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Abstract

Effective Activation Functions for Homomorphic

Evaluation of Deep Neural Networks

Srinath Obla, M.S.

Rochester Institute of Technology, 2020

Supervisor: Dr. Peizhao Hu

CryptoNets and subsequent work have demonstrated the capability of

homomorphic encryption (HE) in the applications of private artificial intelli-

gence (AI). While convolutional neural networks (CNNs) are primarily com-

posed of linear functions which can be homomorphically evaluated, layers such

as the activation layer are non-linear and cannot be homomorphically evalu-

ated. One of the most commonly used alternatives is approximating these

non-linear functions using low-degree polynomials. However, it is difficult to

generate efficient approximations and often, dataset specific improvements are

required. This thesis presents a systematic method to construct HE-friendly

activation functions for CNNs. We first determine the key properties in a

good activation function that contribute to performance by analyzing com-

monly used functions such as Rectified Linear Units (ReLU) and Sigmoid. We

v



then analyse the inputs to the activation layer and search for an optimal range

of approximation for the polynomial activation. Based on our findings, we

propose a novel weighted polynomial approximation method tailored to this

input distribution. Finally, we demonstrate effectiveness and robustness of our

method using three datasets; MNIST, FMNIST, CIFAR-10.
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Chapter 1

Introduction

Deep neural networks have made significant contributions to solving

complex tasks, especially in computer vision. In some applications, these net-

works require a large volume of private data; for example, lung cancer [70] and

diabetic retinopathy detection [62]. However, regulations such as HIPAA [1]

and GDPR [32] impose stringent restrictions on the use of private data by

third-party service providers.

Homomorphic encryption (HE) is a privacy-preserving cryptographic

scheme that supports arithmetic operations, such as addition and multiplica-

tion, on encrypted data without decrypting it first. Given two messages m

and m′ and the operations homomorphic addition ⊕ and homomorphic mul-

tiplication ⊗, we have Enc(m) ⊕ Enc(m′) which decrypts to m + m′, and

Enc(m) ⊗ Enc(m′) which decrypts to m × m′. A deep learning pipeline re-

duced to only these operations can perform a task on encrypted data without

decrypting it. For simplicity, we will use normal arithmetic operators to rep-

resent homomorphic operations in the remainder of this document.

Most of the components within a CNN comprise of linear functions

which can be homomorphically evaluated using homomorphic addition and

1



multiplication. However, CNNs also consist of layers that are dependent on

non-polynomial functions such as the activation layer. Such layers cannot

be reduced to the permitted operations listed above and hence cannot be

evaluated without a HE-friendly replacement.

1.1 HE-friendly alternatives for non-polynomial func-
tions

In the pursuit of successfully evaluating CNNs on homomorphically en-

crypted data, developing effective and HE-friendly support for non-polynomial

functions has been an active topic of research in recent years [13, 16, 17, 28, 38].

So far, the methods used to generate HE-friendly alternatives can be grouped

into three categories:

• using a power function [28]

• discretely sampling the function to be replaced and using a look-up table

to access these values [17],

• using low-degree polynomial approximations of the activation [13, 16, 38].

When CryptoNets [28] was first introduced, it used the power function

with the degree 2, i.e. the square function f(x) = x2, as an HE-friendly re-

placement for commonly used activation functions. Unfortunately, due to the

exponential growth of this function the network training process is unstable

and affects the efficiency of the CNN. As a consequence, CryptoNets cannot
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sustain more than one HE-friendly activation layer and therfore suffers a sig-

nificant impact on accuracy (98.95% compared to 99.77% in state-of-the-art

performance) on the MNIST handwritten digit dataset [47]).

An alternative approach [17] samples the activation function as discrete

values and stores these values in a look-up table for use during inference. Dur-

ing homomorphic evaluation, the program performs a table lookup obliviously.

However, sampling at discrete intervals reduces the floating-point precision of

the outputs which directly affected the performance of the neural network. In-

creasing the rate of sampling would result in larger lookup tables which would

lead to longer processing times.

A more common approach is to generate a low-degree polynomial ap-

proximation of a traditional activation function and use it to evaluate on en-

crypted data. This approach is similar to using a power function but with-

out the immediate exponential growth. Chabanne et al. [13] investigated

the effectiveness of using Taylor-series polynomials to approximate the ReLU

activation function. Together with other techniques such as batch normaliza-

tion (BN) [40] which puts acceptable bounds on the inputs to the activation

layer, these polynomials allow them to train deeper CNNs effectively. As a

result, their networks were able to achieve a 99.30% classification accuracy

on the MNIST dataset. CryptoDL [38] examined approximation methods us-

ing standard and modified Chebyshev polynomials in addition to the Taylor

series approach. The study evaluted the effectiveness of approximating dif-

ferent activation functions such as ReLU, Sigmoid, Tanh on the MNIST and
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CIFAR-10 [42] datasets.

From the existing works, we note that the polynomial approximation

approach is more robust than the table lookup approach and yields higher

accuracy than simply using a power function. But these works also show that

identifying the best performing polynomial is a difficult task and often has to

be customized for a dataset.

1.2 Contributions

This thesis focuses on developing a systematic method to construct

effective HE-friendly activation functions for CNNs using polynomial approxi-

mations. While pursuing this goal, we have made the following contributions:

• We study the characteristics of traditionally used activation functions in

CNNs. For example, we discuss how activation function with bounded

derivatives have an effect on the training process and is crucial for achiev-

ing high accuracies in CNNs. We also analyse the effect of different

datasets on the distribution of inputs to the activation layer and share

this knowledge for future work.

• We leverage the above findings to propose a multi-polynomial system for

larger and complex datasets such as CIFAR-10. Our experiments show

that this approach yields an improvement over using a single polynomial

approximation for the entire network.
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• We also propose a weighted approximation technique for finding effec-

tive HE-friendly activation functions. Our experimental results obtained

from the three datasets (MNIST, FMNIST and CIFAR-10) show that

our proposed method is able to generate HE-friendly activation func-

tions that yield higher or the same accuracy as other dataset specific

polynomial approximations in the state-of-the-art works.
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Chapter 2

Background

2.1 Background Concepts

In this section, we provide brief descriptions of the background and

preliminaries of convolutional neural networks, homomorphic encryption, and

methods to approximate functions using polynomials.

2.1.1 Convolutional Neural Networks

A CNN is a type of deep neural network that is used primarily to

analyze image data and is composed of a stack of layers, as shown in Fig. 2.1.

CNNs are first trained on a dataset and then can be use to perform inference

on related data. CNNs transform the image data from the input layer, through

layers of computations, into the scores of each label in the output layer. Each

layer consists of weights ω that are adjusted during the network training phase

using a technique called backpropagation [66]. In backpropagation, the weights

corresponding to the transformations are adjusted to optimize a loss function

based on the error between the prediction made by the network and the ground

truth. More formally, we model a CNN as a sequence of transformations, such

that at a layer `−1 some functions f apply computations to the g input neurons

x`−11 , x`−12 , ..., x`−1g , yielding the value of h output neurons x`j = f(x`−1i ); i ∈

6
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Figure 2.1: Typical architecture of a CNN

{1, ..., g}; j ∈ {1, ..., h} at the layer `. Depending on the type of a the layer,

the function f consists of either a linear or non-linear transformation, as we

will discuss below.

