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A. Abstract:  

 

Multiple transposable elements have been identified by colocalization analysis that 

display a strong predicted regulatory relationship with p53 associated peaks. RNA-Seq was used 

to identify differentially expressed transposable elements. ChIP-Seq was used to identify peaks 

representing transcription factor binding sites in p53 activated cells. The results of both 

experiments were combined in a colocalization analysis identifying transposable element 

locations that were both differentially regulated and located near p53 associated peaks. The 

colocalization of ChIP-Seq and RNA-Seq analyses allows for the verification of p53’s regulatory 

role in the expression of transposable elements across the genome. A Monte Carlo simulation 

was performed verifying that the frequency of the colocalizations observed occurred more 

frequently than due to random chance.  
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B. Introduction:  

 

Cancers are an extremely complex and deadly disease in which tumor suppressor protein 

53 (p53) plays an integral role in preventing. Understanding the equally complex regulatory 

mechanism of p53 enables the development of novel treatment strategies and therapies for 

cancers. Previous studies have shown up to 40% of p53 associated ChIP-Seq fragments located 

inside of transposable elements. This project identifies and investigates a proposed regulatory 

relationship that p53 has to various transposable elements throughout the human genome. 

Transposable elements regulated by p53 were identified in both normal IMR90 lung fibroblasts 

and cancerous HCT116 colorectal p53 wild type and p53 knockout cells. This was accomplished 

by identifying instances of genomic colocalization between the results of RNA-Seq and ChIP-

Seq experiments. RNA-Seq was used to identify differentially expressed transposable elements. 

ChIP-Seq was used to identify significant peaks representing transcription factor binding sites in 

p53 activated cells compared against control cells. The results of both experiments were then 

combined to identify transposable element locations that were both differentially regulated and 

located near peaks in tissue samples with activated p53. The comparison of ChIP-Seq and RNA-

Seq data allows for the verification of p53’s regulatory role in the expression of transposable 

elements across the genome. This better understanding of the p53 regulatory network may lead 

to the advent of new treatments for destructive diseases like cancer that are kept in check by this 

mechanism.    

Transposable Elements  

 

Transposable elements are thought to make up over 50% of the human genome 

(SanMiguel, 1996). Transposable elements also called transposons, or “jumping genes,” possess 

the ability to replicate themselves and insert themselves in other locations across the genome 
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(McClintock, 1950). There are two major classes of transposable elements. Approximately 90% 

of transposable elements in humans are class I retrotransposons, which move across the genome 

with the help of RNA intermediaries, unlike class II DNA transposons, which do not employ an 

RNA intermediary during transposition (Pray, 2008). This “copy and paste” process of 

replication and insertion is thought to be why transposons comprise such a large portion of the 

human genome (Kazazian, 2004). This process, however, can have detrimental effects if a 

transposon is inserted in the middle of a gene or if two exons are spliced together after a 

transposon is excised from its location in the genome (Chuong, 2017). The cell has many 

mechanisms to silence otherwise intact functional transposons from employing epigenetic 

changes such as DNA methylation to the use of miRNAs to degrade RNA transcripts and 

chromatin remodeling to inactivate large regions of the chromosome. There are multiple distinct 

groups of transposable elements, members of which have been found to be actively involved in 

cellular regulatory networks (Rebollo, 2012).  

Alu elements, originally identified in the mechanism of an endonuclease in the 

Arthrobacter luteus (ALU) bacteria, are a type of primate-specific repetitive element belonging 

to the short-interspersed element (SINE) order of retroelements. Alus are non-autonomous, but 

active elements, that still possess the ability to replicate throughout the genome with the help of 

trans-activating factors from LINEs (Dewannieux, 2003). The active nature of Alus makes them 

one of the most common mobile elements making up roughly 11% of the human genome 

(Lander, 2001). Alu elements have been observed influencing gene expression in multiple ways 

with noted effects on gene splicing, polyadenylation, and in adenosine deaminase that acts on 

RNA (ADAR) editing (Chen, 2009; Shen, 2011; Dominissini, 2011).  
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Mammalian-wide interspersed repeats (MIRs) are tRNA-derived members of the SINE 

order of retroelements and make up roughly 2.5% of the total human genome (Lander, 2001). 

MIRs are the oldest family of transposable elements and as such one of the most highly 

conserved. MIRs have been found to be some of the most functionally relevant transposable 

elements to gene expression, providing the human genome with microRNAs, enhancer 

sequences, and transcription factor binding sites (Piriyapongsa, 2007; Jjingo, 2014; Teng, 2011). 

 Long interspersed element 1 (LINE-1 or L1) is a member of the LINE order of 

retrotransposons and is the most prevalent mobile element in the human genome, comprising 

approximately 17% of the total genome (Lander, 2001). Most L1 elements are no longer active 

in the human genome, however, some are still capable of transposition. L1 elements move using 

an RNA intermediate created by an L1-encoded reverse transcriptase and other L1 associated 

proteins. These regions are mutated in many instances, inactivating many L1 elements (Scott, 

2013). L1 elements have been found to mostly impact gene expression by disrupting gene 

expression due to transposition into protein-coding regions.  

 Human endogenous retroviruses (HERVs) are members of the long terminal repeat 

(LTR) order of retrotransposons. HERVs are remnants of retroviruses that have inserted 

themselves into the human genome, accounting for roughly 8% of the total genome (Lander, 

2001). HERVs contain a provirus derived structure of open reading frames typically flanked by 

two LTR regions (Hurst, 2017). These LTR regions have some functionality as promoters of the 

HERVs, containing transcription factor binding sites (Manghera, 2013). HERVs have been 

implicated in the expression of protein-coding genes as well as with the expression of regulatory 

long non-coding RNAs (Dunn, 2006; Laurent, 2013). A majority of HERVs are inactive due to 

the gradual accumulation of mutations and from targeted epigenetic silencing preventing the 
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expression of unwanted protein-coding genes. Transposable elements have been found to play an 

important, but understudied role in cellular regulatory mechanisms. The regulation of these 

mechanisms can influence the occurrence of various human diseases, such as cancers. 

Tumor Protein 53 

 

Tumor Suppressor Protein 53 (p53), also referred to as the “master guardian of the 

genome,” is a transcription factor responsible for inducing cell cycle arrest or apoptosis in 

response to potential DNA damaging stressors including hypoxia, ultraviolet radiation, 

radioactive compounds, heat-shock, and cellular expression of viral vectors (Lane, 1994). P53 

has an essential role in preventing cancer with more than half of all primary tumors carrying a 

p53 mutation. Monomeric p53 has a relatively short half-life in human cells, only remaining 

stable for about 38 minutes in normal cells under normal conditions (Baresova, 2014). In a cell 

not under genotoxic stress, negative regulators MDM2 and MDM4 bind to the transcriptional 

activation domains (TAD) of p53 monomers, preventing transactivation (Momand 1992; Davoni 

2004). MDM2 has an additional function as an E3 ubiquitin ligase, which induces proteasome-

mediated degradation of p53, maintaining low p53 levels in normal cells (Haupt, 1997). When a 

cell experiences a double-stranded DNA break event, CHK1 and CHK2 kinases phosphorylate 

the TAD of p53 preventing MDM2 from inhibiting transactivation and allowing p53 to 

accumulate in its stable tetrameric confirmation (Kastan, 2004). Once stable p53 can 

transcriptionally activate a variety of signaling pathways to pause cell cycle progression, initiate 

DNA repair mechanisms, cause cellular senescence, or trigger apoptosis depending on the type 

and extent of DNA damage.   

The chemical treatments Dimethyl sulfoxide and Nutlin-3a can be used to experimentally 

regulate the expression of TP53 in a sample of exposed cells. Nutlin-3a is a small molecule 
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inhibitor that binds to MDM2 which results in increased p53 expression across cell types 

(Kumamoto, 2008). Dimethyl sulfoxide, also known as DMSO, is a solvent Nutlin-3a is 

commonly dissolved in. During an experimental investigation of p53, cells treated with Nutlin-3a 

dissolved in DMSO could be compared to a control group of cells treated only with DMSO to 

identify p53 associated genetic elements and transcription factor binding.  

