
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

1-2021

Towards Effective Detection of Botnet Attacks using BoT-IoT Towards Effective Detection of Botnet Attacks using BoT-IoT

Dataset Dataset

Subiksha Srinivasa Gopalan
ssg5920@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Srinivasa Gopalan, Subiksha, "Towards Effective Detection of Botnet Attacks using BoT-IoT Dataset"
(2021). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10698?utm_source=repository.rit.edu%2Ftheses%2F10698&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

i

Towards Effective Detection of Botnet

Attacks using BoT-IoT Dataset

by

Subiksha Srinivasa Gopalan

A Thesis Submitted in Partial Fulfilment of the Requirements for the

Degree of Master of Science in Networking and System Administration

Department of Computing Sciences

Rochester Institute of Technology

RIT Dubai

January 2021

ii

Committee Approval

__

Dr Ali Raza Date

Professor of Computing Sciences

Thesis Advisor

__

Dr Muhieddin Amer Date

Professor and Chair

Electrical Engineering and Computing Sciences

iii

Abstract

In the world of cybersecurity, intrusion detection systems (IDS) have leveraged the power of

artificial intelligence for the efficient detection of attacks. This is done by applying supervised

machine learning (ML) techniques on labeled datasets. A growing body of literature has been

devoted to the use of BoT-IoT dataset for IDS based ML frameworks. A few number of related

works have recognized the need for a balanced dataset and applied techniques to alleviate the issue

of imbalance. However, a significant amount of related research works failed to treat the imbalance

in the BoT-IoT dataset. A lack of unanimity was observed in the literature towards the definition

of taxonomy for balancing techniques. The study presented here seeks to explore the degree to

which the imbalance of the dataset has been treated and to determine the taxonomy of techniques

used. In this thesis, a comparison analysis is performed by using a small subset of an entire dataset

to determine the threshold sample limit at which the model achieves the highest accuracy. In

addition to this analysis, a study was conducted to determine the extent to which each feature of

the dataset has an impact on the threshold performance. The study is implemented on the BoT-IoT

dataset using three supervised ML classifiers: K-nearest Neighbor, Random Forest, and Logistic

Regression. The four principal findings of this thesis are: existing taxonomies are not understood

and imbalance of the dataset is not treated; high performance across all metrics is achieved on a

highly imbalanced dataset; model is able to achieve the threshold performance using a small subset

of samples; certain features had varying impact on the threshold value using different techniques.

iv

Table of Contents

Abstract .. iii

List of Tables .. vi

List of Figures .. vii

Structure of the Thesis ... viii

1.Introduction .. 1

1.1 Background Concepts related to this study ... 3

1.1.1 Botnets and Cyberattacks in BoT-IoT Background .. 3

1.1.2 Intrusion Detection Systems Background .. 4

1.1.3 Artificial Intelligence and Machine Learning Background ... 5

1.1.4 Steps in Machine Learning Background .. 7

1.1.5 Preprocessing in Machine Learning Background ... 8

1.2 Motivation ... 10

1.3 Contributions ... 10

2.Related Works .. 12

2.1 Related IDS Frameworks in BoT-IoT ... 12

2.2 Related Data Preprocessing Steps in BoT-IoT .. 15

2.3 Importance of dataset balancing ... 16

2.4 Taxonomy of balancing level techniques .. 17

2.5 Contentions in existing taxonomies of balancing level techniques .. 20

2.6 Literature of balancing techniques used in BoT-IoT dataset .. 22

3.Literature analysis of balancing techniques in BoT-IoT ... 24

3.1 Overview of BoT-IoT dataset ... 24

3.2 Imbalanced Class Distribution of BoT-IoT dataset ... 25

3.3 Criteria for BoT-IoT Paper Selection.. 27

v

3.4 Analysis of Published Works in BoT-IoT ... 28

3.5 Level Distribution of BoT-IoT dataset .. 32

3.6 Ranking of approaches ... 33

4.Setup and Preprocessing Steps ... 34

4.1 Setup ... 34

4.2 Dataset used for this study ... 34

4.3 Preprocessing Steps ... 35

4.4 Supervised ML classifiers used in this study... 35

4.4.1 K-Nearest Neighbor .. 35

4.4.2 Random Forest .. 36

4.4.3 Logistic Regression ... 36

4.5 Machine Learning Validation Metrics .. 36

4.5.1 Confusion Matrix .. 36

4.5.2 Performance Metrics ... 37

5.Experiment and Analysis.. 39

5.1 Experiment 1: Modeling on the full dataset using train and test split ... 39

5.2 Experiment 2: Threshold Analysis for Reconnaissance and DDoS Attack 40

5.2.1: Performance Comparison of Reconnaissance and DDoS with fixed benign samples 41

5.2.2: Performance Comparison of Reconnaissance and DDoS with fixed attack samples 44

5.2.3: Performance Metric Analysis for Threshold Iteration Cycles .. 46

5.3 Experiment 3: Feature Drop Analysis ... 49

5.3.1 Independent Feature Drop ... 49

5.3.2 Group Feature Drop .. 51

5.3.3 Comparison between Independent and Group Feature Drop ... 54

6.Conclusion and Future Works ... 59

Bibliography .. 61

vi

List of Tables

Table 1. Contentions in Existing Taxonomies ...21

Table 2.Class Distribution for BoT-IoT ..26

Table 3. Imbalance Ratio Distribution for BoT-IoT..27

Table 4.Confusion Matrix ...37

Table 5.Classifier accuracy using scikit learn train and test split ..39

Table 6. Performance Metric Values for Reconnaissance attack ..47

Table 7. Performance Metric Values for DDoS attack ..48

vii

List of Figures

Figure 1. Machine Learning Steps ...7

Figure 2. Imbalanced Class Distribution for BoT-IoT...25

Figure 3.Hierarchical grouping of published work ...29

Figure 4. Comparison of the imbalance treatment categories across BoT-IoT dataset30

Figure 5. Categorization of Imbalance Treatment- A comparison of all papers surveyed, across all

categories of imbalance treatment. ...31

Figure 6. Comparison of papers in which proposed techniques are compared with existing techniques that

have been applied. ...31

Figure 7. Comparing the number of papers that propose, apply or mention approaches across all three

datasets ..32

Figure 8. Threshold Analysis for KNN ...41

Figure 9. Threshold Analysis for RF ..42

Figure 10. Threshold Analysis for LR ..43

Figure 11. Comparison of Threshold Limit for KNN, RF, and LR ...44

Figure 12. Part 2 analysis for KNN and LR with fixed attack samples ..45

Figure 13. Part 2 analysis for RF with fixed attack samples...46

Figure 14. Comparison of performance metrics for KNN, RF, and LR-Reconnaissance47

Figure 15. Comparison of performance metrics for KNN, RF, and LR-DDoS48

Figure 16. Independent Feature Drop ...49

Figure 17.Independent Feature Drop for Reconnaissance attack ..50

Figure 18.Independent Feature Drop for DDoS attack ..51

Figure 19. Group Feature Drop..52

Figure 20. Group Feature Drop for Reconnaissance attack ..52

Figure 21. Group Feature Drop for DDoS attack..53

Figure 22. Feature Drop Comparison for Reconnaissance using KNN classifier54

Figure 23. Feature Drop Comparison for Reconnaissance using RF classifier......................................55

Figure 24. Feature Drop Comparison for Reconnaissance using LR classifier56

Figure 25. Feature Drop Comparison for DDoS attack using KNN classifier56

Figure 26. Feature Drop Comparison for DDoS attack using RF classifier ..57

Figure 27. Feature Drop Comparison for DDoS attack using LR classifier ..57

viii

Structure of the Thesis

This thesis is organized as follows:

Chapter 1 consists of related background concepts and provides the motivation and contribution

behind this study.

Chapter 2 reviews published work related to the BoT-IoT dataset.

Chapter 3 provides the methodology used for the analysis of related works.

Chapter 4 details the setup, preprocessing steps, and classifiers used for the experimental

evaluation on the BoT-IoT dataset.

Chapter 5 provides a comparative analysis of the experimental results.

Chapter 6 concludes this thesis and provides directions for future research.

1

Chapter 1

Introduction

Large amounts of sensitive user data are prone to various kinds of internal and external

attacks. With the advancement of technology, cyberattacks have become evolved with the

sophistication of algorithms [1]. The main targets of cyberattacks are systems that process, store

essential data or services that depend on their systems [2]. A novel Intrusion Detection System

(IDS) is required for the detection of malicious cyberattacks that pose a security issue. IDS is an

intrusion detection tool used to detect and classify attacks, security policy violations, and intrusions

automatically at both network and host level infrastructures [1].

The evolving nature of attacks has resulted in the need for significant tuning and alteration

by incorporating Machine Learning (ML) to improve the performance of IDS [3]. ML is a branch

of Artificial Intelligence (AI) that facilitates computer learning without the need for external

programming [4]. ML systems help make predictions by learning from existing data. The ultimate

goal of ML is to develop an efficient algorithm that processes input data, generates a prediction

with the help of statistical analysis [5]. ML algorithms are classified into two main types: 1)

Supervised Learning and 2) Unsupervised Learning.

Supervised Learning requires a well-labeled training dataset containing both normal and

attack samples. This is a type of learning where the input and the desired output is provided to the

learning model to make future predictions [6]. In a binary classification problem, the true or false

labels need to be sufficient in quantity when each data sample has a large number of features used

as an input to train the model. The performance of a ML model can be strongly affected by the

dataset which is used for training. An imbalanced dataset can lead to a biased classification or

prediction [1].

Modern IDS need to leverage the power of AI through ML to achieve optimal performance

for accurate prediction and classification of attack types [3]. The training required for these ML

2

models is directly dependent on the datasets used to train them [7]. Neglected or hidden biases in

data or an algorithm can lead to biased predictions thereby affecting the performance of an AI

application [8].

In recent years, the proliferation of the Internet of Things (IoT) has been increasing all over

the world [9]. The number of connected IoT devices has the potential to reach 125 billion by the

year 2030 [9]. The integration of such IoT devices with various other technologies, services, and

protocols has made the management of IoT networks more complex. This leaves the internet

vulnerable to serious cyberattacks and threats endangering the consumer of such devices [9]. Some

of the most common attacks in IoT systems include Distributed Dos (DDoS), DoS, ransomware,

and botnet attacks [10].

There are several IoT based datasets used for the research of anomaly detection and one

such dataset that is talked about the most is the BoT-IoT dataset [11]. The BoT-IoT dataset was

developed on a realistic testbed that incorporates simulated and legitimate IoT network traffic

along with several types of attacks [11]. This dataset has labeled features indicating the attack

flow, category, and subcategory for multiclass classification [12].

In this paper, we focus on the BoT-IoT dataset which was published in 2019. This dataset

is both rich in terms of the features and attack types. The goal of this study is to analyze the

contributions towards the dataset imbalance.

This thesis is organized as follows. Chapter 1 consists of background concepts related to

this study, motivation, and contribution. Chapter 2 reviews published work related to the BoT-IoT

dataset. Chapter 3 provides the methodology used for this analysis. Chapter 4 details the setup,

preprocessing and classifiers used for the experimental evaluation. Chapter 5 compares the

experimental results and Chapter 6 concludes our thesis and provides directions for future research.

