
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

11-30-2020

Constraint Satisfaction Techniques for Combinatorial Problems Constraint Satisfaction Techniques for Combinatorial Problems

David E. Narvaez
den9562@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Narvaez, David E., "Constraint Satisfaction Techniques for Combinatorial Problems" (2020). Thesis.
Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10616?utm_source=repository.rit.edu%2Ftheses%2F10616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Constraint Satisfaction Techniques
for Combinatorial Problems

by

David E. Narváez

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in Computing and Information Sciences

B. Thomas Golisano College of Computing and
Information Sciences

Rochester Institute of Technology
Rochester, New York
November 30, 2020

Constraint Satisfaction Techniques for Combinatorial Problems

By

 David Narváez

Committee Approval:
We, the undersigned committee members, certify that we have advised and/or supervised the
candidate on the work described in this dissertation. We further certify that we have reviewed the
dissertation manuscript and approve it in partial fulfillment of the requirements of the degree of
Doctor of Philosophy in Computing and Information Sciences.

Dr. Edith Hemaspaandra Date
Dissertation Advisor

Dr. Stanisław Radziszowski Date
Dissertation Advisor

Dr. Ivona Bezáková Date
Dissertation Committee Member

Dr. Matthew Fluet Date
Dissertation Committee Member

Dr. Lane A. Hemaspaandra Date
Dissertation Committee Member

Dr. Darren Narayan Date
Dissertation Defense Chairperson

 Certified by:

Dr. Pengcheng Shi Date
Ph.D. Program Director, Computing and Information Sciences

Constraint Satisfaction Techniques
for Combinatorial Problems

by
David E. Narváez

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Ph.D. Program in Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

The last two decades have seen extraordinary advances in tools and techniques
for constraint satisfaction. These advances have in turn created great interest
in their industrial applications. As a result, tools and techniques are often
tailored to meet the needs of industrial applications out of the box. We claim
that in the case of abstract combinatorial problems in discrete mathematics,
the standard tools and techniques require special considerations in order to
be applied effectively. The main objective of this thesis is to help researchers
in discrete mathematics weave through the landscape of constraint satisfac-
tion techniques in order to pick the right tool for the job. We consider con-
straint satisfaction paradigms like satisfiability of Boolean formulas and answer
set programming, and techniques like symmetry breaking. Our contributions
range from theoretical results to practical issues regarding tool applications to
combinatorial problems. We prove search-versus-decision complexity results
for problems about backbones and backdoors of Boolean formulas. We con-
sider applications of constraint satisfaction techniques to problems in graph
arrowing (specifically in Ramsey and Folkman theory) and computational so-
cial choice. Our contributions show how applying constraint satisfaction tech-
niques to abstract combinatorial problems poses additional challenges. We
show how these challenges can be addressed. Additionally, we consider the
issue of trusting the results of applying constraint satisfaction techniques to
combinatorial problems by relying on verified computations.

iii

Acknowledgments

The work that appears in this thesis was supported in part by grant no. DUE-
1819546 of the National Science Foundation.

iv

Contents

1 Introduction 1
1.1 Summary of Contributions . 5

I An Overview of Our Framework 6

2 Constraint Satisfaction 7
2.1 Satisfiability of Boolean Formulas 7

2.1.1 The Conjunctive Normal Form 9
2.1.2 Converting from DNF to CNF 10
2.1.3 Encoding Cardinality Constraints in SAT 11
2.1.4 Variations of SAT . 12
2.1.5 Quantified Boolean Formulas 13

2.2 Answer Set Programming . 14
2.2.1 The “Guess and Check” Approach 16
2.2.2 The Saturation Technique 17

2.3 Symmetry Breaking for CSPs 18

3 Verified Computations 21
3.1 Verified Tools . 22
3.2 Verified Results . 22

II Our Contributions 24

4 Backbones and Backdoors 25

v

CONTENTS vi

4.1 Definitions and Notation . 26
4.2 Backbones of Satisfiable Formulas 26

4.2.1 Results Under a Strong Assumption 27
4.2.2 Results under a Weak Assumption 37

4.3 Backdoors to CNF Formulas . 40
4.4 Conclusions and Related Work 45

5 Graph Arrowing 46
5.1 Definitions . 47
5.2 CSP Encodings for Graph Arrowing 49
5.3 Enumerating Colorings Modulo Symmetries 51

5.3.1 Number of Satisfying Assignments 52
5.3.2 Incomplete Sets of Colorings 55

5.4 A QSAT Benchmark Based on Vertex-Folkman Graphs 57
5.4.1 Symmetry Breaking . 60
5.4.2 Clausal Encoding . 61
5.4.3 Circuit Encoding . 62
5.4.4 Case Studies . 63

5.5 Insight for Ramsey-type Problems via SAT 64
5.5.1 The Number of (Cn,K4)e-good Colorings 64
5.5.2 The Vertex-Folkman Number Fv(K3,K3; J4) 65

6 Computational Social Choice 66
6.1 Background and Definitions . 67
6.2 Election Systems with Very Hard Control Problems 68
6.3 ASP Encodings . 69
6.4 Similar Encoding Approaches 72

7 Formally Verified Symmetry Breaker 73
7.1 Formalizing Crawford’s Symmetry Breaking 74
7.2 Conclusions and Future Work 86

8 Conclusions 88

Appendices 103

CONTENTS vii

A Interactive Theorem Provers 104
A.1 Dependent Types . 106
A.2 Inheritance . 109
A.3 The Issue of Unordered Sets . 111
A.4 Code Extraction . 113
A.5 Conclusions . 114

List of Publications

The following is a list of publications that form the base of this thesis.
The contributions in Chapter 4 appear in the following publications:

• L. A. Hemaspaandra and D. E. Narváez. The opacity of backbones. In
31st AAAI Conference on Artificial Intelligence, pages 3900-3906. AAAI
Press, Feb. 2017. (Expanded version: arXiv:1606.03634)

• L. A. Hemaspaandra and D. E. Narváez. Existence versus exploitation:
The opacity of backdoors and backbones under a weak assumption. In
45th International Conference on Current Trends in Theory and Practice
of Computer Science, pages 247-259. Springer, 2019.

The contributions in Chapter 5 appear in the following publications:

• D. E. Narváez. Exploring the use of Shatter for AllSAT through
Ramsey-type problems (Student Abstract). In 32nd AAAI Conference
on Artificial Intelligence, pages 8123-8124. AAAI Press, 2018. (Ex-
panded version: arXiv:1711.06362)

• C. Jayawardene, D. E. Narváez, and S. P. Radziszowski. Star-critical
Ramsey numbers for cycles versusK4. Discussiones Mathematicae Graph
Theory, (2629), 2018. In press.

• D. E. Narváez. A QSAT benchmark based on vertex-Folkman problems
(Student Abstract). In 34th AAAI Conference on Artificial Intelligence,
34(10), 13881–13882. AAAI Press, 2020.

The contributions in Chapter 6 appear in the following publications:

viii

CONTENTS ix

• Z. Fitzsimmons, E. Hemaspaandra, A. Hoover, and D. E. Narváez. Very
hard electoral control problems. In COMSOC18, 2018.

• Z. Fitzsimmons, E. Hemaspaandra, A. Hoover, and D. E. Narváez. Very
hard electoral control problems. In 33rd AAAI Conference on Artificial
Intelligence, pages 1933-1940. AAAI Press, 2019.

The contributions in Chapter 7 appear in the following publication:

• D. E. Narváez. Formalizing CNF SAT symmetry breaking in PVS. In
NASA Formal Methods Symposium, volume 11460 of Lecture Notes in
Computer Science, pages 341-354. Springer, 2019.

Chapter 1

Introduction

In the original conception of computers (for instance, Babbage’s Analytical
Engine), these machines would work on some input to calculate the value
of an expression. Problems of this kind were, and still are to some fields
inside and outside of computer science, the standard definition of what a
computational problem is. As a simplified example, consider the following
arithmetic expression:

2× 4 + 3× 5 = ?

The language of arithmetic provides a blueprint of the steps to follow in order
to calculate the value of the symbol ? that, when replaced in the above
expression, will make it true. From our understanding of arithmetic, the value
that ? should take is 23. On the other hand, one can ask the following
question:

2 ? 4 ? 3 ? 5 = 23

That is, which operators should replace the ? symbols so that the expression
is true? We know an answer from the example above, but how would one go
about reaching that answer without prior knowledge? A straightforward strat-
egy is to try every possible combination of operators in every position, but one
can do better. This is indeed the nature of combinatorial problems: problems
whose naïve solution strategy involves trying every possible combination over
a space of potential solutions.

Combinatorial problems appear in all aspects of life, and even decep-
tively simple problems can hide interesting combinational underlying ques-

1

CHAPTER 1. INTRODUCTION 2

tions. Think back, for instance, about the simple example above: How many
valid ways are there to perform the arithmetical operations with a computer
that is only able to perform one operation at a time? Is one way better than
the others? While the answers to these questions for the particular example we
presented are both simple and inconsequential, generalizations of this question
have puzzled mathematicians for decades. For example, devising new matrix
multiplication schemes which reduce the number of required multiplications of
floating-point numbers is a notably difficult combinatorial problem [62]. Very
little is known about what the minimum number of multiplications required
for matrices of order n > 2 is, yet obtaining minimal schemes would greatly
improve the running time of many numerical applications.

As computers have advanced, mathematicians have benefited from the use
of computer programs to find answers to combinatorial problems. The degree
of complexity of the work done by a computer when solving a problem has
ranged from straightforward-but-tedious case analysis to intricate heuristics
to explore large search spaces. It is clear that the nature of combinatorial
problems is such that there will always be open questions whose answers are
beyond the scope of what computers can realistically achieve. Nevertheless,
there is continuous research seeking to match the latest advances in computing
power with the latest advances in mathematics in order to push the boundaries
of what questions can be answered with the help of computers.

An important line of research in the effort of incorporating computers
into research in discrete mathematics is formulating combinatorial problems
as constraint satisfaction problems (CSPs). This allows mathematicians to
use a common language to encode combinatorial problems. Once these en-
codings are obtained, one can make use of a plethora of available solvers and
tools to find answers to the problem in question. Nevertheless, we argue
that there is something special about combinatorial problems of the type we
consider in this thesis that makes applying constraint satisfaction paradigms
more difficult. The types of problems for which CSPs have been applicable
can be roughly divided into two categories: industrial applications and ab-
stract applications. While no formal definition of these has been given in the
literature1, one can informally define industrial applications as those arising

1It is important to mention here that some work has been done in trying to characterize
instances of constraint satisfaction problems stemming from industrial applications. For
example, the work by Ansótegui, Bonet, and Levy [4] proposes a structural characterization

CHAPTER 1. INTRODUCTION 3

from practical applications like circuit design and hardware checking, whereas
abstract applications correspond to CSPs arising from problems in discrete
mathematics. The development of constraint satisfaction techniques over the
last few decades has focused mainly on industrial applications. The focus of
our research, on the other hand, is on using constraint satisfaction techniques
specifically for abstract combinatorial problems.

Matching the right type of constraint satisfaction paradigm to the combi-
natorial problem at hand can be difficult in many aspects. Different paradigms
are able to encode different levels of difficulty, but some of the less powerful
techniques enjoy the largest tool support in practice. The main objective of
this thesis is to help researchers weave through the landscape of constraint
satisfaction techniques in order to pick the right tool for the job. Our work is
comprehensive in the sense that we analyze theoretical and practical aspects
of applying constraint satisfaction techniques to combinatorial problems. This
is important because no particular algorithm or constraint satisfaction tech-
nique will outperform the rest on every family of problems we explore [114].
Instead, we need to understand the structure and the inherent hardness of the
problems and match these with the techniques and algorithms that are most
appropriate.

This thesis is organized in two parts. Part I contains an overview of the
theoretical foundations over which we build our contributions. A prerequisite
is a basic understanding of complexity theory. We refer the reader to one of
the many books on this subject (e.g., [63, 110]). Computational complexity
provides a concrete definition of how “hard” a problem can be. This will help
us formally differentiate the levels of hardness each paradigm supports.

Chapter 2 explains the constraint satisfaction paradigms we use in this
thesis. We cover Boolean formulas in Section 2.1 and answer set programming
in Section 2.2. Although these paradigms do not usually appear under the
same umbrella in the literature, we bring them into one framework. Section 2.3
deals with a problem that is prevalent in encodings of abstract combinatorial
problems as CSPs regardless of the paradigm: the problem of symmetries.

Chapter 3 looks at two complementary aspects of the issue of trusting
the results obtained from CSP solvers: trusting the solvers themselves by

of Boolean formulas in conjunctive normal form (see Section 2.1.1) that encode instances
of industrial applications by looking at the bipartite graph representing the relationships
between clauses and variables.

CHAPTER 1. INTRODUCTION 4

verifying their source code (Section 3.1), and trusting the results by verifying
the answers (Section 3.2).

With the fundamentals defined in Part I, Part II presents our contribu-
tions in using constraint satisfaction techniques for combinatorial problems.
We start in Chapter 4, proving complexity results related to backbones and
backdoors of Boolean formulas. Backbones and backdoors are hidden struc-
tures that have been linked to the hardness of instances of the satisfiability
problem for Boolean formulas.

Our contributions in Chapter 5 are in graph arrowing, an important con-
cept in extremal graph theory. We explain how to encode this property in
different constraint satisfaction paradigms in Section 5.2. In Section 5.3 we
address issues related to using symmetry breaking tools when enumerating
unique solutions for the CSPs obtained. Section 5.4 develops a benchmark for
quantified Boolean formulas based on vertex Folkman problems, an important
class of problems within graph arrowing. We conclude Chapter 5 describing
several results and contributions in our research that have been aided by the
use of these methods.

Chapter 6 contains our contributions in computational social choice. We
look at election systems whose control problems have high complexity. En-
coding these as constraint satisfaction problems thus require paradigms that
support such high complexity. We use answer set programming and show how
advanced techniques in ASP can be used to encode these problems.

Chapter 7 applies the approach explained in Section 3.1 to the important
task of breaking symmetries in Boolean formulas, as explained in Section 2.3.
This chapter shows the initial steps towards obtaining a formally-verified sym-
metry breaking tool using the Prototype Verification System (PVS) [89].

Finally, we conclude in Chapter 8 with a recapitulation of all the contribu-
tions listed in Part II. These contributions range from very theoretical work
in computational complexity to practical tools to perform (verified) compu-
tations. All of them have in common that they are intended, each from its
own angle, to aid researchers make use of constraint satisfaction techniques to
tackle abstract combinatorial problems.

In this thesis we have packaged our contributions in the most organized
and cohesive way possible under the common academic standards. Neverthe-
less, the experiences accumulated during years of research in these areas are
sometimes hard to structure as an academic contribution. Some of these ex-

CHAPTER 1. INTRODUCTION 5

periences are anecdotal or were obtained through ideas that ultimately failed.
We thus decided to add an appendix structured in a more subjective fashion.
Appendix A contains the view of the author of this thesis in relation to in-
teractive theorem provers, one of the frontiers towards which combinatorial
computing will continue expanding in the next few years.

1.1 Summary of Contributions
• We present Boolean formulas and answer set programming under the

same framework of constraint satisfaction in Chapter 2.

• We prove gaps between the computational complexity of the search
and decision problems of backbones of Boolean formulas (Theorem 4.3)
and backdoors to Boolean formulas in conjunctive normal form (Theo-
rem 4.14) under reasonable assumptions.

• We show how to encode graph arrowing problems as Boolean formulas
and using answer set programming in Section 5.2.

• We prove that using Shatter, a popular tool for symmetry breaking
in Boolean formulas, to generate unique graph edge-colorings can in
fact increase the number of solutions (Section 5.3.1). We also present a
sufficient condition under which the edge-colorings so generated do not
represent every equivalence class of colorings (Theorem 5.11).

• We introduce a benchmark for quantified Boolean formulas based on
vertex Folkman problems in Section 5.4.

• We show how to encode control problems of high computational com-
plexity using the familiar “guess and check” approach for answer set
programming, commonly applied only to problems in NP.

• We initiate the formalization of a symmetry breaking tool in the Proto-
type Verification System [89] by formalizing the proof of Theorem 2.3.

Part I

An Overview of Our
Framework

6

Chapter 2

Constraint Satisfaction

In the broadest sense, constraint satisfaction problems are problems that are
expressed as sets of constraints over variables and operations over these vari-
ables. The variables may take values from some domain D and the question
is whether there exists an assignment of values in D to the variables such that
the set of constraints in the problem is satisfied.

Different choices of domains and operations yield different paradigms of
constraint satisfaction. In this chapter we explain the three paradigms we
intend to use in our research: SAT, QSAT and ASP. Although these three
paradigms do not usually appear under the same umbrella in the literature,
we bring them into our framework. Our brief overview of each paradigm will
discuss the basics of the theoretical fundamentals behind the paradigm and
its use in practice. We will also discuss their expressive power in terms of the
computational complexity they are able to encode.

For the sake of conciseness we refrain from giving detailed explanations
and examples for each paradigm. Instead, we refer the reader to sources in
the literature that go deep into the theoretical and practical aspects of each
paradigm.

2.1 Satisfiability of Boolean Formulas
Arguably the most common paradigm in constraint satisfaction, satisfiabil-
ity problems for Boolean formulas (SAT) are constraint satisfaction problems
where the domain is the Boolean domain containing two values > and ⊥ (true

7

CHAPTER 2. CONSTRAINT SATISFACTION 8

and false). In theory, the operations allowed over the variables of a SAT
problem are all the customary logical operations like implications (→) and
exclusive disjunctions (⊕). In practice, most SAT solvers take as an input a
Boolean formula in conjunctive normal form (CNF) which is a conjunction of
disjunctions. It is well known that any Boolean formula can be turned into an
equisatisfiable formula in CNF (see Section 2.1.1), thus restricting SAT solvers
to only work on formulas in CNF does not limit their power. It does, however,
imply that problem encodings that are not in CNF may require an additional
preprocessing step before using a SAT solver.

Industrial applications of SAT have spurred great interest in this problem,
leading to advances in the development of SAT solvers. Nevertheless, the
popularity of SAT solvers and the wide range of SAT solvers available as off-
the-shelf tools do require researchers to understand, at least to some extent,
the internals of the approach each solver implements. Most solvers implement
one of two approaches: conflict detection/clause learning (CDCL) or look-
ahead. CDCL solvers have been extremely popular in industrial applications,
yet look-ahead solvers seem to perform better in combinatorial instances that
are highly structured [74].

It is easy to see what kind of problems can be expressed as Boolean sat-
isfiability problems: the Cook-Levin [22] theorem implies that all problems in
NP can be turned to SAT problems in polynomial time. What this theorem
does not imply is that SAT is a convenient way to encode every problem in
NP, and other paradigms of CSPs explained in this chapter and elsewhere may
be more suitable for certain problems.

For a Boolean formula F , we denote by V (F) the set of variables appearing
in F . We assume that whenever V (F) = ∅, then either F = > or F = ⊥, i.e.,
the only Boolean formulas we admit are formulas without constants except
for the formulas > and ⊥. Adopting the notation of Williams, Gomes, and
Selman [113], we use the following. A partial assignment of F is a function aS :
S → {>,⊥} that assigns Boolean values to the variables in a set S ⊆ V (F).
A Boolean formula is satisfiable if there exists and assignment aV (F) of the
variables in F such that, when the variables are replaced with the assigned
values, the formula evaluates to >. A Boolean formula is unsatisfiable if
no such assignment exists. For a Boolean value v ∈ {⊥,>} and a variable
x ∈ V (F), the notation F [x/v] denotes the formula F after replacing every

CHAPTER 2. CONSTRAINT SATISFACTION 9

occurrence of x by v and simplifying1. This extends to partial assignments,
e.g., to F [aS], in the natural way.

2.1.1 The Conjunctive Normal Form

As mentioned before, the majority of SAT solvers available expect the input
formula to be in conjunctive normal form (CNF). This normal form restricts
the input formula to be a conjunction of disjunctions, e.g.:

(x ∨ y) ∧ (x ∨ z)

Each disjunction is called a (CNF) clause. Every Boolean formula can be
converted to an equisatisfiable CNF formula which has a number of auxiliary
variables that is at most linear in the number of variables of the original
formula [107]. Equisatisfiability means that the formula resulting from the
conversion will be satisfiable if and only if the original formula is satisfiable.

We define satisfiability of CNF formulas using the language of set theory.
This is done by formalizing the intuition that, in order for an assignment to
satisfy a CNF formula, it must set at least one literal in every clause to >.
One can then define a CNF formula F to be a collection of clauses, each clause
being a set of literals. F ∈ SAT if and only if there exists an assignment aV (F)

such that for all clauses C ∈ F there exists a literal l ∈ C such that aV (F)

sets l to >. Under this formalization, two trivial cases arise: F is trivially
in SAT if F is empty, and F is trivially not in SAT if ∅ ∈ F . We can also
formalize simplification using this notation: after assigning a variable x to >
(resp., ⊥), the formula is simplified by removing all clauses that contain the
literal x (resp., x) and removing the literal x (resp., x) from the remaining
clauses. This formalization extends to simplification of a formula over a partial
assignment in the natural way.

Example 2.1. Consider the CNF formula F = (x1∨x2∨x3∨x5)∧(x1∨x2∨x4∨
x5)∧(x3∨x4)∧(x1∨x2∨x3∨x5). We can express this formula in our set theory
notation as F = {{x1, x2, x3, x5}, {x1, x2, x4, x5}, {x3, x4}, {x1, x2, x3, x5}}. If

1Note that in our framework, Boolean formulas do not admit constant values. For exam-
ple, the expression F = (> ∨ x) ∧ (x ∨ y) is not admissible. Thus simplification is defined
as removing all constants from the expression obtained by replacing the variables with their
assigned Boolean values via the standard operations. In the previous example, the Boolean
formula in question is F = x ∨ y.

CHAPTER 2. CONSTRAINT SATISFACTION 10

we assign x3 to ⊥ and x4 to >, we have F [x3/⊥, x4/>] = {∅, {x1, x2, x5}},
which is unsatisfiable because it contains the empty set.

2.1.2 Converting from DNF to CNF

Another normal form, which is in many senses the dual of CNF, is the dis-
junctive normal form (DNF) which is a disjunction of conjunctions, e.g.:

(a ∧ b) ∨ (a ∧ c)

In DNF, the conjunctions are also called (DNF) clauses. Many constraints are
easier to express in DNF than in CNF and, in fact, we will use DNF encodings
throughout this thesis. Given its prominence, we will briefly discuss in this
section two transformations from DNF to CNF.

The first transformation, attributed to Tseitin [107], is based on the intu-
ition that a DNF formula is satisfiable if there is an assignment that satisfies
at least one of its clauses, and each clause is satisfied if all of the literals are
set to >. Let F be a formula in DNF, where we adopt a similar set-theoretical
notation for its clauses and literals as in Section 2.1.1. Let C ∈ F be a DNF
clause in F , we create an auxiliary variable xC which will be true if and only
if the literals in C are all true, that is:

xC ↔
∧
l∈C

l

or equivalently (
xC →

∧
l∈C

l

)
∧

(∧
l∈C

l→ xC

)
which, applying distributivity and De Morgan’s laws, is equivalent to(∧

l∈C
(xC ∨ l)

)
∧

(∨
l∈C

l ∨ xC

)
,

and this last formula is in CNF. Aggregating these CNF subformulas for every
DNF clause C ∈ F , and finally adding the CNF clause

∨
C∈F

xC , one obtains a

CNF formula F ′ such that F and F ′ are equisatisfiable.

CHAPTER 2. CONSTRAINT SATISFACTION 11

Example 2.2. For the formula F = (a ∧ b) ∨ (a ∧ c) above with two DNF
clauses, the CNF formula resulting from the Tseitin transformation is F ′ =
(x1 ∨ a) ∧ (x1 ∨ b) ∧ (a ∨ b ∨ x1) ∧ (x2 ∨ a) ∧ (x2 ∨ c) ∧ (a ∨ c ∨ x2) ∧ (x1 ∨ x2).

A simplification of the above transformation, attributed to the work of
Plaisted and Greenbaum [93] is as follows. Note that in the transformation
above, any assignment aV (F ′) that satisfies F ′ will have to set one variable xC
to > for some clause C. Due of the implication xC →

∧
l∈C

l, all the literals

l ∈ C will have to be set to >, so aV (F ′), restricted to the variables in F ,
satisfies F . This reasoning does not involve the condition

∧
l∈C

l → xC and

those clauses are, in fact, redundant. This optimization is important because
modern SAT solvers benefit from short CNF clauses like (xC ∨ l) and not from

long clauses like
(∨

l∈C
l ∨ xC

)
.

2.1.3 Encoding Cardinality Constraints in SAT

Many interesting problems in combinatorics constrain the solution to be such
that some condition involving the cardinality of a set is satisfied. Cardinality
constraints are thus important constraint satisfaction techniques and have
been the subject of much research in the field, both from the theoretical and the
practical point of view [8,101]. We discuss three basic cardinality constraints,
and some ways to encode them, to illustrate the techniques used in this matter.
Nevertheless, the literature regarding cardinality constraints in SAT encodings
is vast and we refer the reader to other sources for more details on the state-
of-the-art.

For a set L of literals, we define the AtLeastK(L, k) constraint as the
formula that guarantees that at least k of the literals in L are set to > in
a satisfying assignment. As a simple example, consider the particular case
AtLeastK(L, 1), also known as AtLeastOne(L) in the literature, which is
simply the constraint

∨
l∈L

l. This constraint can be considered a CNF clause

with ‖L‖ literals, or a DNF formula with ‖L‖ unit clauses, where ‖L‖ denotes
the cardinality of the set L. The picture is clearer when one considers the

CHAPTER 2. CONSTRAINT SATISFACTION 12

simplest generalization of this idea:

AtLeastK(L, k) ≡
∨

{l1,l2,...,lk}⊆L

(l1 ∧ l2 ∧ · · · ∧ lk)

which is clearly a DNF formula. The resulting formula will then require a
transformation to CNF as explained in Section 2.1.2 if it was to be used as
input to most of the commonly available SAT solvers.

The AtMostK(L, k) constraint is defined analogously as the formula that
guarantees that at most k of the literals in L are set to >. This is to say that at
least ‖L‖−k of the literals are set to ⊥, so one can in fact use the idea from the
previous paragraph here. Define L as the set of literals in L, but negated, i.e.
L = {l | l ∈ L}, then AtMostK(L, k) ≡ AtLeastK(L, ‖L‖− k). While this
approach is convenient in the sense that it implements both AtLeastK(L, k)
and AtMostK(L, k) under the same framework, it has the shortcoming that
for small k, the DNF clauses in the AtMostK(L, k) formula are quite large.
An alternative is to note that at most k literals in L are set to > if and only if
in any subset of k + 1 literals in L, there is at least one literal set to ⊥. This
idea leads to the following encoding:

AtMostK(L, k) ≡
∧

{l1,l2,...,lk+1}⊆L

(l1 ∨ l2 ∨ . . . ∨ lk+1).

