is,

Z = Scodiag(d)SHco + σ2IL′ , (4.7)

where it holds that [Sco]m,k = v(θk)
m−1 for everym ∈ {1, 2, . . . , L′} and k ∈ {1, 2, . . . ,K}. Standard

MUSIC DoA estimation can be applied to Z. Let the columns of U ∈ CL′×K be the dominant

left-hand singular vectors of Z, corresponding to its K highest singular values, acquired by means

of Singular Value Decomposition (SVD). Defining v(θ) = [1, v(θ), . . . , v(θ)L
′−1]>, we can accurately

decide that θ ∈ (−π
2 ,

π
2 ] belongs in Θ

4
= {θ1, θ2, . . . , θK} if (IL′ −UUH)v(θ) = 0L′ is satisfied for

some θ. Equivalently, we can resolve the angles in Θ by the K (smallest) local minima of the

standard MUSIC spectrum [201]

PMUSIC(θ) =
∥∥(IL′ −UUH

)
v(θ)

∥∥2

2
. (4.8)

In practice, Ry in (4.2) is unknown to the receiver and sample-average estimated by a collection of

Q received-signal snapshots in Y = [y1,y2, . . . ,yQ] by

R̂y =
1

Q

Q∑
q=1

yqy
H
q . (4.9)
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Figure 4.1. Coprime processing steps: from a collection of samples {yq}Qq=1 to the estimated coarray
signal-subspace basis U.

Accordingly, the physical-array autocorrelation-vector r in (4.3) is estimated by

r̂
4
= vec(R̂y) =

1

Q

Q∑
q=1

y∗q ⊗ yq. (4.10)

The receiver then conducts linear combining to the estimated autocorrelation vector r̂ to obtain an

estimate of rco, r̂co = E>r̂. The estimation error ‖rco − r̂co‖2 depends on how well the linear com-

biner E estimates the nominal physical-array autocorrelations. Accordingly, Z in (4.7) is estimated

by Ẑ
4
= Φ (r̂co).

Finally, MUSIC DoA estimation can be applied using the K dominant left-hand singular vectors

of Ẑ instead of those of Z. Of course, in practice, there is an inherent DoA estimation error due

to the mismatch between Z and Ẑ. A schematic illustration of the coprime array processing steps

presented above is offered in Fig. 4.1.

4.3 Technical Background

4.3.1 Selection Combining

The most commonly considered autocorrelation combining method is selection combining [153]

based on which the receiver selects any single index jn ∈ Jn, for n ∈ {−L′ + 1, . . . , L′ − 1},
and forms the selection combining matrix

Esel
4
=
[
ej1−L′ ,L2 , ej2−L′ ,L2 , . . . , ejL′−1,L

2

]
∈ RL

2×(2L′−1), (4.11)
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by which it processes the autocorrelations in r, discarding by selection all duplicates –i.e., every

entry with index in Jn \ jn, for every n– to form autocorrelation vector

rsel
4
= E>selr ∈ R2L′−1. (4.12)

Importantly, when the nominal entries of r are known to the receiver, rsel coincides with rco in (4.5),

thus, applying spatial smoothing on rsel yields the exact coarray autocorrelation matrix Z = Φ (rsel).

In contrast, when r is unknown to the receiver and estimated by r̂ in (4.10), rsel in (4.12) is estimated

by

r̂sel = E>selr̂ ∈ R2L′−1. (4.13)

Accordingly, the coarray autocorrelation matrix is estimated by Ẑsel
4
= Φ (r̂sel).

4.3.2 Averaging Combining

Instead of selecting a single index in Jn by discarding duplicates, averaging combining [162] conducts

averaging on all autocorrelation estimates in Jn, for every n ∈ {1−L′, 2−L′, . . . , L′− 1}. That is,

the receiver forms the averaging combining matrix

Eavg
4
=

 1

|J1−L′ |
∑

j∈J1−L′

ej,L2 , . . . ,
1

|JL′−1|
∑

j∈JL′−1

ej,L2

 . (4.14)

| · | denotes the cardinality (number of elements in a set) of its argument. Then, it processes the

autocorrelation vector r to obtain

ravg
4
= E>avgr ∈ R2L′−1. (4.15)

By (4.4) and the fact that [iL]j equals 1, if j ∈ J0 and 0 otherwise, it holds that, for any n ∈
{−L′ + 1, . . . , L′ − 1}, [r]j = e>j,L2r takes a constant value for every j ∈ Jn. Thus, ravg coincides

with rsel and rco. Therefore, similar to the selection combining approach, when r is known to the

receiver, applying spatial smoothing on ravg yields Z = Φ (ravg). In practice, when Ry in (4.2) is

estimated by R̂y in (4.9), ravg is estimated by

r̂avg
4
= Eavg

>r̂ ∈ R2L′−1. (4.16)
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Accordingly, Z is estimated by Ẑavg
4
= Φ (r̂avg).

4.3.3 Remarks on Existing Coarray Autocorrelation Matrix Estimates

The true coarray autocorrelation matrix Z has full-rank, is PD, Hermitian, and Toeplitz. If we

consider Zss
4
= 1

L′ZZH , then an autocorrelation matrix estimate can be extracted from Zss as a

scaled version of its Principal Squared Root (PSR) [153]

Zpsr
4
=
√
L′Z

1
2
ss. (4.17)

We notice that ZZH = Z2 = L′Zss. Moreover, Zss admits SVD Zss
svd
= UΛVH which implies that

Zpsr = U(
√
L′Λ

1
2 )VH = Z. That is, Zpsr and Z coincide. Accordingly, in the (ideal) case of known

statistics to the receiver, all estimates that we have discussed above coincide with the nominal

autocorrelation matrix of the coarray and satisfy (i)-(iv).

However, in the practical case of unknown statistics (case of interest) to the receiver, the estimates

above diverge from Z and satisfy only a subset of (i)-(iv): That is, Ẑavg and Ẑsel are guaranteed

to be Hermitian and Toeplitz, however, they are not guaranteed to be PD –i.e., Ẑavg and Ẑsel can

be indefinite estimates of Z [162]. Similarly, by adopting the superior averaging autocorrelation

combining approach, Zss and Zpsr can be estimated by Ẑss
4
= 1

L′ ẐavgẐ
H
avg and Ẑpsr

4
=
√
L′Ẑ

1
2
ss,

respectively. In view of the above, Ẑpsr is by construction a PD and Hermitian matrix estimate

of the coarray autocorrelation matrix, however, it violates the Toeplitz structure-property of Z.

It follows that Ẑpsr and Ẑavg no longer coincide, however, their left-hand singular-valued singular

vectors span the same signal subspace.

4.4 Contribution 1: Closed-form MSE Expressions for Selection

and Averaging Combining

In general, estimates r̂sel and r̂avg diverge from rco and attain MSE errr(r̂sel)
4
= E{‖rco − r̂sel‖22}

and errr(r̂avg), respectively. Ẑsel and Ẑavg diverge from the true Z and attain MSE errZ(Ẑsel)
4
=

E{‖Z − Ẑsel‖2F } and errZ(Ẑavg), respectively. In this Section, we present for the first time closed-

form MSE expressions for the estimation errors attained by selection and averaging combining.

For any sample support Q, the following Lemma 4.1 and Lemma 4.2 express in closed-form the
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MSE attained by r̂sel.

Lemma 4.1. For any n ∈ {−L′ + 1,−L′ + 2, . . . , L′ − 1} and j ∈ Jn, it holds

e = E{|[r]j − [r̂]j |2} =
(1>Kd + σ2)2

Q
. (4.18)

Lemma 4.2. r̂sel attains MSE errr(r̂sel) = (2L′ − 1) e.

In view of Lemma 4.2, the following Proposition naturally follows.

Proposition 4.1. Ẑsel attains MSE errZ(Ẑsel) = L′2e.

Expectedly, as the sample-support Q grows asymptotically, e, errr(r̂sel), and errZ(Ẑsel) converge to

zero.

For any sample support Q, the following Lemma 4.3 and Lemma 4.4 express in closed-form the MSE

attained by r̂avg, where ṗ
4
= p⊗ 1L, ω̇i,j

4
= [ṗ]i− [ṗ]j , and zi,j

4
= [v(θ1)ω̇i,j v(θ2)ω̇i,j . . . v(θK)ω̇i,j ]H .

Lemma 4.3. For any n ∈ {−L′ + 1, . . . , L′ − 1} and jn ∈ Jn, it holds that

en = E


∣∣∣∣∣∣[r]jn −

1

|Jn|
∑
j∈Jn

[r̂]j

∣∣∣∣∣∣
2 =

1

Q

2σ21>Kd + σ4

|Jn|
+
∑
i∈Jn

∑
j∈Jn

|zHi,jd|2

|Jn|2

 . (4.19)

Lemma 4.4. r̂avg attains MSE errr(r̂avg) =
∑L′−1

n=1−L′ en.

By Lemma 4.4, the following Proposition naturally follows.

Proposition 4.2. Ẑavg attains MSE errZ(Ẑavg) =
L′∑
m=1

L′−m∑
n=1−m

en.

Similar to selection combining, as the sample-support Q grows asymptotically, en, errr(r̂avg), and

errZ(Ẑavg) converge to zero. Complete proofs for the above Lemmas and Propositions are offered

for the first time in the Appendix.
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Remarks on Selection and Averaging Combining

In view of (4.19), e = en, when |Jn| = 1. Also, (4.18) and (4.19) show that, as expected, e and en

tend to zero as Q increases asymptotically. Using (4.18) and (4.19), we prove below the inequality

en ≤ e, which documents the MSE superiority of average-sampling over selection-sampling. We

observe that, for any i, j, |zHi,jd|2 = |
∑K

k=1[zi,j ]
∗
kdk|2 ≤ |

∑K
k=1 |[zi,j ]∗kdk||2 = (1>Kd)2 and, therefore,

e− en ≥ βn
4
=
|Jn| − 1

|Jn|Q
(2σ21>Kd + σ4) ≥ 0. (4.20)

4.4.1 Numerical Studies

We consider an (M = 2, N = 3) extended coprime array of L = 6 elements and K = 7 sources,

transmitting from angles Θ = {θ1 = −60◦, θ2 = −28◦, θ3 = −4◦, θ4 = 5◦, θ5 = 18◦, θ6 = 34◦, θ7 =

86◦}. We set σ2 = 1 and signal-to-noise ratio (SNR) to 10dB, for all K sources; i.e., dk = 10 ∀k.

