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Abstract

Context Sensitive Image Denoising and Enhancement

using U-Nets

Sahaj Tushar Gandhi, M.S.

Rochester Institute of Technology, 2020

Supervisor: Dr. Thomas B. Kinsman

Noise in images gets introduced at almost every stage of the camera

image signal processing pipeline (ISP). Camera companies provide software

that cleans most of the noise added at each stage. Even after noise removal is

done by the camera software, different noise patterns with different intensities

remain in the image. With advances in deep learning, the algorithms are archi-

tectured end-to-end. In the present time, machine learning and deep learning

models work as end-to-end systems with a special-purpose feature extraction

phase. This thesis focuses on the removal of any residual noise in images as

performed during the feature extraction stages. The feature extraction process

is done by using the classic segmentation architecture, U-Nets. Traditionally,

segmentation models have helped with identifying the locations of objects in

images. In this thesis, a U-Net based architecture has been used to identify
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important regions in an image in order to localize background noise. With

the removal of this noise, the resulting images created are cleaner and provide

better content for other tasks like Image Classification, Object Segmentation,

and Scene Understanding. MNIST and Fashion-MNIST datasets were used

to train the prototypes of the proposed architectures. To build an effective

system, a noise model was created to reflect the properties of true noise found

in images. Various Gaussian and Speckle noise models were used during the

initial prototyping phase, and for the final prototype, a combination of the

noise models was used. This combination of noise models represents the true

occurrences of noise in images found in nature. Due to the occurrences of

multiple types of noise in images, modeling a realistic representation of this

noise was done using a Mixture of Gaussians and tested on a complex dataset,

ImageNet. The proposed system worked well in denoising complex invisible

noise, like adversarial noise, from these images. The effectiveness of the pro-

posed approach was evaluated using signal-structure metrics such as PSNR

and SSIM, along with metrics such as Precision, Recall, and F1-score that are

used to quantify the improvements made during computer vision tasks.
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Chapter 1

Introduction

The problem of noise in images is well-known. Noise is predominantly

present in some form or the other in every image. Noisy images are problem-

atic to deal with, and often get dropped from datasets when they cause the

model to learn the wrong features. Images with lower resolution do not hold

enough context and information, due to small number of pixels in the image.

Different types of noise get introduced during various stages in the image pro-

cessing pipeline. Identifying and using the noise artifacts from the images to

enhance the images, can help provide better looking images.Denoising would

also improve details in the image which can help machine learning models learn

better features. This improvement in the current datasets can help improve

the accuracy and working of current state-of-the-art algorithms. In the case

of sensor noise, denoising and enhancing images can be a software solution to

a hardware problem. With a denoising and enhancement algorithm in place,

we can make full use of image details. Traditionally, tackling various types of

noise in images has been empirically determined. Depending on the type of

noise found in an image perceived by the user of the image, steps for noise

removal were taken accordingly.
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Figure 1.1: Gaussian, local Gaussian, Poisson, Salt and Pepper, and Speckle
Noise when added to the image labeled “No Noise”.
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On identifying noise empirically, filters with various intensities are used

to remove maximum visible noise that was identified. Figure 1.1 depicts multi-

ple types of noise and the patterns in images when synthetically added. Here,

a simple smoothing function like Gaussian smoothing can be used to clean

speckle noise, or median filter can be used to eliminate Salt and Pepper noise.

With machine learning and deep learning being used to analyze large

amounts of information, we use one such deep learning algorithm to analyze

and understand the pattern of noise occurrence in images. Segmentation algo-

rithms are generally used to identify regions of importance in an image, which

helps speed up the process of identifying the object in those regions.

U-Nets optimally analyze and identify important regions in an image

based on the task at hand. U-Nets also provide a structure entity, skip con-

nections, that provide an uninterrupted gradient flow while preventing the

vanishing gradients problem. Unlike other segmentation algorithms, they are

not dependent on a predefined mask during the model’s training phase. With

that in mind, the Saliency Map they generate would vary with every task. We

utilized these advantages provided by U-Nets. They analyze the context of

an image for better and quicker prediction. We use the U-Net algorithm to

understand the context of an image while also analyzing the pattern of noise

in the image.
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Chapter 2

Background

Here we create a system for the automatic context sensitive noise re-

moval from images, which would lead to improvements in the downstream

processing of computer vision tasks such as object segmentation and scene

understanding. By enhancing the images, we are providing more relevant in-

formation and context for the machine learning models. The proposed system

would be beneficial in cases where the system needs better context information

for feature extraction.

Image denoising, in the past, has been performed using heuristic ap-

proaches. Depending on the camera, file format, camera ISPs, types of sensors

and application type, different types images were affected by different types of

noise. Even things like environment, lighting, and other objects in the image

would determine the kind of noise which was predominantly present in the

images. The cameras and camera software were not as advanced as they are

today and as a result, the images were empirically denoised for noise artifacts

present in the image, based on the task at hand.
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2.1 Image Processing Techniques

When dealing with the removal of Gaussian noise from images, Mean

(Averaging) Filter is used to perform this function. The Mean filter is a linear

filter, meaning it can be performed using convolution and Fourier multiplica-

tion. An undesirable outcome of this filter is the blurring of fine-scaled image

edges and details because they also correspond to blocked high frequencies.

Often, image denoising is done using low pass filtering and high pass

filtering. With the use of low pass filters in image processing, one can reduce

high frequency noise. With this type of noise removal, the image would get

smoothed leading to the loss of noise like speckle noise. High pass filtering,

on the other hand, are used to make images sharper. While these two types

of filters remove noise artifacts in the frequency domain, the image processing

done in the spatial domain involves the use of spatial filters like the median

filter, which is generally used to remove salt and pepper noise. Median Filter is

a non-linear filter. Non-Linear filters are those filters that cannot be performed

with convolution or Fourier multiplication.

Similarly, Weiner Filter is also a non-linear filter used to clean speckle

noise from images. The Weiner Filter is a pixel-wise adaptive filter and it

tailors itself to the local image variance, where little smoothing is performed

when variance is large and vice-versa.

As the type of image changes, the type of noise artifacts change. Since

hyperspectral images are modeled as a 3-dimensional tensor with two dimen-

5



sions for spatial data and one dimension of spectral information, denoising

methods would involve using matrix algebra to get the best results. Methods

like Multiway Weiner Filter (MWF), PARAFAC (Parallel Factor Analysis)

Filter, and a combination of multidimensional wavelet packet transform and

Multiway Weiner Filter(MWF) have been found to remove noise from images

as suggested in [30]. All of the following methods involve the use of matrix

algebra. From this we can understand that by understanding the underlying

structure of the data being used, we can try understanding the structure of

noise inherently present in these types of images. That would help decide the

type of approach we could take to denoise and enhance the image’s quality.

When dealing with images, the type of noise artifacts depend on the

type of modality in which the images were captured. For instance, the pat-

tern in which noise occurs in medical images like Magnetic Resonance Im-

ages(MRI), X-ray and Ultrasounds is different from the pattern of noise in

images captured by a camera as studied in [37] and [45]. In medical images,

one very important thing that we need to consider is that any denoising tech-

nique being used should make sure that there is no loss of important signal

information from the image. Thus any filter or method being used on such

images needs to understand the underlying structure of the image and then

remove the noise in the image.

