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Abstract

An Integrated Camera and Radar on-Robot System for Human Robot Collaboration

Anmol S. Modur

Supervising Professor: Dr. Ferat Sahin

The increased demand for collaborative tasks between humans and robots has caused an

upsurge in newer sensor technologies to detect, locate, track, and monitor workers in a

robot workspace. The challenge is to balance the accuracy, cost, and responsiveness of

the system to maximize the safety of the worker. This work presents a sensor system

that combines six 60GHz radar modules and six cameras to accurately track the location

and speed of the workers in all 360 degrees around the robot. While the radar is tuned

to identify moving targets, the cameras perform pose detection to evaluate the humans in

the workspace and when fused, provide 4D pose estimates: 3D location and velocity. A

custom PCB and enclosure is designed for it and it is mounted to the end-effector of a

UR-10 robot. This system performs all of its computation on an Nvidia AGX Xavier for

offline processing which allows it to be mounted to a mobile robot for outdoor use. Lastly,

this system was evaluated for accuracy in human detection as well as accuracy in velocity

measurements through numerous static and dynamic scenarios for the robot, the human,

and both combined.



vi

List of Contributions

• The creation of a radar-camera sensor system for use in human-robot collaboration.

This sensor system can be implemented in industrial and commercial spaces, on mo-

bile robots, robot arms or stand-alone.

• The creation of a image processing pipeline for easy access of 360 degree, spherical

images and 360 degree radar information.

• A unique approach to calculate 3D human pose from cameras and radars for human

robot collaboration.

• A dataset including data collected from cameras, radar, and a motion capture system

for research in human robot collaboration

Publication Submission

• O. Adamides, A. Modur, S. Kumar, and F. Sahin, “A Time of Flight on-Robot Prox-

imity Sensing System to Achieve Human Detection for Collaborative Robots,” 2019

IEEE International Conference on Automation Science and Engineering



vii

Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Understanding Speed and Separation Monitoring . . . . . . . . . . . . . . 4
2.2 Hardware designed for SSM . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Sensor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Design of the Radar System . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Radar Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Configuring the Radar . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Nvidia AGX Xavier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Human Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8.1 Un-Distortion of the Image . . . . . . . . . . . . . . . . . . . . . . 47
3.8.2 Pose Detection and creation of 3D Pose . . . . . . . . . . . . . . . 49
3.8.3 Future calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 Static testing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



viii

4.2 Human Moving, Robot Stationary . . . . . . . . . . . . . . . . . . . . . . 57
4.2.1 Straight Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Double Figure-Eight Test . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.3 Velocity Measurements . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Human Moving, Robot Moving . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



ix

List of Tables

3.1 The configuration parameters for the IWR6843AOP . . . . . . . . . . . . . 21

4.1 The mean and standard deviation for the pose detection for all joints for the
straight line test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 The mean and standard deviation for the pose detection for all joints for the
double figure-eight test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Data from Figure 4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Data from Figure 4.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Data from Figure 4.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



x

List of Figures

3.1 The proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 The Texas Instruments IWR6843AOP Rev F. with the debug portion broken

off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Two radar modules mounted to a acrylic holder for testing . . . . . . . . . 15
3.4 The six radar modules mounted to a acrylic holder to test all modules at the

same time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Radar modules on the custom designed PCB . . . . . . . . . . . . . . . . . 23
3.6 Layout of PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 (a) The Atmega32u4 schematic (b) The breakout symbol used on the main

page showing the USB connections and power lines . . . . . . . . . . . . . 27
3.8 The breakout of the Maxlinear XR22417 USB Hub chip after the second

revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 (a) The custom USB C breakout for power delivery and data transfer seper-

ated (b) The 3D printed enclosure with labels: Lightning for Power, D for
Data and Arrow for Radar . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 The breakout Nvidia AGX Xavier with D3 Engineering’s FPD-Link III
Breakout board and a 3D printed holder for the full assembly. . . . . . . . . 30

3.11 Cameras used for prototyping and testing: (a) Flir Flea 3 (b) D3 Engineer-
ing IMX390 rugged camera module . . . . . . . . . . . . . . . . . . . . . 32

3.12 The CAD model of the entire assembly of the radar-camera system . . . . . 34
3.13 The CAD model loaded in Cura for 3D printing . . . . . . . . . . . . . . . 35
3.14 The radar enclosure wrapped in Kapton Tape where the radar modules sit. . 36
3.15 The Pose Detection Algorithms and their average processing per frame

time in ms. (from left to right) OpenPose Single Threaded, OpenPose Multi
Threaded, OpenPose over the network, Cubemos, OpenVino and Trt-Pose . 41

3.16 Sample images from the output of TrtPose (a) when walking (b) when
standing and (c) when jumping. Each image is 224x224 px . . . . . . . . . 41

3.17 Flowchart of software pipeline to get radar data and 2D pose . . . . . . . . 43
3.18 Flowchart of combining radar and pose data to create 3D pose . . . . . . . 44
3.19 Several of the images used for calibrating the fish-eye lens . . . . . . . . . 48



xi

3.20 Images after locating the checkerboard and drawing lines across . . . . . . 48
3.21 Radar data being projected onto the camera frames. (a) Opening up arms

increases the number of radar detections on the arm (b) The right leg is
moving in an upward kicking manner and the detections also increase. The
stray points are from other detections/reflections . . . . . . . . . . . . . . 50

3.22 Once overlaying the pose information, the accuracy of the pose and radar
become evident. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.23 Here a 360 degree image of overlayed radar and pose data is shown show-
ing the accuracy of the pose estimation and radar data. One key benefit is
highlighted as there will always be two humans detected at all times for
each human in the real world. . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 The sensor mounted on the UR-10 with a gripper attachment . . . . . . . . 54
4.2 The pose data from (a) TrTPose vs (b) OptiTrack . . . . . . . . . . . . . . 54
4.3 This shows as the velocity of the human comes to a standstill, there still are

radar detections. Sps (Samples per second) . . . . . . . . . . . . . . . . . 55
4.4 (a) As the human slows down, the pose error increases significantly (b)

Shows the pose estimate (blue) behind the human’s actual pose (red) . . . . 56
4.5 The tests (a) Straight Test vs (b) Double Figure-8 with respect to the robot . 57
4.6 The frame losses as the human walks by the robot in the straight line test. . 59
4.7 The comparison between the radar’s accuracy and the human pose estima-

tion compared to OptiTrack for the straight line test. . . . . . . . . . . . . . 60
4.8 The comparison between the radar’s accuracy and the human pose estima-

tion compared to OptiTrack for the double figure-eight test. . . . . . . . . . 62
4.9 The green arrow is the actual human velocity and the red arrow is the ve-

locity perceived by the radar . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 The velocity of the humans as it performs the straight test. The oscillation

shows the as the human comes closer to the robot and moves further away. . 64
4.11 The velocity of the humans as it performs the double figure-eight test . . . . 65
4.12 The background noise as the robot moves the camera-radar sensor . . . . . 66
4.13 Velocity from the radar measurements and OptiTrack system with the robot

moving at 20◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.14 The Pose and Radar error as the robot moves at 20◦/s . . . . . . . . . . . . 67
4.15 The Pose and Radar error as the robot moves at 60◦/s . . . . . . . . . . . . 68
4.16 The Pose and Radar error as the robot moves at 80◦/s . . . . . . . . . . . . 69
4.17 Pose 3D estimate viewed with ROS as the robot moves at (a) 20◦/s (b) 60◦/s

(c) 80◦/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



1

Chapter 1

Introduction

Industry is now evolving, more than ever. With the introduction of smart and collabo-

rative robots (cobots) in factories, problems that once were unable to be solved by robots

alone, have a chance of being possible. The combination of the agile and efficient robot

with the dextrous and intuitive nature of the human hand allows for productivity not seen

in Industry. This is Industry 4.0. A revolutionized factory where humans and robots can

work together. From small production environments to large assembly lines, worker safety

is at the forefront of priorities. Maintaining the safety of the worker while placing them in

close proximity to cobots and assembly lines is one of the critical challenges of evolving to

Industry 4.0. However, if done correctly, assembly line based injuries will decrease saving

much time and money.

The International Organization for Standardization (ISO) outlines several safety modal-

ities between humans and robots in ISO/TS 15066:2016 [1]. One of these is speed and

separation monitoring (SSM), which outlines the minimum protective separation distance

(SP) between the operator and robot system, and their relative velocities to ensure safety

in the workspace. These relative velocities create unchanging discrete safety-related zones

around the robot which constantly move as the robot moves around. A more stringent
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modality used in research is dynamic speed and separation monitoring (dSSM) which

allows for S to be dynamically adjustable as the humans and robots move around the

workspace. This changes the safety zones relative to the human and robot velocity and

position of robot and human.

In real-world scenarios, the human is not a solid body moving throughout a workspace.

Generally that worker is completing a task and is extended in a multitude of positions.

Dynamically adjusting the minimum protective separation distance for dSSM must also

take into consideration the location and velocities of the different parts of the human: hands,

legs, head, chest and other joints. This will ensure that a dSSM implementation will keep

the human as safe as possible while also allowing the least amount of separation between

the robot and human for them to perform their tasks. This creates a need for a sensor

technology designed for robot workspaces, that can track humans.

To track the human’s position and velocity in 3D space, a variety of sensors are to be

used. Cameras benefit in providing a plethora of data about the environment from scene

classification, to object tracking and human detection. 3D Lidar (light detection and rang-

ing) systems can quickly and accurately collect distance measurements and are excellent at

localizing objects in 3D space. Radar (Radio detection and ranging) systems are superior at

object detection and velocity estimation even with distant objects. All these sensors vary in

complexity, cost, data bandwidth, size and power draw. An ideal sensor system for localiz-

ing a human fuses together several sensors that combine many of their features, maximizes

performance but keeps the cost low.

