
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

11-2020

Nereus: A Proposal for Implementing Anti-phishing Software Nereus: A Proposal for Implementing Anti-phishing Software

Using Corporate Branding Color Matching Using Corporate Branding Color Matching

Benjamin Heald
beh8823@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Heald, Benjamin, "Nereus: A Proposal for Implementing Anti-phishing Software Using Corporate Branding
Color Matching" (2020). Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10644?utm_source=repository.rit.edu%2Ftheses%2F10644&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Nereus: A Proposal for Implementing
Anti-phishing Software Using Corporate

Branding Color Matching

by

Benjamin Heald

A Thesis Submitted
in

Partial Fulfillment of the
Requirements for the Degree of

Master of Science
in

Computer Science

Supervised by

Dr. Rajendra Raj

Department of Computer Science

B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology

Rochester, New York

November 2020

ii

The thesis “Nereus: A Proposal for Implementing Anti-phishing Software Using Cor-

porate Branding Color Matching” by Benjamin Heald has been examined and approved by

the following Examination Committee:

Dr. Rajendra Raj
Professor
Thesis Committee Chair

Dr. Carol Romanowski
Professor

Dr. Reynold Bailey
Professor

iii

Dedication

This thesis is dedicated to my parents Bonnie and David Heald. Without you both I would

never have been able to reach this point. From a young age you both fostered in me a love

of learning that has brought me here. Your love and support of me and my academic goals

has been a constant in my life, and I thank you both from the bottom of my heart.

iv

Acknowledgments

I am incredibly grateful to all the professors from both Rochester Institute of Technology,

Gettysburg College, and Hebrew University of Jerusalem who have worked with me on

this project over the past five years. To Dr. Rajendra Raj and Dr. Carol Romanowski of

RIT who provided me with a multitude of opportunities to work and learn this past year.

Professor Rob Olson, who taught me a great deal about the security industry from both

technical and professional perspectives. I also give my deepest thanks to Dr. Clif Presser,

Dr. Darren Glass, and Dr. Ivaylo Ilinkin of Gettysburg College who helped to hone and

develop this idea from its conception. To Dr. Rod Tosten who encouraged me to pursue

my Master’s degree at RIT, I would not have reached this point without your advice. The

encouragement and support from others like my friend Marc Crouse were also essential in

developing my professional and academic skills. To Naufa Amirani, who fielded my

constant questions and whose support was invaluable. Lastly, I would like to thank my

parents, brothers, and friends who had to put up with me bouncing ideas off them about

phishing for the last five years.

v

Abstract

Nereus: A Proposal for Implementing Anti-phishing Software Using
Corporate Branding Color Matching

Benjamin Heald

Supervising Professor: Dr. Rajendra Raj

Over the years, many anti-phishing software packages have been developed that can reli-

ably and accurately detect and delete phishing emails as they are received. As communi-

cation on the internet evolves however, these existing anti-phishing systems are becoming

less effective. As more users migrate away from email and into emerging technologies

such as Slack, Zoom, and Microsoft Teams, new effective anti-phishing filters must be cre-

ated for each new communication platform. Developers are therefore fighting an uphill

battle to keep users safe. An anti-phishing mechanism that positions itself instead directly

between the user and the websites they visit is therefore proposed. This positioning al-

lows the system to protect the user against phishing attacks no matter the communication

medium. Existing research in this area suffers from impractical processing overhead, se-

cure logic failures, and unreliability in the long term. This thesis overcomes these issues

by using corporate branding color as a visual similarity measurement within a supervised

learning algorithm to perform phishing identification. Since it has been shown that corpo-

rate branding colors change much less often than other design choices like HTML layout,

this visual similarity comparison is able to maintain high accuracy over long periods of

vi

time. This principle, combined with a fast machine learning algorithm, allows the applica-

tion to be accurate, effective, and adaptable with little to no added overhead, overcoming

the shortcomings in currently proposed solutions.

vii

Contents

Dedication . iii

Acknowledgments . iv

Abstract . v

1 Introduction . 1
1.1 Background . 2
1.2 Related Work . 5
1.3 Hypothesis . 7
1.4 Road map . 9

2 Design & Implementation . 11
2.1 Supervised Learning Classifier . 11

2.1.1 Data Acquisition . 11
2.1.2 Feature Discussion . 12
2.1.3 Data Processing . 17
2.1.4 Data Analysis . 20
2.1.5 Model Design . 22

2.2 Chrome Extension . 26
2.3 Remote Server . 27

2.3.1 Apache & PHP Server . 27
2.3.2 SimpleHTTP Python Server . 28

2.4 Overarching System Architecture . 28

3 Analysis . 30
3.1 Accuracy . 30

3.1.1 Color Similarity Feature Performance Evaluation 33
3.2 Speed . 34
3.3 Reliability . 36

viii

3.4 Security . 37

4 Conclusions . 38
4.1 Current Status . 38
4.2 Future Work . 38
4.3 Lessons Learned . 39

Bibliography . 40

ix

List of Tables

2.1 Nereus Data Feature Description . 14
2.2 Nereus Visual Feature Description . 16
2.3 Nereus Data Example . 17

3.1 Data Feature Importance . 35
3.2 Model Accuracy Ratings . 36

x

List of Figures

1.1 Generic Web Phishing Attack Flow . 3
1.2 Screenshot of Paypal.com . 4
1.3 Screenshot of coaltur.com . 4

2.1 Bad Image Data . 19
2.2 Good Image Data . 19
2.3 URL Length vs. Number of Subdomains 20
2.4 Distribution of the distance between the website’s color palette and Face-

book’s branding colors. 21
2.5 Distribution of the distance between the website’s color palette and Mi-

crosoft’s branding colors. 22
2.6 Distance between Amazon branding colors and Orange branding colors. . . 23
2.7 Distance between Adobe branding colors and Netflix branding colors. . . . 24
2.8 Nereus System Architecture . 29

3.1 ROC Curve for Logistic Regression Model. 31
3.2 ROC Curve for SVM Model. 32
3.3 ROC Curve for Random Forest Model. 32
3.4 Confusion Matrix for Random Forest Model. 33
3.5 ROC Curve for Random Forest Model with no color matching features. . . 34
3.6 Confusion Matrix for Random Forest Model with no color matching features. 35

1

Chapter 1

Introduction

The majority of anti-phishing systems position themselves between the user and their com-

munication platform. From this position, the software can easily intercept and flag incom-

ing messages that are deemed potential phishing attacks before the user ever sees them.

Since email is the main online communication platform for both businesses and individuals,

most implementations of this approach are created only for use by email service providers.

This intercept-and-filter model has been proven to be extremely effective at preventing

phishing emails from reaching users, and has been widely implemented in major email

systems for many years. Major email service providers such as G-Mail have developed

extremely sophisticated systems in which around 100 million phishing messages are inter-

cepted and filtered each day [2]. Over time this approach has begun to be ineffective as the

number of available communication platforms skyrockets.

