
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

10-2020 

Tree-Based Hardware Recursion for Divide-and-Conquer Tree-Based Hardware Recursion for Divide-and-Conquer 

Algorithms Algorithms 

Braeden Morrison 
bjm4184@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Morrison, Braeden, "Tree-Based Hardware Recursion for Divide-and-Conquer Algorithms" (2020). Thesis. 
Rochester Institute of Technology. Accessed from 

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact 
repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10617&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10617?utm_source=repository.rit.edu%2Ftheses%2F10617&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Tree-Based Hardware Recursion for
Divide-and-Conquer Algorithms

Braeden Morrison



Tree-Based Hardware Recursion for
Divide-and-Conquer Algorithms

Braeden Morrison
October 2020

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

COE_hor_k https://www.rit.edu/engineering/DrupalFiles/images/site-lockup.svg

1 of 1 1/9/2020, 10:42 AM

Department of Computer Engineering



Tree-Based Hardware Recursion for
Divide-and-Conquer Algorithms

Braeden Morrison

Committee Approval:

Marcin  Lukowiak Advisor Date
Department of Computer Engineering

Matthew Fluet Date
Department of Computer Science

Sonia López Alarcón Date
Department of Computer Engineering

i



Acknowledgments

I would like to thank all of my friends and family for supporting and encouraging me

throughout my entire college career.

I would also like to thank all of my peers in the High Performance Computing and

Applied Cryptography and Information Security labs for giving me a place to discuss

my research and receive valuable insights and advice.

Finally, I would like to that all of the members of my committee, as without their

advice and feedback this thesis would not have been possible.

ii



Abstract

It is well-known that custom hardware accelerators implemented as application-

specific integrated circuits (ASICs) or on field-programmable gate arrays (FPGAs)

can solve many problems much faster than software running on a central processing

unit (CPU). This is because FPGAs and ASICs can have handcrafted data and con-

trol paths which exploit parallelism in ways that CPUs cannot. However, designing

custom hardware is complicated and implementing algorithms in a way that takes

advantage of the desired parallelism can be difficult. One class of algorithms that

exemplifies this is divide-and-conquer algorithms.

A divide-and-conquer algorithm is a type of recursive algorithm that solves a prob-

lem by repeatedly dividing it into smaller sub-problems. These algorithms have a lot

of parallelism because they generate a large number of sub-problems that can be com-

puted independently of each other. Unfortunately, traditional stack-based approaches

to handling recursion in hardware make exploiting this parallelism difficult.

This work proposes a new general-purpose approach to implementing recursive

functions in hardware, which we call TreeRecur. TreeRecur uses trees to represent

the branching recursive function calls of divide-and-conquer algorithms, which makes

it possible to take advantage of their procedure-level parallelism. To allow for design

flexibility, TreeRecur executes algorithms using a configurable number of independent

function processors. These processors are generated using high-level synthesis, making

it easy to implement a variety of different algorithms.

Our solution was tested on three different algorithms and compared against soft-

ware implementations of the same algorithms. Performance results were collected in

terms of execution speed and energy consumption. TreeRecur was found to have exe-

cution speeds comparable to software when differences in clock speed were accounted

for and was found to consume up to 11.2 times less energy.

iii



Contents

Signature Sheet i

Acknowledgments ii

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables 1

1 Introduction 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Tree Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Tree Implementations . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Array-Based Tree Implementation . . . . . . . . . . . . . . . . 6
2.1.3 Hardware Tree Implementations . . . . . . . . . . . . . . . . . 6

2.2 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Low-Level Recursion . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Divide-and-Conquer Algorithms . . . . . . . . . . . . . . . . . 10

2.3 Hardware Design Methodologies . . . . . . . . . . . . . . . . . . . . . 12
2.4 VivadoHLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Function Synthesis . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Memory Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Hierarchical State Machines . . . . . . . . . . . . . . . . . . . 15
2.5.2 HLSRecurse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Dynamic Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.4 Recursion Flattening . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



CONTENTS

3 HLS Front End 23
3.1 Front-End Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 HLS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Single-Function Approach . . . . . . . . . . . . . . . . . . . . 27

3.2 C++ Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Front-End Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Memory-Interfacing Variation . . . . . . . . . . . . . . . . . . 30

4 Tree-Based Back-End 32
4.1 Abstract Tree Definition . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Function Call Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Dynamic Tree-Node Management . . . . . . . . . . . . . . . . . . . . 35
4.4 Back-End Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Top-Level Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Results 39
5.1 Algorithm Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Divide-and-Conquer Matrix Multiplication . . . . . . . . . . . . . . . 48

6 Conclusions 55
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 57

v



List of Figures

2.1 A basic tree structure with its root at 7 and leaves at 8, 10, 12, and 2. 4
2.2 Effects of Basic Stack Operations . . . . . . . . . . . . . . . . . . . . 8
2.3 Stack During Execution of fact(3) . . . . . . . . . . . . . . . . . . . 10
2.4 Fibonacci Call-Tree with n=3 . . . . . . . . . . . . . . . . . . . . . . 11
2.5 A Simple HLS Function [1] . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 A Hardware Module Generated by VivadoHLS for Figure 2.5 [1] . . . 13
2.7 Timing Diagram for Hardware Generated by VivadoHLS [1] . . . . . 14
2.8 Two Examples of HFSMs . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 HFSM Execution System Handling a Function Call [2] . . . . . . . . 16
2.10 VHDL Code for Controlling the System’s Stacks [2] . . . . . . . . . . 17
2.11 Recursion DSL Example [3] . . . . . . . . . . . . . . . . . . . . . . . 18
2.12 Pipeline for a Function with Two Recursive Calls [4] . . . . . . . . . . 19
2.13 Parallel Execution of fib(2) . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 A High-Level Overview of TreeRecur . . . . . . . . . . . . . . . . . . 24
3.2 C++ Data types for the FIFO Elements . . . . . . . . . . . . . . . . 25
3.3 Front-End System Diagram . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Front-End System Diagram with External Memory . . . . . . . . . . 31

4.1 Back-End System Diagram . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 A top-level timing diagram showing the execution of fib(4). The

argument, i arg, is latched-in when i start goes high and the out-
put, o ret becomes valid when o busy goes low. o err indicates the
presence of an error condition. . . . . . . . . . . . . . . . . . . . . . . 37

5.1 TreeRecur Testing Setup . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Quicksort Execution Times . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Quicksort energy consumption. The software energy consumption for

the 1024-element base-case is cropped to improve readability. . . . . . 47
5.4 Matrix Multiplication Execution Times . . . . . . . . . . . . . . . . . 53
5.5 Matrix Multiplication Energy Consumption . . . . . . . . . . . . . . 53

vi



List of Tables

5.1 Fibonacci Execution Times (µs) . . . . . . . . . . . . . . . . . . . . . 41
5.2 Fibonacci Execution Times (Clock Cycles) . . . . . . . . . . . . . . . 42
5.3 Fibonacci Energy Consumption (µJ) . . . . . . . . . . . . . . . . . . 42
5.4 Fibonacci Hardware Area . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Fibonacci Hardware Area . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Quicksort Execution Times (µs) . . . . . . . . . . . . . . . . . . . . . 45
5.7 Quicksort Energy Consumption (µJ) . . . . . . . . . . . . . . . . . . 46
5.8 Quicksort Area Usage with 64-Element Base-Case Size . . . . . . . . 47
5.9 Matrix Multiplication Execution Times (µs) . . . . . . . . . . . . . . 50
5.10 Matrix Multiplication Energy Consumption (µJ) . . . . . . . . . . . 52
5.11 Matrix Multiplication Area Usage with 4× 4 Base-Case Size . . . . . 54

1



Chapter 1
Introduction

1.1 Motivation

Hardware implementations of many computationally intensive algorithms tend to be

much faster and more efficient than their software equivalents. This is a result of the

greater levels of flexibility and parallelism that are possible in hardware compared to

software running on the fixed architecture of a central processing unit (CPU). How-

ever, the greater flexibility of hardware design means that careful consideration must

be put into implementing abstractions that are taken for granted in software. One

abstraction in particular that has caused trouble for the hardware design community

is recursion.

Many different hardware implementations for recursion have been proposed over

the years [5] and each has its own strengths and weaknesses. The most popular

solutions are the stack-based ones, which are space-efficient and general enough to

implement any algorithm [2, 3]. The main problem with these approaches is that

they struggle to exploit procedure-level parallelism.

This is an issue for a subset recursive algorithms, called divide-and-conquer algo-

rithms, which solve a problem by recursively dividing it into smaller sub-problems.

Divide-and-conquer algorithms generate a large number of independent procedure

calls as they execute and existing stack-based implementations of recursion cannot

2



CHAPTER 1. INTRODUCTION

compute them in parallel. There are alternative implementations of recursion that

can exploit the procedure-level parallelism of divide-and-conquer algorithms [6, 7],

but they consume far more area than stack-based solutions and are less flexible in the

algorithms they support.

1.2 Objective

The goal of this research is to propose a new solution for implementing recursive

algorithms in hardware, which we call TreeRecur, that uses a flexible tree-based

approach to recursion. The tree-based implementation can exploit the procedure-level

parallelism of divide-and-conquer algorithms, while keeping most of the flexibility and

small design sizes that make the stack-based approaches popular.

3



Chapter 2
Background

2.1 Tree Data Structures

Trees are a common type of data structure that are often used to establish an hierarchy

amongst their elements [8]. A tree is a collection of elements, called nodes, where each

node stores some data and a set of trees, which are called the node’s children. The

node at the top of the hierarchy is known as the root. In Figure 2.1, the root node is

the node labeled 7, and the nodes labeled 3, 10, and 4 are its children.

In a tree, the node directly above another node in the tree is called that node’s

parent. The root of a tree is special because it is the only node in a tree that has no

parent. Conversely, nodes without any children are called leaf nodes and represent

the end of a branch of the tree. In Figure 2.1 nodes 8, 10, 12, and 2 are all leaf nodes.