The Kuwahara filter [27] and Matsuyama and Nagao filter [39] were

the first to provide a filter which tried to retain some type of context in the

images. The Kuwahara filter [27] split the region around the pixel into four

6



Figure 2.1: Image depicting the four Kuwahara quadrants [27], to calculate
the pixel value for the central image, that are used to calculate pixel values by
using the mean value of the quadrant having the smallest variance.

quadrants and the variance for each quadrant was calculated. The average of

the quadrant having the smallest variance was used to replace the pixel value.

Figure 2.1 depicts the four quadrants that the algorithm uses to calculate pixel

values.

Nagao et al. [39] made use of nine sub-windows instead of quadrants

used by Kuwahara et al. [27]. For each sub-window the variance is calculated

and the average of sub-window with the lowest lowest is used to replace pixel

7



Figure 2.2: Image depicting the nine sub-windows, used by the Matsuyama
and Nagao filter [39], that are used to calculate pixel values by using the mean
of the sub-window with the lowest variance.

value. Figure 2.2 depicts each of the nine sub-windows used by the Matsuyama

and Nagao filter.

Perona and Malik’s anisotropic diffusion filter [43] performs context-

sensitive image denoising. Their work allowed the removal of noise without

affecting the signal in the image by cleaning the images and retaining im-

portant image features like lines, edges and textures. The idea was to pre-

serve the image signal while diffusing the noise signal in the image. By doing

8



so, they perform context-sensitive image denoising. Equation 2.1 defines the

anisotropic filter. Here, c(x, y, t) is the diffusion coefficient and c(x, y, t) con-

trols the rate of diffusion and is usually chosen as a function of the image

gradient to preserve edges in the image. Pietro Perona and Jitendra Malik

pioneered the idea of anisotropic diffusion and proposed two functions for the

diffusion coefficient as defined by Equations 2.2 and 2.3.

It =
dI

dt
= div(c(x, y, t) · ∇I) = ∇c · ∇I + c(x, y, t)∆I (2.1)

g(||∇I||) = e−(
||∇I||
k

)2 (2.2)

g(||∇I||) =
1

1 + ( ||∇I||
k

)2
(2.3)

Where,

• ∇ is the gradient,

• ∆ is the Laplacian,

• div() is the divergence operator, and

• k controls the sensitivity of diffusion near the edges

Bilinear Interpolation and Bicubic Interpolation [16] are a few of the

earlier methods used to clean images or produce more information in images
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while maintaining context of the image. The process of image denoising and

enhancement should retain as much context as it can as it would otherwise

lead to the loss of important information in an image. Bilinear Interpolation

creates information in a 2D plane while Trilinear Interpolation uses a 3D plane

to create information for pixel values. Ragesh et al. [45] also spoke about

how there has been a shift from classical image processing methods to more

recent machine learning techniques like artificial neural networks and genetic

algorithms.

2.2 Deep Learning Models

With more well-defined and complex deep learning models being in-

troduced in the past few years, solving more tasks with deep learning models

has started taking place. Deep Learning models are being preferred for solv-

ing these various tasks as they provide better generic feature extraction over

large datasets. In studies such as [60], [14], and [55], deep learning models

like CNNs are used as a special-purpose feature extraction phase to extract

optimal features for better task prediction. Another reason why deep learn-

ing models are preferred over classical systems is that the parameters used to

build optimal classical systems are empirical for every image being used. In

contrast, deep learning models can be trained on Graphics Processing Units

(GPUs) over entire dataset produce optimal performance.

Due to their capability to generalize on large amounts of data, datasets

like ImageNet [8] have been built. This dataset comprises a large amount of
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Figure 2.3: Flow of information during the forward propagation process in a
deep neural network.

colored images that introduce a lot of diversity and complexity to the data and

using this dataset benefits the system by generalizing on all sorts of information

and data.

To understand the working of these various Deep Learning Models in

terms of task of image denoising and enhancement, we need to understand the

working of the forward and backward propagation stages. Figures 2.3 and 2.4

depict the flow of information during the forward and backward propagation

stages of a vanilla deep neural network.
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Figure 2.4: Flow of information during the backward propagation process in
a deep neural network.

Equations 2.4, 2.5, 2.6, 2.7, 2.8, and 2.9 define the forward propagation

process for each neuron in hidden and output layers as depicted in Figure 2.3.

h10 = A(w00 · x0 + w10 · x1 + w20 · x2 + w30 · x3 + w40 · x4) (2.4)

h11 = A(w01 · x0 + w11 · x1 + w21 · x2 + w31 · x3 + w41 · x4) (2.5)

h12 = A(w02 · x0 + w12 · x1 + w22 · x2 + w32 · x3 + w42 · x4) (2.6)

h20 = A(v00 · h10 + v10 · h11 + v20 · h12) (2.7)
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h21 = A(v01 · h10 + v11 · h11 + v21 · h12) (2.8)

Y = A(u0 · h20 + u1 · h21) (2.9)

Where A is an Activation Function like Sigmoid, tanh, or ReLU.

Backward Propagation, as depicted in Figure 2.4, is expressed by Equa-

tion 2.10. This equation computes the gradient of the loss function with respect

to the weights on the model’s neurons.

wnew = wold − η ·
∂L

∂w
(2.10)

Where η represents the learning rate for the model, w represent the

weights in the network, and L is the Loss function for the network.

Autoencoders have played a vital role in the efficient removal of noise

from images [15]. Autoencoders, in general, is an unsupervised learning tech-

nique. It comprises an Encoder and a Decoder system that extract features

and use those features to rebuild the image, respectively. In the Encoding

stage, a bottleneck is imposed that forces the input data into a compressed

knowledge representation of the input data. This compressed knowledge rep-

resentation is then used to rebuild a cleaner version of the input data. A

representation of an Autoencoder model is depicted in Figure 2.5.
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Figure 2.5: Generic Representation of an Autoencoder.

Deep Convolutional Neural Networks (CNNs) have also been very suc-

cessful at the process of noise cleaning and enhancement in images [53]. A

common practice followed here is that a system is trained to learn a specific

type of noise by externally adding it to the image and letting it identify the

structure of noise artifacts. Once these are learned, it becomes easier to remove

those types of noise artifacts. Convolutional layers learn to extract relevant

features that aid in optimal decision-making, such as Classification, as seen

in Figure 2.6. To denoise noisy images, feature extraction is done to extract

features that can be used to rebuild a cleaner version of the image.
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Figure 2.6: Generic Representation of a Convolutional Neural Network.

After Generative Adversarial Networks (GANs) were introduced in [17],

they have been used to generate cleaner images, as seen in the paper presented

by Yi et al. [58]. GANs make use of Game Theory to achieve their goal, wherein

the Generator and Discriminator models contest each other as depicted in

Figure 2.7. The Generator uses latent space mapping to generate a version

of the image that the Discriminator model uses to predict if the image is real

or not. For the task of image denoising, the Generator model tries to rebuild

the image without noise, and the Discriminator model tries to distinguish it

as a noisy or clean image, which in turn guides improvements in the denoising

process.
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Figure 2.7: Generic Representation of a Generative Adversarial Network.