2.1.1.1 Convolutional layer (CONV)

A CONV layer extracts hierarchical features from multiple representa-

tions of the input image by applying multiple filters on it as illustrated in

Fig. 2.2. During the training process, the filters weights are adjusted in the

optimization process to reduce the error function. In every filter, each weight

ω`i′j′k′ and bias β`i′j′k′ , where i′, j′ ∈ s; k′ ∈ d at layer `, is learned from the

training dataset. For the value of each neuron at layer `, we compute x`i′j′k′ =

β`k′ +
∑s

i=1

∑s
j=1

∑d
k=1 ω

`,k′

ijk x
`−1
i′+i−bs/2c,j′+j−bs/2c,k using k′ filter and some neu-

rons of the previous layer at ` − 1. Essentially, a convolution operation con-

sists of many dot-product over matrices of weights ω`i′j′k′ of a filter and the

elements from the region this filter has been applied to the previous layer,

x`−1i′+i−bs/2c,j′+j−bs/2c,k, as illustrated in Fig. 2.2. When done, we slide the filter

7
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Figure 2.2: Convolutional filtering.

to the right to calculate the value for the next position in the feature map.

This layer consists only linear transformations, hence it can be supported ho-

momorphically.

2.1.1.2 Batch normalization layer (BAT)

This operation was introduced by Ioffe and Szegedy [40] to accelerate

the training of deep neural networks. The input to the batch normalization

layer is transformed to have zero mean and unit variance using the statistics

observed in a batch. Normalizing the data in this manner makes the neural

network optimization smoother [67] and results in stable and predictive train-

ing. During inference, the network uses the moving averages learned during

training to normalize the data. Algorithm 1 illustrates the calculations taken

place in the batch normalization. It is important to note that the scaling and

offset weights, γ and β are parameters obtained from training. This allows the

network to not perform any normalization when it is desirable. While the BAT

layer is optional, we depend on this layer to restrict the input distribution to

8



the activation layer.

Input: X = {x1, ..., xm}
Output: Y = {yi}

1: Calculate mean: µ← 1
m

∑m
i=1 xi

2: Calculate variance: σ2 ← 1
m

∑m
i=1(xi − µ)2

3: Normalize: x̂i ← xi−µ√
σ2+ε

4: Scale and shift: yi ← γx̂i + β

Algorithm 1: Batch normalization over a mini batch X

2.1.1.3 Activation layer (ACT)

The activation layers are an essential component in CNNs as their non-

linear property permits the model to capture complex patterns from the input

data. We compute the value of each neuron at the current layer ` as x`i′ =

f(x`−1i ); i ∈ g; i′ ∈ h, where g are the neurons from the previous layer ` − 1

and h are the neurons from `. Depending on the application, there are various

activation functions that can be used. In this research, we take a general

stance and focus on the following classical activation functions as they often

are augmented to other variants:

• Rectified Linear Unit (ReLU): f(x) = max(0, x)

• Logistic function (Sigmoid): f(x) = 1
1+e−x

• Hyperbolic tangent (Tanh): f(x) = e2x−1
e2x+1

• Softplus: f(x) = log(1 + ex)

9
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Figure 2.3: Activation functions and alternatives.

Fig. 2.3(a) shows these activation functions for comparison. Among

these activation functions, Sigmoid and similar functions such as Tanh often

suffer from the vanishing gradient problem, which can potentially slow down

the update of weights and biases, especially for deep networks. As observed

from Fig. 2.3(a), Sigmoid and Tanh become saturated away from the origin;

hence they get relatively small gradients. Activation functions like ReLU and

it’s variants solve this problem using rectification and linear responses as shown

in Fig. 2.3(b).
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There are multiple variants of classical activation functions like ReLU

and Tanh optimized for specific applications with the addition of trainable

parameters. However, as the focus is to support HE-CNNs from a general

perspective, we choose to focus on the classical activations for our analysis

and experiments. Fig. 2.3(c) shows two examples of these activation functions

that are HE-friendly. Among them, CryptoNets [28] uses a square function

but achieves low accuracy. Chabanne et al. [13] uses a degree 4 polynomial

that approximates ReLU and achieves better accuracy than CryptoNets.

2.1.1.4 Pooling layer (POOL)

Pooling layers are used in CNNs to reduce the amount of data between

layers. The use of this operation results in the reduction of the number of

weights, which helps the optimization process. Applying pooling layer allows

a larger number of filters to be used in deeper convolution layers which help in

extracting complex features. A pooling layer is commonly used after an activa-

tion layer. Together with the CONV and ACT layers, they form a structure which

is repeated through the network; i.e., CONV-ACT-POOL. Generally, pooling lay-

ers use a window based approach to reduce local information. Depending on

the type of pooling layer, a single value is generated for a region.

Two commonly used pooling functions are max-pool and average-pool.

The average-pool function f(X) =
∑n

i=1 xi
n

;xi ∈ X can be computed easily,

but the max-pool function f(X) = max(x1, x2, ..., xn);xi ∈ X cannot be re-

duced using the available operations and therefore would require developing a

11
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Figure 2.4: Fully connected layer.

replacement. Unlike activation functions, max-pool is multivariate and hence

cannot be approximated directly using a single polynomial.

2.1.1.5 Fully Connected layer (FC)

Every neuron x`i
′; i′ ∈ h in a fully connected layer ` is connected to

every other neuron x`−1i ; i ∈ g in the previous layer. Each connection has a

trainable weight ω`i′j′ and bias β`i
′ associated with x`i

′. We calculate the inner

product yielding x`i′ = β`i′+
∑

i ω
`
i′x

`−1
i . Figure 2.4 depicts a common structure

of neurons, weights and connections in a fully connected network.

2.1.1.6 Softmax layer (SOFTMAX)

The softmax operation is commonly used in deep neural networks to

transform the final outputs into a set of probabilities. Usually used in classifi-

cation problems with more than 2 classes, this linear transformation converts

all values from the previous layer to the range (0, 1) but they sum to 1. Each of

12



these values can be interpreted as the probability score of the input belonging

to the corresponding output class. Consequently, the class with the highest

probability is the class prediction made by the neural network. More formally,

the SOFTMAX layer can be represented as

σ(xj) =
exj∑k
i=1 e

xi
where j = {1, ..., k} (2.1)

2.1.2 Homomorphic Encryption

HE is a class of encryption schemes that support computations such

as addition and multiplication on encrypted data. Existing HE schemes can

be divided into three main types based on the homomorphic operations sup-

ported by the evaluation function. In Partial HE (PHE) schemes, the evalua-

tion function supports either addition (i.e. additive homomorphism), such as

Goldwasser-Micali [31] and Paillier cryptosystem [60], or multiplication (i.e.

multiplicative homomorphism), such as ElGamal cryptosystem [21], but not

both. In contrast, Fully HE (FHE) allows arbitrary number of additions and

multiplications. Somewhat HE (SWHE) schemes support both addition and

multiplication on the ciphertexts. Yet, the number of multiplications allowed

is limited due to the inherited construction of the scheme where ciphertexts

contain noise that exponentially scales with multiplications. In general, HE

scheme is a tuple of PPT algorithms HE = (KeyGen,Enc,Eval,Dec). We define

each algorithm as follow.

- HE.KeyGen(1λ) → (pk, sk): Given a security parameter λ determining

13



the security level, the key generation algorithm outputs a public key pk,

a private key sk.

- HE.Enc(pk,m)→ c: Given a public key pk and a message m, the encryp-

tion algorithm outputs a ciphertext c.

