
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

11-2020

The Role of Sonification as a Code Navigation Aid: Improving The Role of Sonification as a Code Navigation Aid: Improving

Programming Structure Readability and Understandability For Programming Structure Readability and Understandability For

Non-Visual Users Non-Visual Users

Khaled L. Albusays
kla3145@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Albusays, Khaled L., "The Role of Sonification as a Code Navigation Aid: Improving Programming
Structure Readability and Understandability For Non-Visual Users" (2020). Thesis. Rochester Institute of
Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10672&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10672?utm_source=repository.rit.edu%2Ftheses%2F10672&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

The Role of Sonification as a Code Navigation Aid:

Improving Programming Structure Readability and

Understandability For Non-Visual Users

by

Khaled L. Albusays

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

November, 2020

The Role of Sonification as a Code Navigation Aid:

Improving Programming Structure Readability and

Understandability For Non-Visual Users

by

Khaled L. Albusays

Committee Approval:
We, the undersigned committee members, certify that we have advised and/or supervised
the candidate on the work described in this dissertation. We further certify that we have
reviewed the dissertation manuscript and approve it in partial fulfillment of the requirements
of the degree of Doctor of Philosophy in Computing and Information Sciences.

Dr. Matt Huenerfauth Date

Dissertation Advisor

Dr. Stephanie Ludi Date

Dissertation Committee Member

Dr. Vicki L. Hanson Date

Dissertation Committee Member

Dr. Kristen Shinohara Date

Dissertation Committee Member

Dr. Jai Kang Date

Dissertation Defense Chairperson

Certified by:

Dr. Pengcheng Shi Date

Ph.D. Program Director, Computing and Information Sciences

ii

iii

© 2020 Khaled L. Albusays

All rights reserved.

The Role of Sonification as a Code Navigation Aid:

Improving Programming Structure Readability and

Understandability For Non-Visual Users

by

Khaled L. Albusays

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Ph.D. Program in Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

Integrated Development Environments (IDEs) play an important role in

the workflow of many software developers, e.g. providing syntactic highlighting

or other navigation aids to support the creation of lengthy codebases. Unfor-

tunately, such complex visual information is difficult to convey with current

screen-reader technologies, thereby creating barriers for programmers who are

blind, who are nevertheless using IDEs.

This dissertation is focused on utilizing audio-based techniques to assist

non-visual programmers when navigating through large amounts of code. Re-

cently, audio generation techniques have seen major improvements in their

capabilities to covey visually-based information to both sighted and non-visual

users – making them a potential candidate for providing useful information,

especially in places where information is visually structured. However, there

iv

v

is little known about the usability of such techniques in software development.

Therefore, we investigated whether audio-based techniques capable of providing

useful information about the code structure to assist non-visual programmers.

The major contributions in this dissertation are split into two major parts:

The first part of this dissertation explains our prior work that investigates

the major challenges in software development faced by non-visual programmers,

specifically code navigation difficulties. It also discusses areas of improvement

where additional features could be developed in order to make the programming

environment more accessible to non-visual programmers.

The second part of this dissertation focuses on studies aimed to evaluate

the usability and efficacy of audio-based techniques for conveying the structure

of the programming codebase, which was suggested by the stakeholders in Part

I. Specifically, we investigated various sound effects, audio parameters, and

different interaction techniques to determine whether these techniques could

provide adequate support to assist non-visual programmers when navigating

through lengthy codebases. In Part II, we discussed the methodological as-

pects of evaluating the above-mentioned techniques with the stakeholders and

examine these techniques using an audio-based prototype that was designed

to control audio timing, locations, and methods of interaction. A set of de-

sign guidelines are provided based on the evaluation described previously to

suggest including an auditory-based feedback system in the programming envi-

ronment in efforts to improve code structure readability and understandability

for assisting non-visual programmers.

Acknowledgments

I would like to express my sincere gratitude to my co-advisors, Drs. Stephanie

Ludi, and Matt Huenerfauth for their endless guidance, encouragement, and

patience during my doctoral studies. It was a great pleasure to work under

their supervision and learn from each one of them. I could not have imagined

having a better co-advisors and co-mentors other than Drs. Stephanie Ludi,

and Matt Huenerfauth.

I would also like to thank my dissertation committee members, Drs. Vicki

Hanson and Kristen Shinohara for serving on my committee as well as their

encouragement and insightful feedback.

Last but not least, I would like to thank Dr. Pengcheng Shi for his contin-

uous support and valuable advice through my doctoral studies.

vi

To my father, Lafi, my first inspiration, whom I wish he is here today to

share this special moment with me.

To my mother, Aisha, my first teacher, whose love, prayers, and

encouragement makes me able to get such success and honor.

To my wife, Atheer, whose love and confidence is a constant source of

inspiration.

And to my siblings, for their endless love, support, and encouragement.

vii

Contents

List of Figures . xv

List of Tables . xix

1 Introduction 1

1.1 Introduction . 1

1.2 Overview of This Dissertation 3

1.3 Research Questions . 5

1.3.1 Part I: Understanding Requirements and Needs of Non-

visual Programmers . 6

1.3.2 Part II: Methodological details of Sonification to Aid

Code Navigation For Non-Visual Programmers 7

1.4 Dissertation Organization . 8

Part I: Understanding Requirements and Needs of Non-Visual

Programmers 10

Prologue to Part I 11

viii

CONTENTS ix

2 Background and Prior Work on Programming Challenges 13

2.1 Code Navigation . 14

2.2 Programming Challenges . 15

3 Programming Challenges 17

3.1 Introduction . 17

3.2 Research Questions . 18

3.3 Methodology . 18

3.3.1 Survey Design . 18

3.3.2 Sampling . 19

3.3.3 Procedure and Response Rate 20

3.3.4 Participants . 20

3.4 Results . 21

3.4.1 RQ1a: Developer Background 21

3.4.2 RQ1a: Development Tools & Platforms 22

3.4.3 RQ1b: Assistive Technology 23

3.4.4 RQ1c: Open-Ended Responses 25

3.4.4.1 Limited Accessibility Aids in IDEs 25

3.4.4.2 Code Navigation 26

3.4.4.3 Diagrams . 28

3.4.4.4 Debugging & User Interface Layout 29

3.4.4.5 Seeking Sighted Assistance 29

3.4.4.6 RQ1d: Workaround Techniques 30

CONTENTS x

3.5 Limitations . 31

3.6 Conclusions . 31

4 Code Navigation Difficulties 33

4.1 Introduction . 33

4.2 Research Questions . 34

4.3 Methodology . 35

4.3.1 Interview Design . 36

4.3.2 Participants . 37

4.3.3 Procedure . 38

4.3.4 Data Analysis . 40

4.4 Results . 42

4.4.1 RQ2a: Code Navigation Challenges 42

4.4.2 RQ2b: Tools in Software Development 48

4.4.2.1 Assistive Technologies 49

4.4.2.2 Development Languages & Tools 53

4.4.3 RQ2c: Programming Strategies 54

4.5 User Needs . 60

4.6 Limitations . 65

4.7 Conclusions . 66

Epilogue to Part I 69

CONTENTS xi

Part II: Methodological details of Sonification to Aid Code

Navigation For Non-Visual Programmers 72

Prologue to Part II 73

5 Background and Prior Work on Audio Programming and Soni-

fication 75

5.1 Sonification and Interaction in Programming 78

5.2 Accessing Mathematical Symbols via Audio 82

5.2.1 Conveying Depth of Brackets in Equations 82

5.2.2 Mathematical Formulas 83

5.2.3 Spatial Sounds in Mathematics 84

5.3 Converting Visual Graphs to Sound 85

5.4 Representing Menus or Outlines 86

5.4.1 Designing Audio Cues 87

5.4.2 Limits of Understandability of Non-Speech 89

5.5 Discussion of Prior Work . 91

5.6 Limitations of Prior Work . 93

6 Formative Study 94

6.1 Background and Introduction 94

6.2 Research Questions Investigated in this Chapter 97

6.3 Methodology . 97

6.3.1 Stimuli Preparation . 98

CONTENTS xii

6.3.2 Recruitment and Participants 101

6.3.3 Procedure and Questions 102

6.4 Results . 103

6.4.1 Timing of Audio Cues about Code Structure 104

6.4.2 Speech-Based vs. Non-Speech Audio Cues 105

6.4.3 Conveying Code Structure with Audio Properties 107

6.5 Discussion . 109

6.6 Summary and Limitations . 110

7 Experimental Study 112

7.1 Background and Introduction 112

7.2 Research Questions Investigated in this Chapter 114

7.3 Methodology . 115

7.3.1 Stimuli Preparation and Prototype 116

7.3.2 Recruitment and Participants 123

7.3.3 Procedure and Questionnaire 124

7.4 Results . 126

7.5 Discussion . 132

7.6 Summary and Limitations . 134

Epilogue to Part II 136

8 Limitations and Future Work 140

8.1 Limitations and Future Work 140

CONTENTS xiii

8.1.1 Part I: Limitations and Future Work 141

8.1.2 Part II: Limitations and Future Work 142

9 Summary and Contributions 145

9.1 Summary of the Contribution of This Research 146

9.1.1 Part I: Programming Challenges and Code Navigation

Difficulties . 146

9.1.2 Part II: Usability of Audio-based Techniques 147

9.2 Conclusion and Final Comment 150

Bibliography 152

Appendices 172

A IRB Approval Forms 173

B Survey Questionnaire 177

B.1 Survey Questionnaire . 178

C Interview Questionnaire 185

C.1 Interview Questionnaire . 187

D Formative Study Questionnaire 189

D.1 Example Script and Questions for Semi-Structured Interview,

with Links to Audio Samples 192

D.1.1 Script for the Interviewer 194

CONTENTS xiv

E Larger Study Questionnaire 201

E.1 Example Script and Questions for the Audio-based Interaction

Techniques Experiment Study 204

E.1.1 Script for the Interviewer 205

F Supplementary Study Materials 217

F.1 Materials Description . 217

F.2 To run the Prototypes . 218

List of Figures

1.1 This figure shows IDE specific features which rely mostly on

user vision. 3

1.2 In this figure, we demonstrate the type of nested code that

participants are having difficult time understanding with current

screen-reader technologies. 5

2.1 This figure shows an overview of the code bubble metaphor:

(a) user opens a bubble through the search box, (b) bubble

displayed, (c) users opens two or more bubbles side-by-side, (d)

large set of bubbles with a (f) bubble references, (e) an overview

is displayed in the panning bar, (g) hover preview less. [21] . . 15

3.1 The number of participants in regard to visual acuity. 21

3.2 Software Development Tools Used by Participants in This Study. 23

xv

LIST OF FIGURES xvi

3.3 In this figure, we show an exmaple of Braille Display device

used by users with visual disabilities to access information on

the computer display. 24

4.1 A participant using JAWS with an 80-cell Brilliant Braille Dis-

play, while programming in Java using the Eclipse Integrated

Development Environment (IDE). 51

7.1 For-loops code sample. 116

7.2 While-loops code sample. 117

7.3 Mix of for-loops with one while-loop code sample. 117

7.4 In this figure, we show an example of how the for-loop portion

will be time-stamped based on three different levels. To create

the audio file annotation, it was necessary to listen to the com-

puter voice recording while watching the codebase at the same

time in order to track the computer voice recording, i.e., change

a particular level to another level. 119

7.5 In this figure, we show an example of how inserting a sound effect

into the computer audio recording with 10 milliseconds delay

(pause) would result in changing the original audio recording

time-frame. In this example, sound effects could be anything

from the speech sound category, non-speech sound category or

spatial of sound category. 121

LIST OF FIGURES xvii

7.6 This figure shows the process of inserting sound effect into the

code sample recorded version using Audacity software. 121

7.7 Overview of the JavaScript function for the on-demand prototype.123

7.8 Percentage distribution of participants’ responses on the ease

of using the three conditions (e.g., control, on-demand, and

automatic). 127

7.9 Percentage distribution of participants’ responses on the conve-

nience of using the three conditions (e.g., control, on-demand,

and automatic). 127

7.10 Percentage distribution of participants’ responses on how helpful

the three conditions (e.g., control, on-demand, and automatic)

when working on a computer programming code. 128

7.11 Percentage distribution of participants’ responses on the ease

of completing a task conducted to evaluate the three conditions

(e.g., control, on-demand, and automatic). 129

7.12 Percentage distribution of participants’ responses on how frus-

trated they were when completing an evaluation task using the

three conditions (e.g., control, on-demand, and automatic). . . 129

7.13 Percentage distribution of participants’ responses on under-

standing the current location in the nested code (e.g., code

sample) using the three conditions (e.g., control, on-demand,

and automatic). 130

LIST OF FIGURES xviii

A.1 IRB Decision Form for “Understanding the major programming

challenges in software development”. 174

A.2 IRB Decision Form for “Interviews about code navigation diffi-

culties”. 175

A.3 IRB Decision Form for “Evaluating the usability of audio-based

techniques”. 176

List of Tables

3.1 Level of expertise in various programming languages 24

4.1 List of navigation difficulties and number of participants who

mentioned each during interviews; the difficulties are sorted

based on this number. 43

4.2 Number of participants in our study using various operating

systems, assistive technologies, programming languages, and

programming editors. 55

7.1 List of scale-based questions used in the larger study. 124

xix

Chapter 1

Introduction

1.1 Introduction

An Integrated Development Environment (IDE) is software which integrates a

text editor, file management, compiler, and other tools to promote an efficient

workflow for modern computer programmers [30]. IDEs play an important role

in the modern software development process, especially when creating lengthy

codebases [45]. The text editors in these systems often include visual aids that

use indentation to indicate scope level, different colors for syntax highlight-

ing, and various other features to help programmers understand their code

structure and navigate through it more easily (Figure 1.1) [7]. Unfortunately,

such complex visual information is difficult to convey with current assistive

technologies (e.g., screen-readers) [12,52,68], creating barriers for non-visual

programmers [3,47], who are nevertheless using IDEs, as we learned in a study

1

CHAPTER 1. INTRODUCTION 2

in Chapter 3.

To access the computer display, blind users tend to use screen-reader tech-

nologies [49], which were designed to present information linearly (one line at

a time), assuming that the software or the website is designed to accommodate

the screen-reader technology [16,19]. In the case of programming, screen-reader

technology reads system menus, dialog boxes, tree views of code structure, as

well as provides access to other system features [47].

Prior research on blind programmers has found that the information con-

veyed through visual metaphors in IDEs are often not conveyed by screen-

readers [9], which creates challenges for blind programmers [48, 75], putting

them at a disadvantage when compared to their sighted peers [35, 58]. In fact,

programmers who are blind, who are using screen-reader technologies, have ac-

cess to fewer advanced IDE features for quickly moving through large amounts

of code, often forcing them to navigate code line-by-line or jump to different

locations using “find/search” features [9]. Furthermore, blind programmers

also have difficulty understanding structural relationships quickly [58,77,82],

which prevent them from getting an overview of the entire programming code-

base [59].

CHAPTER 1. INTRODUCTION 3

Figure 1.1: This figure shows IDE specific features which rely mostly on user
vision.

1.2 Overview of This Dissertation

In this research, we investigated different ways to utilize audio-based tech-

niques to assist non-visual programmers in understanding the structure of a

programming codebase, mainly to ease code navigation. Specifically, we evalu-

ated various sound effects (produced based on speech, non-speech, and spatial

location), with modified parameters, and different interaction techniques to

convey the structure of the programming codebase. This dissertation intends

to answer the big research question:

CHAPTER 1. INTRODUCTION 4

How can we select specific audio interaction techniques, and best

set their parameters, to best convey structural information about

the programming codebase to assist non-visual users?

In our work [4,5], we explored a broad set of issues, and participants listed

navigating through the code and understanding its structure as key concerns,

especially nested code. By “nested code”, we refer to a code that performs a

particular function and that is contained within another code that performs

a border function, e.g., a loop within a loop, an inner loop within the body

of an outer one (see Figure 1.2 for explanation). To understand how the code

is nested, most blind programmers tend to go over the code many times until

the entire code structure (nesting) is conveyed. This is due to the nature of

the screen-reader technologies and how it making users feel isolated to only

one line of code (or text) at a time. In this research, we examined different

design dimensions in order to generate useful design guidelines for employing

an auditory feedback system into the programming environment to assist

non-visual programmers. Specifically, we investigated different audio-based

techniques and whether they could convey the nested structure of code lines,

e.g., depth of bracketing or level of indention, as in nested loops.

CHAPTER 1. INTRODUCTION 5

Figure 1.2: In this figure, we demonstrate the type of nested code that par-
ticipants are having difficult time understanding with current screen-reader
technologies.

To answer this big research question, we evaluated a set of sound effects,

audio parameters, and different audio interaction techniques to determine

whether these techniques could help convey specific programming information

to non-visual users. The evaluation process was based on different audio-based

prototypes where participants have no control over cursor movement through

the programming codebase, e.g., only limited interaction. We explain our

evaluation process in Part II of this dissertation (see Chapter 6 and Chapter 7).

1.3 Research Questions

In this dissertation, we have five major research questions. The first two

research questions (RQ1-RQ2) are mainly focused on domain understanding

whereas the remaining research questions (RQ3-RQ5) are specifically focused

on evaluating the use of audio-based techniques in programming environments.

RQ1 and RQ2 questions have been investigated in Part I, whereas RQ3-RQ5

are investigated in Part II. We present each one of these five research questions

as follows:

CHAPTER 1. INTRODUCTION 6

1.3.1 Part I: Understanding Requirements and Needs of Non-

visual Programmers

In this part, we present the first two research questions that focus on under-

standing the major programming challenges faced by non-visual users, espe-

cially code navigation challenges.

RQ1: In a survey-based study, what are the programming challenges

that visually impaired programmers report facing, as well as

workarounds or strategies to overcome these issues? The survey-

based study of understanding the major programming challenges faced

by non-visual programmers serves an important purpose in this disser-

tation. In this work, we identified a list of challenges where non-visual

programmers urged the research community as well as the industry to

propose additional improvements to overcome these challenges. In ad-

dition, the primary research problem discussed in this dissertation was

based on the major findings from the survey-based study. We explained

this work in Chapter 3.

RQ2: In an interview-based study, what are the code navigation dif-

ficulties that non-visual programmers report facing, as well

as workarounds or strategies to overcome these issues? The

interview-based study was conducted in order to understand the challenge

of code navigation, which was indicated previously in our survey-based

study. This work provided a list of additional improvements suggested

CHAPTER 1. INTRODUCTION 7

by the stakeholders in efforts to enhanced code navigation for non-visual

programmers. We explain this work in Chapter 4.

1.3.2 Part II: Methodological details of Sonification to Aid

Code Navigation For Non-Visual Programmers

In this part, we present the remaining three research questions aimed to inves-

tigate different methods for utilizing audio-based techniques in programming

environments, in efforts to convey hierarchical nesting structure of code, mainly

to assist non-visual programmers.

RQ3: In a formative interview study with a variety of audio exam-

ples, what forms of audio generation techniques and parame-

ters do non-visual programmers express interest in? As discussed

in Chapter 4, participants suggested the use of audio-based techniques

to covey the hierarchical nesting structure of code. To understand the

best approach, we investigated various audio cues based on different

techniques in efforts to understand the suitable cues for conveying cer-

tain programming information about the code nesting structure. We

explained this work in Chapter 6.

RQ4: When presented with an interactive audio prototype based on

this prior formative study, do non-visual programmers prefer

receiving this additional audio information about the structure

of code, as compared to a control condition without such addi-

CHAPTER 1. INTRODUCTION 8

tional information? As explained in Chapter 6, we selected specific

audio cues based on stakeholders’ recommendations. These selected

cues were examined using audio-based prototypes where participants

interacted with different code samples. In this question, we look for

participants’ feedback and whether their prior recommendations remain

the same. We explain this work in Chapter 7.

RQ5: When interacting with an audio prototype based on this prior

formative study, do non-visual programmers have a preference

between automatic level-crossing notifications or on-demand

level indications? 1 Providing audio-based feedback about the code

nesting requires some form of interaction between the user as well as

the system. To understand the proper interaction, we investigated dif-

ferent interaction methods in efforts to understand the best approach to

requested audio feedback. We explain this work in Chapter 7.

1.4 Dissertation Organization

This dissertation is structured into two major parts: The first part starts with

Chapter 2 where we discuss prior work in field of programming accessibility and

education. It also explains our methodological approach towards answering

RQ1 (Chapter 3) where we investigate the programming challenges more

deeply via a survey-based study. In addition, we discuss our follow-up interview

1Details of these interaction techniques are described in Chapter 7

CHAPTER 1. INTRODUCTION 9

study aimed to examine code navigation challenges more deeply, which address

RQ2 (Chapter 4).

The second part of this dissertation begins with Chapter 5, where we survey

the most closely related prior work on audio-based techniques to increase

the accessibility of programming for these users, to establish that little work

has examined the issue of navigating the hierarchical structure of code and

additional research is needed into how to convey indentation structure of

individual lines of code in the context of the linear reading of code via screen-

reader. In addition, we examine related research on using audio-based cues in

settings that are analogous in some way, namely: conveying nesting structure in

mathematical notation, conveying the relationships within graph structures, or

representing navigation through nested menus or outlines. We also explain our

methodological approach towards answering RQ3 where we evaluated various

audio-based cues and audio parameters in efforts to select some promising

design options for the higher-fidelity prototype in the later study (Chapter 6).

Furthermore, we also discuss our experimental study (Chapter 7) where we

evaluated different audio-based interactions (e.g, on-demand and automatic)

using different audio-based prototypes in efforts to answer RQ4 and RQ5. In

Chapter 8 we discuss the dissertation’s limitations where possible improvements

could be conducted as future work. Finally, this dissertation will conclude in

Chapter 9 by highlighting the dissertation’s major contributions and final

comment about the research work presented herein.

Part I: Understanding

Requirements and Needs of

Non-Visual Programmers

10

Prologue to Part I

In Part I, we will begin by discussing prior work related to software devel-

opment challenges faced by programmers who are blind. Specifically, we will

discuss some of the existing programming barriers in both computing educa-

tion settings as well as the software industry, in addition to explaining some of

the current design interventions for making programming environments more

accessible to non-visual users.

Moreover, we will also explain our user-based studies aimed to understand

the common programming challenges faced by non-visual users, mainly code

navigation difficulties. Specifically, Part I of this dissertation discusses each

one of the following research questions:

RQ1: In a survey-based study, what are the programming challenges that

visually impaired programmers report facing, as well as workarounds or

strategies to overcome these issues? (We examine RQ1 in Chapter 3)

RQ2: In an interview-based study, what are the code navigation difficulties

that non-visual programmers report facing, as well as workarounds or

11

CHAPTER 1. INTRODUCTION 12

strategies to overcome these issues? (We examine RQ2 in Chapter 4)

Chapter 2

Background and Prior Work

on Programming Challenges

Globally, the number of students entering the Computer Science discipline

has increased over the past 10 years [35]; however, people with disabilities

remain underrepresented in computing [62]. Students who are blind must

overcome significant educational and technological barriers [8, 10, 28, 42, 72],

including the heavy use of images and visual abstractions in classrooms; prior

researchers have examined how the traditional curriculum in Computer Science

has not been designed with assistive technologies in mind [46,54,75,81,82,83].

While there has been significant prior research on investigating particular

design interventions to benefit blind programmers, e.g. audio cues (Chapter

4), navigation aids (Section 2.1), there have been relatively few studies that

13

CHAPTER 2. PRIOR WORK ON PROGRAMMING CHALLENGES 14

have explored the challenges faced by blind programmers more broadly.

2.1 Code Navigation

Several prior researchers, e.g. [33, 38, 66, 74, 76], have proposed interventions

to help enhance code navigation for sighted and blind developers. By “code

navigation,” we refer to the ability of blind programmers to understand lengthy

codebases better and how each code statement is nested within the code, which

results in enabling blind programmers to navigate code quicker [9].

Baker et al. [9] created an Eclipse plug-in called StructJumper that aimed

to help screen reader users navigate through a large amount of code quickly.

The tool was designed to create a hierarchical tree representation based on the

codebase, which presents hierarchical tree-based information about the nesting

structure of a Java class. In their tool, blind programmers used a TreeView

feature to get an overview of the code structure. In addition, they could use a

Text Editor feature to get an idea of where they are within the nested structure

of the code. Thus, blind programmers could look up contextual information

about their code without having to lose their position. For example, with the

use of shortcut keys, blind developers could press a defined key to find which

statement of the code he or she is working on. Such a technique allows a blind

developer to quickly jump to the node corresponding to the current location.

This approach was similar to that used by other researchers to recognize code in

order to present a tree-like structure in a hierarchical tree representation [77].

CHAPTER 2. PRIOR WORK ON PROGRAMMING CHALLENGES 15

Other researchers have examined technology interventions to improve code

understanding for sighted developers: For example, researchers in [21] created

a system where code is presented in “bubbles,” which are editable views of, e.g.,

specific methods or collections of variables; each bubble is in a different color

(Figure 7.2). Of course, the heavy use of visual abstractions is not suitable for

blind programmers; further study would be needed to determine whether this

bubble metaphor could benefit non-visual users.

Figure 2.1: This figure shows an overview of the code bubble metaphor: (a)
user opens a bubble through the search box, (b) bubble displayed, (c) users
opens two or more bubbles side-by-side, (d) large set of bubbles with a (f)
bubble references, (e) an overview is displayed in the panning bar, (g) hover
preview less. [21]

2.2 Programming Challenges

While a variety of studies have been published focused on the design and

evaluation of specific technology interventions to benefit blind programmers,

CHAPTER 2. PRIOR WORK ON PROGRAMMING CHALLENGES 16

there have been relatively fewer empirical studies to explore and identify pro-

gramming challenges. For example, Mealin and Murphy-Hill interviewed 8

participants [58], and Smith et al. [77] conducted an experiment with 12 par-

ticipants to evaluate a code navigation plug-in. We discuss the Mealin and

Murphy-Hill prior work below:

Mealin and Murphy-Hill conducted an interview study with eight experi-

enced blind developers to highlight their programming difficulties [58], and

they identified a number of challenges: First, they noticed that developers were

not using the tools available within the IDEs. It was unclear from their study

whether users were unaware of the tools offered within these IDEs, found the

tools to be too complex, or if the tools were not easily accessible. Second, they

found that many blind developers were using a temporary text buffer to store

programming notes and to work in it. During the interviews, participants

also mentioned challenges with debugging, inaccessible UML diagrams, code

navigation, complexity of IDEs, and working in teams with sighted program-

mers. The authors discussed how blind developers use workarounds or other

strategies to overcome the above-mentioned challenges.

Chapter 3

Programming Challenges

3.1 Introduction

In this chapter 1, we present our initial user-based study aimed to understand

the major challenges in software development faced by programmers who are

blind. We performed this study in order to reveal the current programming

challenges, workarounds or strategies (e.g., to overcome programming issues),

and user needs (requested features) to enhance accessibility in current IDEs.

We also performed this study to better characterize research problem for this

dissertation research.

1The work presented in this chapter is based on study published at the 9th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE’16) with
co-author Stephanie Ludi. For this study, this author was responsible for designing the
study, conducting it, analyzing it, as well as serving as first author for the published paper,
having authored the initial draft of the paper.

17

CHAPTER 3. PROGRAMMING CHALLENGES 18

3.2 Research Questions

In this chapter, we intend to answer the first research question in our disserta-

tion work, which has four sub-questions described below:

RQ1: In a survey-based study, what are the programming challenges that

visually impaired programmers report facing, as well as workarounds or

strategies to overcome these issues?

RQ1:.a What are the popular IDEs and programming languages that blind

developers use?

RQ1:.b What assistive tools do blind developers use when programming?

RQ1:.c What are the difficulties faced by blind developers when developing

code?

RQ1:.d How do blind developers use workarounds to solve programming

challenges?

3.3 Methodology

In this section, we explain our methodological approach which was used in

efforts to answer the previously mentioned research questions.

3.3.1 Survey Design

We created an initial survey and conducted a pilot test in order to validate our

questionnaire. Our pilot testers were experienced developers (5+ years) with

CHAPTER 3. PROGRAMMING CHALLENGES 19

no visual impairments. The survey design was modified upon their comments

and feedback. For example, the survey wording was changed to more familiar

terms as well as adding other common programming languages to multiple

questions.

We estimated the completion time of the survey at 10 minutes. There

were 15 questions in our survey, 11 multiple choice, 3 open-ended, and 1

Likert Scale (see Appendix B for the complete list of survey questions). We

defined the survey questions to inquire about how programming was learned

by the participants, their level of experience, visual acuity, visual perception,

challenges, workarounds, assistive tools, and the type of development tools the

participants used.

3.3.2 Sampling

In this work, we needed to find developers with visual impairments. As this is

a subgroup of a limited and geographically dispersed population, we decided

to use a snowball sampling technique. We decided to contact individuals who

met the criteria and asked them to forward the survey to those who possess

the necessary traits. The potential respondents were contacted via email

invitations as well as posts in online groups of blind individuals on Google

Hangouts, LinkedIn, and AppleVis (a community for blind and low-vision users

of Apple’s products.