P53 has demonstrated a significant ability to influence and repress retrotransposon 

activity defending the cell from additional retrotransposon replication events (Wylie, 2016). In 

previous analyses, it has been shown that around 40% of p53 ChIP fragments are found inside 

transposable elements such as LTR Class I ERVs, SINEs, and LINEs (Bao, 2017, Wang, 2007). 

This further suggests a regulatory role of p53 to retrotransposons. Further analysis to identify 

which specific sites are functionally relevant and how those sites influence retrotransposon 

activity would further our understanding of the p53 retrotransposon relationship. Investigators 

have studied the regulatory mechanism of p53 using various traditional strategies, including 

RNA-Seq and CHIP-Seq. However, the target elements of this analysis are in repetitive regions 

of DNA which have proved uniquely difficult to align using traditional RNA-Seq and ChIP-Seq 

methods. 

Overcoming Alignment Challenges 

 

Reads that originate from repetitive regions of DNA present a unique challenge for 

traditional read alignment programs. Shorter length reads have an increased potential to map to 

multiple locations across the genome, this is especially true in reads from transposable elements 

due to the repetitive nature of their base pair sequence. This phenomenon of a read mapping to 

multiple locations is referred to as a read being multi-mapped, or simply as a multi-read. In many 

standard bioinformatics data analysis protocols, multi-reads are recommended to be excluded 
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from the analysis, rather than attempt to determine their origin. All alignment programs have 

parameters that allow the user to select if and how many alternative alignment sites should be 

included in the alignment analysis. However, it can be computationally expensive to allow a read 

aligner to search for all potential alignment sites. Many protocols, in fact, suggest disregarding 

multi-reads for this reason. The exclusion of multi-reads from an analysis represents the loss of a 

substantial amount of data and should be reconsidered with the increasing availability of tools 

designed to identify a multi-read’s location of origin. Multi-read location assignment tools have 

been developed for both RNA-Seq and ChIP-Seq analyses. In all cases, these multi-read 

assignment tools work by determining the best possible mapping location from multiple 

alignment locations. Alignment programs needed to be instructed to identify and retain multiple 

possible alignment locations for each read to be used in these tools. Telescope, a software tool 

developed for RNA-Seq data, works using an expectation-maximization algorithm to directly 

assign multi-reads to their most likely location of origin on a reference genome (Bendall, 2019). 

CSEM, a software tool developed for ChIP-Seq data, works by implementing an expectation-

maximization algorithm to score multi-reads based on their likelihood of being correctly mapped 

and then retaining only the highest scoring multi-read (Chung, 2011). In this work, RNA-Seq 

and ChIP-Seq technologies used in combination with these tools were employed to identify 

differential expression and transcription factor binding in these difficult to map repetitive 

element regions. 
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C. Materials and Methods:  

 

Data analysis was performed on transcriptional data obtained from normal and cancerous 

cells treated with DMSO or Nutlin. Genetic information was isolated from samples using both 

RNA-Seq and ChIP-Seq sequencing technologies. Sequenced HCT116 colorectal cancer cell 

samples were obtained from the Espinosa Lab at the University of Colorado Anschutz Medical 

Campus and processed in this workflow with both ChIP-Seq and RNA-Seq analysis (Espinosa, 

2017). Samples of IMR90 normal noncancer cells generated for ChIP-Seq analysis were 

obtained from the Sammons Lab at the University of Pennsylvania (Sammons, 2015). Additional 

IMR90 normal noncancerous cell samples were generated for RNA-Seq analysis by the Cui Lab 

at the Rochester Institute of Technology. Table 1 contains summary information about each 

sample analyzed including, sample ID, cell type, sequencing method, and chemical treatment. 

Espinosa and Sammons Lab RNA-Seq and ChIP-Seq data were downloaded as FASTQ files of 

total RNA from samples sequenced in an Ion Torrent Proton sequencer and Illumina HiSeq 2000 

sequencer, respectively. Raw FASTQ files were downloaded from the Sequence Read Archive 

(SRA) using the prefetch command from the SRAtoolkit software suite with each sample’s SRA 

ID. 

Figure 1 shows a visual overview of the analysis steps used in this project, the analysis 

was performed on both the HCT116 and IMR90 cell lines. First, raw reads were obtained, and 

quality control was performed. Reads were then aligned to the hg19 reference genome. 

Subsequently, both the unique and multiple mapping RNA-Seq reads were assigned to repetitive 

elements with the Telescope program producing a counts table. Differential expression analysis 

was then performed on the counts table identifying differentially expressed repetitive elements 

between the DMSO and Nutlin sample groups. Then CSEM program was used to create a ChIP-



10 
 

 

Seq read set containing unique reads and the highest scoring multi-reads. Peak calling was then 

performed on these reads using MACS2 to identify significant peaks between the Nutlin and the 

control group samples. These peaks and repetitive elements were then colocalized, identifying 

where the two datasets overlapped. A Monte Carlo simulation was performed verifying that the 

frequency of the colocalizations observed occurred more frequently than due to random chance.   
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Flowchart: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart depicting the analysis workflow of the project from raw sequenced reads to 

the identification of colocalized transposable elements.  
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Table 1: Experimental Sample Overview 

Sample ID Cell Line Treatment Replicate Analysis Type Cancerous 

SRR4098426 p53ko_HCT116 DMSO 1 Total RNA-Seq Cancer 

SRR4098427 p53ko_HCT116 DMSO 2 Total RNA-Seq Cancer 

SRR4098428 p53ko_HCT116 Nutlin 1 Total RNA-Seq Cancer 

SRR4098429 p53ko_HCT116 Nutlin 2 Total RNA-Seq Cancer 

SRR4098430 p53wt_HCT116 DMSO 1 Total RNA-Seq Cancer 

SRR4098431 p53wt_HCT116 DMSO 2 Total RNA-Seq Cancer 

SRR4098432 p53wt_HCT116 Nutlin 1 Total RNA-Seq Cancer 

SRR4098433 p53wt_HCT116 Nutlin 2 Total RNA-Seq Cancer 

SRR4090089 HCT116 N/A 1 ChIP-Seq Cancer 

SRR4090090 HCT116 DMSO 1 ChIP-Seq Cancer 

SRR4090091 HCT116 Nutlin 1 ChIP-Seq Cancer 

SRR1448786 IMR90  DMSO 1 ChIP-Seq Normal 

SRR1448787 IMR90  Nutlin 1 ChIP-Seq Normal 

SRR1448788 IMR90  DMSO 1 ChIP-Seq Normal 

SRR1448789 IMR90 Nutlin 1 ChIP-Seq Normal 

clt_Control1 IMR90 N/A 1 Total RNA-Seq Normal 

clt_Control2 IMR90 N/A 2 Total RNA-Seq Normal 

clt_DMSO1 IMR90 DMSO 1 Total RNA-Seq Normal 

clt_DMSO2 IMR90 DMSO 2 Total RNA-Seq Normal 

clt_Nutlin1 IMR90 Nutlin 1 Total RNA-Seq Normal 

clt_Nutlin2 IMR90 Nutlin 2 Total RNA-Seq Normal 

Table 1: A table that lists all samples used in the analysis and indicates each sample’s SRR ID, 

cell line, treatment chemical, experimental replicate, sequencing data type, and if the tissue is 

cancerous or normal.   