- HE.Eval(pk, f, c, c′) → ceval: Given a public key pk, two ciphertexts c, c′,

and the homomorphic function f , the evaluation algorithm outputs the

evaluated ciphertext ceval = f(c, c′).

- HE.Dec(sk, c) → m: Given a ciphertext c encrypted under pk and the

corresponding secret key sk, the decryption algorithm outputs the mes-

sage m.

Note, the HE.Eval algorithm homomorphically performs a defined func-

tion f on the ciphertexts. This function is constructed using HE.EvalAdd

and HE.EvalMult which are homomorphic addition and multiplication respec-

tively. Many HE schemes instantiate these common algorithms for integer-

based computations, such as the BGV [10] and BFV [9, 23] schemes. Another

HE scheme, the CKKS scheme [15], computes on fixed-point arithmetic, which

is most appropriate for scientific research that often deals with floating-point

data. Most well-known HE libraries (e.g., Palisade [3], Microsoft SEAL [69],

and HElib [2]) have support for CKKS. Further reading on the construction

of HE schemes can be found in the following survey [4, 6, 25, 55, 74].

Since we cannot homomorphically evaluate non-polynomial functions

(i.e., ACT, POOL), we construct our CNNs differently, replacing incompatible

14



layers with HE-friendly alternatives. For the HE-friendly pooling layers, we

use sum-pooling or scaled-mean pooling proposed by CryptoNets [28] to avoid

the division in a typical average-pooling layer.

2.1.3 Approximating functions using polynomials

To generate HE-friendly activation functions, we use polynomial ap-

proximations of traditional activation functions. While our work primarily

uses the best squares approximation method, other works in the field have

also used Taylor series expansions and Best uniform approximations. All three

methods are supported by the Weierstrass approximation theorem [76], Stone-

Weierstrass theorem [72], and Haar theorem [35].

2.1.3.1 Taylor expansion

Taylor’s Theorem [43] is the most elementary approximation method in

numerical analysis. It expands a k times differential function into the general

k-th order Taylor polynomial Tn(x) =
∑k

n=0
f (n)(x0)

n!
(x − x0)n + Rk around a

given point x0 with k ∈ Z. Then we define
∑k

n=0
f (n)(x0)

n!
(x − x0)n as Taylor

Series and Rk =
∫ x
x0

f (n+1)(t)
n!

(x− t)ndt as the remainder of Taylor polynomial.

Taylor expansion has been widely used in computational optimization because

it can convert complex mathematical expressions into Taylor polynomials using

only additive and multiplicative operations [12, 33].
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2.1.3.2 Best uniform approximation

This approximation method is based on the L∞ norm, defined as

‖f(x)‖∞ = maxx∈[a,b] |f(x)|, where [a, b] is a region of interest as shown in

Fig. 2.5(a). It aims to minimize the maximum distance between the function

being approximated f(x) and approximation polynomial p(x). In Fig 2.5(a),

we denote the error function in best uniform approximation as ε = ‖f(x) −

p(x)‖∞ = max |f(x) − g(x)|. To generate the polynomial approximation, the

following optimization problem has to solved: min max |f(x)−p(x)|. But since

the problem is hard to solve, a general and practical way is to directly expand

f(x) into Chebyshev series [14] taken as the approximation polynomial. The

Chebyshev series is a class of orthogonal polynomials defined as Tn(x) = cos(n·

arccos(x)) with x ∈ [−1, 1]. Given T0(x) = 1 and T1(x) = x, it is convenient to

calculate Chebyshev polynomials: Tn+1(x) = 2xTn(x)−Tn−1(x). Therefore, we

can first expand f(x) into Chebyshev series in [−1, 1]. Then, we calculate its

Chebyshev coefficients ck = 2
π

∫ 1

−1 f(x) Tk(x)√
1−x2 and adjust approximation domain

from [−1, 1] to [a, b], for the k-th order Taylor polynomial. Algorithm 2 gives

an elaborate description of the Chebyshev approximation.

2.1.3.3 Best squares approximation

Best squares approximation is based on L2 norm, defined as ‖f(x)‖2

= [
∫ b
a
(f(x))2dx]

1
2 , where [a, b] is the region of interest as shown in Fig. 2.5(b).

Unlike best uniform approximation, this method aims to minimize the area

between the function f(x) being approximated and the polynomial approxi-
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Input: ck, Tk(x)

Output: f(x)

1: Rewrite f(x) into Chebyshev Series form: f(x) =
∑n

k=0 ckTk(x),
x ∈ [−1, 1]

2: Compute Chebyshev coeff.: ck = 2
π

∫ 1

−1 f(x) Tk(x)√
1−x2

3: Convert approximation domain from [−1, 1] to [a, b]: x = 2x′−a−b
b−a

Algorithm 2: Best Uniform Approximation

x

y

a b

p(x)
p(x)+𝜀

p(x)-𝜀

f(x)

(a) L∞ norm

x

y

a b

f(x)

p(x)A

(b) L2 norm

Figure 2.5: Error functions

mation p(x). In Fig. 2.5(b), we denote A as the total area between f(x) and

p(x) in [a, b]. We can also define the error function in best squares approx-

imation as ε = ‖f(x) − p(x)‖2 =
∫ b
a
(f(x) − p(x))2dx. In our experiments,

given discrete data points, we use least squares method [48] to approximate

f(x). In Section 4.2, the novel weighted method is an extension of least square

approximation. Instead of evenly sampling f(x) in a given domain, we collect

points in a weighted way.
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2.2 Related Work

CryptoNets [28] was first to demonstrate the ability to homomorphi-

cally evaluate neural network on encrypted data for secure image classification.

However, a critical flaw in the design was the properties of the power function

x2 used as the HE-friendly activation functions replacement (Sec. 2.1.1.3). This

substitution caused instability during training, preventing its use in deeper

networks. As reported by the authors, CryptoNets cannot sustain a network

with more than two CONV-ACT-POOL layers while maintaining high efficiency

and accuracy. This was attributed to the unbounded derivative of the square

function x2. Also, the use of sum-pooling (to avoid division operation) in-

stead of average or max-pooling was an added impact to accuracy. As a

result, CryptoNets achieved 98.95% on the MNIST handwritten digit dataset

with state-of-the-art result being 99.77% on plaintext image data. Fig. 2.3(c)

shows how the square function used in CryptoNets behaves in comparison to

other well-performing activation functions.

After CryptoNets [28] demonstrated the ability to homomorphically

evaluate neural network on encrypted data for secure image classification, sev-

eral follow-up work [13, 16, 38, 77] attempted to improve classification accu-

racy using additional techniques and deeper networks. Chabanne et al. [13]

attempted to approximate the ReLU activation function using Taylor series

polynomials. Fig. 2.3(c) shows their best-performing approximated polyno-

mial with degree 4; i.e., Polyfit4. The use of a relatively low degree poly-

nomial allowed a low multiplicative depth, resulting in efficient evaluation
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on encrypted data. However, the approximated polynomial is not accurate

outside the bounds of approximation. To shrink the range of the input distri-

bution, Chabanne et al. proposed to use a batch normalization (BAT) [40] layer

before every activation layer, as illustrated in Fig. 2.1. In addition to this

layer, a two-stage training process was proposed, where the network is first

trained with the original activation function to achieve optimized weights. In

the second stage the activation function is replaced with the approximation of

the activation and the weights are fine-tuned by continuing the training at a

low learning rate. Using these new methods, they improved the classification

accuracy to 99.30% on the MNIST dataset.