In this work, an integrated camera and radar on-robot system is built for calculating the
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3D position and velocity of a human in a robot’s workspace for dSSM. The sensor combines

six radar modules and six cameras to give a continuous 360-degree field of view for the

radar and a pseudo-spherical view for the camera. This on-robot sensor system is easily

mountable to any robotic arm and easily implementable to existing cobot solutions using

ROS (robot operating system). This sensor system was tested for accuracy in measuring the

human’s position and each major joint in the human in both static and dynamic situations.

Also, the precision of the sensor was tested as the robot moves throughout the workspace at

different velocities. All of this was calculated and compared to OptiTrack, a highly accurate

motion tracking system.

The rest of this work progresses from Chapter 2-6. Chapter 2 explores the existing

work that has been done in the human-robot collaboration field as well as sensor systems

that exist currently. Chapter 3 goes in-depth on the various aspects, both hardware and

software, that make this sensor into reality. Chapter 4 discusses the testing that was done

to understand the limits of the sensor system and Chapter 5 concludes this work. Lastly,

Chapter 6 showcases future works that will advance this field of robotics.
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Chapter 2

Background Literature

The current chapter will discuss current works in two areas of human robot collaboration.

Section 2.1 will discuss a current modality for collaboration known as speed and separation

monitoring (SSM) and Section 2.2 will discuss hardware used to implement SSM.

2.1 Understanding Speed and Separation Monitoring

Currently, there is a large amount of research happening in human-robot collaboration,

especially using implementations of SSM, validating the effectiveness of SSM [2], mea-

suring minimum distances [3], and dynamic trajectory planning using SSM [4]. There are

three major types of SSM: Static, Tri-modal, and Dynamic.

Static SSM or just SSM uses a fixed minimum protective separation distance (SP) to

create zones around the robot to which the robot will react if an object or human enters the

zone. At the heart of the SSM, the algorithm is the condition that triggers a stop of robot

motion outlined in ISO 13855 [5] that attempts to prevent any collision between human and

robot. In it, a worst-case scenario is defined as 2000 mm/s which ultimately resolves an Sp

of 500mm [6]. Current implementations of SSM use this value as the default which some

suggest tending to be more conservative relative to the guidelines in ISO/TS 15066:2016
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[1]. This static value does not take into consideration abrupt changes in the motion of the

human, environmental changes [7, 4, 8] or which part of the body is within 500mm.

As SSM indicates a binary state for the robot, either stopped or normal, Tri-Modal

implementations introduce a reduced mode where the velocity of the robot is decreased

[8]. This additional state significantly decreases the acceleration spikes when the human

enters the boundary of the stopped zone. Implementations using Tri-Modal SSM require

much more precision and sensitivity as the reduced zone may not be large compared to the

other two: stopped or normal. Some implementations optimize the Tri-Modal boundaries

by taking into account the human or robot or both velocities. Results of these tests show

that the combination of both the robot and humans’ velocities are the safest [3].

Lastly, the current safest approach to SSM is Dynamic SSM. Dynamic SSM fully takes

into consideration the human’s position and velocity throughout and around the workspace.

This allows a zone-less characterization of the human’s safety where the actual position and

velocity of both the human and robot will determine where and how fast the robot moves

[6]. An ideal implementation modifies the robot trajectory and dynamically plans around

the safety requirements to prevent a collision [9]. Although Dynamic SSM is the most

computationally intensive, its balance between safety and flexibility of where the human

can be, makes it the ideal candidate for implementations in the industry.
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2.2 Hardware designed for SSM

To implement SSM in a robotic workspace, sensors are placed either on the robot or around

the workspace to monitor any changes. Sensors placed external to the robot have minimal

blind spots and can observe both the robot and humans at the same time [10]. Usually

multiple sensors are required and need to be calibrated to the workspace. A benefit to using

external sensors is the processing of the sensors can be done using large computational

nodes with direct-wired access to the sensors. On the other hand, on-robot sensors are sen-

sor systems designed to be mounted on the robot and view the workspace from the robot’s

perspective. These sensor systems are subject to blind spots, the environment the robot is

in, and a limit on power and weight [3]. A benefit is on-robot sensors can be placed on

mobile robots and can perform either all the computation onboard the system or wirelessly

transmit the data to a grounded system. On mobile applications, power constraints limit the

types of sensors that can be used and on arm robots, weight constraints do the same [11].

Depth cameras are a common technology used in modern robotics. Depth cameras

(or RGBd cameras) can provide a full resolution RGB image and a lesser resolution depth

pointcloud that is overlaid on top of each other. This is done by having a camera, an infrared

blaster, and an infrared depth sensor all in one package. The two main depth cameras used

are the Microsoft Kinect and Intel Realsense [7, 12, 10]. Much of the implementations of

depth cameras are external to the robot where both the human and the robot can be tracked

[12, 13]. These range from understanding human gestures to control the robot to robot

teaching and human-robot collaboration [14]. To process data from the depth cameras,

much computational power is needed. To work around this FPGAs (Field Programmable
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Gate Arrays) can be used however the development of such systems takes much time and

is specific to the sensor type used [15]. Most of the time, the computation is accelerated

using a GPU.

Lidar systems are another option when it comes to understanding the workspace around

a robot. Unlike depth cameras, lidar data only output depth information in pointclouds and

it does so much more accurately and quickly. Because of this, implementations that use

Lidar systems also contain other sensors to give a reliable description of the environment

[16]. Lidar systems can scan in a 2D plane or three dimensions. In most human-robot

collaboration scenarios, 3D lidars are preferred as they produce a much higher data density

per frame. 3D lidar systems have grown in popularity in mobile robots over the years as

their robust nature and pseudo-imperviousness to changing environments allow them to

perform much better than other systems. In mobile robot scenarios, human detection and

tracking are of essence rather than collaboration [17, 11]. The biggest drawback to 3D

lidar systems is the steep price. 3D lidar solutions defer to using depth cameras or 3D ToF

cameras instead [18].

Radar systems are an uncommon but increasingly popular option for human-robot col-

laboration. Radar systems can estimate the location of the human as well as its velocity

toward the sensor [19, 20]. With the introduction of small package millimeter-wave radar

systems, they can now be placed in tight corners. Radar systems are also heavily tuned to

the application at hand [21, 20]. The many parameters, from antenna design to signal to

process, allows radar systems to be used for almost any task. Antennas can be designed to

be flexible; capable of wrapping around a link of a robot. This allows the system to transmit
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signals from different points around the robot and receive at different points, increasing the

likelihood for a human to be detected in a workspace [22]. Because the signal processing

for radar systems are complex, many use a separate sensor to calibrate the radar sensor such

as a lidar [23] or depth camera [24].

For implementations in human-robot collaboration, few fuse different sensors into a

single system to achieve good results [23, 24]. Few are able to perform dSSM as the

technology is limited in field of view or is not able to process in real time [21]. Even fewer

localize the joints of the human in the 3D workspace of the robot to measure minimum

distances [25, 12]. The works that do, use a combination of on-robot sensing and external

sensing to identify humans and observe the workspace [26, 27]. Because of this, there is a

need for a completely on-robot system that can accurately track the position and velocity

of the human.
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Chapter 3

Proposed Method

Chapter 3 will discuss the proposed method for identifying and tracking the human’s 3D

pose, the process of selecting and tuning different hardware to achieve the desired results

and detail the software and the process to compute the 3D pose.

3.1 Sensor Design

To perform dSSM, a sensor system optimized to detect and track, the human’s position in

3D and velocity needed to be created. From previous work, the limitations of implementing

an external sensor solution and calibrating techniques detract from the feasibility of use and

use case scenarios. This leads to using an on-robot sensor system that is modular, easy to

install, and highly effective. The robot to be used for testing this sensor system will be

Universal Robots UR-10 which is a popular collaborative robot used in the industry. This

6DOF armed robot has many advantages including the ability to pick and place objects up

to 10kg in weight. By adding an on-robot sensor, one of the design requirements must be

to limit its weight as much as possible.

Unlike other approaches, this sensor design will need to cover a 360-degree field-of-

view that will allow it to stay stationary on the robot but be able to sense the robot’s entire
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workspace. A perfect sensor to use is depth-cameras, however, the options for selection

are limited. The first idea was to use six Intel Realsense cameras around the links of the

UR-10 Robot or in a ring on the end-effector. This was inspired by Kumar et al. [3] as

they placed time of flight lidar modules in a ring like manner. This would allow for easy

context analysis of the objects in the workspace with the depth information to get accurate

distances to the robot. However, one issue with the Realsense cameras is they have a 86

degree azimuth FoV and 57-degree elevation FoV. With this, at least five sensors would

need to be used in a horizontal position and seven sensors would need to be used vertically.

This means either there are more sensors on the robot or the sensors lack Vertical FoV.

Also, the amount of bandwidth each Intel Realsense uses is very high. Only two depth

cameras can be used on an entire USB 3.1 bus which requires the use of a very powerful

computer capable of having extra USB 3.1 busses and a GPU able to process large amounts

of data. This leaves the option of developing a custom sensor system that can observe the

workspace and evaluate it at the same time.

A radar system is developed to detect, locate, and measure the velocity of the human.

Radar systems are perfectly suitable for 3D tracking especially and are one of the few that

directly measure velocity. Modern radar systems have significantly decreased in power

and size and can be accurate to a few mm. Radar systems can discern easily whether the

detected object is a human or not as they can be tuned to detecting humans. There are

various radar modules available that have antennas that come in all different shapes and

sizes. As a radar system can be used to evaluate the workspace, a camera can be used to

observe the workspace.
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Cameras have been used in Industrial applications to either detect the presence of hu-

mans or scan QR codes on pallets. Image processing has come a long way over the years

and more powerful algorithms can be run extracting more information in each of the frames.

For human tracking, images from the camera are processed to detect the pose of the human.

A pose of the human is the combination of the orientation of all the human segments, from

hands and arms to legs and feet, and detecting this will give information of what task the

human is performing and where the human is in the frame of the camera. With the pose

data of the human, along with the radar data, one can give accurate measurements of where

each segment of the human body is in relationship to the radar-camera sensor system; thus

a 4D pose can be created; three dimensions for the pose and one for the velocity of the pose.