Figure 2.1: A basic tree structure with its root at 7 and leaves at 8, 10, 12, and 2.

4



CHAPTER 2. BACKGROUND

The nodes of the tree in Figure 2.1 have different numbers of children. The number

of children that a node has is called the degree of the node. In general, each node in

a tree can have its own degree, but it is often useful to construct trees where all of

the nodes have the same degree, which are called N-ary trees. A tree where all of the

nodes have a degree of 2 is called a binary tree, when all of the nodes have a degree

of 3 it is called a ternary tree, and so on.

2.1.1 Tree Implementations

Trees are an abstract data structure and have no fixed implementation, but a common

approach can be seen in Algorithm 2.1, which shows a binary tree data structure for a

C-like programming language. The left and right elements are pointers to the node’s

Algorithm 2.1 Binary Tree Data Structure with Integers
1: struct Tree {
2: int data;
3: Tree* left;
4: Tree* right;
5: };

two children while the data element stores the data associated with the node. For a

leaf node, both the left and right pointers would be set to NULL to represent that the

node has no children.

As a tree is used, there is often a need for the tree grow or shrink as more or

fewer elements need to be stored. With a linked tree implementation such as the

one shown in Algorithm 2.1, adding and removing nodes is fairly straightforward.

An existing node can be attached to a tree by locating a node where one or both

of its child pointers are NULL and setting that pointer to be the address of the new

node. Similarly, a leaf node can be removed from the tree by setting its parent’s child

pointer to NULL.

5



CHAPTER 2. BACKGROUND

2.1.2 Array-Based Tree Implementation

With a linked tree implementation, adding existing nodes to the tree is easy, but gen-

erating new tree-nodes can sometimes be problematic. In software programs running

on operating systems, memory for new tree nodes can be allocated and freed using

functions such as malloc and free. But when no external memory allocation sys-

tems exist, such as in hardware design and freestanding software development, other

techniques must be used.

One alternative approach to store the entire tree inside of a single contiguous

block of memory, which can be statically allocated. This block of memory can be

represented as an array of tree nodes because all of the nodes have the same size.

From here it is possible to represent all of the unused elements of the array using a

free-list [8].

A free-list is just a singly-linked list that keeps track of which of the array elements

are free. To allocate a new element, simply remove the first element from the list. To

free an allocated element, add it to the list. When a free-list is used to keep track of a

fixed-size block of memory, the maximize size of the free-list can be known statically,

allowing it to be stored in a statically allocated block of memory.

2.1.3 Hardware Tree Implementations

Tree data structures can be implemented in hardware in much the same way that

they are implemented in software. The biggest differences between hardware and

software implementations of trees is that the memory modules available in hardware

design are much more flexible than the large unified memories used by CPUs. For

example, most CPUs are limited to with a fixed word size of 32 bits, but the memory

resources in FPGAs can be configured to have a variety of different word sizes [9].

This allows for the memory storing the tree data structure to be configured to have a

word size that is the size of a tree node, making tree accesses more efficient. However,

6



CHAPTER 2. BACKGROUND

because the memories in FPGAs are smaller than the memories available to CPUs,

the probability of running out of memory becomes much more likely.

2.2 Recursion

A recursive algorithm is an algorithm that is defined in terms of itself. An example

of this can be seen in Algorithm 2.2, which shows a recursive definition for a factorial

function.

Algorithm 2.2 Recursive Factorial Function
Require: n ≥ 0

1: function fact(n)
2: if n ≤ 1 then
3: return 1
4: else
5: return n ∗ fact(n− 1)

Notice that the function has two possible paths of execution depending on whether

or not the argument, n, is less than or equal to 1. When n ≤ 1, the function returns 1

without doing any additional work. This is known as the base case and it allows the

function to stop calling itself and return a result. All recursive algorithms must have

at least one base case or else they will never terminate. On the other hand, when

n > 1 the recursive case is executed and the function returns n ∗ fact(n− 1). This

is a recursive case because its result depends on another call to the same function,

fact. Before the recursive case can return a result it must first compute fact(n−1),

causing the function to be restarted with a smaller value of n. The function will then

continue calling itself with smaller and smaller values of n until the base case is

reached and the function can begin returning results.

Recursion is a powerful tool because it can express repeated actions abstractly,

without using explicit looping. This allows many algorithms to be written in a com-

pact and easily understood manner, which is why recursion is supported by most

7



CHAPTER 2. BACKGROUND

(a) Stack push. A push copies data from a
register or elsewhere and places it on the top of
the stack, increasing the size of the stack.

(b) Stack pop. A pop removes the data on the
top of the stack and places it into a register or
some other location. This decreases the size of
the stack by one element.

Figure 2.2: Effects of Basic Stack Operations

high-level programming languages. However, when programs in high-level languages

are translated into low-level machine code, abstract features like recursion must be

given concrete implementations.

2.2.1 Low-Level Recursion

The most common implementation of recursion in low-level assembly language pro-

grams relies heavily on the use of a stack [10]. A stack is a data structure that

supports two basic operations: push and pop. The push operation takes a value and

places it on top of the stack, causing the stack to grow in size, as shown in Figure 2.2a.

Inversely, the pop operation removes and returns the value on the top of the stack,

causing the stack to shrink, which can be seen in Figure 2.2b. A stack is considered

a last in, first out (LIFO) data structure because the only value that can be removed

from a stack via a pop is the value on top of the stack, which is always the newest

value.

In order to illustrate how a stack can be used to implement recursion in low-level

software, Listing 2.1 shows the factorial algorithm written in the x86 64 assembly

language. The recursive case of the program, which starts at the .recur label, has

explicit push and pop instructions for using the stack. The push command is used to

8



CHAPTER 2. BACKGROUND

Listing 2.1: Factorial Function in x86 64 Assembly
1 ; fact - Factorial Function
2 ;
3 ; Registers :
4 ; rdx - Argument
5 ; rax - Return
6 fact:
7 cmp rdx , 1 ; check for the base -case
8 jg .recur ; go to .recur if (n > 1)
9 mov rax , 1 ; set the return value to 1

10 ret ; return to the previous call
11 .recur :
12 push rdx ; save n on the stack
13 sub rdx , 1 ; n <- n-1
14 call fact ; start a new function call
15 pop rdx ; restore n from the stack
16 imul rax , rdx
17 ret ; return to the previous call

save the argument, n, on the stack while the recursive function call is executed. The

pop operation is then used to retrieve n from the stack after the function call returns

so that it can be used to compute n ∗ fact(n− 1).

To demonstrate this process, Figure 2.3 shows the simplified state of the CPU’s

stack as it computes fact(3). Figure 2.3a shows the stack at the start of each function

call and Figure 2.3b shows the stack just before each function returns. The figure

demonstrates how the stack grows and shrinks dynamically as functions execute their

push and pop operations. This dynamic resizing allows each function instance to

ignore any changes to the stack made by subsequent function calls, since such changes

are undone by the time the function instance resumes its execution.

It should be noted that because the LIFO structure of stacks works well with the

ordering of function calls and returns, stacks are often used for function bookkeeping

as well. For example, in Listing 2.1 the call instruction pushes information onto

the stack that lets the CPU know where to resume execution once a call completes.

The ret instruction pops this information off the stack and resumes execution at the

specified location. This is an important use of stacks when implementing function calls

9



CHAPTER 2. BACKGROUND

(a) Adding Recursive Calls

(b) Resolving Recursive Calls

Figure 2.3: Stack During Execution of fact(3)

and many hardware implementations of recursion use stacks for a similar purpose [2,

3].

2.2.2 Divide-and-Conquer Algorithms

Divide-and-conquer algorithms are a subset of recursive algorithms which take a large

problem and split it into multiple recursive sub-problems. A simple example of this is

the Fibonacci function, which can be seen in Algorithm 2.3. The function calculates

the nth Fibonacci number by summing the previous two numbers in the sequence,

which are both calculated by recursively invoking the same Fibonacci function.

Algorithm 2.3 Fibonacci Function
Require: n ≥ 0

1: function fib(n)
2: if n = 0 then
3: return 0
4: else if n = 1 then
5: return 1
6: else
7: return fib(n− 1) + fib(n− 2)

10



CHAPTER 2. BACKGROUND

Figure 2.4: Fibonacci Call-Tree with n=3

An important characteristic of divide-and-conquer algorithms is that a dependency

graph of their recursive function calls forms a tree structure [6], like the one shown

in Figure 2.4. By comparison, the dependency graph of a recursive function that is

not divide-and-conquer would form a straight line with no branching paths. The tree

structure of the recursive function calls is interesting because the branches in the tree

represent independent function calls that can be computed in parallel.

However, executing function calls in parallel makes it difficult to share data struc-

tures. For example, if multiple instances of a function were to share a stack, it would

result in a data race as all function instances tried to simultaneously modify the top of

the stack. This would produce inconsistent results and is the reason why stack-based

recursion implementations struggle to exploit procedure-level parallelism.

There are some implementations of recursion that can parallelize these indepen-

dent function calls [6, 7], but they navigate this issue by not using any shared data

structures. Instead, they construct branching pipelines where all function calls are

executed in parallel and each function’s data is forwarded through the pipeline as

needed.

11



CHAPTER 2. BACKGROUND

2.3 Hardware Design Methodologies

In modern hardware design there are two major design methodologies: register-

transfer level (RTL) design and high-level synthesis (HLS). RTL design is the tra-

ditional methodology and has been around for several decades, whereas HLS is much

newer and still evolving.

In RTL design, a hardware description language (HDL) is used to describe the

hardware that implements the desired functionality. HLS, on the other hand, involves

designing hardware by describing the algorithm it implements using a high-level pro-

gramming language such as C/C++. It is generally understood that HLS is more

convenient when designing hardware that computes an algorithm, though the quality

of results, in terms of size and speed, might not reach those of hand-crafted RTL

designs [11, 12].

Implementing recursive algorithms in hardware is relevant to both design method-

ologies and there have been solutions targeted at both RTL design [2, 6] and HLS [3, 7].