Instead of using Taylor series approximation, Chabanne et al. suggested

to make the coefficients of the polynomial as trainable parameters as well.

Wu et al. [77] explored this idea and trained a model with the polynomial

coefficients in each activation layer as trainable parameters. While the model

achieved a classification accuracy of 99.70%, it is at the expense of optimizing a

large number of parameters. More importantly, the trained model may not be

widely applicable in practice because this model is too specific to the training

set.

Hesamifard et al. proposed CryptoDL [38] to evaluate a more complex

image dataset, CIFAR-10 [42], in addition to the MNIST dataset. Based on

the conclusions from CryptoNets, CryptoDL focused on stabilising the training

process by approximating the derivative of the original activation function.

The integral of this approximation, illustrated in Fig. 2.6, was used within
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Figure 2.6: Generating HE-friendly activation functions in CryptoDL

the network during training and inference. Using this approach, CryptoDL

achieved a classification accuracy of 91.55% on the CIFAR-10 dataset.

Many modern deep learning problems require architectures that are sig-

nificantly deeper than the networks discussed in the above approaches. Faster

CryptoNets [16] presented a practical implementation of deep CNNs that can

process encrypted data using transfer learning. Transfer learning is a training

method that uses a network pre-trained on a related dataset and retrains the

final layers on the data of the new task. Their proposed approach used a 50

layers residual network (ResNet) where only the final few layers perform in-

ference on encrypted data; i.e., the feature maps are encrypted. The initial

layers process on plaintext data. The authors tested this approach on a dia-

betic retinopathy dataset [34] and achieved a classification accuracy of 76.47%

(Baseline ResNet scoring 80.61%).
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Chapter 3

Analysis

3.1 Analysing rectified linear units as activations

To build an effective polynomial activation function, we first looked into

the key factors that contribute to the performance of rectified linear units,

in particular, to the ReLU activation function. Glorot et al. [29] suggests

that using a rectified non-linearity gives rise to sparse representations within

the network. This in turn has multiple benefits such as, linear separability

and information disentangling of the input data. Their experiments on image

data also indicate that training sessions proceed better when signals are either

completely off or are linear in output.

To analyze the benefit of these properties, we construct two polyno-

mial activations, Activation 1 and 2. The former activation closely emulates

the rectified portion of ReLU for inputs x < 0. Activation 2 on the other

hand, emulates the linear output of ReLU for inputs x > 0. Both activation

functions replicate ReLU between [-1, 1] and pass through the origin. It must

be noted that both properties cannot be incorporated simultaneously into a

polynomial due to the structure of ReLU. Even with a high degree polynomial,

it is not possible to efficiently approximate ReLU because the function instan-
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Figure 3.1: Polynomial activations approximating ReLU

taneously changes at x = 0. Therefore, the polynomials were approximated

to the respective section of interest, i.e. , [-1, 0] for Activation 1 and [0, 1]

for Activation 2. To understand the effect of both properties from a polyno-

mial perspective, we also construct a piecewise Activation 2a, i.e. , max(0,

Activation 2), which has a rectified output for x < 0.

The above polynomials were then tested on the MNIST dataset using

the Light and Deep CNN architectures from Chabanne et al. [13]. Both

architectures use a batch normalization layer before every activation layer to

reduce the distribution of inputs. We also test the second degree polynomial

from Chabanne et al. to compare performances.

From this experiment we make two main observations. Firstly, all poly-

nomials approximations performed close to ReLU within the margin of error.

We do not see a significant difference in performance between our polynomials

with the properties of ReLU and the others.
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Table 3.1: Performance result of different activations on the MNIST database

Activation MNIST Light CNN MNIST Deep CNN CIFAR-10

Activation 1 98.25 99.30 -
Activation 2 98.45 99.57 -
Activation 2a 97.69 99.14 -

ch 2 97.93 99.60 81.00
ReLU 98.43 99.63 93.32

Secondly, none of our activations performed better than chance on

CIFAR-10, while the second degree polynomial from Chabanne et al. was able

to achieve 81.00%. This brought our attention to the range of approximation

for each polynomial. The second degree polynomial from Chabanne et al. was

approximated between a significantly larger range of [-3, 3] compared to our

proposed polynomials. While Activation 1, 2 and 2a perform well on MNIST,

they fail to learn on CIFAR-10. Therefore, our next step was to analyse the

effect of the dataset on the distribution of inputs to the activation layer.

3.2 Analysing inputs to the activation function

In the previous section, we show how our proposed activations perform

well enough on the MNIST dataset, but not for CIFAR-10, a significantly

more complex dataset. However, we also saw another polynomial in the test

successfully learn in the training process, albeit with a lower score. All poly-

nomials were approximating the same activation function, ReLU, but within

different ranges. From Table 3.1 our activations that did not learn mirrored

ReLU between the range [-1, 1] but the other polynomial mirrored ReLU be-
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Figure 3.2: Polynomial approximation of ReLU

tween [-3, 3]. Therefore, we analysed the the inputs to the activation function

and report our findings in this section.

Initially proposed by Chabanne et al. , networks with HE-friendly poly-

nomial activations have been trained with a batch normalization layer before

every activation layer. The BN layer transforms the data distribution to have

zero mean and unit variance. Essentially, this results in a distribution with

close to 99% of the data between the range [-3, 3] as shown in Fig. 3.2(b).

Table 3.2: BN Output distribution characteristics for different datasets

Dataset Max. Std. Deviation Max. Distribution Range

MNIST 1.20 [-8.44, 8.51]
Fashion MNIST 1.12 [-15.35, 20.10]

CIFAR-10 1.09 [-30.17, 21.31]

However, upon analyzing the outputs from the Batch normalization

layer, we observe that the properties of the output distributions are dataset
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dependent. While the structures of these distributions are similar, the range

of distributions widely vary. Depending on the complexity of the dataset, we

observe that at least 98% of the data lies between the range [-3, 3], but the

ranges can be as large as [-30, 21]. Table 3.2 lists the maximum observed range

and standard deviations of the output distributions across different datasets.

Based on the results seen in Table 3.2, we can understand why our

proposed activations in Section 3.1, Activation 1, 2 and 2a, perform poorly

on the CIFAR-10 dataset. The maximum observed range for the dataset is

significantly wider than the range between which the polynomial replicated the

ReLU activation function. When the polynomial activation receives an input

well outside the range of approximation, the outputs are very large resulting

in errors propagating across layers. Moreover, during the backpropagation

process, the gradients explode and hence no learning takes place.

We now pose the question – Will a polynomial with an approximation

range larger than [-3, 3] be more suited for a dataset like CIFAR-10? To answer

this question we construct two polynomials of degree 4 between the bounds

[-7, 7] and [-25, 25]. In this experiment we also compare the performance with

a degree 4 polynomial approximated between [-3, 3].

Upon testing the three polynomials on the CIFAR-10 dataset, our first

observation was the significant increase in accuracy for the polynomial ap-

proximated between [-7, 7] compared to the range [-3, 3]. By approximating

between a larger range, the activation layer is able to process more inputs

accurately and hence have a more stable training process.
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Table 3.3: Performance of CNNs with polynomial activations between different
ranges

Range Accuracy Approximation error in [-3, 3]

[-3, 3] 81.32 4.187
[-7, 7] 88.25 4.508

[-25, 25] 83.45 5.392

On the other hand, approximating between a too large a range seems

to negatively affect the training process. This is because a large range of

approximation sacrifices the quality of the approximation. Table 3.3 lists the

results of the test along with the error of approximation between the range [-3,

3]. We chose to report within this range because most of the data lies within

this range due to the BN layer and hence it is vital that the polynomial closely

approximates this region. We can see that the error is highest for [-25, 25] and

lowest for [-3, 3]. But at the same time, the [-7, 7] range yields the best result

even with a relatively higher error of approximation than [-3, 3].