First, we let the number of snapshots Q vary from 20 to 140 in increments of 10. For each value of Q,

we simulate estimation of Z by both selection-sampling (Ẑsel) and averaging-sampling (Ẑavg); then,

we measure the corresponding squared-estimation errors ‖Z− Ẑsel‖2F and ‖Z− Ẑavg‖2F . We repeat

this procedure for 10, 000 independent symbol/noise realizations and plot the averaged squared-

error in Fig. 4.2. In the same figure, we plot the theoretical MSEs errZ(Ẑsel) and errZ(Ẑavg), as

presented in Proposition 4.1 and Proposition 4.2, respectively. We observe that the numerically

and theoretically calculated values for the MSEs coincide. All MSE curves start from a high value

for Q = 20 and decrease monotonically as Q increases, with a trend for asymptotic convergence to

0, as Q → ∞. We observe that, in accordance to Proposition 4.1 and Proposition 4.2, errZ(Ẑavg)

is significantly lower than errZ(Ẑsel), for every value of Q.

Next, we set Q = 30 and calculate the MSE of selection and averaging in the estimation of Z for

different values of K. Specifically, in Fig. 4.3, we plot the theoretical and numerical MSEs attained

by the two estimators versus the number of transmitting sources, K = 1, 2, . . . , 7, i.e., for K = 1,

we consider signal transmission only from angle θ1 = −60◦ in Θ, while for K = 3, we consider

transmission from angles θ1 = −60◦, θ2 = −28◦, and θ3 = −4◦. We observe that the performance

gap between selection and averaging increases monotonically with K. This is in accordance with the

observation that the lower-bound of the gap, βn in (4.20), increases monotonically as K increases,

for every n such that |Jn| > 1 (when |Jn| = 1, βn = 0).

In the next two examples, we examine the association between the MSE in the estimation of Z
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Figure 4.2. Theoretically and numerically calculated MSEs errZ(Ẑsel) and errZ(Ẑavg), versus
sample-support Q.
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Figure 4.3. Theoretically and numerically calculated MSEs errZ(Ẑsel) and errZ(Ẑavg), versus the
number of transmitting sources K.

and the MUSIC DoA-estimation performance. We start with measuring the error in the estimation

of the signal-subspace span(Sco) by the dominant singular vectors of Ẑsel and Ẑavg. Specifically,

we set K = 7 and let Q vary in {20, 30, . . . , 140}. Then, we compute over 10, 000 realizations

the average values of the (normalized) squared subspace errors (SSE) 1
2K ‖UUH − Q̂selQ̂

H
sel‖2F and

1
2K ‖UUH − Q̂avgQ̂

H
avg‖2F , where U is a matrix with columns the K dominant left-hand singular

vectors of Z, and Q̂sel and Q̂avg are the K dominant left-hand singular vectors of Ẑsel and Ẑavg,

respectively, obtained through SVD. We plot the calculated subspace-MSEs in Fig. 4.4, versus

Q. We observe that, as expected, the estimation errors in Z translate accurately to subspace-
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Figure 4.4. Average squared subspace error attained by selection and averaging sampling, versus
sample-support Q.
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Figure 4.5. RMSE of coprime MUSIC DoA estimation attained by selection and averaging sampling,
versus sample-support Q.

estimation errors. Thus, averaging autocorrelation sampling attains lower subspace estimation

error than selection sampling, for every value of Q, with the maximum difference documented at

the minimum tested value of Q.

Finally, for the same setup (K = 7, Q = 20, 30, . . . , 140), we conduct MUSIC DoA estimation in the

form of (4.8), employing, instead of the ideal signal-subspace descriptor UUH , the estimated projec-

tion matrices Q̂selQ̂
H
sel (selection) and Q̂avgQ̂

H
avg (sampling), calculated upon the estimates Ẑsel and

Ẑavg, respectively. After 10, 000 independent realizations, we compute and plot in Fig. 4.5 the root-

mean-squared-error (RMSE) for the two estimators, RMSE =
√

1
K

∑K
k=1

1
10000

∑10000
r=1 (θk − θ̂k,r)2,
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versus the sample support Q. In the RMSE expression, r is the realization index and θ̂k,r is the

kth angle, as estimated at the rth realization. We observe that, in accordance with the theoretical

MSE results, averaging autocorrelation sampling allows for superior DoA estimation, compared to

selection sampling, for every sample support Q.

4.5 Contribution 2: Minimum-MSE Autocorrelation Combining

We focus on the autocorrelation combining step of coprime-array processing (see Fig. 4.1) where

the receiver applies linear combining matrix E to the estimated autocorrelations of the physical

array. Arguably, a preferred receiver will attain consistently –i.e., for any possible configuration of

DoAs, Θ– low squared-estimation error ‖rco−E>r̂‖22. If this error is exactly equal to zero, then at

the fourth step of coprime-array processing, MUSIC will identify the exact DoAs in Θ.

In this work, we treat the DoAs in Θ as independently and identically distributed (i.i.d.) random

variables and design a coprime array receiver equipped with linear combiner E such that ‖rco −
E>r̂‖22 is minimized in the mean. We assume that, ∀k, θk ∈ Θ is a random variable with probability

distribution D(a, b) –e.g., uniform, truncated normal, or, other– where a and b denote the limits

of the support of D. Under this assumption, we seek the Minimum-MSE combining matrix E that

minimizes E{‖rco −E>r̂‖22}.

Probability distributions of angular variables is not a new concept. In fact, angular variables have

been modeled by the von Mises Probability Density Function (PDF) which can include (or, nearly

approximate) standard distributions such as uniform, Gaussian, and wrapped Gaussian, to name a

few, by tuning a parameter in the PDF expression [196, 197]. Angular distributions have also been

considered for Bayesian-based beamforming [202, 203].

In the most general case and in lieu of any pertinent prior information at the receiver, the DoAs

in Θ can, for instance, be assumed to be the uniformly distributed in (−π
2 ,

π
2 ] –i.e., D(a, b) ≡

U(−π
2 ,

π
2 ). In the sequel, we derive the Minimum-MSE combining matrix for any continuous

probability distribution D(a, b), −π
2 < a < b ≤ π

2 .

First, we introduce new notation to the problem statement and formulate the MSE-Minimization

problem. We let

A
4
=
[
S diag([

√
d1,
√
d2, . . . ,

√
dK ]), σIL

]
∈ CL×(K+L). (4.21)
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The autocorrelation matrix Ry in (4.2) is factorized as Ry = AAH . Then, we define

V
4
= A∗ ⊗A ∈ CL

2×(K+L)2 (4.22)

and i
4
= vec(IK+L) ∈ R(K+L)2 , where IK+L is the (K + L)-size identity matrix. It follows that r

takes the form

r = Vi. (4.23)

In view of the above, rco (or, rsel and ravg in (4.12) and (4.15), respectively) can be expressed as

E>selVi = E>avgVi. We observe that ∀q ∈ {1, 2, . . . , Q}, there exists vector xq ∼ CN (0K+L, IK+L),

pertinent to yq, such that yq = Axq. By the signal model, xq is statistically independent from xp

for any (p, q) ∈ {1, 2, . . . , Q}2 such that p 6= q. The physical-array autocorrelation matrix estimate

R̂y in (4.9) is expressed as R̂y = AWAH , where W
4
= 1

Q

∑Q
q=1 xqx

H
q . Moreover, by defining

w
4
= vec (W) = 1

Q

∑Q
q=1 x∗q ⊗ xq, the estimate r̂ in (4.10) takes the form

r̂ = Vw. (4.24)

By (4.23) and (4.24), we propose to design linear combiner EMMSE by formulating and solving the

MSE-Minimization

arg min
E∈CL2×(2L′−1)

E
Θ,w

{∥∥∥EHVw −E>selVi
∥∥∥2

2

}
. (4.25)

Of course, if we replace Esel by Eavg in (4.25), the resulting problem will be equivalent. In the

sequel, we show that a closed-form solution to (4.25) exists for any finite value of sample support

Q and present it step-by-step.

We commence our solution by defining G
4
= VwwHVH ∈ CL2×L2

and H
4
= VwiHVH ∈ CL2×L2

.

Then, the problem in (4.25) simplifies to

arg min
E∈CL2×(2L′−1)

E
Θ,w

{
Tr
(
EHGE

)
− 2<

{
Tr
(
EHHEsel

)}}
, (4.26)

where <{·} extracts the real part of its argument and Tr(·) returns the sum of the diagonal entries

of its argument. Furthermore, we define GE
4
= EΘ,w{G} and HE

4
= EΘ,w{H}. Then, (4.26) takes
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Figure 4.6. Probability density function f(θ) for different distributions and support sets.

the equivalent form

arg min
E∈CL2×(2L′−1)

{
Tr
(
EHGEE

)
− 2<

{
Tr
(
EHHEEsel

)}}
. (4.27)

Next, we focus on deriving closed-form expressions for GE and HE that will allow us to solve (4.27)

and obtain the Minimum-MSE linear combiner EMMSE. At the core of our developments lies the

observation that, ∀θ ∼ D(a, b) with PDF f(θ) and scalar x ∈ R, it holds

I(x)
4
= E

θ
{v(θ)x} =

∫ b

a
f(θ)exp

(
−jx2πfc

c
sin θ

)
dθ. (4.28)

The integral I(x) can be approximated within some numerical error tolerance with numerically

efficient vectorized methods [204–206]. In Fig. 4.6, we offer visual illustration examples of f(θ)

when θ follows a uniform distribution in (a, b) –i.e., θ ∼ U(a, b)– or, a truncated normal distribution

in (a, b) with mean µ and variance σ2 –i.e., θ ∼ T N (a, b, µ, σ2).

