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Abstract 

Breast cancer is one of the most common cancers among women and is responsible for over 41,000 

lives every year in the US according to The American Cancer Society. Current screening and 

imaging methods such as mammography, breast magnetic resonance imaging, and breast 

ultrasound imaging have helped in improving survival rate when the cancer is detected at an early 

stage. The problems with these techniques include: low sensitivity, patient discomfort, 

invasiveness, and cost. Due to current advancements in infrared and computational technologies, 

infrared thermography has been utilized as a noninvasive adjunctive screening modality. A 

computerized approach using infrared imaging (IRI) has been recently developed at RIT in 

collaboration with Rochester General Hospital for breast cancer detection and image localization. 

The parameters used in this simulation have been selected based on limited information available 

in the literature. This study focuses on analyzing the effects of different tissue thermal parameters 

used in the simulation on the accuracy of prediction. Thermal conductivity and perfusion rate are 

systematically varied, and their effects are presented by comparing simulated images with the 

actual infrared images captured from a biopsy-proven breast cancer patient. The results indicate a 

strong influence of perfusion rate within the breast tissue surrounding the tumor on heat transfer 

within the breast. This study is expected to help in proper selection of thermal properties while 

conducting the simulations. Future directions for research are also presented. 
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𝐺𝑚,𝑛 Values of the DFT of each signal 
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𝑧𝑡 z coordinate of tumor, m 

  



13 
 

1 Introduction 

In recent years, the advancement in cancer research has been greatly improved by the advancement 

of technology. There have been huge breakthroughs in medical imaging research for new 

techniques to test for breast cancer. Unfortunately, most techniques are invasive or inflict physical 

discomfort for patients such as radioactive particle injections or breast compression [1]. 

Noninvasive techniques such as Optical Imaging Tests [2], Photoacoustic Imaging [3], and 

Thermoacoustic Imaging [4] have been studied, but have not been fully implemented in the clinical 

setting. Similarly, the use of breast thermography as a feasible adjunctive breast cancer screening 

modality has been investigated in conjunction with computational techniques. 

1.1 Breast Cancer and Screening Modalities 

The breast is composed of a tissue layer that goes over the chest, or pectoral muscle that consists 

of the lobules, ducts, and fatty tissue as well as containing blood vessels and lymph nodes [5, 6]. 

Breast cancer is a disease where abnormal growth of mutated cells, or tumors, typically starts in 

the ductal or lobular region of the breast. The most common types of breast cancer are found in 

the ducts (approximately 75% of breast cancers) such as ductal carcinoma in situ (DCIS) and 

invasive ductal carcinoma (IDC). One of the least common types occur at the lobules 

(approximately 10-15% of breast cancers) such as invasive lobular carcinoma (ILC) [5, 6]. Lobular 

carcinomas such as lobular carcinoma in situ (LCIS) and atypical lobular hyperplasia (ALH) are 

subtypes of lobular neoplasia, which are noncancerous diseases that  show abnormal cells and raise 

risk of obtaining breast cancer in the future [6]. 

According to the National Breast Cancer Foundation [7] and American Cancer Society [1], breast 

cancer is one of the most common cancers amongst women, taking hundreds of thousands of lives 

every year, with over 41,000 lives lost every year in the US alone. Early detection of breast cancer 
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is crucial for improved survival rates, which can be up to 99% if detected early enough and if the 

cancer is in its earlier stages [7]. Medical screening and imaging have played a huge role in the 

detection and diagnosis of breast cancer. Common screening and imaging techniques are 

mammography (MMG), breast magnetic resonance imaging (MRI), and ultrasound imaging. 

1.1.1 Mammogram (MMG) 

In MMG, patients have each of their breasts compressed by a machine which captures low dose x-

rays of each breast tissue. The breast compression spreads the tissue out to give a better picture 

and to use less x-ray radiation. The images are usually taken at two different angles. However, 

there is newer type of MMG called digital breast tomosynthesis, in which a machine compresses 

the breast once and captures multiple mammograms that are stitched into a three-dimensional (3D) 

image with the aid of a computer [1]. The problems with MMG come with the discomfort from 

the machine compressing the breast before taking any images, as well as when testing patients 

with dense breast tissue. Since these tissues obscure the tumors, they become difficult to 

distinguish from surrounding regions. This can lead to a false-negative or false-positive result. 

Both false-negative and false-positive results create psychological and financial issues due to 

further testing that is needed, depending on the individual outcome. In 2015, the accuracy of 

diagnosis through mammography was about 78% for women under 50 and about 83% for women 

over 50 [8].  

1.1.2 Breast Ultrasound 

Breast ultrasound imaging is the technique of using sound waves to create images of the inside of 

the breast with the aid of computer software. This technique can show changes in the breast 

regardless of the breast tissue density of the patient, as well as differentiate between a cyst and 

tumor [1]. Although this technique does not expose patients to radiation, is widely available, and 
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is more accurate and sensitive than MMG, breast ultrasound does not cater specifically to patients 

50 years and older [1, 9]. According to a study done on 326 breast tumors, ultrasound had an 

accuracy of 84% and sensitivity of 82% compared to MMG which had an accuracy of 81% and 

sensitivity of 49% in detecting and imaging the tumors [9]. 

1.1.3 Breast Magnetic Resonance Imaging 

Breast MRI is an imaging technique that takes detailed picture slices of the inside of the breast 

with the use of a strong magnet and radio waves. It is a useful technique to detect cancers on 

patients who have denser breast tissue and other types of diseases, but it is more commonly used 

to screen high-risk patients or further diagnosis prior to surgical resection. Although breast MRIs 

are not as uncomfortable as MMG, the procedures can still be invasive as the majority of breast 

MRIs are enhanced by injecting contrast materials into the patient during or before imaging [1, 

10]. MRIs are considered more sensitive than both mammography and ultrasound imaging but are 

not recommended without a combination of screening methods [11, 12]. There have been studies 

which proved that the sensitivity of MRI is slightly better than MMG and ultrasound screening 

combination; however, it is only a slight increase. The expensiveness of testing outside of a high-

risk patient population makes it difficult to use as a screening tool [12, 13]. 

1.2 Thermography 

Thermography is a technique that is used to find temperature differences, patterns, or distribution 

on the surface of an object. These temperatures are measured using an infrared (IR) camera, which 

captures IR radiation emitted from the surface of the object and transmits it as a thermal image, or 

infrared image. IR thermography or infrared imaging (IRI) has a large range of usability such as 

finding heat losses in buildings, monitoring of mechanical and electrical systems, and a medical 

instrument in the health profession [14]. Biomedical studies have utilized IR thermography to 
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conduct research of the lung and large intestines, diseases related to the extremities, plastic and 

reconstruction surgery, and many others [15, 16, 17]. IR thermography has also been used for 

biochemical studies of complementary imaging systems and contrast agents, as well as 

computational psychophysiological studies in the neurosciences [18, 19]. An example of the 

applications of IR thermography is shown in Fig. 1. Breast cancer thermography has been studied 

as a breast cancer screening modality, which will be further discussed in the literature review 

chapter. 

 

Figure 1: The right image shows a temperature deviation from the left image when acoustic stimulus is 
introduced to a person as studied by Cardone and Merla [19], reproduced with permission. 

 

1.3 Computerized IRI Program for Breast Cancer Detection 

Through a collaborative study between Rochester Institute of Technology (RIT) and Rochester 

General Hospital (RGH) a computerized IRI program for the detection and localization of breast 

cancers was created [20, 21]. This program utilized a method for creating patient-specific digital 

breast models from the MRI images, a numerical simulation of the heat transfer within the breast, 

image processing techniques, and an inverse heat transfer approach [21, 22, 23]. Gonzalez-

Hernandez et al. [21, 22] created a method to generate patient-specific digital models of female 

breasts in the prone position using MRI images and image processing techniques. They conducted 
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numerical thermal simulations of a breast tumor on the models using Pennes’ bioheat equation 

[24] and Gautherie’s observations of thermal characteristics of breast tumors [25, 26], which will 

be further discussed in the literature review chapter.  

Using this method to create patient-specific digital breast models and simulating a cancerous 

breast, an inverse heat transfer approach was used with IRI images to detect and localize a tumor 

on biopsy-proven patients [20, 21, 23, 27]. This method obtained computed temperature images 

of the simulated model and compared these images with corresponding IRI images through image 

registration and an iterative inverse heart transfer algorithm known as the Levenberg-Marquardt 

algorithm [23]. This method was further validated and is a preliminary basis to an ongoing clinical 

study of using IRI as an adjunctive screening modality [27]. These works utilized bioheat modeling 

and image processing to create a method that detects and localizes a tumor. They used thermal 

properties depending on the type of breast tissue from the pathology reports. 

2 Literature Review 

There has been an extensive body of research on the use of thermography as a breast cancer 

screening modality. With the advancement of computational technology and methods, many 

previous studies have been recently re-explored. This chapter will focus on previous and current 

breast cancer thermography research, bioheat transfer analytic and computational models, and 

image processing and computer graphics techniques. 

2.1 Breast Cancer Thermography 

As computational technology advanced, breast cancer research incorporated these advancements 

for developing noninvasive techniques for screening and diagnostic purposes. Breast cancer 

thermography has been a controversial topic since the early 1970s due to a lack of clear protocol 
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and inadequate clinical validation, but there has been a current increase of interest in this research 

area, especially after recent technological breakthroughs through patient-specific models. In this 

section, some previous literature on thermography, its advancements, and the current status will 

be discussed. 

2.1.1 Early IR Thermography 

Lawson [28] was one of the first researchers that questioned whether there is a correlation between 

breast cancer tumors and the heat they release onto the body. He physically took temperature 

measurements off a patient’s skin to conduct his study using thermocouples. This research, as well 

as others similar to it, began the wave of research on the use of breast thermography as a possible 

screening technique. In these studies, researchers used tools such as a liquid crystal thermogram, 

or thermal sensors to measure the skin temperature. Researchers such as Isard et al. [29], Stark and 

Way [30], Jones et al. [31], Moskowitz et al. [32], and Williams et al. [33] used thermal sensors 

as their thermography tools to conduct their studies. Other researchers, such as Moskowitz et al. 

[34], did their studies using liquid crystal thermography, which is a method that showed 

temperature changes of the surface when in contact with film of liquid crystals [34]. Throughout 

the 1970s up until 1990, liquid crystal thermography was a comparable tool to thermal sensors like 

IR sensors [35]. Some researchers, such as Gautherie [25, 26], utilized both thermography 

techniques in their study. 