Finally, the ExactlyK(L, k) constraint guarantees that exactly k of the
literals in L are set to >. It is easy to implement this constraint in terms of
the constraints above:

ExactlyK(L, k) ≡ AtLeastK(L, k) ∧AtMostK(L, k).

In particular, we have the following:

ExactlyOne(L) ≡ ExactlyK(L, 1) ≡

(∨
l∈L

l

)
∧

 ∧
{l1,l2}∈L

(l1 ∨ l2)

.
2.1.4 Variations of SAT

While the SAT problem is concerned with finding a satisfying assignment for
the variables of a Boolean formulas, there are several problems formulated

CHAPTER 2. CONSTRAINT SATISFACTION 13

around SAT. The variations that are relevant for this thesis are AllSAT and
#SAT. The AllSAT problem consists of listing all the satisfying assignments
of a Boolean formula and the #SAT problem is to determine the number of
satisfying assignments of a formula.

AllSAT has gained popularity in recent years due to its industrial ap-
plications like model checking [51, 82, 116] and data mining [66]. The survey
by Toda and Soh [106] summarizes the state-of-the-art in techniques used for
solving AllSAT problems. It is clear that #SAT can be solved by counting
the models output by an AllSAT solver, yet algorithms exist that are able
to count the number of models without actually generating them [105].

2.1.5 Quantified Boolean Formulas

When one extends the symbols allowed in the Boolean problem to admit the
quantifiers ∃ and ∀ one obtains a quantified Boolean formula (QBF). QBFs are
commonly expressed in prenex normal form in which quantifiers over lists of
symbols alternate, i.e., formulas of the form Q1x1Q2x2 . . . Qnxn. φ where φ is a
Boolean formula, each xi is a list of variables, and Qi ∈ {∃, ∀} with Qi 6= Qi+1

are the (alternating) quantifiers for each list of variables. The existential
(resp. universal) variables of a QBF F are those variables that appear in
a block quantified by ∃ (resp. ∀). Q1x1Q2x2 . . . Qnxn is the prefix and φ
is the matrix. Extending Boolean formulas with quantifiers has important
implications for the complexity of problems that can be represented using this
paradigm. The True Quantified Boolean Formula (TQBF) problem which asks
whether a quantified Boolean formula is true is PSPACE-complete [103].

A Skolem function for an existential variable x in a QBF F in prenex
normal form is a Boolean function fx that takes as input the vector of all
the universal variables that appear before x in the prefix of F . F is true if
and only if there exists a set of Skolem functions for each existential variable
in F such that, when these variables are replaced by their respective Skolem
functions (themselves represented as Boolean formulas), the resulting formula
is a tautology. The process of replacing existential variables by their Skolem
functions is known as Skolemization. The equivalence between a QBF being
true and the existence of Skolem functions that reduce the QBF to a tautology
provides a parallel to the SAT problem for Boolean formulas. Namely, we say a
QBF is satisfiable if there is an assignment of the existential variables mapping

CHAPTER 2. CONSTRAINT SATISFACTION 14

them to Skolem functions such that the resulting QBF after Skolemization is
a tautology. It follows that a QBF is satisfiable if and only if it is true. The
problem of determining whether a QBF is satisfiable is known as QSAT and
is indeed equivalent to TQBF. To illustrate the parallel between QSAT and
SAT, consider a Boolean formula F and let x be a vector of the variables in
V (F) (in any order). Then the Boolean formula F is satisfiable if and only
if the QBF ∃x.F is true. In turn, the QBF ∃x.F is true if and only if we
can find Skolem functions for each variable x ∈ V (F) such that ∃x.F after
Skolemization is a tautology. Since there are no universal variables before x
in the prefix, these Skolem functions do not take any variables as inputs, i.e.,
they are constant functions. If ∃x.F is satisfiable, then the constant Skolem
functions certifying this satisfiability in turn provide a satisfying assignment
for F and vice versa.

In the last few decades there has been increased interest in the development
of QSAT solvers: software to determine the satisfiability of QBFs. These
solvers have traditionally expected input to be in PCNF: formulas in prenex
normal form whose matrix is in CNF. Nevertheless, there are disadvantages
of requiring the matrix of some QBFs to be in CNF [5,68] and several formats
to express Boolean formulas as circuits have been proposed [11,70].

2.2 Answer Set Programming
A (disjunctive) answer set program is a set of constraints expressed as rules,
each rule involving atoms. For the purpose of this overview, it is enough to
define an atom as a constant, a variable, or a predicate over atoms. We indicate
that p is a k-ary predicate by writing p/k. An atom is ground if it contains
no variables, and an ASP program is ground if it contains only ground atoms.
A rule R is defined by 3 parts: the head of the rule H(R), the positive body of
the rule B+(R), and the negative body of the rule B−(R). Each of these parts
is a set of atoms. A set of atoms A satisfies (models) a rule R if one of the
following conditions hold2:

• There exists an atom a ∈ H(R) such that a ∈ A.
2At first glance, it seems from the conditions provided as if H(R) and B−(R) play the

exact same role, yet there are technical circumstances under which it does make a difference
if an atom appears in H(R) or in B−(R) so we chose to be more general and list these two
conditions separately.

CHAPTER 2. CONSTRAINT SATISFACTION 15

• There exists an atom a ∈ B+(R) such that a /∈ A.

• There exists an atom a ∈ B−(R) such that a ∈ A.

A set of atoms A satisfies (models) an ASP program Π if A satisfies every
rule R ∈ Π. For a rule R, we define R+ by its parts H(R+) = H(R) and
B+(R+) = B+(R) and B−(R) = ∅. We define the reduct [48] of a program Π
with respect to a set of atoms A as the program

ΠA =
{

R+ | R ∈ Π and for all a ∈ B−(R), a /∈ A
}

and define an answer set of Π as a set of atoms A that is a minimal model of
ΠA in the sense that no proper subset of A is a model of ΠA as well.

While our simplified exposition of ASP is purely set-theoretical, ASP is
more commonly presented in a syntactic fashion where rules are written as

a1, a2, . . . , ah ← b1, b2, . . . , bn, not bn+1, not bn+2, . . . , not bn+m.

where the ai atoms are the head of the rule, the bi atoms for 1 ≤ i ≤ n are the
positive body of the rule and the bn+i atoms for 1 ≤ i ≤ m are the negative
body of the rule. It is also more common to find definitions of ASP that
are only concerned with normal ASP programs, which are programs in which
every rule R is such that ‖H(R)‖ ≤ 1. In practice, ASP atoms allow much
richer syntax like arithmetic expression and functions. Many modern input
languages for ASP extend this paradigm with cardinality constraint rules of
the form {a1, a2, . . . , ak} = C meaning exactly C of the atoms in the set
{a1, a2, . . . , ak} must be in the answer set, and aggregate functions like sum,
count and average.

Normal ASP programs are able to express NP-complete problems [78],
and have become popular in doing so due to the simplicity of the encod-
ings obtained when one exploits the input languages of popular ASP tools
like clingo [47]. Disjunctive ASP programs, on the other hand, can express
Σp
2-complete problems [36] but these encodings are not as accessible as those

obtained from encoding NP-complete problems in normal ASP programs.3 A
3Here we refrain from providing an exact bound since this depends on a number of features

that may be added to the definitions above. The survey by Dantsin et. al [27] provides details
on exact bounds in the complexity and expressive power of ASP programs.

CHAPTER 2. CONSTRAINT SATISFACTION 16

Π3 = Πcolor ∪Πunique ∪Πedge

Πcolor = {color(V, r), color(V,w), color(V, b)← vertex(V).}
Πunique = {← vertex(V), color(V, r), color(V,w).

← vertex(V), color(V, r), color(V, b).
← vertex(V), color(V,w), color(V, b).}

Πedge = {← edge(U, V), color(V, r), color(U, r).
← edge(U, V), color(V,w), color(U,w).
← edge(U, V), color(V, b), color(U, b).}

Figure 2.1: An encoding of the 3-colorability property in ASP.

more in-depth introduction to ASP can be found in Eiter, Ianni, and Kren-
nwallner [37], including a detailed explanation of the “guess and check” ap-
proach that has become very popular for expressing NP-complete constraint
problems in ASP.

2.2.1 The “Guess and Check” Approach

We illustrate the use of ASP as a constraint programming paradigm with the
following example. Consider an ASP encoding of 3-colorability problem. The
program Π3 defined over predicates vertex/1, edge/2 and color/2, variables V
and U , and constants r, w, and b as per Figure 2.1 encodes the problem of
coloring each vertex of a graph with either red (r), white (w) or blue (b) such
that two vertices connected by an edge do not have the same color. Intuitively,
an explanation of the ASP program in Figure 2.1 goes like this: an ASP solver
“guesses” a color for each vertex, as indicated in the program Πcolor, and then
checks that the coloring is valid according to the rules in Πunique ∪Πedge.

We can immediately observe two things about Π3: it is not ground as it
contains variables V and U and it contains no information about any specific
graph. In this sense, Π3 encodes the 3-colorability problem but does not encode
an instance of the problem itself. In order to use Π3 to solve an instance of
the 3-colorability problem, one needs to provide a graph encoded in a format
that is compatible with Π3: marking every vertex with the vertex/1 predicate

CHAPTER 2. CONSTRAINT SATISFACTION 17

a

b

c

(a) A graph Gex on 3 vertices.

Πex = {
vertex(a)← .

vertex(b)← .

vertex(c)← .

edge(a, b)← .

edge(a, c)← .

}

(b) Encoding Gex as an ASP pro-
gram.

Figure 2.2: A graph and its encoding as an ASP program.

and every edge with the edge/2 predicate. For instance, Figure 2.2 shows a
graph and an encoding of the graph in our required format.

2.2.2 The Saturation Technique

It is customary to encode a decision problem as an answer set program such
that the answer sets of this program correspond to certificates for “yes” answers
to the problem. Under this approach, a “no” answer is certified by the lack
of an answer set. However, there are circumstances in which a “no” answer
must be certified by an answer set (e.g., problems in coNP). The saturation
technique (see, e.g., [37]) achieves this by designing an answer set program
that has a unique answer set including a special token atom if and only if the
answer to the original decision problem is “no.” This answer set also contains
the set S of all atoms that would be candidate certificates for “yes” answers.
Rules are added so that every time the token atom is generated, all atoms in S
are generated as well, thus “saturating” the model. Informally, this technique
allows us to encode a “coNP check” into our program, which along with an
“NP guess,” allows us to encode problems in Σp

2 = NPNP, the class of problems
solvable by a nondeterministic polynomial-time Turing machine with access
to an NP oracle.

CHAPTER 2. CONSTRAINT SATISFACTION 18

2.3 Symmetry Breaking for CSPs
Regardless of whether we use CSPs to determine the existence of a satisfying
assignment (model) for, or to enumerate all the models of a problem encoded
as a set of constraints, it is important to take into account the symmetries
that exist in such an encoding. In the case of determining the satisfiability
of a problem encoding, a solver may spend valuable time exploring parts of
the search space searching for a model, when these parts may be symmetric
to other parts that have already been explored unsuccessfully. In the case of
generating all the models of a problem encoding, the number of models could
be exponential in the size of the input and generating only a subset of them—
namely, those which are essentially different under symmetries—may convey
all the information necessary to study the entire space of models.

Symmetries in a CSP may be introduced from several sources, some of them
inherent to the domain from which the problem is drawn. For instance, the
encoding of a graph problem as an ASP program will inherit the symmetries
(automorphisms) of the input graph. Breaking symmetries has been identified
as a crucial step towards solving combinatorial problems using CSPs [21,61,65].
While the domain-specific symmetry breaking techniques that are relevant
to this thesis would be better explained within the context of each problem
introduced in Part II, we will explain one general-purpose syntactic symmetry
breaking technique in this chapter.

The seminal work by Crawford [24, 25] addressed syntactic symmetry in
CNF formulas by interpreting these as graphs and using the automorphism
group of such graphs to identify syntactic symmetry. These symmetries are
broken by appending symmetry breaking clauses to the input formula. Aloul et
al. [2] later improved the original construction to be able to detect phase-shifts
symmetries (symmetries that map a literal to its negation). Aloul et al. [3]
exploited the recursive nature of the symmetry breaking predicates formulated
in this technique to reduce the size of the symmetry breaking clauses added
to the input formula and made their work available as the widely successful
tool Shatter. More recently, Devriendt et al. [32] improved the symmetry
breaking clauses added by Shatter and added another technique for symmetry
breaking detection, namely row interchangeability, making these available in
the BreakID tool. The idea of detecting syntactic symmetries through a graph
representation of the input formula has also found its way into the related

CHAPTER 2. CONSTRAINT SATISFACTION 19

x1 x1 x2 x2 x3 x3

C1 C2

Figure 2.3: The graph corresponding to the CNF formula (x1∨x2)∧ (x1∨x3).
Vertex colors are represented by different node shapes.

paradigms of Answer Set Programming (ASP) and model expansion [33].
We lay out the fundamentals of Crawford’s approach to syntactic symmetry

breaking in Boolean formulas. We use the definition of CNF Boolean formulas
as sets, as in Section 2.1.1.

Definition 2.3 (Graph Representation). The graph representation of a CNF
formula F is a vertex-colored undirected graph GF whose set of vertices is the
union of the clauses of F in one color and the literals of F in another color.
The set of edges is defined as: (a) the set of edges between a literal l and its
negation l and (b) the set of edges between a clause C and the literals l ∈ C.

Figure 2.3 shows what the graph GF would be for a formula F = (x1 ∨
x2)∧ (x1 ∨ x3). Recall that the automorphisms of a graph are the vertex per-
mutations that preserve the set of edges. In our particular case, since we deal
with vertex-colored graphs, we only consider color-preserving automorphisms
(i.e., automorphisms that map vertices to vertices of the same color). Since
literal vertices will be mapped to literal vertices, the automorphisms of GF

naturally induce a permutation of the literals of F . The main theorem behind
Crawford’s method for syntactic symmetry breaking is the following.

Theorem 2.4. Given a formula F and a color-preserving automorphism φ of
GF , an assignment σ models a formula F if and only if the assignment σ ◦ φ
models F .

Theorem 2.4 in itself does not break symmetries in CNF formulas. In order
to use Theorem 2.4 for symmetry breaking, one can look at lexicographical
orderings of assignments. Fix an ordering of the literals of F (say, l1, l2, . . . , ln)
and let π be a permutation of these. We define the symmetry breaking predi-

CHAPTER 2. CONSTRAINT SATISFACTION 20

cate P (π) as follows:

P1(π) = l1 ≤ π(l1)

Pi(π) =

i−1∧
j=1

lj ≡ π(lj)

→ (li ≤ π(li)) for i > 1

P (π) =
n∧

i=1

Pi(π)

Predicate P (π) imposes a lexicographical order between two different assign-
ments since only one of them will satisfy P (π). Since, by Theorem 2.4, it is
true that for any satisfying assignment σ and any automorphism φ both σ and
σ ◦ φ satisfy F , P (φ) allows us to prefer σ over σ ◦ φ if σ is less or equal to
σ ◦ φ in lexicographical order. If F is satisfiable, such an assignment exists
because P (π) is a total order over the satisfying assignments of F . By adding
symmetry breaking predicates we are able to reduce the number of satisfying
assignments to search for while preserving satisfiability.

Theorem 2.5. Given a formula F and a color-preserving automorphism φ of
GF , F is satisfiable if and only if (F) ∧ P (φ) is satisfiable.

One can in fact add symmetry breaking predicates for any number of au-
tomorphisms while preserving satisfiability: observe that the lexicographical
minimum of the set of models of F is by definition less or equal to all of its
permutations, thus it satisfies all possible symmetry breaking predicates.

Chapter 3

Verified Computations

Abstract combinatorial problems that remain open are such that any solution,
or even significant progress towards their solution, will most likely require
ground-breaking mathematical results or heavy computational methods. In
fact, some will require a combination of both. While hand-written mathemat-
ical results have been traditionally accepted by researchers in combinatorics
via established peer-review processes, computational methods have been un-
der fire for a long time. Only recently have mathematicians started to become
more accepting of results obtained with non-trivial help from computers. The
issue with the approach of using computers to explore a large search space
until a solution is found is that it is hard to argue that no solution exists when
computers cannot find one. Not finding a solution may just be an indication
of an error in the software used to search.

A seminal example of the dilemma regarding computer-assisted proofs is
the four color theorem, which states that every map can be colored using four
colors so that bordering regions do not share the same color. Proving this
seemingly simple problem proved to be surprisingly difficult for purely ana-
lytical tools. In 1976, Appel and Haken [6,7] published a proof that relied on
dozens of pages of tedious manual calculations together with computer code
that was hard to verify. The crux of the argument was the inexistence of
a counterexample, i.e., a map that cannot be colored with just four colors.
This proof was, to many researchers, insufficient because it fell out of the
peer-review culture of the field. The concerns around this proof were some-
what alleviated after Robertson et al. [96] published a simpler—still computer

21

CHAPTER 3. VERIFIED COMPUTATIONS 22

assisted—proof in 1995.
The controversy about the validity of previous proofs of the four color

theorem was largely settled in 2005 when Gonthier [50] provided a proof of
this theorem using the Coq interactive theorem prover. The fact that a proof
assistant was used to produce this result shifts the concerns of validity from
the proof itself to the interactive theorem prover, the latter being widely used
as a general tool by many researchers and thus less likely to have defects that
could impact the soundness of the proof.

Verified computations can be performed in several ways. Two ways that
are relevant to our purposes are verified tools and verified computations. We
take a closer look at these two approaches as researchers in combinatorial
computing seeking to incorporate constraint satisfaction techniques into their
toolbox will likely need them.

3.1 Verified Tools
In the process of obtaining problem encodings for combinatorial problems, we
use code that automates conversions, preprocesses instances and transforms
outputs. Each piece of such a toolkit introduces trust issues since they could
potentially be flawed. An approach that increases the trust in these tools is to
obtain them through formal methods. Theorem proving systems like Isabelle1

and Coq2 provide code extraction mechanisms. These are mechanisms that
allows us to verify the property of the code we intend to run via theorems
whose proofs can be mechanically verified, and then extract executable code
from these specifications. This approach has been used to obtain verified
SAT solvers [79], verified algorithms for and-inverter graphs [28] which are
becoming a popular input format for QBF solvers (see Section 2.1.5), among
other tools.

3.2 Verified Results
This approach implements mechanisms by which an answer is provided to-
gether with a certificate of such an answer. It is, for example, easy to see how

1http://isabelle.in.tum.de/
2https://coq.inria.fr/

http://isabelle.in.tum.de/
https://coq.inria.fr/

CHAPTER 3. VERIFIED COMPUTATIONS 23

this idea plays out in the case of satisfiable Boolean formulas: it is enough
to provide an assignment of the variables that satisfies the formula. It is,
however, harder to devise a mechanism by which we could return the answer
“unsatisfiable” and provide, together with such an answer, a proof of unsatisfi-
ability. Several approaches have been developed in recent years, spurred by the
increasing use of SAT solvers in mission-critical scenarios. One way to achieve
this is to provide a minimal unsatisfiable subset of the input clauses [88] (as-
suming an input formula in CNF). If such a set is small enough to make the
unsatisfiability of the original formula evident, then this approach is satisfac-
tory. Nevertheless, this is a strong assumption, as the minimal unsatisfiable
subset of the input clauses may be the set of input clauses themselves. An
alternative approach is to provide a proof of unsatisfiability. Perhaps the sim-
plest proof of unsatisfiability one can think of is through resolution. Resolution
is a mechanism by which one can derive new clauses by combining clauses from
a database based on certain rules. Since it is known that resolution of propo-
sitional logic is complete, one can always derive the empty clause from a set of
unsatisfiable CNF clauses using resolution. The downside of this simple idea
is that resolution proofs can be very long, and many techniques have been
developed that produce proofs that are much shorter. Of particular interest
to our research is the DRAT-trim [111] format which has been successful in re-
cent massive efforts to use SAT solvers to obtain results in combinatorics [60].
DRAT-trim has in turn inspired the development of proof formats for other
constraint satisfaction paradigms [39] which overall contributes to solidify re-
sults in combinatorics obtained through these methods.

Notice that verifying a certificate of unsatisfiability for any interesting in-
stance is not a task we can do by hand, since these certificates would be very
long. Verifying these certificats thus requires another computer program. The
crucial aspect about this approach is that a verifier would be much simpler
than the computer program that actually produced the certificate (e.g., a QBF
solver). Obtaining a verifier through the methods highlighted in Section 3.1
thus completes the trust chain. Furthermore, agreeing on a format for a certifi-
cate allows us to write one verifier that can then be used to verify results from
any solver within a specific CSP paradigm. This goal has been achieved for
the DRAT [59] and LRAT [26] proof formats by generating verified checkers
using code extracted from interactive theorem provers.

Part II

Our Contributions

24

Chapter 4

Backbones and Backdoors of
Boolean Formulas

Many algorithms for the Boolean satisfiability problem exploit hidden struc-
tural properties of formulas in order to find a satisfying assignment or prove
that no such assignment exists. These structural properties are called hidden
because they are not explicit in the input formula. A natural question that
arises then is what the computational complexity associated with these hidden
structures is. In this chapter we focus on two hidden structures: backbones1

and strong backdoors [113].
The complexity of decision problems associated with backdoors and back-

bones has been studied by Nishimura, Ragde, and Szeider [87], Kilby, Slaney,
Thiébaux, and Walsh [72], and Dilkina, Gomes, and Sabharwal [34], among
others. We mention in passing that backbones also are very interesting for
problems even harder than SAT, such as #SAT [108] (see Gomes, Sabharwal,
and Selman [49]).

The goal of this chapter is to understand, at least in a theoretical sense, the
potential obstacles to using backbones and backdoors in helping SAT solvers.
Our results speak both to the importance of not viewing backdoors or back-
bones as magically transparent—we prove that they are in some cases rather
opaque—and to the fact that the behavior we mention likely happens on quite
dense sets. Further, since we tie this to whether any set is densely hard, these

1The term backbone was first used by Monasson et al. [84].

25

CHAPTER 4. BACKBONES AND BACKDOORS 26

SAT-solver issues due to this chapter have now become inextricably linked to
the extremely important, long-open question of how resistant to polynomial-
time heuristics the sets in a complexity class can be.

The following section presents definitions and notation, and then the sec-
tions after that will cover our results and related work.

4.1 Definitions and Notation
Throughout this chapter we follow the notation of Section 2.1 for Boolean
formulas. For a finite set A, ‖A‖ denotes A’s cardinality. For any string x, |x|
denotes the length of (number of characters of) x. For each set T of strings
and each natural number n, T≤n denotes the set of all strings in T whose
length is less than or equal to n. In particular, (Σ∗)≤n denotes the strings of
length at most n, over the alphabet Σ.

4.2 Backbones of Satisfiable Formulas
Recall from Section 2.1 that a partial assignment of a Boolean formula F is a
function aS : S → {>,⊥} that assigns Boolean values to the variables in a set
S ⊆ V (F).

Definition 4.1. Let F be a Boolean formula. A set S of the variables of F
is said to be a backbone if there is a unique partial assignment aS such that
F [aS] is satisfiable.

A backbone S is nontrivial if S 6= ∅. The size of a backbone S is the
number of variables in S. For a backbone S (for formula F), we say that aS
is the value of the backbone S.

For example, every satisfiable formula has the trivial backbone S = ∅.
The formula x1 ∧ x2 has four backbones, ∅, {x1}, {x2}, and {x1, x2}, with
respectively the values (listing values as bit-vectors giving the assignments in
the lexicographical order of the names of the variables in S) ε, 1, 0, and 10.
The formula x1 ∨ x2 has no nontrivial backbones.

It follows from Definition 4.1 that unsatisfiable formulas do not have back-
bones. Note, however, that the original paper by Monasson et al. introducing
the concept of backbones [84] defines a backbone as a set of variables that

CHAPTER 4. BACKBONES AND BACKDOORS 27

are “fully constrained” by the formula, a definition that does not require the
formula to be satisfiable.

Example 4.2. Consider the formula F = x1 ∧ (x1 ↔ x2)∧ (x2 ↔ x3)∧ (x2 ∨
x4 ∨ x5). Any satisfying assignment of F must have x1 set to >, which in
turn constrains x2 and x3. Then {x1, x2, x3} is a backbone of F , as is any
subset of this backbone. It is also easy to see that {x1, x2, x3} is the largest
backbone of this formula since the truth values of x4 and x5 are not entirely
constrained in F (since F in effect is—once one applies the just-mentioned
forced assignments—x4 ∨ x5).

In previous literature, especially that pertaining to statistical physics where
backbones were first observed, the variables in a backbone have been called
“frozen variables.” [83, 99] This is because their values are “frozen”, i.e., each
of them is the same over all satisfying assignments.

4.2.1 Results Under a Strong Assumption

In this section we will show that even for cases when one can quickly (i.e., in
polynomial time) recognize that a formula has at least one nontrivial back-
bone, it can be intractable to find one such backbone. And we will show that
even for cases when one can quickly (i.e., in polynomial time) find a large,
nontrivial backbone, it can be intractable to find the value of that backbone.
In particular, we will show that if integer factoring is hard, then both the just-
made claims hold. Integer factoring is widely believed to be hard; indeed, if
it were in polynomial time, RSA (the Rivest-Shamir-Adleman cryptosystem)
itself would fall.

In fact, integer factoring is even believed to be hard on average. And we
will be inspired by that to go beyond the strength of the results mentioned
above. We will argue that if any problem in NP ∩ coNP is frequently hard,
then the bad behavior types we mention above happen “almost” as often: If
the frequency of hardness of integer factoring is d(n) for strings up to length
n, then for some κ > 0 the frequency of hardness of our problems is d(nκ).

Core Results

We first look at whether there can be simple sets of formulas for which one
can easily compute/obtain a nontrivial backbone, yet one cannot easily find

CHAPTER 4. BACKBONES AND BACKDOORS 28

the value of that backbone.
Our basic result on this is stated below as Theorem 4.3. (In this section

we do not assume that SAT by definition is restricted to CNF formulas.)

Theorem 4.3. Let k ∈ {1, 2, 3, . . .}. If P 6= NP ∩ coNP, then there exists a
set A ∈ P, A ⊆ SAT, of Boolean formulas such that:

1. There is a polynomial-time computable function f such that for all F ∈
A, f(F) outputs a size-k backbone of F .

2. There does not exist any polynomial-time computable function g such
that g(F) computes the value of backbone f(F).

Proof. Let B be some set in (NP∩coNP)−P. The Cook-Levin theorem states
that we can efficiently transform the question of whether a nondeterministic
Turing machine accepts a particular string into a question about whether
a certain Boolean formula is satisfiable [22, 71, 75]. The original work that
did that did not require that the thus-created Boolean formula transparently
revealed what machine and input had been the input to the transformation.
But it was soon noted by Galil that one can ensure that the formula mapped
to transparently reveals the machine and input that were the input to the
transformation [43].