That is,

f(θ) =


1

σ
√
2π

exp
(
− 1

2( θ−µσ )
2
)

1
2

(
erf
(
b−µ
σ
√

2

)
−erf

(
a−µ
σ
√
2

)) , θ ∼ T N (a, b, µ, σ2),

1
b−a , θ ∼ U(a, b),

(4.29)

where erf(·) denotes the Error Function [207]. In the special case that D(a, b) ≡ U(−π
2 ,

π
2 ), I(x)

coincides with J0(x2πfc
c ): the 0th order Bessel function of the first kind [208] for which there exist



CHAPTER 4. COPRIME ARRAY PROCESSING 102

Table 4.1: Entry-wise closed-form expression for matrix V defined in (4.22).

[V]i,j Condition on (i, j)√
[d][ü]j [d][u̇]jv(θ[ü]j )

[p̈]iv(θ[u̇]j )
−[ṗ]i [ü]j , [u̇]j ≤ K

σ
√

[d][u̇]jv(θ[u̇]j )
−[ṗ]i [u̇]j ≤ K and [ü]j = [v̈]i +K

σ
√

[d][ü]jv(θ[ü]j )
[p̈]i [ü]j ≤ K and [u̇]j = [v̇]i +K

σ2 [u̇]j = [v̇]i +K and [ü]j = [v̈]i +K
0 otherwise

Auxiliary variables used in the above conditions/expressions:
sx = [1, 2, . . . , x]>, u̇ = 1K+L ⊗ sK+L, ü = sK+L ⊗ 1K+L, v̇ = 1L ⊗ sL, v̈ = sL ⊗ 1L.

look-up tables. Next, we define the indicator function δ(x) which equals 1 if x = 0 and assumes a

value of zero otherwise. We provide in the following Lemma the statistics of the random variable

w which appear in the closed-form expressions of GE and HE.

Lemma 4.5. The first-order and second-order statistics of the random variable w are given by

Ew{w} = i ∈ R(K+L)2 and Ew{wwH} = ii> + 1
QI(K+L)2 ∈ R(K+L)2×(K+L)2, respectively. �

A proof for Lemma 4.5 is offered in the Appendix. Next, we define p̈
4
= 1L⊗p and ωi

4
= [ṗ]i− [p̈]i.

In view of Lemma 4.5, we present an entry-wise closed-form expression for HE in the following

Lemma.

Lemma 4.6. For any (i,m) ∈ {1, 2, . . . , L2}2,

[HE]i,m = ‖d‖22 I (ωi − ωm) + σ4δ(ωi)δ(ωm) + I(ωi)I(−ωm)
(

(1>Kd)2 − ‖d‖22
)

(4.30)

+ σ2
(
1>Kd

)
(δ(ωi)I(−ωm) + I(ωi)δ(−ωm)) . (4.31)

�

A complete proof for Lemma 4.6 is also provided in the Appendix. Hereafter, we focus on deriving

a closed-form expression for GE. First, we define Ṽ
4
= VVH the expectation of which, ṼE

4
= E

Θ
{Ṽ},

appears in GE. We observe that each entry of Ṽ can be expressed as a linear combination of the

entries of V. That is, for any (i,m) ∈ {1, 2, . . . , L2}2 and j ∈ {1, 2, . . . , (K + L)2}, it holds

[Ṽ]i,m =

(K+L)2∑
j=1

[V]i,j [V
∗]m,j . (4.32)
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Table 4.2: Closed-form expression for γ
(i,m)
j defined in (4.33) .

γ
(i,m)
j Condition on (i,m, j)

[d][ü]j [d][u̇]jv(θ[ü]j ])
[p̈]i−[p̈]mv(θ[u̇]j )

[ṗ]m−[ṗ]i [u̇]j=[ü]j ≤ K,
[d][ü]j [d][u̇]jv(θ[ü]j )

[p̈]i−[p̈]mv(θ[u̇]j )
[ṗ]m−[ṗ]i [u̇]j , [ü]j ≤ K; [ü]j 6= [u̇]j

σ2[d][u̇]jv(θ[u̇]j )
[ṗ]m−[ṗ]i [u̇]j ≤ K; [ü]j−K=[v̈]i=[v̈]m

σ2[d][ü]jv(θ[ü]j )
[p̈]i−[p̈]m [ü]j ≤ K; [u̇]j−K=[v̇]i=[v̇]m

σ4 [u̇]j−K=[v̇]i=[v̇]m; [ü]j−K=[v̈]i = [v̈]m
0 otherwise

Auxiliary variables used in the above conditions/expressions:
ṗ = p⊗ 1L, p̈ = 1L ⊗ p, sx = [1, 2, . . . , x]>, u̇ = 1K+L ⊗ sK+L, ü = sK+L ⊗ 1K+L, v̇ = 1L ⊗ sL, v̈ = sL ⊗ 1L.

Table 4.3: Closed-form expression for EΘ{γ(i,m)
j }.

Eθ{γ
(i,m)
j } Condition on (i,m, j)

[d][ü]j [d][u̇]jI(ω̈m,i + ω̇i,m) [u̇]j=[ü]j ≤ K,
[d][ü]j [d][u̇]jI(ω̈m,i)I(ω̇i,m) [u̇]j , [ü]j ≤ K; [ü]j 6= [u̇]j
σ2[d][u̇]jI(ω̈m,i) [u̇]j ≤ K; [ü]j−K=[v̈]i=[v̈]m
σ2[d][ü]jI(ω̇i,m) [ü]j ≤ K; [u̇]j−K=[v̇]i=[v̇]m
σ4 [u̇]j−K=[v̇]i=[v̇]m; [ü]j−K=[v̈]i = [v̈]m
0 otherwise
Auxiliary variables used in the above conditions/expressions:
ṗ = p⊗ 1L, p̈ = 1L ⊗ p, ω̇i,j = [ṗ]i − [ṗ]j , ω̈i,j = [p̈]i − [p̈]j , sx = [1, 2, . . . , x]>, u̇ = 1K+L ⊗ sK+L, ü = sK+L ⊗ 1K+L,
v̇ = 1L ⊗ sL, v̈ = sL ⊗ 1L.

An entry-wise closed-form expression for V, in terms of Θ, is offered in Table 4.1. Then, for

any triplet (i,m, j) such that (i,m) ∈ {1, 2, . . . , L2}2 and j ∈ {1, 2, . . . , (K + L)2}, we derive a

closed-form expression for

γ
(i,m)
j

4
= [V]i,j [V

∗]m,j , (4.33)

in Table 4.2. Accordingly, EΘ{γ(i,m)
j } is offered in Table 4.3, based on which, the (i,m)th entry

of ṼE is computed as

[ṼE]i,m =

(K+L)2∑
j=1

EΘ{γ(i,m)
j }. (4.34)

In view of the above, we offer a closed-form expression for matrix GE in the following Lemma.
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Lemma 4.7. Matrix GE is given by GE = HE + 1
QṼE. �

A proof for Lemma 4.7 is offered in the Appendix. Next, we differentiate (4.27) with respect to E,

set its derivative to zero, and obtain(
HE +

1

Q
ṼE

)
EMMSE = HEEsel. (4.35)

We observe that (4.35) is, in practice, a collection of (2L′ − 1) systems of linear equations. Let

EMMSE = [e1, . . . , e2L′−1] and ci = [HEEsel]:,i∀i ∈ {1, 2, . . . , 2L′ − 1}. Solving (4.35) is equivalent

to solving, for every i,

GEei = ci. (4.36)

For any i such that ci ∈ span(GE), (4.36) has at least one exact solution ei = VΣ−1UHci + bi,

where GE admits SVD UL2×ρΣρ×ρV
H
ρ×L2 , ρ = rank(GE), and bi is an arbitrary vector in the

nullspace of GE which is denoted by N (GE). In the special case that ρ = L2, that is, GE has

full-rank, then N (GE) = 0L2 and there exists a unique solution ei = VΣ−1UHci. If, on the other

hand, ∃i such that ci /∈ span(GE), then (4.36) does not have an exact solution and a Least Squares

(LS) approach can be followed by solving minei ‖GEei− ci‖22. Interestingly, it is easy to show that

the LS solution is the same as before –i.e., ei = VΣ−1UHci + bi, where bi ∈ N (GE). In every

case, each column of EMMSE can be computed in closed-form as

ei = VΣ−1UHci + bi, bi ∈ N (GE). (4.37)

In view of the above, we propose to process the autocorrelations in r̂ by the linear combiner EMMSE

to obtain the MMSE estimate of rco,

r̂MMSE
4
= E>MMSEr̂. (4.38)

In turn, we propose to Minimum-MSE estimate Z in (4.6) by ẐMMSE = Φ (r̂MMSE).

Next, we discuss the computational complexity of forming EMMSE. First, we consider the cost of

numerically approximating the integral I(x) in (4.28) for any DoA probability distribution f(θ),

support set (a, b), and scalar x. There is rich literature on theory, methods, and complexity/ac-

curacy trade-offs in numerical integration –a topic that extends well beyond the scope of this

article. For the purpose of our complexity analysis, we consider that I(x) can be approximated



CHAPTER 4. COPRIME ARRAY PROCESSING 105

within numerical error tolerance ε > 0 by, e.g., trapezoidal, midpoint, and Simpson’s interpolatory

quadrature rules [204–206], with cost O(C), where C = 1√
ε
. Next, we note that evaluating I(x) for

every x ∈ V 4= {{ωi}L
2

i=1 ∪ {ωi − ωm}L
2

i,m=1 ∪ {ω̇i}L
2

i=1 ∪ {ω̈i}L
2

i=1 ∪ {ω̈m,i + ω̇i,m}L
2

i,m=1} costs at most

O(MNC). Having computed I(x) for every x ∈ V, we can form matrices HE and ṼE with costs

O(L4) and O(L6 +KL5), respectively. Thereafter, the SVD of GE = HE + 1
QṼE for solving (4.36)

requires O(L6) computations. Observing that L = 2M + N − 1 and K ≤ MN + M and keeping

only the dominant terms, the computational complexity of forming EMMSE is O(L6 + MNC). In

addition, we note that the computation of I(x) for different values of x can be performed in paral-

lel, tremendously reducing the computation time. In this work, we conduct numerical integration

by means of the vectorized adaptive quadrature approach of [204] with absolute error tolerance

ε = 1e − 10. As a simple numerical example, for (M,N) = (2, 3), K = 7, ε = 1e − 10, and serial

computation of the numerical integrals, in MATLAB 2019a (generic software) running on an In-

tel(R) core(TM) i7-8700 processor at 3.2 GHz and 32GB RAM (generic hardware), we computed

EMMSE in a very small fraction of a second.