With the advent of applications such as WhatsApp, Zoom, Facebook Messenger, Slack,

Microsoft Teams, and other instant messaging applications, more and more communication

on the internet is conducted away from email. These new communication channels have

existed for years, yet little work has been done to implement the same kind of intercept-and-

filter mechanisms used by email on these platforms. With the fickle nature of consumers

and the rapid adoption of new communication platforms, it is presumed a losing battle to try

and implement effective anti-phishing filters in every new platform. Software that attempts

to prevent phishing attacks once the user has visited a suspicious website is therefore the-

oretically more adaptable to this environment. These systems attempt to prevent the user

2

from entering sensitive data after they have already been tricked into visiting a URL lead-

ing to a phishing site. This identify-and-warn model enables the protection of users against

phishing attacks even if the intercept-and-filter protection of the communication platform

fails. While this protection is placed much closer to the attacker’s end goal, it would be

better suited to the rapidly changing landscape of the internet.

A piece of anti-phishing software that positions itself between the user and a phishing

website needs adhere to the following design principles:

1. Accurate. The application should be able to accurately and reliably identify if the

website visited is a phishing attack.

2. Reliable. The application should automatically adapt to new phishing attacks and be

effective without requiring major updates from the software maintainers.

3. Fast. The application must ensure that its operation does not impact the speed of the

user’s internet browsing.

4. Secure. The application should be able to grant the user a reasonable degree of

anonymity and protect their privacy.

Achieving these goals can be extremely difficult however. The transiency of webpages,

constantly improving quality of attacks, and speed at which it takes to make an accurate

decision all factor into this difficulty. Generic warnings and false positives also threaten

to desensitize users, making it unlikely that they will heed the warnings presented by the

application. Though many systems have been proposed and are currently in use to pre-

vent users from interacting with potentially dangerous websites, it is believed that none

completely match the criteria listed above.

1.1 Background

Phishing is defined as a criminal activity combining social engineering and technology to

access private information without consent [5]. Phishing is one of the most common and

3

easily performed cyber-attacks, costing the world more than $450 billion per year or nearly

90% of the total estimated cost of cyber-crime. [15, 17]. Popular tools such as the ”Social

Engineering Toolkit” make it trivial for cyber-criminals to automate the process of cloning

websites and creating custom URLs for their victims to visit [20]. These URLS are then

sent either to a great number of users via traditional phishing attack or to a specific person

within an organization under spear phishing. Some form of text will usually accompany

the URL in order to persuade the victim into clicking on the link and inputting personal

data on the following web page. Any data entered by the victim on the phishing site is then

usually sent directly to the attacker. The overall flow of a generic phishing attack is given

below in figure 1.1.

Figure 1.1: Generic Web Phishing Attack Flow

In the vast majority of web-based phishing attacks, the website will need to be able to

persuade the victim that it is the actual website. As mentioned, the attacker can do this

within the URL or HTML text, but the most effective method is overall visual similarity.

[24, 6] It has even been found that most users will ignore small details of the site they visit,

such as the URL, and focus entirely on the ”look” of the site to determine if it is legitimate.

[24] By using visual similarity to the legitimate website, the attacker is able to convince

4

most web users that the site is legitamate. By using the tools mentioned earlier, the attacker

can easily create a site that is remarkably visually similar to the target site. In figure 1.2, we

observe a screenshot of the legitimate site ’Paypal.com’. In figure 1.3 we see the screenshot

of the phishing site ’coaltur.com’. As can be seen, this phishing site is able to directly copy

the visual layout of the target with only slight textual differences.

Figure 1.2: Screenshot of Paypal.com

Figure 1.3: Screenshot of coaltur.com

As was researched in [3], users will most identify a corporate brand by their use of color.

Color therefore plays a key role in a user’s visual assessment of a website. Therefore, it is

likely that an attacker will at least have to copy the website’s branding colors in order to

successfully impersonate the site.

5

1.2 Related Work

There are a number of current in-browser software packages that attempt to provide in-

browser protection against web phishing attacks. All of these packages work to identify

if a given website represents a phishing attack in real-time as the user visits the website.

Working in real-time gives the application an extremely small window to operate in, as a

user of a website expects it to be available for interaction immediately following page load.

Of all the current efforts to implement a effective system in this domain, Google Chrome’s

”Real-time phishing protection” [13] currently presents the best solution. In this model,

when the user visits a new site, the URL is checked against a Google-generated blacklist

of known phishing URLS that is updated regularly. If the URL is not present in the black-

list, the application then performs a secondary check wherein the URL is sent to Google

to determine if it has the qualities of a phishing URL. If either of these two checks detect

a phishing attack, a full-page banner is presented warning the user. While this approach

to ant-phishing software achieves both accuracy and speed, it is doubtful that it is either

adaptable or effective at ensuring users heed its warnings. Since it depends heavily on the

presence of the URL on a blacklist, it would not be useful against an attacker who can

quickly generate new domains for their attacks. This blacklist approach would also not be

effective at preventing spear phishing attacks, wherein the URL is only sent to one person,

as their blacklist is populated using mainly crowd-sourced data. While their phishing de-

tection using URL characteristics is likely accurate, it is unlikely to remain so as attackers

constantly adapt and learn what such algorithms identify as phishing attacks. Its effective-

ness at keeping users from interacting with the potential phishing site is also in doubt, as

the warning it presents is extremely generic. Such warnings are often ignored by users if

the perceived reward of visiting the site outweighs the described risks.

The software package created by Mohammad et al. [18] proposes a machine learning

approach to the task of identifying phishing attacks in real time. This approach entails

learning a model that can accurately predict if a given URL represents a phishing site. This

learning is done using certain qualities of the URL as features in a supervised learning

6

algorithm. While this attempt is adaptable to new attacks, it’s effectiveness at ensuring

users do not interact with the site is in doubt as it uses very poor warnings. This application

additionally does not achieve the level of accuracy desired, as it learns solely based upon

qualities of the URL. As with Google’s model, this will likely not remain accurate in the

long run as attackers adapt and modify their URL structure to avoid detection.

Zhang et al. propose [25] a groundbreaking theoretical framework CANTINA for auto-

matically detecting phishing attacks. The authors begin by describing their TF-IDF detec-

tion structure [25], wherein their tool analyzes the top five most important terms from the

given webpage. These top five terms are then inputted into a search engine, and the rank of

the domain name is then judged. If the web domain appears within the top N results, then

the page is judged to be a legitimate site. This search engine ranking algorithm was found

to have a high false positive rate however, so Zhang et al. proposes a list of heuristics to

assist their algorithm. These heuristics include the age of the domain, with the idea that a

more recently registered domain name is more likely to be used in a phishing attack. Use

of a well-known brand image is another flag for this algorithm. Suspicious URL characters

such as the ”@” and ”-” symbols are also flagged. The number of subdomains, detection

of an IP address, and the presence of HTML forms are also present. The implementation

of this algorithm was able to achieve 97% accuracy at identifying a test set of domains.