2.3 Segmentation Algorithms

Segmentation algorithms have, in the past, been used to identify objects

and important context in images. Since understanding the context of an image

is so crucial in image denoising if we could use a system to identify the essential

areas of an image, it makes the process a lot easier. Ajmal et al. [1] talks about

various segmentation-based algorithms that deal with instance segmentation

and semantic segmentation. This paper also spoke about the Attention-based

FCNs to denoise images that looked into some more depth by Haque et al. [19].

Ronnerberger et al. [46] introduced U-Nets in their paper. Their pro-

posed architecture is easy to use on datasets that do not have segmentation

masks associated with corresponding images. Once these segmentation maps

are generated, these could be used to train the model further to tell noise

from signal and vice versa. U-Nets are built with skip connections to avoid

loss of any relevant and vital information, lost in the initial feature extraction
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stages. These skip connections also prevent the vanishing gradients problem

that affects models consisting of a deep structure.

2.4 Noise Models

Boyat et al. [3] talks about the various noise models that occur in digital

images. Understanding the type of noise one is dealing with, along with the

source of its occurrence, can help understand the underlying noise pattern.

The Gaussian noise model is one of the models mentioned by them. This

noise is distributed normally over a range of values. This type of noise could

essentially cover various types of noise over the different ranges of distribution.

Modeling this type of noise is essential as many different types of noise can

be mapped to the pattern of Gaussian noise. Gaussian noise is additive noise

that is represented as a probability density function equal to normal (Gaussian)

distribution, as defined by Equation 2.11.

p(z) =
1

σ
√

2π
· e
−(z−µ)2

2σ2 (2.11)

Where,

• p(z) is the Probability Density Function

• z represents the gray-level of the image

• µ represents the mean

• σ represents the standard deviation
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• σ2 represents the variance

• x represents

For the removal of multiplicative noise, such as speckle noise, found

in ultrasound and MRI images, wavelet transformations have helped reduce it

without affecting the sharpness or details in the image in the past [49]. Speckle

noise typically gets introduced during the reconstruction phase of the imaging

life cycle. Leal et al. [28] suggests using a non-linear wavelet transform to

remove speckle noise from ultrasound images, which has worked successfully

in recent times. As far as non-medical images are concerned, the occurrence

is ubiquitous at varied intensities. The mere presence is enough to degrade

an image and lose vital information from the image. Due to the presence of

high-intensity components, low-pass filters have been an effective method of

removing this type of noise. Modeling speckle noise to remove it from images

is necessary as it can be representative of multiplicative noise.

Haque et al. [19] made use of the attention mechanism for the appli-

cation of image denoising on the MNIST dataset [29]. Using the attention

mechanism on smaller regions and multiple times would help learn and un-

derstand what bits of information are important for retaining context while

discarding noise.

Traditionally, noise in images has been an aberration of visual data.

With the introduction of new and more complex algorithms, comes this noise

that minimally affects the image visually but extensively affects the structure

18



and context of the image. Fast Gradient Sign Attack (FGSM) [18] is an exam-

ple of adversarial noise that harnesses the gradient of the image to trick the

deep nets into identifying and classifying the image content. Equation 2.12

defines how this form of adversarial perturbations are added into an image.

By understanding the pattern in which these perturbations occur and affect

the context of an image, we are working towards building a blind denoising

system that can handle and fix all occurrences of noise in images.

advx = x+ ε ∗ sign(∇x · J(θ, x, y)) (2.12)

where,

• advx represents the Adversarial image

• x represents the original input image

• y represents the original input label

• ε represents the multiplier that ensures that the perturbations are small

• θ represents model parameters

• J represents the loss

2.5 Evaluation Techniques

To quantify the difference in change between the two images, before

and after passing it through our proposed model, we need relevant metrics
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that would score any improvement or deterioration in the image. We have

used metrics that capture the structure of the image in both cases, while also

using metrics that capture the effectiveness of a machine learning model by

only changing the input to the model. An ideal evaluation technique would

be where our proposed architecture could be exposed to various types of noise

and image sizes. If any system works consistently in this setting, we would

have an ideal and optimal blind denoising and enhancement system.

Making use of metrics like PSNR (Peak Signal-to-Noise Ratio) and

SSIM (Structural Similarity Index Measure) are being used to evaluate changes

in the structural changes of an image. Both these metrics use very different

aspects of an image to determine the difference with respect to the origi-

nal, non-noisy, ideal image. The lesser difference in the images equates to

higher scores. PSNR primarily looks into the mean square error between the

two images, whereas SSIM calculates changes in the luminance, contrast, and

structure difference between them.

Metrics, like Precision, Recall, and F1-score, quantify any performance

improvements in computer vision tasks like Object Detection and Classifica-

tion. These metrics are scored using a confusion matrix that scores each class

based on the number of times a class is correctly identified, correctly not iden-

tified, incorrectly identified, and incorrectly not identified. With metrics score

more consistently than just using a metric that scores a system based on only

how many classes are correctly or incorrectly identified.

Another metric that we considered to measure our system’s effective-
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ness was how the proposed model performed on unseen noise and adversarial

noise. Building a system on one type of noise, added artificially to the im-

age, may not be the best system to work with if it cannot generalize towards

generic noise. Evaluating the effectiveness in a situation like this would justify

the extensibility and scalability of the system being evaluated.

Most of the evaluation metrics score systems based on changes in visual

features in the images. To quantify the effectiveness of any system, testing sys-

tems on adversarial noise is of utmost importance. The addition of adversarial

noise, like Fast Gradient Sign Method (FGSM) noise, to an image, can confuse

Convolutional Neural Networks (CNNs) [40] to misclassify images with high

confidence. What is even more surprising is that there seems to be no visual

change in the images. If a denoising and enhancement system can perform

consistently on this type of noise, that is a positive performance in terms of

an evaluation metric.

2.6 Hyperparameters

For training the machine learning models, two of the most common

optimization algorithms I have come across in most of the papers are Stochas-

tic Gradient Descent [47] and the Adam Optimizer [25]. These optimization

algorithms help find parameter values required to minimize or maximize a loss

function using the values of gradients in terms of parameters. Gradient De-

scent can be thought of as finding the value of a parameter that occurs at the

minima or maxima, depending on the requirement.
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Stochastic Gradient Descent, a version of the Gradient Descent algo-

rithm, is used in cases where large datasets are involved. Here, the gradient

descent procedure is run for each iteration, but an update to the coefficients

of parameters is made for each training instance. With Stochastic Gradient

Descent, there is a possibility of the gradient getting stuck in the local min-

ima if the learning rate is very low. To overcome this problem, momentum is

generally used with it. However, that would introduce an additional hyperpa-

rameter that would require tuning to achieve optimal results.

The Adam optimizer is an algorithm for gradient-based optimization of

stochastic objective functions. It combines the advantages of two momentum-

based SGD extensions, Root Mean Square Propagation (RMSProp) and Adap-

tive Gradient Algorithm (AdaGrad), and computes individual adaptive learn-

ing rates for different parameters and hence preferred over Stochastic Gradient

Descent as suggested by in Kingma et al. [25].

2.7 Skip Connections

Skip Connections or Highway Networks are additional connections to

one or more layers present past the immediate next layer of nodes. “Skip” or

“highway” connections get the name from the functioning of this connection,

as it always connects nodes by skipping or jumping at least one layer of nodes.