Finally, a remark is in order on the source powers and noise variance. The proposed linear combiner

EMMSE depends on HE and ṼE which, in turn, depend on the powers d1, d2, . . . , dK , σ
2 associated

to the source DoAs θ1, θ2, . . . , θK and noise, respectively. In this Section, we assume the signal-

source powers and noise variance to be known. Joint power/DoA estimation is beyond the scope of

this Section. For the problem of the power estimation, we refer the interested reader to, e.g., the

works in [209–214].

4.5.1 Numerical Studies

We consider coprime naturals (M,N) with M < N and form a length-(L = 2M +N − 1) coprime

array which corresponds to a length-(L′ = MN +M) virtual ULA –i.e., the coarray. Signals from

K sources impinge on the array with equal transmit power d1 = d2 = ... = dK = α2 = 10dB. The

noise variance is set to σ2 = 0dB. Accordingly, the Signal-to-Noise-Ratio (SNR) is set to 10dB for

every DoA signal source.

We commence our studies by computing the empirical Cumulative Distribution Function (CDF)

of the Normalized-MSE (NMSE) in estimating Z for a given DoA collection Θ = {θ1, . . . , θK}
such that the DoAs in Θ are i.i.d. –i.e., θk ∼ D(a, b)∀k. More specifically, we consider fixed

sample-support Q = 10 and for each estimate Ẑ ∈ {Ẑsel, Ẑavg, ẐMMSE}, we compute the estimation
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Figure 4.7. Empirical CDF of the MSE in estimating Z for (M,N) = (2, 3), SNR= 10dB, Q = 10,
K = 5 (top), and K = 7 (bottom). ∀k, θk ∼ U(−π

2 ,
π
2 ) (left), U(−π

4 ,
π
6 ) (center), T N (−π

8 ,
π
8 , 0, 1)

(right).

error

NMSE =
∥∥∥Z− Ẑ

∥∥∥2

F
‖Z‖−2

F . (4.39)

We repeat this process over 4000 statistically independent realizations of Θ and AWGN. We collect

4000 NMSE measurements based on which we plot, in Fig. 4.7, the empirical CDF of the NMSE

in estimating Z for fixed (M,N) = (2, 3), K ∈ {5, 7}, and

D(a, b) ∈ {U(−π
2
,
π

2
),U(−π

4
,
π

6
), T N(−π

8
,
π

8
, 0, 1)}. (4.40)

We observe that the proposed MMSE combining approach attains superior MSE in estimating

Z for any distribution and support set considered for the DoAs in Θ. Moreover, we notice that

the averaging combining approach consistently outperforms the selection combining approach in

accordance with our theoretical finding that averaging combining attains superior performance
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Figure 4.8. Empirical CDF of the NMSE in estimating Z for (M,N) = (2, 5), SNR= 10dB,
Q = 10, K = 7 (top), and K = 9 (bottom). ∀k, θk ∼ U(−π

2 ,
π
2 ) (left), U(−π

4 ,
π
6 ) (center), and

T N (−π
8 ,

π
8 , 0, 1) (right).

compared to selection combining. Furthermore, we observe that the performance advantage of

the proposed MMSE combining approach over its standard counterparts is more emphatic when

θk ∼ U(−π
4 ,

π
6 ). Last, we notice that for θk ∼ U(−π

4 ,
π
6 ), the performance gap between the proposed

MMSE combining and the standard averaging approach is greater for K = 7. We repeat the last

study for (M,N) = (2, 5), K ∈ {7, 9}, and D(a, b) ∈ {U(−π
2 ,

π
2 ),U(−π

4 ,
π
6 ), T N(−π

8 ,
π
8 , 0, 1)}. We

illustrate the new CDFs in Fig. 4.8. Similar observations as in Fig. 4.7 are made. The proposed

MMSE combining approach clearly outperforms its standard counterparts for any distribution

assumption and support set for θk∀k.

For fixed K = 7 and every other parameter same as above, we plot the NMSE (averaged over

4000 realizations) versus sample support Q ∈ {1, 10, 100, 1000, 10000}, in Fig. 4.9. Consistent

with the observations above, we notice that selection attains the highest NMSE while the proposed

MMSE combiner attains, expectedly, the lowest NMSE in estimating Z across the board. The

performance gap between the proposed MMSE combining estimate and the estimates based on



CHAPTER 4. COPRIME ARRAY PROCESSING 108

100 102 104

Sample support, Q

10-4

10-2

100

N
M

S
E

MMSE (proposed)
AVERAGING
SELECTION

100 102 104

Sample support, Q

10-4

10-2

100

N
M

S
E

MMSE (proposed)
AVERAGING
SELECTION

100 102 104

Sample support, Q

10-4

10-2

100

N
M

S
E

MMSE (proposed)
AVERAGING
SELECTION
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Figure 4.10. RMSE (degrees) in estimating the DoA set Θ, versus sample support, Q. (M,N) =
(2, 5), SNR= 10dB, and K = 7. ∀k, θk ∼ U(−π

2 ,
π
2 ) (left), U(−π

4 ,
π
6 ) (center), T N (−π

8 ,
π
8 , 0, 1)

(right).

existing combining approaches decreases as the sample support Q increases. Nonetheless, it remains

superior, in many cases, even for high values of Q –e.g., Q = 104. Moreover, in the first two subplots

(uniform DoA distribution), we notice that the performance gap between the MMSE combining

approach and the averaging approach is wider when the range of the support set (a, b) is narrower.

Next, we evaluate the performance of the proposed MMSE combining approach and its counterparts

by measuring the Root-MSE (RMSE) in estimating the DoAs in Θ versus sample support Q. First,

we evaluate the MUSIC spectrum for each estimate Ẑ ∈ {Ẑsel, Ẑavg, ẐMMSE} over the probability

distribution support set (a, b) and obtain DoA estimates in Θ̂ = {θ̂1, . . . , θ̂K}. Then, we compute
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Figure 4.11. RMSE (degrees) in estimating the DoA set Θ, versus sample support, Q. (M,N) =
(3, 5) and K = 11. (Θ,SNR,D(a, b)) = (Θ1, 0dB,U(−π

2 ,
π
2 )) –top left, (Θ1, 8dB,U(−π

2 ,
π
2 )) –bottom

left, (Θ2, 0dB,U(−π
4 ,

π
4 )) –top center, (Θ2, 8dB,U(−π

4 ,
π
4 )) –bottom center, (Θ3, 0dB,U(−π

4 ,
π
6 )) –

top right, (Θ3, 8dB,U(−π
4 ,

π
6 )) –bottom right.

the estimation error

MSE(Θ̂) =
1

K

K∑
k=1

(θk − θ̂k)2. (4.41)

We compute the RMSE by taking the square root of the MSE(Θ̂) computed over 4000 statistically

independent realizations of Θ and AWGN. The resulting RMSE curves are depicted in Fig. 4.10.

For every DoA distribution (even the most general case of uniform distribution in (−π
2 ,

π
2 )) and

every sample support (even as high as 104), the proposed method attains the lowest RMSE.

We conclude our studies by evaluating the DoA estimation performance of the proposed MMSE

combiner and its counterparts for fixed DoAs. This time, we consider coprime naturals (M,N) =

(3, 5) forming an array with L = 10 sensors, fixed number of sources K = 11, and three distinct
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realizations of DoA set Θ = {θ1, . . . , θK}:

Θ1 = {−79,−55,−43,−25,−15,−6, 7, 21, 34, 54, 63}◦, (4.42)

Θ2 = {−44,−38,−27,−12,−3, 6, 17, 24, 31, 37, 44}◦, (4.43)

Θ3 = {−44,−37,−31,−23,−15,−8,−2, 4, 17, 22, 29}◦. (4.44)

For every fixed Θi, i ∈ {1, 2, 3}, we proceed as follows in order to compute the RMSE curves.

First, we consider 4000 statistically independent realizations of AWGN for SNR ∈ {0, 8}dB. For

every realization, we compute DoA estimate Θ̂i as previously described and evaluate the MUSIC

spectrum over a probability distribution support set. We then measure MSE(Θ̂i) as described above

and compute the RMSE by taking the square root of the sample-average of the 4000 MSE(Θ̂i)

measurements. As a benchmark, we also compute the Cramér Rao Lower Bound (CRLB) curves

computed by means of the closed-form expression that follows, first derived in [165], as2

CRLBΘ =
1

Q

(
MH

Θ ΠMΘ

)−1
, (4.45)

where

MΘ = (R>y ⊗Ry)
− 1

2 Ṡddiag(d), (4.46)

Π = IL2 −Ms(M
H
s Ms)

−1MH
s , (4.47)

Ms = (R>y ⊗Ry)
− 1

2 [Sd vec(IL)], (4.48)

Sd = S∗ � S, (4.49)

Ṡd = Ṡ∗ � S + S∗ � Ṡ, (4.50)

Ṡ = [
∂s(θ1)

∂θ1
, . . . ,

∂s(θK)

∂θK
]. (4.51)

In Fig. 4.11 (left), we plot the RMSE and CRLB curves versus sample support for Θ = Θ1, and

SNR= 0dB (top-left) and SNR= 8dB (bottom-left), respectively. We form the MMSE combiner

by considering D(a, b) = U(−π
2 ,

π
2 ). We observe that for SNR ∈ {0, 8}dB and low sample support,

Q ≤ 100, the proposed MMSE combiner clearly outperforms its counterparts in DoA estimation

accuracy. For Q ≥ 1000, the proposed MMSE and the averaging combiners attain almost identical

performance, superior to that of the selection combiner.

In Fig. 4.11 (center), we plot the RMSE and CRLB curves versus sample support for Θ = Θ2,

and SNR= 0dB (top-center) and SNR= 8dB (bottom-center), respectively. We consider D(a, b) =

2Operator ‘�’ denotes the column-wise Kronecker product of matrices, also known as Khatri-Rao product.
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U(−π
4 ,

π
4 ). In this case, we observe that the proposed MMSE combiner outperforms its counterparts

across the board with respect to both sample support and SNR.