3

1.1 Background Concepts related to this study

1.1.1 Botnets and Cyberattacks in BoT-IoT Background

Botnet is defined as a collection of compromised internet-connected devices exposed to

hackers. Botnets are used by cybercriminals to initiate botnet attacks. Botnet attacks usually

include DDoS, data theft, credential leaks, and authorized access [13].

Hackers use special kinds of Trojan viruses to gain access and breach the security

systems of computers [13]. The cyberattacks implemented in botnet scenarios in the BoT-IoT

dataset are as follows:

1) Denial of Service

These are cyberattacks that prevent user accessibility by shutting down the target

machine or network. This is done by overloading the target machine with traffic thereby

initiating a crash When multiple systems orchestrate an organized DoS attack on on a single

target machine then it is called as Distributed Denial of Service Attack (DDoS) The BoT-IoT

dataset contains both DDoS and DoS attacks These attacks are initiated by bots. [14].

2) Information Theft

 It is a type of group attack where sensitive data is seized by compromising the security of

the target machine. There are two subcategories of Information theft attacks: Data Theft and

Keylogging included in the BoT-IoT dataset [11].

3) Probing Attacks

 Probing attacks are attacks where remote systems are scanned for information about the

victim. Probing attacks in the BoT-IoT dataset contains two subcategories namely Service Scan

and OS fingerprinting. In service scan, request packets are sent by scanning the system's port

services. OS fingerprinting gathers information by scanning the operating system of the remote

system and the responses are compared to pre-existing responses [11].

4

1.1.2 Intrusion Detection Systems Background

Intrusion Detection System (IDS)

Intrusion Detection Systems is defined as a monitoring system that can detect suspicious

activity and malicious threats [15]. The objective of IDS is to generate an alert, informing the IT

personnel of the presence of a network intrusion. Based on the alert information, relevant actions

are taken to rectify the threat [16].

Types of IDS

Based on the placement of sensors, IDS can be divided into two main categories: Host-

based and Network-based IDS. [16].

1) Host-based IDS (HIDS): This type of IDS is deployed at the endpoints in order to

protect the host from internal and external attacks. The visibility of HIDS is

restricted to the host machine. HIDS has the ability to inspect processes, scan

network traffic to-from the host machine, and examine system logs [15,16].

2) Network-based IDS (NIDS): NIDS is deployed in the network to monitor traffic

flowing through the protected network. This type of IDS provides a wider

perspective to detect attacks but limits the internal visibility of endpoints [15,16].

IDS Detection Methods

IDS detection methods are classified into three categories: signature, anomaly, and hybrid

[15].

1) Signature Detection: It is a method where known threats are detected with the help

of a signature. A signature is generated once the malware is identified and it is then

added to the list which is used to test incoming traffic. This technique can be a

disadvantage when it comes to detecting unknown attacks [15,16].

2) Anomaly Detection: This method of IDS detection monitors the behavior of the

system. Future behavior is observed and attacks are detected when there is a

deviation from normal behavior [15,16]

5

3) Hybrid Detection: This method is a combination of both signature and anomaly-

based detection. It can detect low error rate attacks [15,16].

1.1.3 Artificial Intelligence and Machine Learning Background

AI is a machine that displays cognitive behavior similar to that of a human being. AI is an

umbrella term that consists of multiple computer programs that display human capabilities. A

computer program that has the ability to learn, self-improve, process information, and predict an

output fall under the branch of AI [17].

AI can be divided into three domains namely; Robotics, Cognitive Systems, and Machine

Learning.

1) Robotics: It deals with direct interaction with human beings in the physical

world. Robotics is found to be useful in improving work in our daily life [18].

2) Cognitive Systems: It is based in the human world where humans and machines

communicate and work together towards a common goal. An example is a

communication interface called chatbot [18].

3) Machine Learning: It is based in the information world. Machines utilize data to

learn and derive meaning in order to make predictions. Deep Learning is a subset

of machine learning which deals with multi-layer neural networks. [18].

ML is a branch of AI where a system has the capability to learn and improve based on

experience without external programming. ML consists of algorithms or methods that are used to

create learning models from data. The prime focus of ML is to enable automatic learning for

computers without human assistance in order to make accurate decisions in the future [18].

Machine Learning Types

The three types of ML are supervised, unsupervised, and reinforcement learning [19].

6

1) Supervised Learning

The most commonly used type of learning is Supervised Learning. In SL, the model is

trained on labeled data. The labeled data helps the model to learn the relationship between data

points. The system is powerful enough to make predictions after plentiful training. This type of

learning can compare the predicted output with the expected output to detect errors. These errors

are then rectified by modifying the ML model accordingly [20].

A majority of ML models use Supervised ML techniques. SL helps to process and

classify data with the help of machine language. There are two types of SL techniques namely;

Regression and Classification [20,21].

Regression helps fit the data and produce a continuous value output based on the labeled

input data [22]. and Classification deals with the separation and grouping of data into classes.

When the input data is labeled into two distinct classes, it is known as Binary Classification.

Grouping data into more than two classes is called Multiple/ Multiclass Classification [21].

In the thesis, three classification based supervised learning algorithms: K-Nearest

Neighbor (KNN), Random Forest (RF), and Logistic Regression (LR) are used to train the ML

model.

2) Unsupervised Learning

In contrast to SL, Unsupervised Learning (UL) is when the training involved is unlabeled

or not classified [20]. This type of learning is advantageous than SL as it can process large

datasets without spending time on data preprocessing. Due to the absence of labels in UL, hidden

patterns are created from the unlabeled data. The creation of such patterns does not require

external input from humans. This makes deployment and development of UL more versatile and

functional than SL [17].

3) Reinforcement Learning

 Reinforcement Learning (RL) is a type of learning that is inspired by how humans learn.

[17]. This learning is based on a trial-and-error reward system as it learns continuously by

interacting with new environments. The agent is rewarded for correct predictions and penalized

7

for wrong answers. The model trains itself based on the reward points gained and this process is

repeated when exposed to a new environment. [22].

1.1.4 Steps in Machine Learning Background

The machine learning process can be explained in seven steps. Figure 1 depicts the seven steps in

ML with data being the key factor for each step.

Figure 1. Machine Learning Steps

1) Collecting/ Gathering Data: The first step where relevant data is gathered for ML

processing. The quality and quantity of data determines the accuracy of the predictive

model. [23,24].

2) Data Preparation: The raw collected from the previous step is not useful by itself and

needs to be cleaned. This is done by removing duplicates, converting data types, and

dealing with errors and missing values. Data is visualized to detect outliers, patterns,

biases, and relationships between variables [25,26].

3) Choosing a Model: There are several models available for different purposes in the field

of ML and this step deals with selecting the right model for our goal [25,26].

4) Training the Model: Training a model is one the most important steps in ML. It is to

improve the model predictions by using the training data. The weights and biases are

updated during each iteration cycle also known as the training step [25,26].

8

5) Evaluation: In this step, the trained model is tested on unseen data. The performance of

the model is evaluated using performance metrics such as Accuracy, Recall, Precision,

etc. A good train-test split is around 70/30 depending on the dataset [25,26].

6) Parameter Tuning: This step is otherwise known as “hyperparameter tuning”. The

parameters are tuned to improve the performance of the model. Simple hyperparameters

involve tuning the learning rate, increasing number of training steps, distribution, etc.

[25,26].

7) Prediction: The final step in ML where the model after undergoing the first six steps is

ready to make predictions for practical applications. [23].

1.1.5 Preprocessing in Machine Learning Background

Real-world data generally consists of missing values, noises, and redundancies or

available in a format that is not compatible with the ML model. As the capability of a model to

learn is directly dependent on the quality of data that is fed as input, data preprocessing becomes

a crucial step [27]. Data preprocessing is the process of converting raw data into a machine-

understandable format [28].

A dataset consists of a collection of data objects which are also called as samples,

vectors, records, events, or cases. These data objects are signified by the number of features.

Features describe the characteristics of an object and are also known as attributes, variables,

fields, or dimensions. Features of a dataset can be of two types: Categorical or Numerical.

Categorical features are those which take on a fixed set of values (eg: Boolean: True or False).

Numerical features are values that are continuous or integers [29].

There are various methods of data preprocessing steps available for ML. The five types

of data processing methods are as follows:

● Data Quality Assessment: Data collected from various sources often contains

irregularities in terms of format and quality of information. These irregularities can be

due to human error, bugs during the data collection process, or measuring device

limitations This becomes a mandatory step that is required when working on any kind of

ML problem. There are three techniques to deal with such issues:

9

1. Missing Values: This technique helps estimate missing values and eliminate

rows/columns with missing values. In the case of a small percentage of missing

values, it is filled using interpolation methods or with the mean, mode, or median

values. In the case of a feature consisting of an extremely large number of missing

values, that feature itself can be removed. [29].

2. Inconsistent Values: Data assessment is performed to correct value

inconsistencies (eg: data type of feature) [29].

3. Duplicate Values: Redundant values are a common occurrence in datasets and

duplicates are removed to avoid bias during the processing of ML algorithms

[29].

● Feature Aggregation: It is a method of pooling aggregated values to provide a better

perspective for data analysis [30]. This helps provide a stable visual of aggregated values

than scattered individual values. Feature Aggregation can help reduce the overall

processing time and memory consumption [29].

● Feature Sampling: Sampling is a technique to select a subset of a dataset for analysis.

Large datasets can put a dent in terms of cost, time, and memory constraints, and using a

sample size of the dataset can be a better option. Sampling of the dataset is performed by

preserving the properties of the original dataset. Feature Sampling can be

disadvantageous in the case of an imbalanced dataset where the number of instances of

one class is extremely higher than another class [29].

● Dimensionality Reduction: Datasets consisting of a large number of features can cause

issues during the data analysis phase. It becomes extremely difficult for the model to

visualize with the increase in the number of dimensions. Dimensionality Reduction helps

convert a high dimensional dataset to a low dimensional one. This is performed using two

types of techniques namely Principal Component Analysis (PCA) and Singular Value

Decomposition [29].

● Feature Encoding: It is the process of transforming/encoding data to an easy and

acceptable input for the ML algorithm without compromising the original meaning of the

dataset [29].

10

1.2 Motivation

A considerable effort has been devoted to the research of IDS systems that rely on ML

techniques for the development of a dataset. The primary requirement of such systems is to classify

events as malicious or benign based on the labeled dataset [31]. The principal issue found during

the dataset development stage is the imbalance of datasets. The source of the bias stems from the

data that is used for training the ML model [32]. Despite the vast research in ML, only a small

percentile of papers discuss the details of the data used for their research. Authors are found to

focus more on the construction of complex and accurate models rather than bias in the datasets.

The fact remains that the majority if not all big datasets based on ML models are biased [32].

There is a growing body of literature that recognizes the importance of balanced datasets

to reduce the bias in ML. Inequality of classes is formed when malicious samples are lower than

that of benign samples. As presented in [33,34], imbalanced data causes low detection rates of

minority classes where the dataset consisted of more instances belonging to the ethical behavior

class than the attack class. A drawback of this is presented in [34] which discusses the performance

issues and where ML techniques are proposed as a mitigation approach. It significantly decreases

the performance, which results in data loss or overfitting. It intends the trainees to be biased

towards the majority class, and all such classes will be identified correctly. Hence, to solve the

issues of low accuracy and reliability of classifiers, the balancing of datasets is of prior importance

for the identification of sparse classes [35].

The key motivation behind this work is to establish methods in which the impact of bias in

a dataset can be minimized when addressing the accuracy.