CHAPTER 3. PROGRAMMING CHALLENGES 20

3.3.3 Procedure and Response Rate

In order to eliminate geographic restrictions, we decided to set up an online

survey through the Rochester Institute of Technology survey system. The sys-

tem was designed to be accessible to screen-reader users. Participant response

rates could not be calculated as we could only monitor the total number of

responses submitted. The actual time for the survey completion could not be

measured. The survey was open for more than two months.

3.3.4 Participants

The survey was taken by a total number of 69 participants, all of whom were

blind developers. Nearly all 62 (89.86%) of the participants were male, 6

(0.09%) were female, and 1 participant decided not to answer. The mean age

in our sample was 35.39 years, with a standard deviation of 13.55 years. The

lowest age captured in our sample was 18 where the highest age of an individual

was 68. Our survey sample showed variation in the visual acuity among the

69 respondents. About 29 (42.02%) of the participants were totally blind,

followed by 25 (36.23%) who had light and shadow sensitivity, 12 had vision

but needed corrective lenses (17.39%), 2 had macular degeneration (0.03%),

and 1 was totally blind in one eye (0.01%) (see Figure 3.1). In regards to

the visual perception of the 69 respondents, 43 had light perception, 26 had

shadow perception, 22 had movement perception, and 16 had color perception.

CHAPTER 3. PROGRAMMING CHALLENGES 21

Figure 3.1: The number of participants in regard to visual acuity.

3.4 Results

The results section has been organized by the developers’ background, tools

used, assistive technology, and the challenges faced in software development.

3.4.1 RQ1a: Developer Background

Participants were asked to clarify the method used to learn programming.

About 40 (57.97%) were self-taught, 28 (40.58%) attended schools, and 1

(0.01%) respondent did not answer the question.

We also asked participants to rate their levels of expertise in various pro-

gramming languages.Table 3.1 shows respondents’ experiences in various pro-

gramming languages. The use of Python was expected as many undergraduate

CHAPTER 3. PROGRAMMING CHALLENGES 22

computer science programs use Python. It also has gained wider popularity

among many STEM disciplines. The use of Python itself is interesting given

that blind developers can dynamically inspect and change their programs, since

it is an interpreted language.

3.4.2 RQ1a: Development Tools & Platforms

We asked participants to indicate their development tools, development plat-

forms, and the target platforms for their work. About 49 (71.01%) use the

Windows environment to write code, where 15 (21.74%) use Mac OS X, and

14 (20.29%) use Linux. Less common environments included IBM Mainframe,

Motorola, micro-controllers embedded C, and Unix. In regards to the target

platforms, 39 (56.52%) of the respondents developed applications that run on

Microsoft. 13 (18.84%) people developed applications for Linux, 10 (14.49%)

for iOS, 7 (10.14%) for Mac OSX, and 5 (0.07%) for Android. In terms of

the development tools used, the most preferred editor is Eclipse (31 people, or

44.92%), followed by Microsoft Visual Studio (28 people, or 40.58%), Xcode

(17 people, or 24.64%), Emacs (3 people, or 0.04%), and Netbeans (2 people,

or 0.02%) (see figure 3.2). Eclipse was expected due to its common adoption

in undergraduate Computer Science programs, as well as it being open source.

CHAPTER 3. PROGRAMMING CHALLENGES 23

Figure 3.2: Software Development Tools Used by Participants in This Study.

3.4.3 RQ1b: Assistive Technology

The use of software and hardware-based assistive technology is integral to

programming and related tasks. The use of a screen reader (e.g. VoiceOver,

JAWS) is very common among participants, whereas several of the blind

developers prefer to use refreshable Braille display when programming. A

refreshable Braille display, a hardware device, translates a single line of text

that is displayed on screen to a single line of Braille that can be ready by touch

(see Figure 3.3). Braille displays are very expensive and require the user to

know Braille, which can be a limitation to blind developers.

CHAPTER 3. PROGRAMMING CHALLENGES 24

Figure 3.3: In this figure, we show an exmaple of Braille Display device used
by users with visual disabilities to access information on the computer display.

Source: http://www.hims-inc.com/product/braille-edge-40/

In regards to the types of aids that respondents use for assistance with

programming, all of the respondents indicated that they do utilize Screen

Reader (69 people, or 100%). Braille Display is used by 30 people (43.48%),

magnification software is used by 7 people (10.14%), and large fonts used by 6

people (8.70%).

Level of Expertise
List of Programming Languages

Java C C# C++ Objective-c Python Ruby Perl JavaScript Php

None 22 16 30 22 42 22 44 38 20 26

Novice 16 15 16 16 11 18 11 14 17 13

Intermediate 17 18 8 16 4 16 3 5 22 15

Expert 12 14 9 9 5 9 3 5 7 10

Table 3.1: Level of expertise in various programming languages

http://www.hims-inc.com/product/braille-edge-40/

CHAPTER 3. PROGRAMMING CHALLENGES 25

3.4.4 RQ1c: Open-Ended Responses

The survey contained three open-ended questions designed to elicit responses

regarding the use of text-editors, challenges, and workarounds. We followed

a qualitative methodology for our data analysis. Following an open-coding

method [67], we analyzed open-ended questions based on their content using

a set of codes that we developed to represent recurring ideas or problems

raised by participants. We assigned codes to segments of text transcription or

experimenter notes in our dataset.

Two researchers performed coding independently, reading and organizing

the participants’ transcripts. Afterwards, they met periodically to discuss

code categories (e.g., limited accessibility aids in IDEs, code navigation, di-

agrams, debugging and user interface layout, seeking sighted assistance, and

workaround techniques). In rare cases when coders disagreed, they held a

meeting to reach an agreement and form a consensus coding. We generated

a set of themes based on the number of times each issue was raised. For

example, high occurrences indicate higher demand or importance. Themes

were developed using affinity diagramming [15], which is a useful technique for

organizing and analyzing large-scale qualitative data.

3.4.4.1 Limited Accessibility Aids in IDEs

Many participants (n=12) reported that accessibility in IDEs is poor and

limited. Participants P16 and P53 indicated that the use of a text-editor is

CHAPTER 3. PROGRAMMING CHALLENGES 26

necessary since IDEs are very complex environments. The following are some

responses from participants:

“Using a text editor is completely necessary because accessibility for IDE’s

is so poor.” (Participant 16)

“Accessibility issues in IDEs like visual studio.” (Participant 53)

While participant P5 indicated that certain parts of the IDEs are difficult

to use due to unstable screen reader:

“Stability issues with the IDE’s and the screen readers. Certain parts of

the IDE’s being more difficult to use than my sighted counterparts have

to deal with.” (Participant 5)

It was clear that existing IDEs contain accessibility issues that prevent non-

visual programmers from developing software comfortably. This is because

the software industry designed their IDEs with visual representation, not

knowing the existent of non-visual programmers and that their screen-reader

technologies are only capable of conveying textual information to them.

3.4.4.2 Code Navigation

Writing code requires moving or navigating through it in order to revise it or

to track down mistakes. Writing code requires moving or navigating through it

in order to revise it or to track down errors. However, non-visual programmers

rely mostly on arrow keys to move between code entities, such a technique is

not beneficial due to the layout and the structure of the programming codebase.

CHAPTER 3. PROGRAMMING CHALLENGES 27

Because of these difficulties, there is a need for an effective solution to overcome

code navigation barriers for non-visual programmers.

In this section, we present testimony from our participants about different

techniques to navigate through comfortably. For example, several participants

(n=7) tried to overcome code navigation by using a scratchpad or simple editors.

Here are some comments from these participants:

“I have another window open to serve as a scratchpad (notes to fix things,

method/variable names, etc). Having that separate scratchpad allows me

to avoid losing my place in the code if I need to go look something up.”

(Participant 1)

“Some text editors allows you to jump between the start and end of the

block you are currently in.” (Participant 44)

Participant P36 uses a screen reader to listen to the code and Braille

Display for more detailed information:

“I find that I listen to code with the screen reader audio, then if I want

more detail, including punctuation, I use the Braille display.” (Partici-

pant 36)

As can be seen from these responses, participants vary in their techniques

to navigate through software codebase. Some participants prefer using features

in current IDEs where they can jump between code entities in order to avoid

reading the entire code line-by-line. On the other hand, other participants

enjoyed using braille display in conjunction with their screen reader in order

CHAPTER 3. PROGRAMMING CHALLENGES 28

to get additional information that the screen-reader could not provide, which

indicates that assistive technologies barriers, could be overcome by trying an

alternative tool. Therefore, we believe detailed follow-up is needed to better

understand how navigation occurs in different languages, environments, and

with various skill levels.

3.4.4.3 Diagrams

Software developers need to be able to access various diagrams during the

development process. Providing textual descriptions for diagrams in a timely

manner is challenging. Several participants (n=5) discussed the problem of

accessing UML diagrams and the need for UML assistive tools. Some of their

comments include:

“It isn’t easy to diagram, I have to keep things in my head when I’m

designing program flow.” (Participant 1)

Where other participant reported that diagrams does help show how certain

things work before coding.

“It’s not possible to look at class diagrams to have a quick idea of how

some stuff you did not code works.” (Participant 7)

As can be seen from participants response, this dependency on visual

consents is not only affecting blind programmers in professional settings, but

also in maintaining basic knowable about other people codebase, which clearly

CHAPTER 3. PROGRAMMING CHALLENGES 29

indicates that visually structured information is difficult to convey by using

current assistive technologies.

3.4.4.4 Debugging & User Interface Layout

Features in many IDEs include the support for debugging and also user in-

terface layout. Respondents difficulties accomplishing both debugging and

UI layout. Developers indicated the use of basic debugger utilities such as

breakpoints, stepping through code, and print-f2. Participants (n=8) also said

that debugging tools are difficult to use. A sample of comments includes:

“The challenges I face more often concern interacting with errors and

warnings and consulting documentation or tool tips.” (Participant 1)

“Debugging and interface design need visual development tools and they

are not accessible and compatible with screen readers.” (Participant 12)

Although participants vary in their own debugging experiences, code de-

bugging is considered a significant barrier to non-visual programmers, mostly

because it is difficult to interpret software control flow while debugging.

3.4.4.5 Seeking Sighted Assistance

Many respondents (n=20) indicated the need to seek out help from sighted

developers for certain tasks. Several respondents feel embarrassed when work-

ing with other sighted teammates. For example, participants P10 and P49

2This refers to a simplistic debugging technique of inserting print statements into code to
see if lines are executed or to print values of variables.

CHAPTER 3. PROGRAMMING CHALLENGES 30

rely heavily on the assistance of a sighted person to help them overcome some

programming issues.

“Asking a sighted colleague for assistance.” (Participant 10)

“Many times I use the assistance of a sighted person.” (Participant 49)

3.4.4.6 RQ1d: Workaround Techniques

Because we did not want to miss information from participants about what

was working well, in addition to asking about challenges, we also asked about

successful strategies or workarounds. Many respondents (n=22) presented a

myriad of workarounds for diverse development tasks. For example, P7 found

an alternative way to access UML diagrams. However, they did not provide

detailed information on the approach used. Other comments include:

“I have found alternative ways to access UML. A blind person to per-

form a software engineering job must know their access tech in side out.”

(Participant 7)

Participant P16 uses a text editor to overcome the complexity of IDEs.

“I have met the challenges by using a text editor to write code, attempting

to run the code, and continuing to edit and revise until I achieve the result

I want.” (Participant 16)

From these responses, we can see that participants were able to use alter-

native tools (workarounds) in order to write software code comfortably, which

promote some unique ideas to enhance accessibility in modern IDEs.

CHAPTER 3. PROGRAMMING CHALLENGES 31

3.5 Limitations

Although our study identified key accessibility issue for non-visual program-

mers, we recognized that our study had some unavoidable limitations. The

study is limited by the snowball sampling technique, which resulted in uneven

participant categories, e.g., participants vary in there visual acuity, type of

assistive technologies, as well as their programming experiences. The technique

was used in order to maximize the number of responses in the time allotted

from a population that is challenging to recruit. In addition, the survey design

of this study did not enable us to ask follow-up questions or observe the users

while working on software code. For this reason, Chapter 3: Chapter 4 presents

a follow-up interview and observation study.

3.6 Conclusions

In this chapter, we explored the major programming challenges faced by non-

visual programmers. Our goal was to uncover some of the common program-

ming challenges encountered by this user group, in addition, to understand

their strategies or workarounds to overcome these programming challenges. In

this work, some of the results were expected such as the lack of accessibility

in IDEs as well as the use of a screen reader in programming environments.

We were surprised to see those non-visual programmers use simple text editors

as their preferred tools to write software codebase. It is not clear whether

CHAPTER 3. PROGRAMMING CHALLENGES 32

non-visual programmers are unaware of the variety of features offered within

the existing IDEs or find them difficult to use. For example, some partici-

pants indicated that Eclipse or Visual Studio was not accessible while other

respondents did use these tools.

We have discussed several implications, but further investigation is needed

to determine what our conclusions can be generalized. For example, the

survey analysis indicated the difficulty of code navigation where non-visual

programmers find it hard to navigate quickly through large amounts of code.

The survey questions did not elicit sufficient details about our users’ challenges

for us to generate some user requirements. A further study is needed to

illuminate this particular subject, and we should recruit users with more

uniform programming experience to obtain more cohere results. In the next

Chapter, we seek to conduct an observational and interview studies with blind

developers in a remote setup (using Skype or Google Hangouts). Thus, the

geographical distribution can be overcome while providing a representational

sample of computer science students as well as professional software developers

for the needed subject.

Chapter 4

Code Navigation Difficulties

4.1 Introduction

In this chapter 1, we discuss our follow-up study aimed to understand the

code navigation challenges faced by non-visual programmers. Our prior study

(discussed in Chapter 3) explored a broad set of issues, and participants listed

navigating through the code and understanding its structure as key concerns [4].

To address this issue, we conducted a observation and interview-based study to

specifically investigate non-visual programmers navigate through large amounts

of code, using their own preferred development tools while performing some

of their common programming activities.

1The work presented in this chapter is based on study published at the 19th International
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS’17) with co-
authors Stephanie Ludi and Matt Huenerfauth. For this study, this author was responsible
for designing the study, conducting it, analyzing it, as well as serving as first author for the
published paper, having authored the initial draft of the paper.

33

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 34

This chapter is structured as follows: Section 4.2 outlines our specific re-

search questions to investigate how blind programmers navigate through a

lengthy codebase, using their own preferred development tools and while per-

forming common programming activities. Section 4.3 provides an overview of

the methodology used in this paper to investigate the outlined research ques-

tions in Section 4.2. Section 4.4 explains our interview and observation results,

and Section 4.7 summarizes our conclusions and future research directions.

4.2 Research Questions

In this chapter, we intend to answer the second research question in our

dissertation work, which has three sub-questions described below:

RQ2: In an interview-based study, what are the code navigation difficulties

that non-visual programmers report facing, as well as workarounds or

strategies to overcome these issues?

RQ2:.a What difficulties do blind developers encounter when navigating

through a codebase?

RQ2:.b What tools do they use in their development work?

RQ2:.c What workarounds or strategies do they use to overcome any code

navigation barriers?

To preview for the reader, the study had three key findings:

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 35

1. Programming software (e.g., IDEs) did not meet participants’ needs

for code navigation; they regularly struggled when performing typical

programming activities with these tools. Nevertheless, participants still

preferred to use IDEs, even though they encountered these navigation

difficulties.

2. Assistive technologies and specific accessibility features of some IDEs did

not provide adequate support to enable users to navigate through code

comfortably. Although some users were able to customize their assistive

technology to better convey the information displayed by the IDE and

trigger specific commands, the inefficiency of code navigation made par-

ticipants feel a loss of control, and they often reported disorientation in

the code.

3. Participants felt uncomfortable disclosing their programming needs (e.g.,

navigation difficulties) and their disability status to colleagues or re-

searchers, which may prevent them from understanding the need to

improve the accessibility of IDEs.

4.3 Methodology

As methodological inspiration, we have drawn upon the recent work of Szpiro

et al., who conducted a study using contextual inquiry and qualitative data

analysis to understand the challenges faced by people with low vision when

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 36

accessing computing devices [84]. Their goal was to uncover challenges and

identify opportunities for researchers and industry to improve low vision ac-

cessibility tools, and we have similar aims in regard to code navigation for

blind programmers. In this work, we used observations and semi-structured

interviews with blind programmers to identify code navigation difficulties, the

tools they used, and any workarounds they employ. This methodology will

help us gain deeper insight, relative to our prior survey-based study in [4].

In addition to identifying future research opportunities, another goal was to

involve blind programmers in the research and to gather firsthand comments

and suggestions from these users.

4.3.1 Interview Design

Prior to the main study, we conducted pilot tests (mock interviews with five

sighted programmers) to ensure that our semi-structured question plan, inter-

view technique, and procedure were well-formed. As a result of these pilot

tests, the interview questions and procedure were modified, e.g. the wording

of some of the questions were changed to use terminology more familiar to this

user group (see Appendix C for the complete list of interview questions).

The planned questions included five multiple-choice and 16 open-ended

questions, which were grouped into several topics:

� Demographics: user characteristics such as age, gender, country, visual

acuity, and level of expertise in software development.

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 37

� Languages & Tools: to identify a list of programming languages and

programming tools (e.g., Eclipse, etc.).

� Assistive Technologies: to identify participants’ preferences of assis-

tive technologies such as screen readers or braille displays.

� Development Style: to capture and observe blind programmers’ strate-

gies when developing software, mainly to navigate code.

� Navigation Difficulties: to uncover navigation difficulties and how it

impacted blind developers’ performance.

� Navigation Tools: to investigate existing code navigation tools and

how it helped overcome navigation difficulties.

� Working in Teams: to understand how blind programmers work in

teams, mainly with sighted programmers.

4.3.2 Participants

We recruited participants using a private mailing list from previous studies

(individuals had agreed to join this mailing list and had previously indicated an

interest in participating in studies) and by posting advertisements on private

groups (Google, LinkedIn, and AppleVis) for people who are blind. A total of

36 people responded. We conducted an initial screening interview over Skype

and Google Hangouts to first determine the eligibility of the participants.

To participate, individuals had to be an experienced developer (5+ years in

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 38

programming), 18 years or older, self-identified as fully blind, actively engaged

in programming either as a job or a hobby, and a user of assistive technologies

(e.g., screen reader or braille display). Eight respondents were excluded from

the study due to the use of magnifiers and corrective lenses. (The focus of this

study was on users of screen readers or braille displays.)

Afterward, we conducted the interview sessions with the remaining 28 blind

programmers. Participants (all male) varied in age from 22 to 52 (mean =29.68,

SD=6.59). Our sample showed variation in programming experience (lowest

= 5 years, highest = 24 years) and employment status (e.g., retired, employed,

unemployed, freelancer). Few unemployed participants are searching for job

opportunities. All participants use screen readers, and 8 participants used

braille displays (see Table 2). Participants were from five different countries:

United States (n = 22), United Kingdom (n = 3), Australia (n = 1), India (n

= 1), and the Netherlands (n = 1).

4.3.3 Procedure

The interview took place online via Skype and Google Hangouts per the

participants’ preference. Prior to the interview, participants were provided

with informed consent documents and the interview questions (so they could

familiarize themselves with the interview topic in advance). Each interview

lasted approximately one hour and occurred during January to December 2016.

Enrollment had not been fixed; rather, recruitment was discontinued (at 28)

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 39

after the researcher observed that no new issues were raised during the sessions

conducted with participants 27 and 28. All participants were compensated for

their time with $50 Amazon gift cards.

The session began with the brief semi-structured interview (questions in

section 4.1). This was followed by an observation period when we asked

participants to engage in common programming activities. The participant

transmitted their voice and their computer’s audio output, and in addition,

they transmitted the video image of what was displayed on their computer

screen. The interviews and observations were recorded with the participants’

prior approval, using Screencast-omatic software.

Since our goal was to understand code navigation difficulties and observe

how participants deal with these navigation problems, we identified in advance

a set of programming activities, which we requested the participant to perform

during the observation:

� Conducting a programming walk through using any language or tool:

We asked the participant to open some code that they had been editing

recently as part of their professional work and to explain the code, giving

a demonstration of its structure.

� Demonstrating for the researcher some code navigation difficulties they

encounter frequently.

� Navigation walk through of some other programmers’ codebase with

which the participant had no prior knowledge.

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 40

� Demonstrating any strategies or workarounds that the participant uses

to overcome navigation difficulties.

� Demonstrating any solutions or tools and how they helped.

We observed participants perform the above-mentioned programming tasks,

and we occasionally interrupted them with questions. For each question, we

encouraged participants to speak freely and openly (explaining that their

feedback was very valuable and this research might benefit other programmers

in the future) so that we can elicit more detailed answers. We did not insist that

participants use specific programming languages or development tools, mainly

because participants owned various platforms and had their own preferences.

In a few cases, some participants did not wish to perform one of the asks or

were unable to do so, and we did not insist in those cases. Our priority during

the session was to elicit comments and impressions from the participants about

code navigation difficulties that they encountered when performing these tasks,

to capture information about: what assistive technologies that they use and

why, how they used them, how they completed these activities, and how they

felt when performing it.

4.3.4 Data Analysis

During the session, we captured the following data:

� Responses to closed-ended questions were recorded.

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 41

� Additional written notes were taken for open-ended responses, with par-

ticular focus on capturing direct quotations.

� Time-stamps were noted when an important issue was raised, to facilitate

the researcher reviewing key portions of recordings.

� All notes were stored and duplicated for further analysis.

We followed a qualitative methodology for our data analysis. The data

was managed and annotated using NVivo qualitative data analysis software.

Following an open-coding method [67], we analyzed open-ended questions based

on their content using a set of codes that we developed to represent recurring

ideas or problems raised by participants. We assigned codes to segments of

text transcription or experimenter notes in our dataset.

Two researchers performed coding independently, reading and organizing

the participants’ transcripts. Afterwards, they met periodically to discuss code

categories (e.g., navigation challenges, assistive technologies, programming

tools, workarounds, and user needs). In rare cases when coders disagreed (inter-

rater reliability = 67%), they held a meeting to reach an agreement and form a

consensus coding. We generated a set of themes based on the number of times

each issue was raised. For example, high occurrences indicate higher demand

or importance. Themes were developed using affinity diagramming [15], which

is a useful technique for organizing and analyzing large-scale qualitative data.

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 42

4.4 Results

In this section, we describe key findings, illustrated with examples of our par-

ticipants’ behavior or comments from the interview sessions. Quotations are

labeled with code numbers preceded by the letter P that represent individual

participants (e.g., P1, P2, etc.). This section is organized based on the major

themes that arose during our data analysis: code navigation challenges (Sec-

tion 5.1), tools (e.g., assistive technologies, programming languages and tools)

(Section 5.2), and strategies to overcome navigation difficulties (Section 5.3).

4.4.1 RQ2a: Code Navigation Challenges

In software development, programmers regularly use their sight to obtain

information about their software codebase, which allows them to formulate

an understanding of their code structure and navigate throughout the code.

Blind programmers rely on other senses (e.g., hearing and touch) to acquire

contextual and structural information about their software codebase. We

observed our participants encountering several code navigation difficulties when

performing various programming activities, and participants discussed this

issue in their interview responses. We summarize a taxonomy of sub-types

of navigation difficulties in table 4.1; next to each description, we provide

the number of participants who mentioned each issue. The remainder of this

section will summarize some key points, along with illustrative examples and

quotations from participants.

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 43

Navigation Difficulties No. of Participants

Debugging: difficulty navigating through the
code in the process of understanding a wrong out-
put.

24

Line by Line: difficulty navigating through the
code to locate specific information without having
to go through the entire codebase linearly, line-by-
line.

23

Indentation: unable to distinguish the level of
white-space using a screen reader in indentation-
based languages, e.g. Python.

22

Nesting: difficulty navigating through nested
methods, loops, functions, or classes.

20

BackTrack: difficulty returning quickly to a spe-
cific line (in a lengthy codebase) when reviewing
other code statements in various files.

18

Errors: difficulty quickly locating code errors
while navigating through lengthy codebases.

14

Scope: difficulty understanding the scope level,
e.g. while navigating deeply nested methods or
loops.

14

Characters: difficulty perceiving certain charac-
ters, operators, and parentheses, e.g. missing some
characters while coding.

10

Auto-complete: difficulty accessing the auto-
complete feature due to incompatibility with the
screen reader.

9

Relationship: unable to distinguish the relation-
ship between code entities within a codebase, e.g.
the relationship between a class and its sub-classes.

9

Line Numbers: difficulty accessing line numbers
in the code editor as they were not designed to be
readable by a screen reader, e.g. using PyCharm
with VoiceOver.

7

Elements: unable to quickly locate a specific ele-
ment within a given array, class, function or loop,
e.g. locating values or variables.

5

Table 4.1: List of navigation difficulties and number of participants who men-
tioned each during interviews; the difficulties are sorted based on this number.

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 44

� Debugging: When a failure occurs in software, programmers must

perform three main activities to correct the failure. First, they need to

perform fault localization to identify the code statement responsible for

the software failure. Second, they need to complete a fault understanding

activity that involves understanding the origin of the software failure.

Third, they must perform a fault correction activity, to determine the

best way to remove the cause of the software failure. All three of these

activities are commonly referred to as “debugging,” which is an essential

skill in software development [65].

Our participants indicated that they understood the importance of debug-

ging and how it helps to correct unwanted software behaviors. However,

participants indicated that they tend to rely on simple debugging tech-

niques, mostly because of the accessibility issues in current debugging

tools (e.g., FindBugs, Firebug, etc.). For example, P4 examined several

available debugging tools to find one that is compatible with their screen

reader. He found that most debugging tools were not accessible as they

were designed with vision in mind. Therefore, P4 and many other par-

ticipants (n = 19) decided to rely on simple debugging techniques such

as inserting print commands in the code or tracing:

“I rely on printf to fix code defects. I also tried to test different tools

like FindBugs or Firebug, but they were not fully accessible to [my]

screen reader.” (P4)

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 45

P26, on the other hand, discussed the difficulty of navigating through

a lengthy codebase to find logic errors. He explained that debugging

techniques, such as printf, may take longer as there is no clear indication

where to find the problem that caused the software to behave incorrectly.

While most participants relied on simple debugging techniques, some (n

= 9) used advanced debugging tools:

“I was trained to use advanced debugging tools by my sighted col-

leagues even with the accessibility issues. I think the training helped

me use them better.” (P8)

Although participants vary in their own debugging experiences, most

participants mentioned that debugging is a significant barrier to blind

programmers, mostly because it is difficult to interpret software control

flow while debugging.

� Line by Line: We have discussed previously how vision helps software

developers get an overview of the entire codebase. To get an overview of

code, most of our participants (n = 18) indicated that they tend to go

through a codebase line by line, mainly because screen readers encourage

users to move through text in a linear fashion. P5, for example, explained

a difficulty that they encountered when working with complex codebase:

“How to accomplish things in my complex code [is] frustrating. I

need more time to understand each line and more time to remember

what each code block is doing.” (P5)

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 46

While several participants discussed the difficulty of navigating linearly

with a screen reader, some (n = 8) used other techniques, e.g. searching

through the codebase using keywords, to avoid scrolling through the

entire codebase line by line. While P13 and others enjoy using key-

words, another participant (P20) indicated that keyword searching is

time-consuming and often frustrating, because the same keyword might

appear in several locations within the same codebase. P6 and a few

others, on the other hand, agreed that keywords are very popular among

blind developers to find a specific code statement. But considering that

some cases where the same keyword is used twice or even more, blind

programmers often need to review a few code statements before and after

the keyword location to ensure that they have found the right line:

“Keywords [are] useful when you deal with the small code, but not

a large one, especially when you try to find a variable that [has]

been used several times in different locations. Which code block I am

reviewing is hard to distinguish with keywords.” (P6)

� Indentation: Indentation-based languages (e.g., Python, Occam, etc.)

use white-space indentation to delimit code blocks, instead of using

keywords or curly braces. In these languages, an increase in indentation

may indicate a new, deeper code block, and a decrease in indentation

indicates the end of the code block. Python was the most commonly used

programming language among our participants (n = 18), mainly because

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 47

of their job requirements. To navigate through an indentation-based

language, most participants indicated that they tend to go through it

block by block instead of line by line, mainly to avoid the verbalization

of white-spaces (indents) using a screen reader. By “block by block,”

we refer to instances when blind programmers wish to skip-over code

blocks (e.g., in a loop, a function definition) to avoid reading one code

statement at a time while browsing the entire codebase. For example,

P10 explained that a screen reader will verbalize an indentation as a

sequence of individual “space” characters, rather than a single indent

of a particular length. When a screen reader user navigates through

indentation based languages, the blind programmer will hear his or her

screen reader verbalizing white-spaces as a single space (e.g., “space,

space, space”) rather than a count (“three spaces”).