Srivastava et al. [48] introduced highway networks that help retain in-

formation and prevent the loss of information and prevent the diminishing

gradient problem. He et al. [20] found that as the depth of the model in-
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creases, the loss and accuracy start do not vary, but on training it further,

the accuracy drops. They also talk about how overfitting was not the rea-

son for the sudden drop in accuracy in [20]. In order to avoid this problem,

He et al. propose a connection somewhat similar to a short circuit to pass

information from the early layers to the later layers directly not to lose the

relevance of information over the deep layers of the model. Orhan and Pitkow,

in their paper [41], discuss multiple ways in which “skip connections eliminate

singularities”, where singularities are irregularities in the model performance.

Past research works, as seen in [33] and [54], have been published,

which involve image denoising and enhancement, which successfully show how

skip connections have benefited the architecture. Drozdzal et al. [12] discuss

how these skip connections are important for their segmentation model for

biomedical images. Tong et al. [54] and Mao et al. [33] have successfully

proven that skip connections to their model leads to significant improvements

in results by just introducing them to their respective models.

2.8 Loss Functions

Related researches [5, 11, 23, 34] have used either used loss functions

usually like L1 Loss or Mean Square Error (MSE) Loss. For this thesis, we

intend to use those Loss functions. We would be extending our work to Elastic

Nets to study their effect on image denoising systems.

L1 Loss calculates the absolute difference between images, pixel-wise.

This property is advantageous as this loss will try to minimize the pixel-wise
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difference between the noisy image after denoising and the original image. In

an end-to-end processing system, if Iorig is the original image and Idenoised is

the output of the model, then the loss would be defined by the Equation 2.13.

L1 =
∑
|Iorig − Idenoised| (2.13)

L2 Loss or Mean Squared Error(MSE) computes the absolute squared

difference between images. Unlike L1 loss, MSE works towards generating

higher PSNR scores. This loss will minimize the pixel-wise difference between

the noisy image after denoising and the original image, by penalizing incorrect

pixels more heavily than those with values closer to the original image. In an

end-to-end processing system, if Iorig is the original image and Idenoised is the

output of the model, then the loss would be defined by the Equation 2.14.

L2(orMSE) =
1

n
·
∑
||Iorig − Idenoised||2 (2.14)

In the paper by Zhao et al. [62], they have discussed the limitations of

L2 loss. They discuss at length how it is not suitable in tasks involving image

quality as L2 loss assumes that the noise in images is independent of local

features. To utilize the benefits of both the loss functions, L1 loss and MSE,

while offsetting their flaws, we can use Elastic Net loss, where ElasticNet loss

is the barycentric weighted average of the L1 and L2 norms. It is defined by

the Equation 2.15.
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ElasticNet = λ · L1 + (1− λ) · L2 (2.15)

Where λ needs to be tuned to get the best results and should lie between

0 and 1. If λ is 0, then the loss calculated will be L2, and if λ is 1, the loss

computed will be L1.
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Chapter 3

Methodology

To denoise and further enhance images, to understand the underlying

image structure and context is of utmost importance. Segmentation algorithms

have been used to provide the location of objects of importance in an image in

the past. These algorithms are provided with enough information to learn the

context of the image and identify which regions of the image were important

for that task.

3.1 Hypothesis.

Our primary goal is to eliminate noise from images. To ensure only

noise is eliminated, understanding the context of the image is required. The

context of an image is extracted by passing the image through the U-Net [46]

model, a Convolutional Neural Network whose primary task is to segment

objects in an image. Here, we use this model to segment and identify noise

artifacts in the image. The output of the U-Net model is used in two ways,

with both methods being hypothesized and run independently.

In the first method, we made use of the output as an input to the outer

model. In the second method, the output was attached to the noisy image as
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an additional channel. Both the models only differ in this manner, while the

remaining architecture remained consistent.

The segmentation model forms a part of an end-to-end system. For

easier understanding, we will refer to the inner model as the U-Net model and

the remaining model as the outer model. This outer model is a convolutional

neural network. To ensure that the entire system trains optimally, without

facing the vanishing or exploding gradients problem, we have introduced skip

connections to this outer model. This helps ensure a robust working system.

To validate our hypothesis’s correctness, we checked all changes in im-

age quality by using the metrics, PSNR, and SSIM. We also used the Mixture

of Gaussians to represent the presence of multiple sources of noise in images.

Once we built our system using this artificial representation of noise, we tested

the system on unseen noise such as Speckle noise, Gaussian noise, a mixture

of Gaussian and Speckle noise, and Adversarial noise. With those experiments

being run on prototypes trained on MNIST and Fashion-MNIST datasets, we

were also able to extend it to ImageNet easily using transfer learning. Once

we realized the potential for the scalability of our proposed system, we ran

tests to evaluate the effectiveness of those scaled systems.

Apart from these tests, the processed “clean” images were be passed

through various systems that performed various computer vision tasks like

classification, object detection, and scene understanding to evaluate the ef-

fectiveness of the model. Evaluation of these images was done against the

effectiveness of images that were originally passed through the systems, and
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metrics for evaluation used here were metrics such as Precision, Recall, and

F1-Score.

3.2 Approach

We created a prototype that would initially work on small datasets,

which consisted of relatively smaller images. Once this prototype performed

consistently through the evaluation experiments, we scaled the prototypes to

work on a more complex dataset, ImageNet [8].

The original prototypes were also evaluated on the blind image denois-

ing and enhancement task and evaluated their performance against visually

unrecognizable adversarial noise.

The MNIST and Fashion-MNIST datasets were accessed primarily us-

ing PyTorch’s [42] torchvision package [35], whereas the ImageNet’s validation

set was downloaded from one of their archived pages and used with the help

of the torchvision package [35].

We used Python’s open-sourced package - PyTorch [42] to build, train,

and test our proposed architectures. Libraries like SciPy [24] and OpenCV

[4] have functions to calculate the Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM) of an image, respectively. These functions

were used to calculate each of the metric scores for every image. Our main

point of comparison was between images before and after being passed through

our proposed model. Any change in results was studied in-depth to understand
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Figure 3.1: Inner U-Net Model [46].

Figure 3.2: Baseline Encoder-Decoder Architecture without the inner segmen-
tation U-Net model.

the reason for the change. We then made use of evaluation methods that helped

us quantify the changes in images.

3.3 Architecture

The proposed architecture comprises of an inner model, U-Net, which

is highlighted in blue and which is explained in detail later, along with an

outer model. The outer model comprises of 2 regions - encoder(green) and
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Figure 3.3: Proposed Architecture that uses the output of the inner segmen-
tation U-Net algorithm, the Saliency Map, as input to the outer Encoder-
Decoder Architecture.

Figure 3.4: Proposed Architecture that uses the output of the inner segmen-
tation U-Net algorithm, the Saliency Map, along with the Noisy Image added
channel-wise as input to the outer Encoder-Decoder Architecture.
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decoder(orange). Skip connections are added from the encoding layers to cor-

responding decoding layers as seen in Figures 3.2, 3.3, and 3.4, in order to

prevent loss of information during the back-propagation stage. Figure 3.3 is

one proposed version of architecture that uses the output of the inner U-Net

model, the Saliency Map, as input to the outer Encoder-Decoder model. Fig-

ure 3.4 depicts another version of the proposed architecture that uses both the

Saliency Map and the noisy image appended channel-wise as an input to the

outer Encoder-Decoder model.