An analysis of the most effective heuristics showed that the age of the domain was the

most important feature, followed by the presence of forms, IP address, and the number of

subdomains. Though CANTINA is a famous and influential framework that has influenced

almost all current anti-phishing efforts, there are several key problems that have emerged

in the last thirteen years. The main and most effective feature of CANTINA is determined

by Zhang et al. to be their TF-IDF domain ranking feature. While this was likely effective

at the time, advances in the ability for an attacker to manipulate their search engine ranking

means that this can be gamed. In order to game the system, an attacker could theoretically

place non-visible text on their HTML page in order to manipulate the TF-IDF feature into

inputting a desired word set into the search engine. Other features of this framework, like

7

the age of domain feature are also suspect. At the time, major hosting applications that

allow users to quickly create a subdomain host on trusted domains such as herokuapp.com,

appspot.com, and 000webhost.com did not exist. As they are extremely widespread among

phishing attempts today, the age of domain heuristic would likely be less effective. In sum-

mary, while CANTINA is an influential framework that continues to affect anti-phishing

tools, several of the features proposed would no longer be effective in the current day.

From these examples, it is clear that a more comprehensive software package was

needed. An anti-phishing application that is adaptable to new techniques and attacks will

need to implement a machine learning algorithm similar to the one proposed by Moham-

mad et al. [18]. To overcome the limitations of that approach however, the speed and

accuracy of Google’s method [13] will also need to be implemented. A real-time detection

method that does not depend solely on qualities of the URL or a blacklist is also needed to

overcome the limitations of Google’s approach. In addition to these requirements, neither

of these current solutions were judged to be effective at ensuring that the user heeds the

presented warnings. A solution which optimizes speed, accuracy, and adaptability, while at

the same time able to present a detailed and highly engaging warning is therefore required,

and was developed for this thesis.

1.3 Hypothesis

It is clear from the review of current anti-phishing software packages that a new solution is

needed due to the over-reliance on out-of-date security principles and high system overhead

that make them impractical. A fast and accurate machine learning algorithm that learns not

only from features of the URL, as in [18], but from branding color similarity is therefore

developed here.

The key hypothesis of this thesis is as follows: As branding colors shown on any given

web page will change with much less frequency than HTML layout or design, these col-

ors can be used as a reliable visual similarity measure. This measure of visual similar-

ity, when used in conjunction with URL heuristic measurements, will create a model that

8

can identify phishing attacks with both accuracy and long-term reliability. The resulting

system will therefore also be able to meet all the criteria set for a successful client-side

anti-phishing software as outlined in section 1.

This hypothesis relies on the fact that any phishing site will need to accurately copy

the corporate branding colors in order to trick the victim into believing their phish is the

legitimate site. Therefore, by measuring the distance of the web page’s color scheme from

popularly phished brands, the algorithm is able to identify phishing sites accurately. This

algorithm is also able to accurately identify phishing websites without overly burdening the

user with processing time. This hypothesis allows for speed as no image processing is done

other than the extraction of the color palette from a screenshot of the website. All of the

features being inputted into the algorithm are therefore numeric and binary, which when

inputted into the decision tree model produces extremely fast predictions.

Color is acknowledged as a critical element of the corporate identity, as can be ob-

served in such cases as IBM (otherwise known as ”The Big Blue”). It is highly influential

given that it is perceived more quickly than symbols or text, and is memorable of the brand.

Therefore it is reasonable to say that overhauls of a company’s branding color is not com-

mon, especially those that are global, though they may often change their HTML, logo,

or general design.[3] If a phishing website wishes to accurately impersonate a corporate

brand, they will need to directly copy that brand’s color scheme. If the branding color is

not directly copied, it is theorized that the potential victim is much more likely to notice

that the website is a phishing attempt.

The semi-permanent nature of branding colors provides a supervised learning algorithm

with the opportunity to more accurately identify both the presence of a phishing website

and the exact corporate identity the website is trying to mimic. Measuring how ”close” a

given website’s color scheme is to a list of known corporate branding colors proved to be

an extremely powerful feature in the supervised learning algorithm. Working in tandem

with URL features, this produced a model that is able to identify a phishing website with

high accuracy.

9

By implementing corporate color matching as a feature in a supervised machine learn-

ing model, Nereus achieves all four of the design principles described in section one.

1. Accurate. Nereus uses color matching along with URL features in order to accurately

identify phishing attacks.

2. Reliable. Nereus is able to automatically adapt to new phishing attacks in the long

term through constant re-learning of the model as well as depending on the semi-

permanent nature of branding colors.

3. Fast. Nereus takes in an extremely small amount of data from the website on page

load and transmit this to a server where the model will determine the phishing sta-

tus. This distribution of machine duties will allow the system to operate with little

noticeable overhead.

4. Secure. The ability of Nereus to identify a phishing site using only numeric and

binary features enables it to be not only effective but also able to keep its users safe.

1.4 Road map

This thesis will give an overview of the design, results analysis, and conclusions that were

made on the anti-phishing software Nereus. To begin, section two will give a detailed

explanation on the data gathering, feature selection, data processing, data analysis, and

model design for the phishing classifier. The feature discussion specifically will outline

how corporate branding color matching was utilized as a feature within this thesis. Section

two will also deal with the supporting components of the application, the Chrome extension

GUI and the remote server architecture. A examination of how all these pieces fit together

is given to finish section two. Section Three will then give an overview of the results that

were gathered during the experiment, as well as providing analysis. The analysis is split

into the four metrics, accuracy, speed, reliability, and security that were discussed earlier.

10

These metrics are considered in this thesis the qualifications for a successful application.

Finally conclusions will be made from the analysis and future work will be discussed.

11

Chapter 2

Design & Implementation

Named for the ancient Greek god of fishermen, the design of Nereus can be subdivided

into three smaller pieces of technology. First, some kind of program will need to be used

to determine, based on some data or feature of the website visited, if the currently visited

website is a phishing attack. Secondly, since Nereus is a client-side application, another

program will need to be used to extract the data from the website on the client side and

transmit it to the classifier. Finally, the classifier will need to exist on some kind of remote

server that the client-side application interacts with. Finally, an overview of the complete

architecture will be given. In this section, we will give an overview of the design choices

made for each of these parts of the Nereus application.

2.1 Supervised Learning Classifier

This section will give an overview of the data, features, and model type chosen for the

phishing classifier.

2.1.1 Data Acquisition

In order to produce an accurate classification algorithm, we first needed to find a reliable

way to retrieve phishing websites that were live on the internet. Since phishing attacks are

notoriously short-lived [4, 11], finding live attacks from which to draw data from can be

difficult. This application, like many others, used PhishTank [21] as the ultimate source

of its phishing data. PhishTank is a free to use, human-curated list of phishing attacks

12

currently live on the internet. The authors of PhishTank offer a convienent API which

provides data on phishing attacks from the past 72 hours. This data was used as it is logical

that the most recent data would be the most likely to still be online.