Galil’s insight can be summarized in the following strengthened version
of the standard claim regarding the so-called Cook-Karp-Levin Reduction.
Let N1, N2, . . . be a fixed, standard enumeration of clocked, polynomial-time
nondeterministic Turing machines, and w.l.o.g. assume that Ni runs within
time ni + i on inputs of length n, and that Ni and i are polynomially related
in size and easily obtained from each other. There is a function rGC such that

1. For each Ni and x: x ∈ L(Ni) if and only if rGC(Ni, x) ∈ SAT.

2. There is a polynomial p such that rGC(Ni, x) runs within time polyno-
mial (in particular, with p being the polynomial) in |Ni| and |x|i + i.

3. There is a polynomial-time function s such that for each Ni and x,
s(rGC(Ni, x)) outputs the pair (Ni, x).

We will be using two separate applications of the r function in our con-
struction. But we need those two applications to be variable-disjoint. We

CHAPTER 4. BACKBONES AND BACKDOORS 29

will, w.l.o.g., assume that in the output of the Galil-Cook function rGC(Ni, x),
every variable is of the form xj , where j itself, when viewed as a pair of in-
tegers via the standard fixed correspondence between Z+ and Z+ × Z+, has
the natural number corresponding to Ni in the standard fixed correspondence
between positive integers and strings. We claim that one can implement a
legal Galil-Cook r function in such a way that it has this property yet still
has the property that this r function will have a polynomial-time inversion
function s satisfying the behavior for s mentioned above. (For those wanting
more information on how such a function rGC(Ni, x) can be implemented that
has all the properties claimed above, you can refer to the Appendix of [57] for
a detailed construction we have built that accomplishes this.)

We now can specify the set A needed. Recall we have fixed a set B ∈
(NP ∩ coNP) − P. B ∈ NP so let i be a positive integer such that Ni is a
machine from the abovementioned standard enumeration such that L(Ni) =
B. B ∈ NP so let j be a positive integer such that Nj is a machine from
the abovementioned standard enumeration, such that L(Nj) = B. Fix any
positive integer k from the theorem statement. Then for the case of that fixed
value k, the set A is as follows: A = Ak = {(z1 ∧ z2 ∧ · · · ∧ zk ∧ rGC(Ni, x)) ∨
(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGC(Nj , x))) | x ∈ Σ∗}. One must keep in mind in
what follows that, as per the previous paragraph, rGC never outputs literals
with names involving subscripted zs or z′s and the outputs of rGC(Ni, x) and
rGC(Nj , x) share no variable names (since i 6= j).

Let us argue that Ak indeed satisfies the requirements of the A for the “k”
case of the theorem.

Ak ∈ P: Given a string y whose membership in A we are testing, we make
sure y syntactically matches the form of the elements of A (i.e., elements of
A3,k). If it does, we then check that its k matches our k, and we use s to get
decoded pairs (i′, x′) and (j′′, x′′) from the places in our parsing of y where we
have formulas—call them Fleft and Fright—that we are hoping are the outputs
of the r function. That is, if our input parses as (z1 ∧ z2 ∧ · · · ∧ zk ∧ Fleft) ∨
(z1 ∧ z2 ∧ · · · ∧ zk ∧ Fright), then if s(Fleft) gives (Ni′ , x

′) our decoded pair is
(i′, x′), and Fright is handled analogously. We also check to make sure that
x′ = x′′, i = i′, and j = j′′. If anything mentioned so far fails, then y 6∈ A.
Otherwise, we check to make sure that rGC(Ni, x

′) = Fleft and rGC(Nj , x
′) =

Fright, and reject if either equality fails to hold. If we have reached this point,
we indeed have determined in polynomial time that y ∈ A, and for each y ∈ A

CHAPTER 4. BACKBONES AND BACKDOORS 30

we will successfully reach this point.
Ak ⊆ SAT: For each x, either x ∈ B or x 6∈ B. In the former case (x ∈ B),

rGC(Ni, x) ∈ SAT and so the left disjunct of (z1 ∧ · · · ∧ zk ∧ (rGC(Ni, x))) ∨
(z1 ∧ · · · ∧ zk ∧ (rGC(Nj , x))) can be made true using that satisfying assign-
ment and setting each z` to true. In the latter case (x 6∈ B), rGC(Nj , x) ∈ SAT
and so the whole formula can be made true using that satisfying assignment
and setting each z` to false.

There is a polynomial-time computable function f such that for
all F ∈ Ak, f(F) outputs a nontrivial backbone of F : On input F ∈ Ak,
f will simply output {z1, z2, . . . , zk}, which we claim is a nontrivial backbone
of F . To prove our claim, notice that if the x embedded in F satisfies x ∈ B,
then not only does rGC(Ni, x) ∈ SAT hold, but also rGC(Nj , x) 6∈ SAT must
hold (since otherwise we would have x 6∈ B ∧ x ∈ B, an impossibility). So if
the x embedded in F satisfies x ∈ B, then there are satisfying assignments of
(z1 ∧ z2 ∧ · · · ∧ zk ∧ rGC(Ni, x)) ∨ (z1 ∧ z2 ∧ · · · ∧ zk ∧ rGC(Nj , x)), and every
one of them has each z` set to >. Similarly, if the x embedded in F satisfies
x 6∈ B, then our long formula has satisfying assignments, and every one of
them has each z` set to ⊥. Thus {z1, z2, . . . , zk} indeed is a size-k backbone.

There does not exist any polynomial-time computable function
g such that g(F) computes the value of backbone f(F): Suppose
by way of contradiction that such a polynomial-time computable function g
does exist. Then we would have that B ∈ P, by the following algorithm.
Let f be the function constructed in the previous paragraph, i.e., the one that
outputs {z1, z2, . . . , zk} when F ∈ A. Given x, in polynomial time—g and f are
polynomial-time computable, and although r in general is not since its running
time’s polynomial degree varies with its first argument and so is not uniformly
polynomial, r here is used only for the first-component values Ni and Nj

and under that restriction it indeed is polynomial-time computable—compute
g(f((z1 ∧ z2 ∧ · · · ∧ zk ∧ rGC(Ni, x))∨ (z1 ∧ z2 ∧ · · · ∧ zk ∧ rGC(Nj , x)))). This
must either tell us that the z`s are > in all satisfying assignments, which tells
us that it is the left disjunct that is satisfiable and thus x ∈ B, or it will tell
us that the z`s are ⊥ in all satisfying assignments, from which we similarly
can correctly conclude that x 6∈ B. So B ∈ P, yet we chose B so as to
satisfy B ∈ (NP ∩ coNP) − P. Thus our assumption that such a g exists is
contradicted.

CHAPTER 4. BACKBONES AND BACKDOORS 31

That ends our proof of Theorem 4.3. The following corollary follows im-
mediately from Theorem 4.3.

Corollary 4.4. If P 6= NP ∩ coNP, then there exists a set A ∈ P, A ⊆ SAT,
of Boolean formulas such that:

1. There is a polynomial-time computable function f such that for all F ∈
A, f(F) outputs a nontrivial backbone of F .

2. There does not exist any polynomial-time computable function g such
that g(F) computes the value of backbone f(F).

Now let us turn to the question of whether, when it is obvious that there
is at least one nontrivial backbone, it can be hard to efficiently produce a
nontrivial backbone. The following theorem shows that, if integer factoring is
hard, the answer is yes.

Theorem 4.5. For each fixed ε, 0 < ε ≤ 1, the following claim holds. If
P 6= NP∩coNP, then there exists a set A ∈ P, A ⊆ SAT, of Boolean formulas,
each having at least one variable, such that:

1. Each formula F ∈ A has a backbone whose size is at least (50 − ε)% of
F ’s total number of variables.

2. There does not exist any polynomial-time computable function g such
that, on each F ∈ A, g(F) outputs a backbone whose size is at least
(2ε)% of F ’s variables.

Proof. We describe how to convert the construction in the proof of Theo-
rem 4.3 into one that proves Theorem 4.5. Recall that for the “k” case of
Theorem 4.3 our set A was

Ak = {(z1 ∧ · · · ∧ zk ∧ rGC(Ni, x)) ∨ (z1 ∧ · · · ∧ zk ∧ rGC(Nj , x)) | x ∈ Σ∗}.

Let us use almost the same set, except we will make two types of changes.
First, in the above, replace the two occurrences of k each with the smallest
positive integer m′ satisfying m′

‖V (rGC(Ni,x))‖+‖V (rGC(Nj ,x))‖+2m′ ≥ (50−ε)
100 . Let m

henceforward denote that value, i.e., the smallest (positive integer) m′ that
satisfies the above equation. Second, in the right disjunct, change each z` to
z′`.

CHAPTER 4. BACKBONES AND BACKDOORS 32

Note that if x ∈ B, then {z1, z2, · · · , zm} is a backbone whose value is
the assignment of > to each variable, and that contains at least (50 − ε)%
of the variables in the formula that x put into A. Similarly, if x 6∈ B, then
{z′1, z′2, · · · , z′m} is a backbone whose value is the assignment of ⊥ to each
variable, and that contains at least (50 − ε)% of the variables in the formula
that x put into A. It also is straightforward to see that our thus-created set
A belong to P and satisfies A ⊆ SAT.

So the only condition of Theorem 4.5 that we still need to show holds is the
claim that, for the just-described A, there does not exist any polynomial-time
computable function g such that, on each F ∈ A, g(F) outputs a backbone
whose size is at least 2ε% of F ’s variables. Suppose by way of contradiction
that such a function g does exist. We claim that would yield a polynomial-
time algorithm for B, contradicting the assumption that B 6∈ P. Let us give
such a polynomial-time algorithm. To test whether x ∈ B, in polynomial time
we create the formula in A that is put there by x, and we run our postulated
polynomial-time g on that formula, and thus we get a backbone, call it S, that
contains at least 2ε% of F ’s variables. Note that we ourselves do not get to
choose which large backbone g outputs, so we must be careful as to what we
assume about the output backbone. We in particular certainly cannot assume
that g happens to always output either {z1, z2, · · · , zm} or {z′1, z′2, · · · , z′m}.
But we don’t need it to. Note that the two backbones just mentioned are
variable-disjoint, and each contains (50− ε)% of F ’s variables.

Now, there are two cases. One case is that S contains at least one variable
of the form z` or z′`. If it contains at least one variable of the form z` then
x ∈ B. Why? If x ∈ B, then the left-hand disjunct of the formula x puts
into A is satisfiable and the right-hand disjunct is not. From the form of the
formula, it is clear that each z` is always > in each satisfying assignment in
this case, yet that for each z′` there are satisfying assignments where z′` is >
and there are satisfying assignments where z′` is ⊥. So if x ∈ B, no z′` can
belong to any backbone.

By analogous reasoning, if S contains at least one variable of the form z′`
then x 6∈ B. (It follows from this and the above that S cannot possibly contain
at least one variable that is a subscripted z and at least one variable that is
a subscripted z′, since then x would have to simultaneously belong and not
belong to B.)

The final case to consider is the one in which S does not contain at least

CHAPTER 4. BACKBONES AND BACKDOORS 33

one variable of the form z` or z′`. We argue that this case cannot happen.
If this were to happen, then every variable of F other than the variables
{z1, z2, · · · , zm, z′1, z′2, · · · , z′m} must be part of the backbone, since S must
involve 2% of the variables and {z1, z2, · · · , zm, z′1, z′2, · · · , z′m} comprise (100−
2ε)% of the variables. But that is impossible. We know that the variables used
in rGC(Ni, x) and rGC(Nj , x) are disjoint. So the variables in the one of those
two that is not the one that is satisfiable can and do take on any value in some
satisfying assignment, and so cannot be part of any backbone. (The only
remaining worry is the case where one of rGC(Ni, x) or rGC(Nj , x) contains no
variables. However, the empty formula is by convention considered illegal, in
cases such as here where the formulas are not considered to be trapped into
DNF or CNF.) We have thus concluded the proof of Theorem 4.5.

Frequency of Hardness

In this section we show that if even one problem in NP ∩ coNP is frequently
hard, then the sets in our previous sections can be made “almost” as frequently
hard, in a sense of “almost” that we will make formal and specific. Note that
no one currently knows for sure how frequently-hard problems in NP ∩ coNP
can be. But our results are showing that, whatever that frequency is, sets of
the sort we’ve been constructing are hard “almost” as frequently.

We now give our frequency-of-hardness version of Theorem 4.3. A claim
is said to hold for almost every n if there exists an n0 beyond which the
claims always holds, i.e., the claim fails at most at a finite number of values
of n. (In the theorems of this section, n’s universe is the natural numbers,
{0, 1, 2, . . .}.) A (decision) algorithm errs with respect to B on an input x if
the algorithm disagrees with B on x, i.e., if the algorithm accepts x yet x 6∈ B
or the algorithm rejects x yet x ∈ B. We will defer the proving of this section’s
theorems until the end of this section, where we will argue that the results in
effect follow from the constructions of the previous section.

Theorem 4.6. Let k ∈ {1, 2, 3, . . .}. If h is any nondecreasing function and
for some B ∈ NP∩ coNP it holds that each polynomial-time algorithm, viewed
as a heuristic algorithm for testing membership in B, for almost every n (re-
spectively, for infinitely many n) errs on at least h(n) of the strings whose
length is at most n, then there exist a κ > 0 and a set A ∈ P, A ⊆ SAT, of
Boolean formulas such that:

CHAPTER 4. BACKBONES AND BACKDOORS 34

1. There is a polynomial-time computable function f such that for all F ∈
A, f(F) outputs a size-k backbone of F .

2. Each polynomial-time computable function g will err (i.e., will fail to
compute the value of backbone f(F)), for almost every n (respectively,
for infinitely many n), on at least h(nκ) of the strings in A of length at
most n.

The precisely analogous result holds for Corollary 4.4. The analogous
result also holds for Theorem 4.5:

Theorem 4.7. For each fixed ε, 0 < ε ≤ 1, the following claim holds. If
h is any nondecreasing function and for some B ∈ NP ∩ coNP it holds that
each polynomial-time algorithm, viewed as a heuristic algorithm for testing
membership in B, for almost every n(respectively, for infinitely many n) errs
on at least h(n) of the strings whose length is at most n, then there exist a
κ > 0 and a set A ∈ P, A ⊆ SAT, of Boolean formulas such that:

1. Each formula F ∈ A has a backbone whose size is at least (50 − ε)% of
F ’s total number of variables.

2. Each polynomial-time computable function g will err (i.e., will fail to
compute a set of size at least 2ε% of F ’s variables that is a backbone of
F), for almost every n (respectively, for infinitely many n), on at least
h(nκ) of the strings in A of length at most n.

What the above theorems say, looking at the contrapositives to the above
results, is that if any of our above cases have polynomial-time heuristic algo-
rithms that don’t make errors too frequently, then every single set in NP ∩
coNP (even those related to integer factoring) has polynomial-time heuristic
algorithms that don’t make errors too frequently.

Let us give concrete examples that give a sense about what these theorems
are saying about density transference. It follows from Theorems 4.6 and 4.7
that if there exists even one set in NP ∩ coNP such that each polynomial-
time heuristic algorithm asymptotically errs exponentially often up to each
length (i.e., has 2nΩ(1) errors), then there are sets of our form that in the same
sense fool each polynomial-time heuristic algorithm exponentially often. As
a second example, it follows from Theorems 4.6 and 4.7 that if there exists

CHAPTER 4. BACKBONES AND BACKDOORS 35

even one set in NP ∩ coNP such that each polynomial-time heuristic algo-
rithm asymptotically errs quasipolynomially often up to each length (i.e., has
n(logn)Ω(1) errors), then there are sets of our form that in the same sense fool
each polynomial-time heuristic algorithm quasipolynomially often.

Our use of B and A here reflects that of the theorems in this section.
The crucial thing to note is that the mapping from strings x (as to whether
they belong to B) into the string that x puts into A is (a) polynomial-time
computable (and so the one string that x puts into A is at most polynomially
longer than x), and (b) one-to-one.

So any collection of m instances up to a given length n that fool a particular
polynomial-time algorithm for B is associated with a collection of at least m
distinct instances in A all of length at most nq (where the polynomial bound
on the length of the formula that x, |x| = n, puts into A is that its length is nq
or less 2). So if one had an algorithm for the “A” set such that the algorithm
had at most m′ errors on the strings up to length nq, it would certainly imply
an algorithm for B that up to length n1/q made at most m′ errors. Namely,
one’s heuristic of that form for B would be to take x, map it to the string
it put into A, and then run the heuristic for A on that string. The results
of this section are the immediate consequences of this observation, applied to
the constructions/results of the previous section. To make completely clear
that that is the case and why it is the case, we now provide a more detailed
explanation of the proof of one of this section’s theorems, namely, Theorem 4.6.

Proof of Theorem 4.6. . Let A be defined as Ak in Section 4.2.1, i.e.: A =
Ak = {(z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGC(Ni, x)))∨ (z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGC(Nj , x))) |
x ∈ Σ∗} where Ni and Nj are Turing machines such that L(Ni) = B and
L(Nj) = B. We know from our discussion in Section 4.2.1 that A ∈ P and
that, given any formula F ∈ A, {z1, z2, . . . , zk} is a nontrivial backbone of that
formula, thus the function f(F) = {z1, z2, . . . , zk} satisfies the requirements
of the first part of Theorem 4.6.

Since rGalil-Cook runs in polynomial time, there exist polynomials pi and
pj of equal degree q such that the length of the formula rGalil-Cook(Ni, x) is at

2We have for simplicity left out any lower-order terms and the leading-term constant, but
that is legal except at n ∈ {0, 1}—since starting with n = 2 we can boost q if needed—and
no finite set of values, such as {0, 1} can cause problems to our theorem, as it is about the
“infinitely-often” and “almost-everywhere” cases.

CHAPTER 4. BACKBONES AND BACKDOORS 36

most pi(|x|) and the length of the formula rGalil-Cook(Nj , x) is at most pj(|x|).
Note that there will exist natural numbers c and N such that for all n > N ,

c nq ≥ |(z1 ∧ · · · ∧ zk ∧ (rGC(Ni, x))) ∨ (z1 ∧ · · · ∧ zk ∧ (rGC(Nj , x)))|

for all strings x whose length is at most n. Let nB > N be a natural number
such that every polynomial-time algorithm, viewed as a heuristic for testing
membership in B, errs on at least h(nB) of the strings whose length is at most
nB. We claim that every polynomial-time algorithm, viewed as a heuristic
for computing the value of f(F) = {z1, z2, . . . , zk} for any F ∈ A, errs on
at least h(nB) of the strings whose length is at most c nqB. Replacing nA =
c nqB in our claim, we have that every polynomial-time algorithm, viewed as
a heuristic for computing the value of f(F) = {z1, z2, . . . , zk} for any F ∈ A,

errs on at least h
(
c
− 1

q n
1
q

A

)
of the strings whose length is at most nA. For

any δ > 0 it certainly holds that, for almost all n, c−
1
q n

1
q ≥ n

1
q
−δ, and thus

that, since h is nondecreasing, for almost all n, h
(
c
− 1

q n
1
q

)
≥ h

(
n

1
q
−δ
)

. From
the assumptions we have that almost every n > N can take the role of nB
(respectively, infinitely many n > N can take the role of nB). Thus setting
κ = 1

q − δ proves that A satisfies the second part of Theorem 4.6.
To prove our claim, notice that, by our choice of nB, for all inputs x of

length at most nB the length of (z1 ∧ · · · ∧ zk ∧ (rGC(Ni, x))) ∨ (z1 ∧ · · · ∧
zk ∧ (rGC(Nj , x))) is at most c nqB. Assume, by contradiction, that there
exists a polynomial-time algorithm g′ that, viewed as a heuristic for com-
puting the value of f(F) = {z1, z2, . . . , zk} for any F ∈ A, errs on less
than h(nB) of the strings of length at most c nqB. Consider the following
polynomial-time heuristic for testing membership in B: on input x, calculate
v = g′((z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGC(Ni, x))) ∨ (z1 ∧ z2 ∧ · · · ∧ zk ∧ (rGC(Nj , x))));
if v sets all the zis to > then output x ∈ B and if v sets all the zis to ⊥ output
x /∈ B. (g′ will not set some of the zis to > and some to ⊥ since that would
certainly be wrong.) Based on our discussion in Section 4.2.1, this heuristic
will err exactly when g′ errs since, for instance, if v sets all the zis to > but
the correct value sets all the zis to ⊥ that would imply x /∈ B. But g′ errs in
less than h(nB) inputs of length at most c nqB so the polynomial-time heuristic
we just constructed errs in less than h(nB) inputs x of length at most nB, a
contradiction.

CHAPTER 4. BACKBONES AND BACKDOORS 37

4.2.2 Results under a Weak Assumption

Our results in Section 4.2.1 rely on the assumption that P 6= NP∩coNP, which
as noted above is likely true, since if it is false then integer factoring is in P
and the RSA encryption scheme falls. Under the (less demanding) assumption
that P 6= NP, there are families of formulas that are easy to recognize (i.e.,
they can be recognized by polynomial-time algorithms) yet no polynomial-time
algorithm can, given a formula from the family, decide whether the formula
has a large backbone (doing so is NP-complete).

Our first result states that if P 6= NP then there are families of Boolean
formulas that are easy to recognize, with the property that deciding whether
a formula in these families has a large backbone is NP-complete (and so is
hard).

Theorem 4.8. For any real number 0 < β < 1, there is a set A ∈ P of
Boolean formulas such that the language

LA = {F | F ∈ A and F has a backbone S with ‖S‖ ≥ β‖V (F)‖}

is NP-complete (and so if P 6= NP then LA is not in P).

Proof. Fix a β from Theorem 4.8’s statement. For each Boolean formula G,
let

q(G) =

⌈
β‖V (G)‖
1− β

⌉
.

Define

A = {(G) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(G)) | ‖V (G)‖ > 0},

where we define newi is the ith (in lexicographical order) variable name that
does not appear in F . Note that new1 ∧ new2 ∧ · · · ∧ newq(G) is a backbone if
and only if G ∈ SAT, thus under the assumption that P 6= NP and keeping
in mind that for zero-variable formulas satisfiability is easy to decide, it fol-
lows that no polynomial-time algorithm can decide LA, since the size of this
backbone is q(G) > 0, which by our definition of q will satisfy the condition
‖S‖ ≥ β‖V (F)‖, since ‖S‖ = q(G) and ‖V (F)‖ = ‖V (G)‖ + q(G) so the
condition is claiming that q(G) ≥ β(‖V (G)‖ + q(G)), or equivalently, that
q(G) ≥ β

(1−β)‖V (G)‖, which indeed holds in light of the definition of q. Note

CHAPTER 4. BACKBONES AND BACKDOORS 38

that SAT many-one polynomial-time reduces to LA via the reduction g(H)
that equals some fixed string in LA if H is in SAT and H = > and that equals
some fixed string in LA if H = ⊥, and that equals

H ∧ (new1 ∧ new2 ∧ · · · ∧ newq(H))

otherwise. Since LA is in NP,3 we have that it is NP-complete, and since
P 6= NP was part of the theorem’s hypothesis, LA cannot be in P.

As a corollary to the proof of Theorem 4.8, we have that if P 6= NP then
there are families of Boolean formulas that are easy to recognize, with the
property that deciding whether a formula in these families has a nontrivial
backbone is NP-complete (and so is hard).

Corollary 4.9. There is a set A ∈ P of Boolean formulas such that the
language

LA = {F | F ∈ A and F has a nontrivial backbone S}

is NP-complete (and so if P 6= NP then LA is not in P).

Proof. The set A from the proof of Theorem 4.8 is constructed in such a way
that each of its potential members G ∧ (new1 ∧ new2 ∧ · · · ∧ newq(G)) (where
G is a Boolean formula having at least one variable) either has no nontrivial
backbone (indeed, no backbone) or has a backbone of size at least β(‖V (G)‖).
Thus the issue of backbones that are nontrivial but smaller than β(‖V (F)‖),
where F is G ∧ (new1 ∧ new2 ∧ · · · ∧ newq(G)), does not cause a problem under
the construction. That is, our A (which itself is dependent on the value of β
one is interested in) is such that we have ensured that {F | F ∈ A and F
has a nontrivial backbone S} = {F | F ∈ A and F has a backbone S with
‖S‖ ≥ β‖V (F)‖}.

We now address the potential concern that the hard instances for the
decision problems we just introduced may be so infrequent that the relevance
of Theorem 4.8 and Corollary 4.9 is undercut. The following theorem argues

3If one just looks at the definition of LA, one might worry that LA might have only NPNP

as an obvious upper bound. However, as noted above our particular choice of A ensures that
new1 ∧ new2 ∧ · · · ∧ newq(H) is a backbone of (H) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(H)) if and only if
H ∈ SAT; and that makes clear that our set is indeed in NP.

CHAPTER 4. BACKBONES AND BACKDOORS 39

against that possibility by proving that, unless not a single NP set is frequently
hard (in the sense made rigorous in the theorem’s statement), there exist sets
of our form that are frequently hard. (This result is making for backbones a
point analogous to the ones in Section 4.2.1 but with results focused on NP
rather than NP ∩ coNP.)

Theorem 4.10. If h is any nondecreasing function and for some set B ∈ NP
it holds that each polynomial-time algorithm errs with respect to B, at infinitely
many lengths n (resp., for almost every length n), on at least h(n) of the inputs
up to that length, then there will exist an κ > 0 and a set A ∈ P of Boolean
formulas satisfying the conditions of Theorem 4.8, yet being such that each
polynomial-time algorithm g, at infinitely many lengths n (resp., for almost
every length n), will fail to correctly determine membership in LA for at least
h(nκ) inputs of length at most n.

The same claim also holds for Corollary 4.9.

Proof. We will prove the theorem’s statement regarding Theorem 4.8. It is not
hard to also then see that the analogous claim holds regarding Corollary 4.9.

B ∈ NP and SAT is NP-complete. So let rB be a polynomial-time function,
transforming strings into Boolean formulas, such that (a) rB(x) ∈ SAT⇔ x ∈
B, and (b) rB is one-to-one. (A construction of such a function is given in the
Appendix of [57], and let us assume that that construction is used.) As in the
proof of Theorem 4.8, if F is a Boolean formula we define q(F) =

⌈
β‖V (F)‖

1−β

⌉
.

Without loss of generality, we assume that rB outputs only formulas having
at least one variable. Note that throughout this proof, q is applied only to
outputs of rB. Thus we have ensured that none of the logarithms in this proof
have a zero as their argument.

Set

A = {(rB(x)) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(rB(x))) | x ∈ Σ∗}.