Figure 3.2 depicts a baseline version of the proposed architectures. This

architecture lacks the inner U-Net model in comparison to the proposed ar-

chitecture. We use this as a baseline to study the effect of the segmentation

model, U-Nets, on the task of content-aware image denoising and enhance-

ment.

The architecture that we proposed uses a segmentation architecture

called U-Net [46]. Noisy images are passed as inputs to this model. The in-

puts get processed through convolutional layers “Conv” and Maxpooling layers

“MP”. This continues until the remaining information reaches the encoding

layer. The up-sampling of information starts from there on, where information

gets passed through the Deconvolution “Deconv” and Un-max-pooling layers

“Un-MP”. Skip connections are added at each level, where the output from a

certain layer on the encoding side becomes an additional layer of input to the

decoding side. These connections prevent loss of gradients as they relay more

information and context to their adjoining layer. The output from this model
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Figure 3.5: Example of image transformation at various stages of the proposed
model, that uses the output of the U-Net model, the Saliency Map, as input
to the outer Encoder-Decoder model.

is a 2-dimensional image, which retains the shape of the input image. This

algorithm performs feature extraction in a larger end-to-end system, where

primarily, features extracted are patterns of noise artifacts in terms of the

content in the image.

A high-level description of the system we proposed comprises the inner

segmentation model U-Net [46] connected to an external CNN-based system.

This proposed model performs Context-Sensitive Image Denoising and En-

hancement. The U-Net model forms a sub-model of a larger outer end-to-end

image denoising system. For the outer model, we have chosen a Convolutional

Neural Network-based encoding-decoding system with skip connections as seen

in Figures 3.3 and 3.4. As far the inner segmentation model of U-Net goes, we

have used the architecture as proposed by Ronneberger et al. [46] and is also

depicted in Figure 3.1. A sample representation of what images looked like at

various stages of both our proposed systems, is shown in Figures 3.5 and 3.6

respectively.

The use of the segmentation architecture U-Net [46] in the proposed
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Figure 3.6: Example of image transformation at various stages of the proposed
model, that uses the output of the U-Net model, the Saliency Map, along with
the original noisy image appended channel-wise, as input to the outer Encoder-
Decoder model.

system would allow the model to understand the context of the image, which

would help maintain it. U-Nets are a preferred choice of segmentation archi-

tecture as they did not require masks to be provided during training as that

internal model created its version of the mask, based on the task at hand.

Once the model knows what is important and what is not, the process of de-

noising becomes easier. In essence, it tries to mimic the human visual system.

The human visual system is very good at looking past the unimportant bits

of information in an image and is trained to concentrate on the more impor-

tant things. The human visual system understands the perspective of what is

important and what is background noise.

We made edits to the U-Net architecture as defined by Ronneberger et

al. [46] in terms of the addition and removal of layers and various activation

functions but found the original architecture to perform best in comparison to

all other variants. We have used 32, 64, 128, 256, 512 filters for each encoding

layer to learn the various features from the input image to generate a Saliency

Map representing noise patterns with respect to the image content.
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Haque et al. [19] talks about using direct attention with a Convolutional

Neural Network (CNN) [29] based encoder and LSTM [21] based decoder.

Their analysis states that the attention mechanism works well for image de-

noising. In Ronneberger et al. [46], the U-Net model helps build the system

to find the important parts of that image. We intend to use that aspect of

the working of this model to detect the important bits of information in the

image, and with that information, remove those noisy bits.

On including the output of the segmentation model U-Net [46], the

outer model gets a better understanding of the structure of the image, which

helps build more context as it allows the model to focus on the noise patterns

in terms of the content in the image.
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Chapter 4

Experiments

In this section, we look into the search space of various parameters that

we have made use of in order to study the effectiveness of the proposed system.

In each sub-section, we have discussed every parameter used and how each of

them affects the effectiveness of the proposed system.

4.1 Types of Models

The architecture we are suggesting has two versions, which we intend

on studying and analyzing. As a base model, we make use of an end-to-

end autoencoder, which takes in a noisy image and returns a denoised and

enhanced version. We use this model as our base as it forms the “outer”

model of our architecture. We intend to make use of U-Nets to generate an

image representing the noise artifacts in the image and the underlying image

structure.

Figures 4.1 and 4.2, and 4.3 and 4.4 depict examples of the Saliency

Map generated from the original image from the MNIST dataset [29], and

Fashion-MNIST dataset [57] when noise was added to the original images

respectively.
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Figure 4.1: The Saliency Map of an image, depicting the number 7, taken from
the MNIST dataset, after being processed through the U-Net segmentation
model.

Figure 4.2: The Original image, depicting the number 7, taken from the
MNIST dataset, before being processed through the proposed architectures.
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Figure 4.3: The Saliency Map of an image, depicting a pair of trousers, taken
from the Fashion-MNIST dataset, after being processed through the U-Net
segmentation model.
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Figure 4.4: The Original image, depicting a pair of trousers, taken from the
Fashion-MNIST dataset, before being processed through the proposed archi-
tectures.

The two versions of the proposed architecture come from utilizing the

outputs of the segmentation model differently. The outputs of the segmen-

tation model get used directly as an input to the outer autoencoder model,

where the outer autoencoder model is trying to recreate a clean image from

the noise artifacts and underlying image structure.

The other version of the proposed architecture uses the segmentation

model’s output and appends it to the noisy image as an additional channel and

uses this image to recreate the clean image. Here, the goal is to let the model

identify and map noise artifacts directly from the additional image channel and

clean it in a context-sensitive manner using the underlying image structure.
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The main difference between the two versions of the proposed architec-

ture is that in the first version, the system relies on the Saliency Map generated

from the input image, whereas the second version relies on the Saliency Map

along with the original noisy image. The architectures for the two models are

depicted in Figures 3.3 and 3.4.

4.2 Types of Datasets

For training and testing the denoising process of images, we use the

MNIST [29] and Fashion-MNIST [57] datasets. The MNIST dataset was of

paramount interest when created as they formed the basis for the training

of Convolutional Neural Networks in the past. The Fashion-MNIST dataset

was created to introduce more complexity into images of that size. Both of

these datasets provide enough complexity to prototype our system. Finally,

we introduced the ImageNet dataset to our prototype architectures to check

if they scaled well to a complex dataset, consisting of thousands of everyday

color images. The additional channels introduce more complexity than single-

channel images while focusing on the object in question, just like MNIST and

Fashion-MNIST. A sample of images from the various datasets are seen in

Figures 4.5, 4.6, and 4.7 respectively.
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Figure 4.5: Examples of images taken from the MNIST dataset [29].
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Figure 4.6: Examples of images taken from the Fashion-MNIST dataset [57].
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Figure 4.7: Examples of images of dogs taken from the ImageNet dataset [8].

4.3 Image Sizes

For a thorough understanding of image structure, and to check for

image size limitations, we train and evaluate our system on three image sizes
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as mentioned below:

• 28 x 28 original image with padding of 2 on either side bringing the

image size to 32 x 32.

• 56 x 56 original image with padding of 4 on either side bringing the

image size to 64 x 64.

• 112 x 112 original image with padding of 8 on either side bringing the

image size to 128 x 128.