Finally, we consider D(a, b) = U(−π
4 ,

π
6 ) and in Fig. 4.11 (right), we plot the RMSE and CRLB

curves versus sample support for Θ = Θ3, and SNR= 0dB (top-right) and SNR= 8dB (bottom-

right), respectively. In accordance with earlier observations, now that the probability distribution

support set is even narrower, the proposed MMSE combiner attains an even more superior DoA

estimation performance compared to its counterparts.

4.6 Contribution 3: Structured Coarray Autocorrelation Matrix

Estimation

We propose an algorithm which iteratively solves a sequence of optimization problems returning,

upon convergence, an improved coarray autocorrelation matrix estimate. Motivated by [155], where

it was formally proven that averaging autocorrelation sampling attains superior autocorrelation

estimates compared to selection sampling with respect to the Mean-Squared-Error (MSE) metric,

we propose to initialize the proposed algorithm to P0 =
√

ẐavgẐHavg. At iteration i ≥ 0, the

proposed algorithm computes

Qi = Υ(Pi), (4.52)

Ri = Ψ(Qi), (4.53)

Pi+1 = Ω(Ri), (4.54)

where for any X = XH ∈ CD×D with Eigenvalue Decomposition (EVD) X
evd
= Udiag(λX )UH the

following hold.

Definition 4.1. Υ(X) returns the nearest Toeplitz matrix, in the Euclidean norm sense,3 to X:

Υ(X)
4
= argmin

T0∈T D
‖X−T0‖2F , where T D 4= {T ∈ CD×D | T is Toeplitz}.

Definition 4.2. Ψ(X) returns the nearest Positive Semidefinite (PSD) matrix to X: Ψ(X)
4
=

argmin
X0∈SD+

‖X−X0‖2F , where SD+
4
= {A ∈ CD×D | A = AH�0}.

Definition 4.3. Ω(X) performs an eigenvalue-correction operation to the D − ρ smallest eigen-

3Otherwise known as Frobenius norm: ‖ · ‖2F returns the sum of the squared entries of its argument.
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X =
[X]1,1 [X]1,2 [X]1,3 [X]1,4
[X]2,1 [X]2,2 [X]2,3 [X]2,4
[X]3,1 [X]3,2 [X]3,3 [X]3,4
[X]4,1 [X]4,2 [X]4,3 [X]4,4

d0(X) d2(X)

d−2(X)
Figure 4.12. Illustration of the ith diagonal of X ∈ C4×4, di(X), i ∈ {0,±2}.

values of X. For some general ρ ∈ {1, . . . , D − 1}, Ω(X)
4
= Udiag(λX )UH , where

[λX ]i =


[λX ]i, i ≤ D − ρ+ 1,

1
D−ρ

D∑
j=ρ+1

[λX ]j , i > D − ρ+ 1.
(4.55)

In view of the above, the proposed algorithm seeks to optimize the D − ρ smallest eigenvalues of

the autocorrelation matrix estimate at which it is initialized while preserving the PSD, Hermitian,

and Toeplitz structure. Next, we conduct formal convergence analysis of the proposed algorithm.

Consider arbitrary X = XH ∈ CD×D and let di(X) denote a diagonal of X (see Fig. 4.12) such

that

[di(X)]j =

[X]j−i,j , i ≤ 0,

[X]j,j+i, i > 0,
(4.56)

for any j ∈ {1, 2, . . . , D − |i|}. The following remarks hold.

Remark 4.1. It holds that di(X) = d∗i′(X), if |i| = |i′|.

Remark 4.2. Let T
4
= Υ(X) = minT0∈T D ‖X−T0‖2F . For any i ∈ {1−D, . . . ,D − 1}, it holds

that di(T) = 1
D−|i|1

>
D−|i|di(X)1D−|i| where, for any integer x ≥ 1, 1x = [1, 1, . . . , 1]> ∈ Rx.

Remark 4.2 illustrates that the nearest Toeplitz matrix to X can be found in closed-form.

Remark 4.3. Let T
4
= Υ(X). It holds that ‖T‖2F ≤ ‖X‖2F .
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Figure 4.13. Illustration of Proposition 4.3. (M,N) = (2, 3), Θ = {−43◦,−21◦,−10◦, 17◦, 29◦, 54◦},
dk = 0dB ∀k, σ2 = 1, Q = 50.

By Remark 4.3, T is the nearest Toeplitz matrix to X and exhibits squared Frobenius norm lower

or equal than that of X.

Remark 4.4. Let T
4
= Υ(X) admit EVD4 T = Udiag(λT )UH .5 It holds that

‖T‖2F=Tr(Udiag(λT )diag(λT )UH)=‖λT ‖22. (4.57)

Remark 4.5. Let T
4
= Υ(X) admit EVD T = Udiag(λT )UH and define P such that P =

Udiag(λP )UH , where6 λP = λ+
T –i.e., ∀i ∈ [D], [λP ]i = max{[λT ]i, 0}. It holds that P is the

solution to min.
P0∈SD+

‖T−P0‖2F . A proof for Remark 4.5 was first offered for real matrices in [215]. For

completeness purposes, we offer an analogous proof for complex-valued matrices in the Appendix.

By Remark 4.5, the nearest PSD matrix to T can be found in closed-form.

4A Hermitian matrix A can be expressed as A=UΛUH , where Λ is an upper diagonal with the eigenvalues of A
in its main diagonal. If A is normal (i.e., AAH=AHA), then Λ is diagonal. Every Hermitian matrix is normal.

5For any normal matrix W, we denote its eigenvalues by vector λW . For instance, λT denotes the eigenvalues of
T while λP denotes the eigenvalues of P.

6λ+
T returns a vector with length equal to that of λT with the positive entries of λT intact and its negative entries

set to zero.
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Input: Coarray autocorrelation matrix estimate R̂
Output: R ← Pi

P0 ← R̂ % Initialization

Until convergence/termination
Qi ← Υ(Pi) % Nearest Toeplitz to Pi

Ri ← Ψ(Qi) % Nearest PSD to Qi

Pi+1 ← Ω(Ri) % Eigenvalue-correction

Algorithm 4.1 Structured coarray autocorrelation matrix estimation

Remark 4.6. For P = Ψ(T), it holds that ‖P‖2F ≤ ‖T‖2F . Formally,

‖P‖2F=‖λP ‖22 =
D∑
i=1

[λP ]2i ≤
D∑
i=1

[λT ]2i = ‖T‖2F (4.58)

By Remark 4.6, P is the nearest PSD matrix to T and attains squared Frobenius norm lower or

equal than that of T.

Remark 4.7. Let A = Ω(P) = Udiag(λA)UH , where

[λA]i =


[λP ]i, i ≤ D − ρ+ 1,

1
D−ρ

D∑
j=ρ+1

[λP ]j , i > D − ρ+ 1,
(4.59)

for ρ ∈ {1, . . . , D − 1}. It holds that ‖A‖2F ≤ ‖P‖2F .

By Remark 4.7, the eigenvalue correction operation on a normal matrix returns a matrix with

squared-Frobenius norm lower or equal than that of its input argument. In view of Remarks

4.1-4.7, the following Proposition derives.

Proposition 4.3. For Qi,Ri, and Pi+1 in (4.52)-(4.54), it holds that

‖Qi‖2F ≥ ‖Ri‖2F ≥ ‖Pi+1‖2F ≥ ‖Qi+1‖2F ≥ . . . ≥ 0∀i ≥ 0. (4.60)

Proposition 4.3 states that the proposed algorithm is guaranteed to converge. In practice, one can

terminate the iterations when ‖Pi+1−Pi‖ ≤ ε, for some ε ≥ 0. For sufficiently small ε, Proposition 1



CHAPTER 4. COPRIME ARRAY PROCESSING 115

Matrix estimate Autocorrelation sampling approach Positive Definite Toeplitz Hermitian Equal noise-subspace eigenvalues

Ẑsel Selection 7 3 3 7

Ẑavg Averaging 7 3 3 7

Ẑpsr Averaging 3 7 3 7

Structured (proposed) Averaging 3 3 3 3

Table 4.4: Comparison of coarray autocorrelation matrix estimates: autocorrelation sampling ap-
proach and structure properties.

implies that, at convergence, Pi+1 = Ri = Qi which, in turn, implies that the algorithm converged

to a PD, Hermitian, and Toeplitz matrix the noise-subspace eigenvalues of which are equal. A

visual illustration of Proposition 4.3 and a pseudocode of the proposed algorithm are offered in Fig.

4.13 and Algorithm 4.1, respectively. Importantly, ∀i ≥ 0, the Algorithm of Fig. 4.14 computes

Qi,Ri,Pi+1 by closed-form expressions with cost at most the cost of EVD–i.e., O(D3). Overall,

the cost of the proposed algorithm is O(TD3) where T is the number of iterations required for

convergence.

We summarize the above estimates in Table 4.4, where for each estimate we mention the employed

autocorrelation sampling approach. Moreover, for each structure property guaranteed to be sat-

isfied, we place a ‘3’, otherwise, we place a ‘7’. Given a coarray autocorrelation matrix estimate

R̂ ∈ {Ẑsel, Ẑavg, Ẑpsr}, a standard DoA estimation approach –e.g., MUltiple SIgnal Classification

(MUSIC) –is applied for identifying the DoAs in Θ.

4.6.1 Numerical Studies

We consider coprime naturals (M,N) = (3, 5) and form coprime array with L = 10 elements.