For legitimate web site data, several problems presented themselves. The naive ap-

proach would be to simply retrieve a list of the top most visited websites and utilize that as

the data. This approach is flawed however, as it does not represent how actual web traffic

is structured. As an example, such a ranked list might include popular domains such as

www.google.com, www.twitter.com, etc. While these are popular websites likely to be vis-

ited by the average internet user, the URL is not. A user is much more likely to visit a URL

with a filepath such as www.twitter.com/user/some account. This discrepancy means that

a ranked list cannot be used to represent actual internet traffic. To overcome this, internet

traffic history over a period of three months from the author and an anonymous volunteer

was used. While from a small sample size, this data is much more realistic than a simple

ranked list. This kind of data has also been successfully used in other research in the past

[26]. To overcome the limitations and bias of the small sample size, 500 of the most popu-

lar websites were also added to the data. This data made up 17.28% of the total size of the

legitimate phishing data entries, which was 2,893.

Once the data was gathered, the dataset was made up of 5,661 entries. Of these,

2,893 were legitimate sites and 2,768 were phishing sites. This puts the proportion of

non-phishing vs phishing data at 48.89% and 51.11% respectively.

2.1.2 Feature Discussion

Once the data was gathered, an analysis of what features to include was performed. As

has been discussed, the data features used needed to be both small enough to be gathered

quickly, and anonymous enough so that its collection by the tool would not be considered

a privacy violation. This problem of anonymous data was particularly important, as the

goal of this tool was to use visual similarity between known branding colors as a strong

feature within the classifier. In the end multiple effective features were used, including

13

seven binary and integer features and ten visual similarity measurements. Of these, it was

found that the visual similarity features provided this application with the required speed,

accuracy, and reliability

URL & HTML Features

In the majority of previous anti-phishing applications, the features of the classifiers have

been drawn from attributes of the URL or HTML of the page [4, 7, 10, 14, 16, 19, 24,

25, 26] . These existing systems do have some limitations and several, especially those

presented by Zhang et al [25], likely do not apply to current web traffic. Several features

were eventually used however, that were found to be both relevant and effective. The

number of subdomains and URL length were the only two integer features extracted from

the data. These have been used consistently in past research and shown to be extremely

effective [4, 25]. Binary features including the presence of an IP address, the use of non-

English Unicode characters, the presence of HTML form entities, the usage of a valid SSL

certificate, and the usage of a top-level domain were also found in the literature and found

to be extremely relevant [4, 19, 25, 26]. Table 2.1 provides a full list of these features,

along with a description of each.

Visual Similarity Features

The main features of this classifier will be color branding distance measurements. This is

useful as a feature as it has been shown that in order to successfully imitate a given site, the

phishing attack most be visually similar. In the past, such visual similarity has been mea-

sured with HTML block analysis, earth mover distance, and more [8, 12, 16, 24]. In this

thesis however, a novel feature is proposed. It is shown that most users correlate corporate

branding colors with identity, for example ”Facebook Blue” or ”Netflix Red” [3]. A suc-

cessful phishing attack therefore will need to feature these branding colors prominently. By

measuring the distance of the colors on the potential phishing site to a dataset of corporate

branding colors, it can be seen if the suspicious site is utilizing known corporate branding

14

Table 2.1: Nereus Data Feature Description
Data Feature Name Feature Description

Num Subdomains Integer attribute signifying the number of
subdomains in the URL. It has been found
that phishing sites will have a multitude of
subdomains to confuse the user.

URL Length Integer attribute representing the character
length of the URL. It has been seen that
phishing URLs are typically longer to
confuse the user.

IP Address Binary attribute symbolizing if there is an
IP address in the URL.

Has Symbols Binary attribute symbolizing if there exist
non-English characters in the URL.
Non-English characters are at times used in
Phishing attacks to mimic English
characters.

Has Form Binary attribute symbolizing if there are
any HTML FORM tags present in the
HTML code of the site. Since the goal of a
phishing site is to steal data, the attacker
will likely include an HTML FORM tag for
the victim to input their data.

Is HTTPS Binary attribute symbolizing if the URL is
using the HTTPS SSL scheme. It should be
noted that with the proliferation of
self-signed certificates, the presence of SSL
on a site is becoming less and less relevant.

Top Level Domain Binary attribute symbolizing if the domain
extension is not a standard such as .com,
.org, .edu, etc.

15

colors to impersonate a website. This measurement will provide a visual similarity metric

that is both highly accurate and reliable, as corporate branding colors have been shown to

change little over time due to high user identification [3].

In practical terms, the color similarity feature will be the color on the target website

that most closely matches the color of known corporate branding. This will be represented

by the euclidean distance between the RGB color palette of the target website and the RGB

values of the top 10 most phished websites on the internet. In order to determine these

distances, the algorithm first determines the most used colors being used by the website.

This is done with a simple binning algorithm, with the top six most commonly used RGB

values being stored as the color palette of the website. This color palette is then compared

to known corporate branding colors through the euclidean distance of the RGB values.

Each value in the color palette is compared to each branding color, and the value with the

minimum distance is then stored as the feature. This algorithm is represented in Algorithm

1.
Algorithm 1: Corporate branding color distance measurement

Result: The minimum distance between the color palette and the branding colors.

min distance = infinity;

for color in website color palette do

for branding color in known branding colors do

if EUCLIDEAN DISTANCE(color, branding color) ≤ min distance then

min distance = EUCLIDEAN DISTANCE(color, branding color);

end

end

end

At the conclusion of this feature extraction algorithm, ten features are produced, each

representing the distance of each branding color to some color that was found on the web

page. This feature can also potentially be used in identification of the brand that the phish-

ing site is trying to imitate, as it is logically the feature with the lowest distance. The

branding colors used can be found in table 2.2.

16

Table 2.2: Nereus Visual Feature Description
Data Feature Name Feature Description

Distance From Twitter Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Twitter.

Distance From Facebook Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Facebook.

Distance From Google Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Google.

Distance From Paypal Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Paypal.

Distance From Adobe Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Adobe.

Distance From Apple Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Apple.

Distance From Amazon Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Amazon.

Distance From Orange Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Orange.

Distance From WhatsApp Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Whatsapp.

Distance From Netflix Float value representing the minimum
Euclidean distance between some color on
the target webpage and the known branding
colors of Netflix.

17

Table 2.3: Nereus Data Example
Data Feature Name Data Value

Num Subdomains 1
URL Length 24
IP Address 0
Has Symbols 0
Has Form 0
Is HTTPS 1
Top Level Domain 1
Distance From Twitter 48.062
Distance From Facebook 65.931
Distance From Google 56.648
Distance From Paypal 199.183
Distance From Adobe 119.419
Distance From Apple 112.717
Distance From Amazon 42.743
Distance From Orange 218.643
Distance From WhatsApp 27.749
Distance From Netflix 92.109

This novel visual similarity measurement between the target website and the most

phished websites was found to be an extremely strong feature that not only adds accuracy

to the classifier, but also makes it much more accurate over longer periods of time.

Table 2.3 displays a single example of a vector in the dataset. In total, the dataset was

made up of 5,661 entries. Of these, 2,893 were legitimate sites and 2,768 were phishing

sites.