When used for human robot collaboration, this additional information will help algorithms

like dSSM be more accurate and should lead to a more safe workspace for the human.

As important as it is to have the best sensors for the application, without proper place-

ment, the sensors would be useless. Looking at previous works [24, 20] sensor systems

that did not have a 360-degree FoV would have large blindspots and would be susceptible

to making large tracking errors. Along with this, sensors mounted directly on the robot

arm had difficulties in observing the entire workspace of the robot. For this, the designed

radar-camera sensor system will be mounted on the end link, before the end effector. This

was chosen as the ideal location to easily mount and hot-swap the sensor and for the acces-

sibility to view much of the workspace. A 3D model to show how the six cameras and six

radar modules were places, along with the custom designed enclosure for it can be seen in

Figure 3.1. The proceeding sections will explore each sensor used, the hardware that puts
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it together, and the software that produces valid results.

Figure 3.1: The proposed solution



13

3.2 Radar

Radar systems have been in use for decades and their technology is used widely in defense

and military applications. Generally, radar systems are noted to contain large antenna arrays

and are mounted on large vehicles or ships. However, with the introduction of radar systems

in medical fields, autonomous driving applications and virtual reality, their size, and power

draw have significantly decreased. Now, radar modules can be present inside everyday

phones, such as the Google Pixel 4, making their use widespread . Although the modules

in phones and the systems on ships have many significant differences in how they perform,

their intended use is still the same: to detect and identify objects.

For radar applications in human-robot collaboration, a small device is required with

high resolution and comparatively short range. The most suited radar modules that would

be able to perform in an industrial setting are the off-the-shelf radar modules designed for

Advanced Driver Assistance Systems (ADAS). These modules are designed for high local-

ized movements, for example, cars on a highway system moving in similar and opposite

directions, constant change in environment, ADAS must work in rainy, windy, and sunny

conditions, and should be able to detect a multitude of objects, such as cyclists, motorcy-

cles, traffic cones, and humans. Radar systems optimized for the road should also draw as

little power as possible, have a detection range within 50 meters, should have a wide field

of view, and should be compact to fit in a car.

The Texas Instruments IWR6843AOP, shown in Figure 3.2, was chosen as the radar

module for human-robot collaboration. This module is a radar module intended for the
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Figure 3.2: The Texas Instruments IWR6843AOP Rev F. with the debug portion broken off

automotive industry, however, adapted for the industrial setting. There is no weather pro-

tection for the module or rugged enclosure. This radar module comes in a much more

compact package compared to other radar modules as it has its radar antenna on the radar

module itself. Although this limits the number of antennas the module can have, it allows

for a predetermined layout of the antenna arrays, which minimizes the time needed to im-

plement the radar. This module has a field of view (FoV) of 130 degrees azimuth and 130

degrees elevation. This wide FoV minimizes the number of radar modules needed to cover

a 360-degree field of view and minimizes blind spots in detection.

3.2.1 Design of the Radar System

To get the full 360-degree coverage, only three modules are needed. However, to ensure

objects can be successfully detected at the edges of their operating FoV, and if any issues
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Figure 3.3: Two radar modules mounted to a acrylic holder for testing

arise that require the shutting down of one of the modules, the system needs to be able to

continue to operate and safely bring the robot to a stop. For initial testing, a laser-cut piece

of acrylic was used to hold two radar modules in place using their stands, shown in Figure

3.3. Each sensor was placed at a radius of 3 inches giving enough room for a camera

module to be placed and allowing heat to be dissipated from their heat sink easily. One

reason as to their placement was the physical limitations in size for testing. Each sensor

module has two circuits, one that contains the IWR6843AOP radar chip and the other for

access to debugging ports and extra communication ports. The debugging side can be

detached and the sensor becomes much smaller and compact. During initial tests, however,

everything was kept intact to ensure the radar modules worked correctly. This system was

connected to ROS to view the initial pointclouds and modification of the configuration of

the radars was done on this platform.

During the development of the radar modules system, Texas Instruments discontinued

the IWR6843AOP evaluation board as they found an issue with the radar module. Later

they updated it with a silicon revision and now it is referred to as the IWR6843AOP Rev F.

This new module had a different evaluation board which altered their placement and a new
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testing mount was created. As the USB port is centered on the evaluation board, it allows

for a tighter pattern and needs less support to hold the sensor, shown in Figure 3.4. Because

the previous software was able to be used with the new AOP module, the new modules were

detached from their debugging circuitry by cutting the PCB along its perforations. They

were then directly mounted to the ring holder.

Figure 3.4: The six radar modules mounted to a acrylic holder to test all modules at the same time

3.2.2 Radar Processing

One of the benefits of using the AOP radar module was its versatility and customization.

The IWR6843AOP contains a 32 bit ARM cortex-R4 processor running at 200Mhz and

a DSP co-processor solely for radar data processing. The ARM processor can be pro-

grammed to provide simultaneous computation alongside the DSP core and can be inter-

faced through LVDS, SPI, Quad SPI, I2C, and UART protocols. On the IWR6843AOP

evaluation board, the UART port is connected to an FTDI chip and allows for easy access
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through a micro-USB port. The rest of the protocols are accessible over a 60 pin Q-Strip

connector (commonly used for MIPI).

The DSP core on the IWR6843AOP is set up to process the raw ADC data and output

pointclouds through four stages. Each of these stages has to be configured upon boot for the

radar to start outputting data. The first stage takes the raw analog values and bins the data

into radar batches for each pulse. For each range, this stage performs a Range FFT to set up

for analysis of the target’s distance as the range is proportional to the frequency. The same

radar batch is processed in the second stage which performs a Doppler FFT and saves the

output into L3 memory. The third stage performs CFAR (Constant False Alarm Rate) on

both the Range and the Doppler data separately. CFAR constantly estimates and adjusts a

threshold that divides the noise from the signal. For a starting point, the CFAR thresholding

values are configured during the initial configuration phase. Lastly, the detections from

the CFAR pass into the last stage which performs an angle of attack (AoA) analysis and

estimates the azimuth and elevation angles by performing a 3D FFT. These angle estimates

along with range and doppler information get encoded into a pointcloud and get transmitted

for each frame of radar transmission.

As the output of the pointcloud is significantly less data than the output of the ADC,

it was possible to transmit the pointcloud information over UART alone. To make this

happen, the board was flashed with TI’s latest firmware that enables access to the debugging

features and pointcloud data through UART. Using the demo ROS package also provided

by TI, through the mmWave SDK, it was modified to receive the raw TLV (Type, Length,

Value) messages, extract the x,y,z, and velocity estimations, and publish ROS pointclouds.
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These pointclouds can be accessed for further processing by subscribing to the ROS topic

for each radar.

3.2.3 Configuring the Radar

One of the difficult tasks is setting up the IWR6843AOP correctly for the task at hand. In

general, radar systems are very sensitive to environmental changes and need to be calibrated

for each environment. For example, the radar system in the industrial environment will not

have to deal with rain or clutter coming from the real world but will have to deal with

heavily populated spaces with a lot of metal and moving objects. The IWR6843AOP has

an easily configurable DSP core that performs all of the radar data processing, allowing the

radar module to be used in a variety of scenarios when tuned to the task at hand. This makes

the difference between accurately detecting the intended target and missing it altogether.

Also as this application is concerning the safety of humans, thus the distance and velocity

measurements need to be as precise as possible.

The IWR6843AOP is a radar whose antennas are tuned to 60-64GHz. Because the

ranging of detection is crucial in the dSSM implementations, the maximum range and the

range resolution need to be calculated to ensure the radar module is a viable sensor. The

maximum range is calculated using equation 3.1. To do this, the parameters were sourced

from TI’s documentation on the IWR6843AOP and it determines the module can range up

to 50m.

For a radar, typically the range resolution of the radar would be inversely proportional

to the pulse width transmitted. However, to get a high range resolution, the pulse length
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R4
max =

PtG2
t λ

2σ

(4π)2S min
(3.1)

3.1: Where Rmax is maximum range, Pt is transmit power, Gt is antenna gain, λ is wavelength, σ is the radar
cross section of target, and S min is the power of minimum detectable signal

would have to be extremely short, and amplifying a short pulse requires a lot of power.

To mitigate this problem, pulse compression techniques were developed that allow one to

get the range resolution while still having a long pulse width. One that can be set up in

the IWR6843AOP is linear frequency modulated waveform (LFMW) which sweeps the

frequency of the pulse at a known rate. For an LFMW the bandwidth of the signal is the

difference between the initial and final frequencies. As the IWR6843AOP can transmit

between 60-64GHz signals, the range resolution is 37.5mm as calculated using equation

3.2.

∆r =
c

2B
(3.2)

3.2: Where ∆r is the transmit power, c is the speed of light, and B is the bandwidth of signal

BLFMW = f2 − f1 = 64GHz − 60GHz = 4GHz (3.3)

∆r = 37.5 (3.4)

A range resolution of 37.5mm, as calculated by equation 3.2 3.3 and 3.4, is viable in

this industrial scenario as it is just enough to detect the arm of a human.

As velocity is also a part of the dSSM calculation, velocity characteristics need to be

assessed as well. Radar systems, unlike lidar and camera systems, can directly measure

velocity without estimating it, however, the velocity measured is in the radial axis of the

radar. This is done through a pulse doppler technique which during a single frame of radar
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transmission, many pulses equally spaced out in time are emitted. Many techniques use

a combination of object tracking and the doppler velocity measurements to derive lateral

velocity, but it is not done in this research as dSSM looks at velocity to and from the robot.