P21 explained how to overcome the white-space problem using a screen

reader. The solution involves writing a custom script (a modification of

the typical functionality of a screen reader for a particular application)

that forces the screen reader to calculate white-spaces and verbalize it

as a complete list of white-spaces:

“I found it useful to write script that forces my screen reader to

calculate the white-spaces and then present it [to me]. I designed the

script to say, for example, ’four spaces’ instead of saying ’space’ four

different times.” (P21)

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 48

P3 explained a similar approach:

“Instead of listening to my own screen reader telling me all the spaces

separately. I wrote [a] script to give me the level of indentation in

my code.” (P3)

Although calculating white-spaces and verbalizing it helped several par-

ticipants (n = 5), others (n = 4) found a braille display much more

helpful in determining the level of white-spaces. For instance, P16 re-

ported that a braille display provides valuable assistance in determining

the level of white-spaces, through touch. Section 5.2 discusses how users

mitigate this white-space issue by using a braille display in conjunction

with their screen reader:

“I use a screen reader and [also] braille display with Python, it helps

[me] feel the indentation in my code.” (P16)

4.4.2 RQ2b: Tools in Software Development

In this section, we discuss the participants’ behavior or experiences towards

assistive technologies, programming languages, as well as development tools.

We also describe each method and technique used by participants to perform

various development activities. We presented each category with the actual

number of users based on the participants’ use of each language or tool.

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 49

4.4.2.1 Assistive Technologies

Assistive technologies refer to any specialty hardware or software add-ons that

were designed to increase the functional capabilities of people with disabili-

ties. These assistive tools, whether developed by the industry or privately

customized by the end users, provide freedom and independence to people

with special needs to accomplish tasks that are difficult without getting help

from those who are sighted. In this study, participants used two different

forms of assistive technologies; screen readers and braille displays. A screen

reader enables blind users to access the computer display by linearizing the

presentation of information from the graphical user interface and verbalizing

this information using a speech synthesizer (or transmitting this information

to a braille display).

Participants described a variety of experiences performing common pro-

gramming activities using their screen reader. For example, P2 prefers to use

the Non-Visual Desktop Access (NVDA) screen reader when working with a

Python codebase:

“I use NVDA because its free, made by a blind user, and helps me convert

text into [a] Braille Display.” (P2)

P10 uses NVDA for programming activities, mainly because it allows for

personal customization. He uses PyCharm to write Python applications, de-

spite challenges in using this tool with his screen reader. P10 indicated that

PyCharm is very complex platform, and it poses many programming problems:

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 50

“I like to use PyCharm to write python application, I modified NVDA

script to ignore unwanted features and to help [me] reduce its complexity.”

(P10)

Although many participants (n = 12) decided to use NVDA for personal

reasons or financial constraints, others (n = 16) preferred to use a different type

of screen reader (see table 4.2). For instance, P13 uses JAWS with development

software, mainly because it allows users to load specific scripts (customized

modifications of its behavior) for each platform:

“JAWS provide me with great functionality. You can assign specific script

to each application, it helps reduce the time I take to navigate through the

entire application.” (P13)

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 51

Figure 4.1: A participant using JAWS with an 80-cell Brilliant Braille Dis-
play, while programming in Java using the Eclipse Integrated Development
Environment (IDE).

A refreshable braille display is an electro-mechanical device to translate

information from the computer display into braille characters. It uses round-

tipped pins in a flat surface that are raised through holes to convey information

to blind users. These devices are available in different sizes (different number of

characters that can be displayed in a line simultaneously, e.g., 18, 40, 80) based

on the user’s needs. In this paper, several participants (n = 8) indicated that

they use a refreshable braille display with a screen reader to perform various

programming activities (see figure 4.1). For example, P24 preferred to use a

braille display when working with Python codebases, mainly to understand the

level of indentation as its difficult to understand when using a screen reader

alone:

“Braille display is much better than screen reader when it comes to detect-

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 52

ing indentation level. [The] screen reader will say ’space’, ’space’, ’space’,

etc. Which is too much to handle with complex code.” (P24)

Some participants (n = 6) explained that they preferred to use a refreshable

braille display to navigate through a codebase because it was quicker than a

screen reader. Others (n = 2) tend to use braille displays because it reduced

their “hearing load,” i.e. the stress they experience from attending too much

information conveyed on the audio channel in an interface. For example, P28

discussed how a screen reader creates significant hearing load when performing

programming activities at work:

“I read texts and software code using braille display, [it] helps reduce [the]

hearing load and makes me aware of the surrounding, especially in work

settings.” (P28)

Other participants (n = 2) explained that they used a multi-line braille

display. (Most braille displays present a single line of characters, but some are

capable of presenting multiple rows of characters simultaneously.) Participants

indicated that this device helped them to read several lines of code to get a

better overview of the code structure, rather than using a screen reader or a

singleline braille display, which presents information linearly:

“Navigating code [is] difficult with screen reader, you feel isolated to one

line at a time, I use multi-line braille display which helps me read more

than one line at a time.” (P16)

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 53

4.4.2.2 Development Languages & Tools

Our participants’ knowledge and experience in programming languages and

development tools varied. Some (n = 15) were proficient in more than one

programming language, and others (n = 13) were experienced in a single

language only. This variation was mainly due to their specific job requirements

or constraints that are presented by the structure of the programming language.

Participants were asked to the list the programming languages and tools

that they use to develop software (see table 4.2). Our results showed that

Python was the most used language among all participants. In fact, 18 par-

ticipants (n = 64%) indicated that they use Python to write software code

for several reasons, including: its simplicity, its rising popularity, and the fact

that can be used as an interpreted language – thereby providing users with the

ability to dynamically inspect and change their programming code. Although

Python was the most used language among all participants, other participants

(n = 10) preferred to use Java, again, mostly for job requirements. For example,

P27 developed several applications that run on computers, smart cards, and

cell phones for the company:

“I developed the company clients support application with other colleagues

that was written in Java. [We] choose Java because [of] its well-written

libraries. [We] use other languages as well, but mostly Java.” (P27)

In regard to development tools, all participants preferred to use simpler

editors rather than current IDEs. Participants explained that simpler editors

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 54

(e.g., Notepad, Notepad++, Notepadqq, etc.) were popular due to their sim-

plicity and flexibility with assistive technologies and programming languages.

Notepad++, for example, was especially popular among users of the Windows

operating system as it available for free. P4 explained that his reason for using

Notepad++ was due to its wide range of plugins, that helped facilitate writing

software code. While some participants (n = 7) favored plug-in features to

install tools that had previously been developed by the blind programming

community, others (n = 8) find it useful to write their own plugins. For ex-

ample, P15 worked with several blind programmers to develop a plug-in that

allows screen reader users to navigate through auto-complete functionality,

mainly to make it more accessible. Auto-complete is a common feature in

most IDEs in which the system displays a pop-up menu of predictions of what

the programmer is about to type next, based on the first few characters of the

word they have typed. But this feature is not fully accessible to screen reader

users, mainly because it appears on the screen as a pop-up which the screen

reader does not recognize. Although most participants preferred to use sim-

pler editors when performing various programming activities, all participants

agreed that IDEs are necessary at times, despite accessibility problems.

4.4.3 RQ2c: Programming Strategies

In the midst of a discussion about navigation difficulties with our participants,

it would have been easy for participants to forget to mention positive infor-

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 55

Operating
Systems

#
Assistive
Technology

#
Programming
Languages

#
Programming
Editors

#

Windows 23 NVDA 12 Python 18 Notepad++ 18

Linux 8 JAWS 10 Java 10 PyCharm 16

Mac OS 4 ORCA 5 C++ 10 Visual Studio 12

VoiceOver 4 SQL 7 NetBeans 8
LSR 3 C 6 Notepad 6
Windows-Eyes 1 Swift 4 Notepadqq 5
Braille Display 8 Ruby 3 Eclipse 4

C# 2 Xcode 4
Objective-C 2 CODA 4
PHP 2 Atom 2
Perl 1 IDLE 1

TextMate 1
Padre 1

Table 4.2: Number of participants in our study using various operating systems,
assistive technologies, programming languages, and programming editors.

mation, such as navigation workarounds or strategies. For this reason, we

specifically asked participants to demonstrate or explain some examples of

these. Our participants discussed a myriad of strategies to overcome various

programming challenges, mainly code navigation difficulties. Due to length

constraints, this section will summarize some key points, along with illustrative

examples and quotations from participants.

� Simple Editors: As discussed above most participants (n = 26) indi-

cated that they rely on simple editors to write software code; we highlight

here how several of our participants reported using simple editors in con-

cert with IDEs – to overcome inaccessible features in existing IDEs. For

example, several participants (n = 8) explained how they use simple

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 56

editors to record code errors, bugs status, and where variables located to

enhance navigation. Other participants (n = 7) use them to avoid losing

their current spot while reviewing other code statements. For example,

P18 demonstrated how to use Notepad to navigate through a complex

codebase that was written by other programmers:

“The code I am showing is large and long. I work with other pro-

grammers to maintain it and mostly to modify it. I use Notepad to

record code errors while reviewing other statements for reference.”

(P18)

� Custom Scripts: Our participants expressed mixed feeling about the

use of assistive technologies, mostly screen readers. In this work, most

participants (n = 19) modified screen reader settings to match their own

personal needs. Others (n = 9) wrote custom scripts to overcome many

issues including programming difficulties. Participants explained that

creating a custom script is not a perfect solution, yet it still provides

an alternative method to solve some of the problems they experience

when interacting with current IDEs. For example, P11 showed a script

that was designed to force the screen reader to locate elements on the

PyCharm (IDE) which was not fully accessible. P9, on the other hand,

reported that his screen reader will not read line numbers on some of the

IDEs, mainly because line numbers was not designed to be readable by

a screen reader. Therefore, he wrote a custom script to force the screen

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 57

reader to read line numbers:

“I wrote many custom scripts to help do my job faster. My screen

reader will not catch line numbers on some of the IDEs, so I coded

[a] script to force my screen reader catch line numbers.” (P9)

� Shortcut Keys: as researchers, we were interested to know how blind

programmers get a high-level overview of the entire codebase for naviga-

tion purposes. Screen readers navigate through codebase linearly, forcing

the user to read the entire codebase one line at a time. To overcome this

problem, several participants (n = 9) indicated that they use shortcut

keys as a navigation strategy. For example, P4 relies on shortcut keys to

locate specific code statements without scrolling through the entire code-

base. Other participants (n = 12) use them to get structural information

about their codebase. However, P1 argues that shortcut tools like find

comment (to search for text strings) can help programmers find content

in the codebase using keywords, but often a single keyword is not enough

to jump through all the associated content (for e.g. in programming lan-

guages like Java and C++, jumping through all the functions in a code

using a single search keyword can be ineffective as all related functions

might not use those specific keywords).

However, P12 said that the use of shortcut keys was inefficient since it

forces users to jump between code blocks, which is difficult for someone

who is blind, especially for unfamiliar codebases:

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 58

“Depending on the language, the start of the block may not be easy to

follow without reading through all lines. In cases like that, shortcut

keys may not be [a] helpful strategy at all.” (P12)

P19, on the other hand, was annoyed that various IDEs make use of

specific shortcut key combinations that are also used by his screen reader,

leading to conflicting functions:

“I rely on shortcut keys to navigate through code, but there are over-

lapped keys between several applications. I had to write a custom

script to control overlapped shortcut keys for me.” (P19)

� Code Comments: In software development, commenting involves plac-

ing different readable descriptions inside code blocks to detail the purpose

of each block. Most blind developers rely on them to make code main-

tainable and debugging easier. Commenting is an important technique,

especially when a project involves other programmers. In this work, most

participants (n = 16) used commenting, not in the traditional manner (to

make source code readable or document how a certain function works),

but rather to overcome navigation barriers. For example, P3 used com-

menting to locate software bugs that need to be addressed immediately

with other software programmers. Although some participants (n = 6)

used commenting to locate code errors or bugs, others (n = 9) use it to

highlight code statements that require further review:

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 59

“When modifying some of my code function, I use comments to

locate them fast, especially while checking other statements so I can

get back to them fast.” (P22)

� Sighted Help: Our participants indicated that seeking help from oth-

ers, especially from those who are sighted, is avoided by many blind

individuals in workplace settings, often due to embarrassment about

the amount of time they take to accomplish certain tasks. Additionally,

many participants indicated that they wanted to demonstrate that their

visual loss had no impact on their ability to fulfill their job requirements.

Although most participants (n = 16) tended to avoid seeking help from

sighted co-workers, others (n = 10) found it necessary. For example, P25

seeks sighted help to get an overview of the entire codebase when a new

implementation takes place. This helps reduce the amount of time a

blind programmer takes to get an overview of the entire implementation.

P7 agreed that requesting sighted help is understandable since blind

programmers are unable to simply glance at codebase due to the linear

nature of the screen reader:

“Reviewing another programmer’s code with a screen reader takes

longer than someone who is not blind, I seek help sometimes to get

[a] quick overview of the new implementation.” (P7)

P13 shares a similar opinion about the importance of requesting sighted

help whenever needed:

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 60

“I enjoy working with sighted programmers, you always learn many

tips.” (P13)

4.5 User Needs

As part of our interview, we also discussed with participants some possible

future features that could be added to IDEs to improve their accessibility. In

some cases, the participants requested features prior to being prompted. For

all participants, we included a section in the interview in which we briefly

described several possible future enhancements to IDEs – to gauge the interest

our participants had in each option. Overall, 82% of our participants (n = 23)

showed interest in using these various features (listed below), while 18% said

that they might be willing to try them. The set of possible future enhancements

to IDEs discussed during our interviews included the following:

� Tree View: Most participants expressed the need to have an alternative

feature to navigate through codebase, mostly to avoid going through it

line by line. For example, several participants suggested a hierarchical

navigation feature in which codebase could be presented as a tree, mainly

to hide code complexity. (This is in agreement with prior findings of

Baker et al. [9].) In fact, 18 participants (64%) showed interest in using

such a feature. Tree view (or tree list) is already available feature in

some of the IDEs but is not fully accessible to screen readers:

“Going through code line by line is very difficult with [a] screen

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 61

reader, especially when you deal with complex software code. As

blind programmers, we discuss many ideas about accessibility in pro-

gramming. In fact, we thought to program [a] tool that presents the

software code as tree instead of navigating through line code, which

takes forever.” (P14)

Also, P27 showed the same interest:

“I would love to see a tool that shows code in a different way, not

line by line.” (P27)

� Auditory Feedback: Several participants (n = 7) suggested that

sounds should become a core integration component when interacting

with programming activities, especially for blind programmers. For ex-

ample, some participants (n = 3) indicated that sounds would help them

monitor background processes in development tools while attending other

tasks. One advantage is that auditory cues can help blind programmers

split their attention between an immediate task and waiting for the result

of some background process. Participants also suggested that sounds

could be used to help provide additional information regarding syntax

errors, invalid statements, and current location in code in order to reduce

programming difficulties. (This is in agreement with findings of Vickers

and Alty [86].) In fact, 19 participants were interested in using audi-

tory feedback (68%), while 9 (32%) participants said that they would be

willing to try it:

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 62

“It would be nice to have audio feedback when we make code mistakes.

It will help locate errors while navigating through code or maybe

highlight any syntax error.” (P8)

“The way how programming relies on visual representation is the

major impact in almost all difficulties that we face as blind individ-

uals. We need another way of programming, maybe with audio or

something else as I can’t think of different way that could help us.”

(P24)

� Bookmarks or Tags: Our participants described how they used com-

ments to leave keywords at particular locations in their code, which they

could then jump to more easily by using a search feature. Participants

also reported that they tend to remove all of these comments before

sharing their code with others, especially sighted people, mainly because

they feel embarrassed. Several participants expressed the need to have

a bookmark feature in which they could tag specific line of code and

return to it later for further modification (without making use of com-

ments and searching to accomplish this task). Participants cautioned

that the bookmark feature should be designed to jump to a specific code

statement, rather than to a specific line number (which may shift when

additional code is inserted or deleted). Bookmark or Tag features are

already available in Visual Studio and other IDEs, further investigation

may indicate whether such tools are fully accessible and beneficial for

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 63

non-visual users. In fact, 24 participants (86%) showed interest in using

bookmark feature, while 4 (14%) participants said that they might try

it:

“I always wanted to build [a] tool that tags code for personal use.

You could build it in [a] way that any line can be tagged either for

private or public comments. You could also use shortcut keys to

locate each tag to quickly find them. I guess I did not find the right

time to develop it.” (P22)

� Nesting & Scope Level: Nested code is commonly used in software

development where various programming logic structures are combined

to one another (e.g., embedded within one another). Deeply nested code

can pose challenges for blind users because it is harder to read. When

nested code goes beyond three levels of indention, it can be difficult to

understand and navigate. To handle nested code, sighted programmers

tend to use code folding in software editors. This feature allows them

to collapse an entire code block (visually hide the full text of the code

and replace it with a small visual placeholder instead), which allows

programmers to have a better view of the surrounding code statements.

Several of our participants also suggested that it would be valuable to

have a scope and nesting level indicator feature. This would read aloud

the current cursor location when a special shortcut key combination is

pressed. We are not aware of any similar study or tool in this regard. In

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 64

fact, 19 (68%) of our participants were interested in having nesting and

scope level indicators, while 9 (32%) participants said that they might

try it:

“I find it difficult to know my location when working with nested code

block. You can’t tell with a screen reader unless you read the entire

block. I think a good solution is to have a tool that gives [me] the

location and how deep I am within the nested code.” (P5)

� Class Relationships: In object-oriented programming, a class is used

to describe one or more objects, mainly to serve as a template for creating

various objects within a program. Each object is created from a single

class – this one class could be used many times, mostly to instantiate mul-

tiple objects. It can be also used by software developers to isolate specific

objects so that their internal variables or methods are not accessible from

all parts of the program. This prevents the programmer from changing

internal implementation details of some code, which might break other

parts of the codebase. Programmers tend to use classes to help create

more structured programs that can be easily modified. The inheritance

relationships for classes can become complex, especially when there are

multiple sub-classes that inherit all or some of the characteristics of the

main class. To understand class relationships, sighted programmers of-

ten rely on diagrams (e.g., how components are interrelated). Diagrams

can be difficult to understand by blind programmers. Our participants

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 65

expressed the need to have some method of conveying class relationship

features, e.g. audio cues as they navigate through classes or sub-classes

in order to provide an overview of classes in a codebase. We are not

aware of any similar study or tool in this regard. In fact, 17 (61%) of

our participants expressed interest in using a class relationship feature,

while 11 (39%) participants said that they might use it:

“It would be interesting to have class relationship tools where you get

instant feedback through audio. Maybe [by] pressing shortcut keys to

get audio feedback whenever I need to know all the sub-classes of a

class.” (P18)

4.6 Limitations

There were some limitations of our study: First, we only explored navigation

difficulties encountered by experienced developers, who were totally blind,

actively engaged in programming either as a job or hobby, and used assistive

technologies to access the computer display (e.g., screen reader, braille display,

or both). It was beyond our scope to study novice programmers or individuals

with greater diversity in their visual acuity. A further investigation into such

an important user group may reveal different findings. Secondly, while the

qualitative design of this study allowed us to gather firsthand comments and

experiences from our user group, and to discover new issues that arose, in future

work, it may be important to follow up this study with a survey administered

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 66

to a larger group of participants, to verify some of our findings.

4.7 Conclusions

In this paper, we presented our exploratory study aimed at understanding code

navigation challenges encountered by blind programmers when using various

development tools. We illustrated and discussed our methodology for learn-

ing about code navigation difficulties from our participants: blind software

developers. Our study offers a new perspective into the use of common devel-

opment tools (e.g., Eclipse, NetBeans, etc.) alongside assistive technologies

by developers who are blind. Most previous studies have based their findings

on a small number of participants [9, 58,77]. Our results arose from observing

and interviewing a much larger sample, and our findings highlight various code

navigation difficulties based on different programming languages and tools.

Our findings indicated that participants struggled to navigate through

codebases using existing development software alongside assistive technolo-

gies (e.g., screen reader). Although accessibility tools provided benefits, they

failed to give enough support for blind programmers to navigate through code-

bases quickly and comfortably. Since navigation options in IDEs are restricted

to sighted users, blind programmers prefer simpler editors (e.g., Notepad,

Notepad++). Participants explained and demonstrated how diverse program-

ming environments, in combination with assistive technologies, lead to various

challenges, often because these IDEs were designed without accessibility in

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 67

mind.

Most of our participants preferred to use a screen reader (despite its limita-

tions) to write software code. Others found this difficult, and therefore, favored

using a braille display instead. However, several of our participants indicated

that they could not afford to purchase a braille display. While most IDEs were

not fully accessible, blind programmers still rely on them to accomplish their

work. Moreover, some blind programmers may seek sighted help for various

reasons, mostly to access content that is not accessible with assistive tech-

nologies. Although some blind programmers seek sighted help, others prefer

writing custom scripts to overcome many programming challenges. For exam-

ple, several blind programmers wrote custom scripts to enhance navigation in

indentation-based languages. Others wrote scripts for each IDEs,

The navigation challenges identified in this study illustrate the need for

further research on improving the usability and accessibility of current IDEs.

For example, participants showed interest in using a new forms of code naviga-

tion, e.g. using hierarchical navigation approaches. Participants also indicated

a desire for bookmarks (or tags) features that would allow blind programmers

to tag specific line of code and return to it later for further modification. They

also expressed interest in scope and nesting level indicator, auditory additional

feedback, and methods for conveying class relationships, which could make

programming more accessible for these users.

Finally, while the participants in our study expressed interest in various

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 68

technology interventions to address their needs, it would be necessary in future

work to conduct formal evaluations of the efficacy of such technology in studies

with blind developers. In Part II, we explore some form of auditory feedback

which could help convey important information while users are navigating

through lengthy codebases. Several participants expressed interest in this

technology. Participants also suggested that audio cues could be used in

various other programming activities.

In summary, our findings indicated that navigating through hierarchical

code (e.g., in python-based language) is a challenge for users with visual im-

pairments. This is because Python-based language use white-space indentation

to delimit code blocks, instead of using keywords or curly braces. In such a

language, an increase in indentation may indicate a new, deeper code block,

and a decrease in indentation indicates the end of the code block. To under-

stand code indentation, users reported the use of custom scripts in order to

calculate the white-space and verbalize it as a complete list of white-spaces. To

overcome such a problem, participants suggested that audio cue should become

a core integration component when interacting with programming activities,

especially for determining the level of indentation. In this work, we provided

future accessibility researchers a foundation for understanding the needs of

blind programmers, which may support their work in creating and evaluating

new technologies to address those needs.

Epilogue to Part I

In Part I, we have discussed some of the prior work related to software de-

velopment challenges faced by non-visual programmers. Specifically, we have

explained some of the existing programming barriers in both academia as well

as the software industry, in addition to explaining some of the current design

interventions for making programming environments more accessible to non-

visual users. We also discussed our user-based studies aimed to understand the

common programming challenges in software development, specifically code

navigation difficulties. In summary, Part I of this dissertation has addressed

the following research question:

RQ1: In a survey-based study, what are the programming challenges that

visually impaired programmers report facing, as well as workarounds or

strategies to overcome these issues?

� In this question, our goal was to uncover some of the major pro-

gramming challenges encountered by visually impaired users, in

69

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 70

addition, to understand their strategies or workarounds to over-

come these programming challenges. To answer this questions, we

conducted a survey-based study (discussed previously in Chapter 3)

with 69 blind programmers where we explored a set of program-

ming challenges as well as workarounds to overcome these issues.

In this work, some of the results were expected such as the lack

of accessibility in current IDEs as well as the difficulty of using

screen-reader technologies with today’s software development. To

overcome programming barriers, participants reported the use of

alternative tools to understand code structure as well as seeking

help from sighted co-workers whenever needed. In addition to using

two different assistive technology (screen-reader and braille display)

at the same time to uncover hidden information.

RQ2: In an interview-based study, what are the code navigation difficulties

that non-visual programmers report facing, as well as workarounds or

strategies to overcome these issues?

� In this question, our goal was to understand code navigation chal-

lenges encountered by non-visual programmers, especially when

navigating through lengthy codebase. To answer this question, we

conducted an interview-based study (discussed previously in Chap-

ter 4) with 28 blind programmers where a set of code navigation

difficulties where presented and discussed. In this work, we found

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 71

that blind developers felt overwhelmed when using existing IDEs

(e.g., Eclipse, NetBeans, etc.), and therefore they preferred to use

simpler editors to write software code comfortably (e.g., Notepad,

Notepad++, etc.). Furthermore, participants discussed a list of

code navigation difficulties as well as possible accessibility improve-

ments where additional features could be developed in order to

make the programming environment more accessible to non-visual

programmers. For example, users indicated that deeply nested code

can pose challenges for blind users because it is harder to read e.g.,

depth of bracketing or level of indention, as in nested loops. When

the nested code goes beyond three levels of indention, it can be

difficult to understand and navigate. To overcome this problem,

participants suggested that it would be valuable to have audio-

based feedback where the level of indentation can be determined

via sound.

Part II: Methodological

details of Sonification to

Aid Code Navigation For

Non-Visual Programmers

72

Prologue to Part II

In Part II, we will begin by examining the most closely related prior work on

audio-based techniques to increase the accessibility of programming for these

users, to establish that little work has examined the issue of navigating the

hierarchical structure of code and additional research is needed into how to

convey indentation structure of individual lines of code in the context of the

linear reading of code via screen-reader. To broaden our focus, we consider

related research on using audio-based cues in settings that are analogous in

some way, namely: conveying nesting structure in mathematical notation,

conveying the relationships within graph structures, or representing navigation

through nested menus or outlines. We explain some of the existing audio-

based design interventions used in these research areas in order to improve

accessibility for non-visual users. Furthermore, we explain our formative study

where participants discussed their personal preferences of various audio-based

cues and sound properties, mainly to address our RQ3. In addition, we

discuss our experimental study where we evaluate and compare three audio-

73

CHAPTER 4. CODE NAVIGATION DIFFICULTIES 74

based interaction techniques using three code samples, specifically to address

RQ4 and RQ5. Specifically, Part II of this dissertation discusses each one of

the following three research questions:

RQ3: In a formative interview study with a variety of audio examples, what

forms of audio generation techniques and parameters do non-visual pro-

grammers express interest in? (We examine RQ3 in Chapter 6)

RQ4: When presented with an interactive audio prototype based on this prior

formative study, do non-visual programmers prefer receiving this addi-

tional audio information about the structure of code, as compared to

a control condition without such additional information? (We examine

RQ4 in Chapter 7)

RQ5: When interacting with an audio prototype based on this prior formative

study, do non-visual programmers have a preference between automatic

level-crossing notifications or on-demand level indications? (We examine

RQ5 in Chapter 7)

Chapter 5

Background and Prior Work

on Audio Programming and

Sonification

In this Chapter, we examine the most closely related prior work on audio-

based techniques to increase the accessibility of programming for these users,

to establish that little work has examined the issue of navigating the hierar-

chical structure of code and additional research is needed into how to convey

indentation structure of individual lines of code in the context of the linear

reading of code via screen-reader. To broaden our focus, we consider related

research on using audio-based cues in settings that are analogous in some

way, namely: conveying nesting structure in mathematical notation, conveying

75

CHAPTER 5. PRIOR WORK ON SONIFICATION 76

the relationships within graph structures, or representing navigation through

nested menus or outlines.

As discussed previously (Chapter 4), we explained out interview-based

study where we presented a set of issues, and participants indicated navigating

through a nested code and understanding its structure as key concerns. In ad-

dition, participants suggested possible areas of improvement where additional

features could be developed in order to make the programming environment

more accessible to blind users, e.g., using an audio-based system to convey

certain information to the end user. To better understand this, we investigated

different audio-based techniques (in Chapters 6 & 7) and whether they could

convey the nested structure of code lines, e.g., depth of bracketing or level of

indention, as in nested loops.

Specifically, Chapters 6 & 7 discuss different design dimensions in order to

generate useful design guidelines for including an audio-based feedback system

into the programming environment. Can summarize these design dimensions

as follows:

� What to convey: In this dimension, we needed to understand the type

of information that blind programmers would like to know once they

are navigating through nested codebase. For example, do stakeholders

prefer to get an overview (the nested code depth) of the nested code,

or understand the current location (where they are inside the code), or

when the nested code starts and ends, etc. This is an important step

CHAPTER 5. PRIOR WORK ON SONIFICATION 77

towards understanding the type of information that non-visual program-

mers would like to know when they are presented with a nested code,

e.g. loops.

� Audio Feedback: In this dimension, we needed to understand the

type of audio (speech, non-speech, etc.) that blind programmers would

like to hear in order to understand the nested structure of code lines.

For example, do stakeholders prefer to hear an audio feedback based on

speech, non-speech or stereo spatial audio when they are interacting with

the programming environment?