Because rB is computable in polynomial time, there is a polynomial b such that
for every input x of length at most n, the length of rB(x) is at most b(n). Fix
some such polynomial b, and let k denote its degree. In order to find a bound
for the length of the added “tail” new1∧new2∧· · ·∧newq(rB(x)) in terms of b(n),
notice that the length of the tail is less than some constant (that holds over
all x and n, |x| ≤ n) times q(rB(x)) log q(rB(x)). Since q(rB(x)) =

⌈
β‖V (F)‖

1−β

⌉

CHAPTER 4. BACKBONES AND BACKDOORS 40

and the length of rB(x) is at least a constant times the number of its variables,
our assumption that |rB(x)| ≤ b(n) implies the existence of a constant c such
that, for all x and n, |x| ≤ n, we have q(rB(x)) ≤ c · b(n). Taken together,
the two previous sentences imply the existence of a constant d such that, for
all x and n, |x| ≤ n, we have that the length of new1 ∧ new2 ∧ · · · ∧ newq(rB(x))

is at most d · b(n) log(b(n)), and so certainly is less than d · b2(n). Let N be
a natural number such that, for all n ≥ N and all x, |x| ≤ n implies that
|(rB(x)) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(rB(x)))| ≤ n2k+1; by the previous sentence
and the fact that b is of degree k, such an N will exist. Let g be a polynomial-
time heuristic for LA. Notice that g ◦ rB is a polynomial-time heuristic for
B, since (rB(x)) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(rB(x))) ∈ LA ⇔ rB(x) ∈ SAT and
rB(x) ∈ SAT ⇔ x ∈ B. Let nB ≥ N be such that there is a set of strings
SnB ⊆ (Σ∗)≤nB , ‖SnB‖ ≥ h(nB), having the property that for all x ∈ SnB ,
g ◦ rB fails to correctly determine the membership of x in B. Consequently,
there is a set of strings TnB ⊆ (Σ∗)≤(nB)2k+1 , ‖TnB‖ ≥ h(nB), such that for
all x ∈ TnB , g fails to correctly determine the membership of x in LA; in
particular the set

TnB = {(rB(x)) ∧ (new1 ∧ new2 ∧ · · · ∧ newq(rB(x))) | x ∈ SnB}

has this property.
Using the variable renaming nA = (nB)

2k+1, it is now easy to see that we
have proven that every length nB ≥ N at which g ◦ rB (viewed as a heuristic
for B) errs on at least h(nB) inputs of length up to nB has a corresponding
length nA at which g (viewed as a heuristic for LA) errs on at least h((nA)

1
2k+1)

inputs of length up to nA. Our hypothesis guarantees the existence of infinitely
many such nB ≥ N (resp., almost all n ≥ N can take the role of nB), each
with a corresponding nA. Setting

κ =
1

2k + 1
,

our theorem is now proven.

4.3 Backdoors to CNF Formulas
Since CNF-SAT (the satisfiability problem restricted to CNF formulas) is well-
known to be NP-complete, a polynomial-time algorithm to determine the sat-
isfiability of CNF formulas is unlikely to exist. Nevertheless, there are several

CHAPTER 4. BACKBONES AND BACKDOORS 41

restrictions of CNF formulas for which satisfiability can be decided in poly-
nomial time. When a formula does not belong to any of these restrictions, it
may have a set of variables that, once the formula is simplified over a partial
assignment of these variables, the resulting formula belongs to one of these
tractable restrictions. A formalization of this idea is the concept of backdoors.

Definition 4.11 (Subsolver [113]). A polynomial-time algorithm A is a sub-
solver if, for each input formula F , A satisfies the following conditions.

1. A either rejects the input F (this indicates that it declines to make a
statement as to whether F is satisfiable) or determines F (i.e., A re-
turns a satisfying assignment if F is satisfiable and A proclaims F ’s
unsatisfiability if F is unsatisfiable).

2. If F is trivially > A determines F , and if F is trivially ⊥ A determines
F .

3. If A determines F , then for each variable x and each value v, A deter-
mines F [x/v].

Definition 4.12 (Strong Backdoor [113]). For a Boolean formula F , a nonempty
subset S of its variables is a strong backdoor for a subsolver A if, for all partial
assignments aS, A determines F [aS].

Many examples of subsolvers can be found in the literature (for instance,
in Table 1 of [34]). The subsolver that is of particular relevance to this section
is the unit propagation subsolver, which focuses on unit clauses. Unit clauses
are clauses with just one literal. They play an important role in the process of
finding models (i.e., satisfying assignments) because the literal in that clause
must be set to > in order to find a satisfying assignment. The process of
finding a model by searching for a unit clause, fixing the value of the variable
in the unit clause, and simplifying the formula resulting from that assignment
is known in the satisfiability literature as unit propagation. Unit propagation is
an important building block in the seminal DPLL algorithm for SAT [29,30].
Notice that the CNF formulas whose satisfiability can be decided by just
applying unit propagation iteratively constitute a tractable restriction of SAT.
The unit propagation subsolver attempts to decide the satisfiability of an
input formula by using only unit propagation and empty clause detection.
If satisfiability cannot be decided this way, the subsolver rejects the input

CHAPTER 4. BACKBONES AND BACKDOORS 42

formula. Szeider [104] has classified the parameterized complexity of finding
backdoors with respect to the unit propagation subsolver.

Example 4.13. Consider the formula F = (x1 ∨ x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨
x4 ∨ x5) ∧ (x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3 ∨ x5) from Example 2.1. We will show
that {x1, x3, x5} is a strong backdoor of F with respect to the unit propagation
subsolver by analyzing the possible assignments of these variables. Suppose x1
is assigned to > and notice F [x1/>] = {{x3, x4}, {x2, x3, x5}}. From there it
is easy to see that if x3 is set to >, the resulting formula after simplification
is trivially satisfiable. If x3 is set to ⊥, assigning x5 to > yields the formula
{{x4}} after simplification and the satisfiability of this formula can be deter-
mined by the unit propagation subsolver. Assigning x5 to ⊥ yields a formula
with two unit clauses, {{x4}, {x2}}. The unit propagation subsolver will pick
the unit clause {x2},4 assign the truth value of x2 and simplify, and will then
pick the (sole) remaining unit clause, {x4}, and assign the truth value of x4
and simplify to obtain a trivially satisfiable formula. Now suppose x1 is as-
signed to ⊥ and notice F [x1/⊥] = {{x2, x3, x5}, {x2, x4, x5}, {x3, x4}}. If we
now assign x3 to >, notice F [x1/⊥, x3/>] = {{x2, x5}, {x2, x4, x5}}. If we
assign x5 to >, F simplifies to a trivially satisfiable formula. If we assign x5
to ⊥, the formula simplifies to {{x2}, {x2, x4}}. The unit propagation sub-
solver will pick the unit clause {x2}, assign the truth value of x2, and the
resulting formula after simplification will be {{x4}} whose satisfiability can be
determined by the unit propagation subsolver. If we assign x3 to ⊥, notice
F [x1/⊥, x3/⊥] = {{x2, x4, x5}, {x4}}. If we now assign x5 to > and simplify,
the resulting formula will be {{x4}} whose satisfiability can be determined by
the unit propagation subsolver. If we assign x5 to ⊥ and simplify, the resulting
formula will contain the unit clause {x4}. The unit propagation subsolver will
then set the value of x4 to ⊥ and simplify, yielding the formula {{x2}}, whose
satisfiability can also be determined by the unit propagation subsolver.

It should be clear from the case analysis above that just setting the values of
x1 and x3 is not enough for the unit propagation subsolver to always be able to
determine the satisfiability of the resulting formula. In fact, a similar analysis
done on every 2-element subset and every 3-element subset of V (F)—which we
do not write out here—shows that {x1, x3, x5} is actually the smallest strong
backdoor of F with respect to the unit propagation subsolver.

4Here we assume that a clause {x} precedes a clause {y} in lexicographical order if x
precedes y in lexicographical order.

CHAPTER 4. BACKBONES AND BACKDOORS 43

In this section, we show that, under the assumption that P 6= NP, there are
easily recognizable families of formulas with strong unit propagation backdoors
that are easy to find, yet the problem of determining whether these formulas
are satisfiable remains hard (in fact, NP-complete). We also prove that if
any NP set exists that is frequently hard (with respect to polynomial-time
heuristics), then sets of our sort exist that are essentially just as frequently
hard; we in effect prove an inheritance of frequency-of-hardness result, under
which our sets are guaranteed to be essentially as frequently hard as any set
in NP is.

Theorem 4.14. If P 6= NP, for each k ∈ {1, 2, 3, . . .} there is a set A of
Boolean formulas such that all the following hold.

1. A ∈ P and A ∩ SAT is NP-complete.

2. Each formula G in A has a strong backdoor S with respect to the unit
propagation subsolver, with ‖S‖ ≤ ‖V (G)‖

1
k .

3. There is a polynomial-time algorithm that, given G ∈ A, finds a strong
backdoor having the property stated in item 2 of this theorem.

Proof. For k = 1 the theorem is trivial, so we henceforward consider just the
case where k ∈ {2, 3, . . .}. Consider A ∈ P defined by

A = {F ∧ (new1 ∧ · · · ∧ new‖V (F)‖k−‖V (F)‖) | F is a CNF formula},

where newi is the ith (in lexicographical order) variable name that does not
appear in F . The backdoor is the set of variables of F , which can be found
in polynomial time by parsing. It is clear that the formula resulting from
simplification after assigning values to all the variables of F only has unit
clauses and potentially an empty clause, so satisfiability for this formula can
be decided by the unit propagation subsolver. Finally, it is easy to see that
F ∧ (new1∧· · ·∧new‖V (F)‖k−‖V (F)‖) ∈ SAT⇔ F ∈ SAT so, since the formula-
part that is being appended to F can easily be polynomial-time constructed
given F , under the assumption that P 6= NP deciding satisfiability for the
formulas in A is hard.

We mention in passing that one can change “Boolean” to “Boolean CNF” in
Theorem 4.14’s statement, via adjusting appropriately the use of parentheses
in the proof’s definition of A to ensure that A itself is in CNF whenever F is.

CHAPTER 4. BACKBONES AND BACKDOORS 44

The reader might worry that the hardness spoken of in the theorem occurs
very infrequently (e.g., perhaps except for just one string at every double-
exponentially spaced length everything is easy). That is, are we giving a
worst-case result that deceptively hides a low typical-case complexity? We are
not (unless all of NP has easy typical-case complexity): analogously to what
we showed regarding backbones, we show that if any set in NP is frequently
hard with respect to polynomial-time heuristics, then a set of our sort is almost
as frequently hard with respect to polynomial-time heuristics. We will show
that if any set in NP is frequently hard then a set of our type is almost-as-
frequently hard. (Recall that, when n’s universe is the naturals as it is in the
following theorem, “for almost every n” means “for all but at most a finite
number of natural numbers n.”)

Theorem 4.15. If h is any nondecreasing function and for some set B ∈ NP
it holds that each polynomial-time algorithm errs with respect to B, at infinitely
many lengths n (resp., for almost every length n), on at least h(n) of the inputs
up to that length, then there will exist an ε > 0 and a set A ∈ P of Boolean
formulas satisfying the conditions of Theorem 4.14, yet being such that each
polynomial-time algorithm g, at infinitely many lengths n (resp., for almost
every length n), will fail to determine membership in A ∩ SAT for at least
h(nε) inputs of length at most n.

Proof. For conciseness and to avoid repetition, we build this proof on top of
the proof of Theorem 4.10. That proof does not rely directly or indirectly on
the present theorem/proof, so there is no circularity at issue here.

We define rB as in the proof of Theorem 4.10 (the rB given there draws
on a construction from the Appendix of [57], and due to that construction’s
properties outputs only conjunctive normal form formulas). For a given k, we
define

A = {rB(x) ∧ (new1 ∧ · · · ∧ new‖V (rB(x))‖k−‖V (rB(x))‖) | x ∈ Σ∗},

and since rB(x) ∧ (new1 ∧ · · · ∧ new‖V (rB(x))‖k−‖V (rB(x))‖) ∈ SAT ⇔ rB(x) ∈
SAT and rB(x) ∈ SAT ⇔ x ∈ B, we can now proceed as in the proof of
Theorem 4.10, since here too the tail’s length is polynomially bounded.

CHAPTER 4. BACKBONES AND BACKDOORS 45

4.4 Conclusions and Related Work
The true inspiration for this work was an insightful structural complexity
theory paper of Borodin and Demers [17] from the 1970s, which never appeared
in any form other than as a technical report. Their paper in effect showed
sufficient conditions for creating simple sets of satisfiable formulas such that
it was unclear why they were satisfiable.

Borodin and Demers’s work has been used only very rarely. In particular,
it has been used to get characterizations regarding unambiguous computa-
tion [52], and Rothe and his collaborators have used it in various contexts
to study the complexity of certificates [58, 97], see also Fenner et al. [40]
and Valiant [109]. Also, one paper by Hemaspaandra, Hemaspaandra, and
Menton [54] shows that some problems about the manipulation of elections
have the property that if P 6= NP ∩ coNP then their search versions are not
polynomial-time Turing reducible to their decision problems. The key issue
that 2013 paper left open is whether the type of techniques it used, descended
from Borodin and Demers [17], might be relevant in other domains, or whether
its results were a one-shot oddity. Our results in effect argue that the former
is the case. Backbones and backdoors are topics important in both theoret-
ical computer science and artificial intelligence. Our results show that the
inspiration of the line of work initiated by Borodin and Demers [17] can be
used to establish the opacity of backbones and backdoors. It is important to
acknowledge that our proofs regarding Section 4.2.1 are drawing on elements
of the insights of Borodin and Demers [17], although in ways unanticipated by
that paper.

We make use of density transfer arguments in the context of Borodin-
Demers arguments. To the best of our knowledge, the only work to previously
do that is Hemaspaandra, Hemaspaandra, and Menton [54].

Chapter 5

Graph Arrowing

Some of the most studied phenomena in combinatorics deal with the properties
that will necessarily hold whenever a graph is partitioned. Problems of this
kind appear even in folklore, for instance in the Friendship Theorem which
states that in a group of 6 or more people there are necessarily either 3 people
that are friends or 3 people that are not friends. This branch of combinatorics
is often referred to as recreational mathematics, yet the underlying theory has
puzzled brilliant minds in discrete mathematics, most notably that of Pál Erds,
for over a century. Part of the reason these problems have eluded the efforts
of decades of mathematical research is because there seems to be a necessary
step of reasoning by brute force over a large number of cases. The ability of
performing this kind of brute force has always been beyond the human brain’s
capacity, and until recently has been beyond the reach of computers. The
situation has changed in recent years and computational methods are being
increasingly used in solving problems and settling conjectures in graph theory.
This chapter is specifically devoted to problems in graph arrowing, where the
set of vertices or edges of a graph are partitioned by “coloring” them. Many
questions can be asked about what properties must arise from these colorings
given enough vertices or edges, and we use constraint satisfaction formulations
of these questions to give answers, or at least hint towards answers, for them.
A summary of our contributions in this chapter is:

• In Section 5.3 we identify issues that arise from using off-the-shelf sym-
metry breaking tools like those mentioned in Section 2.3 when applied
to model enumeration in graph arrowing problems.

46

CHAPTER 5. GRAPH ARROWING 47

• In Section 5.4 we describe a family of quantified Boolean formulas based
on graph arrowing problems that has the interesting property that all
formulas in this family have unique satisfying assignments to the top-
level variables.

• Finally, in Section 5.5 we describe other projects where we have used
SAT solvers to gain insights on problems related to graph arrowing as a
complement to the theoretical analysis.

The next couple of sections provide the background definitions and a de-
scription of the general techniques used to encode graph arrowing problems
using constraint satisfaction paradigms.

5.1 Definitions
We define the order of a graph to be the number of its vertices. Let Kn be the
complete graph of order n. We define [k] = {1, 2, . . . , k} as the set of positive
integers up to k. Let G = (V,E) be a graph, where V and E are the set of
vertices and edges of G, respectively. An edge k-coloring of the edges of G is
a function σ : E → [k]. For a k-coloring σ of a graph G = (V,E) and i ∈ [k]
we define σi as the graph formed by the edges of G that have color i, i.e.,
σi = (V, {e ∈ E | σ(e) = i}). The important concept behind all definitions of
arrowing is subgraph isomorphism:

Definition 5.1 (Subgraph Isomorphism). Given two graphs H = (VH , EH)
and G = (VG, EG), a subgraph isomorphism from H to G is a function φ :
VH → VG that is such that, for all vertices u, v ∈ VH , {u, v} ∈ EH implies
{φ(u), φ(v)} ∈ EG.1

The concepts of graph arrowing for edge colorings are defined as follows:
1Not to be confused with other related concepts like induced subgraph isomorphism and

graph isomorphism. In the case of induced subgraph isomorphism, the condition on φ is
that {u, v} ∈ EH if and only if {φ(u), φ(v)} ∈ EG. Graphs H and G are isomorphic if they
have the same number of vertices and an induced subgraph isomorphism exists from H to
G (or, equivalent, from G to H). We mention in passing that there are definitions of edge
and vertex arrowing problems for the induced version of subgraph isomorphism, but we do
not deal with those in this thesis.

CHAPTER 5. GRAPH ARROWING 48

Figure 5.1: A coloring of K5 avoiding monochromatic triangles, thus witness-
ing K5 6→e (K3,K3). The two colors are represented by solid and dashed
lines.

Definition 5.2 (Edge Arrowing). A graph G edge-arrows the list of graphs
H1,H2, . . . , Hk, written G →e (H1,H2, . . . , Hk), if for every k-coloring σ of
the edges of G, there exists i ∈ [k] such that there is a subgraph isomorphism
from Hi to σi.

Definition 5.3 (Edge Good Coloring). An edge k-coloring σ of G is a (H1,H2,
. . . ,Hk)e-good coloring of G if for every i ∈ [k] there exists no subgraph iso-
morphism from Hi to σi. An (H1,H2, . . . , Hk)e-good coloring then witnesses
the fact that G 6→e (H1,H2, . . . , Hk).

Figure 5.1 shows a coloring of K5 (the complete graph on 5 vertices) wit-
nessing K5 6→e (K3,K3). The following is a version of the Friendship Theorem
stated above, in terms of edge arrowing:

Theorem 5.4 (Friendship Theorem). K6 →e (K3,K3).

Analogous definitions exist for vertex colorings, defined instead over color-
ings σ : V → [k]:

Definition 5.5 (Vertex Arrowing). A graph G vertex-arrows the list of graphs
H1,H2, . . . , Hk, written G →v (H1,H2, . . . , Hk), if for every k-coloring σ of
the vertices of G, there exists i ∈ [k] such that there is a graph isomorphism
from Hi to σi.

Definition 5.6 (Vertex Good Coloring). A vertex k-coloring σ of G is a
(H1,H2, . . . , Hk)v-good coloring of G if for every i ∈ [k] there exists no sub-
graph isomorphism from Hi to σi. An (H1,H2, . . . , Hk)v-good coloring then
witnesses the fact that G 6→v (H1,H2, . . . , Hk).

CHAPTER 5. GRAPH ARROWING 49

Several important concepts in combinatorics and graph theory have been
defined around edge and vertex arrowing. The multicolor Ramsey number
R(G1, G2, . . . , Gk) is the smallest natural number N such that the complete
graph on N vertices edge-arrows the graphs G1, G2, . . . , Gk. A celebrated the-
orem by Ramsey [95] guarantees the existence of these numbers, but finding
the exact value for specific parameters remains a challenging task for comput-
ers. Similarly, the edge-Folkman number Fe(G1, G2, . . . , Gk;m) (respectively,
vertex-Folkman number Fv(G1, G2, . . . , Gk;m)) is the smallest N such that
there exists a Km-free graph of order N that edge-arrows (resp., vertex-arrows)
the graphs G1, G2, . . . , Gk. Folkman showed that when n is greater than the
maximum order of the graphs Gi, F (G1, G2, . . . , Gk;n) exists [42]. Ramsey
and Folkman numbers, and variations thereof, have attracted much interest in
finite and extremal combinatorics. The book by Soifer [102] provides a good
overview of the latest research trends in these areas and the dynamic survey
by Radziszowski [94] keeps track of which finite Ramsey numbers are known.

For two graphs G and H, we denote by S(G,H) the set of subgraph iso-
morphisms from H to G. For succinctness, when e ∈ E is an edge e = {u, v},
we write s(e) for the edge {s(u), s(v)}. We define C(G;H1,H2, . . . , Hk) as the
set of (H1,H2, . . . , Hk)e-good colorings of G. Clearly, C(G;H1,H2, . . . , Hk) =
∅ ⇔ G→e (H1,H2, . . . , Hk).

5.2 CSP Encodings for Graph Arrowing
Let us explore some of the options to tackle arrowing problems using constraint
satisfaction programming. Let us first consider the case k = 2. To encode edge
2-colorings we exploit the fact that the Boolean domain contains two values
> (true) and ⊥ (false) and express the negation of the arrowing property in
terms of Boolean formulas. Let the Boolean formula φ(G;H1,H2) on ‖E(G)‖
variables xe for e ∈ E(G) be defined as follows.

φ(G;H1,H2) =

 ∧
s∈S(G,H1)

∨
e∈E(H1)

xs(e)

 ∧
 ∧

s∈S(G,H2)

∨
e∈E(H2)

xs(e)

 (5.1)

This formula essentially states that in every subgraph isomorphism from
H1 to G at least one of the edges involved is “colored” true, and in every

CHAPTER 5. GRAPH ARROWING 50

subgraph isomorphism from H2 to G at least one of the edges involved is “col-
ored” false. If we correspond {1, 2} with {⊥,>}, then a model of φ(G;H1,H2)
can easily be mapped to an edge coloring of G that avoids monochromatic
copies of H1 and H2 in the first and second color, respectively. It is also
easy to see this mapping is one-to-one, i.e., to each model of φ(G;H1,H2)
corresponds a coloring witnessing G 6→e (H1,H2) and vice versa. Thus,
φ(G;H1,H2) ∈ SAT ⇔ G 6→e (H1,H2). Furthermore, one can generate
C(G;H1,H2) by using an AllSAT solver to list every model of φ(G;H1,H2).

When k > 2, a different approach is needed. Boolean formulas can still be
of help in this case, but the encoding is slightly more complex. The encoding
used in Codish et al. [21] has variables of the form xe,i for every edge e ∈ E(G)
and every color i ∈ [k] indicating edge e is colored i. For each color i ∈ [k],
the formula

ψS(G;Hi) =
∧

s∈S(G,Hi)

∨
e∈E(Hi)

xe,i

encodes the constraint that at least one of the edges involved in a subgraph
isomorphism from Hi to G is not colored i. Also, for every edge e ∈ E(G) the
constraint ExactlyOne({xe,1≤i≤k}) from Section 2.1.3 guarantees that e is
colored with exactly one color. Putting these together, the formula

ψ(G;H1,H2, . . . , Hk) =

 ∧
i∈[k]

ψS(G;Hi)

 ∧
 ∧

e∈E(G)

ExactlyOne({xe,1≤i≤k})


is not satisfiable if and only ifG→e (H1,H2, . . . , Hk), and as before, every sat-
isfiable assignment of this formula can be mapped to a (H1,H2, . . . , Hk)e-good
coloring of G. Nevertheless, ψ(G;H1,H2, . . . , Hk) is inconvenient because it
is more complicated than φ(G;H1,H2).

An alternative way to formulate the arrowing property using CSPs is to
use answer set programming. Consider the program Π(G;H1,H2, . . . , Hk) over
variables xe for e ∈ E(G) and the predicate color/2 is defined as

Π(G;H1,H2, . . . , Hk) =

 ⋃
e∈E(G)

{color(e, i) : i ∈ [k]} = 1

∪
⋃

i∈[k]

Π′(G,Hi)


where each subprogram Π′(G,H) is defined as Π′(G,H) =

⋃
s∈S(G,H)

R(G,H, s)

and the rules R(G,H, s) are in turn defined by its parts as

CHAPTER 5. GRAPH ARROWING 51

H(R(G,H, s)) = ∅
B+(R(G,H, s)) =

⋃
e∈E(H)

color
(
xs(e), i

)
B−(R(G,H, s)) = ∅.

When the predicate color(e, i) for an edge e ∈ E(G) is interpreted as
the edge e being colored i, the models of Π(G;H1,H2, . . . , Hk) correspond to
colorings of G witnessing G 6→e (H1,H2, . . . , Hk).

The main advantage of using ASP over Boolean formulas for graph arrow-
ing in the case of k > 2 colors is the expressive power of the input language
of ASP solvers like clingo. The ability to use a predicate like color/2 and
cardinality constraints make for a concise encoding of the arrowing property.

5.3 Enumerating Colorings Modulo Symmetries
Finding all the assignments that satisfy the formula φ(F ;G,H) (i.e., solving
the AllSAT problem for this formula) can be used to generate the complete
set of colorings of the edges of F witnessing F 6→e (G,H). Generating these
sets of colorings for a given triple of parameters (F,G,H) is often used as a
building block towards finding exact values for Ramsey numbers under dif-
ferent parameters. The “gluing method” used to establish R(4, 5) = 25 [81],
which is still found embedded in more recent ideas [21], is an example of such an
application. Using AllSAT solvers for this purpose offloads the combinatorial
search to standard tools that are being actively developed [106], eliminating
the need to craft specialized code. A shortcoming of generating these families
through the method of encoding the negation of the arrowing property into
a Boolean formula is that an AllSAT solver may generate many colorings
that are essentially equivalent among them as it lists all possible models of
the formula. As discussed in Section 2.3, the need to generate models that
are distinct under some notion of equivalence is not unique to formulations of
the arrowing predicate as a Boolean formula. Many symmetry breaking tech-
niques have been developed for specific applications of SAT. A great example
of a symmetry breaking technique specifically tailored for graph search is the
use of canonizing sets for small graph searches [65]. Unfortunately, the need to

CHAPTER 5. GRAPH ARROWING 52

embed these techniques into the Boolean encoding of the non-arrowing prop-
erty may neglect the advantage of using general-purpose AllSAT solvers. To
avoid this issue, one may be interested in using off-the-shelf symmetry break-
ing software that is domain independent. Nevertheless, we showed that using
syntactic symmetry breaking tools for the task of generating witness colorings
via AllSAT solvers may have undesirable consequences if one does not take
care of understanding the details of the underlying techniques.

5.3.1 Number of Satisfying Assignments

One of the main improvements of Shatter [3] over the original formulation of
the symmetry breaking clauses [25] explained in Section 2.3 is that Shatter
adds symmetry-breaking clauses whose number of literals is linear in the num-
ber of variables of the input formula. This is done through a relaxation on the
symmetry breaking constraints. This relaxation has an undesirable effect in
the number of satisfying assignments of the resulting formula. To study this
effect, we summarize some of the details behind Shatter’s relaxation of the
symmetry breaking constraints.

Using additional equality variables ei ≡ (xi ↔ πx(xi)), one incurs in a
quadratic increase on the length of the formula when adding lexicographical
symmetry breaking clauses, as discussed in Section 2.3. Shatter avoids this by
using “chaining predicates”. For this, new variables li ≡ (xi → πx(xi)) (that
is, li is true if and only if xi is “less than or equal to” πx(xi)) and pi are in-
troduced, together with CNF clauses equivalent to pi ↔ (ei−1 → (li ∧ pi+1)),
with e0 = > and pn+1 = >. Shatter also replaces equality variables ei with
“greater than or equal to” variables gi ≡ (πx(xi)→ xi), and relaxes the if
and only if conditions for the pi variables to one way implications. The
clauses added by Shatter are then the CNF equivalents of formulas of the
form pi → (gi−1 → li ∧ pi+1), with g0 = >. It is easy to see these relaxations
introduce satisfying assignments that do not satisfy the original symmetry
breaking formulation. To get a better feel of how much of a “blow-up” in
the number of satisfying assignments does this relaxation cause, consider the
following lemmas about extensions of partial assignments of the Boolean ex-
pressions involved in these two formulations of symmetry breaking clauses. Sk
in Lemma 5.7 corresponds to the original lexicographical symmetry breaking
clauses with chaining, while Tk in Lemma 5.8 corresponds to the clauses added

CHAPTER 5. GRAPH ARROWING 53

by Shatter.

