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Abstract 

 

In the world of cybersecurity, intrusion detection systems (IDS) have leveraged the power of 

artificial intelligence for the efficient detection of attacks. This is done by applying supervised 

machine learning (ML) techniques on labeled datasets. A growing body of literature has been 

devoted to the use of BoT-IoT dataset for IDS based ML frameworks. A few number of related 

works have recognized the need for a balanced dataset and applied techniques to alleviate the issue 

of imbalance. However, a significant amount of related research works failed to treat the imbalance 

in the BoT-IoT dataset. A lack of unanimity was observed in the literature towards the definition 

of taxonomy for balancing techniques. The study presented here seeks to explore the degree to 

which the imbalance of the dataset has been treated and to determine the taxonomy of techniques 

used. In this thesis, a comparison analysis is performed by using a small subset of an entire dataset 

to determine the threshold sample limit at which the model achieves the highest accuracy. In 

addition to this analysis, a study was conducted to determine the extent to which each feature of 

the dataset has an impact on the threshold performance. The study is implemented on the BoT-IoT 

dataset using three supervised ML classifiers: K-nearest Neighbor, Random Forest, and Logistic 

Regression. The four principal findings of this thesis are: existing taxonomies are not understood 

and imbalance of the dataset is not treated; high performance across all metrics is achieved on a 

highly imbalanced dataset; model is able to achieve the threshold performance using a small subset 

of samples; certain features had varying impact on the threshold value using different techniques. 
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Structure of the Thesis 

This thesis is organized as follows: 

 

Chapter 1 consists of related background concepts and provides the motivation and contribution 

behind this study. 

Chapter 2 reviews published work related to the BoT-IoT dataset.  

Chapter 3 provides the methodology used for the analysis of related works.  

Chapter 4 details the setup, preprocessing steps, and classifiers used for the experimental 

evaluation on the BoT-IoT dataset. 

Chapter 5 provides a comparative analysis of the experimental results.  

Chapter 6 concludes this thesis and provides directions for future research.
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Chapter 1 

Introduction 

Large amounts of sensitive user data are prone to various kinds of internal and external 

attacks. With the advancement of technology, cyberattacks have become evolved with the 

sophistication of algorithms [1]. The main targets of cyberattacks are systems that process, store 

essential data or services that depend on their systems [2]. A novel Intrusion Detection System 

(IDS) is required for the detection of malicious cyberattacks that pose a security issue. IDS is an 

intrusion detection tool used to detect and classify attacks, security policy violations, and intrusions 

automatically at both network and host level infrastructures [1]. 

The evolving nature of attacks has resulted in the need for significant tuning and alteration 

by incorporating Machine Learning (ML) to improve the performance of IDS [3]. ML is a branch 

of Artificial Intelligence (AI) that facilitates computer learning without the need for external 

programming [4]. ML systems help make predictions by learning from existing data. The ultimate 

goal of ML is to develop an efficient algorithm that processes input data, generates a prediction 

with the help of statistical analysis [5]. ML algorithms are classified into two main types: 1) 

Supervised Learning and 2) Unsupervised Learning.  

Supervised Learning requires a well-labeled training dataset containing both normal and 

attack samples. This is a type of learning where the input and the desired output is provided to the 

learning model to make future predictions [6]. In a binary classification problem, the true or false 

labels need to be sufficient in quantity when each data sample has a large number of features used 

as an input to train the model. The performance of a ML model can be strongly affected by the 

dataset which is used for training. An imbalanced dataset can lead to a biased classification or 

prediction [1]. 

Modern IDS need to leverage the power of AI through ML to achieve optimal performance 

for accurate prediction and classification of attack types [3]. The training required for these ML 
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models is directly dependent on the datasets used to train them [7]. Neglected or hidden biases in 

data or an algorithm can lead to biased predictions thereby affecting the performance of an AI 

application [8]. 

In recent years, the proliferation of the Internet of Things (IoT) has been increasing all over 

the world [9]. The number of connected IoT devices has the potential to reach 125 billion by the 

year 2030 [9]. The integration of such IoT devices with various other technologies, services, and 

protocols has made the management of IoT networks more complex. This leaves the internet 

vulnerable to serious cyberattacks and threats endangering the consumer of such devices [9]. Some 

of the most common attacks in IoT systems include Distributed Dos (DDoS), DoS, ransomware, 

and botnet attacks [10]. 

There are several IoT based datasets used for the research of anomaly detection and one 

such dataset that is talked about the most is the BoT-IoT dataset [11]. The BoT-IoT dataset was 

developed on a realistic testbed that incorporates simulated and legitimate IoT network traffic 

along with several types of attacks [11]. This dataset has labeled features indicating the attack 

flow, category, and subcategory for multiclass classification [12].  

 

In this paper, we focus on the BoT-IoT dataset which was published in 2019. This dataset 

is both rich in terms of the features and attack types. The goal of this study is to analyze the 

contributions towards the dataset imbalance.  

 

This thesis is organized as follows. Chapter 1 consists of background concepts related to 

this study, motivation, and contribution. Chapter 2 reviews published work related to the BoT-IoT 

dataset. Chapter 3 provides the methodology used for this analysis. Chapter 4 details the setup, 

preprocessing and classifiers used for the experimental evaluation. Chapter 5 compares the 

experimental results and Chapter 6 concludes our thesis and provides directions for future research. 
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1.1 Background Concepts related to this study 

1.1.1 Botnets and Cyberattacks in BoT-IoT Background 

Botnet is defined as a collection of compromised internet-connected devices exposed to 

hackers. Botnets are used by cybercriminals to initiate botnet attacks. Botnet attacks usually 

include DDoS, data theft, credential leaks, and authorized access [13]. 

Hackers use special kinds of Trojan viruses to gain access and breach the security 

systems of computers [13]. The cyberattacks implemented in botnet scenarios in the BoT-IoT 

dataset are as follows: 

1) Denial of Service  

These are cyberattacks that prevent user accessibility by shutting down the target 

machine or network. This is done by overloading the target machine with traffic thereby 

initiating a crash When multiple systems orchestrate an organized DoS attack on on a single 

target machine then it is called as Distributed Denial of Service Attack (DDoS) The BoT-IoT 

dataset contains both DDoS and DoS attacks These attacks are initiated by bots. [14]. 

2) Information Theft 

 It is a type of group attack where sensitive data is seized by compromising the security of 

the target machine. There are two subcategories of Information theft attacks: Data Theft and 

Keylogging included in the BoT-IoT dataset [11]. 

3) Probing Attacks 

 Probing attacks are attacks where remote systems are scanned for information about the 

victim. Probing attacks in the BoT-IoT dataset contains two subcategories namely Service Scan 

and OS fingerprinting. In service scan, request packets are sent by scanning the system's port 

services. OS fingerprinting gathers information by scanning the operating system of the remote 

system and the responses are compared to pre-existing responses [11]. 
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1.1.2 Intrusion Detection Systems Background 

Intrusion Detection System (IDS) 

Intrusion Detection Systems is defined as a monitoring system that can detect suspicious 

activity and malicious threats [15]. The objective of IDS is to generate an alert, informing the IT 

personnel of the presence of a network intrusion. Based on the alert information, relevant actions 

are taken to rectify the threat [16]. 

Types of IDS 

Based on the placement of sensors, IDS can be divided into two main categories: Host-

based and Network-based IDS. [16]. 

1) Host-based IDS (HIDS): This type of IDS is deployed at the endpoints in order to 

protect the host from internal and external attacks. The visibility of HIDS is 

restricted to the host machine. HIDS has the ability to inspect processes, scan 

network traffic to-from the host machine, and examine system logs [15,16]. 

2) Network-based IDS (NIDS): NIDS is deployed in the network to monitor traffic 

flowing through the protected network. This type of IDS provides a wider 

perspective to detect attacks but limits the internal visibility of endpoints [15,16].  

IDS Detection Methods 

IDS detection methods are classified into three categories: signature, anomaly, and hybrid 

[15].  

1) Signature Detection: It is a method where known threats are detected with the help 

of a signature. A signature is generated once the malware is identified and it is then 

added to the list which is used to test incoming traffic.  This technique can be a 

disadvantage when it comes to detecting unknown attacks [15,16].  

2) Anomaly Detection: This method of IDS detection monitors the behavior of the 

system. Future behavior is observed and attacks are detected when there is a 

deviation from normal behavior [15,16] 
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3) Hybrid Detection: This method is a combination of both signature and anomaly-

based detection. It can detect low error rate attacks [15,16].  

1.1.3 Artificial Intelligence and Machine Learning Background 

AI is a machine that displays cognitive behavior similar to that of a human being. AI is an 

umbrella term that consists of multiple computer programs that display human capabilities. A 

computer program that has the ability to learn, self-improve, process information, and predict an 

output fall under the branch of AI [17]. 

AI can be divided into three domains namely; Robotics, Cognitive Systems, and Machine 

Learning.  