In 1977, Dodd [36] conducted a status report on the use of thermography, ultrasound, and 

mammography in breast cancer detection. In his work, Dodd [36] studied the possibility of 

thermography and ultrasound “as replacements for or supplements to the mammographic 

examination” [36]. He concluded that “thermography finds its greatest use as an adjunct to 

mammography and physical examination; it should not be used as the sole modality in a screening 
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program” [36]. Further research conducted on thermography emphasized that this technique was 

not to be used as a clinical screening process, but it should not be ruled out as a possibility for the 

future. In 1985, Moskowitz [37] conducted a review on previous work done by him, his colleagues, 

and other researchers on thermography as a breast screening technique where he concluded the 

same outcome, but with suggestions on how to improve future studies. Regardless of the technique 

used to get thermography measurements, most of the researchers concluded that thermography 

was not a viable standalone technique for breast cancer detection. Many researchers, such as 

Moskowitz [37], believed that further studies were needed to be pursued in this realm of research.  

Although there was backlash on the use of thermography for breast cancer research, Gautherie 

[25] conducted a 14-year-long clinical and fundamental study to find thermopathological 

correlations of breast tumors using thermography. In the study, a mass screening was implemented 

on about 58,000 symptomatic women where all patient information and history was obtained, and 

each patient underwent physical, thermographic, and mammographic examination. Some patients 

who were diagnosed with breast cancer, 3,034 patients, received treatment and/or operation, and 

others either refused treatment or were not able to get treatment due to other diseases. These two 

groups were selected to obtain intramammary measures where both tumoral and peritumoral 

temperature measurements as well as thermal flows were obtained. The first group, who received 

treatment, went through a single examination between diagnosis and the beginning stages of 

treatment. The second group went through this examination multiple times throughout the natural 

evolution of the cancer. 

These examinations were done using a sterile 8mm diameter fine-needle thermoelectric probe that 

was implanted into the cancerous breast and contralateral healthy breast. Due to the low thermal 

capacity of the needle, there was no disruption of the local temperature and thermal flow. 
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Histological studies as well as experimentation on rheoelectrical phantom models that simulated 

the breast structure, thermal characteristics, external heat exchange, and vascularity, showed this 

to be the case. This examination was implemented through an ethical clinical agreement and was 

limited by the length and fragility of the needle as well as the tumor type, which in turn allowed 

for only 147 patients to be examined. Using the phantom models, clinical data, and the 

mathematical correlations between the conservation of steady state heat and electrical energy, a 

mathematical heat transfer model was obtained. The model showed the correlation between the 

geometric properties of the breast and tumor, and “thermal parameters involved with the heat 

transfer from the tumor to the surrounding tissues” [25]. 

Also, in the study, IR and liquid crystal thermography were utilized to conduct qualitative analysis 

on thermovascular patterns on any region of interest on the surface of the breast. Quantitative 

evaluations of temperature differences in local areas of hyperthermia were also obtained and 

compared with a reference, such as the same region in the contralateral breast. Complementary to 

this, radiotelethermometric recordings and rhythmometric analysis of skin temperature were 

obtained using thermistors with an oscillator to proportionally match frequencies to skin 

temperature. The location of these thermistors was dependent on the findings from the 

thermography examination. The evaluation of the measurements obtained was done through 

statistical analysis using a computer program and made it possible to record circadian or 

circatrigintan rhythms and other similar cycles. 

The results obtained from the physical and thermographic study show the thermal effects of the 

tumor through the changes in temperature and thermal flow. Not only did Gautherie physically 

obtain the temperature of intramammary tissue and tumor, but he also obtained the effective 

thermal conductivity of the two. The effective thermal conductivity that was measured involved 
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both the tissue conduction and the convection due to capillary vessels, assuming they are isotropic, 

and the values ranged depending on breast density. The breast density was classified into three 

categories: fat, fibrous, or glandular, with fat being the least dense and glandular being the densest.  

In this study, the results showed that both the temperature and effective thermal conductivity were 

much higher than that of the contralateral healthy breast. He observed that, in a healthy breast, the 

temperature gradually increases the deeper you go into the breast tissue, but a major increase in 

temperature can be seen when a tumor is present. Similarly, the effective thermal conductivity is 

approximately constant in a healthy breast while the introduction of a tumor gives an abnormal 

increase in its vicinity. This increase in values was correlated to an increase of blood supply from 

the tumor region, or hypervascularization. This is due to the physiopathological concept that an 

increase in blood supply from the tumor is due to an increase in metabolism which in turn gives 

an increase in local heat production. From these examinations, it can be concluded that a tumor 

can be considered a heat source with an increase in vasculature and thermal flow that transfers heat 

to the surrounding tissue. This means that the heat transfer is not only from the effective thermal 

conductivity, but from the convection of larger vessels which depends on the metabolic activity 

that produces greater blood flow. 

This metabolic heat production (𝑞∗) was further evaluated throughout the period of tumor 

evolution with the rate of growth, the doubling time (DT), recorded for 84 patients that had tumor 

sizes of 0.9-3.8 cm. It was observed that during growth the metabolic heat production remained 

approximately constant regardless of circulatory and histological changes and was related to the 

DT by the hyperbolic law, as shown in Fig. 2. This meant that the faster the tumor grows, the more 

heat is generated and similarly the slower it grows, the less heat is generated. As shown by the 

figure, the DT ranged from 49-676 days with metabolic heat production ranging from 3.8 −
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68 × 10−3 W/cm3. For fast growing tumors the DT ≤  150 days have a metabolic heat production 

𝑞∗ ≥ 20 × 10−3 W/cm3, and for slow growing tumors the DT ≥  250 days have a metabolic heat 

production 𝑞∗ ≤ 10 × 10−3 W/cm3. Also, it was observed this relationship between DT and 

metabolic heat production applied to tumors smaller than 4 cm. According to Gautherie, this 

correlation between DT and metabolic heat production can be a helpful tool to obtaining DT by 

knowing the metabolic heat production at the time of diagnosis.  

 

Figure 2: Hyperbolic law relation between metabolic hear production and the doubling time of tumor 
volume for patients with and without lymph node metastases; redrawn from ; redrawn from Gautherie 
[25]. 

 

In all these previous studies, one of the issues with thermography as a screening technique was 

due to low sensitivity. Williams et al. [33] obtained a 61% sensitivity in their research, which did 

not compete with the sensitivity of MMG at the time which was 78% to 94%. Another issue with 
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these studies was the lack of understanding of the thermography results as well as the lack of 

finding a correlation between tumor growth and thermal properties. However, Gautherie’s study 

shows the usefulness of screening for breast cancer through a thermopathological approach using 

thermography [25]. As Gautherie once said, “[it] must also be recognized that further research on 

the subject of thermobiology of tumors should be undertaken” [26]. Thermography was approved 

by the U.S. Federal Drug Administration (FDA) as an adjunctive screening modality, but has not 

been approved as a stand-alone method [38].  

2.1.2 IR Thermography 

Current cancer research and technological advancements have also advanced our understanding of 

thermography as a screening technique. After the 1990s, research leaned towards IR technology 

as a tool to conduct thermography studies especially with the improvements made to IR cameras 

pixel resolution. In 2013, Sella et al. [39] conducted research using IRI as a method to study the 

metabolic signatures associated with breast tumors. They created their own prototype three-

dimensional infrared imaging system (3DIRI) which was used with a multiparametric computer 

analysis tool to assess the risk of having a malignant tumor present in the breast. Their study 

obtained a 90.9% sensitivity value, which competes with common screening sensitivity values. 

EtehadTavakol et al. [40] also conducted research on thermography with IRI by associating certain 

cases, or classes, such as malignant, benign and normal, to higher order spectral features. This was 

done by taking IRI images of the breasts and extracting information, such as where the outer 

boundaries are based on the edges of the images, the hotspot regions, and Radon projections, which 

were used by a statistical method, done in a bi-frequency space called the bispectral invariant, to 

make classifications from these extractions.  
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Work done by Sella et al. [39], EtehadTavakol et al. [40], and many others shows the promise of 

IR technology as a useful tool for thermography breast cancer screening, but there are some, such 

as Collett et al. [41], who do not support IRI as a screening or diagnostic tool. This might be due 

to the lower sensitivity values obtained by Collett et al. [41]. They obtained a sensitivity value of 

45.5% for their first test and 78.8% for their second test. Collett et al. [41] uses an artificial 

intelligence program to compare their IRI images to an IRI image of a patient with breast cancer, 

while Sella et al. [39] used a mathematical algorithm to analyze the IRI data. Kandlikar et al. [42] 

reviewed some of these studies, as well as others that conducted research on thermography as a 

tool for breast cancer screening. From this review, the authors show that sensitivity of IRI varied 

based on testing and not on the year it was tested as shown in Table 1. Additionally, the authors 

discuss the ease of availability of new computational and modeling techniques that have yet to be 

fully explored and used with IR thermography. This shows and calls for more research on the 

topic, especially since advancements in technology have also advanced thermography. Table 2 

shows the advancements in IR camera sensitivity, in terms of temperature readings, over the years. 

Table 1: Sensitivity of IR thermography of breast cancer screening at different years adapted from [42]. 

  Paper Year Sensitivity 95% CI 

 Keyserlink  1998 0.83 0.74-0.90 

 Wishart 2010 0.71 0.58-0.81 

 Wang 2010 0.79 0.73-0.84 

 Tang 2008 0.94 0.82-0.99 

 Parisky 2003 0.96 0.92-0.98 

 Kantos 2011 0.25 0.09-0.49 

 Button 2004 0.75 0.35-0.97 

  Arora 2004 0.9 0.79-0.96 
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Table 2: IR camera thermal sensitivity progression adapted from [42]. 