As mentioned earlier, we worked with the image sizes to check the

effectiveness of the proposed system on MNIST [29], when the images were

resized from 32x32 to 64x64 and 128x128, respectively. By doing this, we were

trying to study how noise, generated by image resizing, affects our system’s

effectiveness. MNIST and Fashion-MNIST both were resized to the image

sizes mentioned above to check if the noise generated by the resizing of a more

complex dataset affects the system more than noise generated from resizing a

relatively more uncomplicated dataset.
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4.4 Noise Types

Figure 4.8: Effect of Gaussian, Local Gaussian, Poisson, Salt and Pepper, and
Speckle Noise, when added to an image. This is a horizontal representation of
Figure 1.1.

Creating a universal image denoising system is a hard problem to solve.

Understanding the various patterns formed by the different noise types gave

an insight into solving this problem differently. Figure 4.8 shows how various

types of noise affect images.

On closely observing Figure 4.8, we can notice the following:

1. Gaussian Noise and Salt and Pepper Noise can be represented as a ver-

sion of Local Gaussian Noise.
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2. Poisson Noise can be represented as a version Speckle Noise.

3. Speckle Noise can be represented as a function of Gaussian Noise.

On observing how a Gaussian can represent most types of noise, we

tried to model noise as a Mixture of Gaussians (MoG). These Gaussians were

empirically defined, such that they represented a combination of the various

noise types, as seen in Figure 4.8. We made use of two Gaussian distributions,

one that was high in intensity but with a low standard deviation and the other

one had lower-intensity but higher standard deviation, to represent the various

types of noise types.

Choosing types of noise which the proposed system learns to understand

is crucial in deciphering noise universally. We have made use of Gaussian noise,

speckle noise, a combination of Gaussian and speckle noise, noise represented

as a mixture of Gaussians, and adversarial noise to study the trained model’s

effectiveness on unseen noisy images. On getting a system to perform optimally

on these various types of noise, we build a system that could be scaled to blind

content-aware denoising and enhancing system. Figure 4.9 depicts multiple

types of noise to an image of number 7, taken from the MNIST dataset [29].

Gaussian noise, Speckle noise, a combination of Gaussian and Speckle noise,

noise modeled as a Mixture of Gaussians, and Adversarial (FGSM) noise were

added to the original image are depicted in Figure 4.9.
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Figure 4.9: Effect of different type of noise on the original image of a number 7,
taken from the MNIST dataset. Gaussian noise, Speckle noise, a combination
of Gaussian and Speckle noise, noise modeled as a Mixture of Gaussians and
Adversarial (FGSM) noise added to the original image.
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4.5 Types of Losses

To train our systems, we have made use of various types of loss functions

to test which loss types help speed up the convergence process while retaining

its performance accuracy. We have made use of the L1 loss, L2 or MSE loss,

and ElasticNet loss with a λ of 0.25, 0.5 and 0.75 as seen in the Equations 4.1,

4.2, and 4.3

• L1 Loss:

L1 =
∑
|Iorig − Idenoised| (4.1)

where Iorig is the original image and Idenoised is the output of the model

• Mean Squared Error (MSE) or L2 Loss:

L2(orMSE) =
1

n
·
∑
||Iorig − Idenoised||2 (4.2)

where Iorig is the original image and Idenoised is the output of the model

• Elastic Loss with λ = 0.25, 0.5, and 0.75:

ElasticNet = λ · L1 + (1− λ) · L2 (4.3)

4.6 Optimizer Types

We have made use of two types of optimizers in our training and testing

process - Stochastic Gradient Descent and Adam Optimizer. We found that

both optimizers perform optimally, but Adam optimizer was a better optimizer
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Figure 4.10: Loss curve of the Baseline Encoder-Decoder Model when it is
trained with the Adam optimizer.

to use as the model converged faster. The hyperparameter tuning was only

limited to the learning rate, unlike in the case of Stochastic Gradient Descent,

which required tuning for momentum along with learning rate, as seen in

Figures 4.10 and 4.11 respectively.
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Figure 4.11: Loss curve of the Baseline Encoder-Decoder Model when it is
trained with the Stochastic Gradient Descent optimizer.

4.7 Skip Connections

For the outer end-to-end autoencoder model, we propose the addition

of skip connections as one version and the absence as another.

Skip connections, also referred to as highway networks, connect from

one layer to another, but only by skipping at least one layer. This connection

helps retain gradients during the backpropagation step, and they are extremely

beneficial in cases where the layers are deep, where the chance of vanishing

gradients is possible. This lets us understand if the facilitation of gradients

with skip connections helps speed up convergence and if it affects the working

performance of the proposed model.
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In Figure 4.12 we notice how quickly the gradients converge in com-

parison to Figure 4.13 where the gradients bounce back and forth, causing the

loss to vary, instead of converging.

Figure 4.12: Loss curve of the Baseline Encoder-Decoder Model when skip
connections were added to the architecture.
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Figure 4.13: Loss curve of the Baseline Encoder-Decoder Model when skip
connections were not a part of the architecture.
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Chapter 5

Results and Discussion

5.1 Evaluation Process

For the evaluation process of the images, we made use of the following:

1. Evaluating the change in image quality with the help of metrics such as

PSNR and SSIM.

2. Evaluating the effectiveness of computer vision tasks like object detection

and classification when the images are denoised and enhanced using our

proposed architectures.

3. Evaluating the effectiveness of the proposed system on unseen noise,

where the noise was modeled as a Mixture of Gaussians (MoG).

4. Evaluating the effectiveness of the proposed system, trained on noise

modeled as a Mixture of Gaussians, on visually invisible Adversarial

noise (FGSM).

5. Evaluating the effectiveness of the proposed architectures, trained on

MNIST [29] and Fashion-MNIST [57] datasets with noise modeled as a

Mixture of Gaussians.
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The above-mentioned evaluation processes highlight different aspects

to assess the proposed system. We look into each of the evaluating processes

in depth below:

1. Use of signal-structure metrics to evaluate changes in the image quality.

The metrics used were:

(a) PSNR (Peak Signal-to-Noise Ratio) : This term is defined

as a ratio between the maximum possible signal strength and the

amount of noise that affects the quality of an image. This ratio is

calculated in the logarithmic scale due to existence of wide dynamic

range in images. The formula to calculate PSNR is expressed below:

PSNR = 20 · log10
SIGmax√
MSE

(5.1)

MSE =
1

mn
·

m∑
rows=1

n∑
columns=1

||Iorig − Idegraded||2 (5.2)

where,

• SIGmax is the maximum signal strength of the original image

• MSE is the Mean Squared Error

• Iorig is the image data of the original image

• Idegraded is the image data of the degraded image in question

• m is the number of rows in the image

• n is the number of columns in the image
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(b) SSIM (Structural Similarity Index) [56]: It is a method to

measure the similarity between two images in terms of factors like

contrast, luminance, and structural context. It is viewed as a qual-

ity measure for an image being compared to the original image,

which in these cases, is regarded as an ideal image. This metric

evaluates the images on structural metrics instead of the absolute

difference in pixel values, as seen in PSNR. According to Wang et

al. [56], SSIM can be calculated using the following formulae:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (5.3)

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(5.4)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(5.5)

s(x, y) =
σxy + C3

σxσy + C3

(5.6)

where,

• x is the degraded image in question

• y is the original image

• l is the luminance term

• c is the contrast term
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• s is the structural term

• µx is the local means of the degraded image

• µy is the local means of the original image

• σx is the local standard deviation of the degraded image

• σy is the local standard deviation of the original image

• σxy is the local cross-covariance for the images x and y

if α = β = γ = 1 and C3 = C2/2, we get the following formula:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5.7)

2. We made use of pre-trained models, fitted to perform optimally on the

dataset in question in the following manner:

(a) Classification: the process of reading an image, analyzing it to

map the various objects in the image to a certain class depending

on patterns found on that object. We would be making use of the

model as defined by Byerly et al. in their paper [6].