� Audio Parameters: In this dimension, we needed to understand the

type of audio parameters that blind programmers would like to adjust

once they hear the audio feedback. For example, do stakeholders prefer to

hear sound with higher or lower pitch, when receiving an audio feedback?

This is an important step considering that non-visual users have different

preferences when it comes to audio since they have different settings for

their screen-reader technologies and audio output.

� Audio Interaction: In this dimension, we needed to know the type

of audio interaction techniques that blind programmers prefer to use in

order to understand the nested structure of code lines. For example,

do stakeholders prefer to receive an audio feedback on-demand (per

request), or when they move between code levels (automatic), or with

no background sound (baseline condition)?

CHAPTER 5. PRIOR WORK ON SONIFICATION 78

Understanding stakeholders’ preferences in the above-mentioned design

dimensions are essential for determining the best audio-based techniques for

conveying the hierarchical nesting structure of code to assist non-visual pro-

grammers. To achieve our goal, we needed to examine different methods and

techniques in several research venues since the related work in our domain

is quite limited. Thus, in this Chapter, we discuss some of the prior work

that benefits from using audio-based techniques to overcome their research

challenges, specifically visually-based applications for non-visual users:

5.1 Sonification and Interaction in Programming

Significant prior research has examined how to create audio-based accessibility

tools for computing students with visual disabilities or other professional soft-

ware developers [69,79]. For instance, Sanchez and Aguayo 2005 developed a

custom programming tool called Audio Programming Language (APL) aimed

to help blind students write software code comfortably [70]. In their tool, users

use keyboard keys to input a programming command which are dynamically

presented in a circular command list. As a result, users would hear the input

programming command feedback via TTS (Text-to-Speech)1 engine. For ex-

ample, users would use the keyboard to entire a variable and they would hear

in return the command input as a speech synthesizer. In their tool, researchers

goal was to alleviate the need to commit commands to memory, thus, enabling

1Text-to-speech is a form of speech synthesis that converts text into spoken voice output.

CHAPTER 5. PRIOR WORK ON SONIFICATION 79

novice blind programmer to focus their attention on the design process itself.

In addition, researchers demonstrated that audio feedback could be used to

convey certain programming information to non-visual users. However, their

tool provided a limited set of commands (e.g., input, output, cycle, condition,

and variable) making it difficult to scale.

Smith et al. [77] developed an Eclipse2 plug-in to help non-sighted users

understand code structure, to speed navigation through a codebase. The

authors used keyboard inputs and speech/sound outputs of the hierarchical

structure of the codebase to convey certain information to non-visual users.

In this tool, users hear sound output based on speech to indicate which node

is parent (beginning of function or loop) or sibling (code statements inside

the main function). In addition, users hear a continuous, background clicking

sound, with high frequency to indicate the size of subtree (how code is nested).

In their work, authors performed a usability test using hyperbolic browser

method that employs a fisheye technique [51]. The fisheye technique refers to

zooming-in on a single node in a hierarchy tree structure, with the details of

the ancestors and descendants presented in reduced detail. Such an approach

helped researchers identify strategies that sighted developers tend to use while

moving through familiar and unfamiliar trees. Based on this, the authors

defined a set of user requirements for an accessible tree navigation system.

Similarly, Stefik et al. [82] created a tool called Sodbeans based on NetBeans

IDE for Java programming, to help convey certain information to students who

2Eclipse is a popular IDE for Java programming.

CHAPTER 5. PRIOR WORK ON SONIFICATION 80

are blind. Their developed tool includes a custom virtual machine, compiler,

as well as a debugger. The tool used audible cues [22] based on speech so

that blind students can learn programming concepts. For example, a user

may wish to execute a code line “a = a + 1”; in this case, the Sodbeans

debugger would say “a to 5” (or another value). Similarly, the user may wish

to execute an if statement such as if a < b then end; the Sodbeans debugger

would say either “if true” or “if false”. The tool used audible cues (using

the word repeat over for and while, or cycle) [22] so that blind students can

learn programming concepts. These cues were designed to be browsed in a

hierarchical tree manner, to support navigation. In addition, blind students

have a rich set of programming environments and tools that they can use

beyond the use of Java (e.g., Java, PHP, Ruby). The tool was evaluated based

on the students’ ability to master the programming concepts.

Various researchers, e.g. [78], have examined the potential of auditory cues

to benefit programmers, including the potential benefits of non-speech audio for

blind programmers: For instance, Vickers and Alty [86] developed a debugger

called “CAITLIN,” which uses musical auditory cues in order to represent

execution of computer program. The “CAITLIN” system was designed to

map points of interest within the program to musical events. For example,

with the use of “CAITLIN” system, novice programmers could locate code

bugs by hearing a specific musical auditory cues to each type. In their work,

researchers found that such audio cues helped novice programmers locate bugs.

CHAPTER 5. PRIOR WORK ON SONIFICATION 81

Specifically, musical cues were found to be useful for conveying information to

programmers during a debugging process.

Boardman et al. [18] developed a tool called “LISTEN” to investigate the

use of sounds when analyzing various program behaviors; their goal was to

instrument computer programs so that different audible sounds were mapped

to different behaviors during the program execution. The “LISTEN” tool

is focused on making code-to-audio mappings, which is not on the design

of specific applications, i.e. programming environments for users with visual

disabilities. In their tool, a user begins by editing the source program (code file)

as well as a specification file, which is an Auralization Specification file, contains

commands written in LSL (Linden Scripting Language). These commands are

designed to specify the mapping of program behavior to sound.

Stefik et al. [80] investigated the use of audio cues to convey lexical scoping

relationships in software code; different cues were played when a change in scope

was detected. In their work, participants were given instructions about the

study, including the type of sounds they will be hearing during the experiment,

which is a set of auditory cues (based on speech) in different orders and contexts.

When a user hears a sound, he or she will need to interpret the cues as a whole.

Researchers would then ask participants questions like: Does this auditory

cue indicate a loop or a selection statement? Does this cue indicate a scoping

relationship or the number of iterations in a loop? in order to determine users

understandability.

CHAPTER 5. PRIOR WORK ON SONIFICATION 82

5.2 Accessing Mathematical Symbols via Audio

Although relatively few researchers have investigated the use of audio-based

techniques for conveying certain information in programming software, addi-

tional researchers [13,43,44,60] discussed various solutions to overcome visual

barriers in teaching mathematics to non-visual students. For example, some re-

searchers used speech and non-speech sounds in order to convey mathematical

symbols (depth of bracket), whereas other researchers used prosodic aspects

of spoken language or spatialized cues to convey the structure of an equation.

We discuss these techniques in the following sections:

5.2.1 Conveying Depth of Brackets in Equations

Murphy et al. [60] created a prototype that uses audio cues (speech and non-

speech sounds altogether) to convey mathematical symbols. In their work,

researchers adjusted some audio parameters (e.g., speed, pitch, volume, etc.)

for each audio sample in an effort to convey different audio meanings. For

example, researchers modified pitch to indicate a different level of brackets in

a given equation, using the higher pitch for a deeper level. It is reasonable to

consider such a technique with non-visual programmers to determine whether

adjusting audio parameters could help provide certain information about the

code structure, i.e. we could convey how “deep” some line of code is in the

structure of a nested loop.

CHAPTER 5. PRIOR WORK ON SONIFICATION 83

5.2.2 Mathematical Formulas

While Murphy et al. [60] used adjusted audio parameters to convey mathemat-

ical brackets, Enda Bates and Dónal Fitzpatrick [14] used prosodic aspects

of spoken language, in conjunction with a set of spatialized Earcons (a hier-

archical progression of variable tones) [31] and Spearcons (spoken directions,

compressed and sped up) [88, 89] in order to disambiguate the structure of

mathematical formula.

In their work, researchers found that spatial sounds could help reduce the

mental effort required by the users since sounds produced from different spatial

locations are easier to distinguish, which Murphy et al. [60] had found in earlier

work. However, researchers also found that auditory cues are more difficult to

interpret than Earcons because their meaning may be easier for users to rec-

ognize, but they still difficult to represent structural mathematical constructs

(e.g., parenthesis) since there is no obvious relationship between this abstract

mathematical syntax and real-world sounds. However, researchers reported

that Spearcons cues are an excellent way to indicate structural elements such

as fractions, superscripts, and subscripts as they are less distracting than tra-

ditional lexical cues but still provide a description of the particular structural

element involved to the users. Regarding non-speech, researchers found that

non-speech sounds such as earcons can be used to represent a hierarchical

structure such as nested parenthesis or menu items, but they will require ad-

ditional cognitive processing from the user, which may distract the user from

CHAPTER 5. PRIOR WORK ON SONIFICATION 84

processing the mathematical material.

Although auditory cues were difficult to interpret, prosody was found to

be useful in conveying the structure of an equation and, significantly, required

less effort from the end user than lexical cues [37]. In their work, researchers

displayed the math expression using synthetic speech from left to right in front

of the user, in addition to using prosodic cues to make the structure of the

expression clear to the user. In addition, researchers also placed pauses between

operators such as +, but only outside complex structures (e.g., fractions and

parentheses) to help the user distinguish the audio differences. Researchers also

used pitch to indicate the length of an expression so that users could distinguish

the complexity of a math expression. The obstacle in such technique is that

complex equation is difficult to determine based on prosody alone – suggesting

that another form of delimiter is required to provide adequate information.

5.2.3 Spatial Sounds in Mathematics

Some researchers have examined spatial sounds to convey certain information

to non-visual users [29,32,50,50]. For example, Harling et al. [37] used spatial

sounds in conjunction with different manual gestures (to ensure that a listener

has the same speed and accuracy of control as a sighted person during ma-

nipulation) in order to design algebra manipulation tool for visually impaired

mathematicians (students). In their work, researchers found that sounds gen-

erated in different spatial stereo locations were easier for users. This suggests

CHAPTER 5. PRIOR WORK ON SONIFICATION 85

that when using a headphone to covey certain information based on spatial

sound technique, the sound might appear to be between the ears, rather than

outside the head. Researchers explained that as the sound source moves around

the human body, around to 90 degrees to the vertical plane through the nose

(opposite the ear) movement has to occur over 40 degrees to be detected. Due

to the orientation of the human ears, front-back localization is much worse

than localization in front of the listener – suggesting that the spatial sound

technique is difficult to utilize and require specific equipment to achieve the

overall purpose. Whereas in [34], researchers used spatial sound technique

(discussed previously) to indicate whether a bracket in a math equation is

open or closed by using the right or left ear.

5.3 Converting Visual Graphs to Sound

Although some researchers have examined audio-based techniques in enabling

visually impaired users to access mathematical information, other researchers

investigated various audio-based solutions to make visually-based graphs fully

accessible to non-visual users [85]. This type of research is considered in our

prior work analysis because there is similarity between graph structures and

relationships in code.

However, in Cohen et al. [26], researchers suggested that increasing volume

could be used to communicate different events, e.g., representing the distance

from the central axis of an edge, and depicted by variation in saturation. In

CHAPTER 5. PRIOR WORK ON SONIFICATION 86

addition, researchers indicated that speech sound was used to announce the

name of the element, and possibly to give a brief description – suggesting

that speech could be used to give non-visual programmers an overview of the

entire codebase structure, e.g., an overview of loop [27]. Researchers also used

shortcut keys to provide detailed information whenever needed, which could be

adapted to inform non-visual programmers about their current location within

the codebase. Authors also used different tones with a variation of pitch and

loudness to guide non-visual users through the entire graph – indicating that

repeating tones, or pitch cannot be used again in order to make the audio

feedback meaningful [87].

5.4 Representing Menus or Outlines

Significant prior research has examined the use of audio-based techniques to

make mobile menus or outlines more accessible to non-visual users [73]. This

type of research is considered in our prior work analysis because there is nesting

in menu hierarchies, like nested code in programming. For example, Pavani

Yalla and Bruce Walker [91] conducted a study where they outline design

guidelines for designing an auditory menu for mobile devices. In their work,

researchers discussed different type of menu structure and the rules to move

from one item to another. They suggested that audio feedback should be

designed based on the importance of content, feedback, as well as consistency.

For example, the sound of a focus movement through the menu might be a short

CHAPTER 5. PRIOR WORK ON SONIFICATION 87

beep, where the sound for a menu selection might be a short melody consisting

of three different notes. In addition, researchers found that non-speech sounds

were a useful technique in giving the user proper feedback during an interaction

with the mobile device menu, e.g., simple beeps can be coordinated with key

presses to confirm the press. This technique could be adopted in our research

work where blind programmers hear short audio feedback about the current

location when they are moving through the codebase (e.g., 1 beep indicates

level 1 in a nested code).

Similarly, other researchers [41] investigated the use of the Spindex tech-

nique (Auditory Index Based on Speech Sounds), which is a non-speech cue

based on the pronunciation of the first letter presented in each menu item, e.g.,

Spindex cue for “Privacy” would be the sound “Pe” or “P” depending on the

spoken sound of the letter “P,” the first letter of the word “Privacy.” In their

work, researchers found that Spindex in conjunction with text-to-speech out-

performed text-to-speech only when users navigated through a mobile menu,

which indicated that Spindex technique was able to speed up the navigation

process while moving through a long list of items [39,40].

5.4.1 Designing Audio Cues

Moreover, other researchers investigated the design of Earcon cues in their

research [11,17,25,36,57]. For example, Brewster et al. [24] found that sounds

might be difficult to distinguish by non-visual users when they played next

CHAPTER 5. PRIOR WORK ON SONIFICATION 88

to each other. Researchers explained that a gap between each sound should

be used in order to help users understand when one sound finishes and the

other starts – suggesting a delay of 0.1 seconds is adequate for the users to

understand, thus, recognition rates should be sufficient.

Moreover, Pavani Yalla and Bruce Walker [92] found that Earcon could be

used to provide navigational feedback in hierarchical menus – suggesting that

each sub-menu in the hierarchy would play a different sound in the background

in order to assist users in identifying movements through different sub-menu.

For example, if users moved through the hierarchical structure, the background

Earcons would add an extra sound for each extra sub-menu that is traversed.

In addition, pitch polarity would change as the user scrolls throughout menu

items, which means pitch increases as the user scrolls down the menu, and

a decrease as the user scrolls up the menu. However, researchers found that

increasing of pitch was “distracting” and “annoying” as users scrolled down

through menu, and the pitch became increasingly higher, which suggests that

users may prefer higher pitch than lower pitch. Such a technique may make

non-visual users feel disoriented or lost in the hierarchical structure when

moving through complex menus. To overcome such a problem, the overall

structure of the menu or the user location should be conveyed in advance to

provide contextual information about the menu structure [64].

Furthermore, Pavani Yalla and Bruce Walker [92] found that adjusting

specific audio parameters (e.g., pitch) could help provide useful information to

CHAPTER 5. PRIOR WORK ON SONIFICATION 89

the non-visual users. For example, pitch of the first tone would correspond to

the location of an item, and the pitch of the second tone would correspond to

the pitch of the very first or very last item – depending on whether the user

is scrolling up or down. This means the second tone would act as a reference,

so if the pitch gap between the two consecutive tones is large, the user knows

that he or she has to scroll for a long time before reaching the top or bottom

of the menu. In case the pitch gap is small, it means that there are only a few

items left before the end of the menu. Adjusting audio parameters was also

helpful in [60] when conveying mathematics symbols to non-visual students.

5.4.2 Limits of Understandability of Non-Speech

Some researchers discussed the importance of having prior knowledge of non-

speech cues and how it could help improve the accuracy of cue recognition

[13, 23, 53]. By “prior knowledge,” the authors refer to the involvement of

stakeholders throughout the entire design process of non-speech cues. In their

work, researchers argued that non-speech cues are completely abstract: the

sound has no relation to the objects it represents. They require some form of

training in advance – especially for novice users as they might find it obscure

to associate each auditory cue with its proper meaning. This suggests that

the mapping between the sounds and the event or object they represent are

important. If the mapping is hard to determine, the meaning will be ambiguous.

To overcome such a problem, we would need to follow a participatory design

CHAPTER 5. PRIOR WORK ON SONIFICATION 90

approach [71] by involving stakeholders through the design process.

Moreover, other researchers discussed how natural conflict may occur be-

tween audio cues when users are presented with two similar concepts within

an interface [61]. In their work, researchers explained that sound is identified

either as an object (e.g., camera, printer, door, etc.) or action (e.g., closing,

locking, etc.) - indicating that sound should be separated either as an object

or an action.

Furthermore, some researchers [13,34,90] have examined the limits of un-

derstandability in audio cues. In [63], researchers compared two different

audio-based techniques for navigating a menu, Earcons (a hierarchical pro-

gression of variable tones) and Spearcons (spoken directions, compressed and

sped up) [90]. In their work, researchers found that Spearcons helped non-

visual users navigate through cell phones quickly and comfortably. Similarly,

other researchers also indicated that Spearcons (when words are sped up by

70%) recognition rate was higher for visually impaired users compared to their

sighted counterparts (this is because non-visual users are used to work with

fast spoken words, e.g., screen-reader). Researchers also found that short cues

were more effective than more complicated cues, for conveying certain types

of information.

CHAPTER 5. PRIOR WORK ON SONIFICATION 91

5.5 Discussion of Prior Work

As discussed previously, our goal was to investigate whether audio-based tech-

niques could provide adequate support to assist non-visual programmers un-

derstand the hierarchical nesting structure of code. In this dissertation work,

four major design dimensions are investigated to generate useful design guide-

lines for employing an audio-based feedback system in the programming en-

vironment, mainly to aid non-visual programmers. We review these design

dimensions again below:

� What to convey: What type of information do stakeholders prefer to

know about their nested codebase?

� Audio Feedback: What kind of audio feedback (speech, non-speech,

etc.) do stakeholders prefer to use to convey the nested codebase?

� Audio Parameters: What type of audio properties (pitch, volume,

etc.) do stakeholders prefer to adjust when they presented with an audio

feedback?

� Audio Interaction: What kind of audio interaction techniques (on-

demand, automatically, etc.) do stakeholders prefer to use in order to

hear an audio feedback?

This prior work analysis has revealed key concepts which we could adopt

in this research work: First, we learned that speech sounds were found to be

CHAPTER 5. PRIOR WORK ON SONIFICATION 92

helpful in giving the users an overview of structurally-based information (math

equations, mobile menus, etc.). Second, we learned that non-speech sounds

were found to be useful in giving the users feedback during an interaction with

the system – suggesting that users like to be informed about their interaction

process via a brief sound (very short). Third, we learned that adjusting sound

properties was useful in providing the users with different audio meanings, e.g.,

modifying pitch to indicate a different level of brackets in a math equation.

Forth, we learned that non-speech sounds require prior knowledge for the

users to understand, especially novice users. Fifth, we learned that non-

speech sounds were found to be difficult to use when conveying complex math

equations – suggesting that speech sounds should be used instead. Finally,

we learned that spatial sounds were found to be helpful in providing non-

visual users with important feedback about math equations, e.g., using the

right or left ear to indicate whenever a bracket is open or closed. However,

additional investigation is needed prior to adopting any one of these techniques

in this research work since we are dealing with a different research problem,

i.e., conveying the nested structure of code lines. Therefore, we discuss our

research studies aimed to evaluate the usability and efficacy of these audio-

based techniques for conveying the hierarchical nesting structure of code to

assist non-visual programmers in Chapters 6 & 7.

CHAPTER 5. PRIOR WORK ON SONIFICATION 93

5.6 Limitations of Prior Work

In summary, audio-based techniques were found to be useful for enabling

non-visual users to access variety of visually-based information. However,

none of the above-mentioned prior work had examined this systematically in

order to convey the hierarchical nesting structure of code to aid non-visual

programmers, mainly to ease code navigation. Thus, we needed to investigate

this particular issue in order to find out whether audio-based techniques could

assist non-visual programmers while navigating through large amounts of code.

Chapter 6

Formative Study

6.1 Background and Introduction

During software development, programmers often use integrated development

environments (IDEs) or other text-editors to write code, which may include

some hierarchical structure, such as nested blocks of code or loops. In ad-

dition to whitespace, e.g. some number of tabs or spaces at the beginning

of each line of code, text editors or IDEs may also include additional visual

cues to convey this code structure efficiently, e.g. level indication or syntax

highlighting. To access the computer display, persons who are blind typically

use screen-reader software, a form of assistive technology that converts the

text, images, and other visual content into synthesized speech or Braille output,

depending upon the user’s preference. Although screen-reader technologies

provide essential access to computer systems for blind users, prior research has

94

CHAPTER 6. FORMATIVE STUDY 95

revealed limitations in this technology when a blind user is reading or writing

software code [4,5,9,58]. Given the complex visual information in many IDEs,

e.g. color-coding or other visual indicators of code structure, non-visual com-

puter programmers who use screen-reader technologies do not yet have access

equivalent to their sighted peers [5, 75,80].

Prior research on computer-programming accessibility has found that blind

programmers have access to limited advanced features for enabling a user to

move quickly through a large codebase; these limitations force blind program-

mers to navigate code linearly, one line at a time, or jump between code blocks

using “find/search” features [5, 9, 85]. Specifically, prior work has found that

non-visual programmers have difficulty understanding the hierarchical nesting

structure of code [9, 58, 80]. As a result, researchers have investigated various

approaches for enabling faster navigation and a better comprehension of code

structure among non-visual programmers [77, 86]. Although recent research

has investigated different methods for enabling faster code navigation [9, 77],

there has been a lack of research on the usability of audio-based techniques in

this context.

For this reason, we investigated whether audio-based techniques could pro-

vide support to non-visual programmers while navigating through a nested

codebase through a formative interview-based study. In this study, 12 blind

programmers indicated their preferences among various forms of verbal (e.g.

“Level 1”) and non-verbal (e.g. beeps) sonification for conveying code indenta-

CHAPTER 6. FORMATIVE STUDY 96

tion when using a screen-reader. The primary goal of this research work was

determining empirically whether these users prefer using specific audio-based

cues about code structure, mainly to form the design of our experimental study,

in Chapter 7. Rather than select details of this prototype arbitrarily, we be-

gan with a formative interview-based study, in which non-visual programmers

discussed what information they wanted to know as they read nested code,

listened to samples with different audio notification types (e.g., speech, non-

speech, etc.) with variations in properties (e.g., stereo, pitch, speed, duration,

etc.), and discussed their preferences among these options.

The contribution of our work is empirical: We identified the preferences

of non-visual programmers in regard to various dimensions of how audio in-

formation could supplement understanding of code indentation during the

screen-reader-based reading of software code. The study findings established

the design of our experimental study where we investigated different audio-

based interaction techniques using audio-based prototypes.

This Chapter is structured as follows: Section 6.2 outlines our research

questions aimed to investigate the usability of audio-based techniques to convey

the hierarchical nesting structure of code. Section 6.3 provides an overview of

the formative study methodology, used to answer RQ3. Section 6.4 discusses

the study’s overall major findings, and Section 6.6 summarizes our conclusions

and future work directions.

CHAPTER 6. FORMATIVE STUDY 97

6.2 Research Questions Investigated in this Chap-

ter

In this chapter, we address the following research question:

RQ3: In a formative interview study with a variety of audio examples, what

forms of audio generation techniques and parameters do non-visual pro-

grammers express interest in?

We present the evaluation of our RQ3 through an interview-based study

where we collected subjective preferences from 12 participants about various

sound effects (e.g., speech, non-speech, stereo, etc.) for conveying the hierar-

chical nesting structure of code. This smaller study was not enough to show

statistically significant differences regarding users’ choices of various sound

effects and properties. The goal of this smaller study was to understand user

preferences of sound effects and provide some answers to RQ3 so that we were

not making arbitrary choices about our audio interaction prototypes in phase

2, e.g., larger study (Chapter 7).

6.3 Methodology

During this one-to-one interview and audio prototype evaluation, we presented

participants (n = 12) with various sound effects with various audio proper-

ties. The audio samples included variations in whether the cue was based on

CHAPTER 6. FORMATIVE STUDY 98

speech (e.g. a voice saying “Level 2”), non-speech sounds (e.g. multiple beep

sounds), or left-to-right stereo position of the screen-reader speech audio to

convey indentation structure of code (e.g. with the code spatially positioned

more the right if indented further). In addition, audio samples of all of these

types were generated with variations in audio properties (e.g., pitch, speed,

duration). The formative study was planned as a preliminary study, in support

of our subsequent larger study, in Chapter 7, which had a larger number of

participants. So, the goal of presenting a wide variety of audio cues during this

interview study was to formatively explore the design space of sound effects

and their properties for conveying code structure. Our aim was not conclu-

sively identifying the best possible sound options, but rather to eliminate any

sound effects that users found difficult to perceive or understand. Our goal

was to use this study to formatively select a reasonable set of sound options

for the prototype to be deployed in our subsequent experimental study, e.g.

so that the later study could determine if users prefer such a prototype to a

control condition.

6.3.1 Stimuli Preparation

To prepare the speech-based audio stimuli, the JAWS speech synthesis (text-

to-speech) software [1] was used to produced brief recordings of a voice saying,

e.g. “Level 1,” “Level 2,” etc. In JAWS, we used the default profile (e.g.

Eloquence) with a 57-speed rate, 100 volume, 65 pitch, 20 pitch for upper case,

CHAPTER 6. FORMATIVE STUDY 99

and -20 for the spell rating. Non-speech audio samples were selected from

the Freesound open-source library [18] and included, e.g. beeps, bell sounds,

pure tones, and other alert sounds. Next, an audio recording was made of

the Audacity voice [6] reading aloud a short sample of Python code, so that a

recording of an audio cue could be spliced into this recording of the voice, to

simulate a sound effect being played while the user is listening to some code

being read aloud. Code samples were played using the Python programming

language in this study, given the popularity of this language. In addition, this

selection was made based on the unique syntax of the language, which uses

whitespace indentation at the beginning of lines to convey the nesting structure

of lines of code, rather than using curly braces or “begin/end” keywords for

blocks. In Python, programmers must indent code properly in order to convey

this structure. In our prior work [5], we found that blind programmers were

frustrated by listening to screen readers convey whitespaces by reading aloud

each space at the beginning of a line of code, e.g. as “Space, Space, Space,

Space” or as a count (“four spaces”).

Some of the audio properties of the non-speech cues were adjusted in order

to generate variations of each sound effect so that users could be asked which

they prefer. In addition, some samples were generated with alternative levels

of an audio property to investigate conveying code structure using variations

in the property, e.g. increasing the pitch level in a beep sound to convey the

depth of the nested loop. Similar variations in sound cues were generated to

CHAPTER 6. FORMATIVE STUDY 100

investigate repetitions of audio sounds (e.g. multiple beeps indicating different

levels of nesting), changes in volume, etc. We summarize the investigated

audio parameters as follows:

1. Spatialization of sound: refers to a sound processed to give the listener

the impression of a sound source within a three-dimensional environment.

2. Pitch: refers to the frequency of the voice or sound at which it vibrates,

the higher the frequency the higher the note, and by extension the lower

the frequency the lower the note.

3. Volume: refers to the amount of space occupied by a three-dimensional

object or region of space – louder sounds correspond to higher pressure.

4. Duration: refers to the amount of time or a particular time interval,

e.g., how long a sound lasts.

5. Continuity: refers to the continuity of a particular sound, e.g., some

sounds may last a few seconds, while other sounds may continue to sound

without stopping.

6. Speed: refers to the speed of sound waves in air, e.g., the distance

travelled per unit time by a sound wave as it propagates through an

elastic medium.

Timing of the audio sounds relative to the speech reading aloud the Python

code was also investigated by generating samples in which the audio overlapped

CHAPTER 6. FORMATIVE STUDY 101

with the speech, or with variations in the time delay between the speech and the

sound effect if presented serially. To ensure that the audio samples were played

at high quality on the participant’s side of the videoconferencing interview,

the complete list of samples was provided to participants via a web page

that the participant opened on their local computer during the interview, so

that recordings could be triggered during the interview and played on the

participant’s local computer.

6.3.2 Recruitment and Participants

Non-visual programmers were recruited through advertisements on mailing

lists (e.g., NFB, program-l, etc.) and online groups (e.g., Google, LinkedIn) for

people with visual disabilities. The criteria for participating in the study was

that individuals had to be 18 years or older, self-identify as totally blind, with

at least two years of programming experience, know the Python programming

language, and use a screen-reader. Participants were compensated with a $40

Amazon gift card for the 70-minute interview. In this study, we interviewed 12

participants (11 males, 1 female) with ages from 23 to 41 years (mean = 32.75,

SD = 6.14). Our sample showed some variation among participants in their

programming experience (from 2 to 22 years’ experience) and employment

status (e.g., student, employed, and freelancer). All participants used screen-

reader technologies, and only 5 used Braille displays with their screen-readers.

Participants were from seven different countries: United States (n = 6), and 1

CHAPTER 6. FORMATIVE STUDY 102

participant from each one of the following: Canada, Bulgaria, Ukraine, Italy,

Netherlands, and India.