From our experiments in this section, we can conclude that it is nec-

essary to strike a balance between maintaining an acceptable error of approx-

imation between [-3, 3], while covering a range larger than [-3, 3]. This is

true, especially for complex datasets that have large input distributions to the

activation layer.
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3.3 Analysing effective activation functions

Related work in the field have achieved good performance on datasets

like MNIST by only approximating the structure of the polynomial. How-

ever, from our experiments in Section 3.1 we observe that merely mimicking

the structure of an activation function does not yield effective performance.

Instead, we choose to list and analyse the properties generally observed in

effective classical activation functions like ReLU, Tanh, and Sigmoid. Incor-

porating these properties while constructing HE-friendly polynomials can form

the basis of a systematic approach.

3.3.1 Non-linear

As discussed in Section 2.1.1, the primarily role of the activation layer

is to capture the non-linearity of complex features in CNNs. Naturally, many

effective activation functions are non-linear. A linear function f(x) is one

which satisfy both of the following properties: f(x + y) = f(x) + f(y) and

f(αx) = αf(x). Nonlinear functions are those who do not follow the above

definition. Complex tasks such as classification of images or speech involves the

separation of non-linear data and can be performed well only using non-linear

models. Non-linear activation functions such as ReLU and Sigmoids enable

neural networks with the capability to perform this task. This is because neural

networks with effective non-linear activation functions are universal function

approximators [19]. Every complex task can be abstracted as a function that

maps an input to an output. Without the use of such activation functions, the
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networks would essentially be a linear model.

3.3.2 Differentiable

Backpropagation is the most popular and effective training method

that has been used for neural networks. This training method makes use of

the derivatives of the functions used in the network to adjust the weights while

optimizing errors. Due to this reason, it is necessary for all components in the

network, including the activation function, to be differentiable.

A function f is said to be differentiable if the derivative f ′(x) exists.

This property ensures that the derivative is defined and exists at every value.

The functions Softplus, Sigmoid and Tanh and their derivatives are differen-

tiable over the entire domain. However, effective activation functions includ-

ing ReLU and Leaky ReLU are only piecewise differentiable because they are

piecewise functions and do not have derivatives at the origin point. In practi-

cal applications of backpropagation, we just set the value of the derivative of

ReLU at the origin point as zero.

3.3.3 Continuous

A function f(x) is said to be continuous at a given point x0 if,

lim
x→x0

f(x) = f(x0)

i.e. sufficiently small changes in the inputs to the function result in arbitrarily

small changes in the outputs. Effective activation such as ReLU, Softplus,

and Tanh are continuous. Polynomials are also a classic class of continuous
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functions over the domain R and linear combination of polynomials are also

continuous.

3.3.4 Zero-centered

It has been long known that neural networks can learn faster if ac-

tivation functions in hidden layers are centered around zero [45, 68]. Le-

Cun et al. [45] gave a strict proof to the zero-centered property of effective

activation functions. In this section, we provided a more intuitive interpreta-

tion to explain this observation.

We first denote ~x = (x1, x2, ..., xn) as a n-dimensional input vector and

~w1 = (w1, w2, ..., wn) as an initial weight vector. Then with given threshold

b, we can define a neuron model as an input-output map f(~x; ~w, b), satisfying

f(z) = f(
∑n

i=1wixi + b). The gradient descent process of each parameter

wi ∈ ~w based on the given cost function L(~x) and learning rate η, can be

shown as wi+1 = wi − η ∂L
∂wi

= wi − η ∂L
∂f

∂f
∂z
xi. Hence, the renewal equation

above shows that the updated direction of parameter wi is entirely based on

the value of xi because parameters including η, ∂L
∂wi

and ∂f
∂z

can all be seen as

constant term.

To explain the zero-centered property, we further assumed that the

optimal weight vector ~w? = (w?1, w
?
2, ..., w

?
n) 6= ~w1 and the previous neuron unit

takes Sigmoid g(x) = 1
1+e−x , a typical nonzero-centered function, as activation

functions. Then, due to g(x) ∈ (0, 1), we can know that xi > 0 for each input

value xi ∈ ~x, i = 1, ..., n, which will cause the renewal process of each wi ∈ ~w1
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to take a z-path from the initial weight vector w1 to the optimal weight vector

w? and the learning speed of neural networks will be much slower.

3.3.5 Monotonic

A function f is monotonic when it is either increasing or decreasing

throughout the entire domain of inputs, i.e. the function always grows in a

single direction. During training, a neurons weight might be changed to in-

crease or decrease its influence on neurons in the next layer. A monotonic

activation function has shown to make this behaviour predictable and thus en-

abling faster optimization. Using a non-monotonic activation function might

have the opposite effect because of how non-monotonic functions change in

direction of growth. Most of the effective activation functions such as ReLU,

Sigmoid, Tanh and Softplus are monotonic in nature. However, it is impor-

tant to note that neural networks with non-monotonic activation functions

can be optimized as well – the network might require a longer training time.

For example, non-monotonic trigonometric functions such as the periodic sine

wave have been used as activation functions to train neural networks success-

fully [61].

3.3.6 Bounded derivative

It has been observed that activation functions with bounded derivatives

contribute to effective performance in neural networks. This is because a

bounded derivative restricts the training algorithm from making large updates
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Figure 3.3: Effective activation functions and their (bounded) derivatives

to the weights of the network [54]. Not preventing this phenomenon could lead

to large fluctuations in the network weights and create instability during the

training process. We clearly see this issue in our experiments in Section 3.1

for Activations 1, 2, and 2a.

The same property can be seen in well-performing activation functions

discovered by Ramachandran et al. [64]. The research used a reinforcement

learning technique to find effective activation functions from a search space of

functions. The search space was composed of a combination of linear and non-

linear functions such as x2, sin(x), x1 + x2. Every well-performing activation

discovered using this process has a bounded derivative. The most effective

activation discovered was named Swish. Defined as x · sigmoid(βx), Fig. 3.3(c)

shows how the derivative of Swish stays bounded with different values of β,

which the network can adjust as a trainable parameter. Figure 3.3(b) shows

the bounded derivatives of the effective activation functions ReLU, Sigmoid

and Tanh.

31



Multiple similarities can be observed between classical activation func-

tions and polynomials based on the above properties. Like other well-known

activations, polynomials are differentiable, non-linear and continuous. How-

ever, unlike most traditional activations, polynomials are not monotonic and

do not have a bounded derivative. Out of these two dissimilarities, we suspect

the lack of a bounded derivative to affect the performance of the polynomial

adversely more than the lack of monotonicity. Recall that polynomial approx-

imations are accurate only within their range of approximation. Due to this

reason, any input outside this range causes error to propagate forward and

significantly hamper learning during the backpropagation of the gradients.