 

 

 

 

 

 

 

 

 

 



13 
 

 

RNA-Seq Analysis 

 

RNA-Seq Quality Control  

 

 Quality control for the eight HCT116 RNA-Seq samples obtained from the Espinosa Lab 

was performed manually using the FASTQC and FASTX toolkit. Quality control for the six 

IMR90 RNA-Seq samples generated by the Cui Lab at RIT was performed by the University of 

Rochester Genomics Research Center (URGRC) using FastP, an all in one FASTQ file 

processing program. The command fastp 0.20.0, --in1 ../${SAMPLE}_R1.fastq.gz --out1 

clt_${SAMPLE}_R1.fastq.gz --length_required 35 --cut_front_window_size 1 --

cut_front_mean_quality 13 --cut_front --cut_tail_window_size 1 --cut_tail_mean_quality 13 --

cut_tail -w 8 -y -r -j ${SAMPLE}_fastp.json was used to process all six raw read files. This 

command removes all sequences shorter than 35bps, and all bases lower than an average Phred 

quality score of 13 in an 8bp sliding window.  

 The sequence quality of the eight HCT116 raw reads was first assessed using the 

FASTQC tool. FASTQC was run to obtain multiple quality metrics namely, per base sequence 

quality score, base-pair distribution, percent GC content, and the presence of any 

overrepresented sequences. FASTQC was run on each of the raw FASTQ input data files and an 

HTML report with the previously listed metrics was generated for each file. FASTQC was run 

using the command fastqc, specifying the input raw FASTQ file’s location, and the location the 

quality report should be written to. The reports for each of the input FASTQ files were visually 

inspected to determine how the data needed to be cleaned before alignment.  

 The eight raw HCT116 RNA-Seq samples contained mixed quality reads of varying 

lengths. FASTQC flagged the Per base sequence quality, Per base sequence content, and k-mer 
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content to be unacceptably high in addition to flagging several other metrics as being potentially 

problematic.  

 The FASTX toolkit version 0.13.2 was selected to perform the functions necessary to 

clean the data. The Per base sequence content indicated that base pair distributions at the start 

and end of the reads were irregular and needed to be trimmed. The outside regions of the reads, 

base positions 0-9 and 150+, were removed with the FASTX trimmer. The trimmer ran using the 

command fastx_trimmer -i {input_filename} -o {output_filename} -f 10 -l 150 -Q33. After 

removing the problematic regions at both ends of the sequences, the remaining reads with low-

quality scores needed to be removed. In addition, the dataset had an abnormally high amount of 

short length reads that needed to be removed. The FASTX quality filter was used to both remove 

reads with an average quality score of less than 20 and to remove reads that were shorter than 10 

base pairs in length. The quality filter ran using the command fastq_quality_trimmer -i 

{input_filename} -o {output_filename} -t 20 -l 10 -Q33 

FASTQC was run again on the RNA-Seq data after cleaning and showed significantly 

improved data quality. The data cleaning process removed between x and x reads from each 

sample. This brought all the Per base sequence quality scores at each read position above the 

poor reference metric average quality score of 20 and into the medium to high-quality range.  

RNA-Seq Processed Read Alignment  

 

After cleaning, the sequenced reads contained each sample’s FASTQ file needed to be 

aligned to a human reference genome. The Bowtie2 read aligner was selected to align the raw 

reads to a reference genome. The repetitive element locations used in the downstream analysis 

were derived from human genome version GRCh37/hg19, as such hg19 was selected as the 
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template genome. Index files for hg19 were precompiled before alignment to accelerate the 

alignment process. Index files were generated using the command build index hg19_ind where 

hg19_ind was the index file prefix to be given to Bowtie2 during alignment. Alignment with 

Bowtie was run on each of the cleaned input FASTQ files using the command bowtie2 -p 35 -x 

hg19_ind -U {input.fastq}  -S {output.sam} -k 100, where -k 100 instructs bowtie to identify up 

to 100 possible alternative mapping sites where a given read could map. The aligned reads from 

each sample were outputted in a sequence alignment format (SAM) format file. The Samtools 

program was then used to convert the SAM files of each sample into BAM files, which take up 

less space. 

RNA-Seq Read Assignment to Repetitive Elements  

 

After alignment to a reference genome, the reads needed to be assigned to specific 

genomic features to tally how many reads in each sample were associated with each feature. TE 

assignment was performed using the Telescope program developed by the Brenner Lab at 

George Washington University. Telescope was run using the command Telescope assign 

provided with an input SAM file of aligned reads and a gene transcript format (GTF) file of the 

genomic element locations where reads can be assigned.  

In this project, only regions of transposable elements (TEs) are of interest. To further 

simplify the analysis, the genome needed to be restricted to only those TE regions. A text file of 

all TE names and locations in the hg19 reference genome was downloaded from the 

RepeatMasker website. This text file was converted to a general feature format 3 (GFF3) file 

using the rmOutToGFF3.pl Perl script, included in the RepeatMasker software suite. The GFF3 

file of TEs was then converted to GTF format using a custom R script GFF3_to_GTF.R. This 

script created a unique TE name by combining the original RepeatMasker name with the 
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chromosome number, start, and stop positions of the RE. This new unique TE name allowed for 

the quantification of the expression of specific individual instances of the TE. The GTF file was 

created by combining all GFF3 data columns, except for the “Phase,” and including a custom 

attribute in the attribute column named “Locus,” containing the unique TE name. The Telescope 

assign program selects the Locus attribute by default as the name of the genomic feature where 

reads are assigned.  

Telescope assign was run on each aligned read SAM file and a report file containing 

alignment statistics for each file was generated. A custom R script was used to combine the data 

in the unique count column from each of the reports into a counts table of all unique TEs in the 

experiment. Any columns with TEs that had no data recorded for them were marked as NA by 

the Telescope program, and these features were manually reassigned a count value of 0.  

RNA-Seq Differential Expression Analysis  

 

 Differential expression analysis was then performed on these counts tables in R using 

both the EdgeR package and the DESeq2 package. Transposable elements were filtered before 

analysis to remove any transcript that was not present at least once in four of the eight samples. 

In addition, TEs were removed if they did not contain at least five counts per one million 

transformation counts. The respective analyses were run according to their respective protocols 

using supplied default variable values. This resulted in two lists of differentially expressed 

transcripts located in TE regions along with their p-value and log fold change value. The results 

of the programs were compared to identify transcripts mapped to TEs that overlapped in both 

analyses which were then exported for further analysis.  
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ChIP-Seq Analysis  

 

ChIP-Seq Quality Control 

 

The ChIP-Seq data were prepared for analysis in a similar way to the RNA-Seq data, 

identifying and removing problematic reads. FASTQ files from each ChIP-Seq experiment were 

downloaded from the Sequence Read Archive using the prefetch command from the SRAtoolkit 

software suite. Once downloaded, the reads contained in each sample’s FASTQ file were aligned 

to a reference genome. The three raw ChIP-Seq samples of the HCT116 dataset contained mostly 

high-quality reads that did not require filtering. 

ChIP-Seq Processed Read Alignment  

 

 The cleaned ChIP-Seq reads followed a similar alignment protocol to the RNA-Seq 

reads. The Bowtie2 read aligner was used to align the raw ChIP-Seq reads to the GRCh37/hg19 

reference genome. Index files were precompiled with the prefix hg19_ind which was given to 

Bowtie2 during alignment. Alignment with Bowtie2 was run on each of the cleaned input 

FASTQ files using the command bowtie2 -p 35 -x hg19_ind -U {input.fastq}  -S {output.sam} -k 

100, where -k 100 instructs bowtie2 to identify up to 100 possible alternative mapping sites 

where a given read could map. The aligned reads from each sample were outputted in a SAM 

format file and then converted to a BAM file. 