  IR Camera Year Sensitivity (mK) 

 AGA 750 1972 230 

 ISI Videotherm 1980 150 

 Inframetrics 500M 1987 100 

 Inframetrics 600M 1995 50 

 Amber PM 2000 39 

 FLIR A8300 2005 20 

  FLIR SC 6000 2010 <20 

 

Some of these works presented by Kandlikar et al. [42], as well as some of the previous work 

presented in section 2.1.1, used steady state thermography as their method of screening for breast 

cancer. Gonzalez-Hernandez et al. [43] reviewed the advancements, developments, and 

shortcomings of dynamic thermography in breast cancer detection. Dynamic thermography is an 

imaging technique that was established to reduce false negatives and positives of steady state 

thermography, described above. Unlike steady state thermography, in which acclimation of the 

breast is performed to reach a steady state temperature, dynamic thermography implements forced 

conduction or convection creating a cold stress on the breast. The authors discussed the need for 

further clinical studies the help decide which cold stress methods are best to be implemented on 

patients, as patients can feel discomfort from the cold stress. Also, the authors discussed the need 

of patient protocols prior to IRI and post-processing of the images, as well as better interpretation 

of these images.  

According to Gonzalez-Hernandez et al. [43], one way to help find the best cold stress method to 

reduce patient discomfort is through numerical or theoretical analysis validated by experimentation 

on phantom models. The issue is obtaining appropriate breast models to conduct the numerical or 

theoretical analysis on, as each breast is anatomically different. Tackling the need to post-process 
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IRIs and the problem of interpreting these images, a computational approach is discussed by 

Gonzalez-Hernandez et al. [43]. Image processing techniques such as image registration allows 

for the dynamic thermograms to be prepared for other enhancements to the image. Implementing 

this with machine learning or artificial intelligence algorithms can help establish an autonomous 

process that can examine the thermograms. However, the criteria that would establish how to 

interpret the data would still be subjective if a well-established method is not created. The need to 

establish this method led to the numerical approach by first establishing a method to generate better 

breast models.  

2.2 Thermal Modeling of Biological Systems 

Biological systems are natural complex systems that are governed by the laws of nature. Thermal 

modeling is the process of creating an analytical model of a system using the fundamental laws of 

thermodynamics and heat transfer through experimentation. This modeling process can be 

implemented in biological systems as all living things are governed by these same laws. In this 

section, the analytic modeling of the human body will be explored through bioheat modeling, and 

the numerical techniques to further explore these models will be discussed. 

2.2.1 Bioheat Modeling 

In 1948, Bazett et al. [44, 45] explored the temperature of blood flow inside of a person as well as 

external parameters that affect the cooling of the system through invasive measurement tools. They 

concluded that the temperature in the limbs is not constant, or uniform, regardless of external 

conditions. These two papers, and many others like them such as Pennes [24], were the inspiration 

for finding noninvasive techniques to study internal body temperatures, or bioheat phenomena. 

Pennes’ bioheat equation is the following: 
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𝜌𝑡𝑐𝑡 (

𝜕𝑇𝑡

𝜕𝑡
) = ∇ ⋅ (𝑘𝑡∇𝑇𝑡) + 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇𝑎 − 𝑇𝑡) + 𝑞𝑚 (1) 

 

where 𝜌 is density, 𝑐 is the specific heat, 𝑇 is temperature, 𝑡 is time, 𝑘 is the thermal conductivity, 

𝜔𝑏 is the blood perfusion rate, and 𝑞𝑚 is the metabolic heat generation rate, while the subscripts 

𝑡, 𝑏 and 𝑎 stand for tissue, blood, and artery respectively. In 1997, Xuan and Roetzel [46] proposed 

an alternative porous-media heat transfer model to the continuum bioheat transfer models 

developed by Pennes [24], which models the effect of blood flow on tissue temperature and was 

later modified by others such as Charny [47]. Later on, Nakayama, Kuwahara, and Lui [48] further 

improved on the porous-media bioheat heat transfer equations by developing three-energy 

equation models for a multi-dimensional and anisotropic model for countercurrent heat transfer 

phenomena in the blood circulatory system. Mahjoob and Vafai [49] later developed a more 

complex model with analytical solutions for dual layer biological media in relation to porous-

media theory. Wang and Fan [50] conducted a study on both the continuum, or mixture theory, 

and porous-media bioheat transfer models to identify their characteristics and discuss fundamental 

theories based on their involvement with a macroscopic model. They concluded that both models 

take advantage of simplicity, but do not offer connections between microscale and macroscale 

properties, as well as they do not “accurately describe the rich blood-tissue interaction” [50], 

although the porous-media has recently overcome these issues, which points in the direction of 

developing a closure theory for these equations. 

2.2.2 Numerical Simulations 

In 2017, He and Liu [51] developed their coupled continuum-discrete (CCD) model and compared 

it to previously used bioheat models, such as Pennes [24], Nakayama, Kuwahara, and Lui [48], as 

well as others, numerically. They used a finite element method as well as a parallel alternating 
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direction explicit finite difference method, which they developed in one of their previous papers 

[52], to compare the analytic solutions of the previous models and CCD on a well-known geometry 

of a “2D tissue immersed with a single vessel” [51]. They were also able to validate the 

performance of CCD on a realistic liver model domain reconstructed from MRI data to evaluate 

the vascular network thermal effect of a liver with a tumor as a heat source. He and Lui [51] 

showed a comparison of the liver temperature distribution analytic solution of Pennes [24] model 

and the numerical solution of the CCD model in their paper.  

IR thermography has been a useful tool in various fields of study, but its usefulness in numerical 

simulations have been underutilized. Kakutaet al. [53] performed a comparison study of IRI of 

skin surface temperature under various thermal conditions. In their study, they conducted a 

numerical simulation bioheat model on a simplified geometric 16-cylinder-segement model of the 

human body under specific conditions. Then, they gathered IRI images of different parts of the 

human body, such as the limbs, under the same conditions as the bioheat model to help establish 

a calibration offset. Lastly, they tried to recreate IRIs at different conditions using the bioheat 

model offset. A flowchart of the entire process is shown in Fig. 3. They concluded that the 

comparison between the original and recreated IRI “is effective in eliminating the influence of the 

thermal environmental conditions” but the difference between them varies depending on the 

segment. This study utilized IR thermography and bioheat numerical modeling as tools to conduct 

noninvasive research. This comes to show the potential of bioheat numerical simulations and their 

application to the biomedical field with the use of image processing to build the modeling domains, 

as well as the use of IR thermography as a tool to create physical constraints and conditions for 

these models. 
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Figure 3: Process of converting an IR image from one environmental condition to an IR image at a 
different condition using bioheat modeling of a person; redrawn from [53]. 

 

2.4 Image Processing 

Image processing, or digital image processing, is a computational technique that implements 

computer algorithms to process, or modify, a digital image depending on the user need. Computer 

graphics is another computational technique that generates some sort of digital image or geometry 

using specific computer algorithms. Although these techniques were developed and are mostly 

used in computer science, their usability has been tested for many applications in different fields 

of study. In this section, the image processing techniques, image registration and reconstruction, 

will be discussed as well as their applications in the medical and thermography fields. 

2.4.1 Image Registration and Reconstruction 

Image registration is the process of aligning two or more images by having one image as the target 

image and geometrically transforming or converting the other images to match the target image. 
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The advancements and developments of IRI technology were motivated by the military due to a 

need for better detection and recognition systems. In 1996, Kaltenbacher and Hardie [54] 

developed an algorithm to reconstruct high-resolution images from IRI utilizing how the detector 

arrays of IR cameras scan images, as well as reviewed the limitations and theory of these 

registration and reconstruction algorithms. Their algorithm uses a digital signal processing method 

called uncontrolled microscanning, which is “the process where the shifts for each recorded frame 

are unknown and must be estimated before forming an estimate of the high resolution image” [54]. 

This is done with the use of an image registration method called the gradient method, Eq. 2, 

 
𝑓(𝑚, 𝑛) ≅ 𝑓(𝑚0, 𝑛0) + (𝑚 − 𝑚0)

𝜕𝑓(𝑚0, 𝑛0)

𝜕𝑚
+ (𝑛 − 𝑛0)

𝜕𝑓(𝑚0, 𝑛0)

𝜕𝑛
 (2) 

 

which uses a given function’s Taylor series expansion. In this equation, 𝑚 and 𝑛 are discrete 

variables that represent the x and y directions, respectively. The terms (𝑚 − 𝑚0) and (𝑛 − 𝑛0), 

which are relabeled as 𝑆𝑥 and 𝑆𝑦, represent the shifts in the x and y directions, respectively, that 

are needed to be solved before reconstructing the image. The authors used the least square method, 

Eq. 3, to solve for 𝑆𝑥 and 𝑆𝑦 for sample points 𝑀and 𝑁 in the x and y direction, respectively. 

 1

𝑀𝑁
∑ ∑ [𝑓(𝑚, 𝑛) − 𝑓(𝑚0, 𝑛0) − 𝑆𝑥

∂𝑓(𝑚0, 𝑛0)

∂𝑚
− 𝑆𝑦

∂𝑓(𝑚0, 𝑛0)

∂𝑛
]

2𝑁

𝑛

𝑀

𝑚

 (3) 

The authors then expanded this equation, set the first derivatives to zero, wrote them in matrix 

form and solved for the shifts as shown in the equation below, full derivation in [54]: 

 𝑆 =  𝑀−1 ⋅ 𝑉 (4) 
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After solving for the shifts, they can be used to reconstruct the image by finding a set of aliased 

spectra that were summed up to estimate an alias of free spectrum with the use of multiple input 

signals. This can be done with the use of a Fourier transform, Eq. 5, due to its shift properties 

 𝐹𝑘(𝑢, 𝑣) = 𝑒𝑗2π(δ𝑘𝑥𝑢+δ𝑘𝑦𝑣)𝐹(𝑢, 𝑣) (5) 

 

where F is the Fourier transform, 𝑢 and 𝑣 are the frequency variables, with corresponding shifts 

δ𝑘𝑥 and δ𝑘𝑦, in the x and y directions, and the subscript 𝑘 is the signal number. Since the domain 

for the data set is discrete and not continuous, this continuous Fourier transform (CFT) can be 

turned in a discrete Fourier transform (DFT) with the use of sampling and can be further simplified 

using the two parameters 𝐿𝑥 and 𝐿𝑦, “which [represent] the desired increase in resolution from the 

original data to the final reconstructed data” [54] in the x and y directions, respectively. Further 

derivation and theory are shown in [54]. The DFT is given by the following equation, Eq. 6: 

 

𝐹𝑘(𝑚, 𝑛) =
1

𝑇𝑥𝑇𝑦
∑ ∑ 𝐹 (

2π𝑚

𝑀𝑇𝑥
+ 𝑏ω𝑥,

2π𝑛

𝑁𝑇𝑦
+ 𝑔ω𝑦)