6.3.3 Procedure and Questions

The interview study occurred virtually via Skype and Google Hangouts per par-

ticipants’ preferences. Prior to the interview, participants answered a screening

questionnaire to confirm eligibility and gather demographic data. Participants

were provided with an informed consent document prior to this IRB-approved

study. Each interview lasted approximately 70 minutes. At the beginning

of each interview, the premise for the interview was explained, i.e. gauging

users’ interest in and preferences for a tool that used audio cues to convey the

hierarchical nesting structure of code. Interleaved with interview questions,

participants listened to various audio cue samples, and for each, participants

were asked to share their opinion via open-ended interview questions about

the usability and efficacy of each. At the end of the interview, participants

responded to questions about their interest in various audio alternatives, and

they suggested additional sound options for conveying code structure. The

goal of this formative study was to explore as many sound effects as possible

via an efficient form of prototyping, to select some promising design options

for the higher-fidelity prototype in the later study (Chapter 7).

To analyze data, answers to open-ended questions were noted, with addi-

tional written notes taken for participants with particular focus on capturing

CHAPTER 6. FORMATIVE STUDY 103

direct quotations. We used Microsoft word audio recording feature to record

participants’ responses during the interview session, and transcripts were cor-

rected by the researcher who reviewed a recording. We followed an open-coding

method, to represent ideas or issues raised by participants. Codes were as-

signed to the transcript of participants’ responses and to experimenter notes.

Two researchers performed coding independently, and they met after an ini-

tial round of coding to produce a unified set of codes. After independently

re-coding the data, the two annotators held a meeting to finalize a consensus

coding. Based on all coded segments, an affinity diagramming procedure was

used to develop a set of themes, which form the basis of our results below.

6.4 Results

This study investigated our research question RQ3, about what forms of audio

generation techniques and parameters non-visual programmers would express

interest in. Participants discussed the timing of audio cues about the inden-

tation level or structure of a codebase (Subsection 6.4.1), the type of audio

feedback they would prefer for conveying code nesting (Subsection 6.4.2), and

the type of audio properties stakeholders would prefer to be modified in order

to convey various nesting levels (Subsection 6.4.3).

CHAPTER 6. FORMATIVE STUDY 104

6.4.1 Timing of Audio Cues about Code Structure

In regard to whether to convey the nesting depth of individual lines or groups

of lines, participants expressed interest in knowing when each level starts and

ends (multiple lines of identical depth). For example, P10 indicated that:

“when I’m skimming the code, I can see the line but I’m not able to see

how deep that line is” and wanted “the sound to play before the line.”

(P10)

Similarly, P12 said;

“I do like the idea, knowing how deep it is, that gives an idea of where

exactly I am.” (P12)

Some were specifically interested in knowing information about the depth

level as code became increasingly nested, e.g. with P9 sharing;

“I think definitely anything that can help to understand the deeper nesting

of levels would be beneficial.” (P9)

Participants also commented on the timing of the audio cue, relative to the

screen-reader speech, to prevent causing confusion or distraction. Participants

did not want audio cues to be played simultaneously with the screen-reader

speech; they preferred audio cues to occur in-between lines of code, with a

buffer of 10 milliseconds of silence before and after the sound effect (after

listening to various timing options), to help listeners distinguish the audio

feedback from the screen-reader speech. To elaborate, several participants

discussed their thoughts:

CHAPTER 6. FORMATIVE STUDY 105

“First, it should be the [feedback], after that is the gap. and after that the

screen reader... There should be a gap between the two as fast as possible.

Also, if I decide to move fast to the next one it should stop the last one

of the previous sound or announcements.” (P3)

“Up to 10 milliseconds, yeah well so when you press the down arrow

you should immediately hear what’s happening, I mean the speech or

non-speech cues from the plugin.” (P4)

“I prefer a very small gap significantly very small one in these files or

the cues starting and then speech starting after that.” (P10)

6.4.2 Speech-Based vs. Non-Speech Audio Cues

Participants listened to a variety of sound samples, with some based upon

computer-synthesized speech, and others based on a library of non-speech

sounds. Overall, participants preferred non-speech audio, rather than speech-

based audio messages, which they worried could be confused with the lines

of code being read or interfere with their attention as they listen to code. In

regard to non-speech cues, participants were asked to share their thoughts

about various samples (e.g., beep, bell, musical tones, woodpecker, etc.) as a

strategy for conveying the depth of the nested loop. Participants expressed

their interest in the “beep” sound and decided to use it over other samples,

with several participants explaining:

“I would say just the beep because it’s short and it’s very quickly.” (P5)

CHAPTER 6. FORMATIVE STUDY 106

“The short one which is beeps, it would be enough for me because it is

not something hard to detect and to it is very short and easy to recognize.”

(P7)

“Having to hear the woodpeckers, I can now imagine that would get very

great annoying very quickly; so, the beep sound is more settled and less

harsh.” (P10)

The speech-based samples included variations such as “you are in level 1,”

“level 1,” “L 1,” “1 indent,” “deeper,” and others which indicated the specific

integer level of nesting, as well as relative information about whether a line of

code is more/less indented than the previous line. Although users preferred

non-speech cues (as discussed above), when asked to select from only among

the speech-based cues, most preferred a short message, but they did not want

to consist of only a number. As P3 explained, if it were only a:

“number pronounced, it might be mistaken for... part of the text or the

code.” (P3)

Similarly, P6 commented:

“Level 1 kinds of tells you like heading level, you know, and it makes a

mental map to let you [know] where you are, instead of just 1, 2, 3. So,

the word ’level’ actually reminds you [of] the hierarchy.” (P6)

When asked to consider samples of audio that contained a longer spoken

message, e.g. “You are in Level 1,” users were concerned that it would take too

CHAPTER 6. FORMATIVE STUDY 107

much time to listen to such messages, as speed is a premium in their interaction

with the computing using the screen reader. For instance, P9 explained:

“So, I definitely do not want to listen to something [that] say; you are in

level 2 before I get to hear the line of code. So if it was going to be speech,

it would definitely need to be [a] brief and preferably [with] a higher speed.

[that] would be good.” (P9)

6.4.3 Conveying Code Structure with Audio Properties

Participants listened to a variety of sound samples with variations in audio

properties, e.g. pitch, volume, speed, duration, repetition, stereo, etc. Partic-

ipants reported that varying some audio properties led to sounds that were

annoying when listening to synthesized speech reading code aloud. For in-

stance, in regard to whether the pitch of sounds should be varied to convey

the depth of code, participants were skeptical of this concept, as they found

this concept difficult to use since it increases memory load. For example, P8

commented:

“If I’m listening to different kinds of pitch, I need to internally in my

head map that backs into what number of indentation is that; so, there’s

like one extra step that I have to do in my head to figure out the level of

indentation.” (P8)

Further, when considering changing audio properties of speech-based audio

cues, participants were concerned that the speech could become unintelligible,

as P12 explained:

CHAPTER 6. FORMATIVE STUDY 108

“I am used to having to listen [to] something normal pitch. It is important

to me that I could control it. The pitch level definitely, especially with

NVDA, it becomes very difficult to understand, and because of the nature

of the synthesis voice. It defiantly impossible to understand anything in

[a] higher pitch and sped up..” (P12)

In regard to stereo left-to-right spatial audio cues, participants disliked

the concept as a whole, as it would require a particular set-up of speakers or

headphones. Users in workplace settings preferred not to wear two headphones,

as they would be less aware of their surroundings. As P2 commented:

“It seems a little bit redundant. Also, usually, when I’m reviewing code in

work and using headphones, I’m only using one [headphone], so that I can

still maintain knowledge of what’s going on around me. So, I would be

unlikely to use 2 headphones at the same time and get that stereo sound.”

(P2)

Participant P7 explained that such a technique requires higher mental load,

which should be avoided:

“It requires more attention because my attention should be mostly focused

on the project, or of what I am doing and maybe I listen to someone else

or thinking or something or listening to disrepute the speech sounds if I

had to be focused also in the three dimensions or two dimensions it would

require higher mental loud..” (P7)

In regard to adjusting speed, mainly to cut audio length, several partici-

pants reported that the duration cut should not exceed 50%, or increase the

CHAPTER 6. FORMATIVE STUDY 109

speed, as it may cause the meaning of the audio to be difficult to understand.

As P4 commented:

“I believe some people may find it difficult if you go beyond 50%.” (P4)

Although participants disliked the idea of stereo left-to-right spatial audio-

based cues, other participants reported positive experience when it comes to

hearing repetitive beeps, as a strategy for conveying the code indentation. For

example, P8 and P10 indicated that repetitive beeps are far easier to use and

remember when compared to pitch changes, as an indication for nesting level

changes:

“I would like [the] second where you do one beep or two beeps or three

beeps as opposed to playing with [the] pitch because then I don’t need to

map pitch to the indentation.” (P8)

“[I] can identify something beep, beep, beep, and count those beeps. But

pitch can be so hard, something that there is a certain frequency that they

can hear . . . I think beep is the best I cannot really think of anything like

a better recommendation.” (P10)

6.5 Discussion

The purpose of conducting this formative study had been to inform our choices

for the audio interaction prototypes in our experimental study (Chapter 7)

so that its design would not be arbitrary. We, therefore, collected responses

CHAPTER 6. FORMATIVE STUDY 110

about the type of audio feedback, audio timing, and sound properties par-

ticipants preferred for receiving assistive information about the hierarchical

nesting structure of code. In our study, participants indicated an interest in re-

ceiving supportive information in the form of non-speech audio (“beeps”) with

repetitions of the sound which indicates the number of levels of indentations

of some code. In addition, participants recommended the use of time-intervals

of silence before and after these audio cues (e.g., 10 milliseconds), to avoid

interfering with the speech-reader voice. Furthermore, participants disagreed

whether this assistive information should be conveyed automatically when the

indentation level changed, or if it should be provided upon demand, e.g., per

the user request.

6.6 Summary and Limitations

Although the benefits of using audio-based techniques for assisting non-visual

users have been studied in prior work, conveying the indentation level via

such cues had been relatively under-studied. In this work, we conducted a

formative study where we investigated whether non-visual programmers prefer

to receive assistive information about code indentation through audio-based

cues. This study provided greater empirical evidence about the need for

utilizing an audio-based feedback system in programming environments, and

it identifies an opportunity for the research community as well as the software

engineering field to address these needs. This research work contributes to

CHAPTER 6. FORMATIVE STUDY 111

the literature by providing firsthand detailed information from non-visual

programmers about the potential of employing audio-based feedback within

programming environments.

In this research work, there were several limitations that we would like to

mention: Our interview study was too underpowered to allow us to make any

statistically significant claims in regard to RQ3; this study had been intended

as a formative investigation into the design space, to guide the creation of

our prototype for the subsequent experimental study. Secondly, this work has

focused on adult computer programmers, but the specific needs of children or

students who are learning to the program may differ.

In conclusion, we have identified that non-visual programmers preferred

some audio-based cues (e.g., “beeps” and “Level 1”) in our formative study, yet

these findings must be investigated in a further empirical study with interactive

prototypes where participants have some form of interaction with computer

programming code sample.

Chapter 7

Experimental Study

7.1 Background and Introduction

Based on the preliminary findings of our formative study in Chapter 6, we

conduct an experimental study with an interactive audio prototype. In this

large experimental study, 21 blind programmers indicated their satisfaction

with various forms of code-indentation sonification.

For this study, we developed an interactive audio prototype, based on

the (previously discussed in 6) formative findings, to address our research

question (listed below) as to whether users would actually prefer to receive

such audio information when they engage in a software code reading task.

In the formative study participants had expressed interest in both automatic

notification when moving from one level of indentation to another, as well

as on-demand information about how indented their current line of code was

112

CHAPTER 7. EXPERIMENTAL STUDY 113

upon request. Thus, we implemented an interactive audio prototype that read

aloud, with screen-reader synthesized speech, samples of Python code with

nested loops, with three versions: a) automatic interaction where sound effects

are played automatically without user involvement, b) on-demand interaction

where the user presses a specific keystroke to receive audio feedback, c) and the

code read aloud without any audio feedback conveying the code indentation

(control condition). Participants’ responded to scalar questions about their

preferences, and they provided open-ended feedback. Participants preferred

receiving audio feedback (both automatic and on-demand preferred to the

control condition), but no significant difference was observed when comparing

the automatic and on-demand conditions.

The contribution of our work is empirical: Our experimental study provides

evidence that non-visual users prefer receiving this supplemental audio infor-

mation, as compared to a control condition without this additional information.

As a minor contribution, we disseminate our audio prototype code, along with

our code examples and question items as a supplemental electronic file, to

enable future replication of our work or comparison to alternative techniques

(see Appendix F).

This Chapter is structured as follows: Section 7.2 outlines our research

questions aimed to investigate the usability and efficacy of audio-based tech-

niques to convey the hierarchical nesting structure of code. Section 7.3 provides

an overview of the experimental study methodology, used to answer RQ4 and

CHAPTER 7. EXPERIMENTAL STUDY 114

RQ5. Section 7.4 discusses the study’s overall major findings, and Section 7.6

summarizes our conclusions and future work directions.

7.2 Research Questions Investigated in this Chap-

ter

In this work, we investigated RQ4 and RQ5: RQ4 asked whether non-visual

programmers, when actually given an opportunity to use an interactive proto-

type, would prefer receiving audio information about the indentation of code,

as compared to a control condition (simulating the experience of listening to

code with a screen reader voice without such cues). RQ5 asked whether users,

now that they could interact with a system, preferred to receive notifications:

automatically (i.e. when the level of indentation changes) or on-demand (i.e.

if the user presses a button while listening to a line of code to hear an audio

cue indicating its indentation level). The rationale for investigating both of

these questions in a separate study from our formative study (Chapter 6) is to

enable us to create a reasonable prototype to investigate whether users actually

prefer this type of information (RQ3). Further, the non-interactive nature of

the audio samples played in our initial interview-based study did not enable

us to investigate this issue of initiative in RQ5. Therefore, we investigated the

following research questions in our dissertation work:

RQ4: When presented with an interactive audio prototype based on this prior

CHAPTER 7. EXPERIMENTAL STUDY 115

formative study, do non-visual programmers prefer receiving this addi-

tional audio information about the structure of code, as compared to a

control condition without such additional information?

RQ5: When interacting with an audio prototype based on this prior formative

study, do non-visual programmers have a preference between automatic

level-crossing notifications or on-demand level indications?

7.3 Methodology

In this experimental study, 21 non-visual programmers used an interactive

audio prototype with a synthesized voice reading Python code, with all par-

ticipants trying three versions of the prototype: with automatic level-crossing

notifications, with on-demand level indications, or no feedback - with this final

case being a control condition. In our within-subjects design, each participant

was able to try all three versions of the prototype. In addition, we prepared

a set of three Python code examples which participants could explore (each

engineered to have a similar level of code complexity and nesting, as discussed

below). We, therefore, used a Greco-Latin schedule for rotating the order of

presentation of each of the three prototype versions, along with the assignment

of each code sample to one of the prototype conditions.

CHAPTER 7. EXPERIMENTAL STUDY 116

7.3.1 Stimuli Preparation and Prototype

To prepare the Python code stimuli, we wrote a short Python program with

three nested loops (three levels in depth), which printed the contents of a

nested data structure. After preparing an initial code sample, two additional

code samples were written with identical levels of complexity, but with slight

variations in the thematic topic of the code and the style of a loop: Example

1 included for-loops and was on the topic of sports team scores, example two

used while-loops and was on the topic of movie/cinema reviews, and example

3 included a mix of for-loops with one while-loop and was on the topic of train

schedules (see Figures 7.1, 7.2 & 7.3). To ensure a similar complexity of all

code examples, the cyclomatic complexity metric [56] was calculated for each,

to ensure that each sample had identical metric scores.

Figure 7.1: For-loops code sample.

CHAPTER 7. EXPERIMENTAL STUDY 117

Figure 7.2: While-loops code sample.

Figure 7.3: Mix of for-loops with one while-loop code sample.

Each code sample printed a specific JSON data structure, which had iden-

tical structure, but with variable names on different topics: i) team scores, ii)

movie/cinema reviews, iii) and train schedules. We describe them as follows:

� Team Scores: The game scores data structure is written using JSON

data structure. It consists of groups which is an array of three objects.

Each object in the game scores data structure contains four attributes.

The names of these four attributes are team, role, teamID, and games.

The data type of these four attributes are string, integer, and array of

object. The games attribute is an array of three objects. Each object

in games attribute contains two attributes, team and result. The data

CHAPTER 7. EXPERIMENTAL STUDY 118

type of these attributes are string and an array of object. The result

attribute is an array of one single object called score. The data type

for the score object is string.

� Movie Reviews: The movie rating data structure is written using

JSON data structure. It consists of groups which is an array of three

objects. Each object in the movie rating data structure contains four

attributes. The names of these four attributes are ReviewerName, role,

ReviewerID, and MovieNames. The data type of these four attributes

are string, integer, and array of object. The MovieNames attribute is an

array of three objects. Each object in MovieNames attribute contains

two attributes, name and reviews. The data type of these attributes are

string and an array of object. The reviews attribute is an array of one

single object called score. The data type for the score object is string

� Train Schedules: The train schedule data structure is written using

JSON data structure. It consists of groups which is an array of three

objects. Each object in the train schedule data structure contains four

attributes. The names of these four attributes are StationName, role,

StationID, and TrainNames. The data type of these four attributes are

string, integer, and array of object. The TrainNames attribute is an

array of three objects. Each object in TrainNames attribute contains

two attributes, name and schedule. The data type of these attributes

are string and an array of object. The schedule attribute is an array of

CHAPTER 7. EXPERIMENTAL STUDY 119

one single object called ArivalTime. The data type for the ArivalTime

object is string.

To produce our interactive audio prototype, we created an audio recording

of each code example read aloud by the JAWS screen-reader [1]. In addition,

to assist with prototype creation (described below), a researcher annotated

a timeline for each audio recording, to note when each line of code began or

ended, and to note the indentation level of each line of code (see Figure 7.4).

For our study, we needed to produce three different versions of our audio

prototype, and details of which are explained below:

Figure 7.4: In this figure, we show an example of how the for-loop portion
will be time-stamped based on three different levels. To create the audio file
annotation, it was necessary to listen to the computer voice recording while
watching the codebase at the same time in order to track the computer voice
recording, i.e., change a particular level to another level.

1. For the “control” condition prototype, we wanted to create a simulation

of the experience of listening to a screen reader as it read aloud some code,

without any additional audio cues. In this case, our prototype merely

consisted of a web page that contained an embedded audio player, that

allowed the participant to play the entire audio recording, as many times

as they wish.

CHAPTER 7. EXPERIMENTAL STUDY 120

2. For the “automatic” notifications prototype, the original audio recording

was edited, so that we could splice additional time into the recording at

each of the between-lines-of-code boundaries at which the indentation

level of the code changed. At each of these depth-change boundaries, we

inserted a sound effect consisting of a “beep” sound, based on the sound

effect beep available at Freesound [2]. This beep was repeated a number

of times, to indicate the level of indentation of the code, such that a line

of code that was not indented at all would receive 0 beeps. When entering

a block of code at a different level of indentation than the previous line of

code, the beep would be played a specific number of times, to indicate the

level of indentation, e.g. with two beeps to indicate code indented two

levels (see Figures 7.6 & 7.5). As discussed above, the selection of a beep

sound was based on feedback and suggestions of participants in our earlier

formative study (Chapter 6). To enable clear differentiation from the

screen-reader speech of the Python code, an interval of silence of duration

10 milliseconds was used to buffer the sound effect from the adjacent

speech in the audio recording (also based on our formative study). In

this “automatic” version of our prototype, participants only heard the

computer voice recording, occasionally interleaved with repetitive beeps

to indicate depth changes in the code indentation. As in the control,

participants were simply presented with a web page with embedded audio

played that enabled the user to play the recording.

CHAPTER 7. EXPERIMENTAL STUDY 121

Figure 7.5: In this figure, we show an example of how inserting a sound effect
into the computer audio recording with 10 milliseconds delay (pause) would
result in changing the original audio recording time-frame. In this example,
sound effects could be anything from the speech sound category, non-speech
sound category or spatial of sound category.

Figure 7.6: This figure shows the process of inserting sound effect into the
code sample recorded version using Audacity software.

3. For the “on-demand” level interaction prototype, the “control” version

of the prototype was augmented to provide a more interactive experience

for users. Specifically, a JavaScript function was implemented to control

the audio player such that the user could press the space bar as the audio

recording was playing, which would have the following effect: the audio

CHAPTER 7. EXPERIMENTAL STUDY 122

playback of the code was momentarily paused, a sound played (a series of

repeated beeps, identical to those used in the “automatic” condition), and

then the audio playback immediately resumes. An interval of silence of

duration 10 milliseconds occurred immediately before and after the sound

effect. As in the automatic condition, the number of beeps indicated the

level of depth of indentation of the line of code, in this case, to indicate

the depth of the line of code that was currently being read aloud. The

aforementioned timeline annotation created by a researcher to indicate

the indentation level of the line of code being read at each moment of

the audio recording was used in the implementation of this JavaScript

function (Figure 7.7). To demonstrate how this tool would work: (1) user

presses the play button, (2) audio file starts to play, (3) user presses the

spacebar to request the current location in the codebase, (4) JavaScript

function checks computer voice recording time-frame and then provide

the corresponding audio feedback (based on the current location in the

codebase), (5) audio file pauses for a moment (so that the participant

could differentiate the audio feedback (sound effect) from the computer

voice recording), (6) sound effect starts to play, (7) user receives the

audio feedback corresponding to the current location, and (8) current

location is now determined. In this tool, the user would have the freedom

to repeat this process many times in order to understand the current

location during different levels in the codebase. Our goal is to understand

CHAPTER 7. EXPERIMENTAL STUDY 123

whether non-visual programmers prefer to hear sound effects played to

them on-demand whenever they need to know their current location, to

answer the question, “where am I right now?”

Figure 7.7: Overview of the JavaScript function for the on-demand prototype.

7.3.2 Recruitment and Participants

Non-visual programmers were recruited through advertisements on mailing

lists (e.g., NFB, program-l, etc.) and online groups (e.g., Google, LinkedIn) for

people with visual disabilities. The criteria for participating in the study was

that individuals had to be 18 years or older, self-identify as totally blind, with

at least two years of programming experience, know the Python programming

language, and use a screen-reader. Participants were compensated with a

$40 Amazon gift card for the 70-minute interview. This experimental study

included 21 participants (19 males, 2 females), who had ages ranging from

CHAPTER 7. EXPERIMENTAL STUDY 124

Questions Scale
Q1. This system was easy to use.
Q2. This system was convenient to use.
Q3. This system was helpful for your programming tasks.

5-point Likert Scale

Q4. Rate how easy you found the task to complete.
Q5. Rate how frustrating you found the task to complete.
Q6. Rate whether you felt you had a good idea where you were in the code.

7-point Scale

Table 7.1: List of scale-based questions used in the larger study.

21 to 64 years (mean = 35, SD = 12.46). There was variation in the level of

programming experience (lowest = 2 yrs., highest = 49 yrs.) and employment

status (e.g., student, employed, unemployed, and freelancer). All participants

used screen-reader technologies, and 6 used Braille displays alongside their

screen-readers. Participants were from seven different countries: United States

(12), India (4), and 1 participant from each one of the following countries:

Canada, Netherlands, Georgia, South Africa, and Indonesia.

7.3.3 Procedure and Questionnaire

The study occurred remotely using Skype, Zoom or Google Hangouts, per each

participant’s preference. At the beginning of the session, participants were

informed that they would interact with three audio interaction prototypes, with

each explained briefly immediately prior to its use. As discussed above, a Greco-

Latin schedule was used in this within-subjects study to assign participants to

individual schedules, so that the sequence of presentation could be rotated and

the prototype conditions (control, automatic, on-demand) could be rotated in

their assignment to the three code samples (sports team scores, movie/cinema

CHAPTER 7. EXPERIMENTAL STUDY 125

reviews, and train schedules). During the study, participants interacted with

all three prototypes. After each interaction, participants were asked to perform

the following tasks:

1. Could you explain to me, in three sentences, what this code does?

2. Could you explain to me, in three sentences, what is the code output?

The above-mentioned tasks were asked so that we could measure partic-

ipants’ understanding of each code sample. After using each, participants

answered a set of questions, designed to measure the usability and efficacy of

each prototype, as summarized in table 7.1. Most instruments had been used

in prior studies with blind programmers, especially studies that investigated

issues of code navigation. Questions Q1, Q2, and Q3 [55] were 5-point Likert-

items, which had previously been used by Bragdon et al. in [20]. Questions

Q4, Q5, and Q6 required a response on a seven-point scale, and they had

been previously used by Baker et al. [7]. After each prototype, participants

were invited to share any open-ended feedback about the prototype they had

just used. At the end of the session, participants were again invited to share

open-ended feedback about the prototypes, thoughts about their experiences

with understanding the indentation structure of code, or to suggest other ideas

or improvements to the prototypes they had experienced.

CHAPTER 7. EXPERIMENTAL STUDY 126

7.4 Results

For each question in Table 1, we collected responses from 21 blind programmers

on the three prototypes discussed previously, which are referred to as “Con-

trol,” “On-Demand,” and “Automatic” in Figures 1 through 6, which indicate

significant differences with asterisks as follows: *** p<0.0001, ** p<0.001, *

p<0.01, or N.S. not significant.

Figure 7.8 compares responses when participants are asked about the ease

of the system for all conditions (represented on the Y-axis of the chart). Af-

ter scaling 5-point Likert responses to integer (e.g., “Strongly Disagree” =1,

“Disagree” = 2, etc.), a Friedman test indicated a significant difference (χ2 =

5.991, p-value = p<0.0001), and post-hoc pairwise comparison using Wilcoxon

Signed Rank tests with Bonferroni corrections indicated significant pairwise

differences among the conditions pairs when compared with the baseline: con-

trol vs. automatic (p-value = 8.770E-05), control vs. on-demand (p-value =

p<0.0001).

CHAPTER 7. EXPERIMENTAL STUDY 127

Figure 7.8: Percentage distribution of participants’ responses on the ease of
using the three conditions (e.g., control, on-demand, and automatic).

Figure 7.9 displays the participants’ responses about how convenient the

system was (e.g., using 5-point Likert), a Friedman test revealed a significant

difference (χ2 = 5.991, p-value = p<0.0001) across all conditions, and post-

hoc comparison revealed significant differences between: control vs. automatic

(p-value < 0.00001), control vs. on-demand (p-value = 0.000247). Figure 7.9

displays the participants’ responses:

Figure 7.9: Percentage distribution of participants’ responses on the conve-
nience of using the three conditions (e.g., control, on-demand, and automatic).

CHAPTER 7. EXPERIMENTAL STUDY 128

Figure 7.10 displays participants’ responses to “this system was helpful

for your programming tasks”. A Friedman test showed a significant difference

(χ2 = 5.991, p-value = p<0.0001), and post-hoc pairwise comparison using

Wilcoxon Signed Rank tests indicated significant pairwise differences between:

control vs. automatic (p-value < 0.00001), and control vs. on-demand (p-value

< 0.00001).

Figure 7.10: Percentage distribution of participants’ responses on how helpful
the three conditions (e.g., control, on-demand, and automatic) when working
on a computer programming code.

Figure 7.11 displays the participants’ responses for how easy the task was

to compete in all three conditions (using 7-point scalar), a Friedman test

indicated a significant difference (χ2 = 5.991, p-value = 0.000320), and post-

hoc pairwise comparison using Wilcoxon Signed Rank tests indicated pairwise

differences between: control vs. automatic (p-value = 0.000211), and control

vs. on-demand (p-value = 0.000227):

CHAPTER 7. EXPERIMENTAL STUDY 129

Figure 7.11: Percentage distribution of participants’ responses on the ease of
completing a task conducted to evaluate the three conditions (e.g., control,
on-demand, and automatic).

Figure 7.12 displays responses to “rate how frustrating you found the task

to complete.” A Friedman test indicated a significant difference (χ2 = 5.991, p-

value = 0.000324), and post-hoc tests revealed pairwise difference for: control

vs. automatic (p-value = 0.000448), and control vs. on-demand (p-value =

0.00020)

Figure 7.12: Percentage distribution of participants’ responses on how frus-
trated they were when completing an evaluation task using the three conditions
(e.g., control, on-demand, and automatic).

CHAPTER 7. EXPERIMENTAL STUDY 130

Figure 7.13 displays participants’ responses as to whether they had a good

idea where they were in the code, with a Friedman test indicating a significant

difference (χ2 = 5.991, p-value < 0.00001) among all conditions, and post-hoc

pairwise comparison indicating significant pairwise differences between the

following pairs: control vs. automatic (p-value = 0.000110), and control vs.

on-demand (p-value = 0.000131)

Figure 7.13: Percentage distribution of participants’ responses on understand-
ing the current location in the nested code (e.g., code sample) using the three
conditions (e.g., control, on-demand, and automatic).