1.3 Contributions

The key contributions of this thesis can be summarized as follows:

● Provide an analysis of literature for dataset imbalance and identify gaps in existing

approaches.

● Provide empirical evidence for the claim that BoT-IoT dataset imbalance is not addressed

in cybersecurity research.

11

● Utilize a real IoT traffic-based dataset for implementation of three supervised machine

learning algorithms namely: K-Nearest Neighbor, Random Forest, and Logistic

Regression.

● Compare and contrast the results of implementation.

12

Chapter 2

Related Works

2.1 Related IDS Frameworks in BoT-IoT

There is a plethora of literature on the studies related to ML techniques for intrusion

detection systems. This section provides related works on the IDS frameworks proposed and

implemented on the BoT-IoT dataset. In addition to the proposed IDS framework, the description

of the feature set utilized in the framework is also provided below.

 A Hybrid IDS novel ensemble framework is proposed in [36] which combines two types

of classifier namely; One Class Support Vector Machine and C5 classifier. The framework is then

tested on the BoT-IoT dataset [12] due to the real IoT ecosystem environment representation. The

dataset consists of DoS, DDoS, Keylogging, Data Infiltration, OS, and Service Scan attacks.

Experimental results show that the proposed framework achieves a high detection and low false-

positive rate compared to other techniques.

A Botnet detection method is proposed in [37] which uses a voting system with a hybrid

particle swarm optimization (PSO) algorithm. Effective features are detected with the help of the

PSO algorithm. Multiple algorithms such as decision tree C4.5, Support Vector Machine (SVM),

and deep neural networks were utilized for the identification of botnets. The voting system is also

used to classify samples to aid botnet detection. This method was tested on two datasets one of

which was BoT-IoT.

A Particle Deep Framework (PDF) is proposed in [10] which is based on network forensics

to help with identification of attack in IoT networks. PDF is composed of three functions based on

the PSO algorithm to discover anomalous behaviors for a smart home IoT network. This

framework is then evaluated on the BoT-IoT dataset and the performance is compared with other

13

DL techniques. Experimental results show that the proposed framework achieved high

performance in terms of accuracy and processing time.

 Classification of intrusion attacks is implemented in [38] by comparing the performance

of Forward Neural Network (FNN) with a variant of FNN, Self-Normalizing Neural Network

(SNN). This analysis is executed on the BoT-IoT dataset as it contains a sufficient amount of

records including heterogeneous network profiles. The 10 best feature set, a scaled down version

of the full dataset containing 3.6 million records was utilized in this study. The analysis proves

that SNN’s self-normalizing features make it superior and flexible against opposing samples.

[39] proposed a framework for DoS detection. This framework is composed of training,

testing, feature ranking, and data generation modules. It is tested on the BoT-IoT dataset and the

results show that the proposed framework achieved a high accuracy compared to other traditional

techniques. The BoT-IoT dataset used in this paper contains around 3 million attack 477 normal

records.

[40] analysis the performance of seven DL techniques on two models using two real traffic

datasets. The two models used for this purpose are unsupervised/generative and deep

discriminative models. The 5% train-test version of the dataset is used in this experimentation. The

performance for each model is evaluated based on two kinds of classification; binary and

multiclass. The performance comparison is done based on three main performance metrics namely;

accuracy, false alarm rate, and detection rate

 A DeepCoin framework using DL and blockchain-based schemes is proposed in [41].

Hash functions and short signatures were used for the block generation. A recurrent neural network

for the detection of fraudulent transactions and attacks in a blockchain network. The DeepCoin

framework is tested on three datasets including the BoT-IoT dataset. The CSV files of the dataset

are concatenated into one file and then used to form the train and test subset. The three attack types

used for this dataset are namely: DoS, information theft, and information gathering. The

performance evaluation exhibits the efficiency of the proposed framework.

 Security Solutions need to be optimized for scalability to ensure the secure development

of IoT. [42] proposes an entropy-based solution to help detect and alleviate DDoS and DoS attacks

14

in an IoT environment with the help of an SDN data plane. Experimental results exhibit the entropy

value correlation of various features for the detection of attacks. It was determined that entropy

correlation variation for 4 features: src IP, dest IP, src Port, and dest Port helped in the detection

of different attacks. It also exhibits how adding entries to the switch flow table can help SDN

mitigation.

[43] proposes a software-based architecture to mitigate and the spread of malware attacks

with the help of Network Function Virtualization (NFV). To make it scalable, they have also

proposed an RNN-LSTM learning model for the timely detection of attacks. The escalation of

malware attacks is monitored with the help of epidemic models. This is followed by patching of

systems to contain the damage caused by malware spread. The performance and feasibility of the

model are tested on the BoT-IoT dataset due to its detailed characteristics and accurate labeling

mechanism. This labeling mechanism is useful in extracting information about the source of the

data packet. This information is then utilized for NFV distance-based patching model for IDS.

 An IDS based framework is proposed in [1] where DL techniques are applied to classify

traffic flow. Binary and Multi-class classification is performed using a feed-forward neural

network model. The model is tested on the BoT-IoT dataset which includes attacks such as

reconnaissance, denial of service (DoS), distributed denial of service (DDoS), and information

theft. The CSV files of the dataset were converted to Apache Parquet files to reduce the overall

size of the dataset down to 300MB thereby improving the processing speed. The performance

evaluation of this proposed framework exhibits a high accuracy detection rate.

[2] proposes RDTIDS, a novel IDS for IoT networks. Three types of classifiers: decision

tree, rule-based concepts, and Forest PA are combined to form RDTIDS. The first two classifiers

are used to classify the network traffic of input features as Benign or Attack. The output of the first

two classifiers along with the features of initial data as inputs for the third classifier. The model is

then tested on two real-traffic based datasets: CICIDS 2017 and BoT-IoT. The 5% train-test

version of the entire dataset is used in this study. Experimental results show that the model

surpasses other recent ML models in terms of detection rate, accuracy, and false alarm rate.

15

2.2 Related Data Preprocessing Steps in BoT-IoT

The BoT-IoT dataset consists of 72 million records and preprocessing becomes a critical

step required to constrict the size of such a large dataset. Several papers have implemented various

preprocessing methods on the BoT-IoT dataset and some of the related works are provided below:

Two preprocessing steps: data transformation and feature selection are performed on the

BoT-IoT dataset in [44]. In the data transformation step, class features of the first copy of the

dataset are labeled and encoded to binary values, normal and attack traffic as 0 and 1 respectively.

The second copy is encoded to 0-9 for representing instances of normal, attack, and nine types of

attack traffic. Entropy and Correlation Coefficient techniques are used for selecting 10 features as

a feature selection step.

 Feature Preprocessing is applied to the extracted data in [45] by removing, encoding, and

combining column values. One Hot encoding is applied for categorical data where low

dimensional column features and embedding are converted to high dimensional. The preprocessed

data is then split into the testing and training sets of data. They are then labeled as normal or

malicious traffic and the malicious traffic is further labeled according to the category of attack.

Null/NaN values are replaced with mean or median values by using the impute module

from the sci-kit learn package. The most contributed features are determined during the feature

selection process. Around ten features were selected from the dataset and the columns are divided

into class/labels and features. Categorical features and classes are encoded using the Label

Encoding technique to make it more convenient for analysis [46].

 A two-step preprocessing is executed on the datasets in [2]. Symbolic valued attributes are

mapped to numeric valued attributes as the first step. In the second step of preprocessing, attributes

with high numeric ranges are scaled down to lower numeric ranges. This is implemented to avert

numerical complications during the calculation process.

 Before the data is inputted into the ML model, it is cleaned and formatted. Inconsistent and

missing data is cleaned before identifying essential features that can achieve the best output. RNN-

LSTM model is implemented in [43] which uses cross-correlation technique for preprocessing. All

16

characteristics of the data are used for experimentation and the impact is studied with the removal

of highly correlated features.

Data is preprocessed in [47] using three steps: data transformation, data normalization, and

Up-Sampling. Data Transformation involves dropping rows containing missing values. The label

Encoder function from sklearn is used to convert nonnumeric features to numeric values. The

output label ‘category’ undergoes hot encoding to prevent performance degradation. Features

containing IPV4 and IPV6 addresses and hexadecimal format are converted to numeric values and

integers respectively. MinMaxScalar function is applied as a normalization step on feature vectors.

This can improve the efficiency of the IDS. Upsampling is implemented on the normal samples to

solve the issue of imbalance.

Feature extraction is carried out in [1] using the TShark tool to extract packet information

from PCAP files. Generic features of the traffic are captured instead of the attack-oriented features.

The extracted information then undergoes feature preprocessing where column values are dropped,

merged, and encoded. These results are stored in arrays.

[10] applies a preprocessing step to handle unuseful and missing features. This step also

helps produce and rescale new features which can benefit the performance of the ML model.

[48] applied a bijective soft set and proposed metric approach called CorrACC for

effectively selecting features. Soft Set helps display the relationship of the statistical features and

the most effective features are selected for IDS.

 Redundant and irrelevant features are efficiently decreased using a feature selection

component. Information Gain (IG) is implemented and features with less IG values are removed

and values with IG value indicate features that are useful for differentiating the class [36].

2.3 Importance of dataset balancing

Supervised machine learning (ML) techniques require labelled datasets to train a

classification or prediction model. In a binary classification problem, the true or false labels need

to be sufficient in quantity when each data sample has a large number of features used as an input

17

to train the model. The performance of a ML model can be strongly affected by the dataset which

is used for training. An imbalanced dataset can lead to a biased classification or prediction [52].

A considerable amount of literature has been published on balancing techniques. Some of

the researches have published reviews such as in [49]. It addresses the adverse effects of class

imbalance and establishes a computational framework consisting of data level and algorithm level

solutions. In [50], the review presents the classification of imbalanced data, evaluation measures,

and the class imbalance problem in the presence of multiple classes. This is of significance to IDS

where a malicious event should be detected and the type of the event should also be classified,

both with high accuracy. A survey on existing approaches on handling classification with an

imbalanced dataset is presented in [51].

Previously published studies on the taxonomies of balancing techniques are not consistent.

The existing accounts fail to resolve the contradiction between data level, algorithm level, and

hybrid level techniques. The definitions for these levels found in [49 - 51], which are seminal

review papers, indicate that the generalizability of the proposed taxonomies is problematic. This

is because a systematic understanding of how imbalance techniques are defined is still lacking.

Most of these studies have largely focused on data level and algorithm level techniques with a lack

of clarity in defining hybrid level techniques.

Although studies involving ML in IDS have recognized the importance of balanced

datasets, a significant number of works have been done which do not address this issue.

Surprisingly, the accuracy of the ML algorithms is presented with seldom studies of imbalance

and it is unclear to what extent this has been accounted for. To date, no large-scale studies have

been performed to investigate the prevalence of performance results using imbalanced datasets in

cybersecurity.

2.4 Taxonomy of balancing level techniques

Existing taxonomies show that there are two approaches when it comes to treating class

imbalance classification: Data Level and Algorithm Level. In the data level, a balanced class

18

distribution is obtained by adjusting the class imbalance ratio. At the algorithm level, learning

tasks related to a minority class is improved by fine-tuning existing classification algorithms

[51].

The following is a review of the types of balancing techniques collected from three

highly cited survey papers.

Data Level

Data level approaches treat the imbalanced class distribution as a preprocessing step [51]. The

solutions at data level involve various forms of resampling [50]. Class distribution can be

rebalanced by applying either over sampling or under sampling techniques.