The doppler resolution is proportional to the transmission frequency and depends on the

sampling frequency of the ADC.

fd =
2V
λ

(3.5)

3.3: Where fd is the doppler frequency, V is the velocity of Detection, and λ is wavelength

fd = (0.4mm/s)/Hz (3.6)

This means that after the Doppler FFT is performed, knowing the difference in fre-

quency between two samples can tell the estimated doppler velocity difference. To increase

the Doppler resolutions, one can set the ADC’s sampling frequency higher as it will be able

to resolve velocities at a granular resolution. Another is to transmit many pulses in a single

radar frame. This will require much more processing and memory to store, however, it will

ensure targets at longer ranges will have the same velocity resolution as closer targets. Ap-

plying the Doppler FFT for each receive channel can help with accurately identifying the

velocity and even more so if the pulses are staggered upon transmitting among the transmit

channels. Having a high-velocity resolution is independent of having high range resolution

however both parameters will detract from having short frame times and high-frequency

pointcloud output.

When connecting the Radar module over USB to interface the UART ports, two UART
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ports appear with independent configurations. The first is a console port able to send con-

figuration parameters upon boot as well as starting and stopping the sensor. Each command

along with its associated parameters are listed on the user guide for the IWR6843AOP. To

set up the modules for HRC, doppler resolution was placed as a higher priority to max

detectable range. The goal is to be able to detect a human within a range of two times the

workspace size which will give the robot ample time to react. To reiterate, the max range

resolution is fixed; it depends on the bandwidth of the transmitted signal (max 4GHz). Us-

ing TI’s mmwave demo visualizer allows one to configure the exact parameters necessary

for configuration while ensuring the parameters are within the bounds for the particular

sensor.

Table 3.1 The configuration parameters for the IWR6843AOP

Parameter Value

ADC Resolution 16 Bit (Max)

ADC Samples 496

ADC Sampling freq 2.583 MS/s

Chirps/frame (multiple of 4) 384

Frame Duration 100ms (10Hz)

Start Frequency 60 Ghz

Frequency slope 20Mhz/us

Ramp end 200us



22

High Pass Filter 1 175kHz (min)

High Pass Filter 2 350kHz (min)

Range CFAR initial gain 15dB

Doppler CFAR initial gain 15dB

The parameters used to configure the radar module are described in Table 3.1. Parame-

ters such as the ADC Resolution, ADC Samples per Chirp, and ADC Sampling frequency

are set to maximum. This is dependent on the ADC characteristics and the onboard high

pass filter sizes. The maximum chirps/frame for a 100ms frame duration came to 384

chirps. This allows for the transmit antenna to successfully power down after the previous

chirp, is a multiple of four as the window used for the Doppler CFAR requires it. To maxi-

mize the bandwidth of the transmit, the frequency slope and duration of the frequency ramp

is set as such. Lastly, the initial CFAR gain was recommended by TI. After configuring the

radar module, it is ready to output pointcloud frames.

3.3 PCB

To bring all the radar modules together in a compact manner, a PCB was designed to easily

connect and power up the radar modules, as shown in Figure 3.5. The biggest issue with

the IWR6843AOP modules is how they communicate to their host computer. Each sensor,

on boot, is given a communication port to attach to and send data to. This is attributed on
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a first-come first-served basis. Because every radar sensor is identical, they have the same

vendor ID and device ID and the host machine has no way to individually identify specific

radar modules other than that there are multiple connected. As all the six radar modules

boot, it creates confusion to the user as to which sensor has which serial port. To resolve

this, they must be booted individually with a delay, which ensures the correct module gets a

predetermined port. If any issues arise, the modules can easily be rebooted and the process

can be restarted.

Figure 3.5: Radar modules on the custom designed PCB

Another purpose of the PCB is to distribute power to each of the radar systems. When
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all IWR6843AOP modules are running, the maximum power draw can reach up to 3A of

current at 5V. Having a single PCB can allow each module to tap into a single regulated

power plane without needing individual power from each of the USB controllers.

For controlling the boot of each radar, an Atmel ATMega32u4 microcontroller was used.

It is a 32-bit microcontroller found in the Arduino Leonardo platform. This controller has

direct USB access without needing an FTDI chip and it runs directly on the 5V supplied

by USB. To power up the radar, a solid-state optocoupler is used to connect power to the

device. This allows for the microcontroller to be isolated from the radar sensor, protecting

it from any current spikes. For manual access to the power control of the radar modules,

each GPIO line is routed through a DIP switch.

To minimize the number of connections to the radar sensor board, a single USB C cable

was used to deliver power as well as all the data lines. As the USB C specification allows,

some USB C cables can handle over 100W of power delivery topping at 5A. As the radar

modules draw a maximum of 15W altogether, the radar board is easily supplied through

the cable. For passing data through the USB C connector, a USB Hub chip was used to

merge the data lines. In the USB2.0 specification, up to a maximum of seven devices

can operate on a single hub chip, which is perfect as there are six radar modules and one

microcontroller. The hub chosen was the MaxLinear XR22417.

The creation of the board shape was difficult as the placement of the radar modules

were critical. Using the prototype made of acrylic earlier, a circular PCB was made with

vertical USB-micro connectors to mount the radar directly to the PCB, but the final size was

unknown until the entire camera-radar system was designed in CAD. The final shape was
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a 110mm diameter ring with an inner diameter of 50mm. The ring allowed for cabling and

other mounting hardware to be passed through the center of the PCB without needing to

use the PCB as a structural element. This minimizes strain and flex on the PCB and lessens

the chance of damaged or delaminated traces which did happen on an early revision of the

PCB. Each Micro USB vertical header was placed 60 degrees offset from each other with

a radius of 50mm and the USB C connector was placed in between two radar connectors.

All these measurements were necessary to build a model in CAD and to be used in the

visualization of radar data in ROS.

Figure 3.6: Layout of PCB

The PCB stackup has four layers, two signal planes, and a ground and power plane.

As this PCB had USB2.0 traces, the ground plane significantly decreased the EM noise
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generated by the differential lines. The power and ground planes made it much easier to

route many components as no power or ground lines needed to be routed. This also made

it easy for current to the radar to easily pass through the power and ground planes. When

routing the USB lines, a trace width of 0.2mm with the dimensions of the PCB stackup

given by the manufacturer was used to create a 90Ohm impedance line, which is in the

specification of USB 2.0, and was matched to within 0.1mm or less in length. Each USB

line also had ESD protection through an STM USBLC6-2SC6; which were placed near

each port. ESD protection was necessary as any stray voltage spikes could easily damage

any components on the same bus.

Laying out the Atmega32u4 microcontroller was straightforward as common layouts

were available open source with proven success; as shown in Figure 3.7 The most difficult

part was understanding the requirements for the external oscillator circuits for both the

microcontroller and USB hub. A 16MHz 12pF crystal oscillator was used with 22pF load

capacitances for the Atmega32u4 and for the XR22417 hub, its load capacitances were

internal to the chip and just a 12MHz 20pF crystal oscillator, as recommended by the

datasheet, was used. These oscillators are used for keeping the internal clocks in time and

ensures proper operation in digital circuitry.

This PCB went through two revisions as the hub chip was incorrectly laid out on the first

revision. The first revision used a 64 pin LQPF package and allowed for current sense lines

to prevent over current draw. As the radar modules were not being powered by the host

machine, the need for current protection became unnecessary. The biggest issue with the

XR22417 chip and similar varieties such as the more popular Terminus FE2.1 is the lack of
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(a)

(b)

Figure 3.7: (a) The Atmega32u4 schematic (b) The breakout symbol used on the main page showing the
USB connections and power lines



28

documentation for the layout guidelines. One that was missed was the onboard 3.3V and

1.8V regulators needed to be externally routed to other components on the same chip. In

the second revision, this was fixed and the hub was functional. Additionally USB debug

headers were placed as well as several test points and indicator LEDs for debugging if any

issues arose. The eventual schematic for the XR22417 chip is in Figure 3.8.

Figure 3.8: The breakout of the Maxlinear XR22417 USB Hub chip after the second revision

An issue with the current design was that there was no USB C port on a computer that

was able to output 4A of current. To safely power the system, the data lines from the

USB C port needed to be split for power and data. This was done with a custom PCB

that was inspired by Clara Hobbs’s PD Buddy Wye, and modified to take in a single USB
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C cable, shown in Figure 3.9. It was designed to take in a power line over USB C, and

a data line through USB C and merge them into one for the radar sensor system. This

simple board did not need any ports other than two resistors for letting the host know the

Current Capability (CC) of the system. No connectors were used as the PCB integrated the

connections directly. This PCB had to be created at a height of 0.6mm so it could fit inside

the USB C female connector and connect to each pin within.

(a) (b)

Figure 3.9: (a) The custom USB C breakout for power delivery and data transfer seperated (b) The 3D
printed enclosure with labels: Lightning for Power, D for Data and Arrow for Radar

3.4 Nvidia AGX Xavier

For processing the radar and camera data, the Nvidia AGX Xavier was chosen, shown in

Figure 3.10. It is an embedded GPU platform that is very capable in its performance for

its size. It runs Ubuntu 18.04 with Nvidia’s Jetpack 4.3.1, a custom kernel with drivers

and device-specific libraries. The Xavier has a custom GPU as well as an 8-core ARM

processor which is enough to run ROS, embedded image processing, and machine learning

algorithms in real-time. Also as this is made by Nvidia, the libraries are optimized to make
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full use of the GPU and its tensor compute cores. It also contains a PCI-e 4.0 x8 slot for a

secondary peripheral such as a GPU or network card, and direct access for cameras though

its 16 CSI-2 lanes.

Figure 3.10: The breakout Nvidia AGX Xavier with D3 Engineering’s FPD-Link III Breakout board and a
3D printed holder for the full assembly.

3.5 Cameras

Cameras were used to understand where the human is around and within the workspace of

the robot. Cameras are the perfect technology for this as they operate at high frame rates

and each frame contains much data about the environment around. With modern image

processing algorithms, one can detect many different objects in many lighting conditions

and locate them in the frame. To choose the ideal camera sensor for the job, one needs to

understand the output resolution of each camera, the pixel size, the dynamic range, and the

available lenses.
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For the implementation of human tracking in a robot’s workspace, the camera frames

will be processed through a pose detection algorithm which will identify where the joints

of the human that are in the frame of the image. The human can be anywhere from several

meters away to several centimeters away. Also, as this is running in an industrial scenario,

lighting conditions can be assumed as optimal where there are no major shadows or dark

spots in the workspace. The camera sensor will be outputting a large amount of data per

second and enough processing power must be available to perform the pose detection.