Lemma 5.7. Let Sk = e0 ∧
k∧

i=1
(pi ↔ (ei−1 → (li ∧ pi+1))) ∧ pk+1. Then a

partial assignment of the variables ei and li has at most one extension that
satisfies Sk.

Proof. Let S′
k = e0 ∧

k∧
i=1

(pi ↔ (ei−1 → (li ∧ pi+1))), that is, S′
k is Sk without

fixing pk+1. Then Sk = S′
k ∧ pk+1. We first prove by induction on k that a

partial assignment of the variables ei and li has at most one extension that
satisfies S′

k once pk+1 is assigned to a value. For k = 0, this is trivially true
since the value of S′

0 = e0 does not depend on the value of p1. We now
assume that this property holds for S′

n and prove it for S′
n+1. Our induction

hypothesis implies that for any assignment of the variables ei and li for i ≤ n,
there is at most one assignment of the variables pi, i ≤ n that satisfies S′

n

once pn+1 is assigned to a value. Suppose we assign pn+2 to a value, then
since pn+1 ↔ (en−1 → ln ∧ pn+1) is a subformula of S′

n+1 so pn+1 is uniquely
determined by the assignments of en−1, ln and pn+2, which proves our claim.
Since Sk = S′

k ∧ pk+1, any satisfying assignment of Sk must fix pn+2 to > and
the lemma follows.

Lemma 5.8. Let Tk = g0 ∧
k∧

i=1
(pi → (gi−1 → (li ∧ pi+1))) ∧ pk+1. Let φ be

a partial assignment that assigns the m variables gi, gi+1, . . . , gi+m−1 to ⊥.
Then, if φ can be extended to an assignment that satisfies Tk, it can be extended
to at least 2m − 1 assignments that satisfy Tk.

Proof. Since φ assigns gi to ⊥, the subformula pi+1 → (gi → (li+1 ∧ pi+2))
simplifies to pi+1 → >, regardless of what li+1 and pi+2 are assigned to. Then
pi can be assigned to ⊥ or > without falsifying Tk. Furthermore, pi+1 →
(gi → (li+1 ∧ pi+2)) does not constrain pi+2 if gi is assigned to ⊥, and pi+2 →
(gi+1 → (li+2 ∧ pi+3)) simplifies to pi+2 → > when gi+1 is assigned to ⊥, so
pi+2 can be assigned to ⊥ or > as well. Following the same reasoning, all the
variables pi+1, pi+2, . . . , pi+m can be assigned to ⊥ or > independently without
falsifying Tk except possibly for pi+m if i + m = k + 1, yielding the desired
result.

CHAPTER 5. GRAPH ARROWING 54

The combination of these lemmas means that, in the worst case, the in-
crease in the number of satisfying assignments due to Shatter’s relaxations
may be exponential in the number of ei or gi variables. While in the original
lexicographical symmetry breaking formulation the number of ei variables is
the same as the number of variables in the original formula, Shatter reduces
the number of variables to consider by eliminating certain tautological sub-
formulas from Tk, thus mitigating the effect of the increase in the number of
models.

Another important detail in the analysis above is that the “blow-up” in the
number of models of the formula enhanced with symmetry breaking clauses
happens only at the pi variables: for a fixed assignment of the original vari-
ables of φ there are many possible assignments of the pi variables that would
satisfy the formula output by Shatter. The projective model enumeration
technique [46] in the clasp solver [44] is particularly useful to nullify this in-
crease in the number of models. This technique allows for outputting models
that are different modulo a subset of the variables. Thus combining projective
model enumeration with the output of the formula preprocessed by Shatter
restores the original goal of symmetry breaking which is reducing the number
of satisfying assignments. The subset of variables that one would project to
would of course be the original set of variables of the input formula.

It is important to mention that it is possible to avoid this issue altogether
by using BreakID [32] which allows for using the original symmetry breaking
predicates without relaxations. This tool is thus more appropriate for All-
SAT applications where symmetry breaking is needed.

To illustrate the issue of increased number of models we provide a concrete
example.

Example 5.9. From finite Ramsey theory, we know that R(C5, C5) = 9 [19],
where C5 is the cycle of length 5 (see also [94] for a comprehensive survey
of what is known in finite Ramsey theory). This means that φ(K9;C5, C5) /∈
SAT, but φ(K8;C5, C5) ∈ SAT, so we are interested in finding all edge col-
orings of the complete graph K8 witnessing R(C5, C5) > 8. φ(K8;C5, C5)
contains 28 variables (corresponding to

(
8
2

)
edges in K8) and 1344 clauses,

and there are 1190 models for that formula. From this information, we know
that ‖C(K8;C5, C5)‖ = 1190. After processing this formula with Shatter,
the resulting formula with symmetry breaking clauses has 70 variables, 1499
clauses, and 824 models. On the other hand, using our own implementation of

CHAPTER 5. GRAPH ARROWING 55

the chaining method without the relaxation outputs a formula with 165 vari-
ables, 1809 clauses, and 5 models. Using nauty [80] to reduce any of these
sets of colorings to pick just one representative from each equivalence class
of colorings under isomorphism, we find that ‖D(C(K8;C5, C5))‖ = 4, so the
chaining method without the relaxation outputs only one redundant coloring.

5.3.2 Incomplete Sets of Colorings

Perhaps more concerning than the increase in the number of colorings found by
preprocessing the formula φ(F ;G,H) is the fact that enumerating all models of
the result of preprocessing φ(F ;G,H) with Shatter may not yield a complete
set of colorings. On the other hand, there are parameters F , G, and H for
which preprocessing a formula φ(F ;G,H) with Shatter does output a Boolean
formula whose models can be used to build a complete set of colorings for the
given parameters. One example is Example 5.9, where we were able to generate
D(C(K8;C5, C5)) from the models of φ(K8;C5, C5) after preprocessing it with
Shatter. The fact that for certain parameters this method will work and for
other parameters it will not warrants an investigation. In this section, we take
a closer look at this phenomenon and present a sufficient condition under which
a workflow that uses Shatter for symmetry breaking produces incomplete sets
of colorings. This condition is the presence of free variables, which are variables
that do not appear in the CNF formula. This is possible in the context of CNF
formulas in the DIMACS format because the specification2 states that “it is
not necessary that every variable appear in the instance.” We study the effect
of free variables in Lemma 5.10 and as an immediate consequence, we state a
sufficient condition for φ(F ;G,H) to produce incomplete sets of colorings in
Theorem 5.11.

Lemma 5.10. Let φ be a Boolean formula. Then any satisfying assignment
of the formula output by preprocessing φ with Shatter will assign any free
variables in φ to ⊥.

Proof. Let W be the set of free variables in φ. The graph Gφ generated
according to the rules summarized in Section 2.3 has 2 vertices for each free
variable (one for the positive literal and one for the negative literal) and an
edge between these two vertices. Then the matching on 2‖W‖ vertices (i.e.,

2ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi

CHAPTER 5. GRAPH ARROWING 56

the disjoint union of ‖W‖ edges) is an induced subgraph of Gφ. From graph
theory, we know that the permutations (x, x) for x ∈W are generators of the
automorphism group of Gφ (see, for instance, [112], Theorem 3-11). The rules
applied by Shatter will turn these permutations into clauses of the form x∨x
for x ∈W , so each variable in W will be assigned to ⊥.

The above proof is based on the rules presented in Aloul, Sakallah, and
Markov [3] to generate the symmetry breaking clauses. In practice, version 0.3
of Shatter3 seems to have an additional rule that assigns each free variable to
its own color. This change is effective in eliminating permutations of the type
(xi, xj)(xi, xj) for xi, xj ∈ W from the set of generators of the automorphism
group of Gφ (because xi and xj will now have different colors), yet it does not
eliminate permutations of the type (x, x) which are the culprit of Lemma 5.10.
It is important to highlight the fact that the addition of single-clause variables
(a clause x ∨ x is equivalent to x) is not a flaw in the design of the symmetry
breaking clauses in Shatter but a feature, as noted in Section 3 of [1]. This is
because processing permutations this way reflects the fact that free variables
in the input formula can be fixed to any Boolean value, in this case ⊥. This is
advantageous when trying to determine the satisfiability of the input formula
because the solver no longer has to search to set the value of that variable.

As an immediate consequence of Lemma 5.10, we have the following the-
orem.

Theorem 5.11. Let F , G and H be graphs and suppose an edge e ∈ E(F)
does not participate in any subgraph isomorphism from G to F or from H to
F (i.e., e /∈ Im(σ) for any σ ∈ S(F,G) ∪ S(F,H)). Then, if C(F ;G,H) is
not empty, the set of colorings obtained from the models of φ(F ;G,H) after
preprocessing it with Shatter is incomplete.

Proof. Let φ′(F ;G,H) be the formula output by preprocessing φ(F ;G,H)
with Shatter. Because e does not participate in any subgraph isomorphism
from G to F , or from H to F , the variable xe is free in φ(F ;G,H). By
Lemma 5.10 it will be assigned to ⊥ in any model of φ′(F ;G,H). Let m be
a model of the formula φ′(F ;G,H) and let m′ be the assignment obtained
from m by assigning xe to >. Because e is free in φ(F ;G,H), the restriction
of m′ to the variables of φ(F ;G,H) (i.e., the restriction of m′ to the original

3http://www.aloul.net/Tools/shatter/Shatter_Linux_v03.tar.gz

http://www.aloul.net/Tools/shatter/Shatter_Linux_v03.tar.gz

CHAPTER 5. GRAPH ARROWING 57

variables) is a model of φ(F ;G,H), but m′ itself is not a model φ′(F ;G,H)
thus the coloring corresponding to m′ will not be represented in the colorings
obtained from the models of φ′(F ;G,H).

An obvious modification one can do to avoid this issue is to restrict the set
of variables in Equation 5.1 to xe for edges e ∈ E(F) that are actually involved
in some subgraph isomorphism from G to F or from H to F . Unfortunately,
this does not guarantee the resulting formula will output a complete set of
colorings. There are cases where the models of formulas encoding the non-
arrowing property do not generate complete sets of colorings even when the
formula does not have free variables. This indicates Theorem 5.11 is not a
necessary condition for this phenomenon to occur. Here we provide an example
of such a formula, which is related to Example 5.9:

Example 5.12. Let Kex be the graph obtained from K8 by selecting one of its
vertices and removing all but 2 edges incident to it (alternatively, this graph
can be obtained by adding a vertex to K7 and connecting it to two of the origi-
nal vertices). The resulting graph is illustrated in Figure 5.2. We are interested
in obtaining all 2-colorings avoiding monochromatic C5 in any of the colors.
It is easy to see that φ(Kex;C5, C5) has no free variables: because the only
vertex of degree less than 6 has degree 2, it participates in at least one cycle
of length 5. Nevertheless, the models of the formula obtained from preprocess-
ing φ(Kex, C5, C5) with Shatter represent 64 of the 90 possible isomorphism
classes in C(Kex;C5, C5).

5.4 A QSAT Benchmark Based on Vertex-Folkman
Graphs

Recent years have seen great interest in the problem of determining the satisfi-
ability of quantified Boolean formulas (QSAT). The study of QSAT algorithms
has been spurred by applications to many areas of computer science, including
model checking [31], games [77], and security [117], among others. However, it
is still lagging behind the study of SAT solving algorithms which has been at
the spotlight of constraint satisfaction research for much longer. In order to
bring some parity between these two tightly related areas of research, much ef-
fort has been put into “porting” SAT techniques and algorithms to the QSAT

CHAPTER 5. GRAPH ARROWING 58

Figure 5.2: An illustration of the graph Kex in Example 5.12. The models of
the formula output by Shatter on input φ(Kex;C5, C5) do not correspond to
a complete set of colorings witnessing Kex 6→ (C5, C5).

setting, for instance by using SAT solvers as black-boxes for QSAT solving [67]
or composing SAT solvers to build a QSAT solver [13]. Another area in which
QSAT research needs to catch up to its SAT counterpart is in the availability
of benchmarks that are well defined and well understood. We contribute to the
latter by initiating the study of a family of QSAT instances based on problems
in extremal graph theory. We argue that this family of formulas is interesting
for QSAT research because it is both conceptually simple and parametrized in
a way that allows for a fine-grained diversity in the level of difficulty of its in-
stances. Additionally, when coupled with symmetry breaking, the formulas in
this family exhibit backbones (unique satisfying assignments) at the top-level
existential variables. This benchmark is thus suitable for addressing questions
regarding the connection between the existence of backbones and the hardness
of QBFs.

We define the set of vertex-Folkman graphs FN
v (a1, a2, . . . , ar;m), where

N and m are natural numbers and (ac)1≤c≤r is a sequence of natural numbers
such that ac ≥ 2, as the set of all graphs G of order N that are Km-free and
are such that G→v (Ka1 ,Ka2 , . . . ,Kar).

Consider the problem of determining whether FN
v (a1, a2, . . . , ar;m) is non-

empty. It is possible to encode this problem as a QBF using
(
N
2

)
variables

xi,j and rN variables yi,c such that the formula is satisfiable if and only if
FN
v (a1, a2, . . . , ar;m) is non-empty. The variable xi,j is set to true if and

only if there exists an edge between vertices i and j, while the variable yi,c

CHAPTER 5. GRAPH ARROWING 59

is set to true if and only if vertex i has color c. The intuition behind our
encoding, which we present next, is that we are looking for a graph G that
avoids Km as a subgraph and is such that for all valid (in a sense explained
below) assignments to the variables yi,c there exists a c ∈ {1, 2, . . . , r} and a
subset T ⊆ {1, 2, . . . , N} of cardinality ac such that all xi,j for i, j ∈ T , i 6= j,
and all yi,c for i ∈ T are true. To avoid Km as a subgraph, the formula

AN
m =

∧
S⊆{1,2,...,N},

‖S‖=m

∨
i,j∈S,
i 6=j

xi,j

guarantees that for no subset S ⊆ {1, 2, . . . , N} of cardinality m are the vari-
ables xi,j all true for i, j ∈ S with i 6= j. In order to consider only valid r-
colorings, we use the constraint ExactlyOne({yi,1≤c≤r}) from Section 2.1.3
to guarantee that exactly one of yi,1, yi,2, . . . , yi,r is true for each vertex i. The
formula

CN
n,c =

∨
T⊆{1,2,...,N},

‖T‖=n


 ∧

i,j∈T
i 6=j

xi,j

 ∧
(∧

i∈T
yi,c

)
is true if there is a subset T ⊆ {1, 2, . . . , N} of cardinality n such that all the
edges between these vertices exist in G (i.e., xi,j is true for all i, j ∈ T , i 6= j)
and all the vertices in T are of the same color c. Putting these together, the
formula

FN (a1, . . . , ar;m) = ∃(xi,j)1≤i<j≤N .

∀(yi,c)1≤i≤N, 1≤c≤r.

AN
m ∧(
ExactlyOne({yi,1≤c≤r})→

r∨
c=1

CN
ac,c)

)
(5.2)

is true if and only if FN (a1, a2, . . . , ar;m) is non-empty.
For the rest of the chapter, we set a = max{a1, a2, . . . , ar}. The particular

case we are concerned with is the case N = m+ a where m = 1+
r∑

c=1
(ac − 1).

uczak, Ruciski, and Urbaski [76] proved that the only vertex-Folkman graph

CHAPTER 5. GRAPH ARROWING 60

for these parameters is Km+a − C2a+1, where Cn is the cycle on n vertices.
We include an adapted, self-contained version of this theorem for the sake of
completeness:

Theorem 5.13 (uczak, Ruciski, and Urbaski [76], Theorem 3). For every
non-decreasing sequence of natural numbers a1, a2, . . . , ar, ac ≥ 2, and m = 1+
r∑

c=1
(ac−1) the graph Kar+m−C2ar+1 is the unique graph in Far+m(a1, a2, . . . , ar;m).

From Theorem 5.13 we can derive several properties of Formula (5.2) for
these parameters. By counting the number of cycles of length 2a+1 in Km+a,
we can see that Fm+a(a1, a2, . . . , ar;m) has exactly

(
m+a
2a+1

) (2a)!
2 satisfying as-

signments of the xi,j variables, so in particular it is satisfiable. It is also
evident that all graphs represented by these satisfying assignments are pair-
wise isomorphic. This can be exploited to create a family of Boolean formulas
with a unique satisfying assignment for the top-level existential variables. In
the following section we explore how symmetry breaking can be used for this
purpose.

5.4.1 Symmetry Breaking

Coupling Fm+a(a1, a2, . . . , ak;m) with perfect symmetry breaking at the do-
main level would guarantee that the formulas of this family have a unique
solution: the only admitted graph from the class of graphs of order m+a that
are isomorphic to Km+a − C2a+1. Good progress has been made in develop-
ing perfect symmetry breaking techniques, yet these typically only work for
graphs of small order. Heule [61] provides symmetry breaking clauses called
isolators that can be added to graph-search problems in CNF for graphs of
order up to 8, and Itzhakov and Codish [65] provide permutations called can-
onizing sets that can be turned into predicates that can be added to graph-
search problems for graphs of order up to 10. We can obtain a family of
QBF benchmarks based on Theorem 5.13, each having a unique solution by
using partial symmetry breaking. The key is to notice that we only need
perfect symmetry breaking within the class of graphs that are isomorphic to
Km+a − C2a+1. It is then enough to consider a subset I of the isomorphism
classes of graphs of order m+a which includes the equivalence class of graphs
isomorphic to Km+a − C2a+1 and create symmetry breaking constraints that

CHAPTER 5. GRAPH ARROWING 61

are specific to that target subset. These could then be appended to Am+a
m

in the form BelongsTo(I) → SymmBreaking(I), where the predicates
BelongsTo(I) is a predicate that determines whether a graph belongs to
one of the isomorphism classes in I, and SymmBreaking(I) is a predicate
that breaks symmetries among graphs in I. The partial symmetry break-
ing strategy we explore in this paper is based on the observation that it is
sufficient to consider the subset I≤2a+1

m+a ⊂ Im+a of isomorphism classes of
graphs of order m + a with at least

(
m+a
2

)
− (2a + 1) edges. In this case,

BelongsTo(I≤2a+1
m+a) ≡ AtMostK((xu,v)u,v<a+m,u 6=v; 2a + 1) which is true

whenever at most 2a+ 1 of the literals xu,v are true (i.e., whenever the graph
is missing at most 2a + 1 edges), and SymmBreaking(I≤2a+1

m+a) can be built
from enumerating all non-isomorphic graphs with at least

(
m+a
2

)
− (2a + 1)

edges through the nauty [80] package and then building a sum-of-products
predicate from the edge variables involved.

5.4.2 Clausal Encoding

Clausal encodings of Boolean formulas restrict the syntax of the formulas by
requiring their variables to be grouped into clauses (typically conjunctions or
disjunctions of variables). The most common normal forms are conjunctive
normal form (CNF) which are conjunctions of disjunctions, and disjunctive
normal form (DNF) which are disjunctions of conjunctions. In order to encode
the formula Fm+a(a1, a2, . . . , ak;m) in the QDIMACS format, the matrix of
the formula must be transformed to CNF. Notice the subformula AN

m is already
in CNF. On the other hand the constraint ExactlyOne({yi,1≤c≤r}) is also in

CNF and thus the subformula ExactlyOne({yi,1≤c≤r})→
k∨

c=1
CN
ai,i

is in DNF

and a transformation to CNF is needed. To avoid a combinatorial explosion,
the particular form of our formula allows us to use the Plaisted-Greenbaum
transformation [93] (see Secton 2.1.2). This will introduce a new level of
quantification for the auxiliary variables. Thus the instances are technically
not instances of 2QSAT (that is, QSAT with two quantifiers) but of 3QSAT
instead, yet they essentially encode an ∃∀ problem.

We incorporated symmetry breaking as described in Section 2.3 thus gen-
erating Boolean formulas with exactly one statisfying assignment for the top-
level existential variables. To implement a partial symmetry breaking tech-

CHAPTER 5. GRAPH ARROWING 62

nique based on breaking symmetries only on graphs with at least
(
m+a
2

)
−2a−1

edges we need an encoding of the AtMostK predicate that is suitable for our
benchmark (see Section 2.1.3). Since this predicate will be used as a con-
ditional in the expression BelongsTo(I≤2a+1

m+a) → SymmBreaking(I≤2a+1
m+a)

and the predicate SymmBreaking will be built as a sum of products, it will
be useful to encode the AtMostK predicate as a CNF formula so that the
expression BelongsTo(I≤2a+1

m+a)→ SymmBreaking(I≤2a+1
m+a) will be in DNF

allowing us to again use a DNF to CNF transformation. Several encodings of
the AtMostK predicate into CNF have been published in the literature, and
the PySAT project [64] provides implementations for a number of them. For
simplicity, we chose to use the default which is the sequential counter [101],
but it would be a good topic for future work to determine if there is any ad-
vantage in using a different encoding for this part of the formula. Care then
needs to be taken as this encoding introduces auxiliary variables which need
to be placed at the appropriate levels of quantification.

5.4.3 Circuit Encoding

The disadvantages of requiring the matrix of some QBFs to be in CNF have
been well documented [5, 68] and several formats to express Boolean for-
mulas as circuits have been proposed. In this section, we explore encoding
the formula Fm+a(a1, a2, . . . , ak;m) as a circuit in the QCIR-14 format [70].
It is in principle straightforward to generate circuits from the definition of
Fm+a(a1, . . . , ak;m), even incorporating perfect symmetry breaking predicates
in CNF.

As in Section 5.4.2, we would like to generate instances with parameters
that yield larger graph searches while still exploiting symmetry breaking to
guarantee these instances have unique solutions. In order to do so we again
turn to partial symmetry breaking using the ideas discussed in Section 2.3,
namely, breaking symmetries only among graphs with at least

(
m+a
2

)
− 2a −

1 edges. Notice, however, that in contrast with the clausal encoding case
where in order to encode the AtMostK predicate one typically needs to
devise encodings of circuits into conjunctive or disjunctive clauses, one can
directly encode circuits into the QCIR-14 format. Thus in order to obtain
partial symmetry breaking based on the number of edges of the graph we use
QuAbS [53] C API to encode a cardinality network based on Batcher’s odd-even

CHAPTER 5. GRAPH ARROWING 63

merge sorting networks [8, 10]. Such a network requires O(n log2 n) gates for
n inputs and in our case the number of inputs is

(
m+a
2

)
. A better encoding

which we leave for future work would be based on k-cardinality networks [8]
since 2a+ 1 will typically be much smaller than

(
m+a
2

)
.

Regarding SymmBreaking(I≤2a+1
m+a), the straightforward encoding from a

sum of product to a circuit format will yield ‖I≤2a+1
m+a ‖ OR gates with

(
m+a
2

)
inputs each. Such an encoding would then depend on m + a, yet we can do
slightly better than that by noticing that for natural numbers N and k such
that N ≥ 2k every graph on N vertices with at most k edges is isomorphic to
a graph on N vertices with at most k edges in the subgraph defined by the
first 2k vertices (assuming an ordering over the set of edges). Thus, whenever
m + a ≥ 2(2a + 1) we can “pin” the 2a + 1 missing edges to the subgraph
defined by the first 4a + 2 vertices. This can be implemented with an AND
gate connected to all the literals xu,v with max(u, v) > 4a+2 and ‖I≤2a+1

4a+2 ‖ =
‖I≤2a+1

m+a ‖OR gates with
(
4a+2
2

)
inputs each. This shows that wheneverm+a >

4a + 2, the number of OR gates needed and the number of inputs per OR
gate depend only on a = max(a1, a2, . . . , ak). Even further simplification of
the resulting circuit could be achieved through methods that simplify sum-
of-product circuits (for instance, techniques generalizing Karnaugh maps) but
we leave these considerations for future work.

5.4.4 Case Studies

We implemented software to generate instances from our benchmark in QDI-
MACS4 and QCIR-14 [70] formats, thus covering the majority of QSAT solvers
available. We also implemented model enumerators for instances of this bench-
mark. These enumerators verify the correctness of the instances generated
since they enumerate the unique solution modulo symmetries. The software
and sample running times of some solvers on these instances are available
online5.

4http://www.qbflib.org/qdimacs.html
5https://doi.org/10.5281/zenodo.3548977

http://www.qbflib.org/qdimacs.html
https://doi.org/10.5281/zenodo.3548977

CHAPTER 5. GRAPH ARROWING 64

n
v 6 7 8 9 10 11 12 13 14 15 16 17 18

3 15 9 3
4 22 30 22 8
5 44 63 81 73 52 19 6
6 72 133 198 259 236 192 138 81 22 5
7 120 302 490 666 868 972 653 463 368 241 127 27 5

Table 5.1: Number of (Cn,K4; v)e-good colorings for 3 ≤ n ≤ 7.

5.5 Insight for Ramsey-type Problems via SAT
The previous sections presented contributions in which the encoding of graph
arrowing problems using constraint satisfactions paradigms sits at the heart of
the contribution. In this section, we highlight two other applications in which
said encodings help by providing insights towards obtaining analytical results.

5.5.1 The Number of (Cn,K4)e-good Colorings

Let (Cn,K4; v)e be the set of all (Cn,K4)e-good colorings of Kv, where Cn

is the cycle on n vertices. Recall that the Ramsey number R(Cn,K4) is the
minimum number N such that KN →e (Cn,K4), so for any m ≥ R(Cn,K4),
(Cn,K4;m)e is empty. The Ramsey-critical colorings for R(Cn,K4) are the
colorings in (Cn,K4;R(Cn,K4)−1)e, since these colorings indeed witness that
R(Cn,K4) is the minimum order required to guarantee the arrowing property.
Table 5.1 shows the number of (Cn,K4; v)e good colorings for small values of n.
This dataset was generated by exploiting the fact that all (Cn,K4; v+1)e good
colorings can be obtained from all the (Cn,K4; v)e good colorings by adding
one vertex and connecting it to every vertex in the original coloring, then
coloring the new edges avoiding Cn in the first color and K4 in the second
color. The initial set (Cn,K4; v)e for v = 6 was generated by enumerating
all models of φ(K6;Cn,K4) and then keeping one representative from each
isomorphism class using nauty [80].

We used the numbers in Table 5.1 to complement the following analytical
result in Jayawardene, Narváez, and Radziszowski [69]:

Lemma 5.14 ([69]). The set of R(Cn,K4)-critical graphs consists of:

• Three critical graphs for n = 3.