Though the issue is perhaps more salient in the context of HLS, which focusses on

making hardware implementations of algorithms easier. This is especially true be-

cause most current HLS tools do not support recursive functions [13, 1], which makes

HLS-compatible solutions even more compelling.

2.4 VivadoHLS

One of the most popular HLS tools currently in use is the VivadoHLS tool [1], which is

developed by Xilinx to work with their FPGAs. VivadoHLS uses C/C++ programs

as its input, which it synthesizes into a RTL design in a HDL such as VHDL or

Verilog.

12



CHAPTER 2. BACKGROUND

Figure 2.5: A Simple HLS Function [1]

Figure 2.6: A Hardware Module Generated by VivadoHLS for Figure 2.5 [1]

2.4.1 Function Synthesis

The top-level of every VivadoHLS design is a C or C++ function, which VivadoHLS

compiles into a hardware module. In order to better examine how this process works,

consider the simple function shown in Figure 2.5. This function takes in three inputs

(in1, in2, and the current value of *sum) and produces two outputs (the return value

and the updated value of *sum). Using the default synthesis settings, this function

produces a hardware module with the interface shown in Figure 2.6.

In this hardware module, there are a couple of different kinds of ports. First, there

are the clock and reset ports (ap clk and ap rst), which can be found in most non-

trivial hardware designs. Then, there are the hardware ports that correspond to the

inputs and outputs of the function, such as in1, sum i, and ap return. Finally, there

are the control signals (labeled as ap ctrl), which are used to control the operation

of the generated module using Xilinx’s own protocol. The proper use of these control

13



CHAPTER 2. BACKGROUND

Figure 2.7: Timing Diagram for Hardware Generated by VivadoHLS [1]

signals is shown in the timing diagram shown in Figure 2.7.

To begin executing a function the ap start signal is asserted high, which causes

the ap idle signal to go low, indicating that the function is executing. At this point,

the function arguments should be held at their current value until the ap ready signal

goes high. The output signals from the function become valid once their corresponding

ap vld go high. For example, the data from sum o port in Figure 2.6 will be valid

when the sum o ap vld is high. Finally, the return from the function is valid once

the ap done signal goes high. Using all of these signals, it is possible to control the

execution of the function and know when its outputs are valid.

2.4.2 Memory Interfaces

In Figure 2.6 the function’s pointer argument is synthesized into separate input and

output ports since it is used as a simple input and output with no offsets or indexing.

However, sometimes it is necessary for a function or program to access some external

memory that stores multiple values. This can be accomplished by using an array

argument to the function, which by default is synthesized into a memory port that

14



CHAPTER 2. BACKGROUND

Figure 2.8: Two Examples of HFSMs
(a) has hierarchical calls and (b) has recursive calls [2]

can be attached to an external memory.

The protocol used by these ports can be set at compile time. The default protocol

is Xilinx-Specific, but VivadoHLS can be set to generate memory ports that use the

Advanced eXtensible Interface (AXI), which is a widely used protocol that can be

used with a variety of different memories and peripherals.

2.5 Related Work

Due to the usefulness of recursive functions and their prevalence in math and computer

science there have been many approaches developed over the years for synthesizing

recursive functions in hardware [5]. Of these approaches, the most popular type are

the stack-based approaches. These solutions implement recursion in a method similar

to that used in low-level software where stack memory is used, in part, to suspend

running instances of the function while they wait for their recursive calls to complete.

2.5.1 Hierarchical State Machines

Of the stack-based solutions, the most prominent are those developed by Sklyarov

et al. that use hierarchical finite state machines (HFSMs) to handle recursion. This

is a straightforward RTL approach that can be used to implement any recursive

15



CHAPTER 2. BACKGROUND

Figure 2.9: HFSM Execution System Handling a Function Call [2]

function [2, 14]. When using this approach to implement a recursive function, the

first step is to generate a HFSM for the function. An example of HFSMs used by

this solution can be seen in Figure 2.8, which shows two modules—one which calls

other state machines and one which calls itself. In the figure, the different letters

represent different types of objects: z is for state machines, x is for input actions, y

is for output actions, and a is for state machine states.

Regardless of the exact form of the HFSMs, they can be executed by a two-stack

system. The first stack is called the module stack (M stack), and is used to keep

track of which state machines are executing. The value on the top of this stack

determines which of the state machines is being actively executed by the hardware.

The second stack is the finite state machine (FSM) stack, which keeps track of the

active states for all of the modules in the module stack. The value on the top of the

FSM stack indicates the current state of the actively executing module, and controls

the execution of the rest of the circuit. Figure 2.9 illustrates how the system handles

a function call, while Figure 2.10 shows the VHDL code that defines how the stacks

operate.

16



CHAPTER 2. BACKGROUND

Figure 2.10: VHDL Code for Controlling the System’s Stacks [2]

When a function call occurs, the stack counter is incremented in order to encode

a push operation. The value that is pushed onto the FSM stack is a0, since that is

the first state in all of the modules. The value that is pushed onto the modules stack

is a reference to the state machine that is being called, which is the next module or

NM. This solution is flexible because this same approach and code can be used with

any HFSM.

However, because this solution is stack-based, it naturally struggles to parallelize

divide-and-conquer algorithms, as mentioned in Section 2.2.2. The authors have

proposed a number of solutions to mitigate the issue. First, they propose that it’s

possible to parallelize some of the work by creating multiple HSFM processors in

a master-slave hierarchy and allowing the master to dynamically assign work to its

slaves [15]. The issue with this, however, is that it is has poor load balancing and it

is possible for the master processor to spend a lot of time idly waiting for the slave

to complete its work.

Another approach, that the authors propose in the context of binary-tree sorting,

17



CHAPTER 2. BACKGROUND

Figure 2.11: Recursion DSL Example [3]

is instantiating several HSFM processors and dividing the work up evenly between

them at compile time so that each processor gets the same amount of work [15]. This

solves the load balancing of the master-slave architecture, but it only works when

the problem can be divided-up before runtime. This is not an issue for most sorting

algorithms, but for algorithms that dynamically generate work, like the Fibonacci

function in Algorithm 2.3, this condition is prohibitive.

2.5.2 HLSRecurse

An alternative stack-based recursion implementation that works with HLS tools is

HLSRecurse [3]. This approach is similar to the HFSM approaches in that it con-

structs state machines that can be suspended to stacks. The biggest difference is that

HLSRecurse automatically generates the stacks and state machines from programs

written in a domain-specific language (DSL), which can save a lot of work on the

user’s part when compared to manually implementing state machines in an HDL.

An example of this DSL can be seen in Figure 2.11, which shows the conversion of

a Fibonacci function written in standard C++ to an implementation that uses the

DSL.

HLSRecurse is implemented as a pure C++ library, which makes it compatible

18



CHAPTER 2. BACKGROUND

Figure 2.12: Pipeline for a Function with Two Recursive Calls [4]

with multiple HLS tools as well as standard C++ compilers. Though in order to

accomplish this, it relies heavily on advanced C++ features such as templates and

lambdas and requires its users to program in a functional style that is very different

from most C++ code.

2.5.3 Dynamic Pipeline

Of the approaches that do not use a stack, one of the most interesting is the solution

proposed by Ferizis and Gindy [6]. This approach seeks to construct an execution

pipeline for divide-and-conquer algorithms that can compute independent function

calls in parallel. The construction of the pipeline begins by breaking the recursive

function into three pieces: the base case (non-recursive step), the part of the recursive

case that occurs before the recursive calls (pre-recursive step), and the part that occurs

after the recursive calls (post-recursive step). Once the different parts of the function

have been identified, the pipeline is constructed as shown in Figure 2.12 with all of

the pre-recursive steps followed by the non-recursive step and all of the post-recursive

steps.

Because the pipeline needs a pre-recursive and post-recursive step for each level of

recursion depth, the maximum depth of recursion must be known in order to construct

an effective pipeline. The authors navigate this issue by dynamically computing the

recursion depth of the function based on the arguments it is passed and using dynamic

partial reconfiguration to add pipeline stages as needed. This has the benefit of

keeping the area used by the pipeline as small as possible, but it means that this

approach is only viable on devices that support dynamic partial reconfiguration, like

field programmable gate arrays (FPGAs). Also, the construction of a pipeline for

19



CHAPTER 2. BACKGROUND

executing every function call in parallel can be prohibitively expensive when design

space is limited.

2.5.4 Recursion Flattening

An alternative solution in the same vein is the “recursion flattening” approach pro-

posed by Stitt and Villarreal [7]. Similar to the solution proposed by Ferizis and

Gindy, recursion flattening seeks to construct a pipeline for executing recursive func-

tions, especially those with parallel recursion. However, where the Ferizis-Gindy

approach relies on dynamic analysis and partial reconfiguration to ensure that the

pipeline has enough stages, recursion flattening uses static analysis to determine the

maximum recursion depth and constructs the maximum number of pipeline stages.

This simplification allowed the authors to integrate their solution with an HLS com-

piler, making it much easier to use. However, the authors’ use of static analysis

restricts the algorithms that can be used, with some notable algorithms, like quick-

sort, being excluded.

2.6 Contribution

This work presents a new solution for executing recursive algorithms in hardware,

which we call TreeRecur, that can exploit the procedure-level parallelism of divide-

and-conquer algorithms to a user-defined extent. By allowing for a flexible level of

parallelism, TreeRecur aims to strike a middle-ground between the existing stack-

based and pipelined solutions, enabling compromises between design size, energy

consumption, and throughput that would have previously been unachievable.

The TreeRecur approach is built using a hybrid methodology that combines both

HLS and RTL design, allowing for the user-friendliness of HLS design while leverag-

ing the precise control afforded by RTL design. This is accomplished by breaking the

design into two parts, which are referred to as the front-end and the back-end. The

20



CHAPTER 2. BACKGROUND

(a) fib(2) starts executing.
(b) fib(2) suspends and its child recursive
calls begin execution.