1) Robotics: It deals with direct interaction with human beings in the physical 

world. Robotics is found to be useful in improving work in our daily life [18]. 

2) Cognitive Systems: It is based in the human world where humans and machines 

communicate and work together towards a common goal. An example is a 

communication interface called chatbot [18]. 

3) Machine Learning: It is based in the information world. Machines utilize data to 

learn and derive meaning in order to make predictions. Deep Learning is a subset 

of machine learning which deals with multi-layer neural networks. [18]. 

ML is a branch of AI where a system has the capability to learn and improve based on 

experience without external programming. ML consists of algorithms or methods that are used to 

create learning models from data. The prime focus of ML is to enable automatic learning for 

computers without human assistance in order to make accurate decisions in the future [18].  

Machine Learning Types 

The three types of ML are supervised, unsupervised, and reinforcement learning [19]. 
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1) Supervised Learning 

The most commonly used type of learning is Supervised Learning. In SL, the model is 

trained on labeled data. The labeled data helps the model to learn the relationship between data 

points. The system is powerful enough to make predictions after plentiful training. This type of 

learning can compare the predicted output with the expected output to detect errors. These errors 

are then rectified by modifying the ML model accordingly [20].  

A majority of ML models use Supervised ML techniques. SL helps to process and 

classify data with the help of machine language. There are two types of SL techniques namely; 

Regression and Classification [20,21]. 

Regression helps fit the data and produce a continuous value output based on the labeled 

input data [22]. and Classification deals with the separation and grouping of data into classes. 

When the input data is labeled into two distinct classes, it is known as Binary Classification. 

Grouping data into more than two classes is called Multiple/ Multiclass Classification [21]. 

In the thesis, three classification based supervised learning algorithms: K-Nearest 

Neighbor (KNN), Random Forest (RF), and Logistic Regression (LR) are used to train the ML 

model. 

2)  Unsupervised Learning 

In contrast to SL, Unsupervised Learning (UL) is when the training involved is unlabeled 

or not classified [20]. This type of learning is advantageous than SL as it can process large 

datasets without spending time on data preprocessing. Due to the absence of labels in UL, hidden 

patterns are created from the unlabeled data. The creation of such patterns does not require 

external input from humans. This makes deployment and development of UL more versatile and 

functional than SL [17]. 

3) Reinforcement Learning 

 Reinforcement Learning (RL) is a type of learning that is inspired by how humans learn. 

[17]. This learning is based on a trial-and-error reward system as it learns continuously by 

interacting with new environments. The agent is rewarded for correct predictions and penalized 
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for wrong answers. The model trains itself based on the reward points gained and this process is 

repeated when exposed to a new environment. [22]. 

1.1.4 Steps in Machine Learning Background 

The machine learning process can be explained in seven steps. Figure 1 depicts the seven steps in 

ML with data being the key factor for each step. 

 

Figure 1. Machine Learning Steps 

 

1) Collecting/ Gathering Data: The first step where relevant data is gathered for ML 

processing. The quality and quantity of data determines the accuracy of the predictive 

model. [23,24]. 

2) Data Preparation: The raw collected from the previous step is not useful by itself and 

needs to be cleaned. This is done by removing duplicates, converting data types, and 

dealing with errors and missing values. Data is visualized to detect outliers, patterns, 

biases, and relationships between variables [25,26]. 

3) Choosing a Model: There are several models available for different purposes in the field 

of ML and this step deals with selecting the right model for our goal [25,26]. 

4) Training the Model: Training a model is one the most important steps in ML. It is to 

improve the model predictions by using the training data. The weights and biases are 

updated during each iteration cycle also known as the training step [25,26]. 
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5) Evaluation:  In this step, the trained model is tested on unseen data. The performance of 

the model is evaluated using performance metrics such as Accuracy, Recall, Precision, 

etc. A good train-test split is around 70/30 depending on the dataset [25,26]. 

6) Parameter Tuning: This step is otherwise known as “hyperparameter tuning”. The 

parameters are tuned to improve the performance of the model. Simple hyperparameters 

involve tuning the learning rate, increasing number of training steps, distribution, etc. 

[25,26]. 

7) Prediction: The final step in ML where the model after undergoing the first six steps is 

ready to make predictions for practical applications. [23]. 

1.1.5 Preprocessing in Machine Learning Background 

Real-world data generally consists of missing values, noises, and redundancies or 

available in a format that is not compatible with the ML model. As the capability of a model to 

learn is directly dependent on the quality of data that is fed as input, data preprocessing becomes 

a crucial step [27]. Data preprocessing is the process of converting raw data into a machine-

understandable format [28]. 

A dataset consists of a collection of data objects which are also called as samples, 

vectors, records, events, or cases. These data objects are signified by the number of features. 

Features describe the characteristics of an object and are also known as attributes, variables, 

fields, or dimensions. Features of a dataset can be of two types: Categorical or Numerical. 

Categorical features are those which take on a fixed set of values (eg: Boolean: True or False). 

Numerical features are values that are continuous or integers [29]. 

There are various methods of data preprocessing steps available for ML. The five types 

of data processing methods are as follows: 

● Data Quality Assessment: Data collected from various sources often contains 

irregularities in terms of format and quality of information. These irregularities can be 

due to human error, bugs during the data collection process, or measuring device 

limitations This becomes a mandatory step that is required when working on any kind of 

ML problem. There are three techniques to deal with such issues: 
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1. Missing Values: This technique helps estimate missing values and eliminate 

rows/columns with missing values. In the case of a small percentage of missing 

values, it is filled using interpolation methods or with the mean, mode, or median 

values. In the case of a feature consisting of an extremely large number of missing 

values, that feature itself can be removed. [29]. 

2. Inconsistent Values: Data assessment is performed to correct value 

inconsistencies (eg: data type of feature) [29]. 

3. Duplicate Values: Redundant values are a common occurrence in datasets and 

duplicates are removed to avoid bias during the processing of ML algorithms 

[29]. 

● Feature Aggregation: It is a method of pooling aggregated values to provide a better 

perspective for data analysis [30]. This helps provide a stable visual of aggregated values 

than scattered individual values. Feature Aggregation can help reduce the overall 

processing time and memory consumption [29]. 

● Feature Sampling: Sampling is a technique to select a subset of a dataset for analysis. 

Large datasets can put a dent in terms of cost, time, and memory constraints, and using a 

sample size of the dataset can be a better option. Sampling of the dataset is performed by 

preserving the properties of the original dataset. Feature Sampling can be 

disadvantageous in the case of an imbalanced dataset where the number of instances of 

one class is extremely higher than another class [29]. 

● Dimensionality Reduction: Datasets consisting of a large number of features can cause 

issues during the data analysis phase. It becomes extremely difficult for the model to 

visualize with the increase in the number of dimensions. Dimensionality Reduction helps 

convert a high dimensional dataset to a low dimensional one. This is performed using two 

types of techniques namely Principal Component Analysis (PCA) and Singular Value 

Decomposition [29].   

● Feature Encoding: It is the process of transforming/encoding data to an easy and 

acceptable input for the ML algorithm without compromising the original meaning of the 

dataset [29]. 
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1.2    Motivation 

A considerable effort has been devoted to the research of IDS systems that rely on ML 

techniques for the development of a dataset. The primary requirement of such systems is to classify 

events as malicious or benign based on the labeled dataset [31]. The principal issue found during 

the dataset development stage is the imbalance of datasets. The source of the bias stems from the 

data that is used for training the ML model [32].  Despite the vast research in ML, only a small 

percentile of papers discuss the details of the data used for their research. Authors are found to 

focus more on the construction of complex and accurate models rather than bias in the datasets. 

The fact remains that the majority if not all big datasets based on ML models are biased [32]. 

There is a growing body of literature that recognizes the importance of balanced datasets 

to reduce the bias in ML. Inequality of classes is formed when malicious samples are lower than 

that of benign samples. As presented in [33,34], imbalanced data causes low detection rates of 

minority classes where the dataset consisted of more instances belonging to the ethical behavior 

class than the attack class. A drawback of this is presented in [34] which discusses the performance 

issues and where ML techniques are proposed as a mitigation approach. It significantly decreases 

the performance, which results in data loss or overfitting. It intends the trainees to be biased 

towards the majority class, and all such classes will be identified correctly. Hence, to solve the 

issues of low accuracy and reliability of classifiers, the balancing of datasets is of prior importance 

for the identification of sparse classes [35]. 

The key motivation behind this work is to establish methods in which the impact of bias in 

a dataset can be minimized when addressing the accuracy. 

1.3    Contributions 

The key contributions of this thesis can be summarized as follows: 

● Provide an analysis of literature for dataset imbalance and identify gaps in existing 

approaches. 

● Provide empirical evidence for the claim that BoT-IoT dataset imbalance is not addressed 

in cybersecurity research. 
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● Utilize a real IoT traffic-based dataset for implementation of three supervised machine 

learning algorithms namely: K-Nearest Neighbor, Random Forest, and Logistic 

Regression. 

