
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2-2021

Generation, Verification, and Attacks on Elliptic Curves and their Generation, Verification, and Attacks on Elliptic Curves and their

Applications in Signal Protocol Applications in Signal Protocol

Tanay Pramod Dusane
tpd4203@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Dusane, Tanay Pramod, "Generation, Verification, and Attacks on Elliptic Curves and their Applications in
Signal Protocol" (2021). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10715&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10715?utm_source=repository.rit.edu%2Ftheses%2F10715&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Generation, Verification, and

Attacks on Elliptic Curves and

their Applications in Signal

Protocol

by

Tanay Pramod Dusane

THESIS

Presented to the Faculty of the Department of Computer Science

B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Computer Science

Rochester Institute of Technology
February 2021

Generation, Verification, and Attacks on
Elliptic Curves and their Applications in

Signal Protocol

Approved by

Supervising committee:

Stanis law Radziszowski, Chair

Monika Polak, Reader

Anurag Agarwal, Observer

Abstract

Elliptic curves (EC) are widely studied due to their mathematical

and cryptographic properties. Cryptographers have used the proper-

ties of EC to construct elliptic curve cryptosystems (ECC). ECC are

based on the assumption of hardness of special instances of the discrete

logarithm problem in EC. One of the strong merits of ECC is providing

the same cryptographic strength with smaller key size compared to

other public key cryptosystems. A 256 bit ECC can provide similar

cryptographic strength as 3072 bit RSA cryptosystem. Due to smaller

key sizes, elliptic curves are an attractive option in devices with limited

storage capacity. It is therefore essential to understand how to generate

these curves, verify their correctness and assure that they are resistant

against attacks.

The security of an EC cryptosystem is determined by the choice of the

curve that is used in that cryptosystem. Over the years, a number of el-

liptic curves were introduced for cryptographic use. Elliptic curves such

as FRP256V1, NIST P-256, Secp256k1 or SM2 curve are widely used

in many applications like cryptocurrencies, transport layer protocol

and Internet messaging applications. Another type of popular curves

are Curve25519 introduced by Dan Bernstein and Curve448 introduced

by Mike Hamburg, which are used in an end to end encryption protocol

called Signal. This protocol is used in popular messaging applications

like WhatsApp, Signal Messenger and Facebook Messenger.

Recently, there has been a growing distrust among security researchers

against the previously standardized curves. We have seen backdoors in

the elliptic curve cryptosystems like the DUAL EC DRBG function that

was standardized by NIST, and suspicious “random seeds” that were

used in NIST P-curves. We can say that many of the previously stan-

dardized curves lack transparency in their generation and verification.

In this thesis, we focus on transparent generation and verification of

elliptic curves. We generate curves based on NIST standards and

iii

propose new standards to generate special type of elliptic curves. We

test their resistance against the known attacks that target the ECC.

Finally, we demonstrate ECDLP attacks on small curves with weak

structure.

iv

Acknowledgements

A lot of people have been with me throughout my incredible journey at

Rochester Institute of Technology. I would like to thank all the faculty mem-

bers, friends and my advisors for supporting me throughout this process.

I would first like to thank my thesis advisor Professor Stanis law Radzis-

zowski for believing in me and my abilities to work on this topic. His guidance

has been invaluable throughout the cryptography course, independent study

and my master’s thesis. He always kept his door and zoom meetings open to

help me with any roadblocks I have faced during this process. I have been

incredibly fortunate to be able to work under his guidance.

I would also like to thank my thesis reader Professor Monika Polak for

providing her invaluable feedback. Thanks to Professor Anurag Agarwal for

his feedback and being a part of my committee as observer.

Special thanks to me Graduate Advisor Rebecca O’Connor for being a source

of encouragement and help during this journey. Without her, this chapter

would be incomplete.

I would also like to thank my parents Pramod Dusane and Anjusha Du-

sane for believing in me and letting me pursue my dreams. Without their

sacrifices and hard work, this journey would’ve been impossible. Thanks to my

sister Chinmayee Dusane for being a source of support and hope. And finally

my friends Aniruddha, Rishabh and Alok for being supportive throughout

this journey.

v

Contents

I Part 1: Elliptic curves theory and algorithms 1

1 Introduction and thesis overview 1

1.1 Thesis overview . 2

1.2 Thesis goals . 3

1.3 Outcomes . 3

2 Elliptic curves 4

2.1 Group operations on elliptic curves 5

2.1.1 Point addition . 5

2.1.2 Point scalar multiplication 6

2.2 Elliptic Curve Discrete Logarithm Problem (ECDLP) 7

2.3 Elliptic curves in cryptography 7

2.3.1 Elliptic Curve Diffie Hellman (ECDH) 7

2.3.2 Elliptic Curve Digital Signature Algorithm 8

2.3.3 Signal protocol . 9

2.4 Domain parameters . 12

2.5 Special type of curves . 12

2.5.1 Edwards Curves . 13

2.5.2 Twisted Edwards Curve 13

2.5.3 Curve 448 . 14

2.5.4 Montgomery Curves 14

2.5.5 Curve 25519 . 15

2.5.6 Koblitz Curves . 16

2.6 Verification of birational maps between Curve25519 and Ed25519 16

2.7 Contribution to thesis goals 17

vi

3 Counting Points on Elliptic Curves 18

3.1 Point counting algorithms . 19

3.2 Experimental work . 19

3.2.1 Curve25519 . 21

3.2.2 NIST P-256 . 22

3.2.3 Curve448 . 22

4 Curve Generation and Verification 24

4.1 Criteria for cryptographic ECs 25

4.1.1 Hardness ECDLP problem 25

4.1.2 Implementation dependent security 26

4.1.3 Normality of the curve 26

4.1.4 Convenience of implementation of the curve 28

4.2 Generating an EC . 28

4.3 Verification of an EC . 29

4.4 Security criteria for Montgomery curves 31

4.5 Time analysis of computing A 34

4.5.1 Iterative vs random search for A parameter

. 38

4.6 End-to-End Encryption Debate 39

4.7 Contribution to thesis goals 40

5 Attacks on ECDLP 41

5.1 Shanks Algorithm . 41

5.2 Pollard Rho . 42

5.3 Pohlig-Hellman . 43

5.4 Experimental work . 44

5.5 Contribution to thesis goals 45

II Part 2: Case study of elliptic curves 46

vii

6 Generated curves 46

6.1 Curve224 . 46

6.2 Curve272 . 48

6.3 Toy EC . 51

6.3.1 Curve31 . 51

6.3.2 Curve61 . 51

6.3.3 Ed1051 . 52

6.4 Toy ECC . 52

6.4.1 EC arithmetic: . 52

6.4.2 Montgomery ladder . 56

6.4.3 Point compression . 58

7 Standardized Curves 60

7.0.1 Curve catalog . 60

7.0.2 NIST SP 800-186 . 61

7.0.3 SEC 2 . 65

7.1 Contribution to thesis goals 74

8 References 75

9 Appendix 1: Order of the curves 78

9.1 Order of NIST P-256 using Schoof’s algorithm 78

9.2 Sec256k1 - Bitcoin curve . 79

9.3 Order of Curve25519 using Schoof’s algorithm 81

9.4 Order of Curve25519 using SageMath 83

9.5 Order of Curve448 using SageMath 83

9.6 Order of Curve M-511 using SageMath 84

9.7 Time analysis of Schoof’s algorithm 84

9.7.1 Curve 25519 . 84

9.7.2 NIST P-256 . 85

9.7.3 Sec256k1 - Bitcoin curve 86

viii

9.7.4 Weierstrass Curves . 86

9.7.5 Montgomery Curves 89

9.7.6 Twisted Edwards Curves 90

9.7.7 Koblitz Curves . 91

10 Appendix 2: Code 94

10.1 Montgomery curves . 94

10.2 Twisted Edwards curves . 101

ix

List of Symbols

#E Total number of points on the curve E

Fp Finite Field with p elements

E Elliptic curve

EE,a,d Edwards curve with a, d parameters

EK,a Koblitz curve with a parameter

EM,A,B Montgomery curve with A,B parameters

G Generator of the curve

GF (2m) Galois field with 2m elements

h Cofactor of the curve

n Order of the generator G

tr Trace of elliptic curve

ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

X3DH Extended Triple Diffie-Hellman

XEdDSA Extended Edwards Curve Digital signature algorithm

x

List of Tables

1 Computing A iteratively, where p = 3 mod 4 35

2 Computing A iteratively, where p = 1 mod 4 36

3 Computing A randomly, where p = 3 mod 4 36

4 Computing A randomly, where p = 1 mod 4 37

5 Iterative computation of A . 38

6 Random computation of A . 39

7 Parameters . 48

8 ECDLP security . 48

9 ECC security . 48

10 Parameters . 50

11 ECDLP security . 50

12 ECC security . 50

xi

List of Figures

1 Plot of y2 = x3 + x+ 28 over Z71 5

2 Schoof’s algorithm taken from [24] 20

3 Schoof-Elkies-Atkins (SEA) algorithm taken from [24] 21

xii

Part I

Elliptic curves theory and

algorithms

1 Introduction and thesis overview

Elliptic curves are defined by certain cubic equations with two variables. The

simplified Weierstrass equation is often used for cryptography purpose. It is

defined as,

y2 = x3 + ax+ b,

where a, b are real numbers and x and y take on the values in the real numbers.

EC that are defined over finite fields are of stronger importance in cryptogra-

phy. Typically the curves used for cryptographic purpose are defined over a

large prime field Fp or Galois field GF (2n), of around 2250 elements. A wide

range of standardized elliptic curves are deployed over the Internet. Standards

like ANSSI, NIST, OSCCA, Brainpool set out a list of requirements that the

curves should satisfy in order to be a standardized curve. Recently there has

been some concerns about the security of the previously standardized curves.

Curves like FRP256V1 standardized by ANSSI and SM2 curve standardized

by OSCCA are distributed without any public justification. That is, their

parameters were chosen without any explanation for how they were chosen

[4]. This should raise suspicions about any potential backdoors that could be

present in these curves.

The Snowden leak in 2013 showed that NSA deliberately inserted a backdoor

in a CSPRNG function called DUAL EC DRBG used in many ECC. NIST stan-

dardized the dual elliptic curve deterministic random bit generator function

1

despite security researchers deeming it to be insecure [21].

This increased a level of distrust among cryptographers for previously stan-

dardized curves. Bernstein et al. demonstrate the generation of vulnerable

curves that follow all the standardization requirements. One could assume

that the standardization agencies distribute curves that can lead the users to

believe the curves are secure but the agencies are able to break them [4].

It is therefore essential to understand the criteria for generating the curves

and verifying the parameters of an EC. The security of an ECC is based

on the assumption of hardness of special instances of the discrete logarithm

problem in EC. This hardness depends primarily on the parameters of an EC

and the choice of the starting point. Flori et al. discuss the necessary criteria

that a curve must satisfy in order to be deemed secure [11]. We cover these

criteria in more detail in the thesis.

The purpose of this thesis is to explore the generation and verification process

of EC. We develop software that generates curve parameters adhering to all

the necessary requirements. Finally, we test the security of the generated

curves using a tool developed by Dan Bernstein and Tanja Lange. The end

goal is to generate curves that can be used as alternative curves in well known

end to end encryption protocols like Signal.

1.1 Thesis overview

There has been growing distrust for previously standardized curves due their

weaknesses or unexplained generation processes. With the ever increasing

usage of end-to-end encrypted protocols, it is essential that the cryptographic

primitives used in these protocols are publicly trusted. Dan Bernstein and

his colleagues paved the way for programmers to move from insecure stan-

dardized elliptic curves to new family of secure and trusted elliptic curves [5].

Curve25519 along with its implementation in Signal protocol popularized the

end-to-end encryption methodology. In this thesis, we study the properties of

elliptic curve that are used or could be used in Signal protocol. We study

2

elliptic curve structure and analyze its security. We focus on the criteria that

the curves have to satisfy in order to be “safe”. We analyze security criteria

recommended by various cryptographers. Using the SafeCurves criteria,

we propose Montgomery elliptic curves that are secure to use in protocols

such as Signal. Finally we present the security analysis of our curves and

demonstrate their usage in small elliptic curve cryptosystem.

1.2 Thesis goals

G1: Overview the use of EC in cryptosystems. To generate an elliptic curve,

it is important to understand the underlying concepts of elliptic curves

and its group operations.

G2: Analyze security of EC. We focus on requirements that make EC secure.

G3: Construct software to generate secure EC.

G4: Verify the correctness of generated curves with respect to the guidelines.

Adhering to the requirements, we generate curve parameters and check

if the curve passes all the necessary requirements.

G5: Test the usability of the generated curve in ECC. Once the gener-

ated curve passes all the necessary requirements, we will construct toy

cryptosystem using the generated curve.

G6: The curves we generate should be resistant against the known ECDLP

attacks. However, we will demonstrate ECDLP attacks on small EC.

1.3 Outcomes

G1: We studied the use of EC in different cryptosystems. We observed

the different families of EC and their properties and features. These

features helped us understand why specific curves are chosen in certain

cryptosystems.

3

G2: We analyzed the security of EC by studying the different types of attacks

that can affect the security of ECC.

G3: We constructed a software that would perform the EC arithmetic and

EC conversions on three different families of curves. We use GMP library

to efficiently and accurately compute ECC arithmetic operations.

G4: We verified the security of generated curves with respect to the SafeCurves

criteria. We generated the curve parameters that passed all the necessary

security requirements.

G5: We constructed a toy EC Cryptosystem that is based on the generated

the curves that we have generated. We demonstrate the use of our curve

in different elliptic curve cryptosystems.

G6: We implemented algorithms to solve ECDL problem on small EC. We

verified that the resistance of our generated curves against modern

ECDLP solvers.

2 Elliptic curves

Elliptic curves are the basis of elliptic curve cryptosystems. Elliptic curves

are defined by certain cubic equations with two variables. These curves can

be defined over real number, modulo a prime number, or over a finite field Fp.

For cryptographic use, we focus on elliptic curves that are defined over finite

fields Fp.

Definition 1 Consider a finite field Fp. Let a, b ∈ Fp be constants such that

4a3 + 27b2 6= 0. A nonsingular elliptic curve is the set E of solutions (x, y) ∈
F2
p to the equation

y2 = x3 + ax+ b,

4

together with a special point O called the point at infinity. This equation is

called a Weierstrass equation. We will cover other type of equations in later

sections.

Figure 1: Plot of y2 = x3 + x+ 28 over Z71

2.1 Group operations on elliptic curves

Group operations such as addition and scalar multiplication are performed

using the points on the curve. There are two cases of group operations that

we consider: Addition of two distinct points on the curve and addition of a

point on the curve with itself (point doubling).