(c) Execution of fib(1) and fib(0) com-
plete execution, allowing for fib(2) to re-
sume execution.

(d) fib(2) completes execution, returning
a final result

Figure 2.13: Parallel Execution of fib(2)

front-end contains a configurable number of independent function processors gener-

ated with VivadoHLS for the purpose of computing independent recursive function

calls in parallel. The back-end is implemented with RTL design and is responsible

for keeping track of all the independently executing function calls and accomplishes

this using a memory with a tree data structure, which can effectively represent the

branching call structure of divide-and-conquer algorithms.

A high-level illustration of TreeRecur can be seen in Figure 2.13, which shows the

computation the Fibonacci function form Algorithm 2.3 applied to an argument of 2.

Along with the execution, the figure also depicts the state of the call-tree at each step

of the execution. In Figure 2.13a, the execution of fib(2) begins and the call is sent to

a processor to be executed. Since fib(2) executes the recursive case of the algorithm,

the function call must be suspended and its two child recursive calls must be sent

to the processors, which is shown in Figure 2.13b. Since both of the child recursive

calls invoke base cases, they return complete results. This allows for fib(2) to return

21



CHAPTER 2. BACKGROUND

to the function processors to resume its execution, as shown in Figure 2.13c. After

resuming, fib(2) is able to complete its execution and return a final result, which is

seen in Figure 2.13d.

To benchmark the effectiveness of TreeRecur, we tested it on three different divide-

and-conquer algorithms: Fibonacci, quicksort, and block matrix multiplication. For

each of these algorithms, execution speed, energy consumption, and hardware resource

usage data was collected and the timing and energy data was compared to software

implementations of the same algorithms. Where possible, multiple variations of the

algorithms were tested in order examine how the variations affected performance.

22



Chapter 3
HLS Front End

The front-end of TreeRecur is responsible for computing the non-recursive aspects of

recursive algorithms and consists of a collection of independent function processors

along with some supporting hardware. VivadoHLS is used to generate the function

processors, which allows for them to be written in C++, making it easier to define

processors for new algorithms.

3.1 Front-End Interface

Before diving into the details of how the front-end is implemented, it is helpful to

first take a high-level look at the entire system and how the pieces are connected,

which can be seen in Figure 3.1. The front-end is attached to the back-end via four

First-In First-Out (FIFO) queues, each of which sends commands about a different

kind of action. Two of these actions are sent from the back-end to the front-end:

• Launch: A launch action is a request for the front-end to begin executing a

new function call.

• Resume: A resume action is a request for the front-end to resume executing a

previously suspended function call.

The other two actions go from the front-end to the back-end:

• Suspend: A suspend action is a request for the back-end to pause the execution

23



CHAPTER 3. HLS FRONT END

Figure 3.1: A High-Level Overview of TreeRecur
This overview shows how the connection between the front-end and back-end is comprised

of four command FIFOs. It also shows the system’s top-level input and output (I/O)
ports, which will be discussed in more detail in Chapter 4.

of a function call while it waits for recursive calls to complete. This involves

saving the call’s environment data and launching its child recursive calls.

• Complete: A complete action is a notification to the back-end that a function

call has completed execution and returned a result. The back-end is expected

to save the result and resume execution of the parent function call if all of its

other children have already completed.

Each FIFO has its own data type which holds the information necessary to com-

plete the type of action associated with the queue. These data types are shown in

Figure 3.2, which shows their definitions in C++. An important thing to note about

these data types is that they are templates since the exact data transported depends

on function-specific information, such as argument and return types.

3.1.1 HLS Interface

With the four interface actions defined, the next step is determine how to implement

these actions in VivadoHLS. As mentioned in Section 2.4, VivaodHLS is a closed-

source tool and its documentation provides very little information about how the

internals of function synthesis are implemented. This makes it infeasible to handle

24



CHAPTER 3. HLS FRONT END

1 template < typename A>
2 struct LaunchType {
3 A argument ;
4 };

(a) The data structure passed through the
launch FIFO. The template parameter A is the
argument type of the function and the argument
element is the argument for the new function
call being launched.

1 template < typename R>
2 struct CompleteType {
3 R result ;
4 };

(b) The data structured passed through the
complete FIFO. The template parameter R is
the return type of the function and the result
element is the return from the completed func-
tion call.

1 template < typename R, typename E, int N>
2 struct ResumeType {
3 R results [N];
4 E env;
5 };

(c) The data structure passed through the re-
sume FIFO. The first template parameter, R,
is the same as for the CompleteType structure.
The other template parameters, E and N, rep-
resent an environment type and the number of
recursive function calls that are made by each
function instance. The results element stores
the results from all of the child recursive calls
and env stores the environment that was pre-
served when the function call was suspended.

1 template < typename A, typename E, int N>
2 struct SuspendType {
3 A arguments [N];
4 E env;
5 };

(d) The data structure passed through the sus-
pend FIFO. The first template parameter, A, is
the same as for the LaunchType structure and
the other parameters, E and N, are the same as
in the ResumeType structure. The arguments
element stores the arguments for all of the child
recursive calls and env stores the environment
that must be preserved while the function call
is suspended.

Figure 3.2: C++ Data types for the FIFO Elements

recursive function calls by modifying the synthesis process. To avoid this, the four

interface actions are implemented using function calls and returns, whose synthesis is

well defined [1].

The two actions that are triggered by the back-end, launch and resume, can be

implemented as function calls and their associated data can be encoded as function

arguments. Similarly, the two the front-end actions, suspend and complete, can be

represented as function returns and their data can be encoded as return values.

A consequence of this approach is that recursive functions must be transformed so

that recursive calls are replaced with return statements (in order to trigger suspend

actions) and function resumptions can be represented as new function calls. The

simplest version of this transformation is to split the function into two pieces: one

that handles launch actions and one that handles resume actions. This can be

25



CHAPTER 3. HLS FRONT END

Listing 3.1: Factorial Function after Split-Transformation
The function has been transformed to receive interface actions as arguments and generate
them as returns. The return type of fact launch has been omitted since it can’t be
represented with the current types.

1 using FactLaunch = LaunchType < unsigned int >;
2 using FactResume = ResumeType < unsigned int , unsigned int , 1>;
3 using FactSuspend = SuspendType < unsigned int , unsigned int , 1>;
4 using FactComplete = CompleteType < unsigned int >;
5
6 /* unkown */ fact_launch ( const FactLaunch arg) {
7 const unsigned int n = arg. argument ;
8 if (n <= 1) {
9 return FactComplete {1};

10 } else {
11 return FactSuspend {n-1, n};
12 }
13 }
14
15 FactComplete fact_resume ( const FactResume arg) {
16 const unsigned int child_result = arg. results [0];
17 const unsigned int n = arg.env;
18 return FactComplete {n * child_result };
19 }

seen in Listing 3.1, which shows a transformed version of the factorial function from

Algorithm 2.2 that uses the data types defined in Figure 3.2.

The first function, fact launch, handles launch actions. Because launch actions

represent new function calls, the argument to fact launch can be converted to the

argument of the original function, n, as seen on line 7 of Listing 3.1. As in the

original function, if n ≤ 1 then the base case is executed and a result of 1 is returned

(via a complete action in this case). However, if n > 1 then fact launch returns a

suspend action instead of making a recursive call. The suspend action will cause the

back-end to save the value of n, and generate a new launch action with an argument

of n − 1. Unfortunately, because fact launch can return either a FactComplete or

a FactSuspend, its return type cannot be represented with the types that we have

defined up to this point. This will be addressed in the next section.

The second function, fact resume, handles resume actions. This function is very

simple because in the original algorithm, the only action that occurs after a function

call is resumed is a single multiplication.

26



CHAPTER 3. HLS FRONT END

Listing 3.2: HLS Recursion Argument Data-Type
1 // ----------- Argument Types -----------
2 enum ArgTag {
3 LAUNCH =0,
4 RESUME =1,
5 };
6
7 template < typename A, typename R, typename E, int N>
8 struct ArgType {
9 ArgTag tag;

10 A argument ;
11 R results [N];
12 E env;
13 };

3.1.2 Single-Function Approach

The problem with splitting the function into pieces in this way, is that it would result

in VivadoHLS generating two separate function processors—one for each function.

This can be avoided by merging the two functions from Listing 3.1 into a single func-

tion that takes either a FactLaunch or a FactResume as an argument and produces

either a FactSuspend or FactComplete as a return.

This can be accomplished by creating two new data types: one for the argument to

the function, which has the elements of both LaunchType and ResumeType and one for

the return type, which contains the elements of both SuspendType and CompleteType.

Additionally, these new data types need a tag to distinguish which type of interface

action the structure represents. The data types developed and used in the final

implementation are shown in Listing 3.2 and Listing 3.3. In these data types, the

template parameters are the same as those from Figure 3.2.

Defining these custom types is useful because using consistent argument and return

types for all of the HLS function processors makes it easier to control the hardware

produced by VivadoHLS. This in turn makes it easier to interface the generated

hardware with the rest of the system.

With this approach it is also possible to implement algorithms with multiple sets

of recursive calls, such as the Ackermann function. This can be accomplished by

27



CHAPTER 3. HLS FRONT END

Listing 3.3: HLS Recursion Return Data-Type
1 // ----------- Return Types -----------
2 enum RetTag {
3 SUSPEND =0,
4 COMPLETE =1,
5 };
6
7 template < typename A, typename R, typename E, int N>
8 struct RetType {
9 RetTag tag;

10 R result ;
11 A arguments [N];
12 E env;
13 };

encoding information for distinguishing subsequent suspends and resumes inside of

the environment type that is saved during a suspend action and retrieved during a

resume.

3.2 C++ Front End

To see how the full approach can be used to implement a real divide-and-conquer algo-

rithm, consider the Fibonacci code in Listing 3.4. The function starts off by checking

the argument’s tag flag in order to see if the function call represents the beginning of

a new function instance or the resumption of an old one. If the function call is new

instance resulting from a launch action, then the value of the function argument is

checked to determine whether a base or recursive case needs to be executed. The

base cases both set the return’s tag flag to COMPLETE and the result element to the

appropriate value before returning. In contrast, the recursive case sets the tag flag

to SUSPEND and populates the arguments array with the arguments for its two child

recursive calls. When the function call is the result of a resume action, it sets the

return value to be the sum of the results of its child calls and sets the tag flag to

COMPLETE before returning.