A high-resolution camera may be beneficial to capture the detail in the human but may

significantly slow down the processing pipeline, increasing the latency to receive the pose

information. Lastly, as the camera will be mounted to the robot, each will need to be able to

capture an image without much blur or dynamic distortion: distortion as the camera moves

around.

The initial camera chosen was the Flir Flea3 with a 1.3Mp e2v EV76C560 sensor, shown

in Figure 3.11(a). This camera is a global shutter camera which means there will not be any

rolling shutter or distortion as it moves around. The 5.3um pixel size allows it to capture a

large amount of light and lower the sensitivity of the CMOS sensor outputting sharp, noise-

free frames. The one downside to this camera is that it requires the use of a large lens which

increases the size and weight of the camera. The lens used for testing was a Fujinon 6mm

f1.2 lens. Because of the large focal length to Flea3’s sensor size ratio, the field of view is

73.7 degrees, which will not resolve the full height of the human when close up. Lastly, the

interface to the Flea3 is over USB3. Although the USB3 protocol’s bandwidth is enough to

support a 1.3Mp image, processing an image from USB3, depending on the platform, isn’t
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usually optimized and requires more processing power. Also having multiple cameras over

USB3 makes this even tougher.

(a) (b)

Figure 3.11: Cameras used for prototyping and testing: (a) Flir Flea 3 (b) D3 Engineering IMX390 rugged
camera module

Knowing the Nvidia AGX Xavier can concurrently connect to 16 different cameras at

the same time using its CSI-2 lanes, cameras were searched for that could use this interface.

D3 Engineering has an interface card that is designed to mount directly to the Nvidia AGX

Xavier that interfaces cameras over FPD-Link III and converts it to CSI-2. The interface

card attached to the Xavier is shown in Figure 3.10. FPD-Link III is a serialized protocol

that can efficiently transmit high data throughput over long distances. By doing this, it will

allow the cameras to be placed at a distance from the Xavier but having very little loss in

receiving the images.

The cameras selected, to connect to the interface card, were D3 Engineering IMX390

sensor modules as seen in Figure 3.11(b). D3 provides drivers and the core ISP pipeline

to correctly retrieve, correct for lens imperfections, auto white balance, filter, and encode

images directly from the sensor. They have a built-in FPD-Link Serializer to transmit up to

24-bit raw images at 1920x1080 at 60fps. This sensor performs well in low light conditions



33

and the sensitivity characteristics can be optimized continuously for the scenario it is in.

One of the lenses this camera comes with is a 1.83mm fisheye lens which gives 192-degree

horizontal FoV and 120-degree vertical FoV. When using this camera rotated 90-degrees in

a portrait manner, which will give a high vertical FoV, it will be able to observe the position

of the full human body from very close to the lens. This is ideal for human tracking as it will

allow for continuous tracking and virtually no blind spots. The minimum tested distance

from the lens to view the entire human is 10cm. To introduce redundancy such that the

system can operate when cameras fail, six of these cameras were used 60 degrees apart to

be able to view the human anywhere around the robot.

Lastly, custom cables were assembled for use on the UR-10 Robot. D3’s Cameras and

Xavier FPD-Link III card connect over a 50Ohm RG174 Coax cable. This cable required

a solid copper center conductor with a layer of shielding and housing as per the FPD-Link

requirement. RG174 was chosen over RG58 as it has a better signal to noise performance.

To connect to the Cameras, D3 Engineering chose to use Fakra connectors code z which

resembles the universally keyed connector. This means the code z connector will be com-

patible with all other code connectors. Because the camera and Xavier card have male

connectors, the cable must use female connectors. Because the UR-10 can span around

two meters and is approximately 1 meter off the ground, a three-meter cable would be re-

quired. To design this sensor with accessibility and modularity in mind, an additional cable

was chosen as a short extension so that one would not need to connect the cables to the

camera and would connect to the extensions instead. This short extension was a 90-degree

female Fakra connector and a regular straight male Fakra connector on the other end. This
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extension cable allowed the sensor system to be as compact as possible.

3.6 Enclosure

A CAD model was used to design the enclosure for the radar modules and camera sensors,

shown in Figure 3.12. Each part of the system was modeled including the radar modules,

the PCB, the cameras, and the camera connectors. The goal for the enclosure was to protect

the sensors, make a compact and easy to mount system, and to keep the inertia as low as

possible. Knowing this system is to be mounted on a UR10 robot’s end link, the sensor

system would need to be able to hold mounting options for end effectors on top of the

sensor. Because of this, the core of the sensor enclosure is designed out of aluminum that

will be machined to bolt onto the robot’s end link.

Figure 3.12: The CAD model of the entire assembly of the radar-camera system

The enclosure is 3D printed as it allows for unique mounting options and is lightweight

but strong. The outside was printed with a 50% infill density and 0.15mm layer height
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to ensure maximum rigidity. The material used was PLA as its ease of print, however,

ABS would have been a better material for its thermal characteristics and its increased

strength compared to PLA. Unfortunately at the time of printing, ABS was not available.

The enclosure is designed to mount to the PCB and provides easy access to the DIP Switch

and USB type C port. The CAD model was loaded on to Cura, a slicing software designed

to make G-Code for 3D printers from 3D model, shown in Figure 3.13. The model was

printed on an Ultimaker 3.

Figure 3.13: The CAD model loaded in Cura for 3D printing

Another 3D printed piece serves to protect the AGX Xavier and D3 Engineering’s FPD-

Link III breakout card and from anything shorting connections on the raw PCB, shown in

Figure 3.10. After noticing how the temperature of the radar systems gets hot, the surfaces

on the enclosure that are close to the radar modules were lined with Kapton tape, a heat

resistant tape, to prevent melting and deformation of the enclosure, see Figure 3.14.
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Figure 3.14: The radar enclosure wrapped in Kapton Tape where the radar modules sit.

3.7 Human Detection

To identify and understand the human’s presence in the robot workspace, machine learn-

ing is used to process the camera feeds which will output the location of the human. For

implementation in dSSM, not only is the location of the humans is needed but also a char-

acterization of the human’s position is also critical. As the human walks around the robot

workspace, different segments of the human may be closer or further than the body to the

robot. This additional step, to identify and locate the positions of the human body will help

increase the safety of the human and will allow the human to ultimately work closer and

for the robot to accurately move around the human. To do this, pose detection or skele-

ton tracking algorithms are used which use machine learning to output the locations of the

identified human joints. Pose detection algorithms output 2d points as they are detected on

camera frames, however, they can also output 3d depth points when using 3d sensors. In

this implementation, the pose algorithm will output 2d points and the third dimension and

velocity will be given by the radar modules.
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To identify humans using cameras, several pose detection algorithms were compared.

OpenPose, a popular open-source algorithm and widely used as its state-of-the-art two-

branch multistage CNN promises high accuracy with multiple subjects. OpenPose was

trained on the Body 25 and the COCO (common objects in context) dataset which offer

many different performances. OpenPose is able to run on a multitude of operating systems,

with and without GPU acceleration, and on embedded platforms as well. Another option is

using Intel’s Cubemos Skeleton tracking. This is a paid application that boasts high perfor-

mance with large images while running only on the CPU. One benefit is that the Cubemos

architecture is able to run efficiently on the most resource-constrained embedded devices.

Although a license is required for use of the skeleton tracking SDK, the 30-day trial license

was used for all testing. This has no impact on the performance of the algorithm. A down-

side to cubemos is that it is limited to run only on Intel processors. Another pose detection

algorithm by Intel that is open source is the OpenVino. This also runs on Intel based CPUs

but also Intel GPUs and their neural compute stick. This algorithm is based on OpenPose,

and uses a similar architecture, but uses a tuned MobileNet v1 as a feature extractor where

OpenPose uses VGG-19 [28]. The last pose algorithm tested was one by Nvidia called

Trt-Pose. This pose algorithm makes use of the TensorRT cores onboard Nvidia GPUs and

optimizes models designed in all libraries to make full use of the hardware. The base model

for this network is a resnet-18 pre-trained on COCO in PyTorch. When the network is run

on an Nvidia embedded platform, it initializes the network by optimizing the weights at

half-precision on the device to use TensorRT.
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To test these pose detection algorithms they were tested using a Flir Flea3 with a na-

tive resolution of 1280x1024 and resized to the input size for the network. The goal is

to collect the pose information directly on the Nvidia AGX Xavier either through running

the pose detection algorithms onboard the Xavier or processing them on a more powerful

machine and sending the results back. For Cubemos and OpenVino, they were run on an

Intel based desktop running Ubuntu 18.04. To ensure there was no bottlenecking of the

network, both the desktop and Xavier were set up on the same local network with a gigabit

switch dedicated for the two machines. To verify this, the link speed was tested and the

latency came out to 1000Mb/s with an average 0.32ms latency. Lastly, to ensure the pose

detection algorithm ran as efficiently as possible using every resource available to them,

all machine learning libraries required were manually built using the Nvidia CUDA and

cuDNN libraries over OpenCL when possible. These libraries were Caffe, OpenCV, Open-

Pose, Tensorflow, TensorRT, PyTorch, and Keras.

Specs of the Desktop:

Intel i7 5820k @ 3.30GHz (6 cores - 12 Logical Processors)

32GB 2133MHz Ram

Nvidia Quadro P4000 with 8GB VRam

480 GB Nvme SSD

Test 1:

The first test was to run OpenPose on a single thread capturing each frame and processing it



39

in a blocking manner. This is the simplest approach and each thread running will consume

the maximum resources.

Test 2:

The second test was to run OpenPose in a multi-threaded framework. This allowed each

frame to be pre-processed and buffered so the OpenPose algorithm would process frames

consecutively. Each frame was resized to 600x480 which should improve the framerate.

These tasks were split on their own thread.