2.1.1 Point addition

Point addition requires “adding” two distinct points on the elliptic curve to

produce a third point. Since we are producing a third point by “adding” two

points, the operation is arbitrarily named as “addition” [19].

5

Consider two points P,Q ∈ E where P (x1, y1) and Q(x2, y2), we define group

operation addition as P (x1, y1) + Q(x2, y2) = R(x3, y3). The algebraic for-

mula to compute R is as follows:

Case 1: x1 6= x2

x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1,
where λ =

y2 − y1
x2 − x1

.

Case 2: x1 = x2, y1 = −y2

(x1, y1) + (x1,−y1) = O.

Case 3: x1 = x2 and y1 = y2

x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1,

where λ =
3x21 + a

2y1
.

2.1.2 Point scalar multiplication

Point scalar multiplication is an operation where a point P is added to itself

k number of times, where 3 ≤ k ≤ n and n is the order of the base point of

curve E. Point multiplication operation on EC corresponds to exponentiation

[19]. It is the basis of elliptic curve discrete log problem (ECDLP).

P + P + P + P ++ P︸ ︷︷ ︸
k times

= kP.

There are various methods to efficiently compute point multiplication. Such as

double and add algorithm, Montgomery ladder and sliding window approach.

6

2.2 Elliptic Curve Discrete Logarithm Problem (ECDLP)

Elliptic curve discrete logarithm problem (ECDLP) is an analog of the discrete

log problem (DLP). Consider a base point P and another point Q such that

P,Q ∈ E, the problem asks to find integer d, where 1 ≤ d ≤ #E, such that

P = dQ. Here, the total number of points on E is denoted by #E.

Security of ECC is determined by the hardness of ECDLP problem. Size of

the curve and properly chosen base point can make the ECDLP problem hard.

For an EC to be secure, computing the value of d should be an infeasible

task.

2.3 Elliptic curves in cryptography

Elliptic curves are widely used in the modern cryptography due to their

properties. Unlike RSA, the EC key size d is smaller but it provides the same

level of security. This makes the usage of EC very compelling in computers

that have limited storage and computational capacity. For this reason, EC is

used for digital signature algorithms, key exchange algorithms, key agreement

algorithms and pseudo-random generators. EC is a fundamental building

block in end-to-end encryption protocol Signal and for cyrptocurrencies like

Bitcoin and Ethereum.

2.3.1 Elliptic Curve Diffie Hellman (ECDH)

Diffie Hellman key exchange (DHKE) protocol is used to securely exchange

keys between two parties over an insecure channel. Elliptic curve Diffie Hell-

man (ECDH) is a variation of DHKE which uses EC. DHKE uses modular

arithmetic to compute the keys whereas ECDH uses elliptic curve arithmetic.

Before initiating the ECDH protocol, both parties have to agree upon an

elliptic curve and its primitives such as base point. Once the primitives are

agreed upon, the protocol works as follows:

7

Alice Bob

choose kprA = a ∈ {2, 3, ...,#E − 1} choose kprB = b ∈ {2, 3, ...,#E − 1}
compute kpubA = aP = A = (xA, yA) compute kpubB = bP = B = (xB, yB)

A−−−−−−−−−−−−−−−−−−−−−−−−−−→
B←−−−−−−−−−−−−−−−−−−−−−−−−−−

compute aB = TAB compute bA = TAB

Shared secret between Alice and Bob is TAB = (xAB, yAB)

2.3.2 Elliptic Curve Digital Signature Algorithm

Digital Signal Algorithm(DSA) is used to sign and verify messages. The

messages are signed using the private key of the signer and verified using the

public key of the signer. DSA key generation operations are defined under

Z∗
p . Unlike DSA, ECDSA is defined under a group of an elliptic curve.

• Key Generation of ECDSA:

– Choose a large prime p and an elliptic curve E defined over Zp

– Choose a point A on E such that it generates a cyclic group of

prime order n.

– Let P = {0, 1},A = Z∗
p ×Z∗

p, and define K = f(p, n, E,A,m,B) :

B = mA where 0 ≤ m ≤ n− 1.

– Public key is (p, n, E,A,B), and m is the private key

• Signature generation:

– Choose a random ephemeral key k, 1 ≤ k ≤ n− 1

– sigK(x, k) = (r, s) where,

8

∗ kA = (u, v)

∗ r = u mod n

∗ s = k−1(SHA512(x) +mr) mod n

• Signature verification:

– Compute w = s−1 mod n

– i = w× SHA512(x) mod n

– j = wr mod n

– (u, v) = iA + jB

– verK(x, (r, s)) = true⇔ u mod n = r

2.3.3 Signal protocol

Signal protocol uses extended triple Diffie Hellman (X3DH) key agreement

protocol to establish a shared secret key between the two communicating

parties. And it uses extended Edwards curve digital signature algorithm

(XEdDSA) for verification of messages and public keys used in communi-

cation. Here, we focus on X3DH as it uses XEdDSA in one of its steps to

establish shared secret key. X3DH provides forward secrecy and cryptographic

deniability. We focus on asynchronous communication scenario between two

parties “Alice” and “Bob” , where Bob is offline and Alice wants to send a

message to Bob.

Before setting up X3DH protocol in an application, We must decide upon

following parameters.

Name Definition

curve Curve25519 or Curve448

hash A 256 or 512-bit hash function (e.g. SHA-256 or SHA-512)

info Information about the protocol (e.g My Application)

9

Cryptographic Notations:

• X||Y : Concatenation of byte sequences X and Y .

• DH(PK1, PK2) : Shared secret obtained from Elliptic Curve Diffie

Hellman function using public keys PK1 and PK2.

• Sig(PK,M) : Byte signature generated by XEdDSA function with M

as message and PK as public key.

• KDF (KM) : Key Derivation function that derives a secret key that is

used to encrypt the message.

Keys:

• IKA - Alice’s Identity Key.

• EKA - Alice’s Ephemeral Key.

• IKB - Bob’s Identity Key.

• EKB - Bob’s Ephemeral Key.

• SPKB - Bob’s signed prekey.

• OPKB - Bob’s one time prekey.

The keys used in X3DH are elliptic curve public keys. All of the keys have

their corresponding private keys. Identity keys are long term keys. Ephemeral

keys are generated on every iteration of the protocol. Prekeys are uploaded

to the server before initiation of any communication. Each party signs their

prekeys and uploads it to the server. Prekeys ensure forward secrecy.

10

Sending initial message:

Each communicating party publishes their identity keys (IK), signed prekeys

(SPK), prekey signatures Sig(IK,Encode(SPK)) and a bunch of one time

prekeys (OPK1,OPK3,OPK3,...). Identity keys are uploaded once while

signed prekeys and its signatures are uploaded in intervals (e.g every week or

every month).

To perform the X3DH Key Agreement, Alice has to fetch a set of keys of Bob

from server. These keys are :

• Identity key of Bob IKB

• Signed prekey of Bob SPKB

• Prekey signature of Identity key and signed private key

Sig(IKB, Encode(SPKB))

• Optional Bob’s one time prekey OPKB

The one time prekey is optional. If it exists then the server should fetch it to

Alice and then delete it. Alice generates her own set of ephemeral keys EKA

Alice then generates a shared secret key that is used to encrypt messages

between her and Bob. This shared secret key is calculated by performing

three or four Diffie Hellman Key exchanges depending upon the presence of

Bob’s one time prekey.

DH1 = DH(IKA, SPKB)

DH2 = DH(EKA, IKB)

DH3 = DH(EKA, SPKB)

If OPKB exists,

DH4 = DH(EKA, OPKB)

11

The above Diffie Hellman exchanges provide two properties-

• DH1 and DH2 : Mutual Authentication

• DH3 and DH4 : Forward Secrecy

Secret Key is calculated after all the exchanges are performed.

SK = KDF (DH1||DH2||DH3||DH4)

This secret key is used for encrypting the messages between Alice and Bob.

2.4 Domain parameters

Generator of the curve:

The generator G of the curve is a special point on the curve that can generate

the entire group when repeatedly added to itself. It is also referred as the

base point.

Order of the curve:

The order of the curve #E is the total number of points on the EC.

Order of the base point:

The order of base point G is the smallest positive integer n such that nG = O.

Cofactor of the curve:

The cofactor h denotes the number of subgroups that are generated by the

generator G and order n. We have the relation n · h = #E. For ECDLP

security, large prime order n and small cofactor h is desired.

2.5 Special type of curves

This section covers additional types of elliptic curves that are used in ECC.

12

2.5.1 Edwards Curves

Edwards curves are a family of elliptic curves that were first introduced by

Harold Edwards, in 2007. The original curve discussed by Edwards was a

normal form of elliptic curve with the equation [9]

x2 + y2 = a2 + a2x2y2.

Bernstein and Lange presented formulas for fast addition and point doubling

of the coordinates on the Edwards curve. They generalized the addition law

to the curves x2 + y2 = a2 + a2x2y2 which covers more elliptic curves over a

finite field than x2 + y2 = a2 + a2x2y2. These curves are isomorphic to the

curve [3]

x2 + y2 = 1 + dx2y2. (1)

We refer to such curves as Edwards Curves.

2.5.2 Twisted Edwards Curve

An Edwards curve is a twisted Edwards curve with a = 1 [3].

Definition 2 : Fix a field K with char(K) 6= 2. Fix distinct nonzero

elements a, d ∈ K. The twisted Edwards curve with coefficients a and d is the

curve

EE,a,d : ax2 + y2 = 1 + dx2y2.

Addition of two points P (x1, y1) and Q(x2, y2) on twisted Edwards curve is

given as:

P ⊕Q =

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
,

Point doubling on twisted Edwards curve P = Q = (x1, y1) is given as:

P ⊕ P =

(
2x1y1
ax21 + y21

,
y21 − ax21

2− ax21 − y21

)
.

13

2.5.3 Curve 448

Curve 448 is an Edwards curve designed by Mike Hamburg. It provides up to

224 bits of security [14]. Curve 448 is one of the curve that can be used in

Signal protocol and WhatsApp Messenger. The parameters of the curve 448

defined as per the RFC 7748 [18] are:

p 2448 − 2224 − 1

d −39081

n 2446 - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d5

4a7bb0d

h 4

X(G) 2245800402959243001876043340998960362467896416325641342

4612546168695041546740603290902928693579532825780320751

46446173674602635247710

Y (G) 2988192100784814926760179304439306734375440401540802420

9592824137233150618983587600353786554187847339823032335

03462500531545062832660

X(G) and Y (G) are the (x, y) coordinates of the base point G.

2.5.4 Montgomery Curves

Montgomery curve is another form of elliptic curve that was introduced by

Peter Montgomery in 1987. A Montgomery curve defined over field K is

equivalent to a twisted Edwards curve over a field K [3].

Definition 3 : Fix a field K with char(K) 6= 2. Let A ∈ K\{−2, 2} and

B ∈ K\{0}. Montgomery curve is defined as

EM,A,B : Bv2 = u2 + Au2 + u.

This equivalence between both the curves is called birational equivalence

because there exists a mapping ϕ : E1 → E2 and an inverse mapping

14

ϕ−1 : E2 → E1 between the points on twisted Edwards curve and Mont-

gomery curve. Given a point on any one curve, we can obtain an equivalent

point on Montgomery curve using the mapping [3].

The birational maps between the curves:

• A map between EE,a,d and EM,A,B where A =
2(a+ d)

a− d
and B =

4

a− d
,

(x, y)→ (u, v) =

(
1 + y

1− y
,

1 + y

(1− y)x

)
,

• A map between EM,A,B and EE,a,d where a = A+2
B

and d =
A− 2

B
,

(u, v)→ (x, y) =

(
u

v
,
u− 1

u+ 1

)
.

2.5.5 Curve 25519

Curve 25519 is a popular curve that was introduced by Dan Bernstein in

2005. Curve 25519 is widely used in Signal protocol, WhatsApp Messenger,

Secure Shell, Transport Layer Security and cryptocurrencies like ZCash.

The parameters of the curve 25519 defined as per the RFC 7748 [18] are:

p 2255 − 19

A 486662

n 2252 + 0x14def9dea2f79cd65812631a5cf5d3ed

h 8

U(G) 9

V (G) 1478161944758954479102059356840998688726460613461647528

8964881837755586237401

15

U(G) and V (G) are the (u, v) coordinates of the base point G.

2.5.6 Koblitz Curves

Koblitz curves are defined over binary fields GF(2k). They were introduced

by Neal Koblitz.

Definition 4 : Fix a binary field K. Let a ∈ K\{0, 1} and B ∈ K\{1}.
Koblitz curve is defined as

EK,a : y2 + xy = x3 + ax2 + 1.

Koblitz are not adopted as widely as other families of curves. Due to security

problems, they may be deprecated in the future.

2.6 Verification of birational maps between Curve25519

and Ed25519

The equation of the Curve25519 is given as

v2 = u2 + 486662u2 + u mod 2255 − 19.

and the coordinates of the generator G are (Gu, Gv). Now, we derive an

edwards curve birationally equivalent to Curve25519 using the maps discussed

in 2.5.4. The parameters we get are:

a =
A+ 2

B
=

486662 + 2

1
= 486664 and,

d =
A− 2

B
=

486662− 2

1
= 486660.

The curve that is birationally equivalent to the Curve25519 is

486664x2 + y2 = 1 + 486660x2y2 mod 2255 − 19.

We can also map the generator as,

16

(Gx, Gy) =

(
Gu

Gv

,
Gu−1

Gv+1

)
The value of generator can be verified by substituting it in the formula above.

The Edwards curve Ed25519 defined in RFC 8032 has a different equation

than derived above. This is due to a scaling and substitution factor that is

out of scope for this thesis.

2.7 Contribution to thesis goals

This section contributes to goal G1. To generate an elliptic curve, it is

important to understand the underlying concepts of elliptic curves and its

group operations. In this section we cover the background required for

studying the generation of elliptic curves.

17

3 Counting Points on Elliptic Curves

An important problem to study while constructing ECs is counting points on

an EC. The total number of points on an EC is denoted by #E. Counting

points is essential for determining the order of the curve, which is not a trivial

task. The total number of points on the EC is also called as order of an EC.

For a curve to be secure, the order of the curve must be a large prime p or a

large prime p times a very small cofactor h.

A cofactor h = 1 gives optimal security and having a small cofactor can

provide performance enhancements [11]. In order to make the subgroup

attack infeasible, the order of the curve should have a large prime factor.