Source-signals impinge on the array from K = 13 DoAs {θk}13
k=1, θk = (−75+(k−1)12)◦. The noise

variance is set to σ2 = 0dB. All sources emit signals with equal power dk = α2dB. Accordingly,

the Signal-to-Noise Ratio SNR = α2. The receiver collects Q ∈ {150, 300, 450, 600} received-

signal snapshots. For every Q, we consider Γ = 3000 statistically independent realizations of

noise; i.e., {yr,1, . . . ,yr,Q}Γr=1. At every realization r, we compute coarray autocorrelation matrix

estimates corresponding to the augmented matrix approach (AM), principal square root of the

spatial smoothed matrix (PSR), nearest Hermitian, PSD, and Toeplitz (H-PSD-T) approach of

[180]7, and the proposed structured estimate. We take a moment and discuss similarities and

7H-PSD-T seeks a Hermitian-PSD-Toeplitz matrix which fills the gaps of the coarray. When the uniform segment
of the coarray is considered, H-PSD-T returns argmin

R∈SL′+

‖R− Ẑavg‖2F+µ‖R‖∗, where µ‖R‖∗ is a regularization term

that moderates overfitting.
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differences between H-PSD-T and the proposed framework: (1) H-PSD-T is guaranteed to satisfy

the Toeplitz, Hermitian, and Positive Semidefinite structure properties while the proposed estimate

is guaranteed to satisfy all four, (2) H-PSD-T requires tuning of an ad-hoc parameter that moderates

overfitting while the proposed framework is ad-hoc parameter free, and (3) H-PSD-T computes an

estimate by iterative solvers for convex optimization problems while the proposed approach enjoys

closed-form solutions for each individual optimization problem in its sequence. For every method

and estimate R̂r at realization r, we compute the Normalized Squared Error

NSE(R̂r) = ‖R̂r − Z‖2F ‖Z‖−2
F . (4.61)

Then, we compute the Root Mean Normalized Squared Error

RMNSE =

√√√√ 1

Γ

Γ∑
r=1

NSE(R̂r). (4.62)

In Fig. 4.15a and Fig. 4.15d, we plot the RMNSE versus sample support, Q, for SNR = −4dB and

SNR = 2dB, respectively. Expectedly, we observe that all methods employing averaging-sampling

perform similarly well. The proposed estimate attains superior estimation performance across the

board. Moreover, we notice the sensitivity of H-PSD-T with respect to the ad-hoc parameter µ; e.g.,

for SNR = −4dB, H-PSD-T with µ = 1.5 exhibits low performance while for SNR = 2dB it exhibits

high estimation performance. Thereafter, we consider that the nominal coarray autocorrelation

matrix admits SVD Z = QcoΣcoV
H
co + σ2Q̄coQ̄

H
co, where Qco and Q̄co correspond to the signal

and noise subspace bases, respectively. Similarly, every coarray autocorrelation matrix estimate

R̂r admits SVD R̂r = QrΣrV
H
r + Q̄rΣ̄rV̄

H
r , where Qr denotes the signal-subspace-basis of the K

dominant left-hand singular valued singular vectors of R̂r. At each realization and for every value

of Q, we compute the Normalized Squared Subspace Error

NSSE(Q̂r) = ‖Q̂rQ̂
H
r −QcoQ

H
co‖2F (2K)−1. (4.63)

Then, we compute the Root Mean Normalized Squared Subspace Error

RMN-SSE =

√√√√ 1

Γ

Γ∑
r=1

NSSE(Q̂r). (4.64)

In Fig. 4.15b and Fig. 4.15e, we plot the RMN-SSE versus sample support for SNR = −4dB and

2dB, respectively. We notice the influence of the ad-hoc parameter µ with respect to H-PSD-T

and observe that the proposed structured estimate clearly outperforms all counterparts across the
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Figure 4.15. Root Mean Normalized Squared Error (RMNSE) with respect to (w.r.t.) Rco, Root
Mean Normalized - Subspace Squared Error (RMN-SSE) w.r.t. Qco, and Root Mean Squared Error
(RMSE) w.r.t. Θ vs sample support for varying SNR ∈ {−4, 2}dB.

board in subspace estimation performance.

Next, for every value of sample support and realization r, we conduct DoA estimation by applying

MUSIC on the estimate R̂r which returns estimates {θ̂k,r}Kk=1 [155]. Then, we measure the Root

Mean Squared Error

RMSE =

√√√√ 1

Γ

1

K

Γ∑
r=1

K∑
k=1

(θk − θ̂k,r)2 (4.65)

and illustrate the corresponding RMSE curves versus sample support Q, in Fig. 4.15c and Fig.

4.15f, for SNR = −4dB and 2dB, respectively. We include the Cramér Rao Lower Bound (CRLB)

curves as benchmarks [165]. We notice that the the performances of standard counterparts (AM,

PSR) deviate significantly from the CRLB. In contrast, the proposed coarray autocorrelation matrix

estimate outperforms all counterparts by at least 0.3◦ and at most 2◦. In addition, as Q increases,

its performance curves approach the CRLB curves.
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4.7 Conclusions

In this Chapter, we developed theory and novel algorithms for robust coprime array processing.

Specifically: (i) We derived closed-form MSE expressions for the estimation error attained by se-

lection and averaging autocorrelation combining and formally established the superiority of the

latter. The derived expressions are validated by means of numerical simulations. (ii) We proposed

a novel coprime array receiver that attains minimum MSE in coarray autocorrelation estimation,

for any probability distribution of the source DoAs. Extensive numerical studies on various DoA

distributions demonstrate that the proposed MMSE combining method consistently outperforms its

existing counterparts in autocorrelation estimation performance with respect to the MSE metric.

In turn, the proposed MMSE combiner enables lower RMSE in DoA estimation. (iii) We proposed

an optimization framework which computes a structured coarray autocorrelation matrix estimate.

The proposed algorithm is accompanied by convergence analysis and is guaranteed to return a coar-

ray autocorrelation matrix estimate satisfying all structure properties of the true autocorrelation

matrix. Numerical studies illustrate the enhanced performance of the proposed estimate compared

to standard counterparts, both in autocorrelation matrix estimation error and DoA estimation.
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Appendix A

Chapter 2

A.1 Proof of Convergence for (2.34)

Proof.

‖Ut−1
>mat(X , n)‖1 (A.1)

= Tr(Ut−1
>mat(X , n) sgn(mat(X , n)>Ut−1)) (A.2)

≤ Tr(Ut
>mat(X , n)sgn(mat(X , n)>Ut−1)) (A.3)

≤ ‖Ut
>mat(X , n)‖1. (A.4)

At the same time, the metric of (2.30) is upper bounded by its exact solution [54]. Thus, the

recursion in (2.34) is guaranteed to converge. In practice, iterations can be terminated when

the metric-increase ratio ‖Ut
>mat(X , n)‖1‖Ut−1

>mat(X , n)‖1
−1 − 1 drops below a predetermined

threshold τ > 0, or when t exceeds a maximum number of permitted iterations.
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A.2 Proof of Lemma 2.4

Proof. For first inequality, it holds that∥∥∥U(q)
n

>
A(q)
n

∥∥∥
1

(A.5)

=

∥∥∥∥U(q)
n

>
mat

(
X ×k<n U

(q)
k

>
×l>n U

(q−1)
l

>
, n

)∥∥∥∥
1

(A.6)

≥
∥∥∥∥U(q−1)

n

>
mat

(
X ×k<n U

(q)
k

>
×l>n U

(q−1)
l

>
, n

)∥∥∥∥
1

(A.7)

=

∥∥∥∥U(q)
n−1

>
A

(q)
n−1

∥∥∥∥
1

. (A.8)

By induction, for every n > m,

∥∥∥∥U(q)
n

>
A

(q)
n

∥∥∥∥
1

≥
∥∥∥∥U(q)

m

>
A

(q)
m

∥∥∥∥
1

. For the second inequality, it holds

that ∥∥∥∥U(q)
1

>
A

(q)
1

∥∥∥∥
1

(A.9)

=

∥∥∥∥U(q)
1

>
mat

(
X ×k>1 U

(q−1)
k

>
, 1

)∥∥∥∥
1

(A.10)

Lemma 2.3
≥

∥∥∥∥U(q−1)
1

>
mat

(
X ×k>1 U

(q−1)
k

>
, 1

)∥∥∥∥
1

(A.11)

=

∥∥∥∥U(q−1)
N

>
mat

(
X ×k<N U

(q−1)
k

>
, N

)∥∥∥∥
1

(A.12)

=

∥∥∥∥U(q−1)
N

>
A

(q−1)
N

∥∥∥∥
1

. (A.13)
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A.3 Proof of Proposition 2.2

Proof. It holds that ∥∥∥U(q′)
n

>
A(q′)
n

∥∥∥
1

Lemma 2.4
≥

∥∥∥∥U(q′)
1

>
A

(q′)
1

∥∥∥∥
1

(A.14)

Lemma 2.4
≥

∥∥∥∥U(q′−1)
N

>
A

(q′−1)
N

∥∥∥∥
1

(A.15)

Lemma 2.4
≥

∥∥∥∥U(q′−1)
1

>
A

(q′−1)
1

∥∥∥∥
1

(A.16)

≥
∥∥∥∥U(q)

N

>
A

(q)
N

∥∥∥∥
1

(A.17)

≥
∥∥∥U(q)

n

>
A(q)
n

∥∥∥
1
. (A.18)

A.4 Proof of Lemma 2.5

Proof. Define x
4
= vec(mat (X , 1)) ∈ RP and Z

4
= UN ⊗UN−1 ⊗ . . .⊗U1 ∈ SP×p. Then,

‖X ×n∈[N ] U>n ‖1 = ‖Z>x‖1 (A.19)

≤ √p‖Z>x‖2 (A.20)

≤ √p‖x‖2 =
√
p‖X‖F . (A.21)



Appendix B

Chapter 3

B.1 Proof of Lemma 3.1

Proof. Let Qopt be the solution to (3.1). Without loss of generality, there exists A ∈ Rρ×K and

B ∈ RD−ρ×K such that

Qopt = UA + UcB, (B.1)

where Uc ∈ RD×D−ρ is such that Uc>Uc = ID−ρ, span(U) ∩ span(Uc) = ∅, and dim(U) +

dim(Uc) = D. We notice that

X>Qopt = VΣU>UA + VΣU>UcB (B.2)

= VΣU>UA (B.3)

= X>UA. (B.4)

It follows that Qopt = UA for some A ∈ Rρ×K . Then, we define Y = ΣV> and observe that, for

any S ∈ Rρ×K , it holds

Y>S = VΣS (B.5)

= VΣU>US (B.6)

= X>US. (B.7)

By (B.4) and (B.7), if Aopt solves max.A∈Sρ×K ‖Y>A‖pp then Qopt = UAopt solves (3.1).
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B.2 Proof of Lemma 3.2

Proof. Let qopt ∈ RD solve max.q∈BD×1
‖X>q‖pp. Assume that ‖qopt‖2 < 1 and consider the unit-

norm vector q̂opt = qopt‖qopt‖−2 1 ∈ BD×1. It holds that

‖X>q̂opt‖pp = ‖qopt‖−p2 ‖X
>qopt‖pp > ‖X>qopt‖pp, (B.8)

which contradicts the assumption that ‖qopt‖2 < 1. Then, qopt solves max.q∈BD×1
‖X>q‖pp and it

must be such that ‖qopt‖2 = 1. The latter implies that maxq∈SD×1
‖X>q‖pp = maxq∈BD×1

‖X>q‖pp.