However, we can also consider a polynomial to be locally bounded by

approximating it between the range of expected inputs. The batch normaliza-

tion layer before every activation helps us in this regard by reducing the range

of the input distribution.
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Chapter 4

Proposed Solution

From our analyses on how the batch normalization layer transforms

data and what factors are key contributors to a good activation function, we

propose the following solutions to generate efficient HE-friendly polynomial ap-

proximations. A key contributor to the performance of the activation function

is having a bounded derivative. However, since the polynomial approximation

will be accurate only within their approximation range, it is necessary to re-

strict the range of inputs using batch normalization layer. While proposing

these methods, we keep in mind the effect of complex datasets on the input

distribution to the activation layer and also take advantage of the nature of

the distribution.

4.1 Training with multiple polynomial activations

The experiments in Section 3.2 show us that it is important to ap-

proximate a polynomial between a range larger than [-3, 3]. Approximating

between a larger range will result in a higher error of approximation in the

critical region of [-3, 3] and can negatively affect training as seen in Table 3.3.

However, based on our analysis of the BN outputs on the network, we see that
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the range of inputs differs from layer to layer. For example, Table 4.1 lists the

maximum observed range per layer for a network trained on CIFAR-10 using

Softplus.

Table 4.1: Input ranges recorded for each activation layer after training on
CIFAR-10 using softplus

Activation layer Max. range per layer

1 [-22.04, 21.31]
2 [-30.17, 18.85]
3 [-25.73, 10.62]
4 [-12.81, 9.34]
5 [-11.76, 8.75]
6 [-12.98, 10.54]
7 [-14.26, 10.70]
8 [-15.72, 18.08]
9 [-2.83, 7.36]

We can take advantage of this phenomenon by approximating a poly-

nomial for every layer. The benefit of this approach is two-fold. Firstly, the

approximation for every layer would be able to accept most of the inputs while

having the lowest error of approximation. This way, layers with a smaller input

range will not be constrained by a single polynomial catering to the largest

range observed.

The second benefit to this approach is that each layer can use a poly-

nomial with a suitable degree to balance between the error of approximation

and the number of multiplications. Recall that due to the properties of Ho-

momorphic Encryption, we are constrained by the number of multiplications

that can be performed. In order to keep the network HE-friendly, we must use
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low-degree polynomials to maintain an acceptable multiplicative depth. Using

a multi-polynomial approach can help us in this regard by permitting us to

use lower degree polynomials for smaller ranges and higher degree polynomials

for larger ranges. This combination will result in a lower multiplicative depth

than using a single high degree polynomial for all layers.

4.2 Weighted Polynomial approximations

From the experiments in Section 3.2 we observe that more than 98%

of the inputs to the activation layer are between [-3, 3]. At the same time,

we also show that it is necessary to approximate polynomial replacements be-

tween a range larger than [-3, 3], particular in the case of complex datasets.

Approximating between a larger range however, can increase the error of ap-

proximation between [-3, 3] and can have a negative impact on performance

as shown by our experiments before. To approximate a polynomial within a

larger range without compromising the error of approximation, we propose a

weighted approximation technique.

Formally, to approximate a function f between a range [Llow, Lhigh], we

first sample f as follows:

Y = {f(x) : x ∈ X} (4.1)

where X = {Llow, . . . , Lhigh} is the set of linearly spaced points. Figure 4.1(a)

visually depicts this process with 100 sample points. Then, using a polynomial

regression function like polyfit from MATLAB, a polynomial of degree n is fit
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to X and Y using an error measure such as least-squares.

We propose a weighted approximation technique to maintain an ac-

ceptable error of approximation between [-3, 3] in large range approximations.

Our method takes advantage of the input data structure where at least 98% of

data lies between the range [-3, 3]. Instead of sampling the function linearly,

we sample the range [-3, 3] at a higher rate than the remaining sections using

a weight. More formally, the activation function f is sampled between the

range [Llow, Lhigh] where

• X = [X1 X2 X3]

• X1 = {Llow, . . . ,−3} containing (1−R)n
2

linearly spaced points,

• X2 = {−3, . . . , 3} containing Rn linearly spaced points

• X3 = {3, . . . , Lhigh} containing (1−R)n
2

linearly spaced points,

• R ∈ [0, 1] is the weight determining the rate of sampling between [-3, 3].

The sampling rates for each region in the method proposed above can

be calculated as follows:

• 6
Rn

for the region X2

• 2
n

Lhigh−3
1−R for regions X1 and X3, given |Lhigh| = |Llow|
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Figure 4.1: Improving quality of approximations using our proposed method

Figure 4.1(b) visualizes this sampling approach with n = 100, R = 0.7,

L1 = -30 and L2 = 30. We have chosen to visualize the sampling on the Sigmoid

activation function because the difference is visually more apparent than ReLU

or Softplus. However, the effect of the approach will be the same for any other

activation function. Using polyfit with the above sampling rates for each region

specifically minimizes the error between [-3, 3] while approximating through a

large range. The benefit of this approach over using a linear sample of points
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is the larger range covered for the same error of approximation between [-3,

3].

One thing to note in our proposed approach is the expense of weighting

the approximation towards [-3, 3]. Due to a higher weight in this section, the

region of approximation outside [-3, 3] would have a high error of approxi-

mation. However, due to the sparsity of inputs in this region, it should not

adversely affect the performance of the model.

4.3 Discovering the optimal range for a dataset

In Section 3.2 we realize that it is beneficial to approximate polynomials

beyond [-3, 3]. But there is clearly a range beyond which the performance of

the model starts dropping. There exists some range beyond [-3, 3] where the

network would perform most optimally. It is also necessary to observe the

consistency of this behaviour across different settings. To understand where

the optimal point lies, we perform a grid search across multiple factors listed

below:

• Method of polynomial approximations

• High and low degree of approximations

• Type of activation function approximated

• Dataset for the CNN

• Structure of the CNN
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For this grid search, we approximate polynomials of degree 4 and 7

using three approximation methods:

• Fitting a polynomial to a linear set of points using the least-squares

approach used by Chabanne et al.

• Chebyshev polynomial approximations proposed by Hesamifard et al. We

use the measure dµ = e
( −1

1e−5+x2
)

specified in CryptoDL to approximate

the derivative of the activation. The integral of the generated approxi-

mation is then used as the polynomial activation in the network.

• Our proposed weighted polynomial approximation with R = 0.7

Multiple polynomial candidates are approximated between the ranges

of [−L,L] where L ∈ {3, 5, 7, . . . N} and N is the observed absolute maximum

in the BN output distribution for that dataset 3.2. We also compare the

performance difference between approximations on ReLU and Softplus. The

tests will be conducted on the MNIST, FMNIST and CIFAR-10 dataset. Since

the CIFAR-10 uses a different architecture than the other datasets, the effect

of a different architecture will also be noted in our experiments.
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Chapter 5

Evaluation and Results

5.1 Network architecture and training procedure

We adapt the Deep CNN model proposed by Chabanne et al. to test our

proposed solutions on the MNIST and FMNIST datasets. Figure 5.1(a) shows

an overview of the model with 14 layers and 6 activation layers. Following is

the network configuration:

• Block 1 contains two convolutional layers with with 32 filters of size 3 x

3 followed by an average pool.

• Block 2 and block 3 follow are similar to block 1 but have 64 and 128

filters of size 3 x 3 for the convolutional layers respectively.

• Following these convolutional blocks is a fully connected layer with 256

neurons.

• After a dropout layer with p=0.5, the network results are parsed from a

final fully connected layer of 10 neurons.