𝐿𝑦−1

𝑔=−𝐿𝑦

𝐿𝑥−1

𝑏=−𝐿𝑥

 (6) 

 

for 𝑚 = 0, 1, . . . 𝑀 − 1 and 𝑛 = 0, 1, . . . 𝑁 − 1, where 𝑀 and 𝑁 are the sample size, 𝑇𝑥 and 𝑇𝑦 are 

the sampling periods, and ω𝑥 and ω𝑦 are the corresponding sampling frequencies in the x and y 

directions, respectively. Eq. 6 can be rewritten in a generalized matrix form, which can be used to 

solve for 𝐹𝑚,𝑛, the “samples of the alias free CFT of the high resolution signal” [54] with the 

following equation, Eq. 7: 

 𝐹𝑚,𝑛 = ϕ𝑚,𝑛
−1 𝐺𝑚,𝑛 (7) 

where 𝐺𝑚,𝑛 are the values of the DFT of each signal at the discrete frequency points, 𝑚 and 𝑛, and 

ϕ𝑚,𝑛 are the phase shift information at 𝑚 and 𝑛. Eq. 7 works well for an ideal case where the total 
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number of input images is 4𝐿𝑥𝐿𝑦, but for a bigger input image number the method of least square 

can be used which results in the following equation, Eq. 8: 

 𝐹𝑚,𝑛 = (ϕ𝑇ϕ)−1ϕ𝑇𝐺𝑚,𝑛 (8) 

 

Once the alias free spectrum has been solved and inverse Fourier transform is done on the data to 

obtain the high-resolution image. The entire reconstruction process is shown in Fig. 4. 

 

Figure 4: Schematic of the reconstruction process of high-resolution images; redrawn from Kaltenbacher 
and Hardie [54]. 

In 2000, Alam et al. [55] developed their own high-resolution reconstruction with the use of 

forward looking IR detector arrays and the uncontrolled microscanning method for practical 

scenarios such as “an imager is mounted on a moving and/or vibrating platform, such as an 

aircraft” [55]. Alam et al. [55] create a high-resolution pixel grid which helps enhance the low-

resolution pixels using their detector properties. After this, they begin the image registration 

process of solving for the shifts for the low-resolution image frames in the same way as 

Kaltenbacher and Hardie [54] solved for image shifts. These shifts were then placed on the high-
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resolution frame grid at 1/L intervals from the reference frame, where L is the microscan level. 

Anywhere in the high-resolution grid which does not have a corresponding low-resolution frame 

was filled in using the weighted nearest neighbor method. To minimize the mean square error 

between the input image and the desired high-resolution reconstruction image, a linear filter called 

the Wiener filter is used after the weighted nearest neighbor method. 

Kaltenbacher and Hardie [54], and Alam et al. [55] took advantage of how IR detector arrays scan 

and create the pixels for the image output to use the uncontrolled microscanning method to 

reconstruct a higher-resolution image, but the algorithm created by Alam et al. [55] was faster and 

more practical for real-time applications compared to Kaltenbacher and Hardie [54] due to how 

the authors utilized their specific detector array in their algorithm as well as the use of the Wiener 

filter. Figure 5 shows a comparison of both algorithms used on an IR image of vehicles taken by 

an aircraft. 
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Figure 5: The top row shows the original IRI reconstructed under Kaltenbacher and Hardie [54] © 1996, 
IEEE reconstruction algorithm to give a high-resolution image. The bottom row shows Alam et al. [55] © 
2000, IEEE reconstruction algorithm on a similar image resulting in an even better high-resolution image. 

2.4.2 Medical Applications of Image Processing 

Medical imaging has advanced over the years due to technological advancements and image 

reconstruction methods. One of these advancements was the computerized tomography (CT) 

scanner, an imaging technique which obtains multiple X-ray images at different angles and “uses 

computer processing to create cross-sectional images (slices) of the bones, blood vessels and soft 

tissues inside your body” [56]. In 1983, Medoff et al. [57] created a method that enhanced the 

image reconstruction process of CT scans of an object when encountering limited-data problems, 

but with some prior information of the object. In 1987, Reeds and Shepp [58] approached the 

problem of limited-angle reconstruction of CT scans based on previous work done by Medoff et 

al. [57] and others. The authors did this by creating a computationally efficient algorithm based on 

mathematical models they developed for this problem. In 2010, Jin et al. [59], took on their own 
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approach to solve the limited-angle reconstruction problem by focusing on the optimization of 

their previous algorithm called the total variance regulation algorithm. Chen et al. [60] further 

extended this work to show results based on their study and opened the floor for further 

enhancements.  

Another advancement was the positron emission tomography (PET) scan, which is taken by 

injecting a patient with small radioactive materials who is then scanned and imaged using “a 

special camera and a computer to evaluate organ and tissue functions” [61]. In 1987, Rogers, 

Harrop, and Kinahan [62] reviewed papers on three-dimensional image reconstruction of PET 

images, some of which were an extension of two-dimensional image reconstruction. They 

suggested their own algorithms and techniques to extend and enhance these previous works. 

Kinahan and Rogers [63] presented their suggested work with validated results on generalized 

simulated projection data, which opened the door for improvements and further applications. 

Defrise, Townsend, and Clack [64] clarified and explored different algorithms, such as Kinahan 

and Rogers [63], in order to create generalized guidelines that helped establish which appropriate 

techniques to use for specific types of problems based on properties and characteristics that they 

created. 

2.5 Conclusions from Literature Review 

Due to the technological advancements of IR cameras, IR thermography is receiving attention in 

recent research works on breast cancer detection. Previous work has validated the use of IR 

thermography as an adjunctive breast cancer screening modality through numerical simulations 

and image processing techniques. IR thermography as a screening method is safer and noninvasive 

compared to most common screening modalities. Also, studies of the bioheat equations, with the 

use of numerical simulation schemes, show great promise in the field of cancer detection and 
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thermopathology. Although a computerized IRI program has been created for the detection and 

localization of tumors in breasts, there is a need for more studies to establish the effects of thermal 

parameters of the tumor and surrounding tissue on the detection capabilities of this program. 
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3 Objective 

The literature review shows that there is potential for the use of IR thermography as a method to 

detect breast cancer. Recent advancements in IR and computational technology indicate that this 

technique needs to be further evaluated as an adjunctive screening modality. The computerized 

IRI program developed at RIT [20, 21, 23, 27] is able to detect and localize breast tumors and it 

has been validated with seven biopsy-proven cases. In their work, the thermal properties were 

derived from the literature. This work focuses on understanding the effect of breast and tumor 

properties on the detection ability. In this work, a parametric study of the thermal parameters used 

in the computerized IRI program, specifically the tissue thermal conductivity and blood perfusion 

rate, will be conducted using numerical simulations and image processing. The main objectives of 

this work are the following: 

1. Study the effects of tissue thermal conductivity and blood perfusion rates in tumor and in 

the breast tissue surrounding the tumor on the heat transfer and comparison with the clinical 

IRI images 

2. Obtain optimum combinations of properties that yield the best match between the 

simulated thermal images and the clinical IRI images 

3. Form a basis for selecting thermal properties based on the thermopathology of breast 

cancers 

4. Extend the use of IR thermography as a tool for cancer research 
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4 Methodology 

The method employed in this work is an extension of the algorithm developed by Gonzalez-

Hernandez et al. [22, 23] and Recinella et al. [27]. Therefore, some of the processes implemented 

in these previous studies were learned, recreated, and utilized as a baseline for the parametric study. 

However, refinements were needed to improve the functionality of the program. A parametric 

study related to the effect of the tissue thermal conductivity and blood perfusion rate on the 

accuracy of thermal prediction was conducted. As these properties were varied, the resulting 

thermal images from the program were compared with the IRI images. The agreement was 

compared using normalized root mean square error. Image registration between the computed 

images and the IRI images were necessary and an algorithm was developed to meet this need. 

These techniques are discussed in this chapter. 

4.1 Detection and Localization of Breast Tumors 

This work is a continued collaboration between Rochester Institute of Technology and Rochester 

General Hospital (RGH). In a previous study, a method to detect and localize a tumor of biopsy-

proven breast cancer patients using IRI images was developed [20, 21, 23, 27]. The process can 

be broken down into five steps: i) clinical setup and image acquisition, ii) generation of a patient-

specific digital breast model, iii) conducting numerical simulations, iv) image processing, and v) 

inverse heat transfer modeling to determine size and location of the tumor. Steps 1 to 4 will be 

discussed in this section; however, step 4 will be further discussed in section 4.3. Step 5 will be 

briefly discussed in sections 4.2 and 4.4 as this work will not utilize the inverse heat transfer 

approach as a fixed tumor diameter and location will be used from the prior study. 
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4.1.1 Clinical Setup and Image Acquisition 

This study begins with the collection of medical information and IRI images of 30 women with 

biopsy-proven breast cancer recruited as described by Recinella et al. [27]. This was done through 

an approved Institutional Review Board protocol at RGH with all personnel who worked on this 

project undergoing human subjects training and completing a Collaborative Institutional Training 

Initiative certification. Prior to imaging, a consent form was filled out by each patient so that they 

may participate in this study. All patient personal identification was removed during the imaging 

process. The IRI images were then captured using a rotating infrared camera setup with a screening 

table setup illustrated in Fig. 6. The camera is a FLIR SC6700 infrared camera with a resolution 

of 640 × 512 pixels and a thermal sensitivity of 0.02 ⁰C. Eight equidistant images were captured 

at an upwards tilt of 25⁰ from the vertical, as shown in Fig. 7a. Prior to capture, the patients laid in 

prone position and were acclimated to reach a steady-state condition. An example of captured 

multiview IRI images is shown in Fig. 7b. For more details on the clinical setup and image 

acquisition refer to Recinella et al. [27]. 

 
Figure 6: Medical illustration of screening table setup conducted by Recinella et al. [27], reproduced from 
[21] with permission. 
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Figure 7: Illustration of IR camera setup (a) and corresponding captured IRI images (b) at eight 
equidistant positions, adapted and reproduced from [21] with permission. 

 

4.1.2 Digital Breast Models 

In a previous study, Gonzalez-Hernandez et al. [22] developed a method to generate patient-

specific digital breast models using MRI images captured at RGH. The patient-specific digital 

breast model is a 3D model of the breasts reconstructed from MRI images using image processing 

and computer graphics techniques. The process begins with importing the sequential MRI image 

slices into the ImageJ software where edge detection was done on all images to outline the breast. 