Pohlig-Hellman algorithm can be used to attack the group of order n, but

the attack becomes hard if the order of subgroup is a large prime. Stinson

suggests that, for a curve to be resistant against ECDLP attacks, the order

of subgroup of the curve should be ≥ 2224 [23].

To construct ECC, we have to calculate the order of the curve. Finding

the order of the curve however is not a trivial job. Hasse’s theorem gives us

an approximation of #E.

Hasse’s Theorem: Given an elliptic curve E over Zp, the number of points

on the curve denoted by #E is bounded by [19]

p+ 1− 2
√
p ≤ #E ≤ p+ 1 + 2

√
p.

One way to compute the order of the curve by a naive approach, that is by

substituting all the elements of Fp in the curve equation. However, that would

be an exhaustive task for a large p. Luckily, algorithms such as Schoof’s and

SEA can compute #E in polynomial time.

18

3.1 Point counting algorithms

Schoof’s Algorithm:

Schoof’s algorithm is used to count the points on the curve. It is very ef-

ficient when the field of the curve is larger than 2160. The complexity of

this algorithm is O(ln8p). To understand this algorithm, lot of concepts of

advanced number theory are required which we will study during the thesis

work. The idea behind Schoof’s algorithm is to compute trace of Frobenius

t mod l such that l is a small prime number in K and then use Chinese

remainder theorem to compute t. Then we can compute #E = p + 1 − t
[1]. Sundriyal suggests improvement in Schoof’s algorithm by using Shank’s

BSGS algorithm within the internal searching of l. This can further increase

the speed of the algorithm [24].

Schoof-Elkies-Atkins (SEA) algorithm:

SEA algorithm is an improvement over Schoof’s algorithm. The drawback of

Schoof’s algorithm is with the degree of division polynomials. SEA algorithm

deals with this drawback of Schoof’s algorithm and presents an improvement.

It reduces the complexity of the algorithm from O(ln8p) to O(ln5p). This

algorithm can count the order of curve over Fp with p over 500 digits [24].

3.2 Experimental work

We calculate the order of the curves using Schoof’salgorithm. We used a

compiled binary of Schoof’s algorithm, authored by Michael Scott which

is found in MIRACL library. The purpose of the experiment was to test the

Schoof’s algorithm software’s correctness and efficiency. To cross refer-

ence the efficiency, we compute the order of same curves with SageMath.

SageMath uses Schoof-Elkies-Atkin (SEA) algorithm which is an improved

over Schoof’s algorithm to compute the order of the curves. The detailed

19

Figure 2: Schoof’s algorithm taken from [24]

output of our experiments can be found in appendix 1.

Schoof’s algorithm can count the points on a Weierstrass curve. SEA

algorithm in SageMath can count points on the Montgomery and Weierstrass

20

Figure 3: Schoof-Elkies-Atkins (SEA) algorithm taken from [24]

curves. Hence, using birational mappings, we use Wei2551 which is a Weier-

strass form of Curve25519. Similarly, for Edwards curves, we use birational

mappings to convert them to appropriate Montgomery or Weierstrass form in

order to compute order of the curve.

3.2.1 Curve25519

Wei25519: y2 = x3 + a ∗ x+ b mod p

a 192986815395526992372618308347813179755449974442734273399095

97334573241639236

b 557517466698189089076452890782571408182411037279010123152944

00837956729358436

p 2255 − 19

Using Schoof’s algorithm:

21

NP=57896044618658097711785492504343953926856930875039260848015607

506283634007912

Using SEA algorithm:

sage: ec.order()

NP = 57896044618658097711785492504343953926856930875039260848015

607506283634007912

3.2.2 NIST P-256

NIST P-256: y2 = x3 − 3x+ b mod p

a -3

b 1

p 410583637251521421293261297800472684091144410159937255548352

56314039467401291

Using Schoof’s algorithm:

NP=11579208921035624876269744694940757352999695522413576034242225

9061068512044369

Using SEA algorithm:

sage: ec.order()

NP = 115792089210356248762697446949407573529996955224135760342422

259061068512044369

3.2.3 Curve448

Curve448: By2 = x3 + A ∗ x2 + x mod p

22

A 156326

B 1

p 726838724295606890549323807888004534353641360687318060281490

199180612328166730772686396383698676545930088884461843637361

053498018365439

Using SEA algorithm:

sage: ec.order()

NP = 72683872429560689054932380788800453435364136068731806028149

0199180584015846158342864783021166769503853241174836366649219095

023438599116

23

4 Curve Generation and Verification

Elliptic curves are the basis of an ECC. However, there is not a single

standardized curve that is used throughout all ECC. There are atleast 8

standards that define different types of ECs. Each standard tries to ensure

that ECC computations are efficient and ECDLP is hard [5].

There are total 20 curves that are evaluated by Dan Bernstein and Tanja

Lange. These curves are determined as secure if they satisfy all the SafeCurves

requirements. Each one of these curves have a different set of parameters

for efficiency like different fields, shapes and size of cofactor. The curves

that satisfy the SafeCurves criteria are gaining popularity in their usage.

Curve25519 and Curve4448 are two such curves that are used in end-to-end

encryption protocols, digital signature algorithms and key exchange protocols.

Jubjub which is a twisted Edwards curve is used in crytpocurrencies like

Zcash [12]. Due to their gaining popularity, studying the generation of these

curves is important.

Wozny examines the domain parameters for generation of curves used in

ECC, defined by National Institute of Standards and Technology (NIST),

Institute of Electrical and Electronics Engineers (IEEE) standards, American

National Standards Institute (ANSI), Secure and Efficient Cryptography

Group (SECG) for binary Galois fields [25].

While Wozny discusses the curve generation and parameter validation of curves

in Galois fields, a question that arises is, how to transparently generate curves

that are secure? Transparent generation of curves mean that anyone can

verify the curve parameters and there are no Nothing-up-my-sleeve numbers

in those curve parameters.

Flori et al. [11] discuss this very question where they propose the a list of

requirements that should be satisfied by an EC to be deemed as “secure”.

They also propose a method to generate and verify EC in a transparent

method.

24

In this section we focus on the generation of “secure” elliptic curve. We study

the cryptographic criteria that a curve should follow and propose our pair of

“secure” curves. We implement the algorithm that can generate Montgomery

curves which satisfy SafeCurves criteria. We explain the verification process

of these curves using the SafeCurves verification tool.

4.1 Criteria for cryptographic ECs

To select a curve for cryptographic use, we have to consider the following

criteria [11]

1. The ECDLP problem should be hard under the defined parameters of

the curve.

2. EC should be such that it can be implemented to be resistant against

side channel attacks.

3. Normality conditions should be satisfied by the curve in order to be

secure against some particularly unknown attacks.

4. Implementation of the curve should be convenient.

5. Special families of curves used for specific protocols and algorithms.

6. Generation of the curve should be verifiable.

4.1.1 Hardness ECDLP problem

The security of the curve is determined by the hardness of ECDLP problem

against known attacks. Flori et al. suggest some criteria required to generate

a curve which which provides security against such known ECDLP attacks.

The curve should be a non-singualar curve i.e the discriminant 4a3 + 27b2

should be equal to 0. The order n of the curve should be a product of large

prime number and a very small co-factor h = n/p. Small cofactor provides

25

security and performance improvements. Flori et al. recommend that the

cofactor h should be 1, whereas there are other secure curves that have

cofactor h > 1. It is recommended to define the curve over a prime field

or binary Galois field GF (2m) in order to provide resistance against index

calculus computations [11]. The cost of computing Pollard Rho should be

greater that 2100. ECDLP security does not ensure ECC security. There are

other attacks that undermine the security of the curve while being ECDLP

resistant [5].

4.1.2 Implementation dependent security

Improper implementation of the curve can make a cryptosystem vulnerable

to side channel attacks. Even the choice of the curve can be a factor, as some

curves are vulnerable to side channel attacks. Flori et al. suggest a few criteria

to improve the security of the curve implementation. Namely, the curve should

not have a small subgroup. Having special points on the curve can make the

curve susceptible to side channel attacks. The special points of an EC are

points (x, y) such that one of the two coordinates of is zero. The base field

of the curve should not be a special prime number. There are some curves

like Curve25519 or SM2 that are defined over a prime field Fp, where p is a

special prime number like pseudo-Mersenne or generalized Mersenne number.

The fields based on these numbers have benefits like fast computations but

they are susceptible to side-channel attacks [11]. SafeCurves require the base

field to be prime and p ≡ 1 mod 4 or p ≡ 3 mod 4. Curves defined in special

prime number field meet the SafeCurves criteria [5].

4.1.3 Normality of the curve

Flori et al. present the properties that random curves should satisfy with

overwhelming probability. They insist these conditions does not make the

curve secure against precise attacks, but if they are not met then it would

make the curve slightly vulnerable. The conditions are:

26

• Cardinality of the quadratic twist

The order of the quadratic twist has influence on the security of the

curve. The order of quadratic twist should be large for the ECDLP

problem to be hard.

• Non-special base field

Special prime number is a number when it is a value of a polynomial of

a low degree with small coefficients evaluated at a small value [11]. Flori

et al. argue that there are no known attacks against curves with special

parameters such as Curve25519 or FIPS 186-2 curves, it is legitimate

to consider them as exceptional. However, using special primes can be

advantageous in certain cases as they allow faster arithmetic operations.

Hence, we will use special prime for generating Montgomery curves due

the curve properties.

• Embedding degree

Embedding degree of E is the smallest integer e such that q divides

pe − 1 where q is the largest prime divisor of the order of the curve n

and p is the prime field. This is an expensive computation since we

have to factor q − 1. While computing the twist security, we have to

compute the embedding degree of the of the twist. Hence, we have to

perform perform this task twice.

• Multiplicative group of the base field

If p− 1 is smooth then the multiplicative discrete logarithm problem

is easy. A number is smooth if its prime divisors are small. This

computation is done only once.

• Discriminant of the endomorphism ring

The discriminant of the endomorphism ring should be large. SafeCurves

require the discriminant to be larger than 2100 [5].

27

• Class number

Flori et al. suggest that the class number of the curve should be at least

p1/4 [11]. However, SafeCurves does not include class number require-

ment as it argues that class number can be derived from discriminant

of the endomorphism ring. Hence, does not incorporate class number

requirement [5].

The endomorphism of the curve gives us information of the structure of the

curve. Curves with endomorphism rings with Z-rank 4 are vulnerable curves

[15]. The class number of the curve should also be large.

4.1.4 Convenience of implementation of the curve

The curve should be convenient to implement without affecting its security.

If the number of points n is greater than p then it would be infeasible to

represent n− 1 numbers in the give memory space for a large p. If p ≡ 3 mod

4 then it would be efficient to use point compression method of representing

points (x, y) of E. Selecting a special prime number can help in performing

fast base field arithmetic but Flori et al. suggest that it would affect the

optimal security of the curve. They recommenced using base fields which are

more general. Using a special coefficient to perform fast arithmetic might be

beneficial but it might be a security risk [11].

4.2 Generating an EC

Flori et al. propose a method to generate and validate a curve. They propose

a program that generates a curve with parameters and another program that

validates whether the parameters are cryptographically safe or not. They do

not mention the method of checking the conditions that were mentioned in

above sections. There are three conditions that are computationally expensive

to check, which are checking the order of the curve and whether the curve

has a small cofactor, computing the endomorphism ring and class number

28

and finally computing the embedding degree of the curve.

They present a toy example for generation and verification of the curve.

Each curve would have a certificate that determines whether the curve is

“good” or not. If the curve is good, then they present the proof of all the

criteria of the curve.

Baier and Buchmann propose two methods to generate suitable EC group.

Random approach, where the parameters of the EC are generated randomly

and tested for their security and complex multiplication approach, which uses

complex multiplication theory to generate a suitable group [2].

NIST SP 800-186 recommends a criteria that the curves should satisfy to

be cryptographic. It proposes criteria for different families of curves like,

weierstrass curves defined over prime and binary fields, Montgomery curves,

Edwards curves and pseudo-random curves. We focus on security criteria

of Montgomery and Edwards curve since they are used in Signal protocol.

Edwards curve can be derived from Montgomery curve, hence our focus in

this thesis will be generation of Montgomery curves.

We use the security criteria determined by NIST SP 800-186 to generate

Montgomery curves. We analyse the performance for generating the curve

parameters by using random approach. And finally we provide a “certification”

of the security of the curve by using Safecurves verification tool.

4.3 Verification of an EC

Verification of ECs requires testing the parameters of curve for ECDLP and

ECC security. Dan Bernstein and Tanja Lange have published a tool for

verification of ECs. Safecurves criteria does not consider efficiency issues

while verifying a curve. The authors argue that efficiency related requirements

actually damage the efficiency and in some cases it is bad for the security of

the curve [5]. We used this tool to verify the generated curve for its security.

The tool is written in Sage and it takes input a directory that has multiple

29

files. Each file contains some information about the generated curves. The

file names and information are as follows:

• p: the field that the curve is defined in (decimal).

• |G|: the prime order of the generator point Gs (decimal).

• G(x1): x-coordinate of the G.

• G(y1): y-coordinate of the G.

• P (x): x-coordinate of a point P , where P generates the entire curve.

• P (y): y-coordinate of a point P , where P generates the entire curve.

• shape: the curve shape, namely shortw or montgomery or edwards.

– If shape is “shortw”: a and b coefficients of weierstrass curve.

– If shape is “montgomery”: A and B coefficients of montgomery

curve.

– If shape is “edwards”: d coefficient of the edwards curve.

• primes: all prime divisors of

– prime field p

– curve order p+ 1− tr, where tr is trace of elliptic curve

– twist order p+ 1 + tr

– tr2 − 4 · p

– recursive prime divisors of all e− 1 where e is the element in the

list.

The program returns output with multiple files that helps us interpret

the verification of elliptic curve. All files with name “verify-*” contain the

30

verification of properties of the curve. If the curve passes all the SafeCurves

criteria, then the file “verify-safecurve” will have the value as True. Files

with name “hex-*” contain hexadecimal representation of the parameters

of the curve. Other files include proof of the primality of the numbers and

representation of numbers in the power of 2.

4.4 Security criteria for Montgomery curves

Montgomery curve is another special type of which is used in ECC where

fast x-point scalar multiplication is desired. It is defined by the equation:

EM,A,B : By2 = x3 + Ax2 + x mod p, for A,B ∈ p and B(A2 − 4) 6= 4.

The value of the desired cofactor depends on the field p. If p = 1 mod

4, then the desired order of the curve and its twist are {4, 8},{8, 4}. If we

choose the first pair of cofactors, then the order of twist is greater than the

order of the curve. Which would increase the computation for algorithms

that take cofactors into account since might also check for points on the twist.