1) Under Sampling

Undersampling eliminates samples from a majority class to reduce the disparity between the two

classes [51]

2) Oversampling

It is performed by duplicating the samples in the minority class samples to reduce the ratio of

imbalance between classes.[51]

 SMOTE

Synthetic Minority Over Sampling Technique (SMOTE) is defined as an adaptive form of

oversampling [51]. SMOTE is considered to be complex compared to under and oversampling

methods and has gained popularity as an important technique when it comes to treating class

imbalance [51] In SMOTE, new instances of minority classes are created by appending numerous

minority classes that are nearest to each other [50]. The new minority class will ultimately reduce

the degree of class imbalance compared to the original imbalance ratio.[49]

19

Feature Selection

 Another preprocessing step besides sampling is feature selection. Feature selection is usually

applied by adopting either of the two methods 1) filter method or 2) wrapper method. Filter method

acknowledges the intrinsic features to measure the integrity of the feature subset and wrapper

method deals with wrapping the induction algorithm with the feature selection process [51]

Algorithm Level

 Algorithm level methods are algorithms that are committed to learning directly from the

imbalanced class distribution in the datasets. Subcategories of algorithm level techniques include

one class cost-sensitive and ensemble learning algorithms.

1) One Class Learning

 One class learning is otherwise known as recognition-based learning. It is a method where a

classifier is modeled on the minority class samples. Neural networks are applied to learn from the

minority class samples instead of identifying patterns from the majority and minority class

samples. A key point in this approach for classification is the threshold. A strict boundary threshold

will separate the minority class and a lenient threshold blanket the majority class in the

boundary.[51]

2) Cost Sensitive Learning

 Cost sensitive learning is created with the concept that a classifier is assigned with a high cost

based on the type of misclassification. An example of this learning would be when a larger cost is

assigned by the classifiers to false negatives than false positives. This will lead to the correct or

misclassification of the positive class [51]. A cost matrix is considered during the initial stage of

model building to generate a low-cost model [50]. A disadvantage of the cost matrix is that the

real cost of several applications including balanced datasets is unknown. In such cases, an artificial

cost value is generated [51].

3) Ensemble Learning

 The ensemble method is another type of learning to treat the issue of class imbalance. In this

method, several classifiers are applied to the training data and a final decision is produced from

20

the aggregated predictions. The objective of combining multiple classifiers is to enhance their

ability to generalize [50].

 Ensemble methods can be also described as bagging or boosting. Bagging generates more

samples from the original data for the training set to reduce prediction discrepancy. Boosting

produces an output based on the model classifiers that are experimented on training data. Some of

the most commonly used ensemble learning methods include Bagging, Random Forest, and

AdaBoost [51].

Hybrid Level

 Hybrid is a new breed of learning where the hybridization of two or more individual methods

is designed to alleviate the problem of class imbalance [51]. It is used to deal with a specific part

of an overall solution by using multiple algorithms [50]. Problems in subset feature selection,

sampling, optimization of the cost matrix are solved by hybridization [51]. When using hybrid

approaches, it is important to ensure that the different classifiers used are complementary to each

other to yield a high combined performance compared to the performance of an individual method.

[49]

2.5 Contentions in existing taxonomies of balancing level techniques

Perhaps the most comprehensive account of existing techniques and an indication of a

taxonomy is provided in [49], [50] and [51]. The authors in [49] review the approaches which span

over the last 8 years. In contrast, [50] and [51] do not specify the year span of their reviews.

 Table 1 derives the taxonomy based on approaches in [49 - 51]. Two important

classifications emerge from the studies in [49- 51]: techniques classed as data level; techniques

classed as algorithm level. Collectively, these studies converge on the definition of data-level

methods to include data sampling and feature selection approaches, while algorithm level methods

include cost-sensitive and hybrid/ensemble approaches.

 In [49] and [51] the authors define data-level methods to include data sampling and feature

selection approaches, while algorithm level methods are defined to include cost-sensitive and

hybrid/ensemble approaches. Across all three surveys shown in Table 9, several divergent

accounts of algorithm level classifications have been proposed, creating numerous discrepancies.

21

In [50] the major deviation is in the algorithm-level definition. In contrast to [49] and [51],

subcategories of algorithm-level are not defined in [50]. The subcategory of one class, however,

is mentioned in [54] under the discussion of algorithm-level but not distinctly classified as in [49]

and [51].

Table 1. Contentions in Existing Taxonomies

The derived taxonomies in [49] and [51], which are more recent, show that feature selection

is a subcategory of data level whereas [50] does not. We cautiously suggest that this may be

because the feature selection approach gained popularity in the study of dataset bias after the

publication on [50]. Both [49] and [51] discuss techniques in feature selection such as principal

component analysis (PCA) and the likes since the publication of [50]. The specifics of the feature

reduction techniques and its development over the years is beyond the scope of this paper. In

contrast to [8] which addresses the concept of Improved learning, [49] and [50] do not discuss this

as a subcategory or part of the taxonomies provided.

In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain

better predictive performance than could be obtained from any of the constituent learning

algorithms alone [52]. In contrast to [51] which defines ensemble as boosting (an iterative

technique that adjusts the weight of an observation based on the last classification), [49] defines

ensemble as both bagging (a way to decrease the variance in the prediction by generating additional

data for training from the dataset using combinations with repetitions to produce multi-sets of the

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Predictive_inference

22

original data) and boosting. The definition of ensemble provided in [49] aligns better with the

definition provided in [52].

Another major deviation observed in [49] and [51] from [50] is the inclusion of ensemble

under algorithm level in [49] and [51]. In [50] ensemble, cost sensitive and other boosting are

included as subcategories of boosting. This is not shown in Table 9 due to the lack of space. The

definition of ensemble provided in [50], however, agrees with the definition provided in [52].

2.6 Literature of balancing techniques used in BoT-IoT dataset

 A large and growing body of literature has investigated ML methods applied to cybersecurity

datasets. At the time of this study, 28 papers were published between 2019 and 2020 on ML which

uses the BoT-IoT dataset. This could be due to the recent publication of the dataset. Out of the 12

papers, a total of 3 papers were found to have treated the imbalance using only algorithm level

techniques in the BoT-IoT dataset.

Class weights are the most common balancing technique used in the BoT-IoT dataset. Class

weights in [53] are used on the training dataset to resolve the issue of imbalance. The weights are

calculated based on the inverse of quotient value by dividing the packet count of a particular class

by the packet count(maximum) of all classes.

Another paper that incorporates class weights is [10]. They have reservedly mentioned the

implementation of class weights to treat the imbalance with no explanation provided on the process

or technique.

 An ensemble of classifiers is used as an algorithm level technique to reduce the bias in [2]

where a novel IDS framework, named RDTIDS is proposed. RDTIDS uses two types of classifiers

(binary and multiclass) in parallel that feeds to a third classifier thereby minimizing the dataset

imbalance. The classifiers used for this purpose combine different approaches based on rule-based

concepts and decision trees.

23

There have been no papers found to be related to the BoT-IoT dataset that has used either

data level or hybrid level techniques. A couple of papers mentioned imbalance but not with regards

to our study of the BoT-IoT dataset.

24

Chapter 3

Literature analysis of balancing techniques in BoT-

IoT

3.1 Overview of BoT-IoT dataset

BoT-IoT, an IoT dataset was created by the Cyber Range Lab of The Center of UNSW

Canberra Cyber and was designed on a realistic testbed environment [12]. The dataset environment

contains both simulated and genuine IoT attack traffic. The traffic is generated by applying six

types of attacks in five IoT devices. This recorded network and normal traffic are extracted to form

the BoT-IoT database [37]. It is a well-structured and dataset for IoT network forensic analytics

[42]. BoT-IoT contains sufficient amounts of records for heterogeneous network profiles which

was stimulated with the help of the Node red tool [38]. This dataset uses a lightweight protocol

(MQTT protocol) making it applicable for various IoT solutions. Five IoT scenarios were used to

trigger legitimate IoT traffic [11].

The source files for this dataset are provided in various formats such as pcap, argus, and

CSV files. To further aid the labeling process, the files are classified into attack categories and

subcategories. The BoT-IoT dataset contains more than 72 million records composed of 74 files

with each row containing 46 features. The dataset includes various attacks such as keylogging,

data infiltration, OS, service scan, DoS, and DDoS. The authors have also extracted 5% of the

original dataset to ease the computational processing of the datasets. This 5% dataset contains 4

files with approximately 3 million records [12].

https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php

25

3.2 Imbalanced Class Distribution of BoT-IoT dataset

Figure 2. Imbalanced Class Distribution for BoT-IoT

Figure 2 highlights the benign traffic to malicious traffic imbalance observed in the BoT-

IoT dataset. An exponential trend is observed when evaluating the distribution of samples per class

in the BoT dataset. The trend indicates that the percentage of malicious samples is higher than

benign samples. The majority classes in the BoT-IoT dataset are attack types while the normal

traffic is part of the minority classes. The ratio of benign to malicious for the BoT-IoT dataset is

1:7687. A dataset best serves in machine learning algorithms when the distribution is normal or

close to normal.

In Table 2, the individual flow count distribution derived from [2] for various types of

attacks is shown. The number of samples for DDoS and DoS attack is extremely high compared

to the benign samples. This dataset would be better served to distinguish between a DDoS and

DoS attack as they both have relatively the same amount of samples.

The issue of class imbalance distribution is dominant across all domains [54]. In this paper,

two metrics - precision and recall - are studied and referenced for issues that relate to class

imbalance. A dataset contains imbalanced class distribution when one class - which is often the

https://medium.com/@alepukhova526/battling-data-imbalance-in-ibm-hr-attrition-challenge-3a26337a4943

26

one of interest - is a minority class or not represented adequately. Several publications have been

reviewed to determine the impact of dataset imbalance. By far the most widely accepted account

can be found in [54] which states that issues arising from this are poor accuracy in classification

and a general bias in the results obtained. Classifier algorithms used in machine learning as

mentioned in [55] require a balanced dataset. Despite these findings, there are recent developments

in algorithms that account for the imbalance in a dataset. Such approaches are generalized as

algorithm level approaches towards the mitigation of bias [51].

 Table 2.Class Distribution for BoT-IoT

Class Label Count

DDoS 38,532,480

DoS 33,005,194

Information Gathering 1821639

Normal 9,515

Information Theft 1,587

Total 73,370,443

27

Table 3. Imbalance Ratio Distribution for BoT-IoT

Normal Traffic Count Attack Traffic Type Count Normal to Attack Ratio

9515 (0.013%) Information Gathering 1821639 (2.48%) 1 to 191

DDoS 38532480 (52.51%) 1 to 4038

DoS 33005194 (44.9%) 1 to 459

Information Theft 1587 (0.002%) 6 to 1

In Table 3, we provide an approximation of ratios of benign to malicious traffic in the

various attack types (majority class) as provided in Table 4 from [2]. Due to the high volume of

malicious traffic in the BoT-IoT dataset, evidence in literature [2,37,53] has established that

achieving acceptable True Negative (i.e., where the benign traffic is classified as benign) accuracy

is questionable. This is due to the bias towards classifying benign traffic as malicious. DDoS and

DoS attacks have a ratio of 1:4038 and 1:3459 respectively which is extremely imbalanced.

Information Gathering has a ratio of 1:19. The above cases will yield a high rate of false positives

(i.e., where benign traffic is classified as malicious). In the case of Information Theft, the number

of benign samples is more with a ratio of 6:1. This will lead to a high amount of false negatives.