Then, to reduce noise due to the capture of other parts in the MRI, segmentation was implemented 

to highlight the breast so the focus can be on the outline features. Once this was done on all slices, 

the segmented images were stacked to generate a volumetric rendering of the breast using the 

Marching Cubes algorithm. The 3D object was then imported into the Meshmixer software where 

the object was smoothed using the software’s average mesh angle algorithm. Finally, the new 

geometry went through one more refinement in Autodesk Recap Photo before being used for 
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numerical simulations. The process is seen in Fig. 8 and more details of the process are found in 

Gonzalez-Hernandez et al. [22]. 

 

Figure 8: Process for generating patient-specific digital breast models from MRI, reproduced from [21] 
with permission. 

 

4.1.3 Numerical Simulation 

Once the digital breast model is created, numerical simulations can be implemented using Pennes’ 

bioheat equation [24], Gautherie’s model for tumor metabolic activity [25, 26], and ANSYS 

Fluent. Before any numerical simulations are done on the model, mesh refinement is performed 

on the computational domain to improve accuracy. A uniform mesh is used throughout the model, 

with the surface, location F in Fig. 11, having a finer mesh to accurately compute temperature 

gradients [22]. A steady-state Pennes’ bioheat equation is implemented into Fluent by adding a 

convective source term due to blood flow and a heat generation source term due to metabolic 

activity. This was done through a User-Defined Function (UDF), an external code written in C++ 

that gives ANSYS Fluent custom commands based on what the user may need. These terms differ 

depending on whether the tissue region of the breast is considered healthy or unhealthy due to the 
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tumor. For the unhealthy region, a higher perfusion rate (𝜔) is implemented, and the metabolic 

activity is taken from Gautherie’s model, which is dependent on the tumor diameter (𝑑𝑡). Pennes’ 

bioheat equation can then be split into the following: 

 ∇ ⋅ (𝑘ℎ∇𝑇) + 𝜌𝑏𝑐𝑏𝜔ℎ(𝑇𝑎 − 𝑇) + 𝑄ℎ = 0 (9) 

 ∇ ⋅ (𝑘𝑡∇𝑇) + 𝜌𝑏𝑐𝑏𝜔𝑡(𝑇𝑎 − 𝑇) + 𝑄𝑡 = 0 (10) 

 

where the subscripts h and t stand for healthy and tumorous, respectively, and 

 
𝑄𝑡 =

3.27 × 106

468.5 𝑙𝑛(100𝑑𝑡) + 50
 (11) 

 

For equations 9 and 10, 𝑘ℎ = 𝑘𝑡 = 𝑘 due to the thermal conductivity being modeled as constant 

throughout the breast regardless if the tissue is healthy or cancerous. This was done due to the 

inverse heat transfer iterative algorithm that was used to find an estimate to this value [23]. 

Once the governing equations are set up, the following boundary conditions are implemented on 

the model, Fig. 9: 
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Figure 9: Digital breast model with top, right side, bottom, and left side labeled as (A-D), respectively, 
and F and E are the breast surface and chest wall, respectively. 

𝜕𝑇

𝜕𝒏
|

𝐴,𝐵,𝐶,𝐷
= 0 

𝑇𝐸 = 𝑇𝑐 

−𝑘
𝜕𝑇

𝜕𝒏
|

𝐹
= ℎ(𝑇 − 𝑇∞)|𝐹 

where 𝒏 represents the normal vector at the corresponding location, 𝑇𝑐 is the core body 

temperature, ℎ is the heat transfer coefficient, and 𝑇∞ is the ambient temperature. These boundary 

conditions imply that heat is transferred due to conduction from the chest, location E in Fig. 9, into 

the breast and heat is removed due to conduction at the breast surface, location F in Fig. 9, without 

any heat loss at the sides, locations A-D in Fig. 9. The thermophysical properties and parameters 

that were used for this study are shown in Table 3 and 4, respectively.  
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Table 3: Thermophysical properties table for the digital breast model adapted from [22, 23, 27]. 

Property Value Unit 

Perfusion rate of healthy tissue (ωh) 1.8×10-4 s-1 

Perfusion rate of tumor (ωt) 9×10-3 s-1 

Metabolic activity of healthy tissue (Qh) 450 W m-3 

Temperature of arteries (Ta) 37 °C 

Specific heat of blood (cb) 3,840 J kg-1 K-1 

Density of blood (ρb) 1,060 Kg m-3 

Core temperature (Tc) 37 °C 

Ambient temperature (T∞) 21 °C 

Heat transfer coefficient (h) 13.5 W m-2 K-1 

 

Table 4: Parameter range values for the tissue thermal conductivity of the breast and breast tumor size 
and location adapted from [23]. 

Parameter Minimum value Maximum Value Units 

𝑘 0.15 2 W m-1K-1 

𝑑𝑡 0.0099 0.07 m 

𝑥𝑡 xmin xmax m 

𝑦𝑡 ymin ymax m 

𝑧𝑡 zmin zmax m 

 

The range of values in Table 4 all depend on how fatty or dense the breast is, Gautherie’s model 

for metabolic activity, and computational domain of the digital breast model, Fig. 10. These values 

were stored in the UDF in which Fluent read and implemented them into the simulation. Before 

running the numerical simulation, a convergence criterion for the residuals was selected to be 

1 × 10−16. This criterion not only allows for a more accurate model but helps eliminate 

discrepancies between the healthy and unhealthy regions which map to each other to solve 

equations 8 and 9 simultaneously. Once everything was set up, Fluent obtained the numerical 

solution to these equations which generated computed temperature images as shown in Fig. 11. 

This technique was validated on seven subjects, as discussed in Gonzalez-Hernandez et al. [23], 

and therefore one of these subjects has been selected for this study. 
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Figure 10: Front and side views of computational domain of patient-specific digital breast model; 
adapted reproduced from [21] with permission. 

 
Figure 11: Example of a computed temperature image simulated from ANSYS Fluent. 
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4.2 Parametrization in the Present Study 

The previous study utilized the multiview IRI and computed temperature images with an iterative 

algorithm to detect and localize a tumor in biopsy-proven breast cancer patients. This was done 

through an inverse heat transfer approach by parameterizing the thermal conductivity  

(𝑘), tumor diameter (𝑑𝑡), and tumor position (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡). These parameters were initially set to 

values in the range shown in Table 4 through an external text file, which gave an initial computed 

temperature image that was then compared to the corresponding IRI image. Once the temperature 

values were compared, new parameter values were obtained through inverse heat transfer, 

overwriting the previous text file which was fed to the UDF. This allowed for the simulation to be 

run again so that new computed temperature images were generated. This was done iteratively 

until a convergence criterion was reached which then gave the best estimated parameters.   

For this work, the thermal parameters are chosen for conducting the parametric study as these 

essentially govern the heat transfer process within the breast. These thermal parameters are (i) 

tissue thermal conductivity (𝑘), (ii) blood perfusion rate of the tumor, 𝜔𝑡 and (iii) blood perfusion 

rate for the surrounding breast tissue,  𝜔ℎ. The ranges of these parameters are derived from the 

respective ranges suggested by Gautherie [25, 26]. In this section, the method for parameterization 

of these thermal parameters and the values of these parameters will be discussed. 

4.2.1 Modified Numerical Simulation 

To parametrize the three thermal parameters, kt, ωt and ωh, a modification to the UDF and 

numerical simulation is needed. In the UDF, the values shown in Table 3, and the source terms 

from equations 8 and 9 are implemented as well as the tumor diameter and position taken from 

patient placement and pathology data discussed in section 4.1. Also, since the diameter of the 

tumor is known, Gautherie’s metabolic activity model, equation 11, is implemented to determine 
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the heat generation rate. This time the three thermal parameters are written in an external text file 

and will be varied. The parametric study is divided into two cases:  

Case 1: consisting of varying the blood perfusion rate of the tumor while holding the blood 

perfusion rate of the breast tissue constant, and  

Case 2: with varying the blood perfusion rate of the breast tissue while holding the blood perfusion 

rate of the tumor constant.  

For each of these cases, the thermal conductivity value is systematically varied in the range 

indicated by Gautherie to generate the parametric plots. The numerical simulation and boundary 

conditions are the same as the ones indicated in section 4.1. This will be further discussed and 

explained in section 4.3. 

4.2.2 Thermopathology 

The thermal parameter values used in the parametric study are based on the work reported by 

Gautherie [25, 26]. In his findings, Gautherie reported the values for the effective tissue thermal 

conductivity of the breast at different breast densities. The effective tissue thermal conductivity is 

dependent on the tissue density, meaning that the denser the tissue, the more conductive it is. 

Gautherie also reported the blood perfusion rate of a healthy tissue type and one that has been 

affected by a carcinoma, which are 1.8 × 10−4 1/s and 9 × 10−3 1/s, respectively. From these 

values it can be observed that tissues with a carcinoma have a higher blood perfusion rate making 

them more vascular. 
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4.3 Image Processing 

Image processing has been a useful and crucial tool in the previous study as it was used to generate 

the digital breast model and to conduct the inverse heat transfer approach. To implement the 

inverse heat transfer approach, the computed temperature images had to be aligned with the 

corresponding IRI image. In the previous study, the model was manually rotated and translated in 

Fluent to match the computed temperature image to the IRI image and the type of movement with 

coordinates were saved to an external text file. Then, with image registration the images were 

better aligned to increase accuracy and comparison for the inverse heat transfer approach. In the 

present work, these external text files were utilized in the modified simulation so that the computed 

temperature images can be obtained. Image registration is also used with some modifications to 

account for the change in temperature ranges, which will be discussed in this section. Also, the 

ROI and other image processing techniques associated with it that are used in the present work 

will be discussed in this section.   