Hence, we chose the cofactors {8, 4}.
If p = 3 mod 4, then the desired cofactor of twist and curve is {4, 4} [18].

The requirements for the parameters A and B as per the NIST 186 standards

are:

• The value of B should be 1.

• The value of A is selected as the minimum value where the following

conditions should be satisfied:

– The curve is cyclic implies that A2 − 4 is not a square in GF(p).

– The curve has cofactor of h = 4 or h = 8 implies that A+ 2 is a

square in GF(p).

– The quadratic twist E‘ of the curve should have cofactor of h = 4.

– A has the form A ≡ 2 mod 4.

31

• Select base point G = (XG, YG) such that |XG| is minimal and YG is

odd.

We have used the above criteria and created an algorithm that can be

used to generate secure Montgomery curves. The time complexity of the

algorithm increases as the field k increases. The time complexity can be

decreased further by using more processors. Note that this algorithm runs

only once to get the desired parameters.

32

Algorithm 1: Generate A

Result: A

Initialize k = field

for A in range (1, k, 1) do

if A%4 == 2 then

if kronecker(A ∗ ∗2− 4, k) == −1 then

if kronecker(A+ 2, k) == −1 then

ec = EllipticCurve(GF (k), [0, A, 0, 1, 0])

order = ec.order()

factors = factor(ft)

if (factors[0] == (2,2) and (len(factors) == 2) and

isprime(factors[1][0])) then

trace = k+1 - order

order of twist = k + 1 + trace

factor of twist = factor(order of twist)

if factor of twist[0] == (2,2) and

len(factor of twist) == 2 then
return A

break
end

end

end

end

end

end

One feature of Montgomery curve is its relationship with twisted Edwards

curve. Ever Montgomery curve is birationally equivalent to twisted Edwards

33

curve and vice versa. We can derive a twisted Edwards curve from the any

Montgomery curve using the given formula:

EE,a,d →EM,A,B: A = 2(a+d)
a−d

and B = 4
a−d

(x, y)→ (u, v) =
(
1+y
1−y

, 1+y
(1−y)x

)
.

Similarly,

EM,A,B →EE,a,d: a = A+2
B

and d = A−2
B

(u, v)→ (x, y) =
(
u
v
, u−1
u+1

)
.

Using the above formula, we can derive any Edwards curve from a Mont-

gomery curve.

4.5 Time analysis of computing A

The amount of time require to generate the parameter A is dependent on

the size of the field p. As discussed in 4.4, the desired order of the curve

when p = 3 mod 4 should be 4. Hence, we all the curves generated below

have the cofactor 4 and twist cofactor also 4. The RFC 7748 emphasises on

choosing the minimal value of A for performance and simplicity reasons. So

we iterate from 3 to 109, to find the minimal value of A that satisfies the

criteria discussed in 4.4. We observe that as the size of field increases, the

time required to find the value of A also increases.

As discussed in 4.4, the desired order of the curve when p = 1 mod 4

should be 8. Hence, we all the curves generated below have the cofactor 8 and

twist cofactor also 4. We observe that as the size of field increases, the time

required to find the value of A also increases. The time required to compute

A is smaller when p = 1 mod 4 compared to when p = 3 mod 4.

34

In 4.5, the value of A is calculated by iteratively searching from 3 to 109 such

that it is minimal. However in some cases, finding the value of randomized

A is takes less time compared to the iterative method. This does not en-

sure performance since the values of A are larger in size than iterative method.

Similar to the above, finding the value of randomized A in some cases take

less time compared to the iterative method. As the size of field increases, the

time required to find A is less than than the iterative method.

Field Bits Time (in sec) A h
599 10 0.0801 262 4
1283 11 0.0293 134 4
4079 12 0.024 130 4
46499 16 0.034 30 4
762871 20 0.057 274 4
1071919 25 0.387 2890 4
2835035807 32 0.204 730 4
298291166879 40 0.078 186 4
1043659579451143 45 1.44 2718 4
1043659579451143 50 2.38 1278 4
27523857120632423 55 35.89 9634 4
865827640841390683 60 17.63 8256 4
10480660404865665031 64 57.54 12694 4
426737804570514267864967 79 1038.27 65526 4

Table 1: Computing A iteratively, where p = 3 mod 4

35

Field Bits Time (in sec) A h
641 10 0.007 10 8
1601 11 0.162 1142 8
2749 12 0.190 226 8
7433 16 0.042 38 8
30389 20 0.181 538 8
12017497 25 0.655 3190 8
28043401 32 0.084 234 8
588858461273 40 0.496 838 8
13565825784053 45 1.145 1206 8
233132441592313 50 7.074 4738 8
10618124951016833 55 7.523 2390 8
903670300601356697 60 79.154 22750 8
18208804115091945829 64 32.510 6462 8
385274230067896555822949 79 76.053 3438 8

Table 2: Computing A iteratively, where p = 1 mod 4

Field Bits Time
(in sec)

A # of
A’s
tried

h

46499 16 0.107 43798 461 4
762871 20 0.047 81578 186 4
1071919 25 0.068 349970 375 4
2835035807 32 0.357 2363480646 1060 4
298291166879 40 2.43 219835422630 3975 4
25157323951583 45 5.32 16092897198902 3762 4
1043659579451143 50 40.782 778655335914022 14137 4
27523857120632423 55 157.227 498878990099714 20835 4
865827640841390683 60 56.326 348429176562426818 17798 4
10480660404865665031 64 100.78 374416011502485650 21921 4
426737804570514267864967 79 58.541 180859438044348245316778 3000 4

Table 3: Computing A randomly, where p = 3 mod 4

36

Field Bits Time
(in sec)

A # of
A’s
tried

h

641 10 0.131 90 53 8
1601 11 0.206 1390 1215 8
3461 12 0.024 3330 51 8
7433 16 0.022 5714 99 8
30389 20 0.041 810 321 8
12017497 25 0.122 7994794 622 8
28043401 32 0.337 15746794 1667 8
588858461273 40 1.485 229167062922 3407 8
13565825784053 45 4.0795 7939611849078 5425 8
233132441592313 50 1.360 64243845514354 1043 8
10618124951016833 55 32.318 174100300926558 9353 8
903670300601356697 60 55.836 188144657425353126 11173 8
385274230067896555822949 79 68.898 377311557684493588940514 2208 8

Table 4: Computing A randomly, where p = 1 mod 4

37

4.5.1 Iterative vs random search for A parameter

The proposed method in RFC 7748 for generating A, states that the value of

A should be minimum such that it passes the necessary security criteria [18].

For a curve with field p > 2100, the time required to find A iteratively is more

than the finding A randomly.

For a field p = 289 − 1, we get the value of A iteratively in 882.5 sec-

onds while randomly finding A would take 167.7 seconds. Initially we find

random element in the range of (3, 109), then after getting the value we reduce

the range again to find the next random value of A. We do this till we get

the lowest value of A that matches with our iterative value. If we set the

appropriate range then finding the value of A randomly is faster than the

iterative method. This method gives us different values of A that can be used

for generating ECC. However, the value of A, when generated randomly does

not meet the aforementioned security criteria. But it can still be a used as

an ephemeral curve.

Random generation method cannot be verified by any third party and the

curve could be dismissed as suspicious. Using a CSPRNG can mitigate the

suspicion for generating ephemeral curves.

Field Bits Time (in sec) A h
289 − 1 89 882.535 32290 4
2107 − 1 107 * * 4

Table 5: Iterative computation of A

38

Field Bits Time (in sec) A tries Range

289 − 1 89 167.792 470642746 6269 (3, 109)

1443.514 114920138 58867 (3, 470642746)

87.067 34793102 3626 (3, 114920138)

1336.258 59682 62398 (3, 34793102)

497.891 32290 22523 (3, 59682)

2107 − 1 107 151.403 806450534 3326 (3, 109)

755.403 671948038 17705 (3, 806450534)

4711.379 533718842 100001 (3, 671948038)

255.761 41371402 6104 (3, 533718842)

1704.339 16700578 46659 (3, 41371402)

248.273 14663590 4235 (3, 16700578)

2935.074 11784278 41908 (3, 14663590)

1584.776 582346 42530 (3, 11784278)

1465.827 211982 42339 (3, 11784278)

Table 6: Random computation of A

4.6 End-to-End Encryption Debate

WhatsApp is the most popular messaging application in the world with more

than 1.5 billion users. Ever since Facebook had bought WhatsApp in 2014, con-

cerns about privacy had increased amongst the tech community as Facebook

does not have a stellar record in maintaining user privacy [10]. Forbes jour-

nalist Kalev Leetaru recently wrote about Facebook’s plan to backdoor

WhatsApp for client side content scanning and filtering. However, further

inspection concluded that Facebook does not plan to implement a back-

door on WhatsApp at all and what Leetaru reported had very little to do

39

with WhatsApp and more about content filtering on Facebook using AI [20].

Facebook’s malpractices with user privacy has put the company and its

products under the scrutiny by privacy experts throughout the globe. The

cryptographic protocols behind WhatsApp are deemed as secure and they do

provide end-to-end encryption, however there are other issues that affect the

user privacy. A backdoor that can record the user’s screen activity can read

the WhatsApp messages without even affecting the E2E protocol. Facebook

or any highly motivated party can still read the WhatsApp messages due to

improper implementation of user data storage [26]. While the underlying

cryptosystems are secure, assuring privacy and security to the users under

the guise of end-to-end encryption is a bit misleading. Better alternatives like

Signal messenger should be used, which is an open source software unlike

WhatsApp.

4.7 Contribution to thesis goals

In this section, we focus on goals G4 and G5. We have gone through all

the necessary criteria required for a curve to satisfy to be deemed as secure.

Adhering to these requirements, we would generate curve parameters and

check if the curve passes all the necessary requirements. Once the generated

curve passes all the necessary requirements, the next step would be to compute

the order of the generated curve and finally test the ECDLP security of the

curve.

40

5 Attacks on ECDLP

In this section we will focus on algorithms that solve ECDLP. Algorithms such

as Shanks algorithm, Pollard rho algorithm and Pohlig-Hellman algorithm

can solve the ECDLP problem in fields that can be considered small for

cryptographic use.

While generating a secure EC, we have to choose the domain parameters such

that ECDLP problem is hard. The algorithms that solve ECDLP should find

it infeasible to solve ECDLP under the recommended parameters.

5.1 Shanks Algorithm

Shanks’ Algorithm is a meet-in-middle algorithm to solve ECDLP. The

algorithm works as follows [13]:

1. Pick an integer m = d
√
ne

2. Compute mP

3. for i← 0 to m− 1 compute and store iP

4. for j ← 0 to m− 1 compute and store Q− jmP

5. Sort both the lists

6. Search through both the lists to find collision such that iP = Q− jmP

The collision is our desired solution. The space and time complexity of this

algorithm is O(
√
n).

A modification to Shanks’ baby step giant step (BSGS) algorithm is proposed

by Bernstein and Lange [6].

41

5.2 Pollard Rho

As discussed in section 5.1, Shanks algorithm has space and time complexity

of O(
√
n). For large numbers, this algorithm becomes expensive to compute

and store. Pollard rho is an improvement over Shanks as it requires less

storage compared to Shanks and can be parallelised [13]. Pollard rho can be

used to solve DLP and ECDLP problems. In this section we will focus on

Pollard rho for attacking ECDLP.

The algorithm works as follows [7]:

1. Partition the curve E (points on the curve) defined over F2k into three

equal subsets of S such that S1 ∪ S2 ∪ S3 = S

2. Blumenfeld suggests that we can do step 1 by either reducing x-

coordinate modulo 3 or use projective coordinate and reduce y-coordinates

modulo 3 [7].

3. Now select a random base point α modulo n such that A0 = αP (Refer

5 for P)

4. Ai+1 = f(Ai) =

{ Ai + P if Ai ∈ S1,

2Ai if Ai ∈ S2,

Ai +Q if Ai ∈ S3.

The sequence Ai takes up the form Ai = aiP + bjQ

5. If Ai1 = Ai2, then we get aj1P + bj1Q = ai2P + bj2Q

6. We get
aj1−aj2
bj1−bj2

P = Q

7. if gcd(bj2 − bj1, n) = 1, then
aj1−aj2
bj1−bj2

is easy to calculate.

if gcd(bj2 − bj1, n) = d > 1, then we can compute
aj1−aj2
bj1−bj2

mod (N/d).

42

The above algorithm for curves defined over field F2k but it can be extended

to the curves defined over a prime field Fp.

The Pollard rho can be enhanced or its speed can be increased using different

concepts. Brent’s cycle finding algorithm speeds up the algorithm by 24%.

Pollard rho can be parallelized using multiple processors. Automorphism can

be also be used to speed up the algorithm. Faster and efficient algorithms

can be used to save a lot of gcd computations [8].

The sequences made in the above algorithm are called walks. There has

been subsequent amount of research done to change the number of walks and

examine the complexity of the algorithm. Kangaroo method and Gaudry-

Schost are different versions of Pollard rho algorithm. Kangaroo method is

suitable for intervals of N (where N < ord(P)). Compared to pollard rho,

the steps in pseudorandom walks are small. Gaudry-Schost method is a

combination of Pollard rho and Kangaroo method where the algorithm uses

small jumps and is analysed using the birthday paradox [13].

SafeCurves criteria require the order of the curve to be greater than 2200.

The most efficient Pollard rho algorithm would require around 0.886 ∗
√
order

times addition operations [5]. By using this criteria, we can be certain that

no curve would be vulnerable to pollard rho attack for a distant future.

5.3 Pohlig-Hellman

Pohlig-Hellman algorithm solves the DLP problem by reducing the problem

into prime subgroups of P [22]. The best known attack on ECDLP is by

using a combination of Pohlig-Hellman and Pollard rho algorithm. The worse

case complexity of Pohlig-Hellman algorithm is O(
√
n). The order of the base

point |G| is divisible by the order of the curve. For the curve to be secure,

the order of the base point |G| should be greater than 2200. Pohlig-Hellman

finishes faster if the the order |G| has prime factors. The base points of

Curve272 and Curve224 are prime and greater than 2200, hence they are

43

resistant against Pohlig-Hellman attack.

5.4 Experimental work

We implement Pollard rho algorithm in SageMath to solve ECLDP. To test

the correctness of our implementation, we take a small Montgomery curve

y2 = x3 + 54x2 + x mod 8191. Consider a point P and Q on the curve such

that P = mQ, where m is a random number. Using our implementation of

Pollard rho, we have to find m. To run this experiment, we take a random

point P and Q and find the arbitrary m. Once we find m, we verify P = mQ.