Some open-ended feedback comments at the end of the study are summa-

rized below, for each of the three prototypes, but additional quotations from

participants are included in the Discussion (Section 7.5). When discussing the

“control” condition, participants had mostly negative reactions and indicated

that it was difficult to understand the code indentation. As P8 explained:

“What I dislike about it [no feedback], not being able to get the information

CHAPTER 7. EXPERIMENTAL STUDY 131

that I need on-demand and basically the ability to not go wherever the

start of the code, [it] always you remember to figure out how far you are

nested in the code.” (P8)

When discussing the “automatic” condition, participants had positive feed-

back about the repetitive-beeps audio cue and indicated that it assisted them

in understanding the indentation level. P7 explained:

“What I like about it is when you are sifting through the code with arrow

keys it automatically tells you whether there is an indent or not and

you can find out whether you have invaded [a] mistake whenever you are

sifting through the code in the function.” (P7)

Similarly, P18 said:

“[What] I liked about the automatic, when going through the various loops,

you know I could tell if I was at a level one indentation, level 2 indentation,

or level three. I mean it was there, no doubt as to where you know in the

code and what level I was at. I mean that was perfect.” (P18)

When discussing the “on-demand” condition, participants had similarly

positive feedback, indicating that they liked the instant feedback about the

indentation level. Participant P18 discussed how:

“On-demand, you can figure out where you are in the code, at your own

speed, I mean if you don’t want to know what in the indention level, you’re

right, you’re not being interrupted by a beep tone so that part I did like.”

(P18)

CHAPTER 7. EXPERIMENTAL STUDY 132

P21 also discussed the benefit of using the on-demand prototype:

“So, what I like about it is that it’s on-demand, so you get the information

only when you request it and you need it. if you attached to a good key

that doesn’t conflict with other text editing commands you might let say

it’s control shift or something like that would be fantastic information

about your position of the code and I’ll be on your terms.” (P21)

7.5 Discussion

In this experimental study, 21 blind programmers interacted with three dif-

ferent prototype conditions, with more positive subjective responses for the

automatic and on-demand prototypes, as are compared to the control condition.

Our findings for RQ4 indicated that non-visual programmers prefer receiving

this additional audio information about the structure of code, as compared to a

control condition without such additional information – thereby suggesting the

usability of audio-based techniques for conveying code indentation for blind

computer programmers. In open-ended comments, participants indicated that

these techniques helped them in understanding their location in the code, and

they found the prototypes easy to use and did not require prior knowledge to

use them. For instance, P7 explained:

“If no feedback is reported to them then they have no way of navigating

through the code like navigate their minds and you know, [to] get exactly

where they are.” (P7)

CHAPTER 7. EXPERIMENTAL STUDY 133

P17 preferred the on-demand condition, saying :

“On-demand was easy to use, I know we wouldn’t be using a space bar,

but you know it’s very easy and very quick to get where you are in terms

of indentation level.” (P17)

In regard to RQ5, post-hoc pairwise testing did not reveal any significant

differences in participant responses between the automatic and on-demand

conditions. In open-ended comments, participants mentioned some trade-offs

between these two conditions. For instance, some participants indicated that

the on-demand prototype would be useful for debugging code, as it helps

navigate quicker and find code errors. Participants P2, P5, and P12 shared

their thoughts in this regard:

“Debugging would be easy with the case where we can directly jump on

that particular level instead of checking indentation every time.” (P2)

“I would use it for debugging because when I’m stepping through Python

code sometimes, I need to see what I’ve done if the code doesn’t work and

then you have to really understand indentation.” (P5)

“The automatic beep sounds can be used in all the places, even while I

am writing the code or while skimming through code or even debugging.”

(P12)

On the other hand, several participants indicated that automatic-based

feedback would be useful for skimming through a large amount of code, espe-

cially code written by someone else, which the user is reviewing. Participants

CHAPTER 7. EXPERIMENTAL STUDY 134

preferred continuous feedback while moving through nested loops. P19 and

P21 discussed their thoughts:

“The beeping definitely helps with skimming, without it becomes slower

unless you have features in the editor jumps into different blocks.” (P19)

“Sometimes it’s challenging to skim through the code with a screen reader.

So, it easy to miss something that way, but I do sometimes, if I really

need a really high-level understanding of what’s going on, in that case, I

would prefer to use the automatic option. Because if I have to constantly

be pressing a key on each line, I can lose some of the benefits of skimming

the code.” (P21)

These comments suggest that each of these two methods may be useful in

different contexts, specifically with on-demand for debugging and automatic

for skimming code. While these comments from participants were suggestive,

further study would be needed to investigate if there are indeed advantages of

each technique in these contexts.

7.6 Summary and Limitations

In this work, we evaluated the usability and efficacy of audio-based interaction

techniques in efforts to understand whether non-visual programmers preferred

these audio-based interactions over the baseline condition (e.g., no feedback).

This study contributes to the literature by providing detailed information from

a user-based study with a relatively large number of participants (given the

CHAPTER 7. EXPERIMENTAL STUDY 135

specific user group of non-visual programmers) about the potential of audio-

based feedback within programming environments. As an additional minor

contribution of our work, we have demonstrated an experimental methodology

that can be utilized by future researchers who wish to investigate methods for

conveying code structure for non-visual programmers, and we have dissemi-

nated our experimental prototype in the electronic supplementary file shared

with dissertation.

In this work, there were several limitations: First, as the prototypes in

the experimental study were audio-based prototypes with pre-recorded audio

streams, participants did not have immediate interaction with code examples,

so that they could step through the code line-by-line or interactively navigate

throughout the code. Therefore, a further experimental study using a text-

buffer-based prototype, which enables the user to move through the code and

edit the text, would be needed to determine whether the findings from this

study would generalize to more realistic environments. Second, the study

findings were based on experienced programmers, another study with novice

or students’ participants may draw different conclusions.

Epilogue to Part II

In part II, we surveyed prior work on the experience of non-visual programmers

to establish that these users currently face some challenges in reading software

code when using screen-reader technologies, especially in regard to the issue

of understanding the nesting indentation structure of code. In our analysis,

we examined the most closely related prior work on audio-based techniques

to increase the accessibility of programming for these users, to establish that

little work has been done to investigate the issue of navigating the hierarchical

structure of code. Additional research is needed into how to convey indentation

structure of individual lines of code in the context of the linear reading of code

via screen-reader. To broaden our focus, we considered related research on

using audio-based cues in settings that are analogous in some way, namely: con-

veying nesting structure in mathematical notation, conveying the relationships

within graph structures, or representing navigation through nested menus or

outlines. The prior work analysis has suggested various audio-based strate-

gies for conveying this type of information to users, which has motivated the

136

CHAPTER 7. EXPERIMENTAL STUDY 137

specific types of audio cues explored in our research work (Chapters 6 & 7).

Furthermore, we discussed our user-based studies (6 & 7) where we evaluated

the usability and efficacy of audio-based techniques to convey the hierarchical

nesting structure of code to assist non-visual programmers. In summary, Part

II of this dissertation work has addressed the following research questions:

RQ3: In a formative interview study with a variety of audio examples, what

forms of audio generation techniques and parameters do non-visual pro-

grammers express interest in?

� The above-mentioned research question was investigated in Chap-

ter 6 where we recruited 12 non-visual programmers to evaluate

various audio cues for conveying the hierarchical nesting structure

of code to assist non-visual programmers. The research findings in-

dicated that participants do prefer to receive audio-based feedback

when compared to the baseline condition, e.g., only the screen-reader

reading the codebase. Participants provided positive responses in

regard to the use of audio-based techniques – suggesting a further

investigation where users have some form of interaction with the

codebase. Overall, participants indicated an interest in these tech-

niques in efforts to enhance code understanding, specifically code

navigation.

RQ4: When presented with an interactive audio prototype based on this prior

CHAPTER 7. EXPERIMENTAL STUDY 138

formative study, do non-visual programmers prefer receiving this addi-

tional audio information about the structure of code, as compared to a

control condition without such additional information?

� As reported in Chapter 6, participants were asked to evaluate a set

of audio cues without the ability to interact with the codebase, e.g.,

participants’ responses were based on listening only. To ensure the

formative study outcomes, in regard to the selected audio cues, we

conducted a follow-up study with 21 participants where we investi-

gated users’ preferences via an audio-based prototypes, mainly to

address the RQ listed above (Chapter 7). Our findings indicated

that participants were interested in such feedback, thereby confirm-

ing the formative study (Chapter 6) outcomes when compared to

the baseline condition, e.g., no feedback.

RQ5: When interacting with an audio prototype based on this prior formative

study, do non-visual programmers have a preference between automatic

level-crossing notifications or on-demand level indications?

� In the experimental study, our primary investigation was to examine

different audio interaction techniques (e.g., on-demand and auto-

matic) and whether participants prefer specific interaction when

compared to the baseline condition (Chapter 7). The study findings

revealed that participants preferred such interaction to understand

CHAPTER 7. EXPERIMENTAL STUDY 139

the indentation in Python-based code over the baseline condition,

e.g., no feedback. In addition, our findings did not reveal signif-

icant differences between on-demand and automatic interactions

since participants liked both interactions for several reasons. While

participants enjoyed both techniques, further investigation using a

fully interactive prototype may reveal why such findings emerged.

Chapter 8

Limitations and Future Work

This chapter discusses limitations, which we highlight in two major parts. As

future work, we provided several opportunities where additional research could

be conducted to address these limitations which could improve accessibility in

software-based environments.

8.1 Limitations and Future Work

In Part I, we explain the limitations of two user-based studies that were con-

ducted to investigate the major challenges in software development faced by

non-visual programmers, specifically code navigation difficulties. In addition,

we discuss possible future work enhancements where possible features could

be created in order to make the programming environment more accessible

to non-visual users. In Part II, we explain the limitations of two user-based

140

CHAPTER 8. LIMITATIONS AND FUTURE WORK 141

studies that were conducted to evaluate the usability and efficacy of audio-

based techniques for conveying the structure of the programming codebase,

which was suggested by the stakeholders in Part I. Specifically, the two studies

were conducted to investigate various sound effects, properties, and several

interaction techniques to determine whether these techniques capable of pro-

viding adequate support to assist non-visual programmers in regard to code

understanding and navigation. As future work, we highlight possible avenues

for potential future research which could help make the software-based envi-

ronments more accessible to non-visual programmers:

8.1.1 Part I: Limitations and Future Work

This Subsection explains the limitations of the two user-based studies that

were conducted in efforts to understand the major challenges in software de-

velopment. We discuss these limitations as follows:

� In the survey-based study (Chapter 3), we followed a snowball sampling

technique, which resulted in uneven participant categories, e.g., partici-

pants vary in their visual acuity, assistive technologies, and programming

experiences. We followed this approach in order to maximize the number

of responses in the time allotted from a population that is difficult to

recruit. In addition, the survey design of this study did not allow us to

ask follow-up questions or observe the users while performing some pro-

gramming tasks in regard to certain programming issues. Thus, future

CHAPTER 8. LIMITATIONS AND FUTURE WORK 142

work is needed to explore specific issues (e.g., UML Diagrams, Debagging,

etc.) in detail with a well-defined user profile, which could help reveal

interesting findings.

� In the interview-based study (Chapter 4), there were several limitations:

First, we only explored code navigation difficulties with experienced

developers, who were totally blind, actively engaged in programming, and

used assistive technologies to access the computer display (e.g., screen

reader, braille display, or both). It was beyond our scope to study

students, novice programmers, or individuals with greater diversity in

their visual acuity. A further investigation with these important user

groups may reveal different findings. Second, while the qualitative design

of this study allowed us to gather firsthand comments from our user

group, and to discover new issues that arose, in future work, it may be

important to follow up this study with a survey administered to a larger

group of participants, to verify some of our findings.

8.1.2 Part II: Limitations and Future Work

This Subsection explains the limitations of the two user-based studies that

were conducted in efforts to evaluate the usability and efficacy of audio-based

techniques in software developments. We discuss these limitations as follows:

� In the formative-based study (Chapter 6), our work was too underpow-

ered to allow us to make any statistically significant claims in regard

CHAPTER 8. LIMITATIONS AND FUTURE WORK 143

to RQ3; this work had been intended as a formative investigation into

the design space, to guide the creation of our audio-based prototypes

where we investigated several interaction techniques. After identifying

that participants preferred at least some prototypes in our study, we

believe that future researchers and accessibility designers would benefit

from a rigorous investigation into design variations of such prototypes,

with larger participants and more statistical power.

� In the experimental study (Chapter 7), the prototypes in our work were

only audio-based prototypes with pre-recorded audio streams, partici-

pants did not have immediate interaction with code examples so that

they could step through the code line-by-line or interactively navigate

throughout the code. In future work, we would like to investigate the

generalizability of our results using text-buffer prototypes, including the

implementation of plug-ins for integrated development environments, so

that participants could use their own screen-reader and computer, with

industry-standard text-editing environments, to investigate this design

space. A further investigation while using a text-buffer-based prototype,

which enables the user to move through the code and edit the text, would

be needed to determine whether the findings from this experimental study

would generalize to more realistic environments. Such a study would also

enable us to investigate a wider variety of software code, with various

languages, and various levels of complexity. In addition, this research

CHAPTER 8. LIMITATIONS AND FUTURE WORK 144

work has focused on adult computer programmers, but the specific needs

of children or students who are learning to the program may indicate

otherwise. Continuing this line of research may lead to tools that will en-

able greater participation in computing education or professional careers

among non-visual programmers. It would also enable research into which

types of tool users prefer when they are writing, editing, or debugging

code.

Chapter 9

Summary and Contributions

This dissertation has presented several research studies that address the pro-

gramming challenges faced by non-visual programmers, mainly the challenge

of code navigation. The discussed issues mostly stemmed from the fact that

screen-reader technologies were designed to present information in a linear

fashion, e.g., one line at a time. In addition, we also presented research studies

that evaluated the usability and efficacy of audio-based techniques for convey-

ing the hierarchical nesting structure of code to assist non-visual programmers.

In this chapter, we present the major contributions of this dissertation in

two different parts as well as our final comments that summarize the overall

dissertation objectives.

145

CHAPTER 9. SUMMARY AND CONTRIBUTIONS 146

9.1 Summary of the Contribution of This Research

The research studies presented in this dissertation are organized into two major

parts. We summarize the contributions of each as follows:

9.1.1 Part I: Programming Challenges and Code Navigation

Difficulties

Part I of this dissertation investigated the major programming challenges of

blind computer programmers, to guide the selection of more specific inter-

ventions to be explored in later phases of the dissertation. As, the selected

research problem (e.g., code navigation) was understudied, further investiga-

tion was needed so that we could propose some novel solutions to overcome

such a problem. We summarize the major contributions of Part I as follows:

1. Empirical Contribution: In Chapter 3, we presented the major find-

ings that emerged from conducting a survey-based study where partici-

pants highlighted and discussed briefly their challenges in software-based

environments. In this study, some of the findings were expected such

as the lack of accessibility in current IDEs as well as the difficulty of

using screen-reader technologies with today’s software development. To

overcome programming barriers, participants reported the use of alter-

native tools to understand code structure as well as seeking help from

sighted co-workers. In addition to using two different assistive technology

(screen-reader and braille display) at the same time to uncover hidden

CHAPTER 9. SUMMARY AND CONTRIBUTIONS 147

information.

2. Empirical Contribution: In Chapter 4, we presented the major find-

ings that emerged from conducting an interview-based study where we

examined the issue of code navigation. These issues were discussed in

detail in efforts to illustrate the issue that has a higher demand or impor-

tance among participants. In this study, we found that blind developers

felt overwhelmed when using existing IDEs (e.g., Eclipse, NetBeans, etc.),

and therefore they preferred to use simpler editors to write software code

comfortably (e.g., Notepad, Notepad++, etc.). Furthermore, partici-

pants discussed a list of code navigation difficulties as well as possible

accessibility improvements where additional features could be developed

in order to make the programming environment more accessible to non-

visual programmers.

9.1.2 Part II: Usability of Audio-based Techniques

Part II of this dissertation investigated the usability and efficacy of audio-based

techniques in software-based environments and whether such techniques could

provide adequate support to aid non-visual programmers when navigating

through the hierarchical nesting structure of code. Through user-based studies

with non-visual programmers, we gathered positive responses on the usability

of such techniques when compared to the baseline condition, e.g., only screen-

reader with no additional feedback. We summarize the major contributions of

CHAPTER 9. SUMMARY AND CONTRIBUTIONS 148

Part II as follows:

1. Methodological Contribution: In Chapter 6, the questions-types, as

well as the empirical result, could be used to aid future researchers when

investigating other design aspects or parameters in audio-based tech-

niques, or when evaluating various approaches for conveying the code

indentation in Python-based language via different settings or configura-

tions, with our results as a potential baseline.

2. Empirical Contribution: In Chapter 6, with the goal of investigating

the usability and efficacy of audio-based techniques, this research study

provided evidence of users’ preferences of various audio cues, with par-

ticipants reporting subjectively higher scores when compared with the

baseline condition, e.g., only the screen-reader without any additional

feedback. As indicated previously, the formative study provided empiri-

cal results in regard to the type of information participants would like

to know, the type of audio feedback participants would like to hear, the

placement of audio feedback, how audio should be timed, and the design

of such cues.

3. Empirical Contribution: In Chapter 7, to evaluate different inter-

action techniques (e.g., on-demand and automatic), our experimental

study revealed that screen-reader technologies do not provide adequate

support when used in software-based environments – suggesting the need

for accessibility improvements in order to convey the nesting structure

CHAPTER 9. SUMMARY AND CONTRIBUTIONS 149

of code as it currently prevents users from such an important feedback.

We also identified an opportunity for the research community as well

as the software engineering industry to address those needs. This work

contributes to the literature by providing detailed information from a

relatively large number of participants (given the specific user group

of non-visual programmers) about the proper interaction method that

users preferred to receive information (based on audio cues) about code

indentation.

4. Empirical Contribution: In Chapter 7, we examined different interac-

tion techniques for providing supportive information about the nesting

structure of code, based on users’ recommendations and suggestions

from the formative-based study. Our findings indicated that participants

preferred both methods (on-demand and automatic) over the baseline

condition, no audio feedback. This work contributes to the literature

by providing detailed information about the design aspects for utilizing

such techniques in software-based environments, which could be used by

future researchers who wish to investigate such methods in various aims.

Finally, this study has demonstrated an audio simulation methodology

for investigating audio-based interventions with screen-reader users in a

programming context, e.g., depth of bracketing or level of indention, as

in nested loops. As part of this contribution, we have disseminated our

experimental prototypes as an open-source for future researchers in order

CHAPTER 9. SUMMARY AND CONTRIBUTIONS 150

to improve accessibility in a software-based environment for non-visual

users (see Appendix F).

9.2 Conclusion and Final Comment

In this dissertation, we have presented and discussed the major findings that

emerged from conducting several research studies aimed to enhance accessibility

in software-based environments. The dissertation’s entire work was organized

into two major parts. In Part I, we have presented two user-based studies

where we investigated the software development accessibility issues. The first

study was conducted to uncover the major programming challenges faced by

non-visual programmers. Whereas the second study was conducted to better

understand the issue of code navigation, which was revealed previously in

the first study. Our findings indicated that participants were interested in

using supportive tools that use audio as the primary method of interaction –

suggesting a further investigation into the design space of such techniques.

In Part II, we have presented and explained the major findings that emerged

from conducting two user-based studies where we evaluated the usability and

efficacy of audio-based techniques in software-based environments. The first

study was conducted to evaluate various audio cues and parameters in efforts

to eliminate unwanted settings and configurations – suggesting specific cues to

be utilized for the higher-fidelity prototype in the experimental study. While

the second study was conducted in efforts to evaluate different interaction

CHAPTER 9. SUMMARY AND CONTRIBUTIONS 151

techniques (no feedback, on-demand, and automatic) through audio-based

prototyping. In this study, our findings concluded that participants enjoyed

both on-demand and automatic techniques over the baseline condition, e.g.,

no-feedback – indicating that participants want both techniques for various

reasons.

In conclusion, the dissertation work presented herein discusses the need

for improving accessibility features in programming environments in order to

aid non-visual programmers. It shows the proper approach towards utilizing

audio-based techniques in efforts to benefit programmers who are blind from

the widespread features that are eliminated due to existing barriers. This

dissertation major findings as well as disseminated resources will be useful

for future researchers to further investigate this important research problem –

with our design guidelines as the potential baseline.

Bibliography

[1] 2020a. Freedom Scientific. (2020). https://www.freedomscientific.

com/ (pages 98, 119).

[2] 2020b. FreeSound. (2020). https://freesound.org/ (page 120).

[3] Nusaibah M Al-Ratta and Hend S Al-Khalifa. 2013. Teaching program-

ming for blinds: A review. In Information and Communication Technology

and Accessibility (ICTA), 2013 Fourth International Conference on. IEEE,

1–5. (page 1).

[4] Khaled Albusays and Stephanie Ludi. 2016. Eliciting Programming Chal-

lenges Faced by Developers with Visual Impairments: Exploratory Study.

In Proceedings of the 9th International Workshop on Cooperative and

Human Aspects of Software Engineering (CHASE ’16). ACM, New York,

NY, USA, 82–85. DOI:http://dx.doi.org/10.1145/2897586.2897616

(pages 4, 33, 36, 95).

152

https://www.freedomscientific.com/
https://www.freedomscientific.com/
https://freesound.org/
http://dx.doi.org/10.1145/2897586.2897616

BIBLIOGRAPHY 153

[5] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Inter-

views and Observation of Blind Software Developers at Work to Un-

derstand Code Navigation Challenges. In Proceedings of the 19th In-

ternational ACM SIGACCESS Conference on Computers and Accessi-

bility (ASSETS ’17). ACM, New York, NY, USA, 91–100. DOI:http:

//dx.doi.org/10.1145/3132525.3132550 (pages 4, 95, 99).

[6] Audacity. 2018. Audacity is a multi-track audio editor and recorder for

Windows, Mac OS X, GNU/Linux and other operating systems. (2018).

https://www.audacityteam.org/ (page 99).

[7] Catherine Marie Baker. 2017. Understanding and Improving Blind Stu-

dents’ Access to Visual Information in Computer Science Education. Ph.D.

Dissertation. (pages 1, 125).

[8] Catherine M. Baker, Cynthia L. Bennett, and Richard E. Ladner. 2019.

Educational Experiences of Blind Programmers. In Proceedings of the 50th

ACM Technical Symposium on Computer Science Education (SIGCSE

’19). Association for Computing Machinery, New York, NY, USA, 759–765.

DOI:http://dx.doi.org/10.1145/3287324.3287410 (page 13).

[9] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. Struc-

tJumper: A Tool to Help Blind Programmers Navigate and Understand

the Structure of Code. In Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems (CHI ’15). ACM, New York, NY,

http://dx.doi.org/10.1145/3132525.3132550
http://dx.doi.org/10.1145/3132525.3132550
https://www.audacityteam.org/
http://dx.doi.org/10.1145/3287324.3287410

BIBLIOGRAPHY 154

USA, 3043–3052. DOI:http://dx.doi.org/10.1145/2702123.2702589

(pages 2, 14, 60, 66, 95).

[10] Suzanne P. Balik, Sean P. Mealin, Matthias F. Stallmann, Robert D. Rod-

man, Michelle L. Glatz, and Veronica J. Sigler. 2014. Including Blind

People in Computing through Access to Graphs. In Proceedings of the 16th

International ACM SIGACCESS Conference on Computers and Accessi-

bility (ASSETS ’14). Association for Computing Machinery, New York,

NY, USA, 91–98. DOI:http://dx.doi.org/10.1145/2661334.2661364

(page 13).

[11] Woodrow Barfield, Craig Rosenberg, and Gerald Levasseur. 1991. The use

of icons, earcons, and commands in the design of an online hierarchical

menu. IEEE Transactions on Professional Communication 34, 2 (1991),

101–108. (page 87).

[12] Kitch Barnicle. 2000. Usability Testing with Screen Reading Technology

in a Windows Environment. In Proceedings on the 2000 Conference on

Universal Usability (CUU ’00). ACM, New York, NY, USA, 102–109. DOI:

http://dx.doi.org/10.1145/355460.355543 (page 1).

[13] Enda Bates and Dónal Fitzpatrick. 2010a. Spoken Mathematics Using

Prosody, Earcons and Spearcons. In Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 407–414. DOI:http://dx.doi.org/10.1007/

978-3-642-14100-3_61 (pages 82, 89, 90).

http://dx.doi.org/10.1145/2702123.2702589
http://dx.doi.org/10.1145/2661334.2661364
http://dx.doi.org/10.1145/355460.355543
http://dx.doi.org/10.1007/978-3-642-14100-3_61
http://dx.doi.org/10.1007/978-3-642-14100-3_61

BIBLIOGRAPHY 155

[14] Enda Bates and Dónal Fitzpatrick. 2010b. Spoken mathematics using

prosody, earcons and spearcons. In International Conference on Comput-

ers for Handicapped Persons. Springer, 407–414. (page 83).

[15] Hugh Beyer and Karen Holtzblatt. 1997. Contextual design: defining

customer-centered systems. Elsevier. (pages 25, 41).

[16] Jeffrey P. Bigham, Irene Lin, and Saiph Savage. 2017. The Effects of

”Not Knowing What You Don’T Know” on Web Accessibility for Blind

Web Users. In Proceedings of the 19th International ACM SIGACCESS

Conference on Computers and Accessibility (ASSETS ’17). ACM, New

York, NY, USA, 101–109. DOI:http://dx.doi.org/10.1145/3132525.

3132533 (page 2).

[17] Meera M Blattner, Denise A Sumikawa, and Robert M Greenberg. 1989.

Earcons and icons: Their structure and common design principles. Human–

Computer Interaction 4, 1 (1989), 11–44. (page 87).

[18] David B Boardman, Geoffrey Greene, Vivek Khandelwal, and Aditya P

Mathur. 1995. Listen: A tool to investigate the use of sound for the

analysis of program behavior. In Computer Software and Applications

Conference, 1995. COMPSAC 95. Proceedings., Nineteenth Annual Inter-

national. IEEE, 184–189. (page 81).

[19] Yevgen Borodin, Jeffrey P. Bigham, Glenn Dausch, and I. V. Ramakrish-

nan. 2010. More Than Meets the Eye: A Survey of Screen-reader Browsing

http://dx.doi.org/10.1145/3132525.3132533
http://dx.doi.org/10.1145/3132525.3132533

BIBLIOGRAPHY 156

Strategies. In Proceedings of the 2010 International Cross Disciplinary

Conference on Web Accessibility (W4A) (W4A ’10). ACM, New York, NY,

USA, Article 13, 10 pages. DOI:http://dx.doi.org/10.1145/1805986.

1806005 (page 2).

[20] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,

William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,

and Joseph J. LaViola. 2010a. Code Bubbles: Rethinking the User Inter-

face Paradigm of Integrated Development Environments. In Proceedings

of the 32nd ACM/IEEE International Conference on Software Engineer-

ing - Volume 1 (ICSE ’10). Association for Computing Machinery, New

York, NY, USA, 455–464. DOI:http://dx.doi.org/10.1145/1806799.

1806866 (page 125).

[21] Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,

William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,

and Joseph J. LaViola, Jr. 2010b. Code Bubbles: A Working Set-based

Interface for Code Understanding and Maintenance. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (CHI ’10).

ACM, New York, NY, USA, 2503–2512. DOI:http://dx.doi.org/10.

1145/1753326.1753706 (pages xv, 15).

[22] Stephen A. Brewster. 1998. Using Nonspeech Sounds to Provide Naviga-

tion Cues. ACM Trans. Comput.-Hum. Interact. 5, 3 (Sept. 1998), 224–259.

DOI:http://dx.doi.org/10.1145/292834.292839 (page 80).

http://dx.doi.org/10.1145/1805986.1806005
http://dx.doi.org/10.1145/1805986.1806005
http://dx.doi.org/10.1145/1806799.1806866
http://dx.doi.org/10.1145/1806799.1806866
http://dx.doi.org/10.1145/1753326.1753706
http://dx.doi.org/10.1145/1753326.1753706
http://dx.doi.org/10.1145/292834.292839

BIBLIOGRAPHY 157

[23] Stephen A Brewster. 2002. Non-speech auditory output. The human-

computer interaction handbook (2002), 220–239. (page 89).

[24] Stephen A Brewster, Peter C Wright, and Alastair DN Edwards. 1994. A

detailed investigation into the effectiveness of earcons. In Santa Fe Insti-

tute Studies in the Sciences of Complexity-proceedings Volume-, Vol. 18.

Addison-Wesley Publishing Co, 471–471. (page 87).

[25] Stephen A. Brewster, Peter C. Wright, and Alistair D. N. Edwards. 1993.

An Evaluation of Earcons for Use in Auditory Human-Computer Interfaces.

In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human

Factors in Computing Systems (CHI ’93). Association for Computing

Machinery, New York, NY, USA, 222–227. DOI:http://dx.doi.org/10.

1145/169059.169179 (page 87).