● Compare and contrast the results of implementation. 
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Chapter 2 

Related Works 

 

2.1 Related IDS Frameworks in BoT-IoT 

There is a plethora of literature on the studies related to ML techniques for intrusion 

detection systems. This section provides related works on the IDS frameworks proposed and 

implemented on the BoT-IoT dataset. In addition to the proposed IDS framework, the description 

of the feature set utilized in the framework is also provided below. 

 A Hybrid IDS novel ensemble framework is proposed in [36] which combines two types 

of classifier namely; One Class Support Vector Machine and C5 classifier. The framework is then 

tested on the BoT-IoT dataset [12] due to the real IoT ecosystem environment representation. The 

dataset consists of DoS, DDoS, Keylogging, Data Infiltration, OS, and Service Scan attacks. 

Experimental results show that the proposed framework achieves a high detection and low false-

positive rate compared to other techniques. 

A Botnet detection method is proposed in [37] which uses a voting system with a hybrid 

particle swarm optimization (PSO) algorithm. Effective features are detected with the help of the 

PSO algorithm. Multiple algorithms such as decision tree C4.5, Support Vector Machine (SVM), 

and deep neural networks were utilized for the identification of botnets. The voting system is also 

used to classify samples to aid botnet detection. This method was tested on two datasets one of 

which was BoT-IoT. 

A Particle Deep Framework (PDF) is proposed in [10] which is based on network forensics 

to help with identification of attack in IoT networks. PDF is composed of three functions based on 

the PSO algorithm to discover anomalous behaviors for a smart home IoT network. This 

framework is then evaluated on the BoT-IoT dataset and the performance is compared with other 
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DL techniques. Experimental results show that the proposed framework achieved high 

performance in terms of accuracy and processing time. 

 Classification of intrusion attacks is implemented in [38] by comparing the performance 

of Forward Neural Network (FNN) with a variant of FNN, Self-Normalizing Neural Network 

(SNN). This analysis is executed on the BoT-IoT dataset as it contains a sufficient amount of 

records including heterogeneous network profiles. The 10 best feature set, a scaled down version 

of the full dataset containing 3.6 million records was utilized in this study. The analysis proves 

that SNN’s self-normalizing features make it superior and flexible against opposing samples. 

[39] proposed a framework for DoS detection. This framework is composed of training, 

testing, feature ranking, and data generation modules. It is tested on the BoT-IoT dataset and the 

results show that the proposed framework achieved a high accuracy compared to other traditional 

techniques. The BoT-IoT dataset used in this paper contains around 3 million attack 477 normal 

records. 

[40] analysis the performance of seven DL techniques on two models using two real traffic 

datasets. The two models used for this purpose are unsupervised/generative and deep 

discriminative models. The 5% train-test version of the dataset is used in this experimentation. The 

performance for each model is evaluated based on two kinds of classification; binary and 

multiclass. The performance comparison is done based on three main performance metrics namely; 

accuracy, false alarm rate, and detection rate 

 A DeepCoin framework using DL and blockchain-based schemes is proposed in [41]. 

Hash functions and short signatures were used for the block generation. A recurrent neural network 

for the detection of fraudulent transactions and attacks in a blockchain network. The DeepCoin 

framework is tested on three datasets including the BoT-IoT dataset. The CSV files of the dataset 

are concatenated into one file and then used to form the train and test subset. The three attack types 

used for this dataset are namely: DoS, information theft, and information gathering. The 

performance evaluation exhibits the efficiency of the proposed framework. 

 Security Solutions need to be optimized for scalability to ensure the secure development 

of IoT. [42] proposes an entropy-based solution to help detect and alleviate DDoS and DoS attacks 
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in an IoT environment with the help of an SDN data plane. Experimental results exhibit the entropy 

value correlation of various features for the detection of attacks. It was determined that entropy 

correlation variation for 4 features: src IP, dest IP, src Port, and dest Port helped in the detection 

of different attacks. It also exhibits how adding entries to the switch flow table can help SDN 

mitigation. 

[43] proposes a software-based architecture to mitigate and the spread of malware attacks 

with the help of Network Function Virtualization (NFV). To make it scalable, they have also 

proposed an RNN-LSTM learning model for the timely detection of attacks. The escalation of 

malware attacks is monitored with the help of epidemic models. This is followed by patching of 

systems to contain the damage caused by malware spread.  The performance and feasibility of the 

model are tested on the BoT-IoT dataset due to its detailed characteristics and accurate labeling 

mechanism. This labeling mechanism is useful in extracting information about the source of the 

data packet. This information is then utilized for NFV distance-based patching model for IDS. 

 An IDS based framework is proposed in [1] where DL techniques are applied to classify 

traffic flow.  Binary and Multi-class classification is performed using a feed-forward neural 

network model. The model is tested on the BoT-IoT dataset which includes attacks such as 

reconnaissance, denial of service (DoS), distributed denial of service (DDoS), and information 

theft. The CSV files of the dataset were converted to Apache Parquet files to reduce the overall 

size of the dataset down to 300MB thereby improving the processing speed. The performance 

evaluation of this proposed framework exhibits a high accuracy detection rate. 

[2] proposes RDTIDS, a novel IDS for IoT networks. Three types of classifiers: decision 

tree, rule-based concepts, and Forest PA are combined to form RDTIDS. The first two classifiers 

are used to classify the network traffic of input features as Benign or Attack. The output of the first 

two classifiers along with the features of initial data as inputs for the third classifier. The model is 

then tested on two real-traffic based datasets: CICIDS 2017 and BoT-IoT. The 5% train-test 

version of the entire dataset is used in this study. Experimental results show that the model 

surpasses other recent ML models in terms of detection rate, accuracy, and false alarm rate. 
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2.2   Related Data Preprocessing Steps in BoT-IoT  

The BoT-IoT dataset consists of 72 million records and preprocessing becomes a critical 

step required to constrict the size of such a large dataset. Several papers have implemented various 

preprocessing methods on the BoT-IoT dataset and some of the related works are provided below: 

Two preprocessing steps: data transformation and feature selection are performed on the 

BoT-IoT dataset in [44]. In the data transformation step, class features of the first copy of the 

dataset are labeled and encoded to binary values, normal and attack traffic as 0 and 1 respectively. 

The second copy is encoded to 0-9 for representing instances of normal, attack, and nine types of 

attack traffic. Entropy and Correlation Coefficient techniques are used for selecting 10 features as 

a feature selection step.  

 Feature Preprocessing is applied to the extracted data in [45] by removing, encoding, and 

combining column values. One Hot encoding is applied for categorical data where low 

dimensional column features and embedding are converted to high dimensional. The preprocessed 

data is then split into the testing and training sets of data. They are then labeled as normal or 

malicious traffic and the malicious traffic is further labeled according to the category of attack. 

Null/NaN values are replaced with mean or median values by using the impute module 

from the sci-kit learn package. The most contributed features are determined during the feature 

selection process. Around ten features were selected from the dataset and the columns are divided 

into class/labels and features. Categorical features and classes are encoded using the Label 

Encoding technique to make it more convenient for analysis [46]. 

 A two-step preprocessing is executed on the datasets in [2]. Symbolic valued attributes are 

mapped to numeric valued attributes as the first step. In the second step of preprocessing, attributes 

with high numeric ranges are scaled down to lower numeric ranges. This is implemented to avert 

numerical complications during the calculation process. 

 Before the data is inputted into the ML model, it is cleaned and formatted. Inconsistent and 

missing data is cleaned before identifying essential features that can achieve the best output. RNN-

LSTM model is implemented in [43] which uses cross-correlation technique for preprocessing. All 
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characteristics of the data are used for experimentation and the impact is studied with the removal 

of highly correlated features. 

Data is preprocessed in [47] using three steps: data transformation, data normalization, and 

Up-Sampling. Data Transformation involves dropping rows containing missing values. The label 

Encoder function from sklearn is used to convert nonnumeric features to numeric values. The 

output label ‘category’ undergoes hot encoding to prevent performance degradation.  Features 

containing IPV4 and IPV6 addresses and hexadecimal format are converted to numeric values and 

integers respectively. MinMaxScalar function is applied as a normalization step on feature vectors. 

This can improve the efficiency of the IDS. Upsampling is implemented on the normal samples to 

solve the issue of imbalance. 

Feature extraction is carried out in [1] using the TShark tool to extract packet information 

from PCAP files. Generic features of the traffic are captured instead of the attack-oriented features. 

The extracted information then undergoes feature preprocessing where column values are dropped, 

merged, and encoded. These results are stored in arrays. 

[10] applies a preprocessing step to handle unuseful and missing features. This step also 

helps produce and rescale new features which can benefit the performance of the ML model.  

[48] applied a bijective soft set and proposed metric approach called CorrACC for 

effectively selecting features. Soft Set helps display the relationship of the statistical features and 

the most effective features are selected for IDS.  