The following code returns the value of m = 354, which is correct.

ec = EllipticCurve(GF(8191), [0,54,0,1,0])

n = ec.order()

G = ec([4,3361,1])

P = ec([3678,2464,1])

Q = ec([3969,3046,1])

S1=[]

S2=[]

S3=[]

def f(x,a,b,P,Q,n,G):

if f_bucket(x) == "S1":

return [x+P ,a % n,(b+1) % n]

elif f_bucket(x) == "S2":

return [x+x,(2*a)%n, (2*b)%n]

elif f_bucket(x) == "S3":

return [Q+x, (a+1)%n, b%n]

def pollard_rho(G,n,P,Q):

44

[x,a,b] = f(K, 0, 0, P, Q, n,G)

[x2,a2,b2] = f(x,a,b,P,Q,n,G)

while((a*P + b*Q)!=(a2*P + b2*Q)):

[x,a,b] = f(x, a, b, P, Q, n,G)

[x2,a2,b2] = f(x2, a2, b2, P, Q, n,G)

[x2,a2,b2] = f(x2, a2, b2, P, Q, n,G)

if gcd(b2-b,n) != 1:

return "failure"

else :

return (mod((a-a2),n)* inverse_mod((b2-b),n))%n

5.5 Contribution to thesis goals

This section focuses on goal G5. The safe curves we generated are resistant

against ECDLP solving algorithms like Pollard rho and Pohlig-Hellman.

45

Part II

Case study of elliptic curves

6 Generated curves

6.1 Curve224

Motivation:

In the above examples, we have generated curves that are insecure and

not suitable for cryptography purpose. In this section, we propose a Curve224

which can be used in ECC. Due to its security strength, it cannot be used

in Signal protocol, but it can be used for other ECC applications that use

ECDH and ECDSA. There is a Weierstrass curve nistp224 approved by NIST

that is defined over the same field. Nistp224 is not considered safe as per the

SafeCurves criteria. The generation of nistp224 parameters are suspicious

[5]. Hence, we want to propose a Montgomery curve in the same field but

which passes the SafeCurves criteria.

Field choice:

We use a NIST approved Solinas prime number 2224 − 296 + 1. We use

the same field to generate a more secure EC. This prime is 224 bits long,

hence it can be efficiently represented as a multiple of computer word size

[16]. This is helpful in generation of crytographic protocols.

46

Curve coefficients:

We generate a Montgomery curve of the form:

By2 = x3 + Ax2 + x

The parameter B is set to 1. The value of A is 64486, which is the minimum

value that satisfies all the criteria. We can verify that A is a nothing-up-my-

sleeve number using the algorithm 1. This curve is satisfies all the SafeCurves

criteria.

The order of the curve is

8 · n = 8 ·
(

2221 − 1207077220185791217085940763318325

)
and the order of twist is

4 · n = 4 ·
(

2222 + 2414114826290325302003084754661483

)
.

The generator G of the curve should be a point with lowest possible u-

coordinate. Using the code from RFC 7748, we get the generator of the curve

as(
3, 201302231395390048426405254922834540166489580473948196992241577

330

)
.

SafeCurves verification

We use SafeCurves verification tool to demonstrate the security of the

Curve224. The curve passes all the security criteria. We can demonstrate the

transparent generation of the curve using the algorithm 1. The output of the

tool can be found here.

47

https://github.com/Tanay-D/Masters-Thesis

Field p prime True

Equation y2 = x3 + 64486x2 + x True

Base G on curve True

Table 7: Parameters

Rho rho above 2100 True

Transfer safe against additive/multiplicative

transfer

True

Discriminants |D| above 2100 True

Rigid rigid True

Table 8: ECDLP security

Ladder montgomery ladder True

Twist cost of combined attack above 2100 True

Completeness complete single/multi-scalar formulas True

Indistinguishability supports indistinguishability True

Table 9: ECC security

6.2 Curve272

Motivation:

Curve224 satisfies the SafeCurves criteria, however it is less secure com-

pared to Curve25519. Our main goal of this thesis is to generate a curve

that is secure and can be used as an alternative EC for cryptography purpose

especially in Signal protocol. The two existing curves that are already used

48

in Signal are Curve25519 and Curve448. The former is used widely in other

ECC while the latter is considered as an “overkill” curve due to its large field.

We propose a new curve in order to diversify the choices of elliptic curves. In

order to generate this curve, we follow the SafeCurves security criteria and

the NIST 186 standards.

Field choice:

In order to generate a secure curve, we need to define the curve in a large

field such that the ECDLP problem is hard to solve. We choose the prime

field p = 2272 − 240 − 1, which is a Solinas prime number. Solinas prime

numbers are widely used in cryptography, especially in ECC [16].

Curve coefficients:

We generate a Montgomery curve of the form:

By2 = x3 + Ax2 + x

The parameter B is set to 1. The value of A is 22042, which is the minimum

value that satisfies all the criteria. We can verify that A is a nothing-up-my-

sleeve number using the algorithm 1. This curve is satisfies all the SafeCurves

criteria.

The order of the curve is

4 · n = 4 ·
(

2270 + 9244057720943584317276596024416676675589

)
and the order of twist is

4 · n = 4 ·
(

2270 − 9244057720943584317276596024966432489477

)
.

The generator G of the curve should be a point with lowest possible u-

coordinate. Using the code from RFC 7748, we get the generator of the curve

as

49

(
2, 622589279264231876231442286774405401325032943382499207831498351

503403453087106701

)
.

SafeCurves verification:

We use SafeCurves verification tool to demonstrate the security of the

Curve272. Our curve passes all the security requirements and is determined

as “safe”. The output of the tool can be found here.

Field p prime True

Equation y2 = x3 + 22042x2 + x True

Base G on curve True

Table 10: Parameters

Rho rho above 2100 True

Transfer safe against additive/multiplicative

transfer

True

Discriminants |D| above 2100 True

Rigid rigid True

Table 11: ECDLP security

Ladder montgomery ladder True

Twist cost of combined attack above 2100 True

Completeness complete single/multi-scalar formulas True

Indistinguishability supports indistinguishability True

Table 12: ECC security

50

https://github.com/Tanay-D/Masters-Thesis

6.3 Toy EC

To demonstrate the criteria for generation of curves, we create a small EC

with crytographically insignificant parameters. The process to generate

crytographically secure curves is the same, except the time required to generate

and verify the parameters will vary.

6.3.1 Curve31

Generating a Montgomery curve based on the NIST criteria is essential for

its security. We choose a field Fp with p = 231 − 1, which is 32 bits long

Mersenne prime number. The reason we chose this field is because it is not

computationally expensive to run experiments such as finding A parameter

or computing all private keys. The value of B is 1 and we have to find the

minimum value of A that satisfies all the security criteria. We have the curve

EM,A,B : y2 = x3 + 6222x2 + x mod 2147483647.

The curve has the cofactor h = 4 and the order of the curve is 536855567

which is prime. The cofactor of the quadratic twist of EM,A,B is 4. Using the

birational maps, we generate Ed32

EE,a,d : 6224y2 + y2 = 1 + 6220x2y2 mod 2147483647.

We will use Curve32 to demonstrate ECDL attacks on elliptic curves.

6.3.2 Curve61

We choose a field F261 − 1, which is 61 bits long Mersenne prime number.

The value of B is 1 and we have to find the minimum value of A that satisfies

all the security criteria. We have the curve,

EM,A,B : y2 = x3 + 50042x2 + x mod 2305843009213693951

51

The curve has the cofactor h = 4 and the order of the curve is 576460752120095597

which is prime. The cofactor of the quadratic twist of EM,A,B is 4. Using the

birational maps, we generate Ed61

EE,a,d : 50044y2 + y2 = 1 + 50040x2y2 mod 2305843009213693951.

6.3.3 Ed1051

Twisted Edwards curve is a special type of elliptic curve that is used in

modern ECC. It has desired properties such as fast explicit addition and

doubling operations and birational relationship with other special curves.

Twisted Edwards curve is defined by the equation EE,a,d : ax2+y2 = 1+dx2y2

over a non binary field k. The point addition formula is complete if a is a

square in k and d is a non-square in k. Using this criteria, we generate a toy

curve for field p = F1051. Note that an Edwards curve is just an twisted

Edwards curve with a = 1.

Using the defined conditions we generate a toy curve: −3x2 + y2 = 1 + 7x2y2

mod 1051. We can count the points on the curve using trivial brute force

method, but for large fields we will use Schoof’s or SEA algorithm.

6.4 Toy ECC

We use the generated Curves to construct toy cryptosystem. We choose to

construct a toy Elliptic curve Diffie-Hellman(ECDH) cryptosystem because it

is used in Signal protocol. Diffie-Hellman key exchange requires fast curve

operations, hence implement birational mapping to convert our Montgomery

curve to Edwards curve. The code for this ECC can be found in appendix

6.4.1 EC arithmetic:

We implemented Edwards and Montgomery curve point arithmetic in C++

using GMP library. The point arithmetic of twisted edwards curve is complete.

52

Hence, it is a preferred choice for digital signature algorithms.

Edwards curve point addition

The point arithmetic formulas can be found in section 2.5.2

//Returns R = P+Q

void add(R,P,Q,ECurve E){

Initialize xtop,ytop,xtemp,ytemp;

xtop = (P.X * Q.Y) + (Q.X * P.Y);

xtemp = 1 + d * P.X * P.Y * Q.X * Q.Y;

invert(xtemp,field);

xtop = xtop*xtemp;

ytop = (P.Y * Q.Y) - (a * P.X * Q.X);

ytemp = 1 - d * P.X * P.Y * Q.X * Q.Y;

ytop = ytop*ytemp;

swap(R.X,xtop);

swap(R.Y,ytop);

}

To demonstrate the output of the following pseudocode. Consider two points

P and Q, we will add them to get the point R, R = P +Q. For the algorithm

to be correct, the point R should lie on the curve.

P = (196822117242893674459907784170138183581511786955691996189713916913

53

94964886553, 463168356949264781694283940034751631413079938662562256157830

33603165251855960)

Q = (429282026443452444960986984045526383989547290543233192385912667476

02475846613, 342488378102318364223308361101065469819997782266143592323114

90061590115997010)

R = P +Q = (422744914654425032788592804291108266031846638811930885879496

34779277119126512, 464596337676635957844047528609053781596479806341115261

62287976184015765756799)

Edwards curve point doubling

The point arithmetic formulas can be found in section 2.5.2

//Returns R = 2*P

void ecdouble(R,P,ECurve E){

add(R,P,P,E);

}

To demonstrate the output of the following pseudocode, we take the above point P

and double it. The point 2P should lie on the curve to demonstrate the correctness

of the algorithm.

P = (196822117242893674459907784170138183581511786955691996189713916913

94964886553, 463168356949264781694283940034751631413079938662562256157830

33603165251855960)

2 ∗P = (32792724322479703024966218091123068436947521609559184467775541266

189550147464, 15549675580280190176352668710449542251549572066445060580507

079593062643049417)

54

Scalar multiplication

We implement double-and-add algorithm for scalar multiplication. This algorithm

is the simplest scalar multiplication algorithm amongst all other methods. This

algorithm calculates n ∗P using systematic point doubling and addition techniques.

// Returns R = x*P

//core sclar multiplication

scalarmult(R,P,x,ECurve E){

if(x == 0){

R = identity_element;

return R;

}

R = scalarmult(R,P,x/2,E);

add(R,R,R,E);

if (x % 2 == 1){

add(R,R,P,E);

}

return R;

}

//Helper function

void scalar_mult(R,P,x,ECurve E){

R = scalarmult(R,P,n,E);

}

To demonstrate the correctness of the pseudocode, we take the above point P and

55

multiply it with a random scalar value x = 5412. The point xP should lie on the

curve to demonstrate the correctness of the algorithm.

P = (196822117242893674459907784170138183581511786955691996189713916913

94964886553, 463168356949264781694283940034751631413079938662562256157830

33603165251855960)

5412 ∗P = (11853630027201493422034734162310220412010860773474008641696452

002476383726875, 15321675864538958612581785129468245909503582988815707958

907554525277450765236)

6.4.2 Montgomery ladder

Montgomery ladder is a secure and side channel resistant scalar multiplication

algorithm. This algorithm computes a fixed number of steps regardless of the

value of scalar n. This property does not reveal any side channel information

like power or timing. Due to this property, it is widely used in key generation

and key exchange algorithms. As the name suggests, montgomery ladder can be

efficiently implemented using montgomery curves. The montgomery point addition

and doubling code can be found in appendix.

//Returns R = x*P

void Mladder(R,P,x,MontCurve M){

Point R0("0","1");

Point R1 = P;

Point temp0,temp1;

//value of x in binary

value_str = str(x,2)

56

for (i = 0 ; i <= value_str.length()-1 ; i++){

if(arr[i] == 0){

M.add(temp1,R1,R0,M);

M.ecdouble(temp0,R0,M);

R1 = temp1;

R0 = temp0;

}

else{

M.add(temp0,R0,R1,M);

M.ecdouble(temp1,R1,M);

R0 = temp0;

R1 = temp1;

}

}

R = R0;

}

To demonstrate the montgomery ladder, we take the generator G of Curve25519

and multiply it by some arbitrary scalar 4541. The output point should lie on the

curve.

G = (9, 43114425171068552920764898935933967039370386198203806730763910

166200978582548)

4541 ∗G = (56284316850606511361097558627411582083904015489342316728361590

610789917865926, 18247855913749052009798435451104351729088850768055439592

350004675399403713941)

57

6.4.3 Point compression

Point compression is a method to represent the EC points in a compact way. We

have seen the representation of points in (x, y) coordinate system, but we can also

represent elliptic curve points by removing the y coordinate. This is due to the

property of elliptic curves defined over finite field. For every x coordinate, there are

two y coordinates. One of them is even and the other is odd. So we can represent

any EC point in a compressed format as (x, 0/1) where 0 is for even coordinate

and 1 is for odd coordinate [17].

\\Input (x,y)

\\Output (x,0/1)

String (Point G){

if (y%2 == 0){

return str(x,0)

}

else if(y%2 == 1){

return str(x,1)

}

}

Take the generator G of Curve25519. The y coordinate of G is even so it can be

represented as (x, 0):

G = (9, 43114425171068552920764898935933967039370386198203806730763910

166200978582548)

G = (9, 0)

The main benefit of point compression is that the keys of EC can be represented

in a smaller size without compromising the security. Point decompression is the

58

method of deriving the original point from a compressed point. Based on the y

coordinate, we can derive the original point of the curve.