ChIP-Seq Multiread Processing  

 

In a typical peak calling protocol, aligned reads, which map to more than one location, 

called multi-reads, are first removed from the analysis. Multireads typically complicate the peak 

calling analysis because their location of origin is difficult to determine. The ChIP-Seq multi-

read allocation using Expectation-Maximization (CSEM) tool was used to score the probability 
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of how likely an individual reported multi-read was the read’s actual location of origin. CSEM 

version 2.4 was downloaded from the Dewey Lab at the University of Wisconsin. Read 

probability scores were calculated for every read in each sample file using the command run-

csem --sam -p 10 input_name.sam 51 output_name_csem. In the run-csem command, -sam 

specifies the input file format, -p specifies the number of cores to use, input_name.sam specifies 

the name of the input sam file, 51 specifies the average read length of reads in the input sam file, 

and output_name_csem specifies the name of the output bed file. Once probability scores were 

assigned to each read, multi-reads were sampled, meaning all multireads associated with a 

specific read were removed and only the multiread with the highest probability score was 

retained. This new set of uni-reads and the highest scoring multireads was produced using the 

CSEM data processing command csem-generate-input --sampling --bed input_name.bam 

output_name_csem_sampling. In the csem-generate-input command, the --sampling flag tells the 

program to only retain uni-reads and multi-reads with the highest probability score, the --bed flag 

specifies the output format of the program, input_name.bam specifies the name of the input 

CSEM processed read bam file, and output_name_csem_sampling specifies the name of the 

sampling processed output file. 

ChIP-Seq Differential Peak Calling Analysis with MACS2 

 

Peak calling was then performed using the Model-based Analysis of ChIP-Seq 2 

(MACS2) software suite from the University of California San Diego. MACS2 was used to 

identify differentially expressed peaks between two control samples and one treatment sample in 

the HCT116 dataset and three control and one treatment sample in the IMR90 dataset. Peaks 

were called for the samples in the HCT116 dataset with the command macs2 callpeak -t 

SRR4090091_1_k100_csem_sampling.bed -c SRR4090089_1_k100_csem_sampling.bed 
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SRR4090090_1_k100_csem_sampling.bed -f BED --outdir 

/shared/rc/fxcsbi/Tom_Andrew/Andrew/MACS/HCT116/csem_sampling/ -n 

HCT116_csem_sampling. Peaks were called for the samples in the IMR90 dataset with the 

command macs2 callpeak -t filtered_trimmed_SRR1448787_1_k100_csem_sampling.bed  -c 

SRR1448786_1_k100_csem_sampling.bed SRR1448788_1_k100_csem_sampling.bed 

SRR1448789_1_k100_csem_sampling.bed -f BED --outdir 

/shared/rc/fxcsbi/Tom_Andrew/Andrew/MACS/IMR90/csem_sampling/ -n 

IMR90_csem_sampling. In the MACS2 callpeak command, every input file following the -t flag 

is loaded as a set of treatment reads, while every input file following the -c flag is loaded as a set 

of control reads. In the MACS2 callpeak command, -f specifies the file type of the input read 

data, and -n specifies the root name of all output files generated by peak calling.  

Multiple Sequencing Data Colocalization  

 

A script was drafted in R designed to compare the results of the ChIP-Seq data and the 

RNA-Seq data. The script compares the results of both experiments and looks for overlapping 

genomic coordinates between differentially expressed repetitive element regions and 

significantly identified peak regions. This comparison was made by first using the unique 

repetitive elements GTF file as a map to map identified DE repetitive element names to specific 

genomic locations. The genomic locations of the significant peaks were increased by 2k, 5k, 10k, 

and 20k bases in both directions and written as four subset peak files. Repetitive element 

locations were then investigated for overlaps with the locations in the significantly identified 

peak files using the intersect() and findOverlaps() commands from the R GenomicRanges 

package. This produced datasets of differentially expressed repetitive elements colocalized with 

significant peaks.   
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Monte Carlo Simulation  

 

 A Monte Carlo simulation was constructed to determine the natural rate of occurrence of 

overlapping genomic locations between the DE peaks and the DE reads. Synthetic datasets were 

generated representing both the DE RNA-Seq reads and the DE ChIP-Seq peaks. First, the 

genomic locations of both the read and peaks were isolated and turned into BED format files. 

Then all BED files were sorted for further analysis with the Bedtools suite using the command 

bedtools sort -i $filename > $filename_sorted.bed. Next, synthetic DE read and peak datasets 

were generated using the bedtools shuffle command bedtools shuffle -i in_dataset_sorted.bed -g 

hg19.chrom.sizes -chrom. The Bedtools shuffle command used the hg19 chromosome size file to 

randomly generate a set of individual read locations that retained the same read size and 

chromosome distribution as the original dataset. The synthetic read set was then compared to the 

synthetic peak set using the command bedtools intersect -a $peakset.bed -b $readset.bed. This 

command counts the number of intersections between the genomic coordinates of the two BED 

files given as input. If the number of intersections between the sets is greater than the number of 

observed interactions in the experiment a counter is incremented by 1. These individual 

commands were connected to make the simulation, which was performed 1000 times shown in 

Figure 2. After 1000 iterations of the simulation the total of the counter was divided by 1000 to 

derive the p-value describing how likely it would be to see what is observed compared to the null 

model, the result occurring by chance. The empirical P-value formula the simulation used was 

P=(r + 1)/(n + 1) where r is the counter and n is 1000 (Davison and Hinkley, 1997). This 

simulation was repeated for all the DE read FC/FDR cutoff data subsets and run against all four 

different peak ranges (2k, 5k, 10k, and 20k). This allows for the generation of a Monte Carlo 

observance likelihood table of the same format as the RE-Peak colocalization summary tables.  
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Figure 2: Monte Carlo Code Snippet 

Figure 2: Bash code snippet from the Monte Carlo simulation testing if the frequency of 

observed Repetitive Element-Peak colocalization events is greater than that of colocalization 

events observed due to random chance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for i in {1..1000}; 
do 
  bedtools shuffle -i peak_file -g hg19.chrom.sizes -chrom > temp_peaks.bed 
  Null=`bedtools shuffle -i read_file.bed -g hg19.chrom.sizes -chrom | bedtools 
intersect -a temp_peaks.bed -b - | wc -l` 
  if [ $Null -ge $Observed ]; then 
    r_statistic=$((r_statistic + 1)) 
  fi 
done 
text="P-value = (r_statistic+1)/(n_statistic+1) = 
(${r_statistic}+1)/(${n_statistic}+1) = " 
awk -v n_statistic=$n_statistic -v r_statistic=$r_statistic -v t="$text" 'BEGIN 
{ans=(r_statistic+1)/(n_statistic+1); print t " " ans}' 
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D. Results:  

 

Sequence Quality Assessment  

 

Figure 3: IMR90 RNA-Seq Trimmed Reads  

 

Figure 3: Bar chart showing which reads were removed from each of the six IMR90 RNA-Seq 

samples after quality control was performed with the FastP cleaning tool. 

 

 Data quality control was performed on all experimental samples. The IMR90 RNA-Seq 

samples were visualized and cleaned using the FastP read preprocessing utility shown in Figure 

3. FastP removed fewer than 2 million reads from each IMR90 RNA-Seq sample, most reads 

were removed for being too low quality or for having a shorter than desired read length. The 

HCT116 RNA-Seq reads were manually cleaned through an iterative process of visual inspection 

of FASTQC read summary reports and cleaning with multiple tools from the FASTX toolkit in 
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addition to the Cutadapt program used to trim overrepresented adapter sequences. Figure 4 

visualizes the two to four million reads trimmed from the HCT116 RNA-Seq samples. All seven 

raw ChIP-Seq samples were surprisingly clean and did not require much cleaning. Figure 5 

shows fewer than one million reads were removed from 6 of 7 ChIP-Seq samples. The IMR90 

ChIP-Seq samples contained a significantly larger number of reads than the HCT116 ChIP-Seq 

samples, with three of the four samples containing more than 120 million reads.   