 Redundant and irrelevant features are efficiently decreased using a feature selection 

component. Information Gain (IG) is implemented and features with less IG values are removed 

and values with IG value indicate features that are useful for differentiating the class [36].   

2.3   Importance of dataset balancing 

 

Supervised machine learning (ML) techniques require labelled datasets to train a 

classification or prediction model. In a binary classification problem, the true or false labels need 

to be sufficient in quantity when each data sample has a large number of features used as an input 
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to train the model. The performance of a ML model can be strongly affected by the dataset which 

is used for training. An imbalanced dataset can lead to a biased classification or prediction [52]. 

 

A considerable amount of literature has been published on balancing techniques. Some of 

the researches have published reviews such as in [49]. It addresses the adverse effects of class 

imbalance and establishes a computational framework consisting of data level and algorithm level 

solutions. In [50], the review presents the classification of imbalanced data, evaluation measures, 

and the class imbalance problem in the presence of multiple classes. This is of significance to IDS 

where a malicious event should be detected and the type of the event should also be classified, 

both with high accuracy. A survey on existing approaches on handling classification with an 

imbalanced dataset is presented in [51]. 

 

Previously published studies on the taxonomies of balancing techniques are not consistent. 

The existing accounts fail to resolve the contradiction between data level, algorithm level, and 

hybrid level techniques. The definitions for these levels found in [49 - 51], which are seminal 

review papers, indicate that the generalizability of the proposed taxonomies is problematic. This 

is because a systematic understanding of how imbalance techniques are defined is still lacking. 

Most of these studies have largely focused on data level and algorithm level techniques with a lack 

of clarity in defining hybrid level techniques. 

 

Although studies involving ML in IDS have recognized the importance of balanced 

datasets, a significant number of works have been done which do not address this issue. 

Surprisingly, the accuracy of the ML algorithms is presented with seldom studies of imbalance 

and it is unclear to what extent this has been accounted for. To date, no large-scale studies have 

been performed to investigate the prevalence of performance results using imbalanced datasets in 

cybersecurity. 

2.4   Taxonomy of balancing level techniques  

Existing taxonomies show that there are two approaches when it comes to treating class 

imbalance classification: Data Level and Algorithm Level. In the data level, a balanced class 
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distribution is obtained by adjusting the class imbalance ratio. At the algorithm level, learning 

tasks related to a minority class is improved by fine-tuning existing classification algorithms 

[51].  

The following is a review of the types of balancing techniques collected from three 

highly cited survey papers.  

Data Level 

Data level approaches treat the imbalanced class distribution as a preprocessing step [51]. The 

solutions at data level involve various forms of resampling [50]. Class distribution can be 

rebalanced by applying either over sampling or under sampling techniques. 

1) Under Sampling 

Undersampling eliminates samples from a majority class to reduce the disparity between the two 

classes [51] 

2) Oversampling  

It is performed by duplicating the samples in the minority class samples to reduce the ratio of 

imbalance between classes.[51] 

 

 SMOTE 

Synthetic Minority Over Sampling Technique (SMOTE) is defined as an adaptive form of 

oversampling [51]. SMOTE is considered to be complex compared to under and oversampling 

methods and has gained popularity as an important technique when it comes to treating class 

imbalance [51] In SMOTE, new instances of minority classes are created by appending numerous 

minority classes that are nearest to each other [50]. The new minority class will ultimately reduce 

the degree of class imbalance compared to the original imbalance ratio.[49] 
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Feature Selection  

 Another preprocessing step besides sampling is feature selection. Feature selection is usually 

applied by adopting either of the two methods 1) filter method or 2) wrapper method. Filter method 

acknowledges the intrinsic features to measure the integrity of the feature subset and wrapper 

method deals with wrapping the induction algorithm with the feature selection process [51] 

Algorithm Level 

  

 Algorithm level methods are algorithms that are committed to learning directly from the 

imbalanced class distribution in the datasets. Subcategories of algorithm level techniques include 

one class cost-sensitive and ensemble learning algorithms. 

1) One Class Learning 

 One class learning is otherwise known as recognition-based learning. It is a method where a 

classifier is modeled on the minority class samples. Neural networks are applied to learn from the 

minority class samples instead of identifying patterns from the majority and minority class 

samples. A key point in this approach for classification is the threshold. A strict boundary threshold 

will separate the minority class and a lenient threshold blanket the majority class in the 

boundary.[51] 

2) Cost Sensitive Learning 

 Cost sensitive learning is created with the concept that a classifier is assigned with a high cost 

based on the type of misclassification. An example of this learning would be when a larger cost is 

assigned by the classifiers to false negatives than false positives. This will lead to the correct or 

misclassification of the positive class [51]. A cost matrix is considered during the initial stage of 

model building to generate a low-cost model [50]. A disadvantage of the cost matrix is that the 

real cost of several applications including balanced datasets is unknown. In such cases, an artificial 

cost value is generated [51]. 

3) Ensemble Learning 

 The ensemble method is another type of learning to treat the issue of class imbalance. In this 

method, several classifiers are applied to the training data and a final decision is produced from 



20 
 

the aggregated predictions. The objective of combining multiple classifiers is to enhance their 

ability to generalize [50]. 

 Ensemble methods can be also described as bagging or boosting. Bagging generates more 

samples from the original data for the training set to reduce prediction discrepancy. Boosting 

produces an output based on the model classifiers that are experimented on training data. Some of 

the most commonly used ensemble learning methods include Bagging, Random Forest, and 

AdaBoost [51]. 

Hybrid Level 

 Hybrid is a new breed of learning where the hybridization of two or more individual methods 

is designed to alleviate the problem of class imbalance [51]. It is used to deal with a specific part 

of an overall solution by using multiple algorithms [50]. Problems in subset feature selection, 

sampling, optimization of the cost matrix are solved by hybridization [51]. When using hybrid 

approaches, it is important to ensure that the different classifiers used are complementary to each 

other to yield a high combined performance compared to the performance of an individual method. 

[49] 

2.5 Contentions in existing taxonomies of balancing level techniques 

Perhaps the most comprehensive account of existing techniques and an indication of a 

taxonomy is provided in [49], [50] and [51]. The authors in [49] review the approaches which span 

over the last 8 years. In contrast, [50] and [51] do not specify the year span of their reviews.  

  Table 1 derives the taxonomy based on approaches in [49 - 51]. Two important 

classifications emerge from the studies in [49- 51]: techniques classed as data level; techniques 

classed as algorithm level. Collectively, these studies converge on the definition of data-level 

methods to include data sampling and feature selection approaches, while algorithm level methods 

include cost-sensitive and hybrid/ensemble approaches. 

  In [49] and [51] the authors define data-level methods to include data sampling and feature 

selection approaches, while algorithm level methods are defined to include cost-sensitive and 

hybrid/ensemble approaches. Across all three surveys shown in Table 9, several divergent 

accounts of algorithm level classifications have been proposed, creating numerous discrepancies. 
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In [50] the major deviation is in the algorithm-level definition. In contrast to [49] and [51], 

subcategories of algorithm-level are not defined in [50]. The subcategory of one class, however, 

is mentioned in [54] under the discussion of algorithm-level but not distinctly classified as in [49] 

and [51].   

  

Table 1. Contentions in Existing Taxonomies 

 

 

The derived taxonomies in [49] and [51], which are more recent, show that feature selection 

is a subcategory of data level whereas [50] does not. We cautiously suggest that this may be 

because the feature selection approach gained popularity in the study of dataset bias after the 

publication on [50]. Both [49] and [51] discuss techniques in feature selection such as principal 

component analysis (PCA) and the likes since the publication of [50]. The specifics of the feature 

reduction techniques and its development over the years is beyond the scope of this paper. In 

contrast to [8] which addresses the concept of Improved learning, [49] and [50] do not discuss this 

as a subcategory or part of the taxonomies provided. 

    

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain 

better predictive performance than could be obtained from any of the constituent learning 

algorithms alone [52]. In contrast to [51] which defines ensemble as boosting (an iterative 

technique that adjusts the weight of an observation based on the last classification), [49] defines 

ensemble as both bagging (a way to decrease the variance in the prediction by generating additional 

data for training from the dataset using combinations with repetitions to produce multi-sets of the 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Predictive_inference
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original data) and boosting. The definition of ensemble provided in [49] aligns better with the 

definition provided in [52]. 

 

Another major deviation observed in [49] and [51] from [50] is the inclusion of ensemble 

under algorithm level in [49] and [51]. In [50] ensemble, cost sensitive and other boosting are 

included as subcategories of boosting. This is not shown in Table 9 due to the lack of space. The 

definition of ensemble provided in [50], however, agrees with the definition provided in [52]. 