Test 3:

The third test was to run OpenPose on the desktop that would buffer and process each

frame. To make this happen as seamlessly as possible, each frame that was captured was

encoded in *.jpg and sent over the network using ImageZMQ. OpenPose running on the

Desktop would process the compressed frame and send the pose information over ZMQ

back to Xavier. The round trip time was measured.

Test 4:

The fourth test was to run Cubemos on the desktop and similar to Test 3, transmit images

over ImageZMQ and retrieve the pose information on ZMQ.

Test 5:

The fifth test was to run OpenVino on the desktop and similar to Test 3, transmit images
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over ImageZMQ and retrieve the pose information on ZMQ.

Test 6:

The last test was to run Trt-Pose on the Xavier in a single thread capturing each frame and

directly processing it.

After averaging the values of 50 different frames, the results are clearly favorable to

Trt-Pose, as seen in Figure 3.15. The biggest contributor to OpenPose’s performance was

its inability to efficiently use the resources available. According to the OpenPose Github,

2GB of memory is needed for the COCO model which is a lot of resources Xavier does

not have especially when scaling to six camera feeds. The expected boost in performance

between the single-threaded test and the multi-threaded test because of the downsampling

of the image didn’t end up speeding the algorithm up much. This is to be estimated be-

cause of limited resources on the Xavier. Unsurprisingly, running Openpose, Cubemos,

and OpenVino on a much more powerful machine showed its performance compared to

when running on the Xavier, and this is expected. However, it was noticed that of that

time, the image compression took around seven milliseconds. The most surprising result

was Trt-Pose performing at, an average of over 50 frames, 165 frames/s. Visually, as seen

in Figure 3.16, this framerate allows capture of a moving, stationary and jumping human.

This shows how important optimizing networks for the hardware being run on and making

use of Tensor cores when possible dramatically increases the performance of the model.
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Figure 3.15: The Pose Detection Algorithms and their average processing per frame time in ms. (from left to
right) OpenPose Single Threaded, OpenPose Multi Threaded, OpenPose over the network,

Cubemos, OpenVino and Trt-Pose

(a) (b) (c)

Figure 3.16: Sample images from the output of TrtPose (a) when walking (b) when standing and (c) when
jumping. Each image is 224x224 px
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3.8 Software

The software to calcuate the 3D pose estimate was all done on the Nvidia AGX Xavier in

Python and C++. The flowchart of how it was calculated is is shown in Figures 3.17 and

3.18.

The two main data transportation layers implemented were ROS and ZMQ. ROS was

used as much of the industry uses it with support for a plethora of sensors, applications,

simulation tools, and complicated algorithms. Wherever this radar-camera sensor system

is mounted in the future, whether on an armed robot or a mobile robot, developers can

easily access the raw data and develop their own approaches to solving problems. ZMQ

is a socket-based embeddable network library that allows for extremely quick distribution

of data. ZMQ is even faster than ROS as the overhead is much less. In certain aspects,

when developing the software in sections of the processing pipeline that didn’t require

ROS, it was simpler and required less processing power to transmit data over ZMQ than

to implement ROS and access the data through it. ZMQ was implemented using a pub-

lisher/subscriber messaging pattern. Another benefit of ZMQ is that as this data is broad-

casted over sockets; it can also be accessed for further processing from other computers on

the same network.

The main objective of the software design for the radar-camera sensor system is to

calculate the 4D pose of the human as accurately and precisely with as high of a sample

rate as possible. To get the 4D pose, the radar sensors, giving out pointcloud data, and the

cameras, giving frames of data, need to be merged and then processed together.

Getting data from the radar sensors is straight forward; each of the six radar modules
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Figure 3.17: Flowchart of software pipeline to get radar data and 2D pose
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Figure 3.18: Flowchart of combining radar and pose data to create 3D pose

output pointclouds on ROS with respect to their frame of reference. To understand radar

data as a whole, their pointclouds need to be transformed according to their locations and

orientations in the radar-camera system. This required a rotation about the x-axis by 90

degrees and a rotation about the y-axis by the angle of the sensor’s placement. As the

sensors are placed 60 degrees apart, knowing which radar is in which location is key to

making sure the stitched radar data is seamless. A simple way to move a 3D point in space

is to use matrix transformations which are easy and quick to compute. (Shown Below)

rotationx(θ) =


1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 (3.7)
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rotationy(θ) =


cos(theta) 0 sin(theta) 0

0 1 0 0
−sin(theta) 0 cos(theta) 0

0 0 0 1

 (3.8)

rotationz(θ) =


cos(theta) −sin(theta) 0 0
sin(theta) cos(theta) 0 0

0 0 1 0
0 0 0 1

 (3.9)

translate(x, y, z) =


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 (3.10)

A = rotationx · rotationy · rotationz · T (x, y, z)

x′ = A[0, 3] y′ = A[1, 3] z′ = A[2, 3]

Since the point in 3D space maintains the same distance away from the sensor, the

doppler velocity information sent alongside the 3D point in the pointcloud can be preserved.

As each radar sensor has an FoV of 130 degrees, there is an overlap in radar coverage which

causes redundancy in data. Instead of deleting the data, the choice was made to preserve it.

This is because as the redundancies are separate measurements from two separate sensors,

the measurement error may not place the same point in the same place, and there is a benefit

of an increase in resolution of the pointcloud.

One thing to note is the radar sensors are not synced and pointcloud information is

received asynchronously at 10Hz. When stitching the data together, each new pointcloud

updates a buffer to the new points only overwriting that module’s data. This buffer is

sampled at 30Hz and a stitched pointcloud is published. This ensures no data is lost but
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assists the image processing algorithm to not wait for new frames. This single pointcloud

represents all the radar information from the sensor and any new algorithm that needs to

access this data just has to subscribe to the radar topic ‘/radar/scan’ on ROS and to port

7200 on ZMQ.

In the design of the radar and camera ring, each camera is placed in between each of

the radar modules offset by 30 degrees. As the cameras are rotated by 90 degrees to give

the maximum possible vertical field-of-view, the horizontal field of view of each camera is

120 degrees. For the camera’s image frames to be correlated to the radar data, the stitched

radar pointcloud needs to be sliced and transformed to match the orientation of the camera.

This is done through Procedures 3.1 and 3.2 Because each camera is 120 degrees wide,

separating the radar into six slices will not work. The stitched pointcloud needs to be

evaluated for each camera and filtered to the corresponding orientation and field-of-view.

Procedure 3.1 Calculate the angle difference
Data: θ1, θ2

Result: The difference in angle in degrees
return (θ1 - θ2 + 540) % 360 - 180

Procedure 3.2 Generate radar pointcloud mapped for each camera
Data: pointcloud, cameraID
Result: pointcloud relative to camera
foreach point in pointcloud do

θ = atan2(y,x)
i = position of camera in degrees
buffer = [ ]
if θ is in between (i ± fov of cameraID) then

add point to buffer
return buffer

end
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To do this efficiently, each point in the stitched radar pointcloud was compared to each

cameras view angle to determine which camera the point belonged to. Then each point

was transformed into the inverse transformation from the camera to radar. This inverse

transformation was derived by the CAD model to ensure its accuracy and was visualized

in Rviz, a visualizer in ROS. Each of these new pointclouds, one for each camera, was

published over ROS and ZMQ so that separate analysis of the camera and radar information

could be performed.

The processing of the camera data was done in parallel to the radar pointclouds. As

the radar data primarily used the ARM CPU on the Nvidia AGX Xavier, the camera data

was able to make full use of the onboard Volta GPU. To access the camera frames over

the CSI-2 ports, a GPU pipeline was set up using a custom-built gstreamer library for the

Xavier. Gstreamer allows one to perform simple image processing all in a pipeline before it

is encoded and accessible to the application in need. In this case, the application is OpenCV

and is tied to the end of the pipeline where the rest of the image processing will take place.

3.8.1 Un-Distortion of the Image

The first task is to un-distort the image. To do this a calibration checkerboard was used and

many images with the board were taken, seen in Figure 3.19. This checkerboard provides a

reference plane for an image processing algorithm to estimate the properties of the lens that

cause the distortion in the image. Images from the checkerboard detection can be shown

in Figure 3.20. This shows colored lines that should be parallel, but are not because of

the distortion of the image. This technique to un-distort images assumes the camera lens
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is a pinhole which allows the use of the Zhang’s method to solve for a linear system that

describes the lens camera system.

(a) (b) (c)

(d) (e)

Figure 3.19: Several of the images used for calibrating the fish-eye lens

(a) (b) (c)

(d) (e)

Figure 3.20: Images after locating the checkerboard and drawing lines across

K =

αx γ u0
0 αy v0
0 0 1

 (3.11)

The calibration matrix in equation 3.11 contains the intrinsic characters that will be used

to undistort the image. In it are the focal length, characteristics about the pixel size, the
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principal points, and the skew coefficient between the x and y-axis which are discribed by

αx, αy, γ, u0, and v0. To perform the undistortion, OpenCV has several methods. Recently,

in versions 3.0 and greater, OpenCV has a fisheye library that has a better, more repeatable,

methodology to calculate the mapping from a distorted frame to an undistorted one. This

was used to calculate the calibration matrix and the mapping of each camera system.

To use the calibration matrix and the distortion coefficients, it needs to be scaled to

the image size being used. During the calibration matrix, the image center is calculated

with respect to the input image from the camera. When the input image that needs to be

undistorted is scaled, so does the mapping. This knowledge was not found in the OpenCV

documentation for undistorting images and was learned through much trial and error.

3.8.2 Pose Detection and creation of 3D Pose

For each image to be passed through the pose detection algorithm, it needed to be sized as

a 224x224 square image, the size of the input layer for Trt-Pose. To achieve this, the image

was first resized to 224x280 and, after the distortion correction, was cropped to 224x224.

This kept the horizontal FoV of the image constant which is crucial for mapping the radar

data onto the image without skewing the vertical axis of the image.

x′ =
(x ∗ αx)

z
+ u0 y′ =

(
y ∗ αy

)
z

+ v0 (3.12)

After the pose detection algorithm was run, the pose data and the radar data were pro-

jected onto the image. To project the radar data, the calibration matrix was used again.