2.1.3 Data Processing

In order to extract the usable features from the raw collected data, several things needed

to be done. First, the raw URL data for both phishing and non-phishing would need to be

used to gather screenshots of the live website they represent as well as the HTML code

of the site. This data was needed for the visual similarity features and HTML features as

described in the previous section.

18

Collecting the HTML & website screenshots

First is to collect the URL and HTML features from both the phishing and non-phishing

data. The raw data collected consisted only of URLs, and therefore it would be impossible

to extract the HTML features without further processing. In addition, a screenshot of the

webpage would need to be taken in order to extract an effective color palette for the visual

similarity measurements. In order to accomplish this, a small script was written that visited

each URL in turn, saved a copy of its HTML code, took a screenshot of the final loaded

page, and then saved all this data within a CSV file. This script utilized the Python package

Selenium to simulate a typical web browser environment [23].

Curating the raw data

Once the data was collected, a curation process was needed in order to filter out bad image

data from the collection. In some of the captured images, the Selenium tool was unable to

take an effective screenshot of the page, resulting in a blank white image, as can be seen

in figure 2.1. Since this kind of data would likely skew the data of the visual similarity

features, a curation tool was developed to filter them out. By using a simple python script,

each of the 4,500 website screenshots were examined and determined to contain a good

screenshot, as exemplified in figure 2.2.

Feature Extraction

In order to extract the features discussed in section 2.1.2, a simple python script was again

created. For the URL and HTML binary features, the script simply looked for the pres-

ence of certain characteristics in the HTML or URL. For the visual similarity features,

the program utilized Algorithm 1. The program then compiled these measurements into

vectors and stored them within a CSV file. At the end of the data processing stage, over

5,500 pieces of data were collected, with 2,768 non-phishing sites and 2,893 phishing sites

represented.

19

Figure 2.1: Bad Image Data

Figure 2.2: Good Image Data

20

Figure 2.3: URL Length vs. Number of Subdomains

2.1.4 Data Analysis

Once all data was collected, some basic analysis was done to better understand it and how

it could be used in the phishing model. In total, 5,661 vectors of data were gathered. Of

these, 2,768 represented non-phishing sites and 2,893 represented phishing sites. While this

dataset is not as large as some, it is significantly larger than those used by other researchers

[19, 26]. In order to train the most accurate model possible, the data was gathered in two

separate sets three months apart. This was done to avoid bias in both the phishing and

non-phishing data. It should also be noticed that in the following data analysis, a ”phish”

value of ”0” indicates a non-phishing site, while a value of ”1” indicates a phishing site.

Interestingly enough, there were several measurements that were surprising to see within

the data. When comparing the number of subdomains and the length of the URL, it was

surprising to learn that contrary to what was theorized, non-phishing data seemed to be

correlated to larger values, as seen in figure 2.3. This is interesting, as previous research

has found the opposite to be true [25, 4].

The reasoning for this is likely due to to either changing patterns in web traffic in the

years since the previous research was published, or due to bias within the data. It is likely

that the answer is the former, as the data collected was gathered in two separate batches

21

Figure 2.4: Distribution of the distance between the website’s color palette and Facebook’s
branding colors.

three months apart specifically to avoid any bias. Since the theories set forth by Zhang et

al. in CANTINA were made over ten years ago, it is likely therefore that internet traffic

patterns have changed.

Furthering the data analysis, we were able to see data that greatly reinforced the hy-

pothesis of the thesis. As can be seen in figures 2.4 and 2.5, phishing websites were seen to

correlate to shorter distances between the branding colors of both Facebook and Microsoft.

In these figures, the blue represents non-phishing sites, orange represents phishing sites,

and grey represents overlap between the two. It can be assumed that the spikes we see in

the histograms indicate a large amount of phishing attacks against these targets .Since these

are two of the most popular targets for phishing attacks, it makes logical sense that these

spikes occur. Interestingly, we see in both the Facebook and Microsoft histograms that a

spike of non-phishing data occurs at a distance of around 35 - 45. This spike is theorized to

occur as the actual sites are being visited often within the data, and would therefore present

close color matches for non-phishing data.

22

Figure 2.5: Distribution of the distance between the website’s color palette and Microsoft’s
branding colors.

In several pairwise plots, we were able to see extremely tight positive correlation be-

tween the distance measurements of such branding colors as Amazon and Orange, and

Adobe and Netflix. This correlation can be seen in figures 2.6 and 2.7. It is theorized that

this tight correlation between the color distances is due to the branding colors being very

similar. This is demonstrated by comparing the RGB value of Adobe [”r”:255,”g”:0,”b”:0]

to that of Netflix, [”r”:229,”g”:9,”b”:20]. As can be seen, these branding colors are both

dominated by the color red, which is likely why the two distance measurements are so cor-

related. Due to this correlation, is it unlikely that the distance measurement could reliably

be used to identify between them.

2.1.5 Model Design

After thorough investigation, it is clear that there are two logical options for the design of

the classification algorithm. The first, as was used in several previous approaches to this

issue, was a heuristic based algorithm. This kind of algorithm has been used in several

23

Figure 2.6: Distance between Amazon branding colors and Orange branding colors.

anti-phishing applications over the years, notably including CANTINA, LinkGuard, and

the target identification system proposed by Khonji et al. [25, 7, 14]. These kind of heuris-

tic algorithms can produce reliable classification relatively quickly. Unfortunately, these

systems are also extremely vulnerable to gaming by the attacker. In both CANTINA and

LinkGuard, the heuristic algorithms depend solely on attributes of the URL and HTML

pages. Since these applications are both open-source, a determined attacker could simply

modify their URL pattern or HTML attributes to avoid a phishing classification. While this

kind of gaming might not exist for a robust heuristic algorithm, an increase in complexity

would undoubtedly lead to greater program size and running time, decreasing the applica-

tion’s ability to be used in a practical setting. These drawbacks led to the conclusion that a

supervised machine learning classifier should be used.

In contrast to a heuristic classifier, a machine learning model would be more opaque in

design and function, not to mention more adaptable over time. This was shown in multiple

other anti-phishing tools developed over the years [19, 26]. A key problem with many types

of classifier models however is that they often take much longer than heuristic classifiers to

make a prediction. Care was taken therefore to discover which classifier would be able to

maximize both running speed and practical accuracy. After careful research, three logical

24

Figure 2.7: Distance between Adobe branding colors and Netflix branding colors.

candidates presented themselves; Support Vector Machine, Logistic Regression, and Ran-

dom Forest Decision Tree. While the final model was eventually chosen to be a Random

Forest, a background of each of these will be given with explanations why each candidate

was chosen.