For this process, we used a pre-trained ResNet-based Convolutional

Neural Network (CNN) fitted to perform optimally on the Fashion-

MNIST dataset. We then passed the input images through our

proposed network and then through the classifier, as mentioned

above, and recorded metrics like Precision, Recall, and F1-scores in

both cases.
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i. Precision : It represents the fraction of correctly predicted

outputs to the total predicted positive outputs. It is computed

using the following formula:

Precision =
Number of True Positives

Number of True Positives+Number of False Positives

(5.8)

ii. Recall : It represents the fraction of correctly predicted out-

puts to all the observations in the actual class. It is computed

using the following formula:

Recall =
Number of True Positives

Number of True Positives+Number of False Negatives

(5.9)

iii. F1 score : This score is a measure of the evaluation tests’

accuracy. It is the weighted harmonic mean of the above defined

Precision and Recall as shown below:

F1 Score =
2 · Precision ·Recall
Precision+Recall

(5.10)

(b) Object detection: the task of detecting instances of objects of a

certain class within an image.

For this process, we used an R-CNN-based, and InceptionNet [50]

based pre-trained network fitted to perform optimally on the dataset
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in use, and then record IoUs and mAP scores in both cases to com-

pare the effectiveness of the change in inputs brought about by our

proposed network.

(c) Scene understanding: this computer vision is a challenging task,

but has critical applications in autonomous driving and virtual re-

ality as seen in [59]. The architecture discussed in this paper is

what we will be using to test this application.

3. By studying the effect of the proposed model on unseen noise, we made

tested the extent to which our system performed blind denoising and

enhancement. We built this system by replicating the occurrence of

multiple patterns of noise captured during the image processing pipeline

and caused by the environment. This was done with the help of a mixture

of Gaussians and tested on multiple types of noise unseen by the model

during training - Speckle noise, Gaussian noise, a Mixture of Gaussians,

and Speckle noise, and adversarial noise.

4. By evaluating the effectiveness of the proposed system on Adversarial

noise, like FGSM noise, delves into how well the proposed system per-

forms in terms of context-sensitive image denoising and enhancement.

Since adversarial noise is invisible to the human eye, the removal of this

noise helps prevent state-of-the-art models to not suffer in effectiveness,

affected by noisy inputs.

5. Studying and evaluating the effect of scaling the prototype to a larger
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and more complex dataset like ImageNet [8] that has more multiple

channels instead of single-channel images as seen in MNIST [29] and

Fashion-MNIST [57].

Stopping criteria for the proposed architecture could be when improve-

ments in image quality would provide better results on the same model. By

understanding how the image structure and context change after passing them

through our proposed network would also give insight into where the system

would fail to work as expected.

5.2 Results

The evaluation plans mentioned above were tried, and the results for

each of those tests are as seen below. Tables 5.1 and 5.2 highlights the results of

metrics, PSNR and SSIM, on the MNIST and Fashion-MNIST datasets when

the outer model had no skip connections and had skip connections respectively.

In Tables 5.1 and 5.2, “AE”, “SAL” and “CONCAT” reference the baseline

autoencoder, proposed architecture using the output of the inner segmentation

model (Saliency Maps), and the proposed architecture using the output of the

inner segmentation model (Saliency Maps) along with the original noisy image

respectively.

With the absence of skip connections in the models, trained on MNIST,

PSNR scores increased from 25.6080, for the baseline architecture, to 27.5111

and 28.1987 whereas SSIM scores increased from 0.9529, for the baseline ar-
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chitecture, to 0.9611 and 0.9672 for the two proposed systems respectively

as seen in Table 5.1. When testing the system, trained on Fashion-MNIST,

PSNR scores increased from 19.5992 to 19.7682 and 21.6835, whereas SSIM

scores increased from 0.6700 to 0.6902 and 0.7986 for the two proposed archi-

tectures. The absence of skip connections in the models led to the extraction of

sub-optimal features that, in turn, led to blank reconstructions of the images,

as seen in Figures 5.1 and 5.2.

Similarly, when skip connections were added as a part of the baseline

and proposed architectures, testing models trained on MNIST increased PSNR

scores from 31.0362 to 35.1684 and 36.0127, and SSIM scores increased from

0.9632 to 0.9927 and 0.9930, where the highest scores correspond to the pro-

posed architecture that uses the output of the inner segmentation U-Net model

along with the original noisy image as input for the reconstruction process of

the denoised image. On testing the models trained with the Fashion-MNIST

dataset, PSNR scores increased from 24.2192 to 27.9600 and 31.2166, and

SSIM scores increased from 0.9116 to 0.9351 and 0.9530. Regardless of the

addition of skip connections to the architecture, the PSNR and SSIM scores

are higher than those of the baseline architecture, where the model using

the Saliency Map along with the noisy image as input to the outer Encoder-

Decoder system performs more effectively than its counterpart. These results

are observed in Table 5.2. Overall, architectures built with skip connections

on MNIST, and Fashion-MNIST dataset had the best PSNR scores of 36.0127

and 31.2166, and the best SSIM scores of 0.9930 and 0.9530, respectively.
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Figure 5.1: Instances where the proposed model reconstructed a blank image,
when training on the MNIST dataset. Here, the top image is the noisy image,
middle image is the expected denoised image as an output from the proposed
model, and the bottom image is the original image.
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Figure 5.2: Instances where the proposed model reconstructed a blank image,
when training on the Fashion-MNIST dataset. Here, the top image is the noisy
image, middle image is the expected denoised image as an output from the
model, and the bottom image is the original image.
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Table 5.1: Performance of the Baseline Architectures and the two proposed
Architectures, when Skip Connections were not a part of the Outer Encoder-
Decoder Architecture.

Dataset Metric Image Type AE SAL CONCAT

MNIST
PSNR

Noisy Images 18.7520 18.7511 18.7536
Denoised Images 25.6080 27.5111 28.1987

SSIM
Noisy Images 0.2990 0.2990 0.2990

Denoised Images 0.9529 0.9611 0.9672

Fashion-MNIST
PSNR

Noisy Images 18.7522 18.7493 18.7537
Denoised Images 19.5992 19.7682 21.6835

SSIM
Noisy Images 0.4353 0.4354 0.4355

Denoised Images 0.6700 0.6902 0.7986

Table 5.2: Performance of the Baseline Architectures and the two proposed Ar-
chitectures, when Skip Connections were added as a part of the Outer Encoder-
Decoder Architecture.