CHAPTER 5. GRAPH ARROWING 65

• Eight critical graphs for n = 4.

• Six critical graphs for n = 5.

• Five critical graphs for n ≥ 6.

We can see how Lemma 5.14, whose proof in [69] is of analytical nature,
provides a complete description of the critical cases for R(Cn,K4), while Ta-
ble 5.1 provides additional information about how the number of colorings
behave around the critical value. This kind of insight is important in Ramsey-
type problems because it is often difficult (if not impossible) to detect patterns
in the first few values for the parameters, so verification through computational
methods is warranted.

5.5.2 The Vertex-Folkman Number Fv(K3,K3; J4)

Let J4 be the complete graph K4 minus one edge. The Folkman number
Fv(K3,K3; J4) is thus the smallest number N such that there exists a J4-
free graph G of order N such that G →v (K3,K3). Xu, Liang and Radzis-
zowski [115] proved that this number is in fact well defined, based on a purely
analytical construction by Neetil and Rödl [86] which does not provide any
concrete bound on the actual value of Fv(K3,K3; J4). Nevertheless, a simple
randomized construction together with the translation of the vertex arrowing
problem as presented in Section 5.2 gives a much better bound. In order to
explain this construction, we first define J4-free saturated graphs. A J4-free
graph G = (V,E) is saturated if for any two vertices u, v ∈ V such that
{u, v} /∈ E, the graph (V,E ∪ {{u, v}}) contains J4 as a subgraph. We gener-
ated random J4-free saturated graphs of different orders and formulated the
corresponding Boolean formulas encoding G 6→ (K3,K3). The unsatisfiable
instances thus provide witnesses of graphs G that are J4-free and are such that
G→ (K3,K3). The smallest order for which our simple experiment provided
a witness was 135, thus establishing a new bound Fv(K3,K3; J4) ≤ 135. As
future work in this research direction, we will study these graphs in order to
better understand how to use these examples to improve the upper bound
analytically or refine our initial experiments to generate smaller examples.

Chapter 6

Computational Social Choice

Social choice theory studies among other things the decision making of multiple
agents. This has of course been studied for centuries in the context of the larger
field of political sciences. Nevertheless, decision making by multiple agents is
not necessarily tied to human agents. In the age of artificial intelligence, it is
increasingly common to run into applications where these agents are in fact
ranking algorithms, expert systems and such. In large populations, e.g., city
elections, the goal is typically to simplify the decision making process and rules
like majority (or even dictatorship, the simplest one of all rules) are used. In
contrast, the goal of smaller populations, e.g., committee elections, may be to
take a decision that better represents the agents. What “better” represents
the agents is obviously tied to a quantitative or qualitative measure of “good.”
Common measures are majority, fairness, and envy, among others. In order to
achieve these goals, different mechanisms to aggregate preferences have been
proposed and developed, with various levels of complexity. This gives raise to
interesting combinatorial problems that stem from different scenarios in social
choice. Computational social choice then studies the algorithmic aspects of
these combinatorial problems.

In this chapter we provide the details of our contributions to computational
social choice. Our main contribution is using answer set programming to
formulate control problems for election systems where the winner problem
is NP-hard. These election systems with hard winner problems have even
harder control problems, and encoding and solving these problems using ASP
is non-trivial.

66

CHAPTER 6. COMPUTATIONAL SOCIAL CHOICE 67

6.1 Background and Definitions
The main concept from computational social choice that we will deal with in
this chapter is that of election systems. Election systems consist of a set of
candidates C, a set of voters V and a rule that determines the winner of the
election based on the preferences of the voters. The preferences are provided as
orders over the candidates in C, thus the order >v will stand for the preference
of voter v ∈ V over the candidates in C. Election systems are a source of
interesting combinatorial problems since it is not always straightforward to
determine a winner given some rule. For instance, a natural way to determine
a winner is to choose a candidate that, once all preferences are aggregated, does
not lose against any other candidate pairwise. This candidate is known as the
weak Condorcet winner of an election and may not exist in some elections. A
classical example of this issue is the following election, known as the Condorcet
paradox:

a >1 b >1 c

c >2 a >2 b

b >3 c >3 a

In this example, candidate a is preferred over b by the majority of voters,
candidate b is preferred over c by the majority of voters, but then candidate c
is preferred over a by the majority of voters.

Given an election system and the set of preferences from the voters, the
winner problem is the computational problem of determining a winner of the
election, if one exists. Other problems are defined on top of the winner prob-
lem, and seek to model real-world situations where some adversary agent (not
necessarily part of the election) is interested in affecting the result of the elec-
tion. Control problems are decision problems of determining, given an election
system and the voter preferences, if there are voters or candidates that can
be added or deleted such that the result of the election can be altered with
respect to a prescribed candidate. In the constructive version, the adversary
agent seeks to guarantee that the prescribed candidate wins the election. In
the destructive version, the objective of the adversary agent is to guarantee
that the prescribed candidate does not win the election. By combining the

CHAPTER 6. COMPUTATIONAL SOCIAL CHOICE 68

different parameters of control problems, one obtains different variations, e.g.,
constructive control by adding candidates (CCAC) or destructive control by
deleting voters (DCDV).

Determining the winner of an election and finding a control action in an
election are important aspects of computational social choice [18]. Compu-
tational complexity has provided a framework to classify how resistant are
election systems to attacks like control [9].

6.2 Election Systems with Very Hard Control Prob-
lems

Of special interest to our research are election systems whose winner problems
are harder than the hardest problems in NP. This is because these are the
only elections systems that could possibly have control problems harder than
the hardest problems in NP as well. Perhaps the easiest way to see this is true
is to consider the contrapositive statement: Suppose we are in the constructive
scenario and that the winner problem for an election system E is in P, then
one can guess a control action and verify in polynomial time if the winner of
the election is the desired candidate.

We focus on three popular election systems that have winner problems
harder than the hardest problems in NP: the Kemeny, Dodgson and Young
election systems. These three election systems have winner problems that are
complete for the class Θp

2 of decision problems that can be solved in nondeter-
ministic polynomial time with parallel access to an NP oracle.

In the Kemeny election system, a winner of the election is a candidate that
wins in a preference >K that minimizes the Kendall’s τ distance∑

a,b∈C,a>Kb

‖{v ∈ V | b >v a}‖

from the set of voters. Hemaspaandra, Spakowski, and Vogel showed that
determining the winner in this election system is Θp

2-complete [56].
In the Dodgson election system a winner is a candidate who can become a

Condorcet winner (one that beats every other candidate) with the fewest num-
ber of swaps between adjacent candidates in the votes. In the Young election
system the winner is the candidate who can become a weak Condorcet winner

CHAPTER 6. COMPUTATIONAL SOCIAL CHOICE 69

by deleting the fewest voters. The winner problems for Dodgson and Young
election systems were proven to be Θp

2-complete by Hemaspaandra, Hemas-
paandra, and Rothe [55] and Rothe, Spakowski, and Vogel [98], respectively.

In [41] we prove that several variants of constructive control problems
related to Kemeny, Young, and Dodgson elections are Σp

2-complete. Σp
2 =

NPNP is the class of problems solvable by a nondeterministic polynomial-time
Turing machine with access to an NP oracle. Table 6.1, taken from [41],
summarizes the results in that paper.

Table 6.1: Summary of Σp
2-completeness results for control from [41]. Kemeny′

refers to a natural variant of Kemeny defined in [35] and (∗) refers to the
variant of control where the chair can delete only certain candidates.

Adding Deleting
Voters Young YoungKemeny′

Candidates Kemeny Kemeny (∗)
Dodgson Dodgson

6.3 ASP Encodings
In recent years, ASP has been touted as a convenient paradigm to express
social choice problems as CSPs. Starting with Konczak [73], several encodings
have been provided over the years tackling different problems in voting theory.
The work by Charwat and Pfandler [20] provides several ASP programs en-
coding winner problems for different election systems. These programs exploit
the expressiveness of the input language of gringo [47] which allows computing
some winner problems whose complexity is beyond NP, like those introduced
in Section 6.2, via the use of aggregates. Their approach is heavily based
on the guess and check approach mentioned in Section 2.2. For instance, for
the winner problem in Kemeny elections, the guess part consists of guessing
a preference that minimizes Kendall’s τ distance with respect to the voters’
preferences. In the check part, the guessed preference is discarded if there
exists another preference with smaller distance to the voters’ preferences. The
interplay between these two parts (i.e., iteratively guessing a preference and

CHAPTER 6. COMPUTATIONAL SOCIAL CHOICE 70

checking its minimality) naturally arrives at a minimum preference. The win-
ner of that minimal preference is then the winner of the election.

We address the question of whether ASP would still be practical to ex-
press computational problems regarding election control problems that are
not in NP. This is important because, although disjunctive ASP programs
can express problems whose complexity is higher than NP in the polynomial
hierarchy, doing so requires techniques that are more complicated than the
standard guess and check approach described above, namely the saturation
technique explained in Section 2.2.2.

We propose an approach that allows for expressing the control problem in
a guess and check fashion where both the check and the guess parts are able to
express problems in NP. The combined encoding returns an affirmative answer
if and only if the guess program has an answer set for which the check program
does not have an answer set. Figures 6.1 and 6.2 show the guess and check
ASP programs for the control action of adding unregistered candidates to the
election. These encodings utilize a syntax very similar to that of gringo [47],
the input language for clingo. The parameters for this encoding include the
limit L of unregistered candidates that can be added, and a set of unregistered
candidates marked by the predicate ucand/1. Figure 6.1 encodes guessing a
preference gpref/2 that has the property that the preferred candidate is ranked
first (due to the last constraint), and the Kendall τ distance is recorded in
the predicate gkt/1. Figure 6.2 then encodes guessing, given the preference
gpref/2 guessed earlier, a preference cpref/2 that has strictly smaller Kendall
τ distance with respect to the set of voters than that recorded in gkt/1 and
is such that the preferred candidate is not ranked first. For our example, the
answer to the problem of whether a control by adding candidates exists is yes
if the guess program can guess a set of candidates to add and a preference
over the resulting set of candidates for which the check program cannot guess
a preference with a smaller distance where the preferred candidate does not
rank first.

Our implementation builds on the ideas by Eiter and Polleres [38] com-
bined with normalization of programs with aggregates [16]. The work of Eiter
and Polleres [38] addresses the issue of having to craft cumbersome ASP en-
codings of Σp

2 problems in the following way: They provide a template “meta-
interpreter” and a transformation of ASP programs that can, together, be used
to integrate an ASP program that guesses a solution to the Σp

2 problem with

CHAPTER 6. COMPUTATIONAL SOCIAL CHOICE 71

{candidate(C) : ucandidate(C)} L← limit(L).
% A preference gpref/2 and a “worse” rank gwrankC/3
% are guessed as in Democratix [20]

gkt(K)← K = #sum{N,C1, C2 : gwrankC(C1, C2, N)}.
← preferredCand(C), not gpref(1, C).

Figure 6.1: Relevant parts of the encoding of the guess part of Kemeny-CCAC.

% A new preference cpref/2 and corresponding rank cwrankC/3
% are guessed as in Figure 6.1

← gkt(K),K #sum{N,C1, C2 : cwrankC(C2, C1, N)}.
← preferredCand(X), cpref(1, X).

Figure 6.2: Relevant parts of the encoding of the check part of Kemeny-CCAC.

an ASP program that checks whether the guessed solution is incorrect. The
combination of these two then amounts to a “guess and check” encoding of a
Σp
2 problem. While this is a significant step towards simplifying the encoding

of Σp
2 problems as ASP programs, for our specific application it has the draw-

back that it does not support ASP programs extended with aggregates (e.g.,
#count). This is problematic for our ASP encodings since not using aggregates
would lead to more complex, less intuitive programs.

To work around this issue, we need a way to transform ASP programs with
aggregates into equivalent ASP programs that do not employ aggregates. The
lp2normal tool [15] provides such a transformation. We combine lp2normal
with meta-interpretation to express control problems with elections while har-
nessing the full expressive power of modern ASP input languages. Figure 6.3
illustrates the interaction between the several parts of this approach. We note
that the transformation to eliminate aggregates is only needed for the check
program, since the integration between the guess and the check programs only
transforms the latter.

We implement the approach of Eiter and Polleres combined with normal-
ization of certain aggregates like #count and #sum in order to provide an in-
tuitive approach to solve problems in the second level of the polynomial hier-

CHAPTER 6. COMPUTATIONAL SOCIAL CHOICE 72

Guess Program Check Program

Normalization of Aggregates
[15]

“Guess and Check” Integration
[38]

ASP Instance

Figure 6.3: Illustration of our “guess and check” approach for problems in Σp
2.

archy. Our implementation is on top of the development version of the very
popular clingo system for ASP.

6.4 Similar Encoding Approaches
The framework of stable-unstable semantics by Bogaerts, Janhunen and Tashar-
rofi [14] provides a similar “guess and check” strategy to solving problems
in Σp

2. They mention that an advantage of the stable-unstable semantics is
that they can be easily extended to represent problems at any level of the
polynomial hierarchy. In their implementation both the guess and the check
program are normalized, essentially discarding aggregates altogether. It is an
interesting direction for future work to determine if not exploiting aggregates
as implemented in modern ASP solvers like clasp [45] could hurt the perfor-
mance of solvers employed in the task of solving very hard control problems
in election systems.

Chapter 7

A Verified Symmetry
Breaking Tool for CNF SAT

The contributions presented so far in this thesis, particularly those of Chap-
ter 5, highlight the importance of the SAT problem (see Section 2.1) in com-
binatorial computing. The applications SAT solvers have found in theory and
practice have brought along interesting consequences. On the one hand, it
has spurred the development of an entire ecosystem of related software, from
preprocessors to software that verifies proofs of unsatisfiability. On the other
hand, it has increased the complexity of SAT solvers themselves as they are
used to tackle larger instances with intricate structures. The fact that SAT
solvers are becoming more complex while at the same time being used in
more mission-critical scenarios has sparked interest in the verification of SAT
solvers [12,79,100]. Nevertheless, applications usually depend not only on the
SAT solver employed to find satisfying assignments (models) of the generated
instances but also on preprocessing and postprocessing tools. For instance,
most SAT solvers available accept the input formula in DIMACS format1,
which assumes the input is in conjunctive normal form (CNF), so depending
on the application, a CNF transformation may be needed as a preprocessing
step, introducing a new trust issue.

The particular type of preprocessing tool we focus on in this chapter is
syntactic symmetry breaking tools, as those discussed in Section 2.3. The

1https://www.satcompetition.org/2009/format-benchmarks2009.html

73

https://www.satcompetition.org/2009/format-benchmarks2009.html

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 74

brief overview provided in Section 2.3, although by no means thorough, is
enough to make the argument that by using today’s tools in syntactic sym-
metry breaking we are leveraging decades of work. At the heart of this work
is the concept introduced by Crawford [24, 25], still present in modern tools:
the representation of a Boolean formula as a graph whose automorphisms cor-
respond to syntactic symmetries in the input formula. Thus formalizing this
idea would be a step towards formalizing state-of-the-art tools.

We initiated the formalization in the Prototype Verification System [89]
(PVS) of the graph construction by Crawford [24,25] and the verification of the
fundamental property linking the automorphisms of this graph with symmetric
assignments of the variables. Our formalization is based on the graphs theory
from NASA’s PVS library2.

7.1 Formalizing Crawford’s Symmetry Breaking
We begin our formalization by defining a new datatype for literals with con-
structors for positive and negative literals. The type CNFClause is then defined
as an alias for a finite set of literals, and the type CNFFormula is in turn defined
as a finite set of clauses.

lit: DATATYPE
BEGIN
poslit(n: nat): poslit?
neglit(n: nat): neglit?
END lit

CNFClause: TYPE = finite_set[lit]

CNFFormula: TYPE = finite_set[CNFClause]

We define some natural operations over literals and assignments, namely
the neg function which returns the negation of a literal, and the litval func-
tion which takes a literal l and an assignment a and returns the Boolean value
assigned to l under a. We omit the definition of these for the sake of space.
We define the models predicate indicating an assignment models a formula

2https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 75

and the SAT predicate indicating a satisfying assignment exists for the input
formula.

models(F: CNFFormula, assignment: [nat -> bool]): bool =
FORALL (c: (F)): EXISTS (l: (c)): litval(assignment, l) = True

SAT(F: CNFFormula): bool =
EXISTS (assignment: [nat -> bool]): models(F, assignment)

Next, we define the vertex datatype, the type of the vertices of our graph.
A vertex can be a literal vertex or a clause vertex so our datatype has a
constructor for each.

vertex: DATATYPE
BEGIN
litvertex (l: lit): litvertex?
clausevertex (C: CNFClause): clausevertex?
END vertex

We are now prepared to define the functions that will extract the ver-
tices that are used to build the graph of a formula. These are essentially
formula_lits which collects all the literals that appear in a formula, and the
functions lit_vertices and clause_vertices which map a set of literals to a
set of literal vertices, and CNF formulas to sets of clause vertices, respectively.

formula_lits(F: CNFFormula): finite_set[lit] =
lits_for_vars(formula_vars(F))

lit_vertices(L: finite_set[lit]): finite_set[vertex] =
image(litvertex, L)

clause_vertices(F: CNFFormula): finite_set[vertex] =
image(clausevertex, F)

We also define functions to generate the edges of the graph GF . We take
a similar approach as with the vertices of GF , defining functions that output
different sets of edges. The function connect_lits takes a set of natural
numbers (variables, in our domain) and generates a set of edges connecting

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 76

the positive and negative literals of those variables. The connect_clauses
function connects the clauses of a CNF formula to the literals they contain.
From Definition 2.3 it follows that the set of edges of GF is the union of the
output of these functions.

connect_lits(V: finite_set[nat]): finite_set[doubleton[vertex]] =
image(
(LAMBDA (v: nat): dbl(litvertex(poslit(v)), litvertex(neglit(v)))), V)

connect_clause_internal(C: CNFClause, D: CNFClause):
finite_set[doubleton[vertex]] =
image((LAMBDA (l: lit): dbl(clausevertex(C), litvertex(l))), D)

connect_clause(C: CNFClause): finite_set[doubleton[vertex]] =
connect_clause_internal(C , C)

connect_clauses(F: CNFFormula): finite_set[doubleton[vertex]] =
IUnion[(F),doubleton[vertex]](connect_clause)

With the definitions above we are finally ready to define what the graph
of a formula F is and prove a type-correctness condition (TCC) generated by
PVS. The TCC generated asks us to prove that if an edge is in the union of the
sets connect_lits(formula_vars(F)) and connect_clauses(F), then both of
the members of the edge are in the union of lit_vertices(formula_lits(F))
and clause_vertices(F).

formula_graph(F: CNFFormula): graph[vertex] =
(# vert := union(lit_vertices(formula_lits(F)), clause_vertices(F)),
edges:= union(connect_lits(formula_vars(F)), connect_clauses(F)) #)

A fundamental property of this graph is that a literal l is a member of a
clause C of a formula F if and only if the edge {C, l} is in the set of edges of
the graph. We prove this property as a separate lemma.

graph_clause_lit: LEMMA
FORALL (F: CNFFormula, C: CNFClause, l: lit):
(member(C, F) AND member(l, C)) IFF
member(dbl(clausevertex(C), litvertex(l)), edges(formula_graph(F)))

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 77

The next concept we need to formalize is that of automorphisms. In par-
ticular, for our application we need to define color-preserving automorphisms.
Notice that our definition of a vertex does not explicitly allow for us to spec-
ify a color, but the separate constructors naturally induce a coloring on the
vertex datatype. We leverage the induced coloring of vertices by using the
ord function in PVS [90]. An overload of this function which assigns a natural
number to each constructor of an abstract datatype is automatically generated
by PVS when a new abstract datatype is defined. We start by defining the
concept of a (color-preserving) vertex permutation, which is a nonempty type
dependent on a graph. One would naturally think this should be defined as a
bijection from the set of vertices of the graph to itself, but this generates some
incompatibilities with the way graphs are defined in the library. Consider the
following natural definition of a vertex permutation, which is admissible un-
der PVS’ syntax, and a theorem stating a fairly obvious property regarding a
doubleton of permuted vertices and an edge of G.

vertex_permutation(G: graph[vertex]): TYPE+ =
{π: [(vert(G)) -> (vert(G))] | bijective?(π) AND
FORALL (v: (vert(G))): ord(v) = ord(π(v))} CONTAINING id

bad: THEOREM
FORALL (G: graph[vertex], π: vertex_permutation(G),

x: (vert(G)), y: (vert(G))):
nonempty?(edges(G)) AND
choose(edges(G)) = dbl(π(x), π(y)) IMPLIES
member(π(x), choose(edges(G)))

Theorem bad seems to follow immediately from the dbl_in lemma which
is part of the graphs.doubleton theory in PVS:

dbl_in: LEMMA D = dbl(x,y) IMPLIES D(x) AND D(y)

Nevertheless, once we skolemize all the quantified variables, we see what
PVS really thinks of the assumption choose(edges(G!1)) = dbl(π(x),π(y)).
Because of the way NASA’s graph library declares the set of edges of a
graph, choose(edges(G)) is of type doubleton[vertex], yet defining π as
[(vert(G)) -> (vert(G))] makes the expression dbl(π!1(x!1), π!1(y!1))

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 78

to be of type doubleton[(vert(G))]. Because of this, the dbl_in lemma does
not apply to the antecedent -2.

{-1} nonempty?(edges(G!1))
{-2} choose(edges(G!1)) =

extend[vertex, (vert(G!1)), bool, FALSE](dbl(π!1(x!1), π!1(y!1)))
|-------

{1} member(π!1(x!1), choose(edges(G!1)))

Rule? (forward-chain "dbl_in")
No forward match for dbl_in.
No change on: (FORWARD-CHAIN "dbl_in")

The fix in this particular example is to make the right coercion explicit by
assuming that choose(edges(G!1)) = dbl[vertex](π(x),π(y)). Unfortu-
nately, for our larger use of vertex permutations, having many of these simple
fixes amounts to very cluttered statements. Instead, we define them as bijec-
tive functions from the set of vertices to itself such that vertices of the graph
are mapped to vertices of the graph and the color of the vertex is preserved
(in the sense explained before, based on the ord function).

vertex_permutation(G: graph[vertex]): TYPE+ =
{π: [vertex -> vertex] | bijective?(π) AND
(FORALL (v: vertex): member(v, vert(G))
IMPLIES member(π(v), vert(G))) AND

FORALL (v: vertex): ord(v) = ord(π(v))}
CONTAINING id

We now define an operation permute_edges on graphs which generates a
new set of edges using a vertex permutation of the graph. It will then allow
us to define automorphisms as the nonempty type of vertex permutations for
which this operation preserves the set of edges.

permute_edges(G: graph[vertex], π: vertex_permutation(G)):
finite_set[doubleton[vertex]] =
{ e: doubleton[vertex] |
EXISTS (x: vertex, y: vertex):
member(x, vert(G)) AND member(y, vert(G)) AND x /= y AND

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 79

member(dbl(x, y), edges(G)) AND e = dbl(π(x), π(y)) }

automorphism(G: graph[vertex]): TYPE+ =
{ π: vertex_permutation(G) | permute_edges(G, π) = edges(G) }
CONTAINING id

A fundamental property that follows from the structure of GF and the fact
that automorphisms preserve the set of edges is the following:

Lemma 7.1. If φ is an automorphism of GF , then for any literal l in F , φ
maps l to φ(l).

Proof. φ(l) is a literal from the formula, so {φ(l), φ(l)} is an edge of GF and
there must exist vertices x, y in GF such that {φ(l), φ(l)} = {φ(x), φ(y)}. One
of x or y, say x, must be l because φ is injective, and that forces y to be l since
φ is color preserving and the only edges connecting literals to literals connect
every literal to its negation.

We show the formalization of Lemma 7.1 below, where we can see how
the abuse of notation throughout our informal proof of the lemma (using
φ as both a permutation of the vertices of GF as well as a permutation of
literals) is made explicit and causes some clutter. Nevertheless, it is worth
noting it could be worse: since φ is of type [vertex->vertex], the expres-
sion phi(litvertex(l)) could in principle be a clausevertex, in which case
we would not be able to use the l accessor. Instead of flagging this as an
issue, PVS will formulate a type-correctness condition (TCC) asking to prove
that phi(litvertex(l)) is a litvertex, which is easy to show from the fact
that phi is color-preserving. We include the generated TCC below. An im-
portant issue to point out is that, despite the fact that Lemma 7.1 is fairly
straightforward, proving the mapped_lit_neg lemma required laborious case
analysis.

mapped_lit(F: CNFFormula, l: (formula_lits(F)),
φ: automorphism(formula_graph(F))) : lit =

l(φ(litvertex(l)))

mapped_lit_TCC1: OBLIGATION
FORALL (F: CNFFormula, l: (formula_lits(F)),

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 80

φ: automorphism(formula_graph(F))):
litvertex?(φ(litvertex(l)));

mapped_lit_neg: LEMMA
FORALL (F: CNFFormula, l: lit):
member(l, formula_lits(F)) IMPLIES
(FORALL (φ: automorphism(formula_graph(F))):
mapped_lit(F, l, φ) = neg(mapped_lit(F, neg(l), φ)))

The last piece we need to formalize before stating and proving Theorem 2.4
is the notion of permuting an assignment. The crucial property of this opera-
tion is that, if l is a literal of a formula F , the value of φ(l) under an assignment
σ is the value of l under the assignment σ ◦ φ. We have intentionally given a
provocatively simple description of this property which seems to go without
saying. In reality, the description is making use of some notation overloading
that we cannot obviate when formalizing this property in PVS: φ is a vertex
permutation, so a composition of φ with σ is impossible—not even if we con-
sider σ as an assignment of literals, which is another overloading we employ in
our description. Because of all the overloading that is needed to express this
property, we state it as a lemma whose proof actually requires rather heavy
case analysis.

permute_assignment(F: CNFFormula, a: [nat->bool],
φ: automorphism(formula_graph(F))): [nat->bool] =

LAMBDA (n: nat): litval(a, mapped_lit(F, poslit(n), φ))

permute_assignment_preserves: LEMMA
FORALL (F: CNFFormula, a: [nat->bool], l: lit,

φ: automorphism(formula_graph(F))):
member(l, formula_lits(F)) IMPLIES
litval(a, mapped_lit(F, l, φ)) =
litval(permute_assignment(F, φ, a), l)

We are finally ready to state and prove Theorem 2.4. We can in fact state
a weaker version of this theorem: that if σ models F and φ is an automor-
phism of GF , then a ◦ φ models F . We can then use that theorem and the
fact that φ−1 is an automorphism of GF as well to prove Theorem 2.4. As
mentioned before, the proof relies heavily on the graph_clause_lit lemma. It

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 81

also uses the permute_assignment_preserves lemma and the fact that, since
an automorphism is injective and maps the set of vertices of GF to itself, its
inverse also maps the set of vertices of GF to itself. Notice that Theorem 2.4
can be easily stated if we allow for an abuse of notation and consider φ both
a permutation of the vertices of GF and a permutation of literals. In fact, a
closer look at the composition σ ◦ φ reveals that we are both recasting σ as
an assignment of literals and φ as a permutation of literals. This will prove
somewhat problematic since PVS will require us to make these casts explicit,
thus increasing the complexity of the proofs.