[26] Robert F. Cohen, Arthur Meacham, and Joelle Skaff. 2006. Teaching

Graphs to Visually Impaired Students Using an Active Auditory Interface.

In Proceedings of the 37th SIGCSE Technical Symposium on Computer

Science Education (SIGCSE ’06). ACM, New York, NY, USA, 279–282.

DOI:http://dx.doi.org/10.1145/1121341.1121428 (page 85).

[27] Robert F. Cohen, Rui Yu, Arthur Meacham, and Joelle Skaff. 2005.

PLUMB: Displaying Graphs to the Blind Using an Active Auditory Inter-

face. In Proceedings of the 7th International ACM SIGACCESS Confer-

ence on Computers and Accessibility (Assets ’05). ACM, New York, NY,

http://dx.doi.org/10.1145/169059.169179
http://dx.doi.org/10.1145/169059.169179
http://dx.doi.org/10.1145/1121341.1121428

BIBLIOGRAPHY 158

USA, 182–183. DOI:http://dx.doi.org/10.1145/1090785.1090820

(page 86).

[28] Richard Connelly. 2010. Lessons and Tools from Teaching a Blind Student.

J. Comput. Sci. Coll. 25, 6 (June 2010), 34–39. http://dl.acm.org/

citation.cfm?id=1791129.1791137 (page 13).

[29] Kai Crispien, Wolfgang Würz, and Gerhard Weber. 1994. Using spa-

tial audio for the enhanced presentation of synthesised speech within

screen-readers for blind computer users. In International Conference on

Computers for Handicapped Persons. Springer, 144–153. (page 84).

[30] Ajantha Dahanayake. Integrated Development Environments (IDEs). Wi-

ley Encyclopedia of Management (????). (page 1).

[31] Tilman Dingler, Jeffrey Lindsay, and Bruce N Walker. 2008. Learn-

abiltiy of sound cues for environmental features: Auditory icons, earcons,

spearcons, and speech. International Community for Auditory Display.

(page 83).

[32] Hilko Donker, Palle Klante, and Peter Gorny. 2002. The Design of Audi-

tory User Interfaces for Blind Users. In Proceedings of the Second Nordic

Conference on Human-computer Interaction (NordiCHI ’02). ACM, New

York, NY, USA, 149–156. DOI:http://dx.doi.org/10.1145/572020.

572038 (page 84).

http://dx.doi.org/10.1145/1090785.1090820
http://dl.acm.org/citation.cfm?id=1791129.1791137
http://dl.acm.org/citation.cfm?id=1791129.1791137
http://dx.doi.org/10.1145/572020.572038
http://dx.doi.org/10.1145/572020.572038

BIBLIOGRAPHY 159

[33] Olutayo Falase, Alexa F. Siu, and Sean Follmer. 2019. Tactile Code Skim-

mer: A Tool to Help Blind Programmers Feel the Structure of Code. In

The 21st International ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS ’19). Association for Computing Machinery, New

York, NY, USA, 536–538. DOI:http://dx.doi.org/10.1145/3308561.

3354616 (page 14).

[34] Colin Fitzsimons, Emma Murphy, Catherine Mulwa, and Donal Fitz-

patrick. 2016. SpatialMaths: a Library for Conveying Content and Struc-

ture of Equations. (2016). (pages 85, 90).

[35] Joan M. Francioni and Ann C. Smith. 2002. Computer Science Accessibil-

ity for Students with Visual Disabilities. SIGCSE Bull. 34, 1 (Feb. 2002),

91–95. DOI:http://dx.doi.org/10.1145/563517.563372 (pages 2,

13).

[36] John CK Hankinson and Alistair DN Edwards. 1999. Designing earcons

with musical grammars. ACM SIGCAPH Computers and the Physically

Handicapped 65 (1999), 16–20. (page 87).

[37] Philip A Harling, Robert Stevens, and Alistair Edwards. 1995. Math-

grasp: The design of an algebra manipulation tool for visually disabled

mathematicians using spatial-sound and manual gestures. HCI Group,

University of York, UK (1995). (page 84).

http://dx.doi.org/10.1145/3308561.3354616
http://dx.doi.org/10.1145/3308561.3354616
http://dx.doi.org/10.1145/563517.563372

BIBLIOGRAPHY 160

[38] Austin Z. Henley and Scott D. Fleming. 2014. The Patchworks Code

Editor: Toward Faster Navigation with Less Code Arranging and Fewer

Navigation Mistakes. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA,

2511–2520. DOI:http://dx.doi.org/10.1145/2556288.2557073 (page

14).

[39] Myounghoon Jeon and Bruce N Walker. 2009. “Spindex”: Accelerated

initial speech sounds improve navigation performance in auditory menus.

In Proceedings of the Human Factors and Ergonomics Society Annual

Meeting, Vol. 53. SAGE Publications Sage CA: Los Angeles, CA, 1081–

1085. (page 87).

[40] Myounghoon Jeon and Bruce N Walker. 2011. Spindex (speech index)

improves auditory menu acceptance and navigation performance. ACM

Transactions on Accessible Computing (TACCESS) 3, 3 (2011), 10. (page

87).

[41] Myounghoon Jeon, Bruce N. Walker, and Abhishek Srivastava. 2012.

“Spindex” (Speech Index) Enhances Menus on Touch Screen Devices with

Tapping, Wheeling, and Flicking. ACM Trans. Comput.-Hum. Interact.

19, 2, Article 14 (July 2012), 27 pages. DOI:http://dx.doi.org/10.

1145/2240156.2240162 (page 87).

http://dx.doi.org/10.1145/2556288.2557073
http://dx.doi.org/10.1145/2240156.2240162
http://dx.doi.org/10.1145/2240156.2240162

BIBLIOGRAPHY 161

[42] Shaun K. Kane and Jeffrey P. Bigham. 2014. Tracking @stemxcomet:

Teaching Programming to Blind Students via 3D Printing, Crisis Manage-

ment, and Twitter. In Proceedings of the 45th ACM Technical Symposium

on Computer Science Education (SIGCSE ’14). Association for Comput-

ing Machinery, New York, NY, USA, 247–252. DOI:http://dx.doi.org/

10.1145/2538862.2538975 (page 13).

[43] Arthur Karshmer. 2007. Access to mathematics by blind students: A

global problem. (2007). (page 82).

[44] Arthur I Karshmer and Chris Bledsoe. 2002. Access to mathematics

by blind students. In International Conference on Computers for Handi-

capped Persons. Springer, 471–476. (page 82).

[45] Mik Kersten and Gail C. Murphy. 2006. Using Task Context to Im-

prove Programmer Productivity. In Proceedings of the 14th ACM SIG-

SOFT International Symposium on Foundations of Software Engineer-

ing (SIGSOFT ’06/FSE-14). ACM, New York, NY, USA, 1–11. DOI:

http://dx.doi.org/10.1145/1181775.1181777 (page 1).

[46] Mario Konecki. 2012. A new approach towards visual programming for the

blinds. In MIPRO, 2012 Proceedings of the 35th International Convention.

IEEE, 935–940. (page 13).

http://dx.doi.org/10.1145/2538862.2538975
http://dx.doi.org/10.1145/2538862.2538975
http://dx.doi.org/10.1145/1181775.1181777

BIBLIOGRAPHY 162

[47] Mario Konecki, Robert Kudelić, and Danijel Radošević. 2010. Challenges

of the blind programmers. In Central European Conference on Information

and Intelligent Systems. (pages 1, 2).

[48] Mario Konecki, Alen Lovrenčić, and Robert Kudelić. 2011. Making pro-

gramming accessible to the blinds. In MIPRO, 2011 Proceedings of the

34th International Convention. IEEE, 820–824. (page 2).

[49] Ivan Kopecek and A Jergová. 1997. Programming and visually impaired

people. In Proceedings of the XV. World Computer Congress, ICCHP,

Vol. 98. 365–372. (page 2).

[50] SH Kurniawan, A Sporka, V Nemec, and P Slavik. 2004. Design and user

evaluation of a spatial audio system for blind users. In Proceedings of The

5th International Conference on Disability, Virtual Reality and Associated

Technologies, ICDVRAT 2004. 20–22. (page 84).

[51] John Lamping, Ramana Rao, and Peter Pirolli. 1995. A Focus+Context

Technique Based on Hyperbolic Geometry for Visualizing Large Hierar-

chies. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI ’95). ACM Press/Addison-Wesley Publishing

Co., New York, NY, USA, 401–408. DOI:http://dx.doi.org/10.1145/

223904.223956 (page 79).

[52] Jonathan Lazar, Aaron Allen, Jason Kleinman, and Chris Malarkey. 2007.

What Frustrates Screen Reader Users on the Web: A Study of 100 Blind

http://dx.doi.org/10.1145/223904.223956
http://dx.doi.org/10.1145/223904.223956

BIBLIOGRAPHY 163

Users. International Journal of Human-Computer Interaction 22, 3 (may

2007), 247–269. DOI:http://dx.doi.org/10.1080/10447310709336964

(page 1).

[53] Paul A Lucas. 1994. An evaluation of the communicative ability of audi-

tory icons and earcons. Georgia Institute of Technology. (page 89).

[54] Stephanie Ludi, Jamie Simpson, and Wil Merchant. 2016. Exploration of

the Use of Auditory Cues in Code Comprehension and Navigation for In-

dividuals with Visual Impairments in a Visual Programming Environment.

In Proceedings of the 18th International ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS ’16). ACM, New York, NY, USA,

279–280. DOI:http://dx.doi.org/10.1145/2982142.2982206 (page

13).

[55] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang,

and Jianjun Zhao. 2015. CodeHow: Effective Code Search Based on API

Understanding and Extended Boolean Model. In Proceedings of the 30th

IEEE/ACM International Conference on Automated Software Engineering

(ASE ’15). IEEE Press, 260–270. DOI:http://dx.doi.org/10.1109/

ASE.2015.42 (page 125).

[56] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on

software Engineering 4 (1976), 308–320. (page 116).

http://dx.doi.org/10.1080/10447310709336964
http://dx.doi.org/10.1145/2982142.2982206
http://dx.doi.org/10.1109/ASE.2015.42
http://dx.doi.org/10.1109/ASE.2015.42

BIBLIOGRAPHY 164

[57] David K. McGookin and Stephen A. Brewster. 2004. Understanding Con-

current Earcons: Applying Auditory Scene Analysis Principles to Concur-

rent Earcon Recognition. ACM Trans. Appl. Percept. 1, 2 (Oct. 2004),

130–155. DOI:http://dx.doi.org/10.1145/1024083.1024087 (page

87).

[58] Sean Mealin and Emerson Murphy-Hill. 2012. An exploratory study

of blind software developers. In Visual Languages and Human-Centric

Computing (VL/HCC), 2012 IEEE Symposium on. IEEE, 71–74. (pages

2, 16, 66, 95).

[59] Lauren R. Milne, Catherine M. Baker, and Richard E. Ladner. 2017.

Blocks4All Demonstration: A Blocks-Based Programming Environment

for Blind Children. In Proceedings of the 19th International ACM SIGAC-

CESS Conference on Computers and Accessibility (ASSETS ’17). ACM,

New York, NY, USA, 313–314. DOI:http://dx.doi.org/10.1145/

3132525.3134774 (page 2).

[60] Emma Murphy, Enda Bates, and Dónal Fitzpatrick. 2010. Designing Au-

ditory Cues to Enhance Spoken Mathematics for Visually Impaired Users.

In Proceedings of the 12th International ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS ’10). ACM, New York, NY, USA,

75–82. DOI:http://dx.doi.org/10.1145/1878803.1878819 (pages 82,

83, 89).

http://dx.doi.org/10.1145/1024083.1024087
http://dx.doi.org/10.1145/3132525.3134774
http://dx.doi.org/10.1145/3132525.3134774
http://dx.doi.org/10.1145/1878803.1878819

BIBLIOGRAPHY 165

[61] Elizabeth D. Mynatt. 1994. Designing with Auditory Icons: How Well

Do We Identify Auditory Cues?. In Conference Companion on Human

Factors in Computing Systems (CHI ’94). ACM, New York, NY, USA,

269–270. DOI:http://dx.doi.org/10.1145/259963.260483 (page 90).

[62] National Center for Science National Science Foundation and Engineering.

2017. Women, Minorities, and Persons with Disabilities in Science and

Engineering. (2017). www.nsf.gov/statistics/wmpd/ (page 13).

[63] Dianne K Palladino and Bruce N Walker. 2007. Learning rates for audi-

tory menus enhanced with spearcons versus earcons. Georgia Institute of

Technology. (page 90).

[64] Dianne K Palladino and Bruce N Walker. 2008. Navigation efficiency of

two dimensional auditory menus using spearcon enhancements. In Pro-

ceedings of the Human Factors and Ergonomics Society Annual Meeting,

Vol. 52. SAGE Publications Sage CA: Los Angeles, CA, 1262–1266. (page

88).

[65] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging

Techniques Actually Helping Programmers?. In Proceedings of the 2011

International Symposium on Software Testing and Analysis (ISSTA ’11).

ACM, New York, NY, USA, 199–209. DOI:http://dx.doi.org/10.

1145/2001420.2001445 (page 44).

http://dx.doi.org/10.1145/259963.260483
www.nsf.gov/statistics/wmpd/
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1145/2001420.2001445

BIBLIOGRAPHY 166

[66] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya,

Manohar Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving

Programming Environment Accessibility for Visually Impaired Developers.

In Proceedings of the 2018 CHI Conference on Human Factors in Comput-

ing Systems (CHI ’18). Association for Computing Machinery, New York,

NY, USA, 1–11. DOI:http://dx.doi.org/10.1145/3173574.3174192

(page 14).

[67] Johnny Saldaña. 2015. The coding manual for qualitative researchers.

Sage. (pages 25, 41).

[68] Jaime Sanchez and Fernando Aguayo. 2004. Listen what I do: blind

learners programming through audio. Memorias TISE (2004), 120–124.

(page 1).

[69] Jaime Sánchez and Fernando Aguayo. 2005. Blind Learners Programming

Through Audio. In CHI ’05 Extended Abstracts on Human Factors in

Computing Systems (CHI EA ’05). ACM, New York, NY, USA, 1769–

1772. DOI:http://dx.doi.org/10.1145/1056808.1057018 (page 78).

[70] Jaime Sánchez and Fernando Aguayo. 2006. APL: audio programming

language for blind learners. In International Conference on Computers

for Handicapped Persons. Springer, 1334–1341. (page 78).

[71] Douglas Schuler and Aki Namioka. 1993. Participatory design: Principles

and practices. CRC Press. (page 90).

http://dx.doi.org/10.1145/3173574.3174192
http://dx.doi.org/10.1145/1056808.1057018

BIBLIOGRAPHY 167

[72] Waltraud Schweikhardt. 1982. A Programming Environment for Blind

APL-Programmers. SIGAPL APL Quote Quad 13, 1 (July 1982), 325–331.

DOI:http://dx.doi.org/10.1145/390006.802260 (page 13).

[73] Andrew Sears and Ben Shneiderman. 1994. Split Menus: Effectively

Using Selection Frequency to Organize Menus. ACM Trans. Comput.-

Hum. Interact. 1, 1 (March 1994), 27–51. DOI:http://dx.doi.org/10.

1145/174630.174632 (page 86).

[74] Kaitlin Duck Sherwood. 2008. Path exploration during code navigation.

Ph.D. Dissertation. University of British Columbia. (page 14).

[75] Robert M. Siegfried. 2006. Visual Programming and the Blind: The

Challenge and the Opportunity. SIGCSE Bull. 38, 1 (March 2006), 275–

278. DOI:http://dx.doi.org/10.1145/1124706.1121427 (pages 2, 13,

95).

[76] Janice Singer, Robert Elves, and M-A Storey. 2005. Navtracks: Sup-

porting navigation in software maintenance. In Software Maintenance,

2005. ICSM’05. Proceedings of the 21st IEEE International Conference

on. IEEE, 325–334. (page 14).

[77] Ann C. Smith, Justin S. Cook, Joan M. Francioni, Asif Hossain, Mohd

Anwar, and M. Fayezur Rahman. 2003. Nonvisual Tool for Navigating

Hierarchical Structures. SIGACCESS Access. Comput. 77-78 (Sept. 2003),

http://dx.doi.org/10.1145/390006.802260
http://dx.doi.org/10.1145/174630.174632
http://dx.doi.org/10.1145/174630.174632
http://dx.doi.org/10.1145/1124706.1121427

BIBLIOGRAPHY 168

133–139. DOI:http://dx.doi.org/10.1145/1029014.1028654 (pages

2, 14, 16, 66, 79, 95).

[78] Ann C. Smith, Joan M. Francioni, and Sam D. Matzek. 2000. A Java

Programming Tool for Students with Visual Disabilities. In Proceedings

of the Fourth International ACM Conference on Assistive Technologies

(Assets ’00). ACM, New York, NY, USA, 142–148. DOI:http://dx.doi.

org/10.1145/354324.354356 (page 80).

[79] Andreas Stefik, Roger Alexander, Robert Patterson, and Jonathan Brown.

2007. WAD: A feasibility study using the wicked audio debugger. In Pro-

gram Comprehension, 2007. ICPC’07. 15th IEEE International Confer-

ence on. IEEE, 69–80. (page 78).

[80] Andreas Stefik, Christopher Hundhausen, and Robert Patterson. 2011a.

An empirical investigation into the design of auditory cues to enhance com-

puter program comprehension. International Journal of Human-Computer

Studies 69, 12 (2011), 820–838. (pages 81, 95).

[81] Andreas Stefik, Richard E. Ladner, William Allee, and Sean Mealin.

2019. Computer Science Principles for Teachers of Blind and Visu-

ally Impaired Students. In Proceedings of the 50th ACM Technical

Symposium on Computer Science Education (SIGCSE ’19). Associa-

tion for Computing Machinery, New York, NY, USA, 766–772. DOI:

http://dx.doi.org/10.1145/3287324.3287453 (page 13).

http://dx.doi.org/10.1145/1029014.1028654
http://dx.doi.org/10.1145/354324.354356
http://dx.doi.org/10.1145/354324.354356
http://dx.doi.org/10.1145/3287324.3287453

BIBLIOGRAPHY 169

[82] Andreas M. Stefik, Christopher Hundhausen, and Derrick Smith. 2011b.

On the Design of an Educational Infrastructure for the Blind and Visually

Impaired in Computer Science. In Proceedings of the 42Nd ACM Technical

Symposium on Computer Science Education (SIGCSE ’11). ACM, New

York, NY, USA, 571–576. DOI:http://dx.doi.org/10.1145/1953163.

1953323 (pages 2, 13, 79).

[83] Andreas M. Stefik, Christopher Hundhausen, and Derrick Smith. 2011c.

On the Design of an Educational Infrastructure for the Blind and Visually

Impaired in Computer Science. In Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education (SIGCSE ’11). Association

for Computing Machinery, New York, NY, USA, 571–576. DOI:http:

//dx.doi.org/10.1145/1953163.1953323 (page 13).

[84] Sarit Felicia Anais Szpiro, Shafeka Hashash, Yuhang Zhao, and Shiri

Azenkot. 2016. How People with Low Vision Access Computing De-

vices: Understanding Challenges and Opportunities. In Proceedings of

the 18th International ACM SIGACCESS Conference on Computers and

Accessibility (ASSETS ’16). ACM, New York, NY, USA, 171–180. DOI:

http://dx.doi.org/10.1145/2982142.2982168 (page 36).

[85] Brianna J. Tomlinson, Jared Batterman, Yee Chieh Chew, Ashley Henry,

and Bruce N. Walker. 2016. Exploring Auditory Graphing Software in the

Classroom: The Effect of Auditory Graphs on the Classroom Environment.

http://dx.doi.org/10.1145/1953163.1953323
http://dx.doi.org/10.1145/1953163.1953323
http://dx.doi.org/10.1145/1953163.1953323
http://dx.doi.org/10.1145/1953163.1953323
http://dx.doi.org/10.1145/2982142.2982168

BIBLIOGRAPHY 170

ACM Trans. Access. Comput. 9, 1, Article 3 (Nov. 2016), 27 pages. DOI:

http://dx.doi.org/10.1145/2994606 (pages 85, 95).

[86] Paul Vickers and James L Alty. 2002. When bugs sing. Interacting with

Computers 14, 6 (2002), 793–819. (pages 61, 80, 95).

[87] Bruce N Walker and Joshua T Cothran. 2003. Sonification Sandbox: A

graphical toolkit for auditory graphs. Georgia Institute of Technology.

(page 86).

[88] Bruce N Walker and Anya Kogan. 2009. Spearcon performance and pref-

erence for auditory menus on a mobile phone. In International Conference

on Universal Access in Human-Computer Interaction. Springer, 445–454.

(page 83).

[89] Bruce N Walker, Jeffrey Lindsay, Amanda Nance, Yoko Nakano, Dianne K

Palladino, Tilman Dingler, and Myounghoon Jeon. 2013. Spearcons

(speech-based earcons) improve navigation performance in advanced au-

ditory menus. Human Factors 55, 1 (2013), 157–182. (page 83).

[90] Bruce N Walker, Amanda Nance, and Jeffrey Lindsay. 2006. Spearcons:

Speech-based earcons improve navigation performance in auditory menus.

Georgia Institute of Technology. (page 90).

[91] Pavani Yalla and Bruce N Walker. 2007. Advanced auditory menus. Tech-

nical Report. Georgia Institute of Technology. (page 86).

http://dx.doi.org/10.1145/2994606

BIBLIOGRAPHY 171

[92] Pavani Yalla and Bruce N. Walker. 2008. Advanced Auditory Menus:

Design and Evaluation of Auditory Scroll Bars. In Proceedings of the

10th International ACM SIGACCESS Conference on Computers and

Accessibility (Assets ’08). ACM, New York, NY, USA, 105–112. DOI:

http://dx.doi.org/10.1145/1414471.1414492 (page 88).

http://dx.doi.org/10.1145/1414471.1414492

Appendices

172

Appendix A

IRB Approval Forms

All of the studies presented in this dissertation has been approved by the

Institutional Review Board (IRB). We provide the IRBs docuemnts for the

four research projects below:

� Understanding the major programming challenges in software develop-

ment: This IRB covers the survey-based study presented in Part I of this

dissertation.

� Interviews about code navigation difficulties: This IRB covers the interview-

based study presented in Part I of this dissertation.

� Evaluating the usability of audio-based techniques: This IRB covers the

formative study as well as the experimental study presented in Part II

of this dissertation.

173

APPENDIX A. IRB APPROVAL FORMS 174

Figure A.1: IRB Decision Form for “Understanding the major programming
challenges in software development”.

APPENDIX A. IRB APPROVAL FORMS 175

Figure A.2: IRB Decision Form for “Interviews about code navigation difficul-
ties”.

APPENDIX A. IRB APPROVAL FORMS 176

Figure A.3: IRB Decision Form for “Evaluating the usability of audio-based
techniques”.

Appendix B

Survey Questionnaire

This appendix presents our survey questionnaire aimed to understand the

major programming challenges encountered by visually impaired programmers,

which was used to conduct the survey-based study in Chapter 3.

Title: Eliciting Programming Challenges Faced by Developers with Visual

Impairments: Exploratory Study

Informed Consent: Thank you for accepting to be a part of this important

survey, seeking to elicit programming challenges for individuals with visual

impairments. We are researchers from Rochester Institute of Technology con-

ducting a research on visually impaired developers. The purpose of the study

is to address challenges blind developers face while programming. You must

be 18 years or older to participate in our survey. We would appreciate your

help by taking 10 to 15 minutes to complete this survey. The incentive for

177

APPENDIX B. SURVEY QUESTIONNAIRE 178

participation is that each participant will be entered in a raffle for an Amazon

gift card. All information collected will be used only for our research and will

be kept confidential. Please submit your survey by clicking on the Submit

button at the bottom of this page. If you have any questions or concerns,

please do not hesitate to contact us at: kla3145@rit.edu

Are you 18 years or older?

� Yes

� No (Not allowed to participate in this Survey, thus, survey will ends

with a thank you message!)

B.1 Survey Questionnaire

1. Please indicate your age?

2. What is your gender?

� Male

� Female

� Prefer not to say

3. What best describe your visual acuity?

APPENDIX B. SURVEY QUESTIONNAIRE 179

� Vision but corrective lenses have extremely little ability to help (less

than 20/200)

� Tunnel vision where part of the visual area are absent

� Macular degeneration where part of the visual area are absent

� Light/Shadow sensitivity but unable to distinguish objects

� Total blindness

� Other:

4. Do you have any visual perception?

� Light

� Shadows

� Colors

� Movement

� Other:

5. Which of the following assistive aids you use when programming?

You may select more than one.

� Screen reader, Example: Voice over

� Braille display

� Large fonts

� Other:

APPENDIX B. SURVEY QUESTIONNAIRE 180

6. How did you learn your first programming language?

� Self-Taught

� School

� Other:

7. Please specify your development platform?

� Windows

� Mac OS X

� Linux

� Other:

8. What platform do you develop for?

� Windows

� Mac OS X

� Linux

� Windows Phone

� Android

� iOS

� Web

� Other:

APPENDIX B. SURVEY QUESTIONNAIRE 181

9. What compilers/IDEs (Integrated development environment) do

you use?

� Eclipse

� Netbeans

� Xcode

� Visual Studio

� Other:

10. Do you use an editor in addition to the IDE when you program?

If yes, please specify why.

11. For each one of the following programming languages, select your

level of expertise.

APPENDIX B. SURVEY QUESTIONNAIRE 182

Indicate your level of experience in the following table

Languages / Experience None Novice Intermediate Expert
Java � � � �
C � � � �
C# � � � �
C++ � � � �
Objective-C � � � �
Python � � � �
Ruby � � � �
Perl � � � �
JavaScript � � � �
PHP � � � �

12. Which of the following programming languages do you use most?

� Java

� C

� C#

� C++

� Objective-C

� Python

� Ruby

� Perl

� JavaScript

� PHP

� Other:

13. How many hours per week do you write code?

APPENDIX B. SURVEY QUESTIONNAIRE 183

14. What are the challenge(s) that you face when programming?

15. Describe solution(s) that you found for the challenge(s)?

16. Are willing to participate in our future study?

� Yes

� No

17. Please provide your email address to be entered in a raffle for

an Amazon gift card and / or participate in our future study.

APPENDIX B. SURVEY QUESTIONNAIRE 184

END OF THE SURVEY QUESTIONNAIRE!

Thank you very much for taking your time to participate in this survey

Appendix C

Interview Questionnaire

This appendix presents our interview questionnaire aimed to understand code

navigation difficulties encountered by non-visual programmers, which was used

to conduct the interview-based study in Chapter 4.

Title: Interviews and Observation of Blind Software Developers at Work to

Understand Code Navigation Challenges

Informed Consent: The research involves a study of visually impaired de-

velopers and the major issues related to programming. The purpose of the

study is to address the major differences and challenges between novice and

expert developers. You will answer a set of questions posed by the researcher

if you participate in this interview. The interview will take approximately 45

minutes to 1 hour.

If you participate in the interview, you will receive a questionnaire as an inter-

185

APPENDIX C. INTERVIEW QUESTIONNAIRE 186

view, which will take 45 minutes to 1 hour after reviewing the consent form.

This study will be held at the researcher workplace without inconveniencing

the participant space. In case the participant could not make it, an online

interview will be held via Skype or Google hangouts. The researcher however,

will film the participant computer screen for the purpose of observation some

tasks. The researcher will collect your personal data such as age, gender, con-

tact information, and user experience for the study. There are no expected

risks, harms, inconveniences and discomforts to you as the subject. The in-

centive for participation is that each participant will be entered in a raffle

for an Amazon gift card. The findings from this research will enable us to

make critical decisions about major differences and challenges for novice and

expert developers who are visually impaired. The same applies to the society.

There is no financial effort required from you at any point in the research. The

researcher will be the only person handling the information you provide in the

research. Once the data is analyzed, the researcher will store all the sheets of

paper and recording until the approval of the paper. When the research report

is complete, the researcher will destroy all the data collecting and storage ma-

terial. The report will be evaluated by a committee for educational purposes

and later availed to the public via online libraries but not personal information

will be deducible from the report.

Taking part in this study is voluntary; you do not have to participate, and you

can withdraw from the research at any point you wish. There is no penalty

APPENDIX C. INTERVIEW QUESTIONNAIRE 187

or any benefit loss for any choice you make. You can contact me through my

phone number: (785) 498-9095 or email me at: kla3145@rit.edu

If you feel that you have a question about your rights or any adverse event,

you can contact the HSRO Associate Director through email at:hmfsrs@rit.ede

Please write your full name below and sign if you agree to be part of this

study:

Name:

Date:

Signature:

Interview Instruction: The interview is going to be face-to-face interview

unless the participant could not make it to the interviewer location. In such

a case, we will conduct this interview via the Internet using Skype or Google

hangouts.

C.1 Interview Questionnaire

1. Describe the process that you use to program?

(a) Demonstrate simple programming task to me?