Figure 4: HCT116 RNA-Seq Trimmed Reads 

 

Figure 4: Bar chart showing how many reads were removed from each of the eight HCT116 

RNA-Seq samples after quality control was performed with the FASTX. 
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Figure 5: ChIP-Seq Trimmed Reads 

 

Figure 5: Bar chart showing how many reads were removed from each of the three HCT116 and 

four IMR90 ChIP-Seq samples after quality control was performed with the FASTX. 
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Sequence Alignment Assessment  

 

Figure 6: HCT116 RNA-Seq Alignment 

 

Figure 6: Bar chart of Bowtie2 read alignment rates for HCT116 RNA-Seq samples. The total 

number of reads before alignment is shown in blue, while the number of reads that remain 

unaligned after alignment is shown in red. The number of reads mapping to one location is 

shown in green and the number of reads mapping to two or more possible locations is in yellow. 
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Figure 7: IMR90 RNA-Seq Alignment 

 

Figure 7: Bar chart of Bowtie2 read alignment rates for IMR90 RNA-Seq data. The total number 

of reads before alignment is shown in blue, while the number of reads that remain unaligned 

after alignment is shown in red. The number of reads mapping to one location is shown in green 

and the number of reads mapping to two or more possible locations is in yellow. 
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Figure 8: IMR90 ChIP-Seq Alignment 

 

Figure 8: Bar chart of Bowtie2 read alignment rates for HCT116 and IMR90 ChIP-Seq data. 

The total number of reads before alignment is shown in blue, while the number of reads that 

remain unaligned after alignment is shown in red. The number of reads mapping to one location 

is shown in green and the number of reads mapping to two or more possible locations is in 

yellow. 

 

 Alignment to the hg19 reference genome was performed on all samples with alignment 

rates varying widely between the sample groups. The HCT116 RNA-Seq samples had difficulty 

aligning, with an average of just under half of all processed reads not aligning across the eight 

samples. An average of 30% of HCT116 RNA-Seq reads mapped to a single location while on 

average 20% of reads mapped to more than one location across the genome (Figure 6). The 

IMR90 RNA-Seq alignment was more successful with 10% of the total reads unaligned. 

Additionally, the ratio of uni-reads to multi-reads was the same as with the HCT116 data, 



28 
 

 

however, both groups made up larger fractions of the whole, totaling approximately 50% and 

40% of total reads, respectively (Figure 7). The ChIP-Seq alignments were similarly successful 

with the HCT116 samples leaving around 1% of reads unaligned while the IMR90 samples left 

less than 10% unaligned. Multi-reads comprised 25% of total aligned reads while uni-reads made 

up 75% of the total aligned reads (Figure 8). 

RNA-Seq: Read Assignment with Telescope  

 

Figure 9: HCT116 RNA-Seq Read Assignment 

 

Figure 9: Bar chart depicting the success of read assignment to repetitive element locations with 

Telescope in the HCT116 RNA-Seq samples. Reads that Telescope is unable to assign are shown 

in red. Uni-reads that are assigned to a repetitive element are shown in green. Multi-reads that 

are estimated and successfully assigned to a repetitive element are shown in yellow.  
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Figure 10: IMR90 RNA-Seq Read Assignment 

 

Figure 10: Bar chart depicting the success of read assignment to repetitive element locations 

with Telescope in the IMR90 RNA-Seq samples. Reads that Telescope is unable to assign are 

shown in red. Uni-reads that are assigned to a repetitive element are shown in green. Multi-reads 

that are estimated and successfully assigned to a repetitive element are shown in yellow. 

 

After read alignment with Bowtie2 the read sets contained both multi-reads and uni-

reads, each multi-read retaining up to 100 alternative alignment sites. The telescope program 

attempted to assign all aligned reads to documented repetitive elements locations. The reads of 

the HCT116 cells were assigned with slightly under a 50% success rate, of those reads assigned 

more than 40% were multi-reads whose ambiguous mapping had been resolved and ultimately 

assigned to a repetitive element (Figure 9). The IMR90 RNA-Seq read assignment was much 

more successful with about 80% of reads successfully being assigned. Like the HCT116 reads, 

approximately 40% of all assigned reads were multi-reads (Figure 10).  
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RNA-Seq: Differential Expression Analysis 

 

A counts table of unique repetitive elements was filtered using a CPM threshold of 5 

ensuring only elements with enough total counts were included in the Differential Gene 

expression analysis. IMR90 elements were filtered to 5,368 elements from 2,054,903 and 

HCT116 elements were filtered to 4768 from 4,507,199. 

Table 2: Differential Expression Analysis Summary Table 

Differentially Expressed Repetitive Elements Identified: DMSO vs Nutlin 

Cutoff Criteria HCT116 p53 WT HCT116 p53 KO IMR90  

PV: 0.05 L2FC: 1 330 78 339 

PV: 0.05 L2FC: 1.5 77 13 97 

PV: 0.05 L2FC: 2 29 5 33 

PV: 0.05 L2FC: 2.5 10 2 22 

PV: 0.05 L2FC: 3 6 2 17 

PV: 0.05 L2FC: 3.5 5 2 10 

PV: 0.05 L2FC: 4 3 1 7 

FDR: 0.05 L2FC: 1 208 11 331 

FDR: 0.05 L2FC: 1.5 76 7 93 

FDR: 0.05 L2FC: 2 28 4 33 

FDR: 0.05 L2FC: 2.5 9 1 22 

FDR: 0.05 L2FC: 3 5 1 17 

FDR: 0.05 L2FC: 3.5 4 1 10 

FDR: 0.05 L2FC: 4 2 1 7 

Table 2: Table depicting the differentially expressed repetitive elements identified between the 

DMSO and Nutlin sample groups in the HCT116 p53 WT, HCT116 p53 KO, and IMR90 

datasets. The table shows the number of elements identified that meet the p-value, FDR, and log2 

foldchange thresholds listed in the left-hand column.    
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Figure 11: Venn Diagram of Overlapping DE REs IMR90 and HCT116  

 

Figure 11: Venn diagram showing the number of differentially expressed repetitive elements 

that overlap between the IMR90 and HCT116 p53 WT datasets.  

 

Figure 12: HCT116 p53 WT Differential Expression Heatmap  

 

Figure 12: A Heatmap of the differentially expressed repetitive elements in the HCT116 p53 

WT dataset, where red indicates increased expression and blue indicates decreased expression. 
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Figure 13: IMR90 Differential Expression Heatmap  

 

Figure 13: A Heatmap of the differentially expressed repetitive elements in the IMR90 dataset, 

where red indicates increased expression and blue indicates decreased expression. 

 

 Differential Expression analysis was run in both EdgeR and DESeq2 and a consensus set 

of REs that met a specific fold change and p-value cutoffs were retained. This method was 

applied to the IMR90, HCT116 p53 WT and p53 KO data, at the lowest cutoff threshold 330, 78, 

and, 339 DE REs were identified, shown in Table 2. 38 REs between those sets overlapped, 

shown in Figure 11. Heatmaps clustering relative expression levels based on RE counts across all 

experimental samples, were also produced as visualization of the differential expression of 

repetitive elements between the two different treatment groups (Figure 12, Figure 13). 
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ChIP-Seq: Analysis of Peak Calling Methods 

 

Figure 14: Overlapping HCT116 Peaks 

 

Figure 14: Bar chart showing overlapping MACS2 peaks between multi-read and unique-read 

peak sets in HCT116 cells. The total number of peaks called from the multi-read dataset are 

shown in red. The total number of peaks called from the uni-read dataset are shown in blue. The 

total number of peaks that overlap between the multi-read and uni-read dataset are shown in 

green. 
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Figure 15: Overlapping IMR90 Peaks 

 

Figure 15: Bar chart showing overlapping MACS2 peaks between multi-read and unique-read 

peak sets in IMR90 cells. The total number of peaks called from the multi-read dataset are shown 

in red. The total number of peaks called from the uni-read dataset are shown in blue. The total 

number of peaks that overlap between the multi-read and uni-read dataset are shown in green. 