Support Vector Machine

A Support Vector Machine is a popular supervised machine learning model. A SVM works

by creating a separation between the data points of two or more classes. Usually this seper-

ation is linear, but other kernels can be used as well. This separation is then used to classify

new data, with the identification being made based upon which side of the separation line

the data falls upon [22]. The SVM model was chosen here as most of the features of the

data, such as the branding color distance were found to be fairly separable, as can be seen

in section 2.1.4. This is also true for the number of sub-domains and the length of the

URL features. It was also hoped that this model would produce fast and reliable results for

the classifier. Ultimately however this model was not used, as it was found that it was not

accurate at classifying the data. This is likely due to the fact that while the data for many

of the features is numeric, many are binary. An SVM model, as with regression models,

25

depends on a wide range of values in order to determine where the separations between

the classes are. Since the majority of the data features are binary in this dataset, an SVM

model cannot achieve high accuracy. The spikes of phishing vs. non-phishing data seen at

the 30-45 mark could also cause the classification model to incorrectly predict one class or

another due to poor separation.

Logistic Regression

A logistic regression model is similar to a linear regression model, in that regression is

used to produce a prediction between two binary classes. In opposition to linear regression

however, logistic regression utilizes a sigmoid function to produce a probability function

[9]. Logistical regression also differs from linear regression in how it calculates the regres-

sion coefficients. In logistic regression, Maximum Likelihood Estimation is usually used

to calculate parameter values. All of these changes aim to make logistical regression more

accurate at predicting data that either is not very linear or has many outliers. As was found

in the SVM model however, the predictions produced were not highly accurate. While the

SVM is likely to produce good predictions for the numeric values such as URL length or

the color distance features, this data is supported by the binary features. Binary data by

design cannot be well used in a regression algorithm.

Random Forest Decision Tree

A Random Forest decision tree was the last machine learning model examined, and proved

to be the most accurate. In this type of model, a ”decision tree” is constructed in order to

correctly classify the data. At the beginning of each ”branch” of the tree, the data will be

split by some measurement of a feature. For the binary features this would mean the data

would be split between the true and false values. For the integer and float values, the split

would occur between some set numeric interval. These splits are optimized by using either

entropy or information gain. The leaf nodes are usually determined once all data in the

branch is homogeneously one class or another. Once the tree is constructed, new data is

26

fed into the tree. Once the data arrives in a leaf node with a class label, the decision tree

classifies the data accordingly. In opposition to a classic decision tree however, a Random

Forest model uses an ensemble learning procedure to produce a more accurate result [1].

The Random Forest model creates a set number of decision trees with random starting

features, finds their classification, and makes a prediction based on the classification of the

majority of the trees. This kind of ensemble learning avoids the bias of classic decision tree

models.

Random Forest was chosen in the end for this application as it produces accurate results

while also maintaining high speeds. Once the model is created, new data inputted into the

algorithm can be tested quickly, especially as most of the features in this data are either nu-

meric or binary. The ensemble learning aspect also helps to avoid the over-fitting common

in traditional decision tree models [1].

2.2 Chrome Extension

The secondary piece of this thesis will be a Google Chrome browser extension. This piece

of software will act as the main GUI for the application. The user will install this extension

in order to use the system. The extension will position itself between the user and every

website they visit, collect the necessary data on the URL and color branding, and pass it

along to the trained machine learning model that will exist on a remote server. The features

will be extracted in much the same way as described in section 2.1.3. The Chrome exten-

sion will take a screenshot of the website currently visited and use Algorithm 1 to calculate

the color distance feature values. This screenshot is not stored in any way, and is recycled

from memory once the extension has extracted the color features. The Chrome extension

is written in JavaScript and will use an XHR request to transmit the feature vector to the

remote server. Great pains were taken to ensure that the data retrieved by the extension

is accurate. To avoid a ”bad” screenshot, as shown in figure 2.1, the extension attempts

to wait until all HTML and JavaScript on the page has completely finished loading before

27

capturing the page. This was done particularly to correctly capture those websites that uti-

lize NODE JS technologies to render their page, as they load the bulk of their site after the

HTML has loaded. If the extension did not wait for the JavaScript to finish executing, the

page would not be correctly rendered during the capture.

2.3 Remote Server

A key part of the effectiveness of this application is the running time of the application.

As was explored earlier, an anti-phishing application that interrupts client-side load will

likely not be used long by a user, as it interrupts their normal browsing patterns. Therefore

the remote server that houses the trained Random Forest model will need to maximize its

response time. In order to determine the kind of remote server architecture that would be

most effective, two candidates presented themselves. The first, an Apache server that runs

PHP, and the second, a Simple HTTP Python server. This second was proven to be the most

effective, as will be shown.

2.3.1 Apache & PHP Server

In the first trial, a remote server running the framework Apache was used, and the program-

ming was done using PHP. This PHP program accepted the feature vector from the Google

Chrome extension, and used the ”EXEC()” native function to execute a python script that

would produce the classification. After trials, this method took around 1.4s to respond to

the request. In practical terms, this was much too great a delay to be used. This delay

is likely to be caused by the separation of technologies. The data was received by a PHP

script, which would then execute a local Python script to classify the data. This separa-

tion between the receiving technology and the prediction technology created a unavoidable

transfer delay. To avoid this, a native Python server was next tested.

28

2.3.2 SimpleHTTP Python Server

In the second and more successful trial, a Python server framework called ”SimpleHTTP”

was used. The response time of this server was much improved from the PHP server, with

an average response time of 0.6s. This response time was found to be acceptable for the

application, as it did not create a noticeable delay in the responsiveness of browsing. This

server is better than the PHP server mainly as the model was able to execute within the

same program that initially received the feature vector.

2.4 Overarching System Architecture

This design and implementation section has attempted to give a thorough review of all

aspects of the completed Nereus anti-phishing application. Due to the size and complexity

of the design, an simple overview of how the individual pieces discussed above will now

be given. In figure 2.8 we can see that the system architecture of Nereus consists of two

major components. The typical workflow of the application is therefore traced here. When

visiting a website for the first time, the Google Chrome extension discussed in section 2.2

begins by extracting all the features from section 2.1.2 into a feature vector. This vector of

data is then transmitted using JavaScript to the remote server from section 2.3. This remote

server accepts this data vector using a SimpleHTTP Python, and inputs it into the trained

Random Forest model, which also runs in Python. This model will then return a prediction

of either phishing or non-phishing to the Chrome extension. The Chrome extension will

then present a warning to the user or allow them to continue browsing, based upon whatever

prediction the classifier has made.

29

Figure 2.8: Nereus System Architecture

30

Chapter 3

Analysis

The purpose of this thesis was to determine if a machine learning model that used corpo-

rate branding color matching, along with other features, would produce results that are in

general both reliable and accurate. We also wished to use this model to produce an effec-

tive anti-phishing application. In order to analyze this hypothesis, several types of machine

learning models were tested on the proposed data features. One in particular, the Ran-

dom Forest, was found to adapt well to the mix of binary and numeric data, and produced

classifications that were found to be both highly accurate and reliable over long periods

of time. As was discussed, the hypothesis can only be proved if all four qualifications

are reached. These qualifications are accuracy, speed, reliability, and security. How well

Nereus measures against each of these will be examined in this section.

3.1 Accuracy

In order to examine the accuracy and effectiveness of Nereus, several metrics will be shown.