\\Input (x,0/1)

\\Output (x,y)

String (Point compressed_G){

t = x^3 + Ax^2 + x

if t is a square in F{

if(x,0){

y = mod(t,p).sqrt()

}

else{

y = mod(t-p,p).sqrt()

}

}

return (x,y)

}

G = (9, 0)

G = (9, 43114425171068552920764898935933967039370386198203806730763910

166200978582548)

59

7 Standardized Curves

Several organizations define elliptic curve domain parameters and properties in

order to determine their security. Each standard proposes a set of rules to generate

curves and test vectors to verify them. Over the course of years, the organizations

have refined their standards to be well accepted by the cryptography community.

Bernstein and Lange argue that secure implementation of standard curve is theoret-

ically hard and none of the standards ensure a good job of providing ECC security.

There are other attacks that break ECC without solving ECDLP [5].

7.0.1 Curve catalog

Weierstrass Curves

Curve Bit strength Comments

P-192 96 bits Legacy use only

P-224 112 bits

P-256 128 bits

P-384 192 bits

P-521 261 bits

W-25519 128 bits Weierstrass form of Curve25519

W-448 224 bits Weierstrass form of Curve448

Twisted Edwards Curves

Curve Bit strength Comments

Edwards25519 128 bits Used in Signal Protocol and EdDSA

Edwards448 224 bits Used in Signal Protocol and EdDSA

E448 224 bits Used in Signal Protocol and EdDSA.

Edwards448 is 4-isogenous to curve

E448

60

Montgomery Curves

Curve Bit strength Comments

Curve25519 128 bits Used in Signal Protocol

Curve448 224 bits Used in Signal Protocol

Koblitz curves

Curve Bit strength Comments

Curve K-163 82 bits For legacy use only

Curve K-283 142 bits

Curve K-409 205 bits

Curve K-571 286 bits

Pseudorandom curves

Curve Bit strength Comments

Curve B-163 82 bits For legacy use only

Curve B-283 142 bits

Curve B-409 205 bits

Curve B-571 286 bits

7.0.2 NIST SP 800-186

NIST SP 800-186 is a standard proposed by NIST for Digital Signtaures and

Ellipitic curve cryptography. This standard adds two new curves, Ed448 and

Ed25519 for EdDSA use. In addition, the standard advocates the use of ECDSA

and removal of DSA citing security analysis and growing popularity of ECDSA.

The NIST curves proposed in the document are as follows:

Weierstrass Curves

Weierstrass curves that are generated over prime fields P-192, P-224, P-256, P-384,

61

and P-521 which have equation y2 = x3 + ax + b.

Curve a b p

P-224 −3 18958286285566608000

40866854449392641550

46809686793210757872

34672564

2224 − 296 + 1

P-256 −3 41058363725152142129

32612978004726840911

44410159937255548352

56314039467401291

2256 − 2224 + 2192 + 296 − 1

P-384 −3 27580193559959705877

84901184038904809305

69058563615685214227

58019355995970587784

90118403890480930569

0585636156852142

2384 − 2128 − 296 + 232 − 1

P-521 −3 10938490380737342745

11112390766805569936

20759895168374899458

63944959531161507350

16013708737573759623

24859213229670631330

94384525315910129121

42327488478985984

2521 − 1

W-25519 192986815395526

992372618308347

813179755449974

442734273399095

973345732416392

36

55751746669818908907

64528907825714081824

11037279010123152944

00837956729358436

2255 − 19

62

W-448 484559149530404

593699549205258

669689569094240

458212040187660

132787074885444

487181790930922

465784363953392

589641229091574

035657199637535

26919952751689144094

419400292148316087171

90224767844667709222

95992819380802492878

77273940136988020219

63292164673494953191

91685664513904

2448 − 2224 − 1

Twisted Edwards Curves

Twisted Edwards Curve have equation ax2 + y2 = 1 + dx2y2

Curve a d p

Edwards25519 −1 −121665/121666 2255 − 19

Edwards448 1 −39081 2448 − 2224 − 1

E448 1 39082/39081 2448 − 2224 − 1

Montgomery Curves

Montgomery curves have equation By2 = x3 + Ax2 + x

Curve A B p

Curve25519 486662 1 2255 − 19

Curve448 156326 1 2448 − 2224 − 1

63

Koblitz Curves

Koblitz curve has equation y2 + xy = x3 + ax2 + b

Curve a b f(z)

Curve K-163 0 1 z233 + z74 + 1

Curve K-283 0 1 z283 + z12 + z7 + z5 + 1

Curve K-409 0 1 z409 + z8 + 1

Curve K-571 0 1 z571 + z10 + z5 + z2 + 1

Pseudorandom Curves

Pseudorandom curve has equation y2 + xy = x3 + x2 + b

Curve a b f(z)

Curve B-163 1 0x066647EDE6C332C7F8C0923BB

58213B333B20E9CE4281FE115F7

D8F90ADA581485AF6263E313B79

A2F5

z233 + z74 + 1

Curve B-283 1 0x27B680AC8B8596DA5A4AF8A1

9A0303FCA97FD7645309FA2

z283 + z12 + z7 + z5 + 1

Curve B-409 1 0x021A5C2C8EE9FEB5C4B9A753

B7B476B7FD6422EF1F3DD674761

FA99D6AC27C8A9A197B272822F

6CD57A55AA4F50AE317B13545F

z409 + z8 + 1

Curve B-571 1 0x2F40E7E2221F295DE297117B7F

3D62F5C6A97FFCB8CEFF1CD6B

A8CE4A9A18AD84FFABBD8EFA

59332BE7AD6756A66E294AFD185

A78FF12AA520E4DE739BACA0C

7FFEFF7F2955727A

z571 + z10 + z5 + z2 + 1

64

7.0.3 SEC 2

SEC 2 is a standard proposed by Certicom Research for elliptic curves domain

parameters. The SEC-2 curves proposed in the document are as follows:

192-bit Domain Parameters over Fp

Parameters of secp192k1 are associated with a Koblitz curve, and secp192r1 are

associated with verifiably random parameters.

secp192k1

p 2192 − 232 − 212 − 28 − 27 − 26 − 23 − 1

a 0x00

b 0x0003

h 1

n 0xFFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D

secp192r1

p 2192 − 264 − 1

a 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC

b 0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1

h 1

n 0xFFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831

65

224-bit Domain Parameters over Fp

Parameters of secp224k1 are associated with a Koblitz curve, and secp224r1 are

associated with verifiably random parameters.

secp224k1

p 2224 − 232 − 212 − 211 − 29 − 27 − 24 − 2− 1

a 0x00

b 0x0005

h 1

n 0x010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7

secp224r1

p 2224 − 296 + 1

a 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFF

FFFFFFE

b 0xB4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4

h 1

n 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C

2A3D

66

256-bit Domain Parameters over Fp

Parameters of secp256k1 are associated with a Koblitz curve, and secp256r1 are

associated with verifiably random parameters. Secp256k1 is a curve used in Bitcoin

cryptocurrency system. It is chosen because of its efficient and fast computation

properties. The parameters of Secp256k1 are verifiable and selected in a predicted

way such that it eliminates a possibility of having any backdoor.

secp256k1 (Bitcoin curve)

p 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1

a 0x00

b 0x0007

h 1

n 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BB

FD25E8CD0364141

secp256r1

p 2224(232 − 1) + 2192 + 296 − 1

a 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFF

FFFFFFFC

b 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3

C3E27D2604B

h 1

n 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9

CAC2FC632551

67

384-bit Domain Parameters over Fp

secp384r1 curve is associated with verifiably random parameters.

secp384r1

p 2384 − 2128 − 296 + 232− 1

a 0xFFF

FFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC

b 0xB3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5

013875AC656398D8A2ED19D2A85C8EDD3EC2AEF

h 1

n 0xFFC

7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973

521-bit Domain Parameters over Fp

secp521r1 curve is associated with verifiably random parameters.

secp521r1

p 2521 − 1

a 0x01FFF

FFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC

b 0x0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B4

89918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34

F1EF451FD46B503F00

h 1

n 0x01FFF

FFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5

C9B8899C47AEBB6FB71E91386409

68

163-bit Elliptic Curve Domain Parameters over F2m

Parameters of sect163k1 are associated with a Koblitz curve, sect163r1 and sect163r2

are associated with verifiably random parameters.

sect163k1

f(x) x163 + x7 + x6 + x3 + 1

a 0x0001

b 0x0001

h 2

n 0x04000000000000000000020108A2E0CC0D99F8A5EF

sect163r1

f(x) x163 + x7 + x6 + x3 + 1

a 0x07B6882CAAEFA84F9554FF8428BD88E246D2782AE2

b 0x0713612DCDDCB40AAB946BDA29CA91F73AF958AFD9

h 2

n 0x03FFFFFFFFFFFFFFFFFFFF48AAB689C29CA710279B

sect163r2

f(x) x163 + x7 + x6 + x3 + 1

a 0x0001

b 0x020A601907B8C953CA1481EB10512F78744A3205FD

h 2

n 0x040000000000000000000292FE77E70C12A4234C33

69

233-bit Elliptic Curve Domain Parameters over F2m

Parameters of sect233k1 are associated with a Koblitz curve, sect233r1 are associ-

ated with verifiably random parameters.

sect233k1

f(x) x233 + x74 + 1

a 0x00

b 0x0001

h 4

n 0x8000000000000000000000000000069D5BB915BCD46EFB1AD5F173A

BDF

sect233r1

f(x) x233 + x74 + 1

a 0x0001

b 0x0066647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D

8F90AD

h 2

n 0x01000000000000000000000000000013E974E72F8A6922031D2603CFE0

D7

70

239-bit Elliptic Curve Domain Parameters over F2m

Parameters of sect239k1 are associated with a Koblitz curve, sect239r1 are associ-

ated with verifiably random parameters.

sect239k1

f(x) x239 + x158 + 1

a 0x00

b 0x0001

h 4

n 0x2000000000000000000000000000005A79FEC67CB6E91F1C1DA800E478A5

283-bit Elliptic Curve Domain Parameters over F2m

Parameters of sect283k1 are associated with a Koblitz curve, sect283r1 are associ-

ated with verifiably random parameters.

sect283k1

f(x) x283 + x12 + x7 + x5 + 1

a 0x00

00000000

b 0x00

00000001

h 4

n 0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265

DFF7F94451E061E163C61

71

sect283r1

f(x) x283 + x12 + x7 + x5 + 1

a 0x00

00000001

b 0x027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485

AF6263E313B79A2F5

h 2

n 0x03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A

90165B042A7CEFADB307

409-bit Elliptic Curve Domain Parameters over F2m

Parameters of sect409k1 are associated with a Koblitz curve, sect409r1 are associ-

ated with verifiably random parameters.

sect409k1

f(x) x409 + x87 + 1

a 0x000

000

b 0x000

001

h 4

n 0x7FF

FFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5F

CF

72

sect409r1

f(x) x409 + x87 + 1

a 0x000

001

b 0x0021A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD674761

FA99D6AC27C8A9A197B272822F6CD57A55AA4F50AE317B13545F

h 2

n 0x010001E2AAD6

A612F33307BE5FA47C3C9E052F838164CD37D9A21173

571-bit Elliptic Curve Domain Parameters over F2m

Parameters of sect571k1 are associated with a Koblitz curve, sect571r1 are associ-

ated with verifiably random parameters.

sect571k1

f(x) x571 + x10 + x5 + x2 + 1

a 0x000

000

00000000000000000000

b 0x000

000

00000000000000000001

h 4

n 0x02000

00000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D6393

81E91DEB45CFE778F637C1001

73

sect571r1

f(x) x571 + x10 + x5 + x2 + 1

a 0x000

000

00000000000000000001

b 0x02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6B

A8CE4A9A18AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A

78FF12AA520E4DE739BACA0C7FFEFF7F2955727A

h 2

n 0x03FFF

FFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B1868238

51EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47

7.1 Contribution to thesis goals

This section contributes to goals G3, G4 and G5. We have generated curves

Curve224 and Curve272 that satisfy the SafeCurves requirements. We used these

curves to construct EC cryptosystems, thus demonstrating the potential of our

curves in Signal protocol.

74

8 References

[1] Alejandra Alvarado. An exposition of Schoof’s algorithm. https://

mathpost.asu.edu/~sjgm/issues/2005_spring/SJGM_alvarado.

pdf.

[2] Harald Baier and Johannes Buchmann. Generation Methods of Elliptic

Curves. Information-technology Promotion Agency, Japan. https://

bit.ly/34lvcQT. 2002.

[3] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Chris-

tiane Peters. Twisted Edwards Curves. Cryptology ePrint Archive.

https://eprint.iacr.org/2008/013.

[4] Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup, Andreas

Hülsing, Tanja Lange, Ruben Niederhagen, and Christine van Vreden-

daal. How to manipulate curve standards: a white paper for the black hat.

Cryptology ePrint Archive. https://eprint.iacr.org/2014/571.

[5] Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves

for elliptic-curve cryptography. https://safecurves.cr.yp.to.

[6] Daniel J. Bernstein and Tanja Lange. Two grumpy giants and a baby.

Cryptology ePrint Archive. https://eprint.iacr.org/2012/294.

[7] Aaron Blumenfeld. Pollard’s Rho algorithm for elliptic curves. https:

//bit.ly/2PD1C5U. 2015.

[8] Silje Christensen and Simen Johnsrud. Speeding up the Pollard’s Rho

algorithm. https://bit.ly/2LdzUIM.

[9] Harold Edwards. A normal form for elliptic curves. Bulletin of the

American Mathematical Society. https://bit.ly/2NQylSy. 2007.

[10] epic.org. Facebook Privacy. https://epic.org/privacy/facebook/.

75

https://mathpost.asu.edu/~sjgm/issues/2005_spring/SJGM_alvarado.pdf
https://mathpost.asu.edu/~sjgm/issues/2005_spring/SJGM_alvarado.pdf
https://mathpost.asu.edu/~sjgm/issues/2005_spring/SJGM_alvarado.pdf
https://bit.ly/34lvcQT
https://bit.ly/34lvcQT
https://eprint.iacr.org/2008/013
https://eprint.iacr.org/2014/571
https://safecurves.cr.yp.to
https://eprint.iacr.org/2012/294
https://bit.ly/2PD1C5U
https://bit.ly/2PD1C5U
https://bit.ly/2LdzUIM
https://bit.ly/2NQylSy
https://epic.org/privacy/facebook/

[11] Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard, and Martin Eker̊a.

“Diversity and transparency for ECC”. In: Cryptology ePrint Archive

659 (2015).

[12] Zcash foundation. What is Jubjub? https://z.cash/technology/

jubjub/.

[13] Steven D. Galbraith and Pierrick Gaudr. Recent progress on the elliptic

curve discrete logarithm problem. https://eprint.iacr.org/2015/

1022.pdf.