3.3 Criteria for BoT-IoT Paper Selection

Our approach to deriving a new taxonomy is based on the study of work published in the

cybersecurity domain anchored on the BoT-IoT dataset. A criteria for selecting published work for

this dataset, related to AI-based intrusion detection systems were developed. The criteria used for

selecting papers related to IDS and dataset balancing is specified in this section as follows:

Selection Criteria for IDS related papers were as follows:

● Publications were only included if they were relevant to the BoT-IoT dataset

28

● Publications were only included if certain keywords and phrases related to dataset

balancing were found. These included but were not limited to: imbalance; minority

class(es); majority class(es), sampling, downsampling, upsampling, balance(ing).

● Publications were only included if they were published between 2019 and 2020 to align

with the first public announcement of the dataset.

● The number of citations and venue of publication were considered for each work assessed.

● Publications were only included if they approached imbalance and cited the other non-IDS

related work on dataset balancing.

To come up with this methodology, previous approaches published in [56] and [57] were reviewed

and analyzed. The two papers were compared, in [56] more advanced techniques were proposed

due to the recent advancements provided by the google scholar platform reported in this paper.

From [56], google scholar as a platform provides access to key information about the citation of a

paper. The name of the primary dataset paper is first entered in the google scholar search engine.

The number of times the paper has been cited is displayed and clicking on it leads to the total list

of cited papers. The papers are filtered down by clicking the checkbox “Search within cited

articles”, the keyword search and custom range process used for the datasets are explained below:

The keyword “imbalance” and “balance” was used for the BoT-IoT dataset and a total of 12 papers

were generated.

A custom range option is also available in google scholar to select the key papers. The range

applied for our research is 2019-2020.

3.4 Analysis of Published Works in BoT-IoT

A systematic review of the literature in the cohort of published works from Section III allowed us

to divide the work into groups according to the level of contribution each work makes towards

balancing of a dataset. This grouping has been done in a hierarchical order as shown in Figure 3

with the first level determining whether the paper has a contribution or not. The second level

identifies the extent of the contribution in terms of a proposed method or the application of an

https://drive.google.com/file/d/1s6THs96tXSaSlSxhNaoiuNCte9te3kXJ/view?usp=sharing
https://drive.google.com/file/d/1Y7Bh6OTp24X-RSEsFas6dfVQ8lQasWdU/view?usp=sharing
https://drive.google.com/file/d/1s6THs96tXSaSlSxhNaoiuNCte9te3kXJ/view?usp=sharing
https://drive.google.com/file/d/1s6THs96tXSaSlSxhNaoiuNCte9te3kXJ/view?usp=sharing

29

existing method. In the case of non-contributing work, the second level identifies whether

imbalance has been recognized and mentioned or not.

 Figure 3.Hierarchical grouping of published work

A more thorough definition of the grouping has been provided below:

● Proposed: The authors have proposed a technique to solve the imbalance.

● Applied Existing: The authors have applied existing techniques in solving imbalance.

● With Contribution: This is a cumulative of papers in which the authors have either

proposed or applied existing techniques.

● Mentioned: These are the papers in which the authors have mentioned an imbalance

technique with respect to our analysis but have not treated it.

● Not Relevant: The authors have mentioned imbalance in general and not with respect to

our analysis of dataset imbalance.

● Without Contribution: The authors of these papers have either mentioned imbalance or

did not have any discussion relevant to the imbalance of the datasets.

30

Figure 4. Comparison of the imbalance treatment categories across BoT-IoT dataset

The categories: with contribution and without contribution have been added for the ease of

presenting the analysis. Papers that have proposed a new technique or applied an existing technique

to deal with the imbalance are labeled as With Contribution. Furthermore, papers that have no

relevance to dataset imbalance or have reservedly mentioned the word imbalance are collectively

labeled as Without Contribution.

Figure 4 shows the distribution of published work across the four groups defined for the BoT-IoT

dataset. Figure 5 presents a cumulative percentage distribution across the four groups irrespective

of the datasets used. It has been observed that only 25% of the papers have either proposed or

applied techniques to treat dataset imbalance and the remaining 75% of the papers have not

contributed to this study. These results further support the idea that there is a lack of attention to

imbalance because 67% of the papers are not relevant which takes precedence over other groups.

31

Figure 5. Categorization of Imbalance Treatment- A comparison of all papers surveyed, across all

categories of imbalance treatment.

The “without contribution” category shown in Figure 4 takes precedence with the highest count.

In the “with contribution” category the applied existing takes precedence as shown in Figure 6.

 Figure 6. Comparison of papers in which proposed techniques are compared with existing

techniques that have been applied.

32

3.5 Level Distribution of BoT-IoT dataset

A study of the proposed and applied existing papers was undertaken to determine the technique

which has been used. In contrast to the findings in the literature review, the outcome of this

particular study demonstrates that there are three distinct classifications of techniques for

balancing of datasets as shown in Figure 7. The grouping or classification of these techniques are

defined as levels to be consistent with published literature presented in Chapter 2.

Figure 7. Comparing the number of papers that propose, apply or mention approaches across all

three datasets

The statistical representation in Figure 7 spans the 3 papers out of 12 papers published in the BoT-

IoT. This dataset shows that all 3 papers have used algorithm level techniques to solve the issue

of imbalance. There is no relevant study performed using data level and hybrid level techniques

for the treatment of imbalance in the BoT-IoT dataset.

33

3.6 Ranking of approaches

The percentage distribution for proposed and applied existing from the total amount of papers with

contribution is depicted in Figure 6. Papers with contribution had 32% of new methods proposed

and 68% of existing methods applied. This result may be explained by the fact that a majority of

the papers have not focused on proposing a new technique to overcome bias. This discrepancy can

be a dominant focus area for future research directions.

34

Chapter 4

Setup and Preprocessing Steps

4.1 Setup

All stages of this experiment were performed using Jupyter Notebook on a Lenovo Yoga Laptop

with a Windows 10 64-bit operating system. The processor was an Intel Core i5 with processing

unit of 1.60 GHz and a RAM of 8.0 GB. Pandas and NumPy library were used to load and perform

preprocessing on the dataset. Data visualization was done using Matplotlib library and Scikit-learn

was used for training-testing data, model evaluation and performance evaluation metrics.

The details of the server used in this implementation are as follows:

• HP ProLiant DL380p Gen8

• CPU: Dual Intel® Xeon® CPUnE5-2660 v2 @ 2.20GHz (40 cores total)

• Memory: 256 GB ECC (1866 MT/s)

• Storage: 9TB

• Operating System: Linux (Fedora release 32)

4.2 Dataset used for this study

The dataset used for this experimentation is the BoT-IoT dataset developed by the UNSW,

Canberra [12]. The full dataset contains 72 million records and including normal traffic in addition

to a variety of attack traffic such as DDoS, DoS, Data exfiltration, OS, and Service Scan [40]. The

statistical distribution and description of the dataset are provided in Chapter 3. The CSV version

of the BoT-IoT is provided in the form of 74 separate files. For ease of handling, the traffic for

two attacks: DDoS and Reconnaissance along with Benign traffic were considered for the

experimental evaluation.

35

4.3 Preprocessing Steps

The 74 CSV files of the BoT-IoT dataset are concatenated into one single file before applying the

preprocessing steps. The following data preprocessing steps were carried out on the BoT-IoT

dataset:

1) Add Feature Names: The feature names are added to each column of the dataset.

2) Dropping of Empty columns: Six completely empty column features: smac, dmac, souit,

doui, sco, dco’ are deleted from the dataset.

3) Replace Empty Ports with 0: Two features ‘sport’ and ‘dport’ containing a small

percentage of NA values were filled with 0.

4) Replace port values with 0: Port values of ‘sport’ and ‘dport’ are replaced with 0.

5) Converting data type: Data types of ‘sport’ and ‘dport’ columns are converted into an

integer value.

6) Dropping non-required features: Features that are not required for the ML model are

removed from the dataset.

7) Encoding object to Categorical Value: Three features ‘flgs’, ‘proto’ and ‘state’ are

factorized to encode the object as a categorical variable.

 The preprocessing steps implemented on the BoT-IoT dataset resulted in reducing the

number of features from 35 to 25. The preprocessed data is then used to train the ML model.

4.4 Supervised ML classifiers used in this study

Three types of classification based Supervised ML techniques were used in this study: 1)

K-Nearest Neighbor (KNN), 2) Random Forest (RF) and 3) Logistic Regression (LR)

4.4.1 K-Nearest Neighbor

KNN is a simple and easy to implement ML algorithm where data is classified based on

similar distance measures. The distance, in this case can either be a Manhattan or Euclidean type.

The data points distance nearer to each other is calculated and the value of k is selected [58]. The

value of k can be any integer value and data points of nearest distance are assigned the same

36

class. The accuracy of the model increases with the increase in the number of nearest neighbors

(i.e., value of k) [59]. KNN algorithm is nonparametric as it does not form an assumption about

the data which can be advantageous in the case of real-world data.

4.4.2 Random Forest

Random Forest is based on an ensemble learning concept where multiple classifiers are

combined to solve complex data problems and to improve the overall performance of the model.

RF consists of numerous individual decision trees that work on different subsets of the provided

dataset. The vote from each tree is taken into account and the final output is predicted based on

the majority votes. An increase in the number of trees in RF can lead to an increase in accuracy

performance thereby avoiding the issue of overfitting [60].

4.4.3 Logistic Regression

It is a method to estimate distinct values based on an input set of independent variables. The

predicted output for the algorithms is a dependent categorical variable. It helps predict a

probabilistic value that ranges from 0 to 1. LR is similar to Linear Regression but differs when it

comes to the type of problem that is needed to be solved. LR is significant compared to other ML

algorithms as it has the capability to classify a diverse type of data and determine the most useful

variable [61].

4.5 Machine Learning Validation Metrics

In addition to data preparation and training of ML models, performance evaluation is also

a key step. The performance of the ML model is evaluated with the help of different performance

metrics based on the confusion matrix. It is important to determine the overall performance of

the model before testing it on new unseen data [62].

4.5.1 Confusion Matrix

Confusion Matrix is a performance measurement technique for machine learning classification.

The performance is measured with the help of true values of the testing data. Confusion Matrix

37

helps in detecting errors (FP and FN) and also calculating various performance metrics values in

ML [63]. The confusion matrix in Table 4, comprises of four items for binary classifiers:

Table 4.Confusion Matrix

Confusion Matrix
Actual Values

Positive Negative

Predicted Values

Positive TP FP

Negative FN TN

True Positives (TP): when the classifier identifies the true positive label as positive

True Negatives (TN): when the classifier identifies the true negative label as negative

False Positives (FP): when the classifier identifies the true negative label as positive

False Negatives (FN): when the classifier identifies the true positive label as negative

In the context of cybersecurity research, a well-known understanding is that a positive

event is defined as a malicious event and the correct classification of such an event is deemed as a

true positive outcome. A negative event is a benign event and the correct classification is deemed

as true negative. Inaccurate classification can mean that a benign event is classified as a malicious

event. This misclassification is deemed as a false positive. Likewise, for a malicious event to be

classified as a benign event is deemed a false negative [26].

4.5.2 Performance Metrics

There are various metrics used to evaluate the performance of a ML classifier. The performance

metrics are evaluated based on the four values (TP, TN, FN, and FP) of the confusion matrix.