4.3.1 Image Registration 

As described in section 2.4, image registration is the process of aligning two or more images by 

having one image as the target image and geometrically transforming or converting the other 

images to match the target image. The target image is also known as the fixed image while the 

images that are being aligned, or registered, are known as the moving images. In this study, an 

automated intensity-based multimodal affine image registration is used on the IRI image (fixed 

image) and the computed temperature images (moving images) through MATLAB’s Image 

Processing Toolbox.  
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Prior to image registration, the images had to be pre-processed to ensure that the focus is on the 

breast outlines and image pixel intensity patterns of the breast interior are clearly registered. The 

pre-processing steps are: i) manually cropping the fixed and moving images and ii) converting the 

images into grayscale images. For step 1, this is done in MATLAB by loading up the image and 

manually selecting the region by dragging the mouse around that region. This will give a vector 

that gives a rectangular metric, [xmin, ymin, width, height] where xmin and ymin are the left lower 

corner x- and y-coordinates, and width and height are the width and height of the rectangle in 

pixels. This rectangle is then used with the MATLAB function imcrop() to crop the fixed and 

moving images. Once these images are cropped, they are transformed into grayscale images using 

MATLAB’s rgb2gray() function. The image selection and registration processes are done 

manually, but automatic registration is recommended in the future work. 

After pre-processing, the optimizer and metric for the image registration had to be configured so 

that the image registration is multimodal, which is done through MATLAB’s imregconfig() 

function. Once the configuration is done, the grayscale moving images can be registered to the 

grayscale fixed images using MATLAB’s intensity-based automatic image registration function 

imregister() and an affine transformation. The affine transformation allows the moving image to 

translate, rotate, scale, and shear so that it matches the fixed images. This is the best fit as the 

digital breast models created from the MRI images were captured differently than the IRI images 

of the same breasts. A flow chart of the image registration process is shown in Fig. 12. 
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Figure 12: Image registration process of the Multiview IRI and computed temperature images. 

 

4.3.2 Region of Interest 

After the computed temperature images are registered to the IRI image, a region of interest (ROI) 

needs to be selected. In the previous study, the ROI is a region in the breast that has a hotspot or 

some sort of gradual temperature difference. The ROI will be the same as the previous study but 

in the case of no hotspot regions, a region with an obvious color distinction will be chosen. An 

example of an ROI is shown in Fig. 13. Similar to cropping the image for pre-processing, a 

rectangular metric vector will be manually obtained from the ROI in the grayscale IRI image and 

will be used to crop the grayscale registered computed temperature images.  

 

Figure 13: Example of a ROI from the IRI image (left) and corresponding grayscale image (right) selected 
based on clear distinction in color due to temperature difference. 
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4.4 Thermal Comparison 

To conduct the parametric study, a quantitative comparison is needed between the simulated 

thermal images and the IRI images. Although the images themselves can be compared to the 

difference in color at the ROI qualitatively, a method needs to be implemented to convert these 

colors to quantitative data. Since the color changes in these images are due to temperature changes, 

a conversion into temperature data will be implemented. Once these images are converted into 

temperature data, the temperature difference between the IRI and computed temperature images 

can be obtained for comparison. The methods to convert these images into temperature data and 

to obtain the thermal comparison are discussed in this section. 

4.4.1 Assigning Temperature Values 

Once all images are cropped using the ROI, temperature values can be assigned to each image. 

This is done by converting the data type of the image into temperature data similar to what was 

done for the inverse heat transfer approach discussed in Gonzalez-Hernandez et al. [23]. The data 

type of a grayscale image is either an 8-bit or 16-bit unsigned integer matrix with the size 

depending on the pixel count. For example, if the pixel count is 𝑛 × 𝑚, then the matrix size will 

also be 𝑛 × 𝑚. Since the grayscale computed temperature images were registered, their pixel count 

is the same as the grayscale IRI images which means that the cropped ROI images’ pixel count 

will all be the same. The data type of the images and the minimum and maximum known 

temperature values of the ROI governs the transformation into temperature data through a 

conversion factor. The conversion factor is based on the color or intensity level of the image which 

for grayscale can be from 28 − 1 for 8-bit and 216 − 1 for 16-bit. In the images, the values from 

0 to the conversion factor indicate how many shades of the grayscale coloring there are. This means 
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that 0 will be white, the last number is black, and the numbers in between are different shades of 

gray. 

The transformation begins with the image being converted from its unsigned integer matrix into a 

double-precision matrix using the MATLAB’s Image Processing function im2double(). Then, this 

double-precision matrix is multiplied with the conversion factor to assign an intensity value to 

each pixel. The minimum and maximum values of these intensity values are then obtained and 

stored. Once this is done, the temperature values are assigned and bounded onto the matrix through 

a linear interpolation equation:  

 
𝑇𝑖,𝑗 = 𝑇𝑚𝑖𝑛 +

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
(𝐼𝑖,𝑗 − 𝐼𝑚𝑖𝑛) (11) 

 

where 𝑇𝑖,𝑗 is the temperature at the pixel index (i,j), 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are the known minimum and 

maximum temperature values at the ROI, respectively, 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are the minimum and 

maximum intensity values of the ROI image, respectively, and 𝐼𝑖,𝑗 is the intensity value at the pixel 

index (i,j). This formula assures that the temperature values are bounded in between the minimum 

and maximum known temperature values in the ROI. To obtain the minimum and maximum 

temperature values of the IRI images, the ROI is manually applied to these images in the 

ThermoVision ExaminIR software. In this software, these values are obtained manually or through 

the statistical function built into the software. To obtain the minimum and maximum values for 

the computed temperature images, the ROI is estimated based on the contours seen in the registered 

ROI image and a probe is manually implemented, as shown in Fig. 14. 
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Figure 14: Example of estimating ROI a computed temperature image using the contour pattern of 
registered ROI image with probe used to obtain minimum and maximum temperature values. 

 

After converting the ROI images into temperature data, filtering is done on the data to smoothen 

out any noise variations between values created from the conversion. An averaging, or mean, 

filtering approach is used on the data by getting a 3 × 3 subset of the data, taking average of the 

temperature values in that grid, and putting those averaged values into a new reduced matrix of 

size 𝑁 × 𝑀. An illustration of this method is shown in Fig. 15. The issue that arises from this 

filtering method is based on the size of the temperature data matrix, which may skew or allow for 

uneven filtering. Depending on the matrix size, the edges of the data may not be properly filtered. 

This can be avoided by adding an additional row or column along an edge or edges with a value 

of 0⁰C, also known as zero-padding. 
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Figure 15: Illustration of filtering technique used in the present work 

 

4.4.2 Normalized Root Mean Square Error 

To compare the temperature data between the IRI and computed temperature images, the 

normalized root mean square (RMS) error will be implemented on the reduced matrix. Since the 

normalized RMS error is used to find the deviation between data, it is used to analyze the 

temperature difference between the two temperature values. The normalized RMS value is chosen 

as the comparison parameter since it is one of the most commonly used statistical parameter in 

heat transfer applications. The normalization is done with respect to the maximum scale given by 

the difference between the core body temperature and ambient temperature applied to the digital 

breast model. The normalized RMS error is given by the following equation: 
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𝑅𝑀𝑆𝐸𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
√

∑[(𝑇𝐼𝑅𝐼)𝑖,𝑗 − (𝑇𝑛𝑢𝑚)𝑖,𝑗]2

𝑁 × 𝑀
𝑇𝑐 − 𝑇∞

× 100% 
(12) 

where (𝑇𝐼𝑅𝐼)𝑖,𝑗 is the temperature of the IRI image at the entry (i,j), (𝑇𝑛𝑢𝑚)𝑖,𝑗 is the temperature of 

the computed temperature images at the entry (i,j), 𝑁 × 𝑀 is the size of the temperature matrix, 𝑇𝑐 

is the core temperature, and 𝑇∞ is the ambient temperature. This gives a single normalized RMS 

error value, which tells how far apart the computed temperature image is from the IRI image. This 

must be done to all pairs of thermal parameters, which is why a system is implemented to keep 

track of the pairing. This is done by assigning a pair of numbers to the tissue thermal conductivity 

(k) values and the blood perfusion rates ωt and ωh values. This allows for computed temperature 

images to be saved under the name k𝑝 and ω𝑞, where p is the number for the thermal conductivity 

and q is the number for the blood perfusion rate. This allows for the process to be automated and 

run iteratively in MATLAB by storing the minimized RMS error results in a separate matrix of 

size 𝑝 × 𝑞. Then, the minimum RMS error can be obtained for each case which allows us to find 

the optimal thermal parameter pair for each case. 
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5 Results 

In this chapter, results from mathematical analysis of the thermal parameters in Pennes’ bioheat 

equation and the results for the parametric study of the thermal parameters in both the healthy and 

cancerous regions of a cancerous breast are presented. Each result, except the mathematical 

analysis, is separated into two parts (case 1 and case 2 as described is section 4.2.1). As previously 

stated in section 4.1, 30 biopsy-proven breast cancer patients were imaged at RGH using MRI and 

IRI. Out of these 30 patients, one patient was selected as the subject under study and two IRI image 

views of the cancerous breast were selected to conduct the parametric study. Although this study 

was conducted on one patient and on only one breast, the method presented in section 4 can be 

implemented on all 30 patients and on both breasts. Also, this study can be implemented on all 

eight IRI image views. The current work is focused on developing the algorithm to conduct 

parametric analysis using two views of any patient breast. 

The subject under study, subject 3, is a biopsy-proven breast cancer patient with IDC and was 

selected due to the available clinical information. Detailed pathology data can be seen in Table 5. 

The algorithm successfully detected and localized the tumor in the previous study. In that study, 

evaluations were done on the multiview IRI images of both breasts. For this work, only two IRI 

images for the right breast will be used. Figure 16 shows the IRI image views that were selected 

for the parametric study. These two views were chosen due to the clearness of where there are 

gradual temperature differences and hotspot regions. Also, view 1 was selected due to the 

difference in orientation which will be further discussed in section 5.2. A flowchart of the method 

illustrated in Fig. 17 and discussed in chapter 4 is implemented on this subject. It includes the 

generation of the digital breast model as well since this part was recreated to validate the previous 

work. 
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Table 5: Clinical information of subject 3 adapted from [23, 27]. 

 

 

Figure 16: Two clinical IRI images of the right breast of subject 3 used for this work. 
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Figure 17: Flow chart of the method used in the present work. 
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5.1 Mathematical Analysis on Thermal Parameters 

The thermal parameters can be mathematically studied through analytical techniques on the 

governing equations. Such techniques involve analyzing the type of Partial Differential Equation 

(PDE), functional behavior techniques, and optimization techniques on the analytic solution. For 

this work, only the first two techniques will be implemented to understand the behavior of these 

thermal parameters. The last technique may not be feasible due to the complexity of the geometry 

and system of equations applied to that geometry. The equation of study is the general Pennes’ 

bioheat equation, which will need to be simplified to conduct these techniques. 