This function can be compiled by VivadoHLS to produce a function processor that

is compatible with the rest of TreeRecur. The number of these function processors

28



CHAPTER 3. HLS FRONT END

Listing 3.4: C++ Front End for Fibonacci Function
1 # include " structs .h"
2 # include <cstdint >
3
4 using FibArg = ArgType <uint8_t , uint32_t , uint8_t , 2>;
5 using FibRet = RetType <uint8_t , uint32_t , uint8_t , 2>;
6
7 FibRet proc( const FibArg argVal )
8 {
9 FibRet retVal ;

10 if ( argVal .tag == LAUNCH ) {
11 uint8_t arg = argVal . argument ;
12 if (arg == 0) {
13 retVal .tag = COMPLETE ;
14 retVal . result = 0;
15 } else if (arg == 1) {
16 retVal .tag = COMPLETE ;
17 retVal . result = 1;
18 } else {
19 retVal .tag = SUSPEND ;
20 retVal . arguments [0] = arg -1;
21 retVal . arguments [1] = arg -2;
22 }
23 } else { // argVal .tag == RESUME :
24 retVal .tag = COMPLETE ;
25 retVal . result = argVal . results [0] + argVal . results [1];
26 }
27 return retVal ;
28 }

Listing 3.5: A simple configuration file where NUM PROCS is the number of function pro-
cessors to generate, FIFO DEPTH is the depth of the interface FIFOs, and MEM SIZE is the
maximum number of calls that can be stored in the call-tree.

1 NUM_PROCS 16
2 FIFO_DEPTH 512
3 MEM_SIZE 1024

that will appear in the final hardware is controlled by a configuration file that is set

by the user before compiling the system. An example of a simple configuration file is

shown in Listing 3.5.

3.3 Front-End Architecture

With the generation of the independent function processors defined, we can examine

how they fit into the architecture of the rest of the front-end. As previously mentioned,

the front-end is connected to the back-end via four FIFOs—one for each interface

action, which can be seen in Figure 3.3. In order to distribute the work from the back-

29



CHAPTER 3. HLS FRONT END

Figure 3.3: Front-End System Diagram

end across the available function processors, a custom allocator module was designed

that assigns launch and resume actions to the first available processor. Similarly,

the system also contains an aggregator which collects suspend and complete actions

from the processors and passes them to the appropriate FIFOs.

3.3.1 Memory-Interfacing Variation

The system described so far is effective when the argument and return data for the

function being computed are scalar values that can be passed through a FIFO, but

is less effective when the necessary data is a vector or needs to be shared between

processors. This is problematic for many algorithms, like sorting algorithms, where

the data is large and sibling functions calls access disjoint regions of memory.

The solution to this problem is to allow for the function processors to access a

shared memory external to the rest of the system. This memory can then be populated

with data before the computation begins and modified by the processors as necessary.

An alternative version of the front-end that supports this use of external memory is

shown in Figure 3.4. In this figure, each of the processors have an external memory

port that is connected to a single external memory via a shared memory bus controlled

30



CHAPTER 3. HLS FRONT END

Figure 3.4: Front-End System Diagram with External Memory

by an arbiter. In VivadoHLS, an external memory ports of the function processors

can be represented as an additional array argument to the function as discussed in

Section 2.4.2.

31



Chapter 4
Tree-Based Back-End

The purpose of the back-end is to implement the aspects of recursion that are common

to all recursive algorithms. Specifically, the back-end must maintain the tree data

structure that keeps track of all the instances of the function that are running or

suspended.

4.1 Abstract Tree Definition

In order to understand how the back-end works, it is important to first understand

the tree data structure and the data that it stores. A pseudocode implementation

of the data structure is shown in Algorithm 4.1. Because the exact data stored is

different depending on the algorithm being implemented, the structure is shown with

three template parameters: R, E, and N , which have the same meanings as they have

in Figure 3.2.

Algorithm 4.1 Abstract Tree Structure
1: template〈R, E, N〉
2: structure Tree {
3: Tree parent
4: int parent index
5: int active children
6: R[N ] child results
7: E env
8: }

32



CHAPTER 4. TREE-BASED BACK-END

The structure has five elements—two that store information about the function

call’s parent, two that store information about function call’s children, and one that

stores data for the function call itself. First, the parent element is a reference to

the tree node for the function instance’s parent function call. This establishes the

hierarchical tree structure and allows for a function call’s parent to be looked up.

Next, the parent index element is an index for the parent tree node’s child results

array. All of a node’s children must have different values for their parent index.

The active children element is used to keep track how many of the tree node’s

children have yet to return. When this value reaches 0, then the function is ready to

resume. The child results element stores the results of all of the function’s child

recursive calls. Whenever one of the function’s children complete they store their

result in the element of the function’s child results array that corresponds with

their parent index. Finally, the env element stores the data saved when a function

is suspended and is passed back to the front-end with the child results element

when the function call resumes.

The way that this structure can be used to implement the suspend interface

action is shown in Algorithm 4.2. As described in Section 3.1, when a suspend

action happens the front-end passes the back-end arguments for child recursive calls

and environment data that will be needed when the function resumes. The back-end

is expected to launch new recursive calls for all the arguments it is passed and save

the environment data until the function is ready to resume.

Algorithm 4.2 Function Suspend Pseudocode
1: function Suspend(Tree node, A[N ] calls, E env)
2: node.env ← env
3: for i ∈ 0..N − 1 do
4: Tree child node ← alloc node( )
5: child node.parent ← node
6: child node.parent index ← i
7: launch(child node, calls[i])
8: node.active children ← N

33



CHAPTER 4. TREE-BASED BACK-END

The function in Algorithm 4.2 has three arguments: the tree-node for the function

being suspended and the arguments and environment data from the front-end. The

function starts off by saving the environment data to the tree-node. The function

then iterates through all of the child calls it needs to make, allocates a new tree-node

for each function call, sets the new node’s parent and parent index, and launches

a new recursive call with the appropriate argument. Finally, the function sets the

node’s active children to be the number of child calls launched since all of the

launched children are now active.

Algorithm 4.3 shows the pseudocode for how complete actions can be handled us-

ing the tree data structure. This involves updating the parent function call’s tree-node

Algorithm 4.3 Function Complete Pseudocode
1: function Complete(Tree node, R ret)
2: Tree parent ← node.parent
3: parent.child results[node.parent index] ← ret
4: parent.active children ← parent.active children−1
5: if parent.active children = 0 then
6: resume(parent, parent.child results, parent.env)
7: free node(node)

with the result from the function call, decrementing the parent’s active children

count, and resuming the parent function call if it has no active children left. Lastly,

the tree-node for the completed function call is freed so that it can be reused later.

4.2 Function Call Tracking

The Suspend and Complete functions defined in Algorithm 4.2 and Algorithm 4.3

both require a tree-node as their first argument. In order to satisfy this argument

and compute these functions there must be a way to lookup the relevant tree-node

whenever a suspend and complete action occurs. This is accomplished by assigning

each function instance a unique identifier when its tree-node is allocated. The iden-

tifier is passed to the front-end during launch and resume actions and returned by

34



CHAPTER 4. TREE-BASED BACK-END

the front-end during suspend and complete actions. This way, when the back-end

receives an interface action from the front-end it can know which function instance

is responsible and lookup the relevant tree-node, which can be used to perform the

necessary operations.

However, this still requires a way to lookup a tree-node based on it’s identifier.

This could be accomplished by storing a function instance’s identifier in its tree-node

and searching the tree for the right identifier every time a suspend or resume action

occurs, but this approach is slow. A much simpler approach is to re-use the memory

address of each tree-node as the corresponding function call’s identifier. This way, a

tree-node can be looked-up directly from its identifier whenever an interface action

occurs, avoiding the need to perform any kind of search.

4.3 Dynamic Tree-Node Management

The pseudocode functions in Algorithm 4.2 and Algorithm 4.3 use two dynamic mem-

ory functions alloc node and free node, which allocate and free tree-nodes re-

spectively. These functions are necessary because the call tree dynamically grows and

shrinks as the function executes, as seen in Figure 2.13.

Because all of the tree-nodes are the same size, the dynamic memory management

can be efficiently handled using an array-based tree implementation as mentioned in

Section 2.1.2. A dedicated memory management module is used to keep track of

which memory blocks are available using a free-list. This module is responsible for

allocating the tree-nodes needed by Algorithm 4.2 and freeing the nodes provided

by Algorithm 4.3. It is also responsible for raising an error if the system runs out

of memory, which occurs when an allocate occurs and the free-list is empty. If this

happens, the entire system stops executing the function and raises an error flag to

indicate to the user that the computation failed.

The free-list could be stored in the same memory as the tree structure, using the

35



CHAPTER 4. TREE-BASED BACK-END

Figure 4.1: Back-End System Diagram

unallocated tree nodes as elements of the free-list. This reduces the memory usage of

the system, but increases the number of accesses to the tree memory and complicates

the control logic. Instead, the free-list is stored in it’s own memory that’s sized to

have the same number of elements as the tree memory, which is the maximum size of

the free-list.

4.4 Back-End Architecture

With the tree data structure and the necessary operations defined, it is possible to

examine the system architecture of the back-end, which is shown in Figure 4.1. As

mentioned in Section 3.3, the back-end is connected to the front-end via four FIFOs

that represent the four interface actions. Aside from the memory that stores the tree

data structure, the back-end has three important modules: the suspend controller,

the resume controller, and the memory manager.