The main determination we would like to analyze here is whether or not the color features

increase the accuracy of the model significantly. In order to test this hypothesis, we split

the prepared data into two sets, with 70% of the data being used for the training and 30%

for the test data. The models were trained several times and the best performing model

in terms of overall accuracy was recorded using the PICKLE Python module. These best

performing models were then analyzed in order to determine the best model overall.

The accuracy ratings, or how likely the model was to accurately classify a data vector

31

from the test data is represented by the ROC curves shown below. An ROC curve is an

excellent visualization of model performance, as it plots the true positive rate versus the

false positive rate. This graph therefore shows the model performance at all classification

thresholds. A well-performing model maximizes the area found under the curve, or AUC,

as it would have a high true positive rate and a low false positive rate at all thresholds. As

can be seen in figure 3.1, the SVM model produces an AUC of 0.77. The SVM model

produced an AUC of 0.75. Finally, the AUC from the Random Forest model was found to

be 0.92, as seen in figure 3.3.

Figure 3.1: ROC Curve for Logistic Regression Model.

From these ROC curves, we can clearly see that the Random Forest model was the most

accurate among the three types of models. To further demonstrate this we can examine

the confusion matrix, shown in figure 3.4. This confusion matrix demonstrates that the

accuracy of the model at predicting true positives is at a strong 94%. This is important, as

the application will be judged in practical terms at how often it correctly identifies phishing

attacks. The false positive rate was unfortunately found to be quite high at around 8%.

This value will likely drive down user usefulness, as a high rate of false positives will

likely discourage users from keeping the application installed.

32

Figure 3.2: ROC Curve for SVM Model.

Figure 3.3: ROC Curve for Random Forest Model.

33

Figure 3.4: Confusion Matrix for Random Forest Model.

Since the hypothesis specifically concerned the effectiveness of the color matching fea-

tures, a Random Forest model was also trained with the same hyper parameters, but with

only the URL and HTML features. The ROC curve for this model is shown in figure 3.5,

with the AUC value being 0.78. The confusion matrix for this model in figure 3.6 clearly

demonstrates that the color features increase the accuracy of the model by around 10%.

3.1.1 Color Similarity Feature Performance Evaluation

In order to properly validate the hypothesis, we need to confirm that the color branding

similarity features not only added to the accuracy but determine which measurements most

contributed to this increase. In order to do this, the trained model was used to rank the

features based on impurity-based importances. This value was found by averaging the

decrease in impurity over trees within the random forest. The results of this can be seen

in table 3.1. As can be seen, the most effective features were the presence of an SSL

certificate, URL length, followed by five color similarity features. Of these, the distance

34

Figure 3.5: ROC Curve for Random Forest Model with no color matching features.

measurement from Paypal and Facebook were found to be the most important. This is

likely due to the relative frequency at which Paypal and Facebook are phished. Since these

two site most likely made up a large portion of the phishing targets, their importance is

explained.

In conclusion, table 3.2 displays the relative accuracies of the four models presented

in this section. It is clear therefore that the hypothesis is validated, as the accuracy of the

Random Forest model was increased by 13.9% once all the color features were included.

3.2 Speed

In terms of speed, Nereus performs extremely well when using the Random Forest model.

This model, combined with the SimpleHTTP Python server returned a prediction to the

Google Chrome extension within an average of 0.8 seconds. This added overhead is done

immediately after page load, and does not block the usage of the page. This is a key result,

as an application that blocks page load is unlikely to be employed by users in the long term.

From this metric, we can determine that Nereus maintains a good speed and could be used

without adding undue overhead to the user.

35

Figure 3.6: Confusion Matrix for Random Forest Model with no color matching features.

Table 3.1: Data Feature Importance
Data Feature Name Feature Importance (Gini impurity)

Is HTTPS 0.131244
URL Length 0.118354
Distance From Paypal 0.085505
Distance From Facebook 0.083437
Distance From WhatsApp 0.068681
Distance From Microsoft 0.068655
Distance From Google 0.067008
Num Subdomains 0.064044
Distance From Apple 0.063598
Distance From Netflix 0.060769
Distance From Adobe 0.059037
Distance From Orange 0.057924
Distance From Amazon 0.056716
Top Level Domain 0.013072
Has Form 0.001384
IP Address 0.000314
Has Symbols 0.000258

36

Table 3.2: Model Accuracy Ratings
Model Accuracy Ratings

SVM Logistic Regres-
sion

Random Forest
without color
features

Random For-
est with color
features

74.9% 76.2% 78.2% 92.1%

3.3 Reliability

In order to judge long-term reliability, a separate longitudinal study would have to be done

over a period of several years. In place of this however, a smaller scale experiment has

been done. As was described in section 2, the data was gathered in two parts. The first

half of the data, 2,486 vectors, were gathered three months before the remaining 3,176. It

was found that the Random Forest model described above, when trained only on 70% of

the older data, was able to achieve an accuracy of 97.6% on the newer data. This small

experiment may show that the color matching data features are more reliable in the long

run than the traditional URL and HTML features used by others.

In addition to the short-term longitudinal study, the fact that the model was able to

achieve such a high accuracy of 92.1% while only using color matching of ten known

corporate branding colors is highly significant. If ten features were able to increase the

accuracy of the model by 13.9%, it is believed that adding more over time would not only

make the model more accurate, but more reliable.

By using the corporate branding color features, Nereus becomes an extremely reliable

model for classifying potential phishing sites. Over time as more users use the application

and more diverse data is inputted into the training set, it is believed that the model could

grow more accurate still.

37

3.4 Security

As with any anti-phishing tool, the user expects the solution to not be worse than the prob-

lem. While some anti-phishing software running on the client needs to take screenshots of

every running page to transmit into their remotely running model, Nereus does not [12, 8].

By performing all feature extraction on the client side in memory before transmitting to

the remote server for evaluation, the privacy of the user is protected. After review of the

features included, we have judged that it would be extremely difficult for a malicious actor

to use the data retrieved by Nereus to violate the privacy of the user. While it could be pos-

sible to identify the site that user has visited in broad terms, such as Facebook or Paypal,

no personally identifiable information or PII would be stored. It is possible that some novel

attack could be conceived as no security or privacy is guaranteed when using a remote tool.

In spite of this however, the precautions that Nereus takes in order to protect user privacy

positions itself well against any such attacks.

38

Chapter 4

Conclusions

4.1 Current Status

As it exists today, this thesis has produced a fully functional anti-phishing application. This

application positions itself between the user and the websites they visit, protecting them

from phishing attacks no matter how they came to visit those sites in the first place. The

Google Chrome extension extracts the features rapidly from the site, transmits them to a

remote server, which then returns the prediction from the model. The Random Forest model

used to make the prediction has been shown to be extremely accurate, especially when

it utilizes color matching features. The application is able to identify phishing websites

with 92.1% accuracy while adding an average asynchronous overhead time of only 0.8

seconds. It was found that over a period of three months, the model was able to consistently

identify phishing attacks with over 90% accuracy. These results have therefore validated

the hypothesis that corporate branding color matching features can be used as an extremely

strong feature in a phishing classifier. While there are some limitations to this work as it

exists today, it is believed to be in a very strong position.