∇ ⋅ (𝑘∇𝑇) + 𝜌𝑏𝑐𝑏𝜔(𝑇𝑎 − 𝑇) + 𝑄 = 0 

Dividing both sides by the thermal conductivity 𝑘 and using the substitutions 

 
𝛼 =

𝑘

𝜌𝑏𝑐𝑏
 (13) 

 
𝑆 =

𝑄 + 𝜌𝑏𝑐𝑏𝜔𝑇𝑎

𝑘
 (14) 

 𝑢 =
𝜔

𝛼
𝑇 − 𝑆 (15) 

 

gives the following 3-D Helmholtz equation: 

 ∇2𝑢 −
𝜔

𝛼
𝑢 = 0 (16) 

 

Equation 16 is a linear homogeneous elliptic PDE with the second term in the equation acting as a 

dampening term. Since the dampening term is negative, this means that this term is what is helping 

the solution stabilize faster especially since both 𝛼 and 𝜔 are positive values. If the thermal 

conductivity is increased to the point where 𝑘 → ∞, which will make 𝛼 → ∞, then 
𝜔

𝛼
𝑢 → 0. This 
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means that the equation will turn into the Laplace equation, which is known as the equilibrium 

equation. Solutions to this equation involve sinusoidal or oscillatory functions multiplied with 

hyperbolic or exponential functions, which the parameters have no effect on. Typically, because 

of the nature of the problem, it is multiplied with a decreasing exponential function so that it may 

reach a stability. Conversely, as perfusion rate increases to the point where 𝜔 → ∞, then 
𝜔

𝛼
𝑢 → ∞ 

meaning that the dampening term becomes the dominating factor for the equation to reach stability. 

Applying the substitutions, equations 13-15, to the boundary conditions in section 4.1.3 gives the 

following boundary conditions for equation 16: 

𝜕𝑢

𝜕𝒏
|

𝐴,𝐵,𝐶,𝐷
= 0 

𝑢𝐸 = 𝑢0 

𝐴𝑢 + 𝐵
𝜕𝑢

𝜕𝒏
|

𝐹
= 𝑔 

where 𝐴 =
ℎ𝛼

𝜔
, 𝐵 =

𝑘𝛼

𝜔
, and 𝑔 = ℎ(𝑇∞ −

𝛼

𝜔
𝑆). Using separation of variables and the first boundary 

condition, a general analytic solution to the 3-D Helmholtz equation is obtained. Then, through 

backwards substitution using equations 13-15, the general solution to Pennes’ bioheat equation is 

𝑇(𝑥, 𝑦, 𝑧) =
𝑘

𝜌𝑏𝑐𝑏𝜔
∑ ∑ (𝐴𝑛𝑚𝑒𝜆𝑛𝑚𝑦 + 𝐵𝑛𝑚𝑒−𝜆𝑛𝑚𝑦)

∞

𝑚=0

∞

𝑛=0

cos (
𝑛𝜋𝑥

𝑊
) cos (

𝑚𝜋𝑧

𝐻
) +

𝑄

𝜌𝑏𝑐𝑏𝜔
+ 𝑇𝑎 

where 𝐴𝑛𝑚 and 𝐵𝑛𝑚 are unknown constants, W and H are the respective width and height of the 

computational domain discussed in section 4.1.3, and 𝜆𝑛𝑚 = √
𝜌𝑏𝑐𝑏𝜔

𝑘
+ (𝑛𝜋𝑥

𝑊
)

2
+ (𝑚𝜋𝑧

𝐻
)

2
. Due to 

the maximum principal of elliptic PDEs, it can be concluded that constants 𝐴𝑛𝑚 must be small 
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enough or zero for the temperature to reach equilibrium. The other boundary conditions can also 

be used to solve for the constants, but these are not of much importance for the functional analysis. 

When the perfusion rate is increased to the point where 𝜔 → ∞, the summation values go to zero 

as well as the second term leaving 𝑇(𝑥, 𝑦, 𝑧) = 𝑇𝑎. This proves that as 𝜔 → ∞,   then the 

dampening term takes over and dampens it to the artery temperature. When the thermal 

conductivity is increased to the point where 𝑘 → ∞, then the exponential terms approach 1. This 

leaves us with the constant terms and the nodal summation cosine functions multiplied with 𝑘. 

Due to the nature of these nodal functions they oscillate at different frequencies, but a minimum 

is always reached. This minimum value is dependent on the amplitude or constants multiplied to 

them as shown in Fig. 18. This means that as 𝑘 → ∞ the minimum for 𝑇(𝑥, 𝑦, 𝑧) → −∞ and is 

shifted up by the second and third term. 

 
Figure 18: Example of a nodal function graphed on Desmos with minimum and maximum values oscillating 
periodically. 
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5.2 Parametrization 

The digital breast model for this subject, Fig. 19, was recreated using the method discussed in 

section 4.1. Using the modified numerical simulation discussed in section 4.2, computed 

temperature images were obtained for different pairs of tissue thermal conductivity values and 

blood perfusion rates. The range values for the tissue thermal conductivity and blood perfusion 

rate of the tumor and surrounding tissue are shown in Table 6. These ranges are derived from 

recommendations made in Gautherie’s work [24]. The range of tissue thermal conductivity values 

chosen correspond to the breast density type of subject 3, which is predominantly fatty. As stated 

in section 4.2, breasts that are considered fatty have a thermal conductivity range of 0.100 W/mK 

to about 0.200 W/m·K. For the tumor blood perfusion rate, the values reported by Gautherie for 

healthy tissue blood perfusion and cancerous tissue blood perfusion rate were used to arrive at the 

stated ranges. Once this was established, all ranges were incremented at small intervals, which will 

be discussed in this section. Then, the system created in section 4.4 to keep track of the pairing is 

implemented in the algorithm. For example, case 1 simulation 37 corresponds to tissue thermal 

conductivity 𝑘1 = 0.1 𝑊/𝑚𝐾 with tumor blood perfusion rate 𝜔37 = 9 × 10−3 s-1, etc. 
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Figure 19: Patient-specific digital breast model of the right breast of subject 3. 

 

Table 6: Range of thermal parameters for parametric study 

Parameter Range Unit 

Thermal conductivity of breast tissue (𝑘) 0.100 – 0.180 W m-1K-1 

Blood perfusion rate of tumor (𝜔𝑡) 1.8 × 10−4 –  9 × 10−3 s-1 

Blood perfusion rate of surrounding tissue (𝜔ℎ) 1.2 –  3.6 × 10−4 s-1 

 

5.2.1 Analytical Parameterization of Case 1 – Effect of tumor perfusion rate 

The purpose of the parametrization study is to identify the set of thermal conductivity and blood 

perfusion rate values that provide accurate match between the simulated thermal images and the 

IRI images. For the first case of simulations, the thermal conductivity values were incremented at 

5 × 10−3 W/m·K intervals giving a total of 17 thermal conductivity values (𝑘1 − 𝑘17). The tumor 

blood perfusion rate values were incremented at values of 1.47 × 10−4 s-1 for 1.8 × 10−4 s-1- 

1.944 × 10−3 s-1 and increments of 2.94 × 10−4 s-1 for values until 9 × 10−3 s-1 giving a total of 

37 perfusion rate values (𝜔1 − 𝜔37). This gives a total of 629 pairs that were first numerically 
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simulated. The blood perfusion rate of the surrounding breast tissue was held constant at 

1.8 × 10−4 s-1. Initially, thermal conductivity and perfusion rate values up to 0.28 W/mK and 

3.6 × 10−2 s-1, respectively, were tested but the higher values were later disregarded since these 

values did not match the breast tissue type and were outside the range of blood perfusion rate of a 

tumor. 

The computed temperature images show the effects of varying both thermal parameters. Figure 20 

shows the computed temperature images of both views for tissue thermal conductivities 1, 5, 11, 

and 17 at blood perfusion rate 21. The images show a decrease in temperature distribution on the 

surface when the perfusion rate value is fixed, and thermal conductivity value is increased. This is 

shown for both views with view 2 (first row) having a more noticeable distinction than view 1 

(second row). 

 

Figure 20: Computed temperature images of subject 3 at view 2 (top row) and 1 (bottom row) for 
thermal conductivity 1, 5, 11, and 17 (𝑘1,5,11,17=0.100, 0.120, 0.150, and 0.180 W/mK, respectively) all at 

perfusion rate 21 (𝜔21 = 4.296 × 10−3 s-1). 
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Similarly, Fig. 21 shows the computed temperature images of both views for thermal conductivity 

3 at perfusion rates 1, 9, 23, and 37. These images show the temperature distribution increasing 

when fixing the tissue thermal conductivity and increasing the tumor blood perfusion rate, but with 

less noticeable distinction from perfusion rate 1 to 9 or from 23 to 37. These two figures match 

what is observed in the analytic solution presented in section 5.1, which displays the accuracy in 

the model. However, it is not as clear in understanding what the tumor blood perfusion rate 

variation is contributing. 

 

Figure 21: Computed temperature images of subject 3 at view 2 (top row) and 1 (bottom row) at 

perfusion rates 1, 9, 23, and 37 (𝜔1,9,23,37= 1.8 × 10−4, 1.356, 4.884, 𝑎𝑛𝑑 9 × 10−3 s-1, respectively) all 

for thermal conductivity 3 (𝑘3 = 0.110 W/m·K). 

 

5.2.2 Analytical Parameterization of Case 2 – Effect of Blood Perfusion Rate in 

Breast Tissue 

As stated in the previous section, the purpose of the parametrization study is to identify the set of 

thermal conductivity and blood perfusion rate values that provide accurate match between the 

simulated thermal images and the IRI images. This section gives the details of the effect of varying 

perfusion rate in the breast tissue on the accuracy of prediction using the IRI images. For this 

second case of simulations, the same range for tissue thermal conductivity values from case 1 were 

used but incremented at 0.01 W/m·K intervals giving a total of 9 thermal conductivity values (𝑘1 −
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𝑘9). The range of the blood perfusion rate of the surrounding breast tissue shown in Table 6 were 

incremented at values of 0.2 × 10−4 s-1 giving a total of 13 perfusion rate values (𝜔1 − 𝜔13). The 

tumor blood perfusion rate will be selected based on the results that will be shown in section 5.4.1, 

the pathology of the tumor, and the vasculature observed in the MRI images. It may be noted that 

the blood perfusion rate values in the breast tissue are generally much lower than those for the 

tumors. 