The suspend controller is responsible for implementing the Suspend function de-

fined in Algorithm 4.2. Similarly, the resume controller implements the Complete

function from Algorithm 4.3, which can trigger resume actions. Finally, the mem-

36



CHAPTER 4. TREE-BASED BACK-END

i clk

i rst

i start

i arg 4

o err

o busy

o ret 3

Figure 4.2: A top-level timing diagram showing the execution of fib(4). The argument,
i arg, is latched-in when i start goes high and the output, o ret becomes valid when
o busy goes low. o err indicates the presence of an error condition.

ory manager handles the dynamic allocation and freeing of tree-nodes described in

Section 4.3.

4.5 Top-Level Interface

One final part of the system that is important to discuss is the top-level I/O ports

of the system, which were briefly shown in Figure 3.1. The behavior and timing of

these ports is shown in Figure 4.2, which depicts the execution of fib(4).

Execution begins when the i start signal goes high, which causes the root node

of the call tree to be initialized and a launch action to be sent to the front-end. The

argument that is sent with the launch is the current value of the i arg port. The

system then executes as previously described until the back-end receives a complete

action for the root node of the call tree. When this happens, the o busy port is driven

low and the o ret port is set to the value returned with the complete action.

The top-level ports also include an error port, o err. This port is set to a nonzero

value when the system encounters an error, at which point execution stops and the

o busy signal is driven low. There are two possible errors that can be reported by

the o err port:

37



CHAPTER 4. TREE-BASED BACK-END

• Out of Memory—which occurs when the dynamic tree node allocator is unable

to allocate a new node. This can be fixed by increasing the size of the tree

memory

• Deadlock—which is triggered when the back-end is unable to write to one of

the action FIFOs for a full second. This can be fixed by increasing the size of

the FIFOs.

There is also an extended version of this interface that also includes an AXI4

memory mapped master port, which is used to connect to the optional external mem-

ory that can be used by the front-end, as described in Section 3.3.1. This port lets

TreeRecur be used with a wide variety of different memory modules, making it very

flexible.

38



Chapter 5
Results

To ensure the generality of the developed solution, three different divide-and-conquer

algorithms were implemented using TreeRecur. These implementations were then

compared to equivalent software programs in order to evaluate the performance of

the framework.

The HLS processors of the TreeRecur implementations were synthesized using

VivadoHLS version 2019.1. The output of VivadoHLS was combined with the rest

of the project and synthesized and simulated in Vivado 2019.1. The timing data

was collected using a post-implementation simulation with a Virtex-7 XC7VX690T

FPGA as the synthesis target and a system clock speed of 100 MHz.

For the software results, timing data was collected on a Intel i7-7800X processor

running at 3.50 GHz with 16 GB of RAM. The code was compiled with GCC version

4.8.5 with the default optimization level. All of the software algorithms were imple-

mented in a way that involved no multithreading or parallelism, but were otherwise

kept as similar to the HLS programs as possible. The computations were timed using

the high-resolution clocking features of C++’s std::chrono library, with the results

being averaged over a million runs in order to increase their precision.

In order to ensure a fair comparison between both approaches, the different imple-

mentations of the algorithms were tested using the same sets of input data. The data

used was generated using C’s rand function, seeded with a fixed value of 0xFEED. For

39



CHAPTER 5. RESULTS

Figure 5.1: TreeRecur Testing Setup
The system’s I/O ports are driven by a testbench, while the testing data is populated with

a configuration file before the simulation, if necessary.

the software algorithms, this data was generated dynamically at run-time before run-

ning the tests. For the hardware implementation, the data was generated beforehand

and used as the initialization data for the external memory connected to the front-end

processors. The external memory used was a BRAM-based memory, generated using

Xilinx IP. This configuration can be seen in Figure 5.1.

The hardware area results for the TreeRecur implementations were collected from

the post-implementation utilization report generated by Vivado. Data was collected

for the number of Look-Up Tables (LUTs), registers, and Block Random-Access Mem-

ories (BRAMs) used. The LUT and register utilization data was taken from section

1 of the report, while BRAM usage was taken from section 3. All of the systems were

built and tested with the same system FIFO depth of 512 elements and the same tree

memory size of 1024 elements.

Energy consumption for the hardware was calculated by multiplying the execu-

tion times by the total power draw reported by Vivado in the post-routing power

reports. With software, it is more difficult to get an accurate measurement of energy

consumption. The method used in this work involved using the Processor Counter

Monitor (PCM) library [16], which is supported by Intel [17] and includes utilities

for measuring energy consumption. As with the timing measurements, the power

40



CHAPTER 5. RESULTS

Table 5.1: Fibonacci Execution Times (µs)

Software 1 Processor 2 Processors 4 Processors 8 Processors
4.3527 638.02 635.25 635.25 635.25

measurements were averaged over a million runs to increase precision.

5.1 Algorithm Selection

The three algorithms used to test the implementation of TreeRecur were the Fi-

bonacci function, quicksort, and a block matrix multiplication algorithm. All of these

algorithms were chosen because they are simple enough that their implementations

could be written and tested in a reasonable amount of time.

These algorithms are also able to be computed using only statically allocated

memory, which is important since TreeRecur currently doesn’t support any kind of

dynamic memory allocation. Lastly, these algorithms have significant differences in

their argument and return types as well as in the number of recursive function calls

they generate. This helps test the generality of TreeRecur, ensuring that it can handle

a variety of different algorithms.

5.2 Fibonacci

The first algorithm used to test TreeRecur was the Fibonacci function, which was in-

troduced in Algorithm 2.3. Because the Fibonacci function generates O(2n) function

calls, the input size was restricted to be a four-bit integer in order to keep the maxi-

mum number of calls below the 1024-call limit enforced by the tree memory size used.

The timing results were collected for the function run with the maximum argument

of 15, and the results are shown in Table 5.1 and Table 5.2.

The timing data collected was measured in both seconds and in the number of

clock cycles. The timing data measured in seconds is interesting because it is the

41



CHAPTER 5. RESULTS

Table 5.2: Fibonacci Execution Times (Clock Cycles)

Software 1 Processor 2 Processors 4 Processors 8 Processors
15,234 63,802 63,525 63,525 63,525

Table 5.3: Fibonacci Energy Consumption (µJ)

Software 1 Processor 2 Processors 4 Processors 8 Processors
147.59 215.65 215.99 215.99 217.89

performance metric with the most relevance to end-users. The execution speed mea-

sured in clock cycles is also interesting since accounts for the fact that the CPU’s

clock frequency is 35 times faster than the FPGA’s.

However, even when difference in clock speed is accounted for, the TreeRecur is

still 4.17–4.19 times slower than the software implementation. This is much better

than the absolute execution time where TreeRecur is between 146 and 147 times slower

than the software speed, but there is still a significant difference in performance.

A likely cause of this performance gap is the greater function call overhead asso-

ciated with the tree-based approach to recursion compared to stack-based solutions.

As previously discussed, adding data to a stack is very straightforward, whereas the

process of adding nodes to a tree is more involved. In the case of the Fibonacci

function, the cost of the greater function call overhead is very noticeable since the

Fibonacci function involves little computational work aside from launching function

calls.

What is more interesting is the fact that the execution speed barely increases when

a second processor is added and then doesn’t change as more processors are added to

the system. The reason for this is that the Fibonacci function calls are very simple and

can be computed very quickly while the back-end suspend and complete actions

are more complex and take longer to execute. This causes the back-end processing to

act as a bottleneck for the system, making the addition of more processors irrelevant.

42



CHAPTER 5. RESULTS

Table 5.4: Fibonacci Hardware Area

Resource 1 Processor 2 Processors 4 Processors 8 Processors
LUTs 616 676 777 980
Registers 1,132 1,258 1,506 1,998
Block RAMs 6 6 6 6

Table 5.5: Fibonacci Hardware Area

LUTs Registers Block RAMs
Virtex-7 XC7VX690T 433,200 866,400 1470

Another performance statistic that can be considered is energy consumption,

which is shown in Table 5.3. When looking at energy consumption, TreeRecur is

only between 1.46 and 1.48 times worse than the software implementation. The en-

ergy results are impressive because although the TreeRecur implementation runs for

more than 100 times longer than the software implementation, the energy consump-

tions are relatively close. This is the result of the small size of the hardware needed

to compute the Fibonacci function, which causes its total power draw to be less than

0.5 W.

The area usage of TreeRecur with different numbers of processors is shown in

Table 5.4. Using a linear regression it was found that each new processor adds about

52 LUTs and 124 registers to the area usage. Extrapolating this data backwards, it

can be estimated that the system without any processors would consume about 569

LUTs, 1010 registers, and 6 BRAMs. For comparison, the total number of resources

available on the FPGA used are listed in Table 5.5. From this table it can be seen

that even the 8-processor system uses less than half a percent of any of the FPGA’s

resources.

43



CHAPTER 5. RESULTS

5.3 Quicksort

The second algorithm examined was the quicksort algorithm, which is a popular

sorting algorithm where a list is sorted relative to a single element of the list, called

the pivot. This results in two sub-lists: one which contains all the elements less than

the pivot and one that contains all the elements greater than the pivot. These two

lists can then be sorted recursively in the same manner until the entire list is sorted.