4.2 Future Work

There are several limitations to this work that in the future, would need to be addressed.

First and foremost, the data gathered to train the model is likely somewhat biased in that the

non-phishing data was gathered only from a few volunteers. In order to make the model

more generally accurate, the data needs to be amplified by more data from a variety of

39

sources. One way in which this could be done is have some users of the application man-

ually verify the results of the model. This curated data could then be fed back into the

training set and used to train the model with new data as well as the old. Though the appli-

cation utilizes the corporate color matching features to great effect, adding more branding

colors would likely increase the accuracy of the model. In a commercial application, com-

panies could apply for their branding colors to be included in the application. This would

not only increase the accuracy of the application, but also increase the relevancy of the

results for many corporate entities. Since most anti-phishing software is used by corporate

security, this could make the application more useful for a key demographic. Finally, in

the future, the ability to use Nereus from more browsers would be ideal. As it stands, the

application can only operate from within the Google Chrome browser. This limits the type

of phishing attacks it can identify to those affecting desktop internet users. Since phishing

also plagues mobile device users, it would be ideal if Nereus could be used within them

as well. At the moment it is unknown if any mobile internet browsers allow third party

extensions, but such integration would make Nereus much more widespread and effective.

4.3 Lessons Learned

Many lessons were learned throughout the development of this thesis. Over the course of

the project, it was demonstrated by preliminary results that the data needed to be diversified

as much as possible. This led to the final data gathering approach as discussed in section

2. The analysis of the results also posed an interesting problem, as such a large and multi-

faceted application had many different ways of measuring effectiveness. By breaking the

effectiveness down into the four metrics of speed, accuracy, reliability, and security, we

were able to focus on what truly mattered to the user of the software. Throughout this

process invaluable experience was gained, and it was in no small part due to the help of my

many advisors and colleagues that Nereus is able to be presented today.

40

Bibliography

[1] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, Aug 1996.

[2] Elie Bursztein. Understanding why phishing attacks are so effective and how to miti-
gate them, 2019.

[3] Jose Luis Caivano and Mabel Amanda Lopez. Chromatic identity in global and lo-
cal markets: analysis of colours in branding. Journal of the International Colour
Association, 1(3):1–14, 2007.

[4] Ye Cao, Weili Han, and Yueran Le. Anti-phishing based on automated individual
white-list. In Proceedings of the 4th ACM Workshop on Digital Identity Manage-
ment, DIM ’08, page 51–60, New York, NY, USA, 2008. Association for Computing
Machinery.

[5] A. Carella, M. Kotsoev, and T. M. Truta. Impact of security awareness training on
phishing click-through rates. In 2017 IEEE International Conference on Big Data
(Big Data), pages 4458–4466, 2017.

[6] E. H. Chang, K. L. Chiew, S. N. Sze, and W. K. Tiong. Phishing detection via identi-
fication of website identity. In 2013 International Conference on IT Convergence and
Security (ICITCS), pages 1–4, 2013.

[7] J. Chen and C. Guo. Online detection and prevention of phishing attacks. In 2006
First International Conference on Communications and Networking in China, pages
1–7, 2006.

[8] Teh-Chung Chen, Torin Stepan, Scott Dick, and James Miller. An anti-phishing sys-
tem employing diffused information. ACM Trans. Inf. Syst. Secur., 16(4), April 2014.

[9] Stephan Dreiseitl and Lucila Ohno-Machado. Logistic regression and artificial neural
network classification models: a methodology review. Journal of Biomedical Infor-
matics, 35(5):352 – 359, 2002.

41

[10] M. Dunlop, S. Groat, and D. Shelly. Goldphish: Using images for content-based
phishing analysis. In 2010 Fifth International Conference on Internet Monitoring
and Protection, pages 123–128, 2010.

[11] Ian Fette, Norman Sadeh, and Anthony Tomasic. Learning to detect phishing emails.
In Proceedings of the 16th International Conference on World Wide Web, WWW ’07,
page 649–656, New York, NY, USA, 2007. Association for Computing Machinery.

[12] A. Y. Fu, L. Wenyin, and X. Deng. Detecting phishing web pages with visual simi-
larity assessment based on earth mover’s distance (emd). IEEE Transactions on De-
pendable and Secure Computing, 3(4):301–311, 2006.

[13] Google. Phishing protection.

[14] M. Khonji, A. Jones, and Y. Iraqi. A novel phishing classification based on url fea-
tures. In 2011 IEEE GCC Conference and Exhibition (GCC), pages 221–224, 2011.

[15] Christian Konradt, Andreas Schilling, and Brigitte Werners. Phishing: An economic
analysis of cybercrime perpetrators. Computers & Security, 58:39–46, 2016.

[16] G. Liu, B. Qiu, and L. Wenyin. Automatic detection of phishing target from phish-
ing webpage. In 2010 20th International Conference on Pattern Recognition, pages
4153–4156, 2010.

[17] James Moar. The future of cybercrime & security: Financial and corporate threats &
mitigation. Juniper, Dec, 2015.

[18] Rami M. Mohammad, Fadi Thabtah, and Lee McCluskey. Predicting phishing web-
sites based on self-structuring neural network. Neural Computing and Applications,
25(2):443–458, Aug 2014.

[19] Y. Pan and X. Ding. Anomaly based web phishing page detection. In 2006 22nd An-
nual Computer Security Applications Conference (ACSAC’06), pages 381–392, 2006.

[20] N. Pavković and L. Perkov. Social engineering toolkit — a systematic approach to
social engineering. In 2011 Proceedings of the 34th International Convention MIPRO,
pages 1485–1489, 2011.

[21] PhishTank. Phishtank — join the fight against phishing, 2020.

42

[22] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector ma-
chine for big data classification. Physical Review Letters, 113(13), Sep 2014.

[23] Sagar Shivaji Salunke. Selenium Webdriver in Python: Learn with Examples. Cre-
ateSpace Independent Publishing Platform, North Charleston, SC, USA, 1st edition,
2014.

[24] Wenyin Liu, Xiaotie Deng, Guanglin Huang, and A. Y. Fu. An antiphishing strategy
based on visual similarity assessment. IEEE Internet Computing, 10(2):58–65, 2006.

[25] Yue Zhang, Jason I. Hong, and Lorrie F. Cranor. Cantina: A content-based approach
to detecting phishing web sites. In Proceedings of the 16th International Conference
on World Wide Web, WWW ’07, page 639–648, New York, NY, USA, 2007. Associ-
ation for Computing Machinery.

[26] Zhao Zhang, Qinggang He, and Bailing Wang. A novel multi-layer heuristic model
for anti-phishing. In Proceedings of the 6th International Conference on Informa-
tion Engineering, ICIE ’17, New York, NY, USA, 2017. Association for Computing
Machinery.

	Nereus: A Proposal for Implementing Anti-phishing Software Using Corporate Branding Color Matching
	Recommended Citation

	tmp.1608232348.pdf.kEU6g