B.3 Proof of Lemma 3.3

Proof. Consider b,b′ ∈ {±1}N such that b 6= b′. Assume that there exist q ∈ C(b) and q′ ∈ C(b′)
such that q = q′. The latter implies that sgn(X>q) = sgn(X>q′) which can not be true since

sgn(X>q) = b 6= b′ = sgn(X>q′). We conclude that there is no q ∈ C(b) and q′ ∈ C(b′) such that

q = q′. Formally, C(b) ∩ C(b′) = ∅ for any b 6= b′.

B.4 Proof of Lemma 3.5

Proof. Consider b ∈ {±1}N such that C(b) 6= ∅. Let q,q′ ∈ C(b) –i.e., sgn(X>q) = sgn(X>q′) =

b, ‖q‖2 ≤ 1, and ‖q′‖2 ≤ 1. First, notice that there exists a ∈ RN such that [a]n > 0∀n ∈ [N ] and

a�X>q = X>q′. (B.9)

Consider θ ∈ [0, 1] and let q̄ = θq + (1− θ)q′. It holds that

sgn(X>q̄) = sgn(θX>q + (1− θ)X>q′) (B.10)

= sgn(θX>q + (1− θ)a�X>q) (B.11)

= sgn
(
X>q� (θ1N + (1− θ)a)

)
(B.12)

= sgn(X>q) (B.13)

= b. (B.14)
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Moreover, by Cauchy-Swarchz inequality we obtain that

‖q̄‖22 =θ2‖q‖22 + (1− θ)2‖q′‖22 + 2θ(1− θ)q>q′ (B.15)

≤ θ2‖q‖22 + (1− θ)2‖q‖22 + 2θ(1− θ)‖q‖22 (B.16)

= ‖q‖22
(
θ2 + (1− θ)2 + 2θ(1− θ)

)
(B.17)

= ‖q‖22 ≤ 1. (B.18)

It follows that for any q,q′ ∈ C(b) and θ ∈ [0, 1], q̄ = θq+ (1− θ)q′ ∈ C(b). Thus, C(b) is a convex

set.

Proof of Lemma 3.6

Proof. Consider b ∈ {±1}N such that C(b) 6= ∅. Let q,q′ ∈ C(b) –i.e., sgn(X>q)) = sgn(X>q′) =

b, ‖q‖2 ≤ 1, and ‖q′‖2 ≤ 1. For any q̄ = θq + (1− θ)q′, it holds∥∥∥X>q̄
∥∥∥p
p

=
∥∥∥θX>q + (1− θ)X>q′

∥∥∥p
p

(B.19)

=
∥∥∥X>q� (θ1N + (1− θ)a)

∥∥∥p
p

(B.20)

=
∑
n∈[N ]

(
(θ + (1− θ)[a]n)|x>nq|

)p
(B.21)

≥
∑
n∈[N ]

θp|x>nq|p + (1− θ)p[a]pn|x>nq|p (B.22)

=
∑
n∈[N ]

θp|x>nq|p + (1− θ)p|[a]nx
>
nq|p (B.23)

≥
∑
n∈[N ]

θ|x>nq|p + (1− θ)|[a]nx
>
nq|p (B.24)

= θ‖X>q‖pp + (1− θ)‖X>q′‖pp. (B.25)
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B.5 Proof of Lemma 3.7

Proof. Let qopt be the solution to (3.1). We find that

‖X>qopt‖pp =
∑
n∈[N ]

|x>nqopt|p (B.26)

=
∑
n∈[N ]

max
b∈{±1}

<{(bx>nqopt)
p}. (B.27)

≥
∑
n∈[N ]

<
{

(bnx
>
nq)p

}
, (B.28)

where bn ∈ {±1}∀n ∈ [N ]. Equality is attained if and only if bn = sgn(x>nqopt) for every n ∈
[N ].

B.6 Proof of Proposition 3.2

Proof. Let B+
D×1 = {q ∈ RD : ‖q‖2 ≤ 1, [q]i ≥ 0∀i ∈ [D]}. For any q ∈ BD×1, there exist a ∈ B+

D×1

and w ∈ {±1}D, such that q = a�w. Accordingly, it holds

max
q∈BD×1

‖X>q‖pp = max
q∈BD×1

∑
n∈[N ]

|x>nq|p (B.29)

= max
a∈B+

D×1

max
w∈{±1}D

∑
n∈[N ]

|(xn � a)>w|p (B.30)

Lem. 3.6
≤ max

a∈B+
D×1

∑
n∈[N ]

‖(xn � a)‖p1 (B.31)

= max
a∈B+

D×1

∑
n∈[N ]

|x>n a|p. (B.32)

The upper bound is attained by w = ±1D. Moreover, we notice that B+
D×1 ⊆ C(1N ). Accordingly,

for non-negative X

max
q∈SD×1

‖X>q‖pp= max
q∈BD×1

‖X>q‖pp= max
q∈C(1N )

‖X>q‖pp. (B.33)
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B.7 Proof of Lemma 3.9

Proof. Consider B ∈ {±1}N×K such that C̄(B) 6= ∅. Let Q,Q′ ∈ C̄(B) –i.e., sgn(X>Q) =

sgn(X>Q′) = B, ‖Q‖2 ≤ 1, and ‖Q′‖2 ≤ 1. First, notice that there exists A ∈ RN×K such

that [A]n,k > 0∀(n, k) ∈ [N ]× [K] and

A�X>Q = X>Q′. (B.34)

Consider θ ∈ [0, 1] and let Q̄ = θQ + (1− θ)Q′. It holds that

sgn(X>Q̄) = sgn(θX>Q + (1− θ)X>Q′) (B.35)

= sgn(θX>Q + (1− θ)A�X>Q) (B.36)

= sgn
(
X>Q� (θ1N×K + (1− θ)A)

)
(B.37)

= sgn(X>Q) (B.38)

= Q. (B.39)

Moreover, the spectral norm satisfies the norm triangle inequality property. Therefore, it holds

‖Q̄‖2 =‖θQ + (1− θ)Q′‖2 (B.40)

≤ ‖θQ‖2 + ‖(1− θ)Q′‖2 (B.41)

= θ‖Q‖2 + (1− θ)‖Q′‖2 (B.42)

≤ θ + (1− θ) (B.43)

= 1. (B.44)

It follows that for any Q,Q′ ∈ C̄(Q) and θ ∈ [0, 1], Q̄ = θQ + (1 − θ)Q′ ∈ C̄(B). Thus, C̄(B) is a

convex set.

B.8 Proof of Lemma 3.10

Proof. Assume that there exists k ∈ [K] such that b = [B̄opt]:,k /∈ B?. Then, C(b) includes q = 0D

and [Q̄opt]:,k has no contribution in the metric. Substituting b by any b′ ∈ B? not in B̄opt, would

offer a larger metric which contradicts that Q̄opt is the exact solution.
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B.9 Proof of Proposition 3.4

Proof. Let Q̄opt ∈ SD×K be the exact solution to (3.25). Consider Q′ ∈ SD×K and assume that

‖X>Q̄opt‖pp > ‖X>Q′‖pp. This contradicts that Q̄opt is the exact solution to (3.25). Accordingly,

there exists no matrix in Stiefel that offers a larger metric in (3.1) compared to Q̄opt.



Appendix C

Chapter 4

C.1 Proof of Lemma 4.1

Proof. Let bq
4
= y∗q ⊗ yq ∀q and define auxiliary variables v̇ = 1L ⊗ sL, ṗ = p⊗ 1L, v̈ = sL ⊗ 1L,

and p̈ = 1L ⊗ p.1 For any n ∈ {1 − L′, 2 − L′, . . . L′ − 1} and jn ∈ Jn, it holds that [bq]jn =

[y∗q ][v̇]jn
[yq][v̈]jn

. Further, it holds

[yq][v̇]jn
=

K∑
k=1

v(θk)
[ṗ]jn ξq,k + [nq][v̇]jn

, (C.1)

[yq][v̈]jn
=

K∑
k=1

v(θk)
[p̈]jn ξq,k + [nq][v̈]jn

. (C.2)

Next, we compute E{[bq]jn} =
∑K

k=1 v(θk)
ωjndk + σ2[iL]jn = [r]jn ,2 which implies that E{r̂} = r.

Then, for every n ∈ {1−L′, 2−L′, . . . , L′− 1} and (i, j) ∈ Jn , we define b
(n)
p,q,i,j

4
= [b∗q ]i[bp]j . After

simple algebraic manipulations we find that

E
{
b
(n)
p,q,i,j

}
=
∣∣gHn d + δ(n)σ2

∣∣2 + δ(q − p)
∣∣ zHi,jd + δ(i− j)σ2

∣∣2 , (C.3)

1Recall that for any x ∈ N+, sx = [1, 2, . . . , x]>.
2Recall that for any i ∈ {1, 2, . . . , L2}, ωi = [ṗ]i − [p̈]i.
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where gn
4
= [v(θ1)n, v(θ2)n, . . . , v(θK)n]>. Next, we proceed as follows.

e = E
{
|[r]jn − [r̂]jn |

2
}

(C.4)

= |[r]jn |
2 + E

{
[r̂]jn [r̂]∗jn

}
− 2E

{
<
{

[r]jn [r̂]∗jn
}}

(C.5)

= E
{

[r̂]jn [r̂]∗jn
}
− |[r]jn |

2 (C.6)

= E

 1

Q2

Q∑
q=1

Q∑
p=1

[bq]jn [bp]
∗
jn

− |[r]jn |
2 (C.7)

=
1

Q2

Q∑
q=1

Q∑
p=1

E
{
b
(n)
q,p,jn,jn

}
− |[r]jn |

2 (C.8)

(C.3)
=

(1>Kd + σ2)2

Q
. (C.9)

C.2 Proof of Lemma 4.2

Proof. By Lemma 4.1, errr(r̂sel) = E{‖rco − r̂sel‖22} =
∑L′−1

n=1−L′ E{|[r]jn − [r̂]jn |2} = (2L′ − 1)e.