Figures 22 and 23 show the computed temperature images for case 2. In contrast with what 

observed for case 1, the images show an increase in temperature distribution on the surface when 

the blood perfusion rate value is fixed, and thermal conductivity value is increased, but this 

increase is slight. Also, similar to case 1, the images show an increase in temperature distribution 

on the surface when the tissue thermal conductivity is fixed, and the blood perfusion rate of the 

tissue is increased. Although there is an obvious difference, the effects are not clear enough to 

make any concrete conclusions. Therefore, the statistical outcomes will be analyzed to make any 

conclusions. 

 

Figure 22: Computed temperature images of subject 3 at view 1 for thermal conductivity 1, 3, 6, and 9 

(𝑘1,3,6,9=0.100, 0.120, 0.150, and 0.180 W/m·K, respectively) all at perfusion rate 9 (𝜔9 = 2.8 × 10−4 s-1). 
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Figure 23: Computed temperature images of subject 3 at view 1 at perfusion rates 1, 5, 9, and 13 

(𝜔1,5,9,13= 1.2, 2.0, 2.6, 3.4 𝑎𝑛𝑑 9 × 10−4 s-1, respectively) all for thermal conductivity 3 (𝑘5 = 0.14 

W/m·K). 

5.3 Image Processing 

After the computed temperature images were obtained, the image processing method discussed in 

section 4.3 was implemented after the calibration process. The calibration process was done using 

the original numerical simulation method recreated from Gonzalez-Hernandez et al. [23, 27] for 

this subject. The results of the calibration on the IRI and computed temperature images for views 

1 and 2 are shown in Fig. 24 and Fig. 25, respectively. Figure 24 shows the importance of view 1 

as it tested the capabilities of MATLAB’s image registration algorithm. This method was then 

applied to all computed temperature images obtained from the modified numerical simulation. 

Once this was done, the ROI was selected from the two IRI grayscale images and then the 

registered images are cropped to the size of the ROI, as discussed in section 4.3.  

 

Figure 24: Calibration image processing step of original numerical simulation computer temperature 
images for view 1. 
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Figure 25: Calibration image processing step of original numerical simulation computer temperature 
images for view 2. 

5.4 Thermal Comparison 

Once these cropped ROI images were obtained, temperature values were assigned to each pixel 

based on the method discussed in section 4.4. For view 1, the cropped ROI images had a pixel 

count of 101×186 while view 2 had a pixel count of 242×278. The minimum and maximum 

temperature values in the ROI for the IRI of view 1 is 27.080⁰C and 27.855⁰C, respectively, and 

27.120⁰C and 27.989⁰C for view 2. Although the accuracy of measurements does not justify using 

three decimal accuracy, this is done to reduce round off errors. These values may be considered to 

be accurate within only the first decimal value. For the computed temperature images, each 

minimum and maximum temperature values for each pair was recorded in an excel table. This 

gave a 101×186 matrix for view 1 and a 242×278 matrix for view 2 with temperature values as 

the entries of the matrix for each image. Once the temperature values were assigned to the pixels, 

the filtering technique discussed in section 4.4 was implemented giving a 50×93 matrix for view 

1 and a 121×139 matrix for view 2 with the mean temperature values as the matrix entries.  
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5.4.1 Numerical Comparison for Case 1 – Effect of Blood Perfusion Rate in 

Tumor 

The normalized RMS error was calculated between the IRI and computed temperature values and 

plotted against the tumor blood perfusion rate in the tumor as shown in Fig. 26. Oscillatory 

behavior can be observed from the graph, which is due to noise coming from the computed 

temperature images. From these plots, it can be observed that as tissue thermal conductivity 

increases, the normalized RMS error decreases. Also, varying the tumor perfusion rate does not 

have any impact on the heat transfer and thermal profile as seen from the computed thermal 

profiles. The oscillations seen in this plot are random in nature and are believed to be due to noise. 
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Figure 26: Results of normalized RMS error plotted over different blood perfusion rates in tumor at 
thermal conductivity 1, 5, 9, 13, and 17 for both views. 

These results verify that the tumor blood perfusion rate has no effect on the thermal profile. This 

is reasonable as the tumor generates a certain amount of heat which enters into the breast from 

tumor boundaries. Any internal temperature gradients within the tissue are of no consequence in 

the heat transfer from the tumor boundaries. 
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5.4.2 Numerical Comparison for Case 2 – Effect of Blood Perfusion Rate in the 

Breast Tissue 

For the second case, the blood perfusion rate value in the tumor of 5.178 × 10−3 s-1 was selected 

from case 1 due the vasculature observed from the MRI image of subject 3 shown in Fig. 27. It 

should be recognized that the value of the blood perfusion rate in the tumor has no effect on the 

thermal profile as seen from the case 1 results and this selection is not expected to have any 

influence on the results. Also, the simulations were implemented on only view 1 as this view was 

seen to have less noise than view 2. The normalized RMS error was calculated and plotted versus 

the blood perfusion rate of the surrounding breast tissue for each case as shown in Fig. 28. From 

this plot, it can be observed there are minimum values with the plot first decreasing to a minimum 

and then increasing as the blood perfusion rate increases. When plotting the minimum normalized 

RMS error per thermal conductivity, the minimum values for each tissue thermal conductivity 

value is obtained at different blood perfusion rates of the surrounding breast tissue. It is seen from 

the plot that the minimum value of the normalized RMS is approximately the same around 2% for 

all thermal conductivity values. It may be concluded that the optimum value of blood perfusion 

rate of the surrounding breast tissue depends on the tissue thermal conductivity as several 

combinations yield results close to optimum value. Further work is needed to establish this 

relationship. 
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Figure 27: MRI image of subject 3 with an observable tumor that has an abnormal vasculature. 

 

 
Figure 28: Plot of blood perfusion rate of surrounding breast tissue versus normalized RMS error for 
thermal conductivity 1, 3, 5, 7, and 9 for view 1 
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6 Discussion 

In this study, a patient-specific digital breast model of subject 3 was recreated using the method 

from Gonzalez-Hernandez et al. [22]. This model was used to perform study of thermal parameters 

(i) tissue thermal conductivity, (ii) tumor blood perfusion rate, and (iii) surrounding tissue blood 

perfusion rate on the heat transfer within the breast and comparison with the clinical IRI images. 

It was intended to obtain the optimum combinations of properties that yielded the best match with 

clinical IRI images. This was accomplished through a modifications of the numerical simulation 

software and UDF created by Gonzalez-Hernandez et al. [22] as well as the image registration 

process [23]. 

As mentioned in chapter 5, this study can be conducted on all 30 patients, regardless of breast 

density type, and on both breasts. Although this technique worked well for both positions, view 1 

was much more difficult to register and did not register as well as view 2, as seen in Fig. 25. 

Position 1 was easier to register due to the algorithm using the nipple as a guide, while position 2 

did not have any sort of guide and it was based more on curvature of the breast. The image 

registration process can be an issue, as the alignment process for the computer temperature images 

is a long manual process. For obtaining the temperatures at the ROI, a better technique can be 

implemented to reduce any error as these values were obtained by visual inspection using the 

calibrated images. 

The results indicate that the tumor blood perfusion rate has no effect on the simulated thermal 

profile. The surrounding tissue blood perfusion rate has considerable effect on the simulated 

thermal profile. The minimum value of the RMS error between the simulated and profile and IRI 

images varies with the thermal conductivity. As the thermal conductivity increases, the value of 

the surrounding tissue perfusion rate decreases at the minimum error condition. 



74 
 

The analysis indicates that the program can be used for studying the effect of thermal properties 

of the tissue on thermal profiles on the breast surface. This technique may be used in an inverse 

program to determine thermal properties in cases where they are not available. This could serve as 

a useful tool for future research. 
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7 Conclusions 

A parametric analysis was performed to study the effects of tissue thermal conductivity, and blood 

perfusion rates in tumor and the surrounding tissue. The available algorithm and program from a 

previous study was modified to accomplish this analysis. 

The values for the appropriate pairs of thermal parameters for the simulation were selected as the 

ranges 0.1- 0.18 W/m·K for the tissue thermal conductivity, 1.8 × 10−4-9.0 × 10−3 s-1 for the 

blood perfusion rate of a tumor, and 1.2 − 3.6 × 10−4 s-1 for the blood perfusion rate of the 

surround breast tissue based on Gautherie’s recommendations . These values lie in the range 

reported by Gautherie [25] for a predominantly fatty breast density with an abnormal blood 

perfusion due to a carcinoma and a high metabolic heat generation in the tumor.  

It is seen from this study that the blood perfusion rate in the tumor does not have any effect on the 

thermal profile. This is expected since the tumor generates heat that is transferred at the tumor 

boundaries irrespective of its vasculature and thermal conductivity. These values will have 

influence on the temperature distribution within the tumor. However, we are not interested in the 

temperature distribution inside the tumor. 

Another major conclusion is that as the thermal conductivity of the surrounding tissue increases, 

the location of minimum error between the simulated and IRI images shifts to higher blood 

perfusion rates in the surrounding tissue. The minimum error for all such pairs appears to be 

approximately same at around 2%. Further work is needed to establish the relationship between 

thermal conductivity and blood perfusion rate in the surrounding tissue that provides the most 

accurate simulation.  
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8 Suggested Future Work 

In the present work, a technique to study the effect of varying thermal parameters of patients with 

known breast tumor size and location through a parametric study approach was created using IRI 

images and computational techniques. This technique serves as a preliminary step to future work 

relating to thermopathological studies of breast carcinomas. Next steps for future work would be 

as follows: 

• Automating the process by creating a link between the numerical simulation and image 

processing steps so that the program has a reduced amount of human interaction time 

• Creating digital breast models from the multiview IRI images using volumetric and spatial 

data from a clinically acceptable scanner for easier and precise image registration 

• Generating phantom models similar to those created by Gautherie [25] to validate the heat 

transfer phenomena observed in this study 

• Mapping vascular networks and exploring hierarchical approaches to the model for further 

validation and findings 

• Conducting the study on other carcinomas in a different location where it may be easier to 

obtain measurements 

These next steps will allow for further studies and correlations to be conducted on the 

thermopathology of cancers as well as expand the use of IR thermography as a noninvasive 

tool in cancer research.  
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