• All convolutional layers are followed by a batch normalization layer which

is followed by an activation layer.
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CONV-ACT-POOL 1
32×3×3 filters

CONV-ACT-POOL 2
64×3×3 filters

Flatten 
Parameters

FC 1 
256

Dropout
   256

SOFTMAX

CONV-ACT-POOL 3 
128×3×3 filters
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(a) Architecture for MNIST and FMNIST

SOFTMAX

CONV-ACT 1
96×3×3 filters

CONV-ACT 2
192×3×3 filters

                    
192×3×3 

                       
192×1×1 

                  
10×1×1
 Global 
average

(b) Architecture for CIFAR-10 (uses stride=2 in place of pooling layer)

Figure 5.1: CNN architectures with HE-friendly pooling and activation layers

We use the architecture proposed by Springenberg et al. [71] for CIFAR-

10, shown in Fig. 5.1(b). Unlike the conventional CNNs, this architecture does

not use pooling layers. Instead it uses convolutional layers with stride = 2 to

reduce the output size of the feature maps, just as how a 2x2 pooling layer

would. This network contains 18 layers with 9 activation layers:

• Block 1 contains three convolutional layers with 96 filters of size 3 x 3.

To emulate a pooling layer, the final convolutional layer has a stride =

2 which reduces the resolution of the outputs by half.

• Similar to block 1, block 2 also contains 3 convolutional layers but with

192 filters of size 3 x 3. The final convolutional layer has stride = 2.

• The next block contains a single convolutional layer with 192 filters of
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size 3 x 3. This is followed by another convolutional layer with 1 x 1

convolutions.

• The final convolutional layer reduces the number of outputs by only

containing 10 filters. A final global average pooling function gathers the

results of the network.

For both models, we use the training procedure proposed by Cha-

banne et al. The model is initially trained using a traditional activation func-

tion like Softplus. The activation function is then replaced with its polynomial

approximation, and the model is further trained with the pre-trained weights

as a starting point. The training on MNIST using the original activation is

conducted for 350 epochs with an initial learning rate of 0.01. Once the acti-

vations have been replaced, the training continues at lr = 10−6 for 200 epochs.

For CIFAR-10, the first phase of training is performed for 450 epochs

with a learning rate scheduler scaling the learning rate by 0.1 at epochs 300,

350 and 400. After replacing the activation function with an approximation,

the training continues at lr = 10−6 for 300 epochs with the scheduler scaling

the learning rate by 0.1 at epochs 150, 200 and 250.

The time taken to train a model using our method is significantly higher

(around 2.5 times) because of the two stage training process. However, this is

a small price to pay for an effective network with a polynomial activation.

Because our research focuses on devising a method to generate effective

polynomial activations, all our experiments and results are only on plaintext
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data.

5.2 Experiment Setup

For our experiments we used a system with a Xeon Silver 4114 CPU

at 2.20 GHz with 192 GB of RAM and an NVIDIA Tesla P100 GPU running

Ubuntu 16.04. All CNN models were constructed and run using the PyTorch

1.02 library. We used MATLAB’s polyfit to generate polynomial approxima-

tions for both the weighted and non-weighted approaches. For Chebyshev

approximations, we used the PyProximation library used by Hesamifard et al.

5.3 Results

In this section, we will describe the results of our tests using the pro-

posed approximation methods in Chapter 4. To understand the performance

characteristics in detail, we would be comparing against existing work and will

be testing on multiple polynomial approximation and datasets. Based on the

results obtained, we list our observations and conduct further analysis.

5.3.1 Multi-polynomial setup

We first tested our multi-polynomial approach separately by analysing

the inputs to the activation functions and noting the range for each activa-

tion layer – Table 4.1 shows the ranges obtained for a network trained on

CIFAR-10 using the Softplus activation function. For every layer, a poly-

nomial approximation of Softplus is constructed between the corresponding
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range and a family of polynomials is built. As explained in Section 5.1, we

then replaced the activation layers with the respective polynomial continued

the training process. Using this training approach, we were able to achieve a

marginally higher performance than using a single polynomial, with the model

correctly classifying 90.38% of the data correctly on the CIFAR-10 test set.

While the improvement is only marginal, the result empirically shows that our

hypothesis holds and that the network can perform better with a family of

polynomials.

Table 5.1: Performance of models using the approximation method from [38]
and training method from [13]

Activation Accuracy

Single polynomial 89.34%
Multi polynomial 90.38%

Softplus 92.95%

However, it must be noted that the model is extremely unstable to

train using this approach. During the training process, the model would lose

training stability and the performance fall to chance. To analyse the cause of

this behaviour, we trained another network instance layer by layer. Once the

weights of a layer adjusted to the polynomial activation, we would freeze all

the weights before it, replace the next activation layer and continue training.

During this process, we also analysed the inputs to every activation function

and noticed a change in the distribution. After replacing an activation layer

with a polynomial, the distribution of subsequent layers after training have an
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increased range and standard deviation. Due to this change, the inputs in the

later layers of the network fall out of the range of approximation and lead to

the same gradient explosion problem.

This effect is particularly noticeable in the last few activation layers

and is consistent with the observations made by Chabanne et al. To counter

this effect, Chabanne et al. approximated a polynomial to with respect to

the corresponding layer distribution. Unlike the MNIST dataset however, we

observe significantly larger input distribution ranges for CIFAR-10. Therefore

this prevents us from using the solution provided by Chabanne et al. Moreover,

implementing this solution in our case would result in the use of relatively

higher degree polynomials which counter the HE constraints that we have.

Due to the difficulty in training, we decided not to include this approach while

searching for an optimal range in Section 5.3.3.

5.3.2 Weighted polynomial approximations

To test the effectiveness of our proposed weighted polynomial approx-

imations, we approximate three polynomials with different properties. One

polynomial is approximated between [-5, 5] using the traditional approach.

The remaining are approximated using our proposed approach but with differ-

ent ranges, [-5, 5] and [-11, 11]. All polynomials are approximations of Softplus

and were tested on the CIFAR-10 dataset.

From Table 5.2, we can see the benefits of using weighted approxima-

tions on the CIFAR-10 dataset. Compared to the conventional approach, the
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Table 5.2: Comparison of approximation error and ranges according to type
of approximation

Range Approximation method Error in [-3, 3] Accuracy

[-5, 5] Non-weighted 4.376 82.17
[-5, 5] Weighted 4.354 85.81

[-11, 11] Weighted 4.785 89.91

reduced error between [-5, 5] of the weighted approximation helps improve

classification accuracy. As an added benefit to our approach, larger approx-

imation ranges can be accommodated which improves training optimization,

consequently improving performance. In the following experiments, we will

compare weighted approximations along with other methods used in the re-

lated work.

5.3.3 Searching for the optimal point

To understand where the balance between the error of approximation

in of the polynomial and range lies, we perform a grid search across multi-

ple variables that are common in CNNs. As explained in 5.1, every network

instance uses the pre-trained weights of the corresponding activation as a start-

ing point. However, due to the large number of tests in this grid search, we

restrict the number of epochs for the second stage of training to 50.

To recap from section 4.3, we search across the following parameters to

find where the optimal point lies:

• Method of polynomial approximations
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• High and low degree of approximations

• Type of activation function approximated

• Dataset for the CNN

• Structure of the CNN

Due to the training time and difficulty, we choose not to include our Multi-

polynomial approach in this analysis.
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(a) Degree 4 approximation results
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(b) Degree 7 approximation results

Figure 5.2: Performance of polynomial approximations using different approx-
imation methods and at different ranges

In our first set of experiments, we test across multiple candidates to

observe the difference between ReLU and Softplus polynomial approximations.