2.6 Literature of balancing techniques used in BoT-IoT dataset 

 A large and growing body of literature has investigated ML methods applied to cybersecurity 

datasets. At the time of this study, 28 papers were published between 2019 and 2020 on ML which 

uses the BoT-IoT dataset. This could be due to the recent publication of the dataset. Out of the 12 

papers, a total of 3 papers were found to have treated the imbalance using only algorithm level 

techniques in the BoT-IoT dataset. 

 

Class weights are the most common balancing technique used in the BoT-IoT dataset. Class 

weights in [53] are used on the training dataset to resolve the issue of imbalance. The weights are 

calculated based on the inverse of quotient value by dividing the packet count of a particular class 

by the packet count(maximum) of all classes.  

 

Another paper that incorporates class weights is [10]. They have reservedly mentioned the 

implementation of class weights to treat the imbalance with no explanation provided on the process 

or technique. 

 

 An ensemble of classifiers is used as an algorithm level technique to reduce the bias in [2] 

where a novel IDS framework, named RDTIDS is proposed. RDTIDS uses two types of classifiers 

(binary and multiclass) in parallel that feeds to a third classifier thereby minimizing the dataset 

imbalance. The classifiers used for this purpose combine different approaches based on rule-based 

concepts and decision trees.  
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There have been no papers found to be related to the BoT-IoT dataset that has used either 

data level or hybrid level techniques. A couple of papers mentioned imbalance but not with regards 

to our study of the BoT-IoT dataset. 
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Chapter 3 

Literature analysis of balancing techniques in BoT-

IoT  

3.1   Overview of BoT-IoT dataset 

BoT-IoT, an IoT dataset was created by the Cyber Range Lab of The Center of UNSW 

Canberra Cyber and was designed on a realistic testbed environment [12]. The dataset environment 

contains both simulated and genuine IoT attack traffic. The traffic is generated by applying six 

types of attacks in five IoT devices. This recorded network and normal traffic are extracted to form 

the BoT-IoT database [37]. It is a well-structured and dataset for IoT network forensic analytics 

[42]. BoT-IoT contains sufficient amounts of records for heterogeneous network profiles which 

was stimulated with the help of the Node red tool [38]. This dataset uses a lightweight protocol 

(MQTT protocol) making it applicable for various IoT solutions. Five IoT scenarios were used to 

trigger legitimate IoT traffic [11].  

The source files for this dataset are provided in various formats such as pcap, argus, and 

CSV files. To further aid the labeling process, the files are classified into attack categories and 

subcategories. The BoT-IoT dataset contains more than 72 million records composed of 74 files 

with each row containing 46 features. The dataset includes various attacks such as keylogging, 

data infiltration, OS, service scan, DoS, and DDoS. The authors have also extracted 5% of the 

original dataset to ease the computational processing of the datasets. This 5% dataset contains 4 

files with approximately 3 million records [12]. 

 

 

 

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php
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3.2    Imbalanced Class Distribution of BoT-IoT dataset 

  

Figure 2. Imbalanced Class Distribution for BoT-IoT 

Figure 2 highlights the benign traffic to malicious traffic imbalance observed in the BoT-

IoT dataset. An exponential trend is observed when evaluating the distribution of samples per class 

in the BoT dataset. The trend indicates that the percentage of malicious samples is higher than 

benign samples. The majority classes in the BoT-IoT dataset are attack types while the normal 

traffic is part of the minority classes. The ratio of benign to malicious for the BoT-IoT dataset is 

1:7687. A dataset best serves in machine learning algorithms when the distribution is normal or 

close to normal. 

In Table 2, the individual flow count distribution derived from [2] for various types of 

attacks is shown. The number of samples for DDoS and DoS attack is extremely high compared 

to the benign samples. This dataset would be better served to distinguish between a DDoS and 

DoS attack as they both have relatively the same amount of samples.  

The issue of class imbalance distribution is dominant across all domains [54]. In this paper, 

two metrics - precision and recall - are studied and referenced for issues that relate to class 

imbalance. A dataset contains imbalanced class distribution when one class - which is often the 

https://medium.com/@alepukhova526/battling-data-imbalance-in-ibm-hr-attrition-challenge-3a26337a4943


26 
 

one of interest - is a minority class or not represented adequately. Several publications have been 

reviewed to determine the impact of dataset imbalance. By far the most widely accepted account 

can be found in [54] which states that issues arising from this are poor accuracy in classification 

and a general bias in the results obtained. Classifier algorithms used in machine learning as 

mentioned in [55] require a balanced dataset. Despite these findings, there are recent developments 

in algorithms that account for the imbalance in a dataset. Such approaches are generalized as 

algorithm level approaches towards the mitigation of bias [51]. 

 

 Table 2.Class Distribution for BoT-IoT  

Class Label Count 

DDoS 38,532,480 

DoS 33,005,194 

Information Gathering 1821639 

Normal 9,515 

Information Theft 1,587 

Total 73,370,443 
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Table 3. Imbalance Ratio Distribution for BoT-IoT 

Normal Traffic Count Attack Traffic Type Count Normal to Attack Ratio 

9515 (0.013%) Information Gathering 1821639 (2.48%) 1 to 191 

DDoS 38532480 (52.51%) 1 to 4038 

DoS 33005194 (44.9%) 1 to 459 

Information Theft 1587 (0.002%) 6 to 1 

In Table 3, we provide an approximation of ratios of benign to malicious traffic in the 

various attack types (majority class) as provided in Table 4 from [2]. Due to the high volume of 

malicious traffic in the BoT-IoT dataset, evidence in literature [2,37,53] has established that 

achieving acceptable True Negative (i.e., where the benign traffic is classified as benign) accuracy 

is questionable. This is due to the bias towards classifying benign traffic as malicious. DDoS and 

DoS attacks have a ratio of 1:4038 and 1:3459 respectively which is extremely imbalanced. 

Information Gathering has a ratio of 1:19. The above cases will yield a high rate of false positives 

(i.e., where benign traffic is classified as malicious).  In the case of Information Theft, the number 

of benign samples is more with a ratio of 6:1. This will lead to a high amount of false negatives. 

3.3       Criteria for BoT-IoT Paper Selection 

Our approach to deriving a new taxonomy is based on the study of work published in the 

cybersecurity domain anchored on the BoT-IoT dataset. A criteria for selecting published work for 

this dataset, related to AI-based intrusion detection systems were developed. The criteria used for 

selecting papers related to IDS and dataset balancing is specified in this section as follows: 

Selection Criteria for IDS related papers were as follows: 

  

● Publications were only included if they were relevant to the BoT-IoT dataset 
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● Publications were only included if certain keywords and phrases related to dataset 

balancing were found. These included but were not limited to: imbalance; minority 

class(es); majority class(es), sampling, downsampling, upsampling, balance(ing). 

● Publications were only included if they were published between 2019 and 2020 to align 

with the first public announcement of the dataset. 

● The number of citations and venue of publication were considered for each work assessed. 

● Publications were only included if they approached imbalance and cited the other non-IDS 

related work on dataset balancing. 

To come up with this methodology, previous approaches published in [56] and [57] were reviewed 

and analyzed. The two papers were compared, in [56] more advanced techniques were proposed 

due to the recent advancements provided by the google scholar platform reported in this paper.  

From [56], google scholar as a platform provides access to key information about the citation of a 

paper. The name of the primary dataset paper is first entered in the google scholar search engine. 

The number of times the paper has been cited is displayed and clicking on it leads to the total list 

of cited papers. The papers are filtered down by clicking the checkbox “Search within cited 

articles”, the keyword search and custom range process used for the datasets are explained below: 

The keyword “imbalance” and “balance” was used for the BoT-IoT dataset and a total of 12 papers 

were generated.  

A custom range option is also available in google scholar to select the key papers. The range 

applied for our research is 2019-2020. 

3.4    Analysis of Published Works in BoT-IoT  

A systematic review of the literature in the cohort of published works from Section III allowed us 

to divide the work into groups according to the level of contribution each work makes towards 

balancing of a dataset. This grouping has been done in a hierarchical order as shown in Figure 3 

with the first level determining whether the paper has a contribution or not. The second level 

identifies the extent of the contribution in terms of a proposed method or the application of an 

https://drive.google.com/file/d/1s6THs96tXSaSlSxhNaoiuNCte9te3kXJ/view?usp=sharing
https://drive.google.com/file/d/1Y7Bh6OTp24X-RSEsFas6dfVQ8lQasWdU/view?usp=sharing
https://drive.google.com/file/d/1s6THs96tXSaSlSxhNaoiuNCte9te3kXJ/view?usp=sharing
https://drive.google.com/file/d/1s6THs96tXSaSlSxhNaoiuNCte9te3kXJ/view?usp=sharing
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existing method. In the case of non-contributing work, the second level identifies whether 

imbalance has been recognized and mentioned or not.  

 

 Figure 3.Hierarchical grouping of published work 

  

A more thorough definition of the grouping has been provided below: 

● Proposed: The authors have proposed a technique to solve the imbalance. 

● Applied Existing: The authors have applied existing techniques in solving imbalance. 