This is described by the set of equations in 3.12. Because it tells the properties of the
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lens/camera system in a linear system, it can be used to project 3D points in space onto a

2D plane, shown in Figure 3.21.

(a) (b)

Figure 3.21: Radar data being projected onto the camera frames. (a) Opening up arms increases the number
of radar detections on the arm (b) The right leg is moving in an upward kicking manner and the

detections also increase. The stray points are from other detections/reflections

(a) (b) (c)

Figure 3.22: Once overlaying the pose information, the accuracy of the pose and radar become evident.

Once having the projected radar data and the pose data relative to the same frame of

reference, seen in Figure 3.22 and 3.23, a k-nearest-neighbors search on the radar data for

each pose data will output the estimated pose data in 4D (3D point + velocity). A k-nearest-

neighbors search is a process to locate the k closest points in a pointcloud without having



51

(a)

(b)

Figure 3.23: Here a 360 degree image of overlayed radar and pose data is shown showing the accuracy of
the pose estimation and radar data. One key benefit is highlighted as there will always be two

humans detected at all times for each human in the real world.

to do an exhaustive search. This was implemented using the sklearn library. The premise

is to build a tree on the radar data and query it with the pose data. The output is a list of

k points closest to each pose location. For initial testing, K=1 was used to understand the

behavior and was increased to K=3 to smoothen the result. As there were few radar points

at certain samples, there would be issues in finding the closest radar points as there would

be high error. This was fixed by using the last five published radar data points aggregated

through a rolling buffer, and used for building the k-d tree. Using the closest radar points,

the velocity and depth information was inherited by the pose point which makes a 3D point.

3.8.3 Future calculations

Calculating the minimum separation distance between the robot and the human requires

both the pose of the human and the location of each joint of the robot. An easy assumption

to make is to get the distance of each joint in the human with respect to the radar-camera
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system. When the radar-camera system is mounted to the end effector of the UR10 robot,

all the distances and velocities are with respect to the end effector of the robot and not to

the robot itself. To better understand the shape of the robot, a pose like analysis of the robot

needs to be done, also known as kinematics of the robot. To do this, the kinematics of the

robot are taken directly by communicating to the robot and each joint angle is converted to

joint locations of the six degree of freedom robot. Putting all these points together generates

a pose pointcloud of the robot. Here, another k-nearest-neighbors approach can be used to

find the closest distance from the human pose and the robot pose.
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Chapter 4

Results

The radar camera sensor system was mounted on a UR-10 robot, seen in Figure 4.1, and

tested in multiple scenarios for its accuracy and precision in detecting a human in the

workspace. As the primary implementation of this sensor system is to be used for dSSM,

the sensor needs to understand the position of the human as well as the velocity. For the

baseline measurements of the human in the workspace, an OptiTrack motion tracking sys-

tem was used. This system is capable of tracking objects at 120 fps with a resolution of

+/-0.1mm [29]. To track the human, a body suit was used that has retro-reflective markers

allowing every joint on the human to be tracked. The motion tracking software by Opti-

Track allows for a human pose estimation when it identifies the marker skeleton and will

allow one to access the skeleton pose data through its SDK. There is a difference between

the Optitrack skeleton and the pose estimate skeleton as the reported points are not in the

same location. To simplify the estimation for accuracy, the outliers were discarded. The

joints in each pose are seen in Figure 4.2.

All the data from the radar, pose-estimation and OptiTrack were merged into ROS to

visualize in a single frame of reference and to easily view the results. ROS published all

the data every 30Hz.
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Figure 4.1: The sensor mounted on the UR-10 with a gripper attachment

(a) (b)

Figure 4.2: The pose data from (a) TrTPose vs (b) OptiTrack
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4.1 Static testing conditions

The first test is to understand how well the radar camera system performs when both the

human and the robot are stationary. These will be difficult for the sensor as the radar is

configured to be sensitive to velocity changes and when there are no moving objects in the

field of view, it will assume the object is background noise. Both the radar sensor and the

pose estimation algorithm rely on movement in the workspace to update its estimation. To

show this, the human was still in the workspace as the radar detections were monitored,

as seen in Figure 4.3. However stray noise from the environment in the signal threshold

causes detections not related to the human. This is shown to be a contributing factor to a

minimum number of detections in the robot’s workspace. In the static tests it was eight.

As the human tries to stay still for the duration of the experiment, there are velocity spikes

become evident ranging in 15cm/s velocities. These signals could be tied to breathing rate

or heart rate of the human but currently this has not been tested.

Figure 4.3: This shows as the velocity of the human comes to a standstill, there still are radar detections. Sps
(Samples per second)
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When observing the data, while the human moves, there was an at least -0.20m (20cm)

consistent deviation between the radar system’s pose estimate and the OptiTrack system.

When the data captured was replayed though Rviz, ROS’s 3D visualizer, it was apparent

that this was not an issue with the sensor but a limitation of the system altogether. When

the OptiTrack provides a skeleton pose estimate, it uses the center of the human body for

this. The radar system on the other hand can only detect the front surface of the human

closest to the robot and as the pose estimate fits to this, it will be off by 0.2m. The pose

error was calculated by subtracting the joint position estimate from the Optitrack, adding

the 0.2m offset and averaging the error.

For the 3D pose estimate, because it uses the last known position of the human, when

the radar detections disappear, the estimate starts to develop a chaotic behavior. As the

estimation is fitting the pose data onto the radar data, any stray radar detections will quickly

move the pose estimate to the stray detections and subsequently increase the error of the

pose estimate. This is seen in Figure 4.4 a.

(a) (b)

Figure 4.4: (a) As the human slows down, the pose error increases significantly (b) Shows the pose estimate
(blue) behind the human’s actual pose (red) .



57

4.2 Human Moving, Robot Stationary

In situations where the human is not moving, there is a significant improvement in the

detection and tracking of the human. To understand this better, three tests were designed to

show how the movement around the workspace affects the accuracy of the tracking. One

test requires the human to walk in a straight line at a constant velocity parallel to the robot

and return on the same trajectory, shown in Figure 4.5a. This will test for tracking ability in

a predictable manner. Next a more dynamic double figure-eight, seen in Figure 4.5b, was

performed which includes movements toward and away from the robot and sensor system.

The pseudo-random movement will show if the direction of movement has any affect on the

tracking. Both of these tests are designed to take 10 seconds per lap which was maintained

as best as possible.

(a) (b)

Figure 4.5: The tests (a) Straight Test vs (b) Double Figure-8 with respect to the robot

4.2.1 Straight Test

When looking at the stationary test, there is an offset that needs to be applied when compar-

ing the pose from the OptiTrack to the pose estimation from the radar-camera system. This
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offset should not affect the velocity of the human but because the velocity measurement is

calculated radially, there is a slight difference between the measurement of the human and

what can be calculated from the OptiTrack data. This effect gets more noticeable when the

human is closer to the sensor than when further away as the estimate is greater than the

OptiTrack. This was most noticeable with the double figure eight movement. On average

the velocity estimate was within 5% deviation, however, the radar and the OptiTrack could

correctly detect when the human had stopped moving without any error.

The straight line path was another difficult task for the pose estimation of the human

as the pose had to be determined with the narrowest profile of the human. Unfortunately

when the human becomes the narrowest directly in front of the camera there is no pose

information however there is still radar data. The radar system on the other hand was able

to keep track of the human throughout the test without much losses. This straight line

showed an increase to the number of points per pointcloud frame to 140 from 20 when the

human was stationary. Not only was the pose detection much more stable but visually, in

ROS, one can visually outline the human, its legs and hands.The pose estimation had a 30%

loss in frames but was able to be within 10cm of OptiTrack.

Figure 4.6 shows the frames lost as the human walks by the robot in the straight line test.

The biggest deviations are shown clearly when the number of lost frames over time jumps.

These jumps correlate to when the human walks in front of the camera as It finds difficulty

detecting the pose. There are two jumps as one for each direction of travel. Compared

to the camera’s, throughout this test, the radar system was able to track the human. To

calculate its error, the OptiTrack pose locations were used to see how well it could have
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Figure 4.6: The frame losses as the human walks by the robot in the straight line test.

performed without the pose from the cameras. The OptiTrack pose locations were passed

into the same kNN, with K=3, that estimated 3D pose but with a tree constructed from the

full stitched radar pointcloud. The average of the points were recorded and compared to

the OptiTrack pose.
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Figure 4.7: The comparison between the radar’s accuracy and the human pose estimation compared to
OptiTrack for the straight line test.

In the straight line test, the radar’s estimation of where the human was, was better than

the pose estimation for certain joints. For certain joints, the radar could not detect the

points. This is because as the human walks by, it only detects the closest points on the

human which can be far from the other locations. On the other hand, the pose estimation

did well trying to fit the pose on to the human, however for certain joints the standard

deviations was high. These inaccuracies were due to the missed frames from the pose

detection. The mean and standard deviations were averaged for all the pose joints and are

shown in Table 4.1. The radar was more precise in its measurements but was less accurate

than the pose estimation.
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Table 4.1 The mean and standard deviation for the pose detection for all joints for the straight line test.

Pose Radar

Mean

min 0.1717 0.2997

avg 0.3038 0.5008

max 0.5440 0.7483

Std

min 0.0918 0.0918

avg 0.3268 0.1855

max 0.8940 0.2658

4.2.2 Double Figure-Eight Test

During the figure eight test in Figure 4.8, the results from the error of the pose and the

radar system looks to be identical. The radar stays consistent for each joint as the human

is the same in the test as well as the path of the human should not affect the accuracy. On

of the biggest differences is the number of dropped frames for the pose detection which

changed from 33% down to 15%. There is still frame drops when the human’s side profile

is visible to the robot. Also for the pose detection, the standard deviation of error increases

for every joint as seen in Table 4.2. This shows that the more random nature of the human’s

movement causes increases errors in each of the joints.
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Figure 4.8: The comparison between the radar’s accuracy and the human pose estimation compared to
OptiTrack for the double figure-eight test.