Algorithm 5.1 Quicksort
1: function partition(arr, n)
2: sorted ← arr
3: pivot ← arr[n−1]
4: for i in 0 .. (n− 1) do
5: current ← arr[i]
6: if current < pivot then
7: temp ← *sorted
8: *sorted ← current
9: arr[i] ← temp

10: sorted ← sorted + 1
11: arr[n−1] ← *sorted
12: *sorted ← pivot
13: return sorted
14:
15: function quicksort(arr, n)
16: if n ≤ BASE SIZE then
17: for i in 0 .. (n− 1) do
18: key ← arr[i]
19: j ← i− 1
20: while j ≥ 0&&arr[j] > key do
21: arr[j + 1] ← arr[j]
22: j ← j − 1
23: arr[j + 1] ← key
24: else
25: new arr ← partition(arr, n)+1
26: num sorted ← new arr − arr
27: quicksort(arr, num sorted−1)
28: quicksort(new arr, n−num sorted)

Algorithm 5.1 shows a slight variation of quicksort where once the list is below

44



CHAPTER 5. RESULTS

Table 5.6: Quicksort Execution Times (µs)

Base Size Software 1 Processor 2 Processors 4 Processors 8 Processors
1 160.030 9,148.07 6,133.02 4,205.22 4,059.29
4 145.463 8,263.57 5,591.86 4,010.71 3,967.89
16 133.370 6,857.82 4,684.33 3,819.45 3,820.92
64 145.184 5,564.97 3,995.89 3,668.92 3,666.97
256 292.775 5,304.88 3,763.64 3,651.64 3,650.76
1024 759.312 8,580.88 6,673.17 6,673.17 6,673.17

a certain size, it is sorted using insertion sort, a relatively fast non-recursive sorting

algorithm. The purpose of this is to increase the amount of processing that is done in

many of the function calls and reduces the total number of function calls. The goal

of this is to mitigate the issue seen with the Fibonacci function where the front-end

processes function calls too quickly, causing the back-end to bottleneck performance.

With this algorithm it is possible to control the amount of processing that is done

in a function call by changing the input size that triggers the base-case, allowing the

effects of the base-case size on execution speed to be examined.

The timing results for this algorithm were collected for an input size of 2,048

elements because when testing with larger input sizes, some of the simulations began

to crash from a lack of memory. The timing results for the quicksort function are

shown in Table 5.6 and Figure 5.2.

As with the Fibonacci algorithm, the TreeRecur implementation performs signif-

icantly worse than the software in terms of absolute execution times. However, with

quicksort, many of the hardware implementations are all between 57.2 and 8.79 times

slower than their software counterparts as whereas the Fibonacci hardware imple-

mentation were between 146 and 147 times slower. Also, when looking at the clock-

relative timing, some of the TreeRecur implementations are able to out-perform the

software for all base-case sizes. With the 1024-element base-case, the TreeRecur im-

plementations are able to outperform the software by up to 3.98 times. Furthermore,

when looking at energy consumption, we can see that the TreeRecur can outperform

45



CHAPTER 5. RESULTS

(a) Quicksort execution times measured in µs. (b) Quicksort execution times measured in de-
vice clock cycles.

Figure 5.2: Quicksort Execution Times

Table 5.7: Quicksort Energy Consumption (µJ)

Base Size Software 1 Processor 2 Processors 4 Processors 8 Processors
1 5,881.53 3,522.01 2,379.61 1,732.55 1,891.63
4 5,434.99 3,214.53 2,275.89 1,792.78 2,102.98
16 5,012.91 2,660.83 1,845.63 1,634.72 1,937.21
64 5,500.41 2,125.82 1,626.33 1,621.66 1,888.49
256 11,588.0 2,074.21 1,497.93 1,588.46 1,865.54
1024 30,846.0 3,337.96 2,749.35 3,016.27 3,456.70

the software implementation by consuming up to 11.2 times less energy, as shown in

Table 5.7.

Looking at Figure 5.2a and Figure 5.3, it can be seen that increasing the size of

the base-case generally improves both the execution speed and the energy consump-

tion. Also, the addition of more processors can significantly improve performance and

energy consumption. The multi-processor systems can have execution times that are

up to 2.25 times faster than the single-processor systems and energy consumptions

that are up to 2.03 times lower.

The area usage data for the quicksort implementation with a 64-element base-case

is shown in Table 5.8. Again, we can use a linear regression to get an approximate

cost for each additional processor, which shows that each processor adds about 1,527

46



CHAPTER 5. RESULTS

Figure 5.3: Quicksort energy consumption. The software energy consumption for the
1024-element base-case is cropped to improve readability.

Table 5.8: Quicksort Area Usage with 64-Element Base-Case Size

Resource 1 Processor 2 Processors 4 Processors 8 Processors
LUTs 2,269 3,966 6,974 13,024
Registers 3,765 6,283 10,954 20,283
Block RAMs 14.5 16 19 25

LUTs, 2,351 registers, and 1.5 BRAMs. We can also estimate that the base system

without any processors would consume 830 LUTs, 1,505 registers, and 13 BRAMs.

This means that the base system for the quicksort algorithm is slightly larger than

the base system used for the Fibonacci function, which has several causes. First, the

quicksort algorithm uses an external memory, which consumes additional BRAMs

and requires more logic to perform tasks such as arbitration of the shared bus. Also,

the data structures used by the quicksort algorithm are larger than those used by the

Fibonacci function, since the argument to quicksort is two 32-bit numbers, whereas

the argument to the Fibonacci function was a single 4-bit number. The size of the data

structures is important because larger data structures means that all of the hardware

that operates on the data must be larger as well, leading to increased resource usages.

47



CHAPTER 5. RESULTS

5.4 Divide-and-Conquer Matrix Multiplication

The final algorithm examined was a simple divide-and-conquer matrix multiplication

algorithm. This algorithm can be used to multiply two matrices of size 2n×2n, where

n ∈ N, by performing eight 2n−1 × 2n−1 multiplications[8]. For two 2n × 2n matrices,

A and B, the algorithm starts by breaking both matrices into four sub-matrices of

size 2n−1 × 2n−1, as shown in (5.1).

A =

A1 A2

A3 A4

 , B =

B1 B2

B3 B4

 (5.1)

The algorithm then proceeds to perform the eight multiplications and four additions

shown in (5.2).

AB = C =

C1 C2

C3 C4


C1 = A1B1 + A2B3; C2 = A1B2 + A2B4

C3 = A3B1 + A4B3; C4 = A3B2 + A4B4

(5.2)

This is very similar to the more popular Strassen matrix multiplication algorithm,

which only involves seven matrix multiplications[8]. The Strassen algorithm works

by constructing ten 2n−1 × 2n−1 matrices shown in (5.3).

S1 = B2 −B4; S2 = A1 + A2

S3 = A3 + A4; S4 = B3 −B1

S5 = A1 + A4; S6 = B1 + B4

S7 = A2 −A4; S8 = B3 + B4

S9 = A1 −A3; S10 = B1 + B2

(5.3)

48



CHAPTER 5. RESULTS

These matrices are used to compute the final matrix through the multiplications from

(5.4) and the additions from (5.5).

P1 = A1S1; P2 = S2B4

P3 = S3B1; P4 = A4S4

P5 = S5S6; P6 = S7S8

P7 = S9S10

(5.4)

C1 = P5 + P4 −P2 + P6; C2 = P1 + P2

C3 = P3 + P4; C4 = P5 + P1 −P3 −P7

(5.5)

The issue with the Strassen algorithm is that all of its intermediate matrices

from (5.3) must be stored in processor accessible memory so that they can be used

as arguments to recursive function calls, but the developed solution has no way to

dynamically allocate memory for these matrices. The only memories available in

TreeRecur are the tree memory, which can’t be accessed by the processors and the

optional shared external memory, which has no centralized controller that could be

used to allocate memory for intermediate data. This means that in order to implement

the Strassen algorithm, the memories for all of the intermediate matrices for all of the

recursive calls would have to be allocated statically, which would be difficult. This is

one of the major shortcomings of the version of TreeRecur because it makes it difficult

or impossible to implement algorithms that generate intermediate data, unless that

data is small enough to be passed around as arguments or stored in the tree memory.

However, this problem is manageable with the basic divide-and-conquer matrix

multiplication algorithm because the only intermediate matrices that it needs to store

are the eight matrix sub-products that result from the recursive calls. This allows for

the multiplication of two 2n×2n matrices to be computed inside of a single statically-

49



CHAPTER 5. RESULTS

Table 5.9: Matrix Multiplication Execution Times (µs)

Base Size Software 1 Processor 2 Processors 4 Processors 8 Processors
1x1 50.697 2,912.12 2,939.43 2,939.43 2,939.43
2x2 24.196 1,238.97 894.82 587.86 481.29
4x4 17.643 544.57 413.44 296.92 259.06
8x8 15.161 266.38 206.29 171.67 159.76
16x16 14.311 138.18 156.26 156.26 156.26

allocated 2n×2n×2n tensor. This works because at each step of execution the tensor

can be divided into eight 2n−1× 2n−1× 2n−1 tensors that can be used to compute the

eight 2n−1×2n−1 sub-multiplications. The process can be repeated until the matrices

being multiplied are 1×1 matrices, which can be trivially computed inside a 1×1×1

tensor by performing a single multiplication.

Similar to quicksort, the divide-and-conquer matrix multiplication algorithm can

have a flexibly-sized base case, which can be used to avoid the Fibonacci function’s

bottlenecking issue. With the matrix multiplication algorithm, a simple iterative

algorithm can be used to compute matrix multiplications below a certain size, as

seen in Algorithm 5.2. The matrix multiplication algorithm was tested with five

different base-case sizes ranging from a 1×1 matrix multiplication to a 16×16 matrix

multiplication. These implementations were tested on a 16×16 matrix multiplication

and the execution times were recorded in Table 5.9 and plotted in Figure 5.4.

From the data, it can be seen that the TreeRecur implementations are between

58.0 and 9.66 times slower than the software implementation when measured in sec-

onds. This is very similar to the quicksort algorithm, which was between 57.2 and

8.79 slower than the software programs. Thus, when looking at clock-relative timing,

the TreeRecur implementations are again able to outperform the software implemen-

tation. Looking at the energy consumptions in Table 5.10 and Figure 5.5, it can

be seen that, as with quicksort, the TreeRecur implementations are generally more

energy efficient than the software implementation—consuming up to 8.65 times less

50



CHAPTER 5. RESULTS

Algorithm 5.2 Block Matrix Multiplication
1: function mult(A, B, C, n, log stride)

Require: A and B point to 2n × 2n matrices
Require: C points to a 2n × 2n × 2n tensor
Require: log stride = n for the initial function call.