● With Contribution: This is a cumulative of papers in which the authors have either 

proposed or applied existing techniques. 

● Mentioned: These are the papers in which the authors have mentioned an imbalance 

technique with respect to our analysis but have not treated it. 

● Not Relevant: The authors have mentioned imbalance in general and not with respect to 

our analysis of dataset imbalance. 

● Without Contribution: The authors of these papers have either mentioned imbalance or 

did not have any discussion relevant to the imbalance of the datasets. 
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Figure 4. Comparison of the imbalance treatment categories across BoT-IoT dataset 

The categories: with contribution and without contribution have been added for the ease of 

presenting the analysis. Papers that have proposed a new technique or applied an existing technique 

to deal with the imbalance are labeled as With Contribution. Furthermore, papers that have no 

relevance to dataset imbalance or have reservedly mentioned the word imbalance are collectively 

labeled as Without Contribution.  

Figure 4 shows the distribution of published work across the four groups defined for the BoT-IoT 

dataset. Figure 5 presents a cumulative percentage distribution across the four groups irrespective 

of the datasets used. It has been observed that only 25% of the papers have either proposed or 

applied techniques to treat dataset imbalance and the remaining 75% of the papers have not 

contributed to this study. These results further support the idea that there is a lack of attention to 

imbalance because 67% of the papers are not relevant which takes precedence over other groups.  
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Figure 5. Categorization of Imbalance Treatment- A comparison of all papers surveyed, across all 

categories of imbalance treatment. 

The “without contribution” category shown in Figure 4 takes precedence with the highest count. 

In the “with contribution” category the applied existing takes precedence as shown in Figure 6. 

 

 

 Figure 6. Comparison of papers in which proposed techniques are compared with existing 

techniques that have been applied. 
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3.5    Level Distribution of BoT-IoT dataset 

A study of the proposed and applied existing papers was undertaken to determine the technique 

which has been used. In contrast to the findings in the literature review, the outcome of this 

particular study demonstrates that there are three distinct classifications of techniques for 

balancing of datasets as shown in Figure 7. The grouping or classification of these techniques are 

defined as levels to be consistent with published literature presented in Chapter 2.  

 

 

Figure 7. Comparing the number of papers that propose, apply or mention approaches across all 

three datasets 

The statistical representation in Figure 7 spans the 3 papers out of 12 papers published in the BoT-

IoT. This dataset shows that all 3 papers have used algorithm level techniques to solve the issue 

of imbalance. There is no relevant study performed using data level and hybrid level techniques 

for the treatment of imbalance in the BoT-IoT dataset. 
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3.6    Ranking of approaches 

The percentage distribution for proposed and applied existing from the total amount of papers with 

contribution is depicted in Figure 6. Papers with contribution had 32% of new methods proposed 

and 68% of existing methods applied. This result may be explained by the fact that a majority of 

the papers have not focused on proposing a new technique to overcome bias. This discrepancy can 

be a dominant focus area for future research directions. 
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Chapter 4 

Setup and Preprocessing Steps 

4.1 Setup  

All stages of this experiment were performed using Jupyter Notebook on a Lenovo Yoga Laptop 

with a Windows 10 64-bit operating system. The processor was an Intel Core i5 with processing 

unit of 1.60 GHz and a RAM of 8.0 GB.  Pandas and NumPy library were used to load and perform 

preprocessing on the dataset. Data visualization was done using Matplotlib library and Scikit-learn 

was used for training-testing data, model evaluation and performance evaluation metrics.   

The details of the server used in this implementation are as follows: 

• HP ProLiant DL380p Gen8 

• CPU: Dual Intel® Xeon® CPUnE5-2660 v2 @ 2.20GHz (40 cores total) 

• Memory: 256 GB ECC (1866 MT/s) 

• Storage: 9TB 

• Operating System: Linux (Fedora release 32) 

4.2 Dataset used for this study 

The dataset used for this experimentation is the BoT-IoT dataset developed by the UNSW, 

Canberra [12]. The full dataset contains 72 million records and including normal traffic in addition 

to a variety of attack traffic such as DDoS, DoS, Data exfiltration, OS, and Service Scan [40]. The 

statistical distribution and description of the dataset are provided in Chapter 3. The CSV version 

of the BoT-IoT is provided in the form of 74 separate files. For ease of handling, the traffic for 

two attacks: DDoS and Reconnaissance along with Benign traffic were considered for the 

experimental evaluation. 
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4.3 Preprocessing Steps 

The 74 CSV files of the BoT-IoT dataset are concatenated into one single file before applying the 

preprocessing steps. The following data preprocessing steps were carried out on the BoT-IoT 

dataset: 

1) Add Feature Names: The feature names are added to each column of the dataset. 

2) Dropping of Empty columns: Six completely empty column features: smac, dmac, souit, 

doui, sco, dco’ are deleted from the dataset. 

3) Replace Empty Ports with 0: Two features ‘sport’ and ‘dport’ containing a small 

percentage of NA values were filled with 0. 

4) Replace port values with 0: Port values of ‘sport’ and ‘dport’ are replaced with 0. 

5) Converting data type: Data types of ‘sport’ and ‘dport’ columns are converted into an 

integer value. 

6) Dropping non-required features: Features that are not required for the ML model are 

removed from the dataset. 

7) Encoding object to Categorical Value: Three features ‘flgs’, ‘proto’ and ‘state’ are 

factorized to encode the object as a categorical variable. 

 The preprocessing steps implemented on the BoT-IoT dataset resulted in reducing the 

number of features from 35 to 25. The preprocessed data is then used to train the ML model. 

4.4 Supervised ML classifiers used in this study 

Three types of classification based Supervised ML techniques were used in this study: 1) 

K-Nearest Neighbor (KNN), 2) Random Forest (RF) and 3) Logistic Regression (LR) 

4.4.1 K-Nearest Neighbor  

KNN is a simple and easy to implement ML algorithm where data is classified based on 

similar distance measures. The distance, in this case can either be a Manhattan or Euclidean type. 

The data points distance nearer to each other is calculated and the value of k is selected [58]. The 

value of k can be any integer value and data points of nearest distance are assigned the same 
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class. The accuracy of the model increases with the increase in the number of nearest neighbors 

(i.e., value of k) [59]. KNN algorithm is nonparametric as it does not form an assumption about 

the data which can be advantageous in the case of real-world data. 

4.4.2 Random Forest  

Random Forest is based on an ensemble learning concept where multiple classifiers are 

combined to solve complex data problems and to improve the overall performance of the model. 

RF consists of numerous individual decision trees that work on different subsets of the provided 

dataset. The vote from each tree is taken into account and the final output is predicted based on 

the majority votes. An increase in the number of trees in RF can lead to an increase in accuracy 

performance thereby avoiding the issue of overfitting [60]. 

4.4.3 Logistic Regression 

It is a method to estimate distinct values based on an input set of independent variables. The 

predicted output for the algorithms is a dependent categorical variable. It helps predict a 

probabilistic value that ranges from 0 to 1. LR is similar to Linear Regression but differs when it 

comes to the type of problem that is needed to be solved. LR is significant compared to other ML 

algorithms as it has the capability to classify a diverse type of data and determine the most useful 

variable [61].  

4.5 Machine Learning Validation Metrics 

In addition to data preparation and training of ML models, performance evaluation is also 

a key step. The performance of the ML model is evaluated with the help of different performance 

metrics based on the confusion matrix. It is important to determine the overall performance of 

the model before testing it on new unseen data [62].  

4.5.1 Confusion Matrix 

Confusion Matrix is a performance measurement technique for machine learning classification. 

The performance is measured with the help of true values of the testing data. Confusion Matrix 
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helps in detecting errors (FP and FN) and also calculating various performance metrics values in 

ML [63]. The confusion matrix in Table 4, comprises of four items for binary classifiers:  

 

Table 4.Confusion Matrix 

Confusion Matrix 
Actual Values 

Positive Negative 

Predicted Values 

Positive TP FP 

Negative FN TN 

 

True Positives (TP): when the classifier identifies the true positive label as positive 

True Negatives (TN):  when the classifier identifies the true negative label as negative 

False Positives (FP): when the classifier identifies the true negative label as positive 

False Negatives (FN): when the classifier identifies the true positive label as negative 

In the context of cybersecurity research, a well-known understanding is that a positive 

event is defined as a malicious event and the correct classification of such an event is deemed as a 

true positive outcome. A negative event is a benign event and the correct classification is deemed 

as true negative. Inaccurate classification can mean that a benign event is classified as a malicious 

event. This misclassification is deemed as a false positive. Likewise, for a malicious event to be 

classified as a benign event is deemed a false negative [26]. 

4.5.2 Performance Metrics 

There are various metrics used to evaluate the performance of a ML classifier. The performance 

metrics are evaluated based on the four values (TP, TN, FN, and FP) of the confusion matrix. 