Crawford_imp: THEOREM
FORALL (F: CNFFormula, a: [nat->bool],

φ: automorphism(formula_graph(F))):
models(F, a) IMPLIES models(F, permute_assignment(F, φ, a))

Crawford: THEOREM
FORALL (F: CNFFormula, a: [nat->bool],

φ: automorphism(formula_graph(F))):
models(F, a) IFF models(F, permute_assignment(F, φ, a))

We now focus on defining a total order over the assignments of a formula.
This proved to be tricky given our choice of defining assignments as func-
tions from the natural numbers to the Boolean domain. We define a relation
assignment_leq between two assignments σ1 and σ2 which depends on a list
of variables. This relation essentially says that σ1 is lexicographical less or
equal to σ2 over the given list of variables. Notice that the list of variables
induces an order over the variables. There are a number of ways to define this
relation, we chose to define it in a recursive fashion which will facilitate proofs
by induction.

assignment_leq (vars: list[nat])(a1: [nat->bool], a2: [nat->bool]):
RECURSIVE [bool] =
CASES vars OF
null: TRUE,
cons(v, rest_vars):
IF a1(v) THEN

IF a2(v) THEN assignment_leq(rest_vars)(a1, a2) ELSE FALSE ENDIF
ELSE

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 82

IF a2(v) THEN TRUE ELSE assignment_leq(rest_vars)(a1, a2) ENDIF
ENDIF
ENDCASES
MEASURE vars by <<

On the other hand, it will sometimes be helpful to work with an explicit
definition of what this recursive function means. This will be particularly
helpful later on to prove that there is a lexicographical minimum model for
any satisfiable formula. In order to work with this alternative formulation, we
define a predicate over natural numbers assignments_differ which depends
on two assignments σ1 and σ2 stating that these two assignments differ on a
given number. We then prove an equivalence between the recursive definition
of assignment_leq and the property that if the two assignments σ1 and σ2
differ over a list of variables and σ1 is less or equal to σ2, then σ1 assigns False
to the first variable where they both differ.

assignments_differ(a1, a2: [nat->bool])(n: nat): bool =
a1(n) /= a2(n)

assignment_leq_alt: LEMMA
FORALL (vars: list[nat], a1: [nat->bool], a2: [nat->bool]):
assignment_leq(vars)(a1, a2) IFF
(some(assignments_differ(a1, a2))(vars) IMPLIES
NOT a1(nth(vars, find_first(vars, assignments_differ(a1, a2)))))

Notice that assignment_leq as defined is not a total order over assign-
ments. In order to use this definition as a total order, we need to consider a
restricted version assignment_leq_restricted which also depends on a list of
variables but is defined over functions that assign specifically those variables
in the list. This definition uses the extend function in PVS to extend the
assignments over a list of variables to assignments of natural numbers in order
to define this restricted predicate in terms of assignment_leq.

assignment_leq_restricted(D: list[nat])
(a1, a2: [(set_as_list.list2set(D))->bool]): bool =
assignment_leq(D)(
extend[nat,(set_as_list.list2set(D)),bool,TRUE](a1),
extend[nat,(set_as_list.list2set(D)),bool,TRUE](a2))

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 83

assignment_leq_iff_restricted: LEMMA
FORALL (D: list[nat], S: finite_set[nat], a1, a2: [nat->bool]):
set_as_list.list2set(D) = S IMPLIES
(assignment_leq(D)(a1, a2) IFF
assignment_leq_restricted(D)(
restrict[nat,(S),bool](a1),
restrict[nat,(S),bool](a2)))

assignment_leq_restricted_total_order: LEMMA
FORALL (D: list[nat], S: set[nat]):
set_as_list.list2set(D) = S IMPLIES
total_order?[[(S)->bool]](assignment_leq_restricted(reverse(D)))

We mention in passing that the assignment_leq_restricted_total_order
lemma was the most challenging lemma to prove in the entire specification.

We now need a way to encode the symmetry breaking predicate P (π)
described in Section 2.3 as a CNF formula. The standard way to do this
is to use auxiliary variables ei ≡ (li = π(li)) which would lead to an en-
coding of the predicates that is quadratic in the number of variables in the
formula. While implementing this in a procedural fashion is straightforward,
implementing it in a functional fashion in a way that lends itself to proving
properties about the encoding is more involved. We opted for an alternative
approach: expressing the P (π) predicate entirely in terms of the variables of
F without employing auxiliary variables. A way to do this is to notice that

predicates of the type

(
i−1∧
j=1

(li−1 ≡ φ(li−1))

)
→ (li → π(li)) are equivalent to(

i−1∨
j=1

((li ∧ π(li)) ∨ (li ∧ π(li)))

)
∨ (li → π(li)) and

i−1∨
j=1

((li ∧π(li))∨ (li ∧π(li)))

is in disjunctive normal form (DNF). Then we can employ a brute-force trans-
formation from DNF to CNF which, although adding a number of clauses that
is exponential in the number of variables in the formula, is theoretically simple
enough to fit our purposes. We implement this transformation in a recursive
function add_symbreaking_predicates_dnf_helper but we omit its definition
here for the sake of clarity. We do, however, present the lemma formalizing
the main property of this function, namely, that an assignment models the
formula output by the add_symbreaking_predicates_dnf_helper if and only

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 84

if there is a literal i in the list of variables for which a assigns different values
to li and φ(li) .

add_symbreaking_predicates_dnf_helper_neq: LEMMA
FORALL (F: CNFFormula, vars: finite_set[nat],

φ: automorphism(formula_graph(F)), a: [nat->bool]):
models(add_symbreaking_predicates_dnf_helper(F, vars, φ), a) IFF
(EXISTS (v: (vars)):
litval(a, poslit(v)) /= litval(a, mapped_lit(F, poslit(v), φ)))

In order to build the predicate P (π) we process the list of variables as
follows: Let the head of the list be the variable v, and let lv be the positive
literal of v. We take the output of add_symbreaking_predicates_dnf_helper
applied to the rest of the list and add lv and φ(lv) to each clause, then repeat
the same procedure for the rest of the list.

add_symbreaking_predicates_helper(F: CNFFormula, vars: list[nat],
φ: automorphism(formula_graph(F))): RECURSIVE CNFFormula =

CASES vars OF
null: emptyset[CNFClause],
cons(v, rest_vars):
union(
add_lit_to_clauses(
add_lit_to_clauses(
add_symbreaking_predicates_dnf_helper(F, list2set(rest_vars), φ),
mapped_lit(F, poslit(v), φ)),

neglit(v)),
add_symbreaking_predicates_helper(F, rest_vars, φ))

ENDCASES
MEASURE vars BY <<

Notice the procedure above imposes a lexicographical order of the variables
in the list using the reverse of the order induced by the list, as stated in the
following lemma.

models_add_symbreaking_predicates_helper_leq: THEOREM
FORALL (F: CNFFormula, φ: automorphism(formula_graph(F)),

a: [nat->bool], vars: list[nat]):

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 85

models(add_symbreaking_predicates_helper(F, vars, φ), a) IFF
assignment_leq(reverse(vars))(a, permute_assignment(F, φ, a))

We define another function that takes a list of automorphisms of the for-
mula graph of F and adds symmetry breaking predicates for all of them.We
also prove a simple lemma stating a model σ of the formula output by such
function will be less or equal to σ ◦ φ for every automorphism φ in the list.

add_symbreaking_predicates(F: CNFFormula,
φs: list[automorphism(formula_graph(F))]): CNFFormula =

reduce(F,
LAMBDA (φ: automorphism(formula_graph(F)), G: CNFFormula):
union(
add_symbreaking_predicates_helper(F, set2list(formula_vars(F)), φ),
G))(φs)

add_symbreaking_predicates_models: LEMMA
FORALL (F: CNFFormula, φs: list[automorphism(formula_graph(F))],

a: [nat->bool]):
models(add_symbreaking_predicates(F, phis), a) IFF
(models(F, a) AND
FORALL (φ: automorphism(formula_graph(F))):
member(φ, φs) IMPLIES
assignment_leq(reverse(set2list(formula_vars(F))))(
a, permute_assignment(F, φ, a)))

Finally, we prove (a list version of) Theorem 2.5. The fact that F is
satisfiable if the formula together with the symmetry breaking predicates is
satisfiable follows easily from the fact that F is a subset of that formula (see
the base case of the reduce function call above). The interesting part of
this proof is providing a model that will satisfy all the symmetry breaking
predicates given that F is satisfiable. We provide the extension of the lex-
icographical minimum of the set of satisfying assignments of the variables
of the formula as a witness. In order to do this, PVS will ask us to prove
(a) that the set of satisfying assignments of the variables of F is non-empty,
(b) that assignment_leq_restricted is in fact a total order over assignments
of the variables of F , and (c) that the lexicographical minimum satisfies all
the symmetry breaking predicates appended to F . Part (a) is true because the

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 86

restriction of the witness to the satisfiability of F belongs to the set, part (b)
is true by lemma assignment_leq_restricted_total_order, and part (c) fol-
lows from Theorem 2.4.

symbreaking: THEOREM
FORALL (F: CNFFormula, phis: list[automorphism(formula_graph(F))]):
SAT(F) IFF SAT(add_symbreaking_predicates(F, phis))

This concludes our formalization of symmetry breaking for Boolean formu-
las in CNF. The complete development of our formalization, which consists of
61 formulas at the time of this writing, is available online3.

7.2 Conclusions and Future Work
In this chapter, we presented the formalization in PVS of the syntactic sym-
metry breaking technique for Boolean formulas in conjunctive normal form
(CNF) introduced by Crawford [24,25]. We discussed the main components of
our formalization and the challenges we faced formulating and proving them.

There are several directions for future work that could stem from this work.
One relatively simple improvement would be to specify and prove properties
for an encoding of the symmetry breaking predicate P (π) that uses auxiliary
variables and adds a number of clauses that is polynomial in the number of
variables of the formula. Our choice of representing assignments as functions
from natural numbers to the Boolean domain would allow for using auxil-
iary variables without affecting the proof of symbreaking. This would bring
our formalization closer to the actual implementations available in tools like
Shatter [3].

Related to the extension discussed above, an interesting direction for future
work would be to obtain executable code out of this formalization and compare
it to the performance of tools like Shatter [3] and BreakID [32]. PVSio4 [85]
could in principle help in this task, yet one big roadblock in using it for our
purpose is that basic functions related to finite sets (like adding elements to the
set and calculating set unions) are, to the best of our knowledge, not supported
by default. Adding support for these would be a major improvement towards

3doi:10.5281/zenodo.2597138.
4https://shemesh.larc.nasa.gov/people/cam/PVSio/

https://doi.org/10.5281/zenodo.2597138
https://shemesh.larc.nasa.gov/people/cam/PVSio/

CHAPTER 7. FORMALLY VERIFIED SYMMETRY BREAKER 87

being able to run our specification and compare it to the CNF symmetry
breaking tools available.

Chapter 8

Conclusions

Research in combinatorial computing can benefit from recent advances in con-
straint satisfaction paradigms. Nevertheless, throughout this thesis we have
shown that in the particular case of abstract combinatorial problems, applying
constraint satisfaction techniques is often not easy. In order to successfully
apply these techniques one needs to take care of several aspects that range
from theoretical to practical concerns, including the verification of the results.

Our contributions started from the theoretical end of this range. In Chap-
ter 4 we looked at issues regarding using backdoors of Boolean formulas and
backbones to Boolean formulas in conjunctive normal form to aid SAT solvers.
We showed that, under very plausible assumptions, there is a complexity
gap between the search and decision problems for these hidden structures
of Boolean formulas.

In Chapter 5 we presented our contributions to using constraint satisfac-
tion techniques for graph arrowing problems. We presented some options to
encode these problems as Boolean formulas and as answer set programs. We
then analyzed some properties of the Boolean formulas encoding the arrow-
ing property when paired with symmetry breaking tools. We also described
a benchmark for quantified Boolean formulas based on vertex Folkman prob-
lems. Finally, we showed how applying constraint satisfaction techniques to
these problems can help in gaining insight to theoretical results.

Chapter 6 presented a contribution in computational social choice. In
this field there are control problems for election systems whose computational
complexity is higher than NP. The “guess and check” approach of answer set

88

CHAPTER 8. CONCLUSIONS 89

programming for these control problems is thus hard to achieve with stan-
dard encoding techniques. We showed how to restore the ability to address
these problems through a familiar guess-and-check approach by using program
transformations to combine two answer set programs targeting NP-complete
problems.

Chapter 7 addressed the issue of trusting the results obtained through
constraint satisfaction techniques. We initiated the formalization of a seminal
syntactic symmetry breaking technique by Crawford. We used the Prototype
Verification System [89] for this formalization.

Several of the ideas presented in this thesis have the potential of being
further developed and extended. The guess-and-check approach for high-
complexity problems shown in Chapter 6 can be applied to many other com-
binatorial problems outside of computational social choice. Also, the devel-
opment started in Chapter 7 towards a formalized symmetry breaking tool
remains to be completed. It should also be extended to answer set programs
as in the work of Devriendt et al. [33].

Bibliography

[1] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah.
Solving difficult sat instances in the presence of symmetry. In Proceedings
of the 39th annual Design Automation Conference, pages 731–736. ACM,
2002.

[2] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah.
Solving difficult instances of Boolean satisfiability in the presence of sym-
metry. IEEE Transactions on CAD of Integrated Circuits and Systems,
22(9):1117–1137, 2003.

[3] Fadi A Aloul, Karem A Sakallah, and Igor L Markov. Efficient symmetry
breaking for boolean satisfiability. IEEE Transactions on Computers,
55(5):549–558, 2006.

[4] Carlos Ansótegui, María Luisa Bonet, and Jordi Levy. On the struc-
ture of industrial SAT instances. In Ian P. Gent, editor, 15th Inter-
national Conference on Principles and Practice of Constraint Program-
ming, volume 5732 of Lecture Notes in Computer Science, pages 127–141.
Springer, 2009.

[5] Carlos Ansótegui, Carla P. Gomes, and Bart Selman. The Achilles’ heel
of QBF. In Manuela M. Veloso and Subbarao Kambhampati, editors,
AAAI, pages 275–281. AAAI Press / The MIT Press, 2005.

[6] K. Appel and W. Haken. Every planar map is four colorable. Part I:
Discharging. Illinois Journal of Mathematics, 21(3):429–490, 09 1977.

90

BIBLIOGRAPHY 91

[7] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable.
Part II: Reducibility. Illinois Journal of Mathematics, 21(3):491–567, 09
1977.

[8] Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodríguez-Carbonell. Cardinality networks: a theoretical and empiri-
cal study. Constraints, 16(2):195–221, 2011.

[9] John J. Bartholdi III, Craig A. Tovey, and Michael A. Trick. How hard
is it to control an election? Mathematical and Computer Modelling,
16(8-9):27–40, 1992.

[10] K. E. Batcher. Sorting networks and their applications. In Proceedings
of the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS
’68 (Spring), pages 307–314, New York, NY, USA, 1968. ACM.

[11] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and be-
yond. Technical Report 11/2, Institute for Formal Models and Verifica-
tion, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria,
2011.

[12] Jasmin Christian Blanchette, Mathias Fleury, Peter Lammich, and
Christoph Weidenbach. A verified SAT solver framework with learn,
forget, restart, and incrementality. Journal of Automated Reasoning,
61(1-4):333–365, 2018.

[13] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi. Solving QBF
instances with nested SAT solvers. In Adnan Darwiche, editor, AAAI
Workshop: Beyond NP, volume WS-16-05 of AAAI Workshops. AAAI
Press, 2016.

[14] Bart Bogaerts, Tomi Janhunen, and Shahab Tasharrofi. Stable-unstable
semantics: Beyond NP with normal logic programs. TPLP, 16(5-6):570–
586, 2016.

[15] Jori Bomanson, Martin Gebser, and Tomi Janhunen. Improving the
normalization of weight rules in answer set programs. In 14th European
Conference On Logics In Artificial Intelligence (JELIA-14), pages 166–
180, September 2014.

BIBLIOGRAPHY 92

[16] Jori Bomanson and Tomi Janhunen. Normalizing cardinality rules using
merging and sorting constructions. In Pedro Cabalar and Tran Cao Son,
editors, LPNMR, volume 8148 of Lecture Notes in Computer Science,
pages 187–199. Springer, 2013.

[17] Allan Borodin and Alan Demers. Some comments on functional self-
reducibility and the NP hierarchy. Technical Report TR 76-284, De-
partment of Computer Science, Cornell University, Ithaca, NY, July
1976.

[18] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.
Procaccia, editors. Handbook of Computational Social Choice. Cam-
bridge University Press, 2016.

[19] Gary Chartrand and Seymour Schuster. On the existence of specified
cycles in complementary graphs. Bulletin of the American Mathematical
Society, 77:995–998, 1971.

[20] Günther Charwat and Andreas Pfandler. Democratix: A declarative
approach to winner determination. In Toby Walsh, editor, Proceedings of
the 4th international conference on Algorithmic decision theory, volume
9346 of Lecture Notes in Computer Science, pages 253–269. Springer,
2015.

[21] Michael Codish, Michael Frank, Avraham Itzhakov, and Alice Miller.
Computing the Ramsey number R(4, 3, 3) using abstraction and sym-
metry breaking. Constraints, 21(3):375–393, 2016.

[22] Stephen A Cook. The complexity of theorem-proving procedures. In
3rd Annual ACM Symposium on Theory of Computing, pages 151–158.
ACM, 1971.

[23] Thierry Coquand and Gérard Huet. The calculus of constructions. In-
formation and Computation, 76:95–120, March 1988.

[24] James Crawford. A theoretical analysis of reasoning by symmetry in
first-order logic. In AAAI Workshop on Tractable Reasoning, pages 17–
22, 1992.

BIBLIOGRAPHY 93

[25] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and
Amitabha Roy. Symmetry-breaking predicates for search problems. In
Luigia Carlucci Aiello, Jon Doyle, and Stuart C. Shapiro, editors, Inter-
national Conference on the Principles of Knowledge Representation and
Reasoning, pages 148–159. Morgan Kaufmann, 1996.

[26] Luís Cruz-Filipe, Marijn Heule, Warren Hunt, Matt Kaufmann, and
Peter Schneider-Kamp. Efficient certified RAT verification. In Inter-
national Conference on Automated Deduction, pages 220–236. Springer,
2017.

[27] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and expressive power of logic programming. ACM Comput.
Surv., 33(3):374–425, September 2001.

[28] Jared Davis and Sol Swords. Verified AIG algorithms in ACL2. Elec-
tronic Proceedings in Theoretical Computer Science, pages 95–110, April
2013.

[29] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394–397, July 1962.

[30] M. Davis and H. Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, July 1960.

[31] Nachum Dershowitz, Ziyad Hanna, and Jacob Katz. Bounded model
checking with QBF. In Fahiem Bacchus and Toby Walsh, editors, SAT,
volume 3569 of Lecture Notes in Computer Science, pages 408–414.
Springer, 2005.

[32] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker.
Improved static symmetry breaking for SAT. In Nadia Creignou and
Daniel Le Berre, editors, SAT, volume 9710 of Lecture Notes in Com-
puter Science, pages 104–122. Springer, 2016.

[33] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker.
On local domain symmetry for model expansion. Theory and Practice
of Logic Programming, 16(5-6):636–652, 2016.

BIBLIOGRAPHY 94

[34] Bistra N. Dilkina, Carla P. Gomes, and Ashish Sabharwal. Tradeoffs
in the complexity of backdoor detection. In Christian Bessiere, editor,
13th International Conference on Principles and Practice of Constraint
Programming, volume 4741 of Lecture Notes in Computer Science, pages
256–270. Springer, 2007.

[35] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar.
Rank aggregation methods for the web. In Proceedings of the 10th in-
ternational conference on World Wide Web, pages 613–622, 2001.

[36] Thomas Eiter and Georg Gottlob. On the computational cost of dis-
junctive logic programming: Propositional case. Annals of Mathematics
and Artificial Intelligence, 15(3):289–323, Sep 1995.

[37] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. An-
swer Set Programming: A Primer. Springer, 2009.

[38] Thomas Eiter and Axel Polleres. Towards automated integration of guess
and check programs in answer set programming: a meta-interpreter and
applications. Theory and Practice of Logic Programming, 6(1-2):23–60,
January 2006.

[39] Jan Elffers, Stephan Gocht, Ciaran McCreesh, and Jakob Nordström.
Justifying all difference using pseudo-Boolean reasoning. In AAAI-20,
2020. To appear.

[40] Stephen A. Fenner, Lance Fortnow, Ashish V. Naik, and John D. Rogers.
Inverting onto functions. Information and Computation, 186(1):90–103,
2003.

[41] Zack Fitzsimmons, Edith Hemaspaandra, Alexander Hoover, and
David E. Narváez. Very hard electoral control problems. In 33rd AAAI
Conference on Artificial Intelligence, volume 33, pages 1933–1940. AAAI
Press, 2019.

[42] Jon Folkman. Graphs with monochromatic complete subgraphs in ev-
ery edge coloring. SIAM Journal on Applied Mathematics, 18(1):19–24,
1970.

BIBLIOGRAPHY 95

[43] Zvi Galil. On some direct encodings of nondeterministic Turing machines
operating in polynomial time into P-complete problems. SIGACT News,
6(1):19–24, January 1974.

[44] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer set solv-
ing in practice. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 6(3):1–238, 2012.

[45] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A
conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka,
and John S. Schlipf, editors, Proceedings of the 9th international confer-
ence on logic programming and nonmonotonic reasoning, volume 4483
of Lecture Notes in Computer Science, pages 260–265. Springer, 2007.

[46] M. Gebser, B. Kaufmann, and T. Schaub. Solution enumeration for pro-
jected Boolean search problems. In Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems,
pages 71–86. Springer, 2009.

[47] Martin Gebser, Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Sven Thiele. On the input language of ASP grounder gringo. In Esra
Erdem, Fangzhen Lin, and Torsten Schaub, editors, 10th International
Conference Logic Programming and Nonmonotonic Reasoning (LPNMR
2009), volume 5753 of Lecture Notes in Computer Science, pages 502–
508. Springer, 2009.

[48] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New Generation Computing, 9(3-
4):365–385, 1991.

[49] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model count-
ing. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, pages 633–654. IOS Press, 2009.

[50] Georges Gonthier. Formal proof–the four-color theorem. Notices of the
American Mathematical Society, 55(11):1382–1393, 2008.

[51] Orna Grumberg, Assaf Schuster, and Avi Yadgar. Memory efficient
all-solutions sat solver and its application for reachability analysis. In

BIBLIOGRAPHY 96

Alan J. Hu and Andrew K. Martin, editors, FMCAD, volume 3312 of
Lecture Notes in Computer Science, pages 275–289. Springer, 2004.

[52] Juris Hartmanis and Lane A Hemachandra. Complexity classes with-
out machines: On complete languages for UP. Theoretical Computer
Science, 58(1-3):129–142, 1988.

[53] Jesko Hecking-Harbusch and Leander Tentrup. Solving QBF by abstrac-
tion. In Andrea Orlandini and Martin Zimmermann, editors, GandALF,
volume 277 of EPTCS, pages 88–102, 2018.

[54] Edith Hemaspaandra, Lane Hemaspaandra, and Curtis Menton. Search
versus decision for election manipulation problems. pages 377–388. Leib-
niz International Proceedings in Informatics (LIPIcs), 2013.

[55] Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Exact
analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is
complete for parallel access to NP. Journal of the ACM, 44(6):806–825,
November 1997.

[56] Edith Hemaspaandra, Holger Spakowski, and Jörg Vogel. The complex-
ity of Kemeny elections. Theor. Comput. Sci., 349(3):382–391, 2005.

[57] Lane A. Hemaspaandra and David E. Narváez. The opacity of back-
bones. Technical Report arXiv:1606.03634 [cs.AI], Computing Research
Repository, arXiv.org/corr/, June 2016. Revised, January 2019.

[58] Lane A. Hemaspaandra, Jörg Rothe, and Gerd Wechsung. Easy sets and
hard certificate schemes. July 1997.

[59] Marijn Heule, Warren Hunt, Matt Kaufmann, and Nathan Wetzler. Ef-
ficient, verified checking of propositional proofs. In International Con-
ference on Interactive Theorem Proving, pages 269–284. Springer, 2017.

[60] Marijn Heule and Oliver Kullmann. The science of brute force. Com-
munications of the ACM, 60(8):70–79, 2017.

[61] Marijn J. H. Heule. Optimal symmetry breaking for graph problems.
Mathematics in Computer Science, 13(4):533–548, 2019.

BIBLIOGRAPHY 97

[62] Marijn J. H. Heule, Manuel Kauers, and Martina Seidl. Local search for
fast matrix multiplication. In Mikoláš Janota and Inês Lynce, editors,
Theory and Applications of Satisfiability Testing – SAT 2019, pages 155–
163, Cham, 2019. Springer International Publishing.

[63] Steven Homer and Alan L. Selman. Computability and Complexity The-
ory. Texts in Computer Science. Springer, New York, second edition,
2011.

[64] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A
Python toolkit for prototyping with SAT oracles. In SAT, pages 428–437,
2018.

[65] Avraham Itzhakov and Michael Codish. Breaking symmetries in graph
search with canonizing sets. Constraints, 21(3):357–374, 2016.

[66] Said Jabbour, Lakhdar Sais, and Yakoub Salhi. Boolean satisfiability
for sequence mining. In Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management, CIKM ’13, pages
649–658, New York, NY, USA, 2013. ACM.

[67] Mikoláš Janota and Joao Marques-Silva. Abstraction-Based Algorithm
for 2QBF. Springer, 2011.

[68] Mikolás Janota and João Marques-Silva. An Achilles’ heel of term-
resolution. In Eugénio C. Oliveira, João Gama, Zita A. Vale, and Hen-
rique Lopes Cardoso, editors, EPIA, volume 10423 of Lecture Notes in
Computer Science, pages 670–680. Springer, 2017.

[69] Chula Jayawardene, David E. Narváez, and Stanisław P. Radziszowski.
Star-critical Ramsey numbers for cycles versus K4. Discussiones Math-
ematicae Graph Theory, (2629), 2018. In press.

[70] Charles Jordan, Will Klieber, and Martina Seidl. Non-CNF QBF solving
with QCIR. In Adnan Darwiche, editor, AAAI Workshop: Beyond NP,
volume WS-16-05 of AAAI Workshops. AAAI Press, 2016.

[71] Richard M. Karp. Reducibility among Combinatorial Problems. Springer,
1972.

BIBLIOGRAPHY 98

[72] Philip Kilby, John Slaney, Sylvie Thiébaux, and Toby Walsh. Backbones
and backdoors in satisfiability. In Proceedings of the National Conference
on Artificial Intelligence, page 1368, 2005.