The metrics used in this thesis are as follows:

38

1. Accuracy: This metric helps calculate the accuracy of a classifier. It determines the

number of positive predictions made by the model. It is the ratio of the number of

positive predictions over the total number of predictions made by the model.

Accuracy=
TP+TN (Number of positive predictions)

TP+FP+FN+TN (Total number of predictions)
 [64]

2. Precision: It is the ratio of the number of positive predictions by the total number of

positive values predicted by the classifier [64].

Precision=
TP (Number of positive predictions)

TP+FP (Total number of positive values predicted by the classifier)
 [64]

3. Recall / Sensitivity: It is calculated by the total number of true positive predictions

divided by the sum of all samples that belong to the positive class.

Recall=
TP (Number of positive predictions)

TP+FN (Sum of samples belonging to the positive class)
 [64]

4. F1 Score / F-measure: It helps to calculate the precision and recall simultaneously by

generating the harmonic mean of the two metrics. Equal values of recall to precision can

achieve maximum F1 score.

 F1 Score=
2X(Recall X Precision)

Recall + Precision
 [64]

39

Chapter 5

Experiment and Analysis

5.1 Experiment 1: Modeling on the full dataset using train and test

split

In the first experiment of this study, the model is trained on the BoT-IoT dataset by using the train

and train split function from scikit learn library. Since the dataset contains around 72 million

records, for the ease of handling, two attacks: DDoS (38 million samples) and Reconnaissance

(around 1 million samples) were considered for this study. The ML classifiers used in this

experiment are KNN, RF, and LR.

Table 5.Classifier accuracy using scikit learn train and test split

Benign

9,515 samples

Attack Type Classifier Classifier Score

Reconnaissance

 998,007 samples

KNN 0.9983319019

RF 0.9999784868

LR 0.9963262125

DDoS

38,532,480 samples

KNN 0.9999860837

RF 0.9999848485

LR 0.9997626359

40

As observed in Table 5, the results obtained show that the model was able to achieve a

performance of 99% for both attacks for all three classifiers despite the dataset being highly

imbalanced (Chapter 3). The number of false positives and false negatives obtained for both attacks

were extremely small. Overall, the model was able to achieve exceptional results by using a large

number of samples and this analysis gave birth to the objective for the next experiment.

5.2 Experiment 2: Threshold Analysis for Reconnaissance and

DDoS Attack

As shown in Table 5, the model was able to achieve high performance using large number

of records with a highly imbalanced class distribution. This experiment aims to discover the

threshold sample limit at which the model attains the highest performance by using a small subset

of samples from the entire dataset.

The BoT-IoT dataset consists of an exceptionally large number of malicious samples

compared to benign samples (Chapter 3) and this can put a strain on cost, memory and time

consumption. Similar to the previous experiment, two attacks: DDoS and Reconnaissance were

considered for this study. Initially all 74 CSV files of the BoT-IoT is concatenated into a single

file. The above-mentioned attack traffic along with normal traffic is extracted from the

concatenated file. This step is followed by feature selection preprocessing where a small subset of

samples is taken for the implementation: 10,000 and 1,000 samples of malicious and benign traffic

respectively. Preprocessing steps are then applied on the subset of samples (Chapter 4).

A series of ten iterations is performed by manually entering the number of training samples

for each iteration. The iteration samples were chosen by a trial-and-error method. The first

occurrence of the highest value in the series of ten iterations is treated as the

Threshold/Breakpoint value.

 This experiment is broken down into two parts. In the first part, the number of benign

samples is fixed and attack samples is arranged in a series for ten iterations. The model is trained

using three classifiers: KNN, FR, and LR for DDoS and Reconnaissance attacks. The threshold

comparison analysis for the first part of the experiment is provided below:

41

5.2.1: Performance Comparison of Reconnaissance and DDoS with fixed

benign samples

Figure 8. Threshold Analysis for KNN

The threshold analysis of KNN classifier for Reconnaissance and DDoS attacks is shown

in Figure 8. The number of fixed benign samples considered for the KNN after the trial-and-error

method is 500. In reconnaissance, at 7000 samples, the model attains an accuracy of 93%

indicating a pre-breakthrough point for the threshold value. A threshold of 99% is achieved at

8000 attack samples for reconnaissance and 100% at 1000 samples for DDoS. The classifier

accuracy in this figure shows a gradual upward trend towards the threshold value for

reconnaissance whereas, in DDoS, a perfect score is achieved with 1000 attack samples. By

comparing the two attacks it can be observed that DDoS requires less number of attack samples to

attain the threshold value (high classifier accuracy).

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
la

ss
if

ie
r

A
cc

u
ra

cy

Attack Samples

KNN Threshold Analysis

Reconnaisaance Attack DDoS Attack

42

Figure 9. Threshold Analysis for RF

The threshold analysis for Random Forest classifier is depicted in Figure 9. The highest

classifier score achieved with the same number of fixed benign samples (500 samples) as KNN

was around 50%. This led to another round trial and error method by which the new fixed benign

samples were obtained. For RF, 58 benign samples was taken as a fixed value and similar to KNN

the attack samples were changed in a series for ten iterations.

The iterations executed using the new benign sample was able to achieve the threshold

value of 97% using 6000 attack samples for reconnaissance. DDoS attained a threshold of 100%

at 1000 samples. For reconnaissance, a very small percentage decrease is observed after the

threshold iteration which was not the case for the DDoS attack. It can be noticed that similar to

KNN, DDoS requires a small number of attack samples to achieve a high classifier accuracy

(threshold).

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
la

ss
if

ie
r

A
cc

u
ra

cy

Attack Samples

RF Threshold Analysis

Reconnaisaance Attack DDoS Attack

43

Figure 10. Threshold Analysis for LR

The threshold analysis for Logistic Regression is depicted in Figure 10 where the number

of fixed benign samples taken was 500, same as KNN. The figure shows that reconnaissance

achieves a threshold of 99% with 5000 attack samples and DDoS with just 1 attack sample. In

Reconnaissance, a microscopic decrease in classifier score is observed after the threshold values

which is not the case for DDoS attack. By comparing both types of attack in LR, DDoS requires a

small number of samples to achieve the threshold.

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
la

ss
if

ie
r

A
cc

u
ra

cy

Benign Samples

LR Threshold Analysis

Reconnaisaance Attack DDoS Attack

44

Figure 11. Comparison of Threshold Limit for KNN, RF, and LR

A combined threshold comparison for two attacks using all three classifiers is shown in

Figure 11. For Reconnaissance, LR required 5000 samples to attain the threshold followed by

6000 and 8000 samples for RF and KNN respectively. In DDoS, LR was able to reach the threshold

of 100% in the first iteration. KNN and RF showed similar behavior and attained the threshold at

1000 attack samples. Overall, it can be concluded from this experiment that DDoS requires less

number of samples than reconnaissance to achieve the threshold for KNN, RF, and LR.

5.2.2: Performance Comparison of Reconnaissance and DDoS with fixed

attack samples

In the second part of this experiment, the threshold samples for each classifier from the

above analysis is taken as the starting reference iteration. In this case, attack samples are fixed and

the number of benign samples is reduced in a series of ten iterations and the model is evaluated

45

using KNN, RF, and LR classifiers. This experiment is performed to determine the effectiveness

of the threshold analysis.

Figure 12. Part 2 analysis for KNN and LR with fixed attack samples

46

Figure 13. Part 2 analysis for RF with fixed attack samples

Figure 12 shows the KNN and LR classifier accuracy trend for reconnaissance where the

number of attack samples are fixed: 8000 for KNN and 5000 for LR. In both KNN and LR, the

benign samples taken for each iteration is the same i.e., benign samples are reduced with a

difference of 50 from the iteration value.

In KNN, a gradual decrease is observed till 100 benign samples (9th Iteration) after which

there is a 28% drop in accuracy for 50 benign samples (10th Iteration). LR shows a decreasing

pattern till 250 samples (6th Iteration) followed by an increase for the 7th iteration after which the

accuracy decreases once again till the very last iteration (50 benign samples).

The classifier score for the RF classifier is presented in Figure 13. In RF, the number of

benign iteration samples taken is different from that of KNN and LR due to the starting threshold

reference. It can be seen from the figure that there is a gradual decrease in the classifier accuracy

with each iteration.

It can be concluded from the above observations that the classifier accuracy for all three

classifiers decreases with the decrease in the number of samples. This study helps justify the

samples taken for iterations cycles in the threshold experiment.

5.2.3: Performance Metric Analysis for Threshold Iteration Cycles

In the above analysis, the threshold limit was determined by using the classifier accuracy.

This study analyzes the performance metric values of the part 1 iterations (fixed benign samples)

to cross-check with previously attained threshold samples. The model was evaluated based on four

performance metrics namely: Accuracy, Precision, Recall, and F1-score. The metric values for

both Reconnaissance and DDoS using KNN, RF, and LR is provided below:

47

Table 6. Performance Metric Values for Reconnaissance attack

Figure 14. Comparison of performance metrics for KNN, RF, and LR-Reconnaissance

Table 6 shows the performance values of accuracy, precision, recall, and F1-score values

for the Reconnaissance attack using KNN, RF, and LR classifiers. Figure 14 provides a visual

representation of the same where it can be observed that the performance of all three classifiers

starts to increase after Iteration 5. KNN and LR achieve 100% for all metrics in Iteration 9 and

Iteration 10 respectively whereas RF attains the highest 92% for precision and F1 score, 91%

48

accuracy, and 90% for recall at Iteration 10. These results prove that performance metric values

obtained match with that of the threshold value determined using the classifier score.

Table 7. Performance Metric Values for DDoS attack

Figure 15. Comparison of performance metrics for KNN, RF, and LR-DDoS

Table 7 and Figure 15 show the values and trend of the performance metric values for the

DDoS attack. It can be observed that KNN and RF achieve 100% for all metrics after Iteration 2

and LR is able to achieve perfect a value in the very first iteration.

49

By comparing the performance values for both Reconnaissance and DDoS, it can be

concluded that DDoS can accomplish 100% performance across all four metrics in a smaller

number of iterations.

5.3 Experiment 3: Feature Drop Analysis

This experiment is implemented to determine how each of the 24 preprocessed features of

the BoT-IoT dataset impacts the performance of the ML model. This is implemented in 2 ways:

Independent and Group. Both techniques of feature drop selection is executed on a model by using

the threshold classifier accuracy as a reference (Experiment 2).

5.3.1 Independent Feature Drop

The first method of feature drop is called independent feature drop. Figure 16 shows the process

where each feature is dropped individually in order, independent of other features. After each

feature is dropped, the classifier accuracy value is noted and compared with the threshold value of

each classifier. This comparison analysis will help determine which feature for which classifier

has the biggest impact on the performance of the model.

Figure 16. Independent Feature Drop

50

Figure 17.Independent Feature Drop for Reconnaissance attack

The reference threshold value used for the Reconnaissance attack is retrieved from

Experiment 2. The independent feature drop performance of KNN, RF, and LR classifier is shown in

Figure 17. In KNN, ‘sport’ is the only feature that has a drop of 6% from the threshold. Other features

show no change from the threshold value.

Unlike KNN, in RF, multiple features show a deviation from the threshold value. The biggest

drop is observed for the ‘dur’ feature (28% drop) followed by ‘spkts’, ‘dpkts’, ‘sbytes’ ‘dybtes’ (19-

20% drop), and ‘mean’ (17% drop). Three features ‘rate’, ‘srate’, and ‘drate’ show a 0.1% increase

than the threshold value. The rest of the features show an extremely small to no percentage drop in the

threshold.