  

Before Peak Calling was performed on the aligned ChIP-Seq data, the data was processed 

by CSEM, a program designed to score the likelihood of alignment at all alternative alignment 

locations in a ChIP-Seq multi-read. Once all multi-reads were scored a CSEM companion 

program was used to generate two datasets. The unique read (UR) dataset completely excluded 

all non-uni-read peak data. The multi-mapped read (MR) dataset included all uni-read data but 

also included the highest-scoring alignment location of every multi-read, essentially converting 

all multi-reads to uni-reads. These datasets were run through both the HOMER and MACS2 

peak callers and the resulting peak sets overlapped to create an overlapping (OL) peak set as 
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shown in Figures 14 and 15. This peak set was found to overlap with roughly half of the peaks in 

the UR set.  

ChIP-Seq: Analysis of Peaks with Annotated Consensus Set 

 

Figure 16: Peak Verification with Bao Consensus Set 

 

Figure 16: Bar chart showing overlaps between the CSEM OL peaks and the Bao annotated 

consensus peak sets. The total umber of CSEM OL peaks for each subset are shown in red. The 

total number of normal p53 or cancer p53 associated peaks in the Bao consensus set are shown in 

blue. The total number of peaks that overlap between the CSEM peaks the corresponding Bao 

consensus peaks set are shown in green.  

 

 The overlapping (OL) HCT116 and IMR90 peak sets were compared to their 

corresponding normal cell and cancer cell p53 consensus peak sets generated by Bao et al. 2017. 

This consensus set serves as a robust reference peak set of externally validated data which can 

further validate the OL peak set identified by this workflow. Figure 16 shows the overlapping 

elements between the OL peaks and the Bao consensus peaks. Among the FC > 10 OL peak sets, 
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greater than 90% of the peaks overlap with the Bao peak set. Among the FC > 4 OL peak sets, 

greater than 70% of the peaks overlap with the Bao peak set. These overlaps are strong indicators 

that peaks in the OL sets are likely genuinely p53 associated peaks.  

Repetitive Element-Peak Colocalization 

 

 The RE-Peak colocalization summary tables are shown below; these tables summarize 

the total number of colocalizations that occur between a given set of REs and a peak range. The 

peak range takes the original peak start and stop locations and increases it in both directions by 

2000, 5000, 10000, or 20000bp. These ranges are important as p53 could bind upstream or 

downstream of the RE element’s start or stop coordinates but still have a significant regulatory 

effect on the RE. The program checks to see if the genomic coordinates of the DE REs are within 

the peak range specified, and if they are it is tallied as a colocalization. One RE can be recorded 

as a colocalization multiple times if multiple different peaks are found to interact with it. Tables 

3 and 4 show RE-Peak colocalization summary tables between the DE RE sets, the HCT116 p53 

WT and the IMR90 RE set, and the overlapping (OL) peak sets called by the MACS2 peak 

caller. Additionally, RE-Peak colocalization sets with an FDR of 0.05 and fold change of 2 have 

been overlapped with the 20kbp peak range in the HCT116 p53 WT and IMR90 cell lines and 

selected to be displayed in full. The resulting interaction has been highlighted in yellow on the 

colocalization summary tables and are shown in full in Tables 5 and 6.  
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Table 3: HCT116 RE-Peak Colocalization Summary Table 

Data Source Peaks_2k Peaks_5k Peaks_10k Peaks_20k 

HCT116_REs_FDR05_fc1 7 23 43 62 

HCT116_REs_FDR05_fc1.5 3 11 20 24 

HCT116_REs_FDR05_fc2 1 6 8 9 

HCT116_REs_FDR05_fc2.5 0 1 2 3 

HCT116_REs_FDR05_fc3 0 1 2 2 

HCT116_REs_FDR05_fc3.5 0 1 2 2 

HCT116_REs_FDR05_fc4 0 1 2 2 

Table 3: Summary table counting the number of colocalizations events occurring between the 

HCT116 p53 WT DE RE read sets at varying thresholds and the OL MACS2 called HCT116 

peaks with ranges increased by 2k, 5k, 10k, and 20k. The yellow highlighted cell indicates the 

colocalization selected to be displayed in Table 5 

 

Table 4: IMR90 RE-Peak Colocalization Summary Table 

Data Source Peaks_2k Peaks_5k Peaks_10k Peaks_20k 

IMR90_REs_FDR05_fc1 2 13 48 115 

IMR90_REs_FDR05_fc1.5 1 7 21 35 

IMR90_REs_FDR05_fc2 1 2 8 10 

IMR90_REs_FDR05_fc2.5 0 1 5 7 

IMR90_REs_FDR05_fc3 0 1 5 7 

IMR90_REs_FDR05_fc3.5 0 1 5 6 

IMR90_REs_FDR05_fc4 0 0 0 0 

Table 4: Summary table counting the number of colocalizations events occurring between the 

IMR90 DE RE read sets at varying thresholds and the OL MACS2 called IMR90 peaks with 

ranges increased by 2k, 5k, 10k, and 20k. The yellow highlighted cell indicates the colocalization 

selected to be displayed in Table 6 
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Table 5: HCT116 p53 Wildtype RE-Peak Colocalization Table 

Table 5: RE-Peak colocalization of HCT116 DE REs at the FDR 0.05 FC 2 cutoff with the 20kb 

range MACS2 HCT116 peak set. This table displays the name of the repetitive element, its log 

fold change, FDR, strand, chromosome number, start position and stop position. In addition, the 

table shows the non-peak range augmented peak start and stop positions, the distance from the 

peak to the RE, and the total length the overlapping coordinates.   

 

Table 6: IMR90 RE-Peak Colocalization Table 

 

Table 6: RE-Peak colocalization of IMR90 DE REs at the FDR 0.05 FC 2 cutoff with the 20kb 

range MACS2 IMR90 peak set. This table displays the name of the repetitive element, its log 

fold change, FDR, strand, chromosome number, start position and stop position. In addition, the 

table shows the non-peak range augmented peak start and stop positions, the distance from the 

peak to the RE, and the total length the overlapping coordinates.   

 

 

 

 

 

 

RE_Name logFC FDR Chr Start_RNA End_RNA Strand overlap start_Peak end_Peak PeaktoRead

L2b 3241 3369_chr6_36654978_366551044.317262 1.89E-32 chr6 36654978 36655104 + 127 36644883 36645500 9478

L2b 3241 3369_chr6_36654978_366551044.317262 1.89E-32 chr6 36654978 36655104 + 127 36650192 36650615 4363

MIR3 14 171_chr7_100780892_1007810402.658478 9.93E-17 chr7 100780892 100781040 - 149 1.01E+08 1.01E+08 10566

AluSx1 1 302_chr1_6475837_64761372.383674 1.03E-09 chr1 6475837 6476137 - 301 6474407 6475008 829

MER65C 5 461_chr22_39415082_394155212.324965 2.50E-13 chr22 39415082 39415521 + 440 39410605 39410710 4372

MIRb 52 261_chr1_35223888_352241032.319364 2.56E-10 chr1 35223888 35224103 + 216 35220935 35221160 2728

AluJb 1 290_chr22_39414703_394150042.094689 4.67E-11 chr22 39414703 39415004 + 302 39410605 39410710 3993

MLT1B 192 380_chr22_39415580_394157632.024527 1.58E-06 chr22 39415580 39415763 - 184 39410605 39410710 4870

AluSq2 2 309_chr22_39415802_394160992.019919 5.70E-07 chr22 39415802 39416099 - 298 39410605 39410710 5092

RE_Name logFC FDR Chr Start_RNA End_RNA Strand overlap start_Peakend_Peak PeaktoRead

L2b 3241 3369_chr6_36654978_366551043.799748 8.64E-92 chr6 36654978 36655104 + 127 36634699 36635311 19667

L2b 3241 3369_chr6_36654978_366551043.799748 8.64E-92 chr6 36654978 36655104 + 127 36643727 36645569 9409