[14] Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology

ePrint Archive. https://eprint.iacr.org/2015/625.

[15] St̊ale Zerener Haugnæss. On the Generation of Strong Elliptic Curves

For Cryptographic Applications. Master’s Thesis. University of Oslo.

https://bit.ly/2ZHoxRk. 2015.

[16] José de Jesús Angel Angel and Guillermo Morales-Luna. Solinas primes

of small weight for fixed sizes. Cryptology ePrint Archive, Report

2010/058. https://eprint.iacr.org/2010/058. 2010.

[17] A. Langley, M. Hamburg, and S. Turner. Alternative Elliptic Curve

Representations. Internet-Draft. IETF Tools, Mar. 2020.

[18] A. Langley, M. Hamburg, and S. Turner. Elliptic Curves for Security.

RFC 7748. RFC Editor, Jan. 2016.

[19] Christof Paar and Jan Pelzl. Understanding Cryptography. Springer,

2010.

[20] Bruce Schneier. More on Backdooring (or Not) WhatsApp. https:

//www.schneier.com/blog/archives/2019/08/more_on_backdoo.

html.

[21] Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the Dual

Elliptic Curve Pseudorandom Generator. Cryptology ePrint Archive.

https://eprint.iacr.org/2006/190. 2006.

76

https://z.cash/technology/jubjub/
https://z.cash/technology/jubjub/
https://eprint.iacr.org/2015/1022.pdf
https://eprint.iacr.org/2015/1022.pdf
https://eprint.iacr.org/2015/625
https://bit.ly/2ZHoxRk
https://eprint.iacr.org/2010/058
https://www.schneier.com/blog/archives/2019/08/more_on_backdoo.html
https://www.schneier.com/blog/archives/2019/08/more_on_backdoo.html
https://www.schneier.com/blog/archives/2019/08/more_on_backdoo.html
https://eprint.iacr.org/2006/190

[22] Martin Lysoe Sommerseth and Haakon Hoeiland. Pohlig-Hellman Ap-

plied in Elliptic Curve Cryptography. https://bit.ly/2HDLrib. 2015.

[23] Douglas R. Stinson and Maura B. Paterson. Cryptography: Theory and

Practice, Fourth Edition. 2019.

[24] Suresh Sundriyal. Counting points on elliptic curves over Zp Master’s

Thesis. Rochester Institute of Technology. Accessed from https://

scholarworks.rit.edu/theses/353/. 2008.

[25] Peter Wozny. Elliptic curve cryptography: Generation and validation of

domain parameters in binary Galois Fields. Master’s Thesis. Rochester

Institute of Technology. Accessed from https://scholarworks.rit.

edu/theses/354/. 2008.

[26] Gregorio Zanon. No, end-to-end encryption does not prevent Facebook

from accessing WhatsApp chats. https://bit.ly/2JKAMC0.

77

https://bit.ly/2HDLrib
https://scholarworks.rit.edu/theses/353/
https://scholarworks.rit.edu/theses/353/
https://scholarworks.rit.edu/theses/354/
https://scholarworks.rit.edu/theses/354/
https://bit.ly/2JKAMC0

9 Appendix 1: Order of the curves

9.1 Order of NIST P-256 using Schoof’s algorithm

NIST P-256 are of the equation: y2 = x3 − 3x+ b mod q

wine schoo f . exe −f 2#256−2#224+2#192+2#96−1 −3

41058363725152142129326129780047268409114441015993725554

835256314039467401291

P mod 8 = 7

P i s 256 b i t s long

Counting the number o f po in t s (NP) on the curve

yˆ2= xˆ3 − 3∗x + 4105836372515214212932612978004726840

9114441015993725554835256314039467401291 mod 11579208921

03562487626974469494075735300861434152903141955336313088

67097853951

18 primes used (p lus l a r g e s t prime powers) , l a r g e s t i s 61

NP mod 2 = 1

NP mod 3 = 1

NP mod 5 = 4

NP mod 7 = 3

NP mod 11 = 7

NP mod 13 = 5

NP mod 17 = 13

NP mod 19 = 10

NP mod 23 = 10

NP mod 25 = 19

NP mod 27 = 7

NP mod 29 = 23

NP mod 31 = 9

78

NP mod 32 = 17

NP mod 37 = 35

NP mod 41 = 15

NP mod 43 = 34

NP mod 47 = 2

NP mod 49 = 38

NP mod 53 = 41

NP mod 59 = 34

NP mod 61 = 30

Re leas ing 5 Tame and 5 Wild Kangaroos

NP = 11579208921035624876269744694940757352999695522413

5760342422259061068512044369

NP i s Prime !

The cofactor for this curve is h = 1. Hence, the order of the curve is

NP = 1157920892103562487626974469494075735299969552241357603424222

59061068512044369

9.2 Sec256k1 - Bitcoin curve

wine schoo f . exe −f 2#256−2#32−2#9−2#8−2#7−2#6−2#4−1 0 7

P mod 8 = 7

P i s 256 b i t s long

Counting the number o f po in t s (NP) on the curve

yˆ2= xˆ3 + 7 mod 11579208923731619542357098500868790785

3269984665640564039457584007908834671663

Warning : j−i n v a r i a n t i s 0

18 primes used (p lus l a r g e s t prime powers) , l a r g e s t i s 61

NP mod 2 = 1

NP mod 3 = 1

79

NP mod 5 = 2

NP mod 7 = 3

NP mod 11 = 3

NP mod 13 = 12

NP mod 17 = 7

NP mod 19 = 8

NP mod 23 = 8

NP mod 25 = 12

NP mod 27 = 25

NP mod 29 = 24

NP mod 31 = 9

NP mod 32 = 1

NP mod 37 = 17

NP mod 41 = 9

NP mod 43 = 29

NP mod 47 = 44

NP mod 49 = 38

NP mod 53 = 35

NP mod 59 = 9

NP mod 61 = 8

Re leas ing 5 Tame and 5 Wild Kangaroos

. .

NP = 1157920892373161954235709850086879078528375642790749

04382605163141518161494337

NP i s Prime !

The cofactor for this curve is h = 1. Hence, the order of the curve is NP

80

9.3 Order of Curve25519 using Schoof’s algorithm

Weierstrass curve-specific parameters (for Wei25519):

wine schoo f . exe −f 2#255−19

1929868153955269923726183083478131797554499744427342733990

9597334573241639236 55751746669818908907645289078257140818

241103727901012315294400837956729358436

P mod 8 = 5

P i s 255 b i t s long

Counting the number o f po in t s (NP) on the curve

yˆ2= xˆ3 + 192986815395526992372618308347813179755449974442

73427339909597334573241639236∗x − 2144297948839188804140203

426086813108393888604919269704434391165999835461513 mod

57896044618658097711785492504343953926634992332820282019728

792003956564819949

18 primes used (p lus l a r g e s t prime powers) , l a r g e s t i s 61

NP mod 2 = 0 ∗∗∗
NP mod 3 = 2

NP mod 5 = 2

NP mod 7 = 6

NP mod 11 = 8

NP mod 13 = 3

NP mod 17 = 13

NP mod 19 = 1

NP mod 23 = 17

NP mod 25 = 12

NP mod 27 = 5

NP mod 29 = 28

NP mod 31 = 30

81

NP mod 32 = 8

NP mod 37 = 18

NP mod 41 = 18

NP mod 43 = 41

NP mod 47 = 21

NP mod 49 = 48

NP mod 53 = 24

NP mod 59 = 11

NP mod 61 = 7

Re leas ing 5 Tame and 5 Wild Kangaroos

. .

NP = 5789604461865809771178549250434395392685693087503926

0848015607506283634007912

The order of the curve as per the RFC is

2252 + 27742317777372353535851937790883648493 7.2370056e+ 75

We can see that order of the curve multiplied by the 8 is equal to the

total points on the curve. 8 is a called a cofactor.

578960446186580977117854925043439539268569308750

39260848015607506283634007912/8

7.2370056e+ 75

82

9.4 Order of Curve25519 using SageMath

sage : ec = E l l i p t i c C u r v e (GF(2∗∗255−19) , [0 , 4 8 6 6 6 2 , 0 , 1 , 0])

sage : ec

E l l i p t i c Curve de f ined by yˆ2 = xˆ3 + 486662∗xˆ2 + x

over f i n i t e f i e l d o f s i z e 5789604461865809771178549250434

3953926634992332820282019728792003956564819949

sage : ec . order ()

578960446186580977117854925043439539268569308750392608480

15607506283634007912

9.5 Order of Curve448 using SageMath

sage : ec = E l l i p t i c C u r v e (GF(2∗∗448 − 2∗∗224 − 1) ,

[0 , 1 5 6 3 2 6 , 0 , 1 , 0])

sage : ec

E l l i p t i c Curve de f ined by yˆ2 = xˆ3 + 156326∗xˆ2 + x

over f i n i t e f i e l d o f s i z e 7268387242956068905493238078880

045343536413606873180602814901991806123281667307726863963

83698676545930088884461843637361053498018365439

sage : ec . order ()

726838724295606890549323807888004534353641360687318060281

490199180584015846158342864783021166769503853241174836366

649219095023438599116

83

9.6 Order of Curve M-511 using SageMath

sage : ec = E l l i p t i c C u r v e (GF(2∗∗511 − 187) ,

[0 , 5 3 0 4 3 8 , 0 , 1 , 0])

sage : ec

E l l i p t i c Curve de f ined by $yˆ2 = xˆ3 + 530438∗xˆ2 + x$
over f i n i t e f i e l d o f s i z e 67039039649712985497870124991029

2306373968291029619668886178072186088201503677348840093714

90834517138450159290932430254268769414059732849732168245030

41861

sage : ec . order ()

67039039649712985497870124991029230637396829102961966888617

80721860882015036859286439014235064444070097128474067979591

479896420070205009299687445903538392

9.7 Time analysis of Schoof’s algorithm

We calculate the time required for Schoof’s algorithm to count the points on

the curve. It is essential to understand long the algorithm takes to run given

specific curves.

9.7.1 Curve 25519

Counting the number of points (NP) on the curve:

y2 = x3 + A ∗ x − B mod 57896044618658097711785492504343953926634

992332820282019728792003956564819949,

where

84

A =19298681539552699237261830834781317975544997444273427339909597

334573241639236,

B = 214429794883918880414020342608681310839388860491926970443439116

5999835461513

NP = 578960446186580977117854925043439539268569308750392608480156

07506283634007912

Time required by the algorithm to compute the points is : 387.4464828968048

seconds.

9.7.2 NIST P-256

Counting the number of points (NP) on the curve

y2 = x3 + A ∗ x + B mod 11579208921035624876269744694940757353008

6143415290314195533631308867097853951,

where

A = −3,

B = 410583637251521421293261297800472684091144410159937255548352563

1403946740291

NP = 115792089210356248762697446949407573529996955224135760342422

259061068512044369

NP is Prime!

Time required by the algorithm to compute the points is : 508.2849681377411

seconds.

85

9.7.3 Sec256k1 - Bitcoin curve

Counting the number of points (NP) on the curve

y2 = x3 + 7 mod 1157920892373161954235709850086879078532699846656

40564039457584007908834671663

NP = 115792089237316195423570985008687907852837564279074904382605

163141518161494337 NP is Prime!

Time required by the algorithm to compute the points is : 521.7670800685883

seconds.

9.7.4 Weierstrass Curves

Weierstrass curves that are generated over prime fields P-192, P-224, P-256,

P-384, and P-521 which have equation y2 = x3 + ax+ b.

P-192 Only for legacy use.

P-224

p 2224 − 296 + 1

a −3

b 1895828628556660800040866854449392641550468096867932107578

7234672564

h 1

n 2695994666715063979466701508701962594045780771442439172168

2722368061

86

P-256

p 2256 − 2224 + 2192 + 296 − 1

a −3

b 4105836372515214212932612978004726840911444101599372555483

5256314039467401291

h 1

n 1157920892103562487626974469494075735291157920892103562487

62697446949407573529

P-384

p 2384 − 2128 − 296 + 232 − 1

a −3

b 2758019355995970587784901184038904809305690585636156852142

2758019355995970587784901184038904809305690585636156852142

h 1

n 2758019355995970587784901184038904809305690585636156852142

2758019355995970587784901184038904809305690585636156852142

P-521

p 2521 − 1

a −3

b 1093849038073734274511112390766805569936207598951683748994

5863944959531161507350160137087375737596232485921322967063

13309438452531591012912142327488478985984

h 1

n 6864797660130609714981900799081393217269435300143305409394

4634591855431833976553942450577463332171975329639963713633

21113864768612440380340372808892707005449

87

W-25519

p 2255 − 19

a 1929868153955269923726183083478131797554499744427342733990

9597334573241639236

b 5575174666981890890764528907825714081824110372790101231529

4400837956729358436

h 8

n 7237005577332262213973186563042994240857116359379907606001

950938285454250989

W-448

p 2448 − 2224 − 1

a 4845591495304045936995492052586696895690942404582120401876

6013278707488544448718179093092246578436395339258964122909

1574035657199637535

b 2691995275168914409441940029214831608717190224767844667709

2229599281938080249287877273940136988020219632921646734949

5319191685664513904

h 4

n 1817096810739017226373309519720011335884103401718295150703

7254979514600396153958571619575529169237596331029370909166

2304773755859649779

88

9.7.5 Montgomery Curves

Montgomery curves have equation By2 = x3 + Ax2 + x

Curve25519

p 2255 − 19

A 486662

B 1

h 8

n 7237005577332262213973186563042994240857116359379907606001

950938285454250989

Curve448

p 2448 − 2224 − 1

A 156326

B 1

h 4

n 1817096810739017226373309519720011335884103401718295150703

7254979514600396153958571619575529169237596331029370909166

2304773755859649779

89

9.7.6 Twisted Edwards Curves

Twisted Edwards curves have equation ax2 + y2 = 1 + dx2y2

Edwards25519

p 2255 − 19

a −1

d −121665/121666

h 8

n 7237005577332262213973186563042994240857116359379907606001

950938285454250989

E448

p 2448 − 2224 − 1

a 1

d 39082/39081

h 4

n 1817096810739017226373309519720011335884103401718295150703

7254979514600396153958571619575529169237596331029370909166

2304773755859649779

Edwards448

p 2448 − 2224 − 1

a 1

d −39081

h 4

n 1817096810739017226373309519720011335884103401718295150703

7254979514600396153958571619575529169237596331029370909166

2304773755859649779

90

9.7.7 Koblitz Curves

Koblitz curve has equation y2 + xy = x3 + ax2 + b

Curve K-163 Only for legacy use.