In LR, three features show a drop from the threshold value. ‘pkSeqID’ feature showed a 45%

drop followed by ‘bytes’ and ‘sport’ with 16% and14% drop respectively from the threshold value.

Similar to RF, a small to no change in accuracy was observed for the rest of the features.

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

A
cc

u
ra

cy

Features

Independent Feature Drop for Reconnaissance

KNN RF LR

51

Figure 18.Independent Feature Drop for DDoS attack

Figure 18 shows the independent feature drop for DDoS attack. In KNN, no drop was

detected for all the features. The features ‘pkSeqID’ and ‘stime’ had a 1% drop from the threshold

values for RF. In LR, only ‘pkSeqID’ showed a major drop, and no change in percentage was

observed for other features.

5.3.2 Group Feature Drop

In the group feature drop experiment as shown in Figure 19, features are dropped in an order one

after the other as a group. Similar to independent drop, the classifier score is compared to the

threshold value to determine the percentage of the impact that the feature has on the performance

of the model.

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

A
cc

u
ra

cy

Features

Independent Feature Drop for DDoS

KNN RF LR

52

Figure 19. Group Feature Drop

Figure 20. Group Feature Drop for Reconnaissance attack

The group feature drop values for the Reconnaissance attack is shown in Figure 20.

Features were dropped one after the other as a group in order and classifier accuracy was obtained

using KNN, RF, and LR classifiers. By comparing the feature drop score to the threshold value, it

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

A
cc

u
ra

cy

Feature

Group Feature Drop for Reconnaissance

KNN RF LR

53

can be observed that in KNN, feature ‘dport’, ‘pkts’, ‘bytes’ and ‘state’ showed a 60% drop (first

5 features are already dropped). ‘ltime’ feature revealed an 80% drop (first 9 features already

dropped).

In RF,’ rate’ and ‘state’ (last two features) showed a 13-15% drop after dropping the first

20 to 21 features in order. A significant drop of around 45 % was observed for the first four features

‘pkSeqID’, ‘sime’, ‘flgs’, and ‘proto’ in LR.

Figure 21. Group Feature Drop for DDoS attack

The group feature drop trend line for DDoS is demonstrated in Figure 21 where three

features: ‘ltime’, ‘sbytes’ and ‘dbytes’ exhibited the drop of 85%, 25%, and 19% respectively

(assuming all the features above it were already dropped). The biggest drop in RF was ‘srate’

(5%) and in LR all features showed the exact score (45% drop) as that of LR for Reconnaissance

attack.

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

S
co

re

Features

Group Feature Drop for DDoS

KNN RF LR

54

5.3.3 Comparison between Independent and Group Feature Drop

This study provides a comparison between the two methods of feature drop techniques for

each classifier and attack. It is important to note that the following observations with respect to

how many features can be dropped and still maintain high model performance is applicable

provided it is dropped in a particular order. Changing the order of dropping features will fetch

different accuracy results for both methods of feature drop.

Figure 22. Feature Drop Comparison for Reconnaissance using KNN classifier

Figure 22 provides the comparison of the independent and group feature drop for

reconnaissance attack using KNN classifier. It can be observed that in both techniques, ‘sport’

shows a 5% drop in performance. ‘dport’, ‘pkts’, ‘bytes’ ‘state’ and ‘ltime’ are the five features

that show the biggest drop for group drop which is not the case for the independent drop.

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

A
cc

u
ra

cy

Features

KNN Feature Drop Comparison for Reconnaissance

Independent Drop Group Drop

55

Figure 23. Feature Drop Comparison for Reconnaissance using RF classifier

The feature drop comparison trend using RF classifier for Reconnaissance attack is

depicted in Figure 23, where ‘seq’ is the only feature that shows a 1% drop in performance for

both methods of feature drop.

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

A
cc

u
ra

cy

Features

RF Feature Drop Comparison for Reconnaissance

Independent Drop Group Drop

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

A
cc

u
ra

cy

Features

LR Feature Drop Comparison for Reconnaissance

Independent Drop Group Drop

56

Figure 24. Feature Drop Comparison for Reconnaissance using LR classifier

Figure 24 shows the feature drop using LR classifier for reconnaissance attack where it can

be noticed that classifier accuracy for the feature ‘pkSeqID’ is the same for both methods, showing

the biggest drop of 45%.

Figure 25. Feature Drop Comparison for DDoS attack using KNN classifier

The two methods of feature drop for DDoS attack using KNN classifier are shown in Figure

25. Feature ‘ltime’ shows the biggest drop of 75% (first 9 features are already dropped) for the

group drop method whereas there is no drop in classifier accuracy for the independent drop.

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

A
cc

u
ra

cy

Features

KNN Feature Drop Comparison for DDoS

Independent Drop Group Drop

57

Figure 26. Feature Drop Comparison for DDoS attack using RF classifier

Figure 26 depicts the comparison for RF classifier for DDoS attack. A major drop is

observed in the second half of the features for the group drop method whereas a small to no drop

in performance is observed for the independent drop method.

Figure 27. Feature Drop Comparison for DDoS attack using LR classifier

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

C
la

ss
if

ie
r

A
cc

u
ra

cy

Features

RF Feature Drop Comparison for DDoS

Independent Drop Group Drop

0

0.2

0.4

0.6

0.8

1

1.2

C
la

ss
if

ie
r

A
cc

u
ra

cy

Features

LR Feature Drop Comparison for DDoS

Independent Drop Group Drop

58

In LR, the same drop value is observed in both methods for the feature ‘pkSeqID’. As shown in

Figure 27. rest of the features in the group drop method have the same value as that of pkSeqID

and threshold value in the case of the independent drop method.

59

Chapter 6

Conclusion and Future Works

In this thesis, four major findings are presented. The first finding of this work clearly

indicates that there is a lack of unanimity on the techniques used in balancing datasets. This is

supported by the evidence presented in this work for the formal definitions of balancing level

techniques which form the basis of the taxonomy proposed here. It can be identified that these

definitions are supported by the published work in two domains: related study of dataset balancing

and work related to the BoT-IoT dataset.

The second finding of this study showed that the model was able to achieve a high

performance despite the dataset being highly imbalanced. The ML model produced exceptional

results on large number of imbalanced samples. This led to the investigation of ML model

performance by using a small subset of samples. Training samples were chosen by a trial-error

method for a series of ten iterations to detect the threshold sample limit at which the model

achieves the highest performance. The third finding demonstrated that DDoS required lesser

number of samples than Reconnaissance to achieve threshold.

The last experiment was to investigate the impact of each dataset feature on the

performance of the model. This was evaluated using an independent and group feature drop

method. The fourth finding of this study depicted that a certain number of features had varying

impacts on the threshold value for each classifier.

For future research, there are several potential directions. One such direction that would

serve as an extension of this thesis is to investigate the performance of the ML model by using

different subset combinations. Another direction of potential research would be to perform other

statistical techniques like Principal Component Analysis (PCA), Factor Analysis, Linear

Discriminant Analysis and compare those results against the manual feature drop results of this

60

thesis. The last future research direction is to compare the impact of performance with and without

balancing the dataset.

61

Bibliography

[1] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S.

Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,”

IEEE Access, vol. 7, pp. 41525–41550, 2019, doi: 10.1109/ACCESS.2019.2895334.

[2] M. A. Ferrag, L. Maglaras, A. Ahmim, M. Derdour, and H. Janicke, “RDTIDS: Rules and

decision tree-based intrusion detection system for internet-of-things networks,” Futur.

Internet, vol. 12, no. 3, pp. 1–15, 2020, doi: 10.3390/fi12030044.

[3] M. H. Ali, M. Fadlizolkipi, A. Firdaus, and N. Z. Khidzir, “A hybrid Particle swarm

optimization -Extreme Learning Machine approach for Intrusion Detection System,” 2018

IEEE 16th Student Conf. Res. Dev. SCOReD 2018, pp. 2018–2021, 2018, doi:

10.1109/SCORED.2018.8711287.

[4] L. Haripriya and M. A. Jabbar, “Role of Machine Learning in Intrusion Detection System:

Review,” Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018, no.

Iceca, pp. 925–929, 2018, doi: 10.1109/ICECA.2018.8474576.

[5] A. Haider, M. A. Khan, A. Rehman, M. Ur Rahman, and H. S. Kim, “A real-time

sequential deep extreme learning machine cybersecurity intrusion detection system,”

Comput. Mater. Contin., vol. 66, no. 2, pp. 1785–1798, 2020, doi:

10.32604/cmc.2020.013910.

[6] Kunal and M. Dua, “Machine Learning Approach to IDS: A Comprehensive Review,”

Proc. 3rd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2019, pp. 117–121,

2019, doi: 10.1109/ICECA.2019.8822120.

[7] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models that remember too

much,” Proc. ACM Conf. Comput. Commun. Secur., pp. 587–601, 2017, doi:

10.1145/3133956.3134077.

[8] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on bias and

fairness in machine learning,” arXiv, 2019.

[9] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and H. Ming, “AD-IoT:

Anomaly detection of IoT cyberattacks in smart city using machine learning,” 2019 IEEE

9th Annu. Comput. Commun. Work. Conf. CCWC 2019, pp. 305–310, 2019, doi:

62

10.1109/CCWC.2019.8666450.

[10] N. Koroniotis, N. Moustafa, and E. Sitnikova, “A new network forensic framework based

on deep learning for Internet of Things networks: A particle deep framework,” Futur.

Gener. Comput. Syst., vol. 110, pp. 91–106, 2020, doi: 10.1016/j.future.2020.03.042.

[11] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of

realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT

dataset,” Futur. Gener. Comput. Syst., vol. 100, pp. 779–796, 2019, doi:

10.1016/j.future.2019.05.041.

[12] “The BoT-IoT Dataset.” [Online]. Available: https://www.unsw.adfa.edu.au/unsw-

canberra-cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php. [Accessed: 28-Dec-

2020].

[13] “What is a Botnet Attack – Definition | Akamai.” [Online]. Available:

https://www.akamai.com/uk/en/resources/what-is-a-botnet.jsp. [Accessed: 25-Dec-2020].

[14] “What is a denial of service attack (DoS) ? - Palo Alto Networks.” [Online]. Available:

https://www.paloaltonetworks.com/cyberpedia/what-is-a-denial-of-service-attack-dos.

[Accessed: 25-Dec-2020].

[15] “What is an intrusion detection system? How an IDS spots threats | CSO Online.”

[Online]. Available: https://www.csoonline.com/article/3255632/what-is-an-intrusion-

detection-system-how-an-ids-spots-threats.html. [Accessed: 25-Dec-2020].

[16] “What is an Intrusion Detection System (IDS)? | Check Point Software.” [Online].

Available: https://www.checkpoint.com/cyber-hub/network-security/what-is-an-intrusion-

detection-system-ids/. [Accessed: 25-Dec-2020].

[17] “What Is Machine Learning: Definition, Types, Applications and Examples | Potentia

Analytics Inc.” [Online]. Available: https://www.potentiaco.com/what-is-machine-

learning-definition-types-applications-and-examples/. [Accessed: 25-Dec-2020].