Table 4.2 The mean and standard deviation for the pose detection for all joints for the double figure-eight
test.

Pose Radar

Mean

min 0.3208 0.2953

avg 0.3765 0.4884

max 0.5564 0.7443

Std

min 0.4730 0.1254

avg 0.6144 0.1920

max 0.9426 0.2750
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4.2.3 Velocity Measurements

One of the benefits to having a radar module is the velocity calculation does not depend on

time between samples as the radar module directly estimates velocity. Also straight from

the configuration, velocity measurements are in SI units (m/s) which is consistent with how

the OptiTrack’s position estimated are calculated. To understand the velocity of each joint

in the pose, the closest three detections to each joint from the radar are averaged to get

the velocity of the joint. Because the radar measures velocity toward and away from the

robot, understanding the radar’s estimate for the human’s true velocity is more difficult. An

depiction of the velocity measurements are shown in Figure 4.9.

Figure 4.9: The green arrow is the actual human velocity and the red arrow is the velocity perceived by the
radar

To compensate for this discrepancy, the OptiTrack’s velocity was calculated with respect

to the sensor on the robot. This allowed for direct comparison in the error.
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Figure 4.10: The velocity of the humans as it performs the straight test. The oscillation shows the as the
human comes closer to the robot and moves further away.

In the straight line test, the human walked at a consistent velocity for each pass. Look-

ing at Figure 4.10, it is clearly shown how the human walks as the velocity oscillates as

the human gets closer to the robot and further away. In fact, each period of the velocity

determines one pass as the human moves from left to right or vice-versa in Figure 4.5. The

root mean-squared error (RMSE) is 0.0035 m/s between the radar and the OptiTrack’s ve-

locity estimate. Also there is noticeable noise on the straight line test which could be as the

human walked, the arms were swinging which gave irregular velocities.

In the double figure-eight test in Figure 4.11, the more chaotic velocity movements

outline the complicated nature of the motion. In this test, the magnitude of the velocity is

shown to be less than from the straight line test. Here, the OptiTrack’s velocity estimate

is greater than the radar’s measurement. What is noticeable is how the zero-crossing for

the graph lines up showing the accuracy of the radar’s measurements. Lastly, the RMSE is

0.0034 m/s between the radar and the OptiTrack’s velocity estimate.
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Figure 4.11: The velocity of the humans as it performs the double figure-eight test

4.3 Human Moving, Robot Moving

The last scenario is a fully dynamic test where both the robot and the human move around.

For the robot, a simplified simple pick and place movement was programmed onto the

UR10 and ran at three separate speeds: 20, 60 and 80 degrees per second. For the human,

the same tests were performed where the human was stationary, moved in a straight line

and moved in a double figure eight.

Immediately what is noticeable is the radar sensor detects the environment much more

as in Figure 4.12. This is separate from getting a doppler effect in the transmission and

receiving of the radar chirp. The increase in detections are due to valid readings in the real

world as the radar moves around. One way to mitigate this is to increase the threshold for

CFAR in the radar, however, this can not be changed on the fly and needs the radar module

to be rebooted. The current approach for human detection does not work as well because the

additional environmental data becomes addition noise to filter. Using the kNN’s approach
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Figure 4.12: The background noise as the robot moves the camera-radar sensor

allows a simple way to fit the pose onto the radar data but the radar data can not understand

what is human and what is not. As the data is squished and merged, the closest point

no longer belongs to the human and this brings additional error into fitting the pose on

the human. The following tests were all performed using the same approach as for the

stationary tests.

Figure 4.13: Velocity from the radar measurements and OptiTrack system with the robot moving at 20◦/s

When the robot moves at 20 degrees per second, the current approach for pose detection

is still feasible, but with an increase in pose error and velocity error, shown in Figure

4.13. The faster the robot moves, the larger the error becomes and the harder it is to detect
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the human. At 60 degrees per second, the human is detectable but the pose location has

an increased error. At 80 degrees per second, the detection of the human starts to fail

as the number of frames the pose was detected decreases significantly. This signifies the

capabilities of the radar system and the camera system separately. As the radar has difficulty

differentiating what is human and what is the environment, the camera does as well.

Figure 4.14: The Pose and Radar error as the robot moves at 20◦/s

Table 4.3: Data from Figure 4.14

Pose Radar

Mean
min 0.4738 0.4111
avg 0.6040 0.6505
max 0.8993 0.9903

Std
min 0.0176 0.2285
avg 0.1544 0.2723
max 0.5991 0.3178
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While the robot moves at 20 degrees per second, the average pose and radar error in-

crease together, shown in Figure 4.14 and Table 4.3. This is more than when compared to

the stationary tests in Table 4.1 and 4.2. For a pose error of 0.6m, humans are able to get

close to the robot with it understanding where the human might be. This paired with the

velocity estimates in Figure 4.13, reaffirms that the human is still trackable at slow robot

speeds.

Figure 4.15: The Pose and Radar error as the robot moves at 60◦/s

Table 4.4: Data from Figure 4.15

Pose Radar

Mean
min 0.4665 0.4754
avg 1.0318 0.7254
max 1.9900 1.0694

Std
min 0.0767 0.1806
avg 0.8322 0.2424
max 2.1317 0.2872
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When analyzing the pose detection at 60 degrees per second, in Figure 4.15 and Table

4.4, there is a considerable amount of error in the pose, however the radar can track the

human to a similar accuracy as when the robot moved at 20 degrees per second. For the

first four joints, there is an increase to the average error in the 3D pose estimation where it

surpasses the radar’s error.

Figure 4.16: The Pose and Radar error as the robot moves at 80◦/s

Table 4.5: Data from Figure 4.16

Pose Radar

Mean
min 0.7578 0.4731
avg 1.0218 0.7099
max 1.3050 1.0200

Std
min 0.0431 0.2082
avg 0.2490 0.2411
max 0.6094 0.2716

Lastly, understanding the pose detection as the robot moves at 80 degrees per second
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shows that there are significant errors in the 3D pose estimation. In Figure 4.16 and Table

4.5, there is a increase in magnitude for the pose error for all joints, however, the radar

error stays around the ballpark of the error when the robot moved at 60 and 20 degrees per

second. One noticeable difference between the last two operating speeds of the robot is

at 60 degrees per second, the camera is able to detect the pose more often but incorrectly

place the pose, where as at 80 degrees per second the robot the camera is unable to place

the pose altogether. This would explain the decrease in standard deviation between the two

operating speeds while the mean increases. Counting the frames lost shows that 55% of the

frames were lost at 80 degrees per second where as only 38% were lost at 60 degrees per

second.

As seen, the camera starts to fail as the speed increases while the radar is able to detect

the human thought the motion of the tests. Visually, through ROS, the radar seems to pick

up the human much more even as the human changes it’s velocity, shown in Figure 4.17.

This shows that an ideal 3D pose estimation using a camera and radar system should rely

on camera estimates for lower robot speeds and radar estimates at higher speeds. During

the dynamic tests, blind spots were decreased significantly as the pose is able to be detected

from multiple angles as the robot moves around. The data suggests that this sensor system

can be used for many purposes as its accuracy and precision in detecting a 3D pose of a

human is on of its strengths.
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(a)

(b)

(c)

Figure 4.17: Pose 3D estimate viewed with ROS as the robot moves at (a) 20◦/s (b) 60◦/s (c) 80◦/s
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Chapter 5

Conclusions

The designed radar-camera system is an effective tool to assist with the safety in human-

robot collaborative applications. It brings forth a more comprehensive methodology to

understand where the human is in the workspace, along with how fast it moves. This sensor

system was extensively tested in static and dynamic scenarios for both the human and the

robot and it performed satisfactory in all. Its use of industry ready sensors allows it to be

easily constructed for deployment in industry. It is able to be mounted to a wide variety of

robots including robot arms and mobile robots. Its compact nature and light weight allows

for easy implementation in existing robots without much modification. And the data it

receives allows for extensive research and better understanding of how to integrate humans

in a robot’s workspace. This sensor system is one of a kind and will change human robot

collaboration altogether.
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Chapter 6

Future Work

Because this sensor system has much to offer, in terms of capabilities and data, there is

additional research that can be performed in a variety of fields including, but not limited to,

autonomous driving, mobile robot exploration, human behavior identification, and human

task recognition. The idea that this sensor can be treated as two independent 360 degree

sensors that can be interfaced separately, allows for even more possibilities. Having a

wide angle 360 degree camera can allow for the development of new algorithms in image

processing. Having a 360 degree radar can help with high accuracy occupancy detection.

Currently, the sensor system can be improved further in terms of efficiency and in dy-

namic workloads (where the human and the robot are moving). One can perform post

processing of the radar data before stitching it: filtering out environment noise and keep-

ing just the human information. Also one can incorporate the signal to noise ratio data in

processing to increase the accuracy of the detections.

Currently all the radar modules are tuned for identifying where the human is but because

there is overlap in the sensor readings, every other sensor can be serving a different purpose.

These radar modules can be tuned to read bio signals of a human from breathing rate

to heart rate. If half of these sensors were to be used, possibly this radar sensor could
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understand where the human is and how the human feels in the robotic workspace. This

would give more information to the robot allowing it adapt its motion to make the human

feel safer in the workspace.

For this sensor system, one can take the raw radar data and camera data and train a

machine learning network to process human pose. This will significantly reduce the pro-

cessing time and increase the framerate of the sensors. The model can also be tuned to

adapting for movements of the sensor system, which the current process struggled to per-

form well in. Once this is developed, it can be ported to run on the existing Nvidia Xavier

making full use of the tensor cores and portable nature of the system.

Lastly, this radar-camera on-robot system doesn’t need to be the only sensor in the

workspace of the robot. If integrated with Lidar systems or external depth cameras, the

precision of the human tracking will significantly increase. A dataset can be created im-

plementing as many sensors as possible to give researchers as much data as they need to

find solutions to the next problems. And one day humans will be able to work right next to

robots, assisting us and making our lives easier.
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