L2b 3241 3369_chr6_36654978_366551043.799748 8.64E-92 chr6 36654978 36655104 + 127 36645624 36646808 8170

L2b 3241 3369_chr6_36654978_366551043.799748 8.64E-92 chr6 36654978 36655104 + 127 36647057 36647464 7514

L2b 3241 3369_chr6_36654978_366551043.799748 8.64E-92 chr6 36654978 36655104 + 127 36648117 36648431 6547

L2b 3241 3369_chr6_36654978_366551043.799748 8.64E-92 chr6 36654978 36655104 + 127 36650158 36650716 4262

MIR 86 185_chr8_95941490_959415863.033492 8.54E-28 chr8 95941490 95941586 - 82 95961505 95962572 -19919

AluJo 1 271_chr8_22879490_228797612.042188 1.61E-34 chr8 22879490 22879761 + 272 22871827 22872277 7213

MER4A 159 664_chr22_46729064_46729622-2.00147 6.24E-12 chr22 46729064 46729622 + 559 46731481 46731651 -1859

AluJb 1 301_chr22_46726097_46726398-2.49869 3.87E-14 chr22 46726097 46726398 + 302 46731481 46731651 -5083
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Table 7: Differentially Expressed HCT116 p53 Knockout Repetitive Elements 

 

Table 7: Differentially expressed repetitive elements identified in the HCT116 p53 knockout 

differential expression analysis. This table show fold change increase and significance statistics 

generated by both the EdgeR (left) and DESeq2 (right) differential expression analysis software.   

 

Tables 5 and 6 show summary statistics about the RE-Peak interactions identified in each 

dataset selected at the set FDR of 0.05 and absolute value fold change criteria of two. Each of the 

tables shows the differentially expressed repetitive element’s name, log fold change value, FDR 

significance values, strand, and genomic coordinates. In addition, each table shows the 

coordinates of the peak the RE interacted with, the total length of the RE-Peak overlap, and the 

distance from the non-range adjusted peak location to the RE location with a negative value 

indicating that a RE is upstream of the peak. The results of the HCT116 p53 Knockout 

differential expression analysis are shown in Table 7 and show RE’s that may be differentially 

expressed due to the treatment conditions and are unlikely related to p53. Table 7 serves as a 

form of control RE set that can be used to eliminate non p53 associated REs discovered in the 

HCT116 p53 Wildtype and IMR90 datasets.  

 

 

RE_Name logFC logCPM FDR baseMean log2FoldChange lfcSE stat padj

FLAM_C 1 133_chr16_67844891_678450266.457436 10.17158 5.20E-48 4603.75 6.455933098 0.283137 22.80144 2.00E-111

AluJr 5 294_chr7_128278815_1282791082.152874 4.172105 1.17E-05 70.44043 2.156896298 0.42777 5.042187 0.000345

AluY 1 303_chr2_179087090_179087394-1.07129 7.585443 0.00839 765.6709 -1.074200245 0.24258 -4.42824 0.00475

AluSg7 1 303_chr1_94995348_94995653-1.07453 6.490484 0.010422 357.2708 -1.076940963 0.279581 -3.85198 0.047931

AluSp 2 293_chr1_47716211_47716500-1.30911 4.920619 0.001749 118.9102 -1.314631116 0.333597 -3.94078 0.036548

AluSx3 1 294_chr1_35648827_35649117-1.43266 5.365303 5.78E-05 162.6189 -1.437336296 0.308734 -4.65558 0.002077

L1PA5 4405 6147_chr3_98584565_98586295-1.59031 6.072488 6.57E-07 266.9186 -1.593297943 0.279275 -5.70511 1.47E-05

AluSz 1 300_chr17_7479208_7479503-1.61196 4.541451 8.83E-05 91.01226 -1.616750616 0.361609 -4.47099 0.004379

AluSz6 1 298_chr1_76253989_76254273-1.72179 5.951469 6.57E-07 245.2103 -1.725247834 0.303471 -5.68505 1.47E-05

BC200 1 200_chr2_47562454_47562653-2.18735 11.11146 4.32E-07 8843.375 -2.18972001 0.219541 -9.9741 4.45E-20

AluSg4 1 288_chr6_111022128_111022414-2.29942 4.646159 4.47E-07 97.98595 -2.306530532 0.411629 -5.60343 1.89E-05
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Validation of RE-Peak Colocalizations with Monte Carlo Simulation 

 

Table 8: Monte Carlo Simulation HCT116  

Data Source Peaks_2k Peaks_5k Peaks_10k Peaks_20k 

HCT116_REs_FDR05_fc1 0.000999001 0.000999001 0.000999001 0.000999001 

HCT116_REs_FDR05_fc1.5 0.0679321 0.000999001 0.000999001 0.000999001 

HCT116_REs_FDR05_fc2 0.25974 0.000999001 0.000999001 0.002997 

HCT116_REs_FDR05_fc2.5 1 0.203796 0.0729271 0.0689311 

HCT116_REs_FDR05_fc3 1 0.125874 0.028971 0.0749251 

HCT116_REs_FDR05_fc3.5 1 0.0879121 0.018981 0.042957 

HCT116_REs_FDR05_fc4 1 0.0509491 0.004995 0.024975 

Table 8: Table showing the Monte Carlo Simulation generated p-values representing the 

significance of the total colocalization events occurring between the HCT116 p53 WT DE RE 

read sets at varying thresholds and the OL MACS2 called HCT116 peaks with ranges increased 

by 2k, 5k, 10k, and 20k.  

 

Table 9: Monte Carlo Simulation IMR90 

Data Source Peaks_2k Peaks_5k Peaks_10k Peaks_20k 

IMR90_REs_FDR05_fc1 0.862138 0.0539461 0.000999001 0.000999001 

IMR90_REs_FDR05_fc1.5 0.664336 0.00999001 0.000999001 0.000999001 

IMR90_REs_FDR05_fc2 0.325674 0.215784 0.000999001 0.002997 

IMR90_REs_FDR05_fc2.5 1 0.410589 0.00599401 0.00799201 

IMR90_REs_FDR05_fc3 1 0.358641 0.001998 0.002997 

IMR90_REs_FDR05_fc3.5 1 0.218781 0.000999001 0.001998 

IMR90_REs_FDR05_fc4 1 1 1 1 

Table 9: Table showing the Monte Carlo Simulation generated p-values representing the 

significance of the total colocalization events occurring between the IMR90 DE RE read sets at 

varying thresholds and the OL MACS2 called IMR90 peaks with ranges increased by 2k, 5k, 

10k, and 20k. 
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A Monte Carlo simulation has been designed and run to investigate the significance of 

the results of the RE-Peak colocalization summary tables. The simulation randomly reshuffles 

the RE and Peak dataset maintaining the same size and chromosomal distributions and tallies 

colocalization events that occur, this is the estimation of nature, the null model. The simulation 

then runs 1000 times and tallies the total number of times the total null model colocalization 

events is greater than what was observer in the RE-Peak colocalization summary table. This tally 

become the r value in the empirical p-value formula. The r value plus one is divided by the total 

number of simulations run plus one to obtain the empirical p-value; P=(r + 1)/(n + 1). Tables 8 

and 9 show the empirical p-values calculated for each colocalization summary. In both the 

IMR90 and HCT116 datasets the colocalization made between the 20k peaks and the fc1 REs are 

found to have a significant p-value. The relative sizes of the these datasets, less than three 

hundred REs and less than ten thousand peaks in comparison to the total size of the genome 

illustrate that the dataset with the highest p-value has not been cherry pick for validation but 

actually represents significant colocalization events. While the peak ranges have been increased 

by 40k base pairs in length, 40k is still an incredibly small percent of the size of an individual 

chromosome, 40k is 0.016% of 248,956,422, the length of chromosome one. The Monte Carlo 

simulations validate the colocalizations as occurring more frequently than due to random chance.  
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Transposable Element Representation Analysis  

 

Figure 17: HCT116 p53 Wild Type TE Representation Analysis 

 

Figure 17: Pie chart showing the representation of transposable elements in the colocalization 

results of the HCT115 p53 WT data. The pie chart is color coded by which type of transposable 

element is present and in what quantity. The count labels show the number of colocalization 

events of that occur in a TE group irrespective of a TE colocalizing with multiple peaks, while 

showing in parenthesis the number of colocalization events of that occur in a TE group including 

colocalizations of a TE with multiple peaks. 
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Figure 18: IMR90 TE Representation Analysis 

 

Figure 18: Pie chart showing the representation of transposable elements in the colocalization 

results of the IMR90 data. The pie chart is color coded by which type of transposable element is 

present and in what quantity. The count labels show the number of colocalization events of that 

occur in a TE group irrespective of a TE colocalizing with multiple peaks, while showing in 

parenthesis the number of colocalization events of that occur in a TE group including 

colocalizations of a TE with multiple peaks. 