[18] “7 Steps to Machine Learning: How to Prepare for an Automated Future | by Dr Mark van

Rijmenam | DataSeries | Medium.” [Online]. Available: https://medium.com/dataseries/7-

steps-to-machine-learning-how-to-prepare-for-an-automated-future-78c7918cb35d.

[Accessed: 25-Dec-2020].

[19] “What is machine learning? Intelligence derived from data | InfoWorld.” [Online].

Available: https://www.infoworld.com/article/3214424/what-is-machine-learning-

63

intelligence-derived-from-data.html. [Accessed: 25-Dec-2020].

[20] “What is Machine Learning? A definition - Expert System | Expert.ai.” [Online].

Available: https://www.expert.ai/blog/machine-learning-definition/. [Accessed: 28-Dec-

2020].

[21] “6 Types of Supervised Learning You Must Know About in 2020 | upGrad blog.”

[Online]. Available: https://www.upgrad.com/blog/types-of-supervised-learning/.

[Accessed: 25-Dec-2020].

[22] “What is Machine Learning? | Types of Machine Learning | Edureka.” [Online].

Available: https://www.edureka.co/blog/what-is-machine-learning/. [Accessed: 25-Dec-

2020].

[23] “7 Steps of Machine Learning.” [Online]. Available: https://livecodestream.dev/post/7-

steps-of-machine-learning/. [Accessed: 25-Dec-2020].

[24] “The 7 Key Steps To Build Your Machine Learning Model.” [Online]. Available:

https://analyticsindiamag.com/the-7-key-steps-to-build-your-machine-learning-model/.

[Accessed: 28-Dec-2020].

[25] “Frameworks for Approaching the Machine Learning Process.” [Online]. Available:

https://www.kdnuggets.com/2018/05/general-approaches-machine-learning-process.html.

[Accessed: 25-Dec-2020].

[26] “The 5 Steps of Machine Learning.” [Online]. Available:

https://www.linkedin.com/pulse/5-steps-machine-learning-zaynah-bhanji. [Accessed: 28-

Dec-2020].

[27] “Data Preprocessing in Machine learning - Javatpoint.” [Online]. Available:

https://www.javatpoint.com/data-preprocessing-machine-learning. [Accessed: 25-Dec-

2020].

[28] “Pre-Processing for Machine Learning Projects | Data Science and Machine Learning |

Kaggle.” [Online]. Available: https://www.kaggle.com/general/69712. [Accessed: 25-

Dec-2020].

[29] “Data Preprocessing : Concepts. Introduction to the concepts of Data… | by Pranjal

Pandey | Towards Data Science.” [Online]. Available:

https://towardsdatascience.com/data-preprocessing-concepts-fa946d11c825. [Accessed:

25-Dec-2020].

64

[30] “Data Preprocessing in Machine Learning.” [Online]. Available:

https://serokell.io/blog/data-preprocessing. [Accessed: 25-Dec-2020].

[31] P. Laskov, D. Patrick, and C. Sch, “Learning Intrusion Detection : Supervised or

Unsupervised ? Learning intrusion detection : supervised or unsupervised ?,” no.

September 2005, pp. 50–57, 2014, doi: 10.1007/11553595.

[32] “Understanding Data Bias. Types and sources of data bias | by Prabhakar Krishnamurthy |

Towards Data Science.” [Online]. Available: https://towardsdatascience.com/survey-

d4f168791e57. [Accessed: 25-Dec-2020].

[33] G. Karatas, O. Demir, and O. K. Sahingoz, “Increasing the Performance of Machine

Learning-Based IDSs on an Imbalanced and Up-to-Date Dataset,” IEEE Access, vol. 8,

pp. 32150–32162, 2020, doi: 10.1109/ACCESS.2020.2973219.

[34] B. Subba, S. Biswas, and S. Karmakar, “A Neural Network based system for Intrusion

Detection and attack classification,” 2016 22nd Natl. Conf. Commun. NCC 2016, no. May,

2016, doi: 10.1109/NCC.2016.7561088.

[35] H. Al Najada, I. Mahgoub, and I. Mohammed, “Cyber Intrusion Prediction and Taxonomy

System Using Deep Learning and Distributed Big Data Processing,” Proc. 2018 IEEE

Symp. Ser. Comput. Intell. SSCI 2018, pp. 631–638, 2019, doi:

10.1109/SSCI.2018.8628685.

[36] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab, “A novel ensemble

of hybrid intrusion detection system for detecting internet of things attacks,” Electron.,

vol. 8, no. 11, 2019, doi: 10.3390/electronics8111210.

[37] M. Asadi, M. A. Jabraeil Jamali, S. Parsa, and V. Majidnezhad, “Detecting botnet by

using particle swarm optimization algorithm based on voting system,” Futur. Gener.

Comput. Syst., vol. 107, pp. 95–111, 2020, doi: 10.1016/j.future.2020.01.055.

[38] O. Ibitoye, O. Shafiq, and A. Matrawy, “Analyzing adversarial attacks against deep

learning for intrusion detection in IoT networks,” arXiv, 2019.

[39] Z. A. Baig, S. Sanguanpong, S. N. Firdous, V. N. Vo, T. G. Nguyen, and C. So-In,

“Averaged dependence estimators for DoS attack detection in IoT networks,” Futur.

Gener. Comput. Syst., vol. 102, pp. 198–209, 2020, doi: 10.1016/j.future.2019.08.007.

[40] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep learning for cyber

security intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur.

65

Appl., vol. 50, p. 102419, 2020, doi: 10.1016/j.jisa.2019.102419.

[41] M. A. Ferrag and L. Maglaras, “DeepCoin: A Novel Deep Learning and Blockchain-

Based Energy Exchange Framework for Smart Grids,” IEEE Trans. Eng. Manag., vol. 67,

no. 4, pp. 1285–1297, 2020, doi: 10.1109/TEM.2019.2922936.

[42] J. Galeano-Brajones, J. Carmona-Murillo, J. F. Valenzuela-Valdés, and F. Luna-Valero,

“Detection and mitigation of DoS and DDoS attacks in iot-based stateful SDN: An

experimental approach,” Sensors (Switzerland), vol. 20, no. 3, pp. 1–18, 2020, doi:

10.3390/s20030816.

[43] N. Guizani and A. Ghafoor, “A network function virtualization system for detecting

malware in large IoT based networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp.

1218–1228, 2020, doi: 10.1109/JSAC.2020.2986618.

[44] M. A. Lawal, R. A. Shaikh, and S. R. Hassan, “An anomaly mitigation framework for iot

using fog computing,” Electron., vol. 9, no. 10, pp. 1–24, 2020, doi:

10.3390/electronics9101565.

[45] M. Ge, N. F. Syed, X. Fu, Z. Baig, and A. Robles-Kelly, “Toward a Deep Learning-

Driven Intrusion Detection Approach for Internet of Things,” arXiv, 2020.

[46] S. Dwibedi, “A Comparative Study on Contemporary Intrusion Detection Datasets for

Machine Learning Research,” 2018.

[47] S. Liaqat, A. Akhunzada, F. S. Shaikh, A. Giannetsos, and M. A. Jan, “SDN orchestration

to combat evolving cyber threats in Internet of Medical Things (IoMT),” Comput.

Commun., vol. 160, no. April, pp. 697–705, 2020, doi: 10.1016/j.comcom.2020.07.006.

[48] M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “IoT malicious traffic

identification using wrapper-based feature selection mechanisms,” Comput. Secur., vol.

94, 2020, doi: 10.1016/j.cose.2020.101863.

[49] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey on addressing

high-class imbalance in big data,” J. Big Data, vol. 5, no. 1, 2018, doi: 10.1186/s40537-

018-0151-6.

[50] Y. Sun, A. K. C. Wong, and M. S. Kamel, “Classification of imbalanced data: A review,”

Int. J. Pattern Recognit. Artif. Intell., vol. 23, no. 4, pp. 687–719, 2009, doi:

10.1142/S0218001409007326.

[51] A. Ali, S. M. Shamsuddin, and A. L. Ralescu, “Classification with class imbalance

66

problem: A review,” Int. J. Adv. Soft Comput. its Appl., vol. 7, no. 3, pp. 176–204, 2015.

[52] “A Primer to Ensemble Learning – Bagging and Boosting .” [Online]. Available:

https://analyticsindiamag.com/primer-ensemble-learning-bagging-boosting/. [Accessed:

31-Jul-2020].

[53] M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly, “Deep learning-based

intrusion detection for IoT networks,” Proc. IEEE Pacific Rim Int. Symp. Dependable

Comput. PRDC, vol. 2019-Decem, pp. 256–265, 2019, doi:

10.1109/PRDC47002.2019.00056.

[54] “Battling Data Imbalance in IBM HR Attrition Challenge | by Александра Пухова |

Medium.” [Online]. Available: https://medium.com/@alepukhova526/battling-data-

imbalance-in-ibm-hr-attrition-challenge-3a26337a4943. [Accessed: 31-Jul-2020].

[55] I. A. Jimoh, I. Ismaila, and M. Olalere, “Enhanced Decision Tree-J48 with SMOTE

Machine Learning Algorithm for Effective Botnet Detection in Imbalance Dataset,” 2019

15th Int. Conf. Electron. Comput. Comput. ICECCO 2019, no. Icecco, 2019, doi:

10.1109/ICECCO48375.2019.9043233.

[56] L. McNabb and R. S. Laramee, “How to Write a Visualization Survey Paper : A Starting

Point,” 2019, doi: 10.2312/eged.20191026.

[57] J. Beel, B. Gipp, and E. Wilde, “Academic search engine optimization(ASEO):

Optimizing Scholarly Literature for Google Scholar & Co,” J. Sch. Publ., vol. 41, no. 2,

pp. 176–190, 2010, doi: 10.3138/jsp.41.2.176.

[58] “K-Nearest Neighbors Algorithm in Python and Scikit-Learn.” [Online]. Available:

https://stackabuse.com/k-nearest-neighbors-algorithm-in-python-and-scikit-learn/.

[Accessed: 28-Dec-2020].

[59] “Machine Learning Basics with the K-Nearest Neighbors Algorithm | by Onel Harrison |

Towards Data Science.” [Online]. Available: https://towardsdatascience.com/machine-

learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761. [Accessed: 28-

Dec-2020].

[60] “Machine Learning Random Forest Algorithm - Javatpoint.” [Online]. Available:

https://www.javatpoint.com/machine-learning-random-forest-algorithm. [Accessed: 28-

Dec-2020].

[61] “Logistic Regression in Machine Learning - Javatpoint.” [Online]. Available:

67

https://www.javatpoint.com/logistic-regression-in-machine-learning. [Accessed: 28-Dec-

2020].

[62] “Evaluation Metrics for Machine Learning Models | by Bhajandeep Singh | Heartbeat.”

[Online]. Available: https://heartbeat.fritz.ai/evaluation-metrics-for-machine-learning-

models-d42138496366. [Accessed: 28-Dec-2020].

[63] “Confusion Matrix in Machine Learning - Javatpoint.” [Online]. Available:

https://www.javatpoint.com/confusion-matrix-in-machine-learning. [Accessed: 28-Dec-

2020].

[64] M. H. Abdulraheem and N. B. Ibraheem, “A detailed analysis of new intrusion detection

dataset,” J. Theor. Appl. Inf. Technol., vol. 97, no. 17, pp. 4519–4537, 2019.

	Towards Effective Detection of Botnet Attacks using BoT-IoT Dataset
	Recommended Citation

	tmp.1617199170.pdf.ikIXs