C.3 Proof of Proposition 4.1

Proof. Notice that Z = F(IL′ ⊗ rco) = [F1rco, F2rco, . . . , FL′rco]. By definition, Fm is a selection

matrix that selects the {L′−(m−1), L′−(m−2), . . . , 2L′−m}th entries of the length-(2L′−1) vector

it multiplies, for every m ∈ {1, 2, . . . , L′}. That is, Fmrco = [rco]L′−(m−1):2L′−m. Similarly, Ẑsel =
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[F1r̂sel, F2r̂sel, . . . , FL′ r̂sel] with Fmr̂sel = [r̂sel]L′−(m−1):2L′−m. In view of the above,

errZ(Ẑsel) = E
{∥∥∥Z− Ẑsel

∥∥∥2

F

}
(C.10)

= E

{
L′∑
m=1

‖Fmrco − Fmr̂sel‖22

}
(C.11)

=
L′∑
m=1

E
{∥∥[rco]L′−(m−1):2L′−m − [r̂sel]L′−(m−1):2L′−m

∥∥2

2

}
(C.12)

=

L′∑
m=1

L′−m∑
n=1−m

E
{
|[rco]L′+n − [r̂sel]L′+n|2

}
(C.13)

=
L′∑
m=1

L′−m∑
n=1−m

e (C.14)

= L′2e. (C.15)

C.4 Proof of Lemma 4.3

Proof.

en = E


∣∣∣∣∣∣[r]jn −

1

|Jn|
∑
j∈Jn

[r̂]j

∣∣∣∣∣∣
2 (C.16)

= |[r]jn |
2 +

1

|Jn|2
E


∣∣∣∣∣∣
∑
j∈Jn

[r̂]j

∣∣∣∣∣∣
2− 2E

<
[r]∗jn

 1

|Jn|
∑
j∈Jn

[r̂]j


 (C.17)

= |[r]jn |
2 +

1

|Jn|2
∑
j∈Jn

∑
i∈Jn

1

Q2

Q∑
q=1

Q∑
p=1

E
{
b
(n)
q,p,i,j

}
− 2<

[r]∗jn

 1

|Jn|
∑
j∈Jn

[r]j

 (C.18)

(C.3)
=

1

Q

2σ21>Kd + σ4

|Jn|
+
∑
i∈Jn

∑
j∈Jn

|zHi,jd|2

|Jn|2

 . (C.19)
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C.5 Proof of Lemma 4.4

Proof. By Lemma 4.3, errr(r̂avg) = E{‖rco − r̂avg‖22} =
∑L′−1

n=1−L′ E{|[r]jn − 1
|Jn|

∑
j∈Jn [r̂]j |2} =∑L′−1

n=1−L′ en.

C.6 Proof of Proposition 4.2

Proof. We know that Z = [F1rco, F2rco, . . . FL′rco]. Thus, Ẑavg = [F1r̂avg, F2r̂avg, . . . FL′ r̂avg].

By the definition of Fm, for every m ∈ {1, 2, . . . , L′} it holds that Fmrco = [rco]L′−(m−1):2L′−m and

Fmr̂avg = [r̂avg]L′−(m−1):2L′−m. In view of the above,

errZ(Ẑavg) = E
{∥∥∥Z− Ẑavg

∥∥∥2

F

}
(C.20)

= E

{
L′∑
m=1

‖Fmrco − Fmr̂avg‖22

}
(C.21)

=
L′∑
m=1

E
{∥∥[rco]L′−(m−1):2L′−m − [r̂avg]L′−(m−1):2L′−m

∥∥2

2

}
(C.22)

=

L′∑
m=1

L′−m∑
n=1−m

E
{
|[rco]L′+n − [r̂avg]L′+n|2

}
(C.23)

=
L′∑
m=1

L′−m∑
n=1−m

en. (C.24)

C.7 Proof of Lemma 4.5

We recall that w = 1
Q

∑Q
q=1 x∗q ⊗ xq. Next, we notice that by utilizing the auxiliary variables3

u̇ = 1K+L⊗ sK+L and ü = sK+L⊗1K+L, we obtain [w]i = 1
Q

∑Q
q=1[x∗q ][ü]i [xq][u̇]i . Then, we define

I 4= {i ∈ {1, 2, . . . , (K + L)2} : [i]i = 1}. We observe that E{[x∗q ][ü]i [xq][u̇]i} = δ([u̇]i − [ü]i) = 1 if

3Recall that for any x ∈ N+, sx = [1, 2, . . . , x]>.
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i ∈ I and 0 if i /∈ I. The latter implies

E{w} = i. (C.25)

Next, for (i,m) ∈ {1, 2, . . . , (K + L)2}2, we define

ηi,m
4
= [x∗q ][ü]i [xq][u̇]i [x

∗
p][u̇]m [xp][ü]m . (C.26)

It holds [w]i[w
∗]m = 1

Q2

∑Q
q=1

∑Q
p=1 ηi,m. By the 2nd and 4th order moments of zero-mean inde-

pendent normal variables, we find that E{ηi,m} is equal to 1 + δ(p− q)δ(i−m) if (i,m) ∈ I and 0

otherwise. The latter implies that E{[w]i[w
∗]m} = 1

Q2

∑Q
q=1

∑Q
p=1 E{ηi,m} is equal to 1+ 1

Qδ(i,m),

if (i,m) ∈ I and 0 otherwise. Altogether, we have

Ew{wwH} = ii> +
1

Q
IK+L. (C.27)

C.8 Proof of Lemma 4.6.

Proof. For (i,m) ∈ {1, 2, . . . , L2}2, [H]i,m = [Vw]i[(Vi)∗]m =
∑(K+L)2

j=1,l=1[V]i,j [w]j [V
∗]m,l[i]l. Ac-

cordingly, [HE]i,m =
∑(K+L)2

j=1,l=1 EΘEw{[V]i,j [w]j [V]∗m,l[i]l}. Considering that the random variables

w and V are statistically independent from each other and that Ew{w} = i (see Lemma 4.5), we

obtain [HE]i,m = EΘ{[Vi]i[(Vi)∗]m} = EΘ{[r]i[r
∗]m}. Then, we substitute4

[r]i =

K∑
k=1

v(θk)
ωidk + σ2[iL]i (C.28)

in EΘ{[r]i[r
∗]m}. After plain algebraic operations, we obtain

[HE]i,m = ‖d‖22 I (ωi − ωm) + σ4δ(ωi)δ(ωm) + σ2
(
1>Kd

)
(δ(ωi)I(−ωm) + I(ωi)δ(ωm)) (C.29)

+ I(ωi)I(−ωm)
(

(1>Kd)2 − ‖d‖22
)
. (C.30)

4Recall that for any i ∈ {1, 2, . . . , L2}, ωi = [ṗ]i − [p̈]i.
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C.9 Proof of Lemma 4.7.

Proof. For (i,m) ∈ {1, 2, . . . , L2}2 it holds

[G]i,m = [Vw]i[(Vw)∗]m =

(K+L)2∑
j=1,l=1

[V]i,j [w]j [V
∗]m,l[w

∗]l. (C.31)

Accordingly, [GE]i,m =
∑(K+L)2

j=1,l=1 EΘEw{[V]i,j [w]j [V
∗]m,l[w

∗]l}. Next, we recall that the random

variables Θ and w are statistically independent from each other. Thus,

[GE]i,m =

(K+L)2∑
j=1,l=1

E
Θ
{[V]i,jE

w
{[w]j [w

∗]l}[V∗]m,l}. (C.32)

The latter is equivalent to GE = E
Θ
{VE

w
{wwH}VH}. By Lemma 4.5, we obtain GE = E

Θ
{Vii>VH+

1
QVVH}. By Lemma 4.6, we find that GE = HE + 1

QṼE.

C.10 Proof of Remark 4.3

Proof.

‖T‖2F =
D−1∑
i=1−D

‖di(T)‖22 (C.33)

=

D−1∑
i=1−D

‖ 1

D − |i|
(1>D−|i|di(X))1D−|i|‖22 (C.34)

=

D−1∑
i=1−D

(1>D−|i|di(X))2

(D − |i|)2
‖1D−|i|‖22 (C.35)

=

D−1∑
i=1−D

(1>D−|i|di(X))2

D − |i|
(C.36)

≤
D−1∑
i=1−D

‖1D−|i|‖22‖di(X)‖22
D − |i|

(C.37)

= ‖X‖2F . (C.38)
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C.11 Proof of Remark 4.5

Proof. Consider Hermitian T ∈ CD×D with EVD T = Udiag(λT )UH , U is unitary (i.e., UUH =

UHU = ID). Let H = UHP0U which implies that P0 = UHUH . It holds

min
P0∈SD+

‖T−P0‖2F = min
H∈CD×D

‖diag(λT )−H‖2F (C.39)

= min
H∈CD×D

∑
i,j
i 6=j

[H]2i,j+
D∑
i=1

([λT ]i−[H]i,i)
2 (C.40)

≥
∑
i,j
i 6=j

[H]2i,j+
D∑
i=1

([λT ]i−[H]i,i) (C.41)

≥
∑

i∈{1,2,...,D|[λT ]i<0}

[λT ]2i . (C.42)

Similar to [215], the lower bound in (C.42) is attained by matrix H = diag(λP ) for λP such that

[λP ]i = max{[λT ]i, 0}.

C.12 Proof of Remark 4.7

Proof.

‖A‖2F =
D∑
i=1

[λA]2i (C.43)

=

D−ρ∑
i=1

[λP ]2i + ρ(
1

ρ

D∑
j=D−ρ+1

[λP ]j)
2 (C.44)

≤
D−ρ∑
i=1

[λP ]2i +
D∑

j=D−ρ+1

[λP ]2j (C.45)

= ‖P‖2F . (C.46)
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