Curve K-233

f(z) z233 + z74 + 1

a 0

b 1

h 4

n 3450873173395281893717377931138512760570940988862252126328

087024741343

Curve K-283

f(z) z283 + z12 + z7 + z5 + 1

a 0

b 1

h 4

n 3885337784451458141838923813647037813284811733793061324295

874997529815829704422603873

91

Curve K-409

f(z) z409 + z8 + 1

a 0

b 1

h 4

n 3305279843951242994759576540163855199142023414821406096423

2439502288071128924919105067325845777745801409636659061773

1358671

Curve K-571

f(z) z571 + z10 + z5 + z2 + 1

a 0

b 1

h 4

n 1932268761508629172347675945465993672149463664853217499328

6176257257595711447802122681339785227067118347067128008253

51461273674974066617311929682421617092503555733685276673

Curve B-163 Only for legacy use.

Curve B-233

f(z) z233 + z74 + 1

a 1

h 2

n 6901746346790563787434755862277025555839812737345013555379

383634485463

92

Curve B-283

f(z) z283 + z12 + z7 + z5 + 1

a 1

h 2

n 7770675568902916283677847627294075626569625924376904889109

196526770044277787378692871

Curve B-409

f(z) z409 + z8 + 1

a 1

h 2

n 6610559687902485989519153080327710398284046829642812192846

4879830415777482737480520814372376217911096597986728836656

7526771

Curve B-571

f(z) z571 + z10 + z5 + z2 + 1

a 1

h 2

n 3864537523017258344695351890931987344298927329706434998657

2352514515191422895604245361439993894157730831338811219269

44486246872462816813070234528288303332411393191105285703

93

10 Appendix 2: Code

All the code used in this thesis can be found here: https://github.com/

Tanay-D/Masters-Thesis

10.1 Montgomery curves

We have written the code for Montgomery curve point arithmetic and mont-

gomery ladder in C++ using GMP library. To run the code, we have to

make a class object for montgomery curve and then invoke the necessary class

methods.

Montgomery point addition

1 /**

2 * @brief addition of two points on a montgomery curve

3 * @param R

4 * @param P

5 * @param Q

6 * @return void

7 *

8 * Computes R = P+Q

9 * GMP Implementation of Montgomery curve point addition

formula.↪→

10 */

11 void MontCurve::add(Point& R,const Point& P,const Point&

Q,MontCurve E){↪→

12

13

14 mpz_class tempneg;

94

https://github.com/Tanay-D/Masters-Thesis
https://github.com/Tanay-D/Masters-Thesis

15 tempneg = -Q.Y;

16

mpz_mod(tempneg.get_mpz_t(),tempneg.get_mpz_t(),E.p.get_mpz_t());↪→

17

18

19

20 //R = P+Q

21 //assuming all the conditions are satisfied

22

23 //If P = Q

24 if(P == Q){

25 E.ecdouble(R,P,E);

26 }

27

28 // P != Q or -Q

29

30

31

32 else{

33 mpz_class f = E.p;

34 mpz_class one = 1;

35 mpz_class xtop,ytop,xtemp,ytemp,lambda;

36 mpz_class neg = -P.Y;

37

38

39 if(Q.X == 0 && Q.Y == 1){

40 R = P;

41 return;

42 }

43

95

44 else if(P.X == 0 && P.Y == 1){

45 R = Q;

46 return;

47 }

48

49 ////////////// Step 1 ///////////////////

50 //computing lambda = = (x2 - x1)/(y2 - y1)

51 // (yQ - yP)/(xQ - xP)

52 xtemp = (Q.X - P.X);

53 mpz_mod(xtemp.get_mpz_t(),xtemp.get_mpz_t(),f.get_mpz_t());

//mod↪→

54

mpz_invert(xtemp.get_mpz_t(),xtemp.get_mpz_t(),f.get_mpz_t());↪→

55

56

57 ytemp = (Q.Y - P.Y);

58 mpz_mod(ytemp.get_mpz_t(),ytemp.get_mpz_t(),f.get_mpz_t());

59

60

61 //multiply the top with inverse and store it in lambda

62 lambda = xtemp*ytemp;

63 mpz_mod(lambda.get_mpz_t(),lambda.get_mpz_t(),f.get_mpz_t());

64

65 // add debug on settings

66 //std::cout << "lambda : " << lambda.get_str() <<

std::endl;↪→

67

68 ////////////// Step 2 ///////////////////

69 //x3 = B ^2 - A - x1 - x2

70 R.X = E.B *lambda * lambda - E.A - P.X - Q.X;

96

71 mpz_mod(R.X.get_mpz_t(),R.X.get_mpz_t(),f.get_mpz_t());

72 //std::cout << "x3 : " << R.X.get_str() << std::endl;

73

74

75 ////////////// Step 3 ///////////////////

76 //y3 = (xP - x3) - yP

77 R.Y = lambda*(P.X - R.X) - P.Y;

78 mpz_mod(R.Y.get_mpz_t(),R.Y.get_mpz_t(),f.get_mpz_t());

79

80 }

81 }

Montgomery ladder

1 /**

2 * @brief point multiplication using montgomery ladder method

3 * @param R

4 * @param P

5 * @param x

6 * @param M

7 * @return void

8 *

9 * Computes R = x[P]

10 * GMP Implementation of Montgomery ladder.

11 */

12 void MontCurve::Mladder(Point& R, const Point& P,const

mpz_class x, MontCurve& M){↪→

13

97

14 Point R0("0","1");

15 Point R1 = P;

16

17 Point temp0,temp1;

18 int i;

19 string value_str = x.get_str(2);

20 int arr[value_str.length()];

21

22

23 for (i = 0; i < value_str.length(); i++) {

24 arr[i] = value_str[i] - '0';

25 }

26

27 for (i = 0 ; i <= value_str.length()-1 ; i++){

28

29 if(arr[i] == 0){

30

31 M.add(temp1,R1,R0,M);

32 M.ecdouble(temp0,R0,M);

33

34 R1 = temp1;

35 R0 = temp0;

36

37 }

38 else{

39 M.add(temp0,R0,R1,M);

40 M.ecdouble(temp1,R1,M);

41

42 R0 = temp0;

43 R1 = temp1;

98

44 }

45

46 }

47

48

49 R = R0;

50 }

Montgomery point doubling

1 /**

2 * @brief point multiplication using montgomery ladder method

3 * @param R

4 * @param P

5 * @param E

6 * @return void

7 *

8 * Computes R = x[P]

9 * GMP Implementation of Montgomery point doubling.

10 */

11

12 void MontCurve::ecdouble(Point& R,const Point& P,MontCurve E){

13

14 mpz_class f = E.p;

15 mpz_class one = 1;

16 mpz_class xtop,ytop,xtemp,ytemp,lambda;

17

18

99

19

20

21 if(P.X == 0 && P.Y == 1){

22 R = P;

23 return;

24 }

25

26

27

28 ////////////// Step 1 ///////////////////

29 //computing lambda = = (3 x1^2 + 2Ax1 + 1)/2By1

30

31 xtemp = 3*P.X*P.X + 2*E.A*P.X + 1;

32 mpz_mod(xtemp.get_mpz_t(),xtemp.get_mpz_t(),f.get_mpz_t());

//mod↪→

33

34 ytemp = 2*E.B*P.Y;

35

mpz_invert(ytemp.get_mpz_t(),ytemp.get_mpz_t(),f.get_mpz_t());↪→

36

37 //multiply the top with inverse and store it in lambda

38 lambda = xtemp*ytemp;

39 mpz_mod(lambda.get_mpz_t(),lambda.get_mpz_t(),f.get_mpz_t());

40

41 ////////////// Step 2 ///////////////////

42 //computing x3 + 2x1 = B 2 - A

43

44 R.X = (E.B *lambda*lambda)-E.A-(2*P.X);

45 mpz_mod(R.X.get_mpz_t(),R.X.get_mpz_t(),f.get_mpz_t());

46

100

47

48 ////////////// Step 3 ///////////////////

49 // computing y3 = y3 + y1 = (x1 - x3)

50

51 R.Y = lambda*(P.X - R.X) - P.Y;

52 mpz_mod(R.Y.get_mpz_t(),R.Y.get_mpz_t(),f.get_mpz_t());

53

54

55 }

10.2 Twisted Edwards curves

We have written the code for twisted edwards curve point arithmetic in C++

using GMP library. To run the code, we have to make a class object for

edwards curve and then invoke the necessary class methods.

Twisted edwards curve point addition

1 /**

2 * @brief add

3 * @param R

4 * @param P

5 * @param Q

6 * @param d

7 * @param eda

8 * @return void

9 *

10 * Computes R = P+Q

11 * GMP Implmentation of twisted Edwards curve addition

formula.↪→

101

12 */

13

14 void ECurve::add(Point& R,const Point& P,const Point& Q,ECurve

E){↪→

15

16 mpz_class f = E.p;

17 mpz_class one = 1;

18 mpz_class d_ = E.d;

19 mpz_class a_ = E.a;

20 mpz_class xtop,ytop,xtemp,ytemp;

21

22

23 //(x1+y1) + (x2+y1)

24 xtop = (P.X * Q.Y) + (Q.X * P.Y);

25 mpz_mod(xtop.get_mpz_t(),xtop.get_mpz_t(),f.get_mpz_t());

26

27 //1 + d*x1*x2*y1*y2

28 xtemp = one + d_*P.X*P.Y*Q.X*Q.Y;

29 mpz_mod(xtemp.get_mpz_t(),xtemp.get_mpz_t(),f.get_mpz_t());

30

mpz_invert(xtemp.get_mpz_t(),xtemp.get_mpz_t(),f.get_mpz_t());↪→

31

32 //multiply the top with inverse and store it in xtop

33 xtop = xtop*xtemp;

34 mpz_mod(xtop.get_mpz_t(),xtop.get_mpz_t(),f.get_mpz_t());

35

36

37 ytop = (P.Y * Q.Y) - (a_*P.X*Q.X);

38 mpz_mod(ytop.get_mpz_t(),ytop.get_mpz_t(),f.get_mpz_t());

39

102

40 //d-x1x2y1y2

41 ytemp = one - d_*P.X*P.Y*Q.X*Q.Y;

42 mpz_mod(ytemp.get_mpz_t(),ytemp.get_mpz_t(),f.get_mpz_t());

43

mpz_invert(ytemp.get_mpz_t(),ytemp.get_mpz_t(),f.get_mpz_t());↪→

44

45 //multiply the top with inverse and store it in xtop

46 ytop = ytop*ytemp;

47 mpz_mod(ytop.get_mpz_t(),ytop.get_mpz_t(),f.get_mpz_t());

48

49 swap(R.X,xtop);

50 swap(R.Y,ytop);

51

52 }

53 }

Twisted edwards curve point doubling

1 /**

2 * @brief add

3 * @param R

4 * @param P

5 * @param E

6 * @return void

7 *

8 * Computes R = 2*P

9 * GMP Implmentation of twisted Edwards curve doubling

formula↪→

103

10 */

11 void ECurve::ecdouble(Point& R,const Point& P,ECurve E){

12 //R = P+P

13 ECurve::add(R,P,P,E);

14 }

Twisted edwards curve scalar multiplication

1 /**

2 * @brief add

3 * @param R

4 * @param P

5 * @param x

6 * @param E

7 * @return void

8 *

9 * Computes R = x*P

10 * GMP Implmentation of double and add scalar multiplication

algorithm.↪→

11 */

12

13

14 //core sclar multiplication

15 Point& ECurve::scalarmult(Point &R, const Point &P, mpz_class

x, ECurve &E){↪→

16

17 if(x == 0){

18 R = identity_element;

104

19 return R;

20 }

21

22 R = ECurve::scalarmult(R,P,x/2,E);

23

24 ECurve::add(R,R,R,E);

25

26 if (x % 2 == 1){

27 ECurve::add(R,R,P,E);

28 }

29

30 return R;

31 }

32

33 //Helper function

34 void ECurve::scalar_mult(Point& R, const Point& P,mpz_class x,

ECurve& E){↪→

35 R = ECurve::scalarmult(R,P,x,E);

36

37 }

105

	Generation, Verification, and Attacks on Elliptic Curves and their Applications in Signal Protocol
	Recommended Citation

	I Part 1: Elliptic curves theory and algorithms
	Introduction and thesis overview
	Thesis overview
	Thesis goals
	Outcomes

	Elliptic curves
	Group operations on elliptic curves
	Point addition
	Point scalar multiplication

	Elliptic Curve Discrete Logarithm Problem (ECDLP)
	Elliptic curves in cryptography
	Elliptic Curve Diffie Hellman (ECDH)
	Elliptic Curve Digital Signature Algorithm
	Signal protocol

	Domain parameters
	Special type of curves
	Edwards Curves
	Twisted Edwards Curve
	Curve 448
	Montgomery Curves
	Curve 25519
	Koblitz Curves

	Verification of birational maps between Curve25519 and Ed25519
	Contribution to thesis goals

	Counting Points on Elliptic Curves
	Point counting algorithms
	Experimental work
	Curve25519
	NIST P-256
	Curve448

	Curve Generation and Verification
	Criteria for cryptographic ECs
	Hardness ECDLP problem
	Implementation dependent security
	Normality of the curve
	Convenience of implementation of the curve

	Generating an EC
	Verification of an EC
	Security criteria for Montgomery curves
	Time analysis of computing A
	Iterative vs random search for A parameter

	End-to-End Encryption Debate
	Contribution to thesis goals

	Attacks on ECDLP
	Shanks Algorithm
	Pollard Rho
	Pohlig-Hellman
	Experimental work
	Contribution to thesis goals

	II Part 2: Case study of elliptic curves
	Generated curves
	Curve224
	Curve272
	Toy EC
	Curve31
	Curve61
	Ed1051

	Toy ECC
	EC arithmetic:
	Montgomery ladder
	Point compression

	Standardized Curves
	Curve catalog
	NIST SP 800-186
	SEC 2

	Contribution to thesis goals

	References
	Appendix 1: Order of the curves
	 Order of NIST P-256 using Schoof's algorithm
	Sec256k1 - Bitcoin curve
	Order of Curve25519 using Schoof's algorithm
	Order of Curve25519 using SageMath
	Order of Curve448 using SageMath
	Order of Curve M-511 using SageMath
	Time analysis of Schoof's algorithm
	Curve 25519
	NIST P-256
	Sec256k1 - Bitcoin curve
	Weierstrass Curves
	Montgomery Curves
	Twisted Edwards Curves
	Koblitz Curves

	Appendix 2: Code
	Montgomery curves
	Twisted Edwards curves