[73] Kathrin Konczak. Voting theory in answer set programming. In 20th
Workshop on Logic Programming, Vienna, Austria, February 22–24,
2006, pages 45–53, 2006.

[74] Oliver Kullmann. Green-tao numbers and SAT. In Ofer Strichman and
Stefan Szeider, editors, SAT, volume 6175 of Lecture Notes in Computer
Science, pages 352–362. Springer, 2010.

[75] Lenoid Levin. Universal sequential search problems. Problems of Infor-
mation Transmission, 9(3):265–266, 1975. March 1975 translation into
English of Russian article originally published in 1973.

[76] Tomasz Łuczak, Andrzej Ruciński, and Sebastian Urbański. On minimal
Folkman graphs. Discrete Mathematics, 236(1-3):245–262, 2001.

[77] P. Madhusudan, Wonhong Nam, and Rajeev Alur. Symbolic compu-
tational techniques for solving games. Electronic Notes in Theoretical
Computer Science, 89(4):578–592, 2003.

[78] Wiktor Marek, Arcot Rajasekar, and Mirosław Truszczyński. Complex-
ity of computing with extended propositional logic programs. Annals of
Mathematics and Artificial Intelligence, 15(3-4):357–378, 1995.

[79] Filip Marić. Formal verification of a modern SAT solver by shal-
low embedding into Isabelle/HOL. Theoretical Computer Science,
411(50):4333–4356, 2010.

[80] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism,
II. Journal of Symbolic Computation, 60:94–112, 2014.

[81] Brendan D. McKay and Stanisław P. Radziszowski. r(4, 5) = 25. Journal
of Graph Theory, 19(3):309–322, 1995.

[82] Kenneth L. McMillan. Applying SAT methods in unbounded symbolic
model checking. In Ed Brinksma and Kim Guldstrand Larsen, editors,
CAV, volume 2404 of Lecture Notes in Computer Science, pages 250–264.
Springer, 2002.

BIBLIOGRAPHY 99

[83] Michael Molloy and Ricardo Restrepo. Frozen variables in random
Boolean constraint satisfaction problems. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1306–1318. SIAM, Philadelphia, PA, 2012.

[84] Rémi Monasson, Riccardo Zecchina, Scott Kirkpatrick, Bart Selman,
and Lidror Troyansky. Determining computational complexity from
characteristic ‘phase transitions’. Nature, 400(6740):133–137, 1999.

[85] César Muñoz. Rapid prototyping in PVS. Contractor Report
NASA/CR-2003-212418, NASA, Langley Research Center, Hampton VA
23681-2199, USA, May 2003.

[86] Jaroslav Nešetřil and Vojtěch Rödl. Simple proof of the existence of
restricted Ramsey graphs by means of a partite construction. Combina-
torica, 1(2):199–202, 1981.

[87] N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with
respect to Horn and binary clauses. pages 96–103, May 2004.

[88] Yoonna Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L.
Markov. Amuse: a minimally-unsatisfiable subformula extractor. In
Proceedings. 41st Design Automation Conference, 2004., pages 518–523,
July 2004.

[89] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, Automated Deduction—CADE-11,
volume 607 of Lecture Notes in Computer Science, pages 748–752, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

[90] Sam Owre and Natarajan Shankar. Abstract datatypes in PVS. Techni-
cal Report SRI-CSL-93-9R, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, December 1993. Extensively revised June 1997;
Also available as NASA Contractor Report CR-97-206264.

[91] Lawrence C Paulson. Organizing numerical theories using axiomatic
type classes. Journal of Automated Reasoning, 33(1):29–49, 2004.

[92] Frank Pfenning and Christine Paulin-Mohring. Inductively defined
types in the calculus of constructions. In International Conference on

BIBLIOGRAPHY 100

Mathematical Foundations of Programming Semantics, pages 209–228.
Springer, 1989.

[93] David A. Plaisted and Steven Greenbaum. A structure-preserving clause
form translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[94] Stanisław P. Radziszowski. Small Ramsey numbers. Electronic Journal
of Combinatorics, Dynamic Surveys, DS1, 1994. Revision #15, 2017.

[95] F. P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, s2-30(1):264–286, 1930.

[96] Neil Robertson, Daniel Sanders, Paul Seymour, and Robin Thomas. A
new proof of the four-colour theorem. Electronic Research Announce-
ments of the American Mathematical Society, 2(1):17–25, 1996.

[97] Jörg Rothe. Complexity of certificates, heuristics, and counting types,
with applications to cryptography and circuit theory. Habilitation thesis,
Friedrich-Schiller-Universität Jena, Institut für Informatik, Jena, Ger-
many, June 1999.

[98] Jörg Rothe, Holger Spakowski, and Jörg Vogel. Exact complexity of the
winner problem for Young elections. Theory Comput. Syst., 36(4):375–
386, 2003.

[99] Guilhem Semerjian. On the freezing of variables in random constraint
satisfaction problems. Journal of Statistical Physics, 130(2):251–293,
2008.

[100] Natarajan Shankar and Marc Vaucher. The mechanical verification of a
DPLL-based satisfiability solver. Electronic Notes in Theoretical Com-
puter Science, 269:3–17, 2011.

[101] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality
constraints. In Peter van Beek, editor, CP, volume 3709 of Lecture Notes
in Computer Science, pages 827–831. Springer, 2005.

[102] A. Soifer. Ramsey Theory: Yesterday, Today, and Tomorrow, volume
285. Springer, 2011.

BIBLIOGRAPHY 101

[103] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time (preliminary report). In Proceedings of the Fifth Annual ACM
Symposium on Theory of Computing, STOC ’73, pages 1–9, New York,
NY, USA, 1973. ACM.

[104] Stefan Szeider. Backdoor sets for DLL subsolvers. Journal of Automated
Reasoning, 35(1-3):73–88, 2005.

[105] M. Thurley. sharpSAT – counting models with advanced component
caching and implicit BCP. In Armin Biere and CarlaP. Gomes, editors,
9th International Conference on Theory and Applications of Satisfiability
Testing, volume 4121 of Lecture Notes in Computer Science, pages 424–
429. Springer, 2006.

[106] Takahisa Toda and Takehide Soh. Implementing efficient all solutions
SAT solvers. J. Exp. Algorithmics, 21:1.12:1–1.12:44, November 2016.

[107] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus,
pages 466–483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[108] Leslie Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, 1979.

[109] Leslie G. Valiant. Relative complexity of checking and evaluating. In-
formation Processing Letters, 5(1):20–23, 1976.

[110] Ingo Wegener. Complexity Theory. Springer-Verlag, Berlin, 2005. Ex-
ploring the limits of efficient algorithms, Translated from the German
by Randall Pruim.

[111] Nathan Wetzler, Marijn J. H. Heule, and Jr. Hunt, Warren A. DRAT-
trim: Efficient Checking and Trimming Using Expressive Clausal Proofs.
Springer, 2014.

[112] Arthur T. White. Graphs, Groups and Surfaces. Amsterdam, North-
Holland Pub. Co., 1973.

[113] Ryan Williams, Carla P. Gomes, and Bart Selman. Backdoors to typical
case complexity. In IJCAI, volume 3, pages 1173–1178, 2003.

BIBLIOGRAPHY 102

[114] David H. Wolpert and William Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1:67–
82, 1997.

[115] Xiaodong Xu, Meilian Liang, and Stanisław Radziszowski. On the
nonexistence of some generalized Folkman numbers. Graphs and Com-
binatorics, 34(5):1101–1110, 2018.

[116] Avi Yadgar, Orna Grumberg, and Assaf Schuster. Hybrid BDD and
All-SAT method for model checking. In Languages: From Formal to
Natural, pages 228–244. Springer, 2009.

[117] Shuyuan Zhang, Abdulrahman Mahmoud, Sharad Malik, and Sanjai
Narain. Verification and synthesis of firewalls using SAT and QBF.
In 20th IEEE International Conference on Network Protocols (ICNP),
pages 1–6. IEEE, 2012.

Appendices

103

Appendix A

A Comparison of Interactive
Theorem Provers

The purpose of this appendix is to provide an admittedly subjective compar-
ison among some popular interactive theorem provers from the perspective
of using these specifically in proving theorems in discrete mathematics and
combinatorics. Since there are several much better (written and informed)
publications covering the formalities of each interactive theorem prover, we
stress that this appendix reflects the personal view of the author. We believe
this appendix will be useful for researchers having a first contact with theorem
provers as it aims to provide a map of alternatives together with examples of
the strengths and limitations of each.

To setup the stage, we start by listing the interactive theorem provers
considered in this appendix. They are listed here because of our familiarity
with them as they were used, some in more extent than others, in work related
to this thesis.

These interactive theorem provers are, in alphabetical order:

• Coq: An interactive theorem prover implementing the calculus of induc-
tive constructions by Coquand [23,92]. It is widely popular, in particular
in the software verification and programming languages communities. It
is mostly written in OCaml with some bits in C. The basic installa-
tion includes a standard library with common datatypes like lists and
sets (though sets are called Ensembles, see Section A.3). The standard

104

APPENDIX A. INTERACTIVE THEOREM PROVERS 105

library is augmented by a number of community-based contributions
available in the Coq package index1 and elsewhere.

• Isabelle: An interactive theorem prover with an underlying meta-logic
able to implement a number of other logics. Arguably the most popular
logic among the ones implemented in Isabelle is Isabelle/HOL which, as
the name indicates, implements Higher-Order Logic. It is mostly imple-
mented in Standard ML, with certain pieces written in Java and Scala.
The standard installation includes a number of theories from several
fields in mathematics and computer science, plus an integrated devel-
opment environment named Isabelle/jEdit. Additionaly, the Archive of
Formal Proofs2 collects many other peer-reviewed formalizations and is
under active development.

• PVS: The Prototype Verification System [89] is a verification system
with a language to write specifications and an interactive theorem prover.
It is based on typed set theory. It is mostly written in LISP and the in-
tegrated development environment included in the standard installation
is implemented as an Emacs mode. The basic set of theories included in
PVS, named the prelude, includes a fairly useful portions of set theory
and arithmetic, plus many data structures that are common in com-
puter science. The Langley Formal Methods group at NASA collects
additional theories in a separate repository 3 that is often integrated
with the standard PVS installation. NASA’s PVSLib includes a number
of specifications ranging from pure mathematics to aeronautical appli-
cations.

The main issue to consider when picking between these interactive theorem
provers is the underlying logic. The calculus of inductive constructions is
fundamentally based on constructive logic which, unlike classic logic, does
not include the law of excluded middle nor double-negation elimination. The
reason these “features” are missing from constructive logic is because the focus
of constructive logic is to link mathematics and proofs to computer programs
and execution. Thus, Coq and other systems based on the calculus of inductive

1https://coq.inria.fr/opam/www/
2https://www.isa-afp.org/
3https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

https://coq.inria.fr/opam/www/
https://www.isa-afp.org/
https://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

APPENDIX A. INTERACTIVE THEOREM PROVERS 106

constructions lend themselves to code extraction which is a feature that allows
for verified code to be extracted directly from the proof.

Another significant difference among the theorem provers listed above is
that in PVS the proofs are not found alongside the theorems and lemmas. In
Coq and Isabelle, one specifies a theorem or lemma and proceed to input the
proof, which can be checked interactively. In PVS, after stating a theorem,
one needs to input a proof in a separate, interactive Emacs buffer. Each step
in this process is turned into LISP statements that are saved in a separate file.
This is an issue when one wishes to perform a slight modification of a proof,
since one basically needs to replay the interaction.

A.1 Dependent Types
Theorem provers have inherited many concepts from functional languages, so
it is often a natural transition from writing programs to writing specifications
in computer-aided theorem proving. Perhaps the most important concept
native to both programming and theorem proving is that of types (see, for in-
stance, the development of typed lambda calculus). Nevertheless, one concept
that may not be familiar to programmers with basic knowledge of common
programming languages is that of dependent types: types that depend on
(runtime) values. Dependent types, although common, are not supported in
every interactive theorem prover. Furthermore, in those that support depen-
dent types, the level of support (from the point of view of usability) varies. We
will argue in this section that dependent types are fundamental for theorem
proving in discrete mathematics and theoretical computer science.

For a concrete example, consider arithmetic in Zp for a prime number. It
is reasonable to think of the following definition of addition in Zp as a function
in C:

unsigned int add(unsigned int p, unsigned int a, unsigned int b);

The signature above encodes some basic properties of the numbers in-
volved: marking the parameters p, a and b as unsigned specifies that p, a, b ≥
0. This is, however, not enough since we would also like to specify that a, b < p.
Furthermore, the number returned from this function is also in Zp, thus should

APPENDIX A. INTERACTIVE THEOREM PROVERS 107

be specified similarly. Finally, p is not any unsigned integer, but a prime num-
ber to be precise. Compare the above function definition with the following
definition in PVS:

add(p: (prime?), a: mod(p), b: mod(p)): mod(p) = res(p)(a + b)

which makes use of the prime? predicate; the mod data type that, for an
integer p, restricts integers to the range 0 ≤ i < p; and the function res that
calculates the residue of a division by p.

For readers unfamiliar with type theory, it may not be obvious that one of
the main reasons these features are not standard in mainstream programming
languages is that type-checking programs with arbitrary dependent types is
undecidable. Thus using specifications with dependent types will necessarily
involve additional checks, some of which will need user input. In the case
of PVS, these are usually handled through type-checking constraints (TCCs)
which ask the user to prove some property about the use of specifications with
dependent types. For instance, the alternative definition of the add function
defined as:

add(p: (prime?), a: mod(p), b: mod(p)): mod(p) = a + b

would require us to effectively prove that for any 0 ≤ a, b < p, a + b < p
(in order to comply with the type of the function which is mod(p)), which is
obviously not true.

Coq advertises syntactically similar support for dependent types. Never-
theless, it differs from PVS in a fundamental fashion: that the proofs required
to guarantee the proper use of the specifications are part of the notation itself.
We start with this valid example:

Definition add (p: { x: Z | prime x }) (a b: Z): Z := a + b.

which guarantees that, in order to use the add function so defined, p must be
a prime number. It does not, however, specify any relationship between a and
p, b and p or the result a + b and p. This example of the notation for subset
types (types defined using the set notation) is thus valid but useless. In order
for it to be of any use, we need to connect the parameters and the result type
with p, as in the PVS example. The following alternative, however, is invalid:

APPENDIX A. INTERACTIVE THEOREM PROVERS 108

Definition add (p: { x: Z | prime x })
(a b: { x: Z | 0 <= x /\ x < p }): Z := a + b.

with error

The term "p" has type "{x : Z | prime x}" while it is expected to have
type "Z".

This happens because the notation {x : Z | prime x} means not only an in-
teger that has that property, but also a proof of that property. The parameter
p is thus a tuple, one of whose members is an integer with the desired prop-
erty. One then needs other features of the language to extract the integer of
interest:

Definition add (p: { x: Z | prime x })
(a b: { x: Z | 0 <= x /\ x < (match p with | exist _ p' _ => p' end) })
:= (0 : Z).

We have intentionally fixed the result to be 0 for the sake of simplicity in
order to focus on the match statement that extract the integer y out of the
constructor of a subset type expression. To restore the functionality of the add
function, one needs to add a and b, but the parameters a and b are themselves
subset types so one needs additional match statements to extract each integer.
In order to really match the preciseness of the PVS specification presented
before, one also needs to modify the return type of the function. We believe
that providing a fully developed example here would be of little use. Yet, it
should be clear from this analysis that subtyping à la PVS is not natural in
Coq. Arguably the natural way to deal with these kinds of specifications in
Coq is to require the proofs as arguments to the function (which are ultimately
ignored):

Definition add (p a b: Z) : prime p -> 0 <= a < p -> 0 <= b < p -> Z :=
fun _ => (fun _ => (fun _ => a + b)).

Finally, Isabelle/HOL does not support dependent typing, so we will leave
it out of this conversation.

APPENDIX A. INTERACTIVE THEOREM PROVERS 109

A.2 Inheritance
In this section we will consider inheritance as found in object-oriented pro-
gramming languages like Java. We will argue that comprehensive support for
inheritance would be necessary to develop natural formalizations in discrete
mathematics. One of the most natural examples of inheritance in mathematics
is algebraic structures: rings are groups with multiplication, fields are rings
with division and subtraction, etc. These were, in fact, the original motivation
for Isabelle/HOL’s type classes [91]. It is then natural to expect that theorems
about groups will apply transparently to fields, and those for fields will apply
transparently to rings.

The way Isabelle/HOL deals with this kind of inheritance is through the
concept of locales which are groups of definitions and theorems which are
parametrized by some fixed values and some axioms over these fixed values.
A simple use of locales, based on a similar example from Isabelle’s locale
documentation, is:
locale poset =
fixes S :: "'a set"
and R :: "('a × 'a) set"

assumes R_reflexive : "∀x∈S.(x, x) ∈ R"
and R_antisymmetric:
"∀ x ∈ S.∀ y ∈ S. (x, y) ∈ R � (y, x) ∈ R � x = y"

and R_transitive:
"∀ x ∈ S. ∀ y ∈ S. ∀ z ∈ S.
(x, y) ∈ R � (y, z) ∈ R � (x, z)∈ R"

begin

(* Theorems about posets... *)

end

locale semilattice = poset +
assumes inf_assumption :

"∀ x ∈ S. ∀ y ∈ S. ∃ z.
((z, x) ∈ R ∧ (z, y) ∈ R)
∧ (∀ w∈ S. (w, x)∈ R � (w, y)∈ R � (w, z)∈ R)"

begin

(* Theorems about semilattices... *)

APPENDIX A. INTERACTIVE THEOREM PROVERS 110

end

This example illustrates some of the notation for locales, and sets. (Notice
we have chosen to implement the relation R as a set and not as a function.)
In this example, partially ordered sets are defined in terms of a set S and
a relation R. Semilattices are then defined as partially ordered sets with
additional restrictions on R. We can prove in each context whatever theorem
we wish about partially ordered sets and semilattices. What we cannot do
with the above notation, despite its flexibility, is instantiate an object of type
semilattice. That is, semilattice is a context that inherits theorems from a
parent context poset, not a type from which objects can be instantiated. This
type of inheritance is thus different from the one we are after. An example
of the kind of inheritance we would like is to be able to modify the above
definitions to talk about finite posets:

locale finite_poset =
fixes S :: "'a fset"
and R :: "('a × 'a) fset"

assumes R_reflexive : "∀x∈S.(x, x) ∈ R"
begin

(* Theorems about finite posets... *)

end

Unfortunately the above definition is not valid, and fails with the following
error:

Type unification failed: Clash of types "_ fset" and "_ set"

Type error in application: incompatible operand type

Operator: Ball :: ??'a set ⇒ (??'a ⇒ bool) ⇒ bool
Operand: S :: 'a fset

The reason is that the notation ∀x∈S is reserved for sets. Although finite
sets (the type fset) in Isabelle are sets that are finite, the fact that they are
not sets means functions and notation no longer apply to them.

APPENDIX A. INTERACTIVE THEOREM PROVERS 111

A.3 The Issue of Unordered Sets
Unordered sets are fundamental to discrete mathematics and computer sci-
ence, though in this section we will elaborate on how they are unnatural for
computations. Because of this, and depending on the logic implemented by an
interactive theorem prover, it may be difficult to write statements regarding
unordered sets and their manipulations.

We start from discussing the treatment of unordered sets in typed set
theory, where they are most natural. In PVS, which as we mentioned before
implements typed set theory, sets of elements of type T are just functions
T->bool from elements of type T to the (built-in) Boolean type. Such functions
are also referred to as predicates over the type T. Thus, an element is in a set
if and only if the function evaluates to true. As such, predicates and sets can
be used interchangeably. For instance, these expressions are equivalent and
define the set of even natural numbers:

{ x: nat | rem(2)(x) = 0 }
LAMBDA (x: nat): (rem(2)(x) = 0)

and the following statements are true:

(LAMBDA (x: nat): (rem(2)(x) = 0))(2)
NOT ({x: nat | rem(2)(x) = 0 })(3)

Furthermore, predicates and sets can be used to define types which allows
for elegantly defining dependent types as discussed in Section A.1.

In the calculus of inductive constructions, which as we mentioned before
is based on constructive logic, things are different. In particular, Set in Coq
is a keyword not related to set theory per se. Unordered sets in Coq are
called Ensembles, and are defined in terms of the In function which takes an
Ensemble and an element and outputs a proposition. For instance, the set of
even numbers would be:

Inductive Even_Numbers : Ensemble nat :=
Even_Numbers_const: forall (x: nat), In nat Even_Numbers (2 * x).

What the above definition provides is a constructor that allows us to prove
a natural number is in the set Even_Numbers.

APPENDIX A. INTERACTIVE THEOREM PROVERS 112

In Isabelle, defining a datatype of even numbers is possible using predicate
subtyping, though it has the tricky condition that the set cannot be empty.
Thus one needs to prove there is at least one even number:

typedef even_numbers = "{ n :: int | even n }" by (auto)

Lets now consider the issue of defining k-sets, that is, sets of a certain
type which have k elements. These are commonly found in computer science,
for instance, in the Exact-Cover-By-3-Sets (X3C) problem. k-sets of, say,
natural numbers are easy to define and use in PVS as type dependent on a
natural number k:

kset(k: nat) : TYPE = { s: finite_set[nat] | card(s) = k }

firstk (k: nat) : RECURSIVE[finite_set[nat]] =
IF k > 0 THEN add(k , firstk(k - 1)) ELSE emptyset[nat] ENDIF
MEASURE k

some_fun (k: nat, s: kset(k)) : bool = TRUE

example : bool = some_fun(3, firstk(3))

Using the function firstk as an argument for some_fun generates the following
TCC:

% Subtype TCC generated (at line 28, column 31) for firstk(3)
% expected type kset(3)

% unfinished
example_TCC1: OBLIGATION card[nat](firstk(3)) = 3;

which can be proven with the following additional lemmas:

firstk_not_in : LEMMA
FORALL (k: nat, m: nat):k <= m IMPLIES NOT member(m, firstk(k))

firstk_card : LEMMA
FORALL (k: nat): card(firstk(k)) = k

In Coq, it is not easy to define k-sets as an inductive type but it is possible
to use dependent typing to require a parameter to be a k-set. Using a function

APPENDIX A. INTERACTIVE THEOREM PROVERS 113

defined that way is more complicated than in PVS since one needs to prove
upfront that the cardinality of the set passed as an argument is in fact the
expected one, and this proof needs to be built into the argument.

Definition some_fun (k: nat)
(s: { x: Ensemble nat | cardinal nat x k }) : Prop := True.

Fixpoint firstk (k: nat) : Ensemble nat :=
match k with
| 0 => Empty_set nat
| S n => Add nat (firstk n) n
end.

Lemma firstk_notIn: forall k k', k <= k' -> ~ In nat (firstk k) k'.
Proof.
...

Qed.

Lemma firstk_cardinal : forall k, cardinal nat (firstk k) k.
Proof.
...

Qed.

Eval compute in some_fun 3 (exist _ (firstk 3) (firstk_cardinal 3)).

A.4 Code Extraction
The previous sections seem to heavily favor the use of PVS (or typed set
theory in general) for the type of problems combinatorics and discrete math
are interested in. Nevertheless, the use of interactive theorem provers in the
context of this thesis is ultimately for the purpose of verifying computations.
One way to achieve this is by generating verified code that computes solutions
to problems, as explained in Chapter 3. In this respect, interactive theorem
provers like Coq and Isablle excel because they have great support for code
extraction. In the case of Coq, it is particularly useful that the underlying the-
ory (constructive logic) is designed, to a great extent, to support computations
(hence the lack of the axiom of choice and the law of excluded middle).

We do not mean to make this section a reference for code extraction, and

APPENDIX A. INTERACTIVE THEOREM PROVERS 114

we refer the reader to the documentation of each of the interactive theorem
provers for an in-depth explanation of how the code extraction works. Instead,
we focus on providing a realistic (though subjective) perspective about the is-
sues related to extracting and running verified code from the practical point
of view. The problem here is two-fold in the sense that proving the correct-
ness of algorithms is very time-consuming and the obtained code is usually
not comparable in performance to unverified code. This is, for instance, the
case of the verified SAT solver written in Isabelle [12] versus the SAT solvers
that participate in the yearly SAT competitions; or the verified verifiers for
unsatisfiability in the DRAT [59] and LRAT [26] formats versus their unveri-
fied counterparts. Furthermore, it is usually the case that once these tools are
developed, they need to be maintained and updated. In the case of verified
software, this does not only involve modifying the code but also adapting the
previous proofs to the new code, which is usually an expensive endeavor.

In summary, we believe that while verified code is certainly desirable, it
is usually very hard to obtain. It is also unrewarding in scenarios where
a software product or a publication needs to be completed within a certain
timeline. In this respect, advances in tooling that automates the proofs and
the maintenance of verified code will be the most helpful in order to make this
practice more popular.

A.5 Conclusions
We have provided our view on several aspects of interactive theorem provers
related to combinatorial computing. We have done this in the hope that people
interested in this particular topic can take an informed decision when picking
a certain interactive theorem prover for their research. The topics covered
in this appendix are of course not exhaustive, and some of the limitations
discussed in the various sections may eventually be overcome by the tools.

	Constraint Satisfaction Techniques for Combinatorial Problems
	Recommended Citation

	Introduction
	Summary of Contributions

	I An Overview of Our Framework
	Constraint Satisfaction
	Satisfiability of Boolean Formulas
	The Conjunctive Normal Form
	Converting from DNF to CNF
	Encoding Cardinality Constraints in SAT
	Variations of SAT
	Quantified Boolean Formulas

	Answer Set Programming
	The "Guess and Check" Approach
	The Saturation Technique

	Symmetry Breaking for CSPs

	Verified Computations
	Verified Tools
	Verified Results

	II Our Contributions
	Backbones and Backdoors
	Definitions and Notation
	Backbones of Satisfiable Formulas
	Results Under a Strong Assumption
	Results under a Weak Assumption

	Backdoors to CNF Formulas
	Conclusions and Related Work

	Graph Arrowing
	Definitions
	CSP Encodings for Graph Arrowing
	Enumerating Colorings Modulo Symmetries
	Number of Satisfying Assignments
	Incomplete Sets of Colorings

	A QSAT Benchmark Based on Vertex-Folkman Graphs
	Symmetry Breaking
	Clausal Encoding
	Circuit Encoding
	Case Studies

	Insight for Ramsey-type Problems via SAT
	The Number of (Cₙ,K₄)ₑ-good Colorings
	The Vertex-Folkman Number Fᵥ(K₃,K₃;J₄)

	Computational Social Choice
	Background and Definitions
	Election Systems with Very Hard Control Problems
	ASP Encodings
	Similar Encoding Approaches

	Formally Verified Symmetry Breaker
	Formalizing Crawford's Symmetry Breaking
	Conclusions and Future Work

	Conclusions
	Appendices
	Interactive Theorem Provers
	Dependent Types
	Inheritance
	The Issue of Unordered Sets
	Code Extraction
	Conclusions