 

The pie charts created show a breakdown of the different types of TEs found in RE-Peak 

colocalization datasets at an FDR of 0.05, with a fold change of 1, and a peak range of 20kb. A 

pie chart breaking down TE representation was generated for the RE-Peak colocalization tables 

of both the IMR90 and HCT116 p53 WT datasets generated with MACS2 peaks. The HCT116 

p53 WT chart showed that the most represented TEs were the Alus, with 16 unique elements, 

followed by the MIRs with 7 unique elements identified in the colocalization with the MACS2 

peak dataset (Figure 17). The IMR90 pie chart showed that the most represented TEs were the 
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Alus, with 19 unique elements, followed by the L1s with 11 unique elements identified in the 

colocalization with the MACS2 peak dataset (Figure 18).  

In the HCT116 data the TEs with the top five highest positive expression (FC > 2.0) 

values identified in the colocalization datasets were L2b 3241 3369, MIR3 14 171, AluSx1 1 

302, MER65C 5 461, MIR 52 261. While the TE’s with the lowest negative expression           

(FC < -1.5) value identified in the colocalization dataset was the AluSx1 1 312 element. In the 

IMR90 data, the TEs with the highest positive expression (FC > 2.0) values identified in the 

colocalization datasets were L2b 3241 3369, MIR 86 185, and AluJo 1 271. While the TE’s with 

the lowest negative expression (FC < -1.5) values identified in the colocalization datasets were 

the AluJb 1 301, MER4A 159 664, AluJb 1 302, AluSz 1 302, and AluJr 1 301 element.  

RE L2b 3241 3369 is not only present in both the HCT116 p53 WT and IMR90 datasets, 

but it is also the most significantly expressed element (FC > 3) in both datasets, this would 

suggest a significant relationship to p53, however this specific element is located right next to the 

p21 gene which is a major downstream p53 target. The colocalization that has occurred with this 

specific element is likely a false positive, illustrating that all colocalized transposable elements 

need to be examined carefully before deciding to proceed with further experimental validation. 

The full list of colocalized elements discovered in both the HCT116 p53 WT and IMR90 

datasets can be viewed in supplementary Table S1 and S2.    
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E. Discussion:  

 

The objective of this study was to investigate a hypothesized regulatory relationship p53 

has on various transposable elements. To achieve that goal this study has overcome alignment 

and mapping challenges associated with transposable element work by including and mapping 

multi-reads to a custom transcriptome of annotated repetitive elements. In a typical analysis 

multi-reads would have been thrown out, while this analysis successfully included multi-reads 

using the Telescope and CSEM programs. Telescope specifically was able to successfully map 

between 20 and 30% of total reads, which would have otherwise been excluded.  

This study has identified 330 and 339 differentially expressed repetitive elements (FDR 

less than 0.05), as a response to the p53 activating Nutlin chemical treatment, in p53 wildtype 

cancer and normal cells, respectively. Additionally, the differential expression analysis 

performed on the p53 knockout cancer cells yielded comparatively very few significant reads 

(FDR less than 0.05) identifying only 11 DE REs. This DE results was expected as the chemical 

treatment groups compared in the DEA rely on the experimental activation of p53, without p53 

the treatments would be expected to have little effect on gene expression. The DE REs identified 

in the HCT116 p53 knockout cells also had use as a filter to remove non-p53 associated DE REs 

from the results of the other DEAs.    

This study has identified a robust set of peaks associated with p53 activation in cancer 

and normal cells. This peak set has been validated via a plurality of overlap during comparison 

with the Bao p53 consensus normal cell and cancer cell peaks sets. RE-Peak colocalization sets 

have been generated characterizing genomic proximity suggesting an association between 

differentially expressed REs and p53 associated peaks. Monte Carlo simulations have been 

performed and verify that the rate of these RE-Peak colocalizations are unlikely a byproduct of 



46 
 

 

random chance. Transposable elements with high levels of differential expression that have 

colocalized with multiple peaks are the strongest candidates for regulatory relationships with p53 

or a p53 controlled protein. Multiple transposable elements have been identified in the RE-Peak 

colocalization tables that look to have strong interactions with p53 associated peaks.    

However, this study was an exploratory analysis combining multiple datasets and was 

limited in several ways. The colocalization analysis of the IMR90 ChIP-Seq and RNA-Seq may 

have been impacted by differences in IMR90 expression. While both analyses were performed 

using samples of the IMR90 cell line the analyses were run five years apart and by different labs. 

The IMR90 cells used in the ChIP-Seq may have accumulated a small number of mutations in 

the five years before the IMR90 cells were used in the RNA-Seq analysis. Providing the cell line 

has been maintained correctly by the manufacturer this problem should pose little risk to 

impacting the outcome of the experiment.  

Similarly, use of the IMR90 cell line itself presents a limitation of the analysis. In the 

analysis IMR90 cells are used to represent normal tissue, however the process of immortalizing a 

cell line comes at a cost. The IMR90 cells have been mutated in some way to make them 

immortal and no longer truly represent normal cells. The focus of this study is related to p53 

expression and p53 with its outsized role in cell cycle progression may have been affected by the 

immortalization process. These results can only be used as an approximation of the activity of 

p53 in normal tissue.  

All differential expression analyses were performed with only one experimental replicate 

sample. While one experimental replicate is the minimum number of sample replicates needed to 

perform a differential expression analysis, more replicates are always suggested. Including 

multiple replicates increases the statistical power of the model and overall confidence in the 
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results of the differential expression analysis. This analysis would have benefited from including 

more than one replicate of each sample.   

Future work should be done to verify the colocalization analysis performed in the study. 

Analyses with additional experimental replicates performed on the same tissue types would 

provide greater evidence supporting the existence of p53 regulated repetitive elements. 

Alternative tissue types should be investigated with both cancer and normal cells samples to 

determine if these colocalizations are tissue specific or are representative of a shared mechanism. 

A replication of the analysis in samples of truly normal lung fibroblasts and a comparison with 

the IMR90 results would also shed insight on both the colocalizations observed and the 

drawbacks associated with using an immortalized cell line to represent normal cells.  

The results of the colocalization and Monte Carlo analyses suggest a genuine association  

between p53 and specific transposable elements. Wet lab work should be done to verify the 

existence of the most significant transposable elements identified by the analysis. The RT-PCR 

method could be used to detect the expression of specific transposable elements and additional 

knockout experiments could be performed to investigate if the transposable elements have some 

greater functional role in the cell.  

Cancers are the second most common cause of death in the United States, taking the lives 

of almost 600,000 people each year. P53 has an essential role in preventing cancer with more 

than half of all primary tumors carrying a p53 mutation. A better understanding of the p53 

regulatory network may lead to the advent of novel therapeutics for the improved treatment of 

these devastating diseases. This project has provided evidence that the regulation of transposable 

elements is another part of the p53 mechanism and warrants continued investigation. 
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