As mentioned in section 4.3, we test polynomial approximations of degree 4

and 7 using three approximation methods:

• Fitting a polynomial to a linear set of points using the least-squares

approach used by Chabanne et al.
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• Chebyshev polynomial approximations proposed by Hesamifard et al. We

use the measure dµ = e
( −1

1e−5+x2
)

specified in CryptoDL to approximate

the derivative of the activation. The integral of the generated approxi-

mation is then used as the polynomial activation in the network.

• Our proposed weighted polynomial approximation with R = 0.7

We approximated 15 candidates of both Softplus and ReLU between the ranges

[-3, 3] and [-31, 31]. In total, we train 180 network instances on CIFAR-10

with the epochs in phase 2 restricted to 50. Figure 5.2 shows the performance

achieved using each candidate against every corresponding range and approx-

imation method. We considered testing approximations of Sigmoid and Tanh

along with ReLU and Softplus. However, as mentioned in Section 3.3, these

activation functions suffer from the vanishing gradient problem. For this rea-

son, they perform significantly worse than ReLU and Softplus and hence, we

choose not to explore their approximations.

We conduct another set of experiments to examine if our observations

are consistent with different datasets and network structures. To reduce the

number of training instances, we test only using approximations the Soft-

plus activation function using our proposed weighted approximation technique.

These candidates are tested on three datasets, MNIST, FMNIST and CIFAR-

10 using different network configurations described in Section 5.1. We sum-

marize the results performed on CIFAR-10 in Table 5.3.

From we can clearly see that the optimal range for all approximation
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Table 5.3: Optimal approximation range for different degrees and datasets

Dataset Degree Optimal range Accuracy Error in [-3, 3]

CIFAR

4 [-11, 11] 89.91 4.785
6 [-17, 17] 90.02 4.740
8 [-21, 21] 90.82 4.612
10 [-23, 23] 91.55 4.535

FMNIST

4 [-4, 4] 97.84 4.267
6 [-7, 7] 97.80 4.303
8 [-11, 11] 97.84 4.345
10 [-14, 14] 97.81 4.339

MNIST

4 [-4, 4] 99.59 4.267
6 [-6, 6] 99.57 4.254
8 [-7, 7] 99.59 4.213
10 [-9, 9] 99.57 4.215

methods lie beyond [-3, 3]. Even with a higher error of approximation, candi-

dates that cover a larger range of inputs perform better on CIFAR-10 regardless

of the approximation method, network structure, dataset or base activation

function. From these experiments, we understand that solely minimizing the

error of approximation between [-3, 3] does not yield the best performing can-

didates. Even though more than 98% of data lies between the range of [-3, 3],

it is necessary to take into account the range of the input distribution.

On the other hand, the performance starts to change after the optimal

range of approximation, especially for lower degree candidates. Beyond the

optimal range, the incentive to cover larger ranges is lost because the error of

approximation between [-3, 3] increases beyond an acceptable level. Table 5.2

lists error of approximations between [-3, 3] for the candidates at each optimal
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range.

We also observe that our proposed weighted approximation technique

performed better than the other compared methods. By forcing the approx-

imation to weight the region between [-3, 3] over the remaining region, this

approximation method achieves lower error of approximations while covering

larger ranges. For example, Chabanne et al. achieved an accuracy of 97.91%

using a degree 4 polynomial activation approximated between [-3, 3]. At the

optimal point, degree 4 weighted approximations were able to achieve a 99.59%

classification accuracy on the MNIST dataset.

While the Softplus activation performs slightly worse than ReLU, we

observe that approximations of Softplus perform significantly better than the

approximations of ReLU, regardless of the approximation method. This is

because the approximations are able to fit the smooth curve of Softplus better

than the sudden change in the slope of ReLU at x = 0. Candidates generated

by our technique yield better performance because they cover a larger range

of approximation while maintaining an acceptable level of error as seen in

Fig. 5.2. This is especially observed in the more complex datasets, FMNIST

and CIFAR-10, because they have a larger input distribution to the activation

function.

Based on the results obtained above, we turn our attention towards the

error of approximation between [-3, 3] to understand if it has any correlation

with the optimal range observed. But the correlation does not seem to be

consistent enough across datasets to make a conclusion. For example, we see
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a negative correlation between the optimal range and the corresponding error

between [-3, 3] for CIFAR-10 and MNIST. However, for the FMNIST dataset,

the effect seems to be opposite.

Moreover, these values are specific to approximations of the Softplus

activation function. The relationship between the two variables for a different

base activation would be dependent on its structure and might grow in a

similar fashion. Instead, these ranges could be used as a guideline to reduce

the size of the grid search for different setup.
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Chapter 6

Conclusion and Future Work

In this thesis, we introduced two new improved approximation ap-

proaches to generate HE-friendly activation functions using polynomial ap-

proximations of Softplus – training and evaluating using multiple polynomials

and a new weighted approximation technique. While the former yields a slight

improvement and is hard to achieve, we show the latter proposed method out-

performs other methods and is robust regardless of the approximation method,

degree, dataset, or activation function approximated.

To improve the effectiveness of our polynomial approximations, we an-

alyze and list multiple properties that are key contributors to performance in

classical activation functions. From these properties, we show the important of

a bounded derivative and how using a batch normalization layer helps us emu-

late this behaviour in polynomials. We also analyzed the batch normalization

layer and observed the change in behaviour based on the size and complexity

of the dataset. Finally, we use the structural cue of at least 98% of data resid-

ing between [-3, 3] of the batch normalization outputs to develop our weighted

polynomial approximation technique. Contrary to the conventional belief, our

experiment results empirically show that merely mimicking the structure of
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the activation functions is not enough and that it is necessary to approximate

between bounds larger than [-3, 3]. Our method performs better because it

forces the approximation to weight the region between [-3, 3] over the remain-

ing region, this approximation method achieves lower error of approximations

while covering larger ranges.

There are multiple ways that our work can be augmented. The perfor-

mance of our polynomial approximations are limited by performance achieved

by the activation function being approximated, e.g. Softplus. Therefore, an

improvement in classification accuracy can be achieved by first improving the

performance of the network using Softplus by either changing the network

structure or tuning the hyperparameters. Additionally, to reduce the insta-

bility while training using multiple polynomials, the weights of the network

could be fine-tuned by training each layer sequentially. In this process, we

would start with replacing only the first activation layer and fine-tune the

weights. After convergence, the weights of the first layer and earlier could be

frozen and the next layers can be trained in the similar way, one by one. To

improve both our proposed methods, it may also be desirable to convert the

coefficient of the polynomial activations to trainable parameters in the last

few epochs of training.
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nomes: professées à l’École normale supérieure. Gauthier-Villars, 1905.

[9] Zvika Brakerski. Fully homomorphic encryption without modulus switch-

ing from classical gapsvp. In Annual Cryptology Conference, pages 868–

886. Springer, 2012.

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)

fully homomorphic encryption without bootstrapping. In Innovations in

Theoretical Computer Science Conference (ITCS), pages 309–325. ACM,

2012.

[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled)

fully homomorphic encryption without bootstrapping. ACM Transac-

tions on Computation Theory (TOCT), 6(3):13, 2014.

[12] COE Burg and JC Newman Iii. Computationally efficient, numerically

exact design space derivatives via the complex taylor’s series expansion

method. Computers & Fluids, 32(3):373–383, 2003.
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