The metrics used in this thesis are as follows: 
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1. Accuracy: This metric helps calculate the accuracy of a classifier. It determines the 

number of positive predictions made by the model. It is the ratio of the number of 

positive predictions over the total number of predictions made by the model. 

 

Accuracy= 
TP+TN (Number of positive predictions)

TP+FP+FN+TN (Total number of predictions)
                                                [64]                           

2. Precision: It is the ratio of the number of positive predictions by the total number of 

positive values predicted by the classifier [64]. 

 

Precision=  
TP (Number of positive predictions)

TP+FP (Total number of positive values predicted by the classifier)
                            [64] 

3. Recall / Sensitivity: It is calculated by the total number of true positive predictions 

divided by the sum of all samples that belong to the positive class. 

 

Recall=  
TP (Number of positive predictions)

TP+FN (Sum of samples belonging to the positive class)
                                               [64] 

4. F1 Score / F-measure: It helps to calculate the precision and recall simultaneously by 

generating the harmonic mean of the two metrics. Equal values of recall to precision can 

achieve maximum F1 score.  

 

           F1 Score=  
2X(Recall X Precision)

Recall + Precision
                                                                                        [64]   
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Chapter 5 

Experiment and Analysis 

 

5.1 Experiment 1: Modeling on the full dataset using train and test 

split 

In the first experiment of this study, the model is trained on the BoT-IoT dataset by using the train 

and train split function from scikit learn library. Since the dataset contains around 72 million 

records, for the ease of handling, two attacks: DDoS (38 million samples) and Reconnaissance 

(around 1 million samples) were considered for this study. The ML classifiers used in this 

experiment are KNN, RF, and LR.  

 

Table 5.Classifier accuracy using scikit learn train and test split 

Benign  

9,515 samples 

Attack Type Classifier Classifier Score 

Reconnaissance 

 998,007 samples 

KNN 0.9983319019 

RF 0.9999784868 

LR 0.9963262125 

DDoS  

38,532,480 samples 

KNN 0.9999860837 

RF 0.9999848485 

LR 0.9997626359 
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As observed in Table 5, the results obtained show that the model was able to achieve a 

performance of 99% for both attacks for all three classifiers despite the dataset being highly 

imbalanced (Chapter 3). The number of false positives and false negatives obtained for both attacks 

were extremely small. Overall, the model was able to achieve exceptional results by using a large 

number of samples and this analysis gave birth to the objective for the next experiment.  

5.2 Experiment 2: Threshold Analysis for Reconnaissance and 

DDoS Attack 

As shown in Table 5, the model was able to achieve high performance using large number 

of records with a highly imbalanced class distribution. This experiment aims to discover the 

threshold sample limit at which the model attains the highest performance by using a small subset 

of samples from the entire dataset.   

The BoT-IoT dataset consists of an exceptionally large number of malicious samples 

compared to benign samples (Chapter 3) and this can put a strain on cost, memory and time 

consumption.  Similar to the previous experiment, two attacks: DDoS and Reconnaissance were 

considered for this study. Initially all 74 CSV files of the BoT-IoT is concatenated into a single 

file. The above-mentioned attack traffic along with normal traffic is extracted from the 

concatenated file. This step is followed by feature selection preprocessing where a small subset of 

samples is taken for the implementation: 10,000 and 1,000 samples of malicious and benign traffic 

respectively. Preprocessing steps are then applied on the subset of samples (Chapter 4). 

A series of ten iterations is performed by manually entering the number of training samples 

for each iteration. The iteration samples were chosen by a trial-and-error method. The first 

occurrence of the highest value in the series of ten iterations is treated as the 

Threshold/Breakpoint value.  

 This experiment is broken down into two parts. In the first part, the number of benign 

samples is fixed and attack samples is arranged in a series for ten iterations. The model is trained 

using three classifiers: KNN, FR, and LR for DDoS and Reconnaissance attacks. The threshold 

comparison analysis for the first part of the experiment is provided below: 
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5.2.1: Performance Comparison of Reconnaissance and DDoS with fixed 

benign samples 

 

Figure 8. Threshold Analysis for KNN 

The threshold analysis of KNN classifier for Reconnaissance and DDoS attacks is shown 

in Figure 8. The number of fixed benign samples considered for the KNN after the trial-and-error 

method is 500. In reconnaissance, at 7000 samples, the model attains an accuracy of 93% 

indicating a pre-breakthrough point for the threshold value.  A threshold of 99% is achieved at 

8000 attack samples for reconnaissance and 100% at 1000 samples for DDoS. The classifier 

accuracy in this figure shows a gradual upward trend towards the threshold value for 

reconnaissance whereas, in DDoS, a perfect score is achieved with 1000 attack samples. By 

comparing the two attacks it can be observed that DDoS requires less number of attack samples to 

attain the threshold value (high classifier accuracy). 
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Figure 9. Threshold Analysis for RF 

The threshold analysis for Random Forest classifier is depicted in Figure 9. The highest 

classifier score achieved with the same number of fixed benign samples (500 samples) as KNN 

was around 50%. This led to another round trial and error method by which the new fixed benign 

samples were obtained. For RF, 58 benign samples was taken as a fixed value and similar to KNN 

the attack samples were changed in a series for ten iterations.  

The iterations executed using the new benign sample was able to achieve the threshold 

value of 97% using 6000 attack samples for reconnaissance. DDoS attained a threshold of 100% 

at 1000 samples. For reconnaissance, a very small percentage decrease is observed after the 

threshold iteration which was not the case for the DDoS attack. It can be noticed that similar to 

KNN, DDoS requires a small number of attack samples to achieve a high classifier accuracy 

(threshold). 
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Figure 10. Threshold Analysis for LR 

The threshold analysis for Logistic Regression is depicted in Figure 10 where the number 

of fixed benign samples taken was 500, same as KNN. The figure shows that reconnaissance 

achieves a threshold of 99% with 5000 attack samples and DDoS with just 1 attack sample. In 

Reconnaissance, a microscopic decrease in classifier score is observed after the threshold values 

which is not the case for DDoS attack. By comparing both types of attack in LR, DDoS requires a 

small number of samples to achieve the threshold. 
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Figure 11. Comparison of Threshold Limit for KNN, RF, and LR 

A combined threshold comparison for two attacks using all three classifiers is shown in 

Figure 11.  For Reconnaissance, LR required 5000 samples to attain the threshold followed by 

6000 and 8000 samples for RF and KNN respectively. In DDoS, LR was able to reach the threshold 

of 100% in the first iteration. KNN and RF showed similar behavior and attained the threshold at 

1000 attack samples. Overall, it can be concluded from this experiment that DDoS requires less 

number of samples than reconnaissance to achieve the threshold for KNN, RF, and LR. 

 

5.2.2: Performance Comparison of Reconnaissance and DDoS with fixed 

attack samples 

In the second part of this experiment, the threshold samples for each classifier from the 

above analysis is taken as the starting reference iteration. In this case, attack samples are fixed and 

the number of benign samples is reduced in a series of ten iterations and the model is evaluated 
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using KNN, RF, and LR classifiers. This experiment is performed to determine the effectiveness 

of the threshold analysis.  

 

 

Figure 12. Part 2 analysis for KNN and LR with fixed attack samples 
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Figure 13. Part 2 analysis for RF with fixed attack samples 

Figure 12 shows the KNN and LR classifier accuracy trend for reconnaissance where the 

number of attack samples are fixed: 8000 for KNN and 5000 for LR. In both KNN and LR, the 

benign samples taken for each iteration is the same i.e., benign samples are reduced with a 

difference of 50 from the iteration value.  

In KNN, a gradual decrease is observed till 100 benign samples (9th Iteration) after which 

there is a 28% drop in accuracy for 50 benign samples (10th Iteration). LR shows a decreasing 

pattern till 250 samples (6th Iteration) followed by an increase for the 7th iteration after which the 

accuracy decreases once again till the very last iteration (50 benign samples). 

The classifier score for the RF classifier is presented in Figure 13. In RF, the number of 

benign iteration samples taken is different from that of KNN and LR due to the starting threshold 

reference. It can be seen from the figure that there is a gradual decrease in the classifier accuracy 

with each iteration. 

It can be concluded from the above observations that the classifier accuracy for all three 

classifiers decreases with the decrease in the number of samples. This study helps justify the 

samples taken for iterations cycles in the threshold experiment. 

 

5.2.3: Performance Metric Analysis for Threshold Iteration Cycles 

In the above analysis, the threshold limit was determined by using the classifier accuracy. 