2: stride ← 2log stride

3: if n ≤ BASE SIZE then
4: offset ← 2n

5: for i in 0 .. (offset− 1) do
6: for j in 0 .. (offset− 1) do
7: C[j + i ∗ stride] = 0
8: for k in 0 .. (offset− 1) do
9: C[j + i ∗ stride] += A[k + i ∗ stride] ∗ B[j + k ∗ stride]

10: else
11: new n ← n− 1
12: new offset ← 2new n

13: horizontal offset ← new offset
14: vertical offset ← new offset ∗ stride
15: depth offset ← new offset ∗ stride2

16:
17: A1 ← A
18: A2 ← A + horizontal offset
19: A3 ← A + vertical offset
20: A4 ← A + horizontal offset + vertical offset
21:
22: B1 ← B
23: B2 ← B + horizontal offset
24: B3 ← B + vertical offset
25: B4 ← B + horizontal offset + vertical offset
26:
27: C1 ← C
28: C2 ← C + horizontal offset
29: C3 ← C + vertical offset
30: C4 ← C + horizontal offset + vertical offset
31: C5 ← C1 + depth offset
32: C6 ← C2 + depth offset
33: C7 ← C3 + depth offset
34: C8 ← C4 + depth offset

51



CHAPTER 5. RESULTS

35: mult(A1, B1, C1, new n, log stride)
36: mult(A2, B3, C5, new n, log stride)
37: mult(A1, B2, C2, new n, log stride)
38: mult(A2, B4, C6, new n, log stride)
39: mult(A3, B1, C3, new n, log stride)
40: mult(A4, B3, C7, new n, log stride)
41: mult(A3, B2, C4, new n, log stride)
42: mult(A4, B4, C8, new n, log stride)
43:
44: for i in 0 .. (new offset− 1) do
45: for j in 0 .. (new offset− 1) do
46: C1[j + i ∗ stride] += C5[j + i ∗ stride]
47: C2[j + i ∗ stride] += C6[j + i ∗ stride]
48: C3[j + i ∗ stride] += C7[j + i ∗ stride]
49: C4[j + i ∗ stride] += C8[j + i ∗ stride]

Table 5.10: Matrix Multiplication Energy Consumption (µJ)

Base Size Software 1 Processor 2 Processors 4 Processors 8 Processors
1 1,999.28 1,313.36 1,449.14 1,552.02 1,978.24
2 929.37 572.40 442.04 325.67 329.20
4 661.74 243.97 199.28 155.59 169.17
8 564.39 120.14 100.67 95.45 112.31
16 529.75 61.21 73.60 85.94 106.25

energy in some cases.

The data plots in Figure 5.4a and Figure 5.5 make it clear that the most effective

means of decreasing both the execution times and energy consumption is by increasing

the size of the base-case. The hardware that was both the fastest and consumed the

least power was when the base-case size was equal to the problem size. However,

in this case the use of multiple processors is pointless since no function calls are

generated other than the initial one.

The area usage for the block matrix multiplication implementation that uses a

4×4 matrix multiplication as its base-case is shown in Table 5.11. Again, we can use

a linear regression to get an approximate cost for each additional processor, finding

that each processor adds about 2,810 LUTs, 4,267 registers, and 1 BRAM. We can also

52



CHAPTER 5. RESULTS

(a) Matrix multiplication execution times mea-
sured in µs.

(b) Matrix multiplication execution times mea-
sured in device clock cycles.

Figure 5.4: Matrix Multiplication Execution Times

Figure 5.5: Matrix Multiplication Energy Consumption

estimate that the base system without any processors would consume 2,461 LUTs,

6,528 registers, and 101 BRAMs.

Note that the size of the block matrix multiplication system without any proces-

sors is significantly larger than the size of the previous two algorithms. One reason

for this is that the matrix multiplication algorithm was tested with a much larger

external memory size than quicksort, which accounts for significantly higher BRAM

usage. Another reason is that since the matrix multiplication algorithm involves eight

recursive function calls, all of its data structures must be significantly larger than the

53



CHAPTER 5. RESULTS

Table 5.11: Matrix Multiplication Area Usage with 4× 4 Base-Case Size

Resource 1 Processor 2 Processors 4 Processors 8 Processors
LUTs 4,998 8,079 14,183 24,737
Registers 10,699 15,140 23,648 40,633
Block RAMs 102 103 105 109

previous two algorithms, requiring more hardware resources.

54



Chapter 6
Conclusions

A new approach to implementing recursive algorithms in hardware, named TreeRecur,

was explored with the goal of exploiting the procedure-level parallelism of divide-

and-conquer algorithms. It was found that TreeRecur is a flexible framework that

is capable of implementing a variety of different algorithms by only changing the

front-end processors, which are defined with HLS. Furthermore, it was found that

TreeRecur can achieve execution speeds comparable to software when the difference

in clock speeds are accounted for, and had energy consumptions that were up to 11.2

times better than software.

For the hardware implementations, the best performances in terms of both execu-

tion speed and energy consumption occurred when the algorithms were tested with

relatively large base-cases sizes. This is presumably a consequence of the higher func-

tion call overhead resulting from using a tree data structure instead of stack because

larger base-cases mean that fewer function calls are made.

6.1 Future Work

There are many potential avenues for future work, including scaling the system to

handle larger problem sizes and optimizing the back-end to reduce bottlenecking.

There is also a lot of research that can be done regarding which kinds of algorithms

are best-suited to be implemented with TreeRecur and how to optimize the HLS

55



CHAPTER 6. CONCLUSIONS

code for the front-end processors in order to maximize performance. Finally, addi-

tional research could help improve TreeRecur’s error handling. The system currently

throws an error when it runs out of memory, but it might be possible to recover from

such errors by dropping some function calls that are executing in parallel, since the

sequential execution of recursive functions would consume less memory.

56



Bibliography

[1] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis, Oct.
2019, https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2019_2/ug902-vivado-high-level-synthesis.pdf.

[2] V. Sklyarov, “FPGA-based implementation of recursive algorithms,” Micropro-
cessors and Microsystems, vol. 28, no. 5-6, pp. 197–211, 2004.

[3] D. Thomas, “Synthesisable recursion for C++ HLS tools,” 2016 IEEE 27th
International Conference on Application-specific Systems, Architectures and Pro-
cessors (ASAP), pp. 91–98, 2016.

[4] G. Ferizis, Mapping Recursive Functions To Reconfigurable Hardware, Ph.D.
thesis, University of New South Wales, Australia, 2005.

[5] I. Skliarova and V. Sklyarov, “Recursion in reconfigurable computing: A sur-
vey of implementation approaches,” in 2009 International Conference on Field
Programmable Logic and Applications, Aug 2009, pp. 224–229.

[6] G. Ferizis and H. E. Gindy, “Mapping recursive functions to reconfigurable
hardware,” in 2006 International Conference on Field Programmable Logic and
Applications, 2006, pp. 1–6.

[7] G. Stitt and J. Villarreal, “Recursion flattening,” in Proceedings of the 18th
ACM Great Lakes symposium on VLSI. ACM, 2008, pp. 131–134.

[8] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
Third Edition, The MIT Press, 3rd edition, 2009.

[9] Xilinx, 7 Series FPGAs Memory Resources User Guide, July 2019,
https://www.xilinx.com/support/documentation/user_guides/ug473_
7Series_Memory_Resources.pdf.

[10] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles, Techniques,
and Tools (2nd Edition), Addison-Wesley Longman Publishing Co., Inc., USA,
2006.

[11] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there yet? a
study on the state of high-level synthesis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 5, pp. 898–911,
2019.

[12] K. Rupnow, Yun Liang, Yinan Li, and Deming Chen, “A study of high-level
synthesis: Promises and challenges,” in 2011 9th IEEE International Conference
on ASIC, 2011, pp. 1102–1105.

57

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf


BIBLIOGRAPHY

[13] Intel, Intel High Level Synthesis Compiler: User Guide, June 2020, htpps:
//www.intel.com/content/www/us/en/programmable/documentation/
ewa1457708982563.html.

[14] V. Sklyarov, I. Skilarova, and B. Pimentel, “FPGA-based implementation and
comparison of recursive and iterative algorithms,” in International Conference
on Field Programmable Logic and Applications, 2005. IEEE, 2005, pp. 235–240.

[15] D. Mihhailov, V. Sklyarov, I. Skliarova, and A. Sudnitson, “Parallel FPGA-
based implementation of recursive sorting algorithms,” in 2010 International
Conference on Reconfigurable Computing and FPGAs, Dec 2010, pp. 121–126.

[16] Processor Counter Monitor, htpps://github.com/opcm/pcm.

[17] R. Dementiev T. Willhalm, Intel Performance Counter Monitor - A Better
Way to Measure CPU Utilization, Intel, Jan. 2017, htpps://www.intel.com/
software/pcm.

58

htpps://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html
htpps://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html
htpps://www.intel.com/content/www/us/en/programmable/documentation/ewa1457708982563.html
htpps://github.com/opcm/pcm
htpps://www.intel.com/software/pcm
htpps://www.intel.com/software/pcm

	Tree-Based Hardware Recursion for Divide-and-Conquer Algorithms
	Recommended Citation

	Signature Sheet
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective

	Background
	Tree Data Structures
	Tree Implementations
	Array-Based Tree Implementation
	Hardware Tree Implementations

	Recursion
	Low-Level Recursion
	Divide-and-Conquer Algorithms

	Hardware Design Methodologies
	VivadoHLS
	Function Synthesis
	Memory Interfaces

	Related Work
	Hierarchical State Machines
	HLSRecurse
	Dynamic Pipeline
	Recursion Flattening

	Contribution

	HLS Front End
	Front-End Interface
	HLS Interface
	Single-Function Approach

	C++ Front End
	Front-End Architecture
	Memory-Interfacing Variation


	Tree-Based Back-End
	Abstract Tree Definition
	Function Call Tracking
	Dynamic Tree-Node Management
	Back-End Architecture
	Top-Level Interface

	Results
	Algorithm Selection
	Fibonacci
	Quicksort
	Divide-and-Conquer Matrix Multiplication

	Conclusions
	Future Work

	Bibliography