2. What kind of tools you use in order to help you program?

3. As blind developer, what kind of challenges do you face?

APPENDIX C. INTERVIEW QUESTIONNAIRE 188

4. Describe challenge(s) that you found solution(s) for and what

were the solutions you found?

5. Is code navigation a challenge for you, why or why not?

(a) Code navigation limitation?

6. If you face issues with inaccessible tools while programming or

collaborating with other developers, how do you overcome this is-

sue?

7. Do you work individually or with teams?

(a) If you work with team, please explain your process and tools that you

find useful?

(b) And if your team member sighted or visually impaired?

END OF THE INTERVIEW QUESTIONNAIRE!

Thank you very much for taking your time to participate in this study!

Appendix D

Formative Study

Questionnaire

This appendix presents our Sonification interview questionnaire aimed to in-

vestigate whether audio-based techniques capable of assisting non-visual pro-

grammers to convey the structure of the programming codebase, which would

be used to conduct the audio-based prototype (Sonification interview) study

in Chapter 6.

Title: Interviews about Sonification of Structured Programming Code for

Non-visual Users

Investigator: Khaled L. Abusays, Ph.D. student in Computing and Informa-

tion Sciences, Rochester Institute of Technology

Faculty Supervisor: Matt Huenerfauth, Professor, Department of Informa-

189

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 190

tion Sciences and Technologies, Rochester Institute of Technology

Thank you for taking time to participate in this research study. The below

information is helpful to decide whether to proceed further or not.

Nature and Purpose of the Project: The goal of this research project

is to learn how to improve the experience of computer programmers who are

blind. We are studying whether various auditory cues (e.g. sound effects) may

help programmers who are using a screen reader when writing computer code.

Explanation of Procedures: This study will not take more than 70 min-

utes to complete. Today, you will be asked some questions about possible

ways someone could interact with different sound effects in a programming

environment. I will also ask you some other questions about evaluating vari-

ous audio samples: some consist of computer generated speech, and other are

non-speech sound effects that vary in their pitch, loudness, or other properties,

e.g. left-to-right stereo. We are interested in learning how you would interact

with software that included these sounds as well as your opinions. Please be

honest with your feedback. All interviews will be audio recorded for further

analysis.

Potential Discomfort and Risks: You will speak with the interviewer and

listen to some sound effect recordings; the potential risks are minimal. Also,

you may request a break at any time.

Potential Benefits: You will not receive any direct benefits for participating

in this study. The study will be used to help direct future design decisions of

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 191

the interface experience.

Costs/Reimbursements: After the 70-minute study, you will be compen-

sated for your time with either: $40 cash (if you are meeting the investigator

in person for this study) or a $40 Amazon gift card (if you are participating

remotely) which will be transmitted to you by email within one week of your

interview appointment. In this case, please ensure the interviewer has your

correct email address.

Confidentiality: Every effort will be made by the investigator to keep your

research records and other personal information confidential, except as may

be required by court order or law. Access to the research records may be

provided to the authorized representatives of Rochester Institute of Technol-

ogy, including members of the Institutional Review Board (IRB), a committee

which reviews and approves all research involving human subjects.

Withdrawal from the Project: Participation in this research project is

voluntary. You may decide not to participate or to leave the study at any

time. Choosing to leave or deciding to not participate the study will not result

in any penalty or loss of benefits to which you are entitled, nor harm your

relationship with the university.

Whom to Contact with Questions: This research project has been re-

viewed by the Rochester Institute of Technology Institutional Review Board.

If you have any questions related to your rights as a research participant, you

may contact: Heather Foti, Associate Director, Office of Human Subjects Re-

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 192

search, Phone Number: 585-475-7673, Email: hmfsrs@rit.edu

If you have any questions about the conduct of this research project or

think that something is unusual or unexpected happening or psychological

discomforts, any injuries, you may contact: Dr. Matt Huenerfauth, Pro-

fessor, Department of Information Sciences and Technologies, Rochester In-

stitute of Technology, Departmental Phone Number: 585-475-7924, Email:

matt.huenerfauth@rit.edu

D.1 Example Script and Questions for Semi-Structured

Interview, with Links to Audio Samples

Interview Method:

The interview questions presented herein is a semi-structured interview. The

interview is going to be faceto-face unless the participant could not make it to

the investigator location. In such a case, we will conduct this study online via

telephone or Skype or Google Hangouts per the participant preference.

Audio Files:

In addition to asking the participant some questions about their experiences

as a computer programmer who is blind, the investigator will also play some

sample sound effects for the participant to consider. The goal of this project

is to consider how sounds could communicate information to programmers

who are listening to a screen reader (computer voice) that is reading computer

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 193

programming code aloud. In this interview, we will ask participants to provide

their feedback about possible ways to interact various sound effects into the

programming environment. The goal is to generate useful user requirements

that could help us implement a system that uses auditory cues to help non-

visual users understand the structure of the codebase. So, several of these

sound effect audio files contain recordings of a computer voice reading some

computer code, along with some sound effects (e.g. beeps at different pitch)

playing in concert with the speech audio recording. In order for the IRB to

understand the nature of the sound effects that may be played in this study,

some examples have been produced and posted at the following locations: The

list of sound effects used herein is a mixture of speech sounds, non-speech

sounds, and spatialization of sounds (stereo left-right differences). There is

no fixed list of sound effects that will be played during this study – since the

investigator may invent new variations (e.g. beeps at different pitches) based

on the feedback of the first few participants. Thus, the specific repertoire of

sound effects that may be played to participants may evolve during the study,

following a traditional ”participatory design” approach, common in the field

of human-computer interaction, wherein the stakeholders are actively involved

in the design process to help ensure the result meets their needs and is usable.

Thus, if a participant in an interview early in the study suggests a particular

sound effect that might work well, then the investigator may include a sound

effect like this in the subsequent interviews, to determine whether participants

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 194

like this sound effect.

D.1.1 Script for the Interviewer

Please note that in order for the interview session to feel natural and com-

fortable for the participant, the interviewer will not actually read verbatim

this specific script to the participant, which would sound awkward and stilted.

Instead, the interviewer will converse in a comfortable and fluent manner with

the participant – but will follow this arrangement of topics in a semi-structured

manner. Thus, the IRB may consider this script as a typical example of the

nature of questions and conversation topics that will arise during this inter-

view.

Conformation/Approval:

Thank you for coming to the interview today, I am going to read aloud the

informed consent prior to conducting the interview study. We cannot start the

interview without getting your confirmation/approval on the informed consent.

Interview Questions:

Thank you for your confirmation/approval. In this interview, I want you to

please to start imagining yourself working with some computer programming

code using your favorite screen-reader technology and text-editor software.

Your screenreader will read some code to you, and sometimes it is going to

make additional sound effects to inform you how the codebase is indented. For

instance, if text is ”nested” inside other regions of text, such as in the case of

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 195

a for-loop that is nested within another for-loop. These sound effects could be

speech sounds (human voice), non-speech sounds (e.g., bell), or spatialization

of sounds (stereo left-right differences). For example, in a speech sound, the

sound effect will be based on the human voice that informs you how your code-

base is nested. For example, the human voice might say something like level

1, level 2, level 3, one, two, three, etc. It might also say how your codebase is

intended in different ways. Here are some examples for you:

SPEECH SOUNDS EXAMPLES

Now, after listening to some of the speech audio samples. I want to ask which

one of these audio samples sound better? Do you like the one says Level 1,

Level 2, Level 3? or 1 Indent, 2 Indents, 3 Indents? Or maybe the shortest

version 1, 2, and 3.

Do you like to be indicated about each level? Do you think receiving short

audio feedback that tells you when you are inside or outside the nested code-

base?

Which one in your opinion could be used to indicate the nesting level?

Do you have any suggestions or ideas to improve these speech sounds list?

Do you have any other word phrases that could be used to include in our

speech sound list?

Based on the participant responses, additional questions could be added to

solicit more explanation or feedback.

Before we move out of the speech sounds category. Let me tell you about one

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 196

of the common techniques that researchers use to make speech sounds shorter

and quicker. This technique is known as Spearcon, where the entire phrase is

compressed and sped up.

Let us think about the speech examples presented to you earlier. Now, imag-

ine yourself listening to these speech audio examples in a way that they are

completely compressed and sped up. Here are some examples for you to listen:

SPEARCON SOUNDS EXAMPLES

What you think about this approach? Do you find it useful? Do you like it?

Do you think we should use it to make speech sounds shorter and quicker? Do

you think screen-reader users can understand them or they are very difficult

to recall?

Do you think this technique requires some level of prior training?

Do you have any suggestions or ideas about this technique or other techniques?

Based on the participant responses, additional questions could be asked to

solicit more explanation or feedback.

Thanks for your comments about the speech sounds category.

Now, we will move to the non-speech sounds category where we will have an

exciting conversation.

First, I want you to please imaging previous scenario, but this time with non-

speech sounds.

Non-speech sounds could be based on various musical notes or tones that could

translate how your codebase is indented.

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 197

These non-speech sounds might include sounds like a bell, waterdrops, or a

sound of woodpecker pecking a tree, etc. Here are some examples for you to

listen:

NON-SPEECH SOUNDS EXAMPLES

Now, which one the sound affects you heard better? Do you like the bell one,

or the waterdrops, or the woodpecker sound? Which one in your opinion could

be used to indicate how the codebase is indented?

Also, I want you to know that in the non-speech category, I am using different

techniques to play with some of the sound dimension. For example, I am

using different level of pitch, volume, speed, duration, etc. to indicate how the

codebase is intended. Here are some examples for you to listen:

NON-SPEECH SOUNDS EXAMPLES

Now, what you think about changing sound dimensions. Which one do you

think we should use and how? Which one of these dimensions is not important

and why?

Do you have any suggestions or ideas for these sound dimensions?

Do you have any other non-speech sound that we could use to include in our

non-speech sound list?

Based on the participant responses, additional questions could be asked to

solicit more explanation or feedback.

Excellent.

Now, another way to provide audio feedback is to play a specific sound with

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 198

different pitches, e.g., the bell sound.

For example, if you are entering level 1, the sound will be played with a higher

pitch to indicate that you are in level 1, and if you are entering level 2 or 3,

the sound will be played in a different level of pitch.

Think about the space around you, if the sound was played with a higher pitch

that indicates your left side, medium pitch indicates your middle side, and low

pitch indicates your right side. The level of pitches will be based on how your

codebase is indented, e.g., lowest pitch means level 1, lower pitch means level

2, low pitch means level 3, high pitch means level 4, higher pitch means level

5, highest pitch means level 6, and so on.

Please let me play you some examples so that you can get a sense of this

technique:

SPATIALIZATION SOUNDS EXAMPLES

Now, what you think about this technique? Do you like it? Do you think this

technique is easy to convey by screen-reader users? Do you think we should

use it in our auditory cues system?

Do you have any suggestions or ideas about this technique?

Based on the participant responses, additional questions could be asked to

solicit more explanation or feedback.

Alright, now I need to ask few questions about the possibility of mixing speech

sounds with non-speech sounds. Do you like this idea? Do you think it will be

useful? Allow me to play some examples so that you can get sense of that.

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 199

MIXED SOUNDS EXAMPLES

Do you like it? What is your opinion about using such a technique?

Based on the participant responses, additional questions could be asked to

solicit more explanation or feedback.

Now, I need to ask you few questions before we end our interview study.

I want to know if you prefer to hear these sounds effect automatically while

you move throughout the codebase? Or maybe on your wish by using specific

short key to request the feedback? Or maybe as a background sound while

you are working with your codebase? The only difference between automated

feedback and background noise is that automated only occurs when you move

from one level to another while the background noise played to you all the

time with low volume.

Let me play some examples so that you can get sense of these techniques.

AUTOMATED SOUNDS EXAMPLES

Now, after you heard the automated example. What you think about this

technique? Do you find it better and useful or you wish to have more control

over the audio feedback?

Based on the participant responses, additional questions could be asked to

solicit more explanation or feedback

END OF THE INTERVIEW QUESTIONS!

Thank you very much for taking your time to participate with us in our study.

APPENDIX D. FORMATIVE STUDY QUESTIONNAIRE 200

We sincerely appreciate your taking time to provide your comments and

feedback.

Appendix E

Larger Study Questionnaire

This appendix presents our audio-based interaction techniques questionnaire

aimed to investigate whether non-visual programmers prefer a specific type of

interaction for conveying the structure of the programming code.

Title: Interviews about Sonification of Structured Programming Code for

Non-visual Users

Investigator: Khaled L. Abusays, Ph.D. student in Computing and Informa-

tion Sciences, Rochester Institute of Technology

Faculty Supervisor: Matt Huenerfauth, Professor, School of Information

(iSchool), Rochester Institute of Technology

Thank you for taking some time to participate in this research study. The be-

low information is helpful to decide whether you would like to proceed further

with this study or not.

201

APPENDIX E. LARGER STUDY QUESTIONNAIRE 202

Nature and Purpose of the Project: The goal of this research project

is to learn how to improve the experience of computer programmers who are

blind. We are studying whether various auditory cues (e.g. sound effects) may

help programmers who are using a screen reader when writing computer code.

Specifically, we are investigating three different audio interaction techniques:

1) automatic level-crossing notifications, 2) on-demand level indications, and

3) no feedback. The goal is to find the best way to provide audio feedback in

order to help non-visual users understand the structure of the programming

codebase.

Explanation of Procedures: This study will not take more than 70 minutes

to complete. Today, you will be asked some questions about possible ways to

provide audio feedback (sound effects) in order to help someone, understand

how code is nested. I will also ask you some other questions about evaluating

various audio samples: some consist of computer-generated speech, and other

are non-speech sound effects. We are interested in learning the best technique

(automatic, on-demand, or no feedback) to provide sound effects to help some-

one who is blind understand the structure of the code. Please be honest with

your feedback. All interviews will be audio recorded for further analysis.

Potential Discomfort and Risks: You will speak with the interviewer and

listen to some sound effect recordings; the potential risks are minimal. Also,

you may request a break at any time.

Potential Benefits: You will not receive any direct benefits for participating

APPENDIX E. LARGER STUDY QUESTIONNAIRE 203

in this study. The study will be used to help direct future design decisions of

the interface experience.

Costs/Reimbursements: After the 70-minute study, you will be compen-

sated for your time with either: $40 cash (if you are meeting the investigator

in person for this study) or a $40 Amazon gift card (if you are participating

remotely) which will be transmitted to you by email within one week of your

interview appointment. In this case, please ensure the interviewer has your

correct email address.

Confidentiality: Every effort will be made by the investigator to keep your

research records and other personal information confidential, except as may

be required by court order or law. Access to the research records may be

provided to the authorized representatives of Rochester Institute of Technol-

ogy, including members of the Institutional Review Board (IRB), a committee

which reviews and approves all research involving human subjects.

Withdrawal from the Project: Participation in this research project is

voluntary. You may decide not to participate or to leave the study at any

time. Choosing to leave or deciding to not participate the study will not result

in any penalty or loss of benefits to which you are entitled, nor harm your

relationship with the university.

Whom to Contact with Questions: This research project has been re-

viewed by the Rochester Institute of Technology Institutional Review Board.

If you have any questions related to your rights as a research participant, you

APPENDIX E. LARGER STUDY QUESTIONNAIRE 204

may contact: Heather Foti, Associate Director, Office of Human Subjects Re-

search, Phone Number: 585-475-7673, Email: hmfsrs@rit.edu

If you have any questions about the conduct of this research project or

think that something is unusual or unexpected happening or psychological

discomforts, any injuries, you may contact: Dr. Matt Huenerfauth, Pro-

fessor, Department of Information Sciences and Technologies, Rochester In-

stitute of Technology, Departmental Phone Number: 585-475-7924, Email:

matt.huenerfauth@rit.edu

E.1 Example Script and Questions for the Audio-

based Interaction Techniques Experiment Study

Interview Method:

The interview questions presented herein is a semi-structured interview. The

interview is going to be face-to-face unless the participant could not make it

to the investigator location. In such a case, the study will be conducted online

via telephone or Skype or Google Hangouts per the participant preference.

Prototypes:

In this study, we will be evaluating three different audio interaction techniques

(automatic level-crossing notifications, on-demand level indications, and no

feedback interaction). The goal is to find the best way to provide useful

information to screen-reader users (computer voice) that is reading computer

APPENDIX E. LARGER STUDY QUESTIONNAIRE 205

programming code aloud. In this interview, we will be asking participants

to provide their feedback about the above-mentioned interaction techniques.

The goal is to generate useful user requirements that could help us implement

a system that uses auditory cues to help non-visual users understand the

structure of the codebase. In this experiment, there are audio files that contain

recordings of a computer voice reading some computer code, along with some

sound effects based on speech cues (e.g., level 1, level 2, etc.) and none-speech

cues (e.g., repetitive beeps). The list of sound effects used herein is a mixture of

speech sounds and non-speech sounds. The list of sound effects was generated

during an early stage from a previous study. Participants were recruited

to provide their feedback on various sound effects. Only the top requested

sound effects were carried in this project. In this current study, we are only

investigating different ways to provide audio feedback (sound effects) to non-

visual programmers in order to provide useful feedback about the structure of

the programming codebase.

E.1.1 Script for the Interviewer

Conformation/Approval: Thank you for coming to the interview today, I

provided the informed consent prior to the interview via email. We cannot

start the interview without getting your confirmation/approval on the informed

consent. Do I have your approval to start the interview process?

Interview Questions:

APPENDIX E. LARGER STUDY QUESTIONNAIRE 206

Thank you for your confirmation/approval.

1. Code Understanding:

(a) Could you explain to me, in three sentences, what this code does?

(b) Could you explain to me, in three sentences, what is the code

output?

2. Post-code base questionnaire:

(a) On a scale from 1 to 7, rate how easy you found the task to complete,

with one being very difficult, and seven being very easy 2.

Very difficult �—�—�—�—�—�—� Very easy

(b) On a scale from 1 to 7, rate how frustrating you found the task to

complete, with one being very frustrating, and seven being not at

all frustrating

Very frustrating �—�—�—�—�—�—� Not at all frustrating

APPENDIX E. LARGER STUDY QUESTIONNAIRE 207

3. Likert scale questionnaire:

Now, I will provide some statements about the system you just used. For

each, can you please indicate strongly disagree, disagree, neutral, agree,

or strongly agree

(a) This system was easy to use.

Strongly disagree �—�—�—�—� Strongly agree

(b) This system was convenient to use.

Strongly disagree �—�—�—�—� Strongly agree

(c) This system was helpful for your programming tasks.

Strongly disagree �—�—�—�—� Strongly agree

4. Other scale questionnaire

(a) On a scale from 1 to 7, rate whether you felt you had a good idea

where you were in the code with one being no idea and 7 being-

always knew

No idea �—�—�—�—�—�—� being-always knew

(b) Now, let me ask you this question, on a scale ranging from 0 to 10,

where 0 means “Not at all likely” and 10 means “Extremely likely”:

i. How likely are you to recommend this system to a friend or

colleague?

Not at all likely �—�—�—�—�—�—�—�—�—� Extremely

likely

APPENDIX E. LARGER STUDY QUESTIONNAIRE 208

Post-experiment Questionnaire:

5. Rating questionnaire:

(a) On a scale of 1 to 10, how would you rate the automatic feedback

system?

1 �—�—�—�—�—�—�—�—�—� 10

(b) On a scale of 1 to 10, how would you rate the on-demand feedback

system

1 �—�—�—�—�—�—�—�—�—� 10

(c) On a scale of 1 to 10, how would you rate the no feedback system?

1 �—�—�—�—�—�—�—�—�—� 10

6. Open-ended Questionnaire

(a) Could you explain to me, in a few sentences, what do you like and

dislike (positive and negative aspects) about the automatic feedback

system?

(b) Could you explain to me, in a few sentences, what do you like

and dislike (positive and negative aspects) about the on-demand

feedback system?

APPENDIX E. LARGER STUDY QUESTIONNAIRE 209

(c) Could you explain to me, in a few sentences, what do you like

and dislike (positive and negative aspects) about the no feedback

system?

(d) What do you think would be the impact of a tool like this (automatic/on-

demand feedback) being available to the public?

i. Who do you think would benefit the most?

Semi-structured Interviews Questions:

7. Automatic-based feedback prototype questions:

(a) Do you like to be indicated one time about each level?

APPENDIX E. LARGER STUDY QUESTIONNAIRE 210

(b) Do you like the idea of providing sound effects using this type of

interaction?

(c) Would you use this type of interaction? For what?

(d) Reflect on how the experience of navigating through the code was

different with the tool than without the tool:

i. How did the tool affect your ability to complete the tasks?

ii. How did the tool affect your ability to know where you were in

the code?

APPENDIX E. LARGER STUDY QUESTIONNAIRE 211

iii. How did the tool affect your ability to understand the code?

iv. How did it change how you do your initial skimming or orient

yourself;

(e) Do you have any suggestions or ideas to improve this type of inter-

action?

(f) Do you like the timing of this type of interaction?

APPENDIX E. LARGER STUDY QUESTIONNAIRE 212

(g) In this type of interaction, there is 10 millisecond delay between

computer voice recording (reading code line) and each sound effect.

i. Do you think 10 millisecond delay is long or short for you to

notice the difference?

ii. Did you find it easy to distinguish each sound effect as well as

the computer voice recording?

(h) Do you have any other comment about this type of interaction?

8. On-demand-based feedback prototype questions:

APPENDIX E. LARGER STUDY QUESTIONNAIRE 213

(a) Do you like to be indicated about each level whenever you want?

(b) Do you like the idea of providing sound effects using this type of

interaction?

i. Sound effects will be played per your request.

(c) Would you use this type of interaction? For what?

(d) Reflect on how the experience of navigating through the code was

different with the tool than without the tool:

APPENDIX E. LARGER STUDY QUESTIONNAIRE 214

i. How did the tool affect your ability to complete the tasks?

ii. How did the tool affect your ability to know where you were in

the code?

iii. How did the tool affect your ability to understand the code?

iv. How did it change how you do your initial skimming or orient

yourself;

(e) Do you have any suggestions or ideas to improve this type of inter-

action?

APPENDIX E. LARGER STUDY QUESTIONNAIRE 215

(f) Do you like the timing of this type of interaction?

(g) Did you find it easy to distinguish each sound effect as well as the

computer voice recording?

(h) Do you have any other comment about this type of interaction?

9. No-feedback prototype questions:

(a) Do you like the idea of using just your screen-reader where no audio

feedback is played to you?

APPENDIX E. LARGER STUDY QUESTIONNAIRE 216

(b) Do you have any suggestions or ideas to improve it?

(c) Do you have any other comment about this type of interaction?

END OF THE INTERVIEW QUESTIONS!

Thank you very much for taking your time to participate with us in our study.

We sincerely appreciate your taking time to provide your comments and

feedback.

Appendix F

Supplementary Study

Materials

This appendix presents the experimental study materials which were used to

conduct the larger study. This work was conducted to evaluate the usability

and efficacy of audio-based techniques and whether users have preferences

for various forms of audio-based cues to help convey the hierarchical nesting

structure of code.

F.1 Materials Description

The supplementary study materials can be downloaded here. There are three

main folders.

217

https://people.rit.edu/kla3145/Research/AuditoryCuesProject/Supplementary-study-materials.zip

APPENDIX F. SUPPLEMENTARY STUDY MATERIALS 218

1. Audacity Project

� Folder 1: Computer-recording; it has the original recordings for the

larger study experiment.

� Folder 2: Cues; it has two small files, speech, and non-speech, each

one contains the original cues.

� Folder 3: Interaction; it has three small files; automatic, no feedback,

and on-demand. Each one has its recordings with the original files

2. Code samples

� Contains the three code samples (written in python language) that

were used in the larger study.

3. Sites

� Each one of the below folders contains several small folders and

files; cues, recordings, HTML files, timing CSV files, experiment

plan order list as a text-file, and d3 Javascript file.

– Folder 1: Plan A

– Folder 2: Plan B

– Folder 3: Plan C

F.2 To run the Prototypes

Follow the next steps to run the study prototypes:

APPENDIX F. SUPPLEMENTARY STUDY MATERIALS 219

1. Upload the sites main folder to a server or a localhost.

2. Navigate to the index.html path, based on the site folder location either

on your server or localhost.

3. The index.html page will display three options, each one will guide you

to the three prototypes, with each in a different order.

	The Role of Sonification as a Code Navigation Aid: Improving Programming Structure Readability and Understandability For Non-Visual Users
	Recommended Citation

	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction
	1.2 Overview of This Dissertation
	1.3 Research Questions
	1.3.1 Part I: Understanding Requirements and Needs of Non-visual Programmers
	1.3.2 Part II: Methodological details of Sonification to Aid Code Navigation For Non-Visual Programmers

	1.4 Dissertation Organization

	Part I: Understanding Requirements and Needs of Non-Visual Programmers
	Prologue to Part I
	2 Background and Prior Work on Programming Challenges
	2.1 Code Navigation
	2.2 Programming Challenges

	3 Programming Challenges
	3.1 Introduction
	3.2 Research Questions
	3.3 Methodology
	3.3.1 Survey Design
	3.3.2 Sampling
	3.3.3 Procedure and Response Rate
	3.3.4 Participants

	3.4 Results
	3.4.1 RQ1a: Developer Background
	3.4.2 RQ1a: Development Tools & Platforms
	3.4.3 RQ1b: Assistive Technology
	3.4.4 RQ1c: Open-Ended Responses
	3.4.4.1 Limited Accessibility Aids in IDEs
	3.4.4.2 Code Navigation
	3.4.4.3 Diagrams
	3.4.4.4 Debugging & User Interface Layout
	3.4.4.5 Seeking Sighted Assistance
	3.4.4.6 RQ1d: Workaround Techniques

	3.5 Limitations
	3.6 Conclusions

	4 Code Navigation Difficulties
	4.1 Introduction
	4.2 Research Questions
	4.3 Methodology
	4.3.1 Interview Design
	4.3.2 Participants
	4.3.3 Procedure
	4.3.4 Data Analysis

	4.4 Results
	4.4.1 RQ2a: Code Navigation Challenges
	4.4.2 RQ2b: Tools in Software Development
	4.4.2.1 Assistive Technologies
	4.4.2.2 Development Languages & Tools

	4.4.3 RQ2c: Programming Strategies

	4.5 User Needs
	4.6 Limitations
	4.7 Conclusions

	Epilogue to Part I
	Part II: Methodological details of Sonification to Aid Code Navigation For Non-Visual Programmers
	Prologue to Part II
	5 Background and Prior Work on Audio Programming and Sonification
	5.1 Sonification and Interaction in Programming
	5.2 Accessing Mathematical Symbols via Audio
	5.2.1 Conveying Depth of Brackets in Equations
	5.2.2 Mathematical Formulas
	5.2.3 Spatial Sounds in Mathematics

	5.3 Converting Visual Graphs to Sound
	5.4 Representing Menus or Outlines
	5.4.1 Designing Audio Cues
	5.4.2 Limits of Understandability of Non-Speech

	5.5 Discussion of Prior Work
	5.6 Limitations of Prior Work

	6 Formative Study
	6.1 Background and Introduction
	6.2 Research Questions Investigated in this Chapter
	6.3 Methodology
	6.3.1 Stimuli Preparation
	6.3.2 Recruitment and Participants
	6.3.3 Procedure and Questions

	6.4 Results
	6.4.1 Timing of Audio Cues about Code Structure
	6.4.2 Speech-Based vs. Non-Speech Audio Cues
	6.4.3 Conveying Code Structure with Audio Properties

	6.5 Discussion
	6.6 Summary and Limitations

	7 Experimental Study
	7.1 Background and Introduction
	7.2 Research Questions Investigated in this Chapter
	7.3 Methodology
	7.3.1 Stimuli Preparation and Prototype
	7.3.2 Recruitment and Participants
	7.3.3 Procedure and Questionnaire

	7.4 Results
	7.5 Discussion
	7.6 Summary and Limitations

	Epilogue to Part II
	8 Limitations and Future Work
	8.1 Limitations and Future Work
	8.1.1 Part I: Limitations and Future Work
	8.1.2 Part II: Limitations and Future Work

	9 Summary and Contributions
	9.1 Summary of the Contribution of This Research
	9.1.1 Part I: Programming Challenges and Code Navigation Difficulties
	9.1.2 Part II: Usability of Audio-based Techniques

	9.2 Conclusion and Final Comment

	Bibliography
	Appendices
	A IRB Approval Forms
	B Survey Questionnaire
	B.1 Survey Questionnaire

	C Interview Questionnaire
	C.1 Interview Questionnaire

	D Formative Study Questionnaire
	D.1 Example Script and Questions for Semi-Structured Interview, with Links to Audio Samples
	D.1.1 Script for the Interviewer

	E Larger Study Questionnaire
	E.1 Example Script and Questions for the Audio-based Interaction Techniques Experiment Study
	E.1.1 Script for the Interviewer

	F Supplementary Study Materials
	F.1 Materials Description
	F.2 To run the Prototypes