This study analyzes the performance metric values of the part 1 iterations (fixed benign samples) 

to cross-check with previously attained threshold samples. The model was evaluated based on four 

performance metrics namely: Accuracy, Precision, Recall, and F1-score. The metric values for 

both Reconnaissance and DDoS using KNN, RF, and LR is provided below: 
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Table 6. Performance Metric Values for Reconnaissance attack 

 

 

Figure 14. Comparison of performance metrics for KNN, RF, and LR-Reconnaissance  

Table 6 shows the performance values of accuracy, precision, recall, and F1-score values 

for the Reconnaissance attack using KNN, RF, and LR classifiers. Figure 14 provides a visual 

representation of the same where it can be observed that the performance of all three classifiers 

starts to increase after Iteration 5.  KNN and LR achieve 100% for all metrics in Iteration 9 and 

Iteration 10 respectively whereas RF attains the highest 92% for precision and F1 score, 91% 
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accuracy, and 90% for recall at Iteration 10. These results prove that performance metric values 

obtained match with that of the threshold value determined using the classifier score. 

 

Table 7. Performance Metric Values for DDoS attack 

 

 

Figure 15. Comparison of performance metrics for KNN, RF, and LR-DDoS  

Table 7 and Figure 15 show the values and trend of the performance metric values for the 

DDoS attack. It can be observed that KNN and RF achieve 100% for all metrics after Iteration 2 

and LR is able to achieve perfect a value in the very first iteration.  
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By comparing the performance values for both Reconnaissance and DDoS, it can be 

concluded that DDoS can accomplish 100% performance across all four metrics in a smaller 

number of iterations. 

5.3 Experiment 3: Feature Drop Analysis 

This experiment is implemented to determine how each of the 24 preprocessed features of 

the BoT-IoT dataset impacts the performance of the ML model. This is implemented in 2 ways: 

Independent and Group. Both techniques of feature drop selection is executed on a model by using 

the threshold classifier accuracy as a reference (Experiment 2). 

5.3.1 Independent Feature Drop 

The first method of feature drop is called independent feature drop. Figure 16 shows the process 

where each feature is dropped individually in order, independent of other features. After each 

feature is dropped, the classifier accuracy value is noted and compared with the threshold value of 

each classifier. This comparison analysis will help determine which feature for which classifier 

has the biggest impact on the performance of the model. 

 

Figure 16. Independent Feature Drop  
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Figure 17.Independent Feature Drop for Reconnaissance attack 

The reference threshold value used for the Reconnaissance attack is retrieved from 

Experiment 2. The independent feature drop performance of KNN, RF, and LR classifier is shown in 

Figure 17. In KNN, ‘sport’ is the only feature that has a drop of 6% from the threshold. Other features 

show no change from the threshold value.  

Unlike KNN, in RF, multiple features show a deviation from the threshold value. The biggest 

drop is observed for the ‘dur’ feature (28% drop) followed by ‘spkts’, ‘dpkts’, ‘sbytes’ ‘dybtes’ (19-

20% drop), and ‘mean’ (17% drop). Three features ‘rate’, ‘srate’, and ‘drate’ show a 0.1% increase 

than the threshold value. The rest of the features show an extremely small to no percentage drop in the 

threshold.  

In LR, three features show a drop from the threshold value. ‘pkSeqID’ feature showed a 45% 

drop followed by ‘bytes’ and ‘sport’ with 16% and14% drop respectively from the threshold value. 

Similar to RF, a small to no change in accuracy was observed for the rest of the features. 
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Figure 18.Independent Feature Drop for DDoS attack 

Figure 18 shows the independent feature drop for DDoS attack. In KNN, no drop was 

detected for all the features. The features ‘pkSeqID’ and ‘stime’ had a 1% drop from the threshold 

values for RF. In LR, only ‘pkSeqID’ showed a major drop, and no change in percentage was 

observed for other features. 

5.3.2 Group Feature Drop 

In the group feature drop experiment as shown in Figure 19, features are dropped in an order one 

after the other as a group. Similar to independent drop, the classifier score is compared to the 

threshold value to determine the percentage of the impact that the feature has on the performance 

of the model.   
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Figure 19. Group Feature Drop 

 

Figure 20. Group Feature Drop for Reconnaissance attack 

The group feature drop values for the Reconnaissance attack is shown in Figure 20. 

Features were dropped one after the other as a group in order and classifier accuracy was obtained 

using KNN, RF, and LR classifiers. By comparing the feature drop score to the threshold value, it 
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can be observed that in KNN, feature ‘dport’, ‘pkts’, ‘bytes’ and ‘state’ showed a 60% drop (first 

5 features are already dropped). ‘ltime’ feature revealed an 80% drop (first 9 features already 

dropped).  

In RF,’ rate’ and ‘state’ (last two features) showed a 13-15% drop after dropping the first 

20 to 21 features in order. A significant drop of around 45 % was observed for the first four features 

‘pkSeqID’, ‘sime’, ‘flgs’, and ‘proto’ in LR. 

 

 

Figure 21. Group Feature Drop for DDoS attack 

The group feature drop trend line for DDoS is demonstrated in Figure 21 where three 

features: ‘ltime’, ‘sbytes’ and ‘dbytes’ exhibited the drop of 85%, 25%, and 19% respectively 

(assuming all the features above it were already dropped).  The biggest drop in RF was ‘srate’ 

(5%) and in LR all features showed the exact score (45% drop) as that of LR for Reconnaissance 

attack. 
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5.3.3 Comparison between Independent and Group Feature Drop 

This study provides a comparison between the two methods of feature drop techniques for 

each classifier and attack. It is important to note that the following observations with respect to 

how many features can be dropped and still maintain high model performance is applicable 

provided it is dropped in a particular order. Changing the order of dropping features will fetch 

different accuracy results for both methods of feature drop.  

 

Figure 22. Feature Drop Comparison for Reconnaissance using KNN classifier 

Figure 22 provides the comparison of the independent and group feature drop for 

reconnaissance attack using KNN classifier. It can be observed that in both techniques, ‘sport’ 

shows a 5% drop in performance. ‘dport’, ‘pkts’, ‘bytes’ ‘state’ and ‘ltime’ are the five features 

that show the biggest drop for group drop which is not the case for the independent drop.  

 

 

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r 

A
cc

u
ra

cy

Features

KNN Feature Drop Comparison for Reconnaissance

Independent Drop Group Drop



55 
 

 

Figure 23. Feature Drop Comparison for Reconnaissance using RF classifier 

The feature drop comparison trend using RF classifier for Reconnaissance attack is 

depicted in Figure 23, where ‘seq’ is the only feature that shows a 1% drop in performance for 

both methods of feature drop. 
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Figure 24. Feature Drop Comparison for Reconnaissance using LR classifier  

Figure 24 shows the feature drop using LR classifier for reconnaissance attack where it can 

be noticed that classifier accuracy for the feature ‘pkSeqID’ is the same for both methods, showing 

the biggest drop of 45%.  

 

Figure 25. Feature Drop Comparison for DDoS attack using KNN classifier 

The two methods of feature drop for DDoS attack using KNN classifier are shown in Figure 

25. Feature ‘ltime’ shows the biggest drop of 75% (first 9 features are already dropped) for the 

group drop method whereas there is no drop in classifier accuracy for the independent drop.  
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Figure 26. Feature Drop Comparison for DDoS attack using RF classifier 

Figure 26 depicts the comparison for RF classifier for DDoS attack. A major drop is 

observed in the second half of the features for the group drop method whereas a small to no drop 

in performance is observed for the independent drop method.  

 

Figure 27. Feature Drop Comparison for DDoS attack using LR classifier 
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In LR, the same drop value is observed in both methods for the feature ‘pkSeqID’. As shown in 

Figure 27. rest of the features in the group drop method have the same value as that of pkSeqID 

and threshold value in the case of the independent drop method. 
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Chapter 6 

Conclusion and Future Works 

 

In this thesis, four major findings are presented. The first finding of this work clearly 

indicates that there is a lack of unanimity on the techniques used in balancing datasets. This is 

supported by the evidence presented in this work for the formal definitions of balancing level 

techniques which form the basis of the taxonomy proposed here. It can be identified that these 

definitions are supported by the published work in two domains: related study of dataset balancing 

and work related to the BoT-IoT dataset. 

 

The second finding of this study showed that the model was able to achieve a high 

performance despite the dataset being highly imbalanced. The ML model produced exceptional 

results on large number of imbalanced samples. This led to the investigation of ML model 

performance by using a small subset of samples. Training samples were chosen by a trial-error 

method for a series of ten iterations to detect the threshold sample limit at which the model 

achieves the highest performance. The third finding demonstrated that DDoS required lesser 

number of samples than Reconnaissance to achieve threshold. 

 

The last experiment was to investigate the impact of each dataset feature on the 

performance of the model. This was evaluated using an independent and group feature drop 

method. The fourth finding of this study depicted that a certain number of features had varying 

impacts on the threshold value for each classifier.  

 

For future research, there are several potential directions. One such direction that would 

serve as an extension of this thesis is to investigate the performance of the ML model by using 

different subset combinations. Another direction of potential research would be to perform other 

statistical techniques like Principal Component Analysis (PCA), Factor Analysis, Linear 

Discriminant Analysis and compare those results against the manual feature drop results of this 



60 
 

thesis. The last future research direction is to compare the impact of performance with and without 

balancing the dataset. 
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