Dataset Metric Image Type AE SAL CONCAT

MNIST
PSNR

Noisy Images 18.7509 18.7519 18.7517
Denoised Images 31.0362 35.1684 36.0127

SSIM
Noisy Images 0.2990 0.2990 0.2990

Denoised Images 0.9632 0.9927 0.9930

Fashion-MNIST
PSNR

Noisy Images 18.7523 18.7540 18.7532
Denoised Images 24.2192 27.9600 31.2166

SSIM
Noisy Images 0.4354 0.4354 0.4354

Denoised Images 0.9116 0.9351 0.9530

On delving deeper into the results of the proposed architectures, the

model that takes the U-Net model’s output, Saliency Maps, and the original

noisy image performs better than the proposed architecture that only uses

the Saliency Maps for the reconstruction of denoising image. We believe that

the introduction of the original noisy image in the reconstruction process sup-

plements the process by introducing more context of the image. The U-Net
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segmentation model identifies noisy pixels in terms of the content of the image.

When this additional information gets added channel-wise, it aids the model

in building a system to correctly identify and remove noise while retaining the

context of the image.

While running our experiments, we made use of various loss functions

- L1 loss, L2 loss and ElasticNet loss using the L1 and L2 loss with λ of 0.25,

0.5 and 0.75. In the majority of the cases, models using the L2 loss function

perform consistently and optimally. When any of the other loss functions

were used, they were either inconsistent with their results or generated blank

reconstructions of the image. Introducing skip connections into the proposed

architecture help reduce such instances.

We initially trained our baseline architectures with Stochastic Gradient

Descent(SGD) as an optimizer, which took in learning rates and momentum

values. Once this model was tuned to perform optimally, we did not change

any hyperparameters to analyze the effectiveness of different architectures un-

der the same conditions. On running all experiments with Stochastic Gradient

Descent(SGD), we ran all the experiments using Adam optimizer. The Adam

optimizer combines the advantages of two other momentum-based Stochas-

tic Gradient Descent(SGD) extensions, Root Mean Square Propagation (RM-

SProp), and Adaptive Gradient Algorithm (AdaGrad), where it computes in-

dividual adaptive learning rates for different parameters. Hence, we only made

use of Adam optimizer to run our tests, instead of using the RMSProp and

AdaGrad optimizers.
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With the introduction of Adam optimizer, the models converged faster

than they did with Stochastic Gradient Descent(SGD) while maintaining the

models’ effectiveness. Models trained with the Stochastic Gradient Descent

(SGD) optimizer did not perform consistently, whereas models trained with the

Adam optimizer had performed consistently. Instances where the models did

not optimally converge produced outputs, as seen in Figures 5.1 and 5.2, where

a model trained with Stochastic Gradient Descent (SGD) failed to generate

any output.

While running our various experiments, we noticed that the models

converged well before the 100th epoch for the MNIST and Fashion-MNIST

datasets. For that reason, we introduced an early stopping criterion for all our

models. If the validation loss did not significantly reduce over a fixed set of

epochs (15, arbitrarily picked), the program would save parameter values that

produce the lowest loss value, and the model would stop training. If the early-

stopping mechanism was not triggered, the model would end after training at

the end of 100 epochs.

We also ran experiments by changing the image size of the MNIST and

Fashion-MNIST datasets from 32x32 (with padding) to 64x64 and 128x128.

Images were upsampled using the Bilinear Interpolation mechanism, instead

of the Bicubic interpolation as the speed of execution became a vital factor to

consider, with a very little difference in effectiveness. The models’ effectiveness

remained consistent even when the size of the images was changed, proving

that the proposed algorithm would work efficiently over various image sizes.
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Figure 5.3: Instance of an Image from the MNIST [29] dataset, depicting
number 9.

The proposed architecture, which used the original noisy image with

the Saliency Map, generated by the inner U-Net model, generally performed

better than the other proposed model, and both proposed models performed

better than the baseline models.
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Figure 5.4: Instance of an Image from the Fashion-MNIST [57] dataset, de-
picting a pullover.

Figure 5.5: Instance of an Image from the MNIST [29] dataset, depicting
number 9, as seen in Figure 5.3, with noise added to the image.
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Figure 5.6: Instance of an Image from the Fashion-MNIST [57] dataset, de-
picting a pullover, as seen in Figure 5.4, with noise added to the image.

Figure 5.7: Saliency Map generated for the image as seen in Figure 5.3, taken
from the MNIST [29] dataset, when it is passed through the inner U-Net
segmentation model. Here, we can see the noise patterns mapped in terms of
the context of the image, in this case, the number 9.
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Figure 5.8: Saliency Map generated for the image as seen in Figure 5.4, taken
from the Fashion-MNIST [57] dataset, when it is passed through the inner
U-Net segmentation model. Here, we can see the noise patterns mapped in
terms of the context of the image, in this case, a pullover.

Figures 5.3 and 5.4 depict the original images from the MNIST [29] and

FashionMNIST [57] datasets. On adding noise to them, artificially, they look

similar images as seen in Figures 5.5 and 5.6. Once these images with noise are

passed through the proposed model, they output saliency maps that highlight

the noise artifacts in the image and depict relevant structural information of

the object in the image. On analyzing the saliency maps, as seen in Figures

5.7 and 5.8, we notice the structure of the object being highlighted along with

the presence of noise around it. The output of the inner U-Net system changes

with the amount and type of noise added to those images. This disparity is

seen between Figures 5.7 and 5.8, where the two images depicted, is a result

of different type of noise being added to both images from respective datasets.
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Figure 5.9: The denoised and enhanced version of the noisy Image as seen in
Figure 5.5, taken from the MNIST [29] dataset, when it is passed through a
proposed architecture. Here, we can see how well-defined the image context is
along with the extent to which denoising was done.

The output of the inner segmentation U-Net model, Saliency Map, is

essential in providing a context-aware enhancement system. If these inner

models do not depict or learn the correct patterns of noise and image struc-

ture, the output deviates from the ground truth. Defining a system that can

optimally recognize noise artifacts and image structure pave the way for scal-

ing of working of the system. When the Saliency Maps generated from system

trained with noise modeled as a Mixture of Gaussians, cause the proposed sys-

tem to perform optimally, testing the system’s effectiveness on a more complex

dataset, would suggest the importance of the U-Net model for feature extrac-

tion.
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Figure 5.10: The denoised and enhanced version of the noisy Image as seen
in Figure 5.6, taken from the Fashion-MNIST [57] dataset, when it is passed
through a proposed architecture. Here, we can see how well-defined the image
context is along with the extent to which denoising was done.

Figures 5.9 and 5.10 show the final, denoised and enhanced output of

the proposed model. On the enhanced image from the MNIST dataset [29] as

seen in Figure 5.9, we notice that the line created within the circular section of

the number “9” in the original image has been removed to create an image that

is more aesthetically pleasing and closer to what the number “9” should look.

On placing them next to each other, we can notice the slight improvements

brought about by the proposed model, as seen in Figure 5.11 that depicts the

noisy image, denoised and enhanced image and ground truth respectively.
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Figure 5.11: A combined version of the image from Figure 5.3, taken from
the MNIST [29] dataset, that depicts the image at three different stages of
the model, where the topmost image is the original noisy image, the image in
between is the denoised and enhanced image and the image at the bottom is
the original image before noise was added to it.
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On taking a closer look at the Fashion-MNIST example, one can notice

the color gradient has become smoother in the enhanced image compared to

the ground truth. We also notice how the pixels around the letters “Lee” on

shirt appear more blended in comparison. Subtle changes like this are the

enhancements brought over by the proposed system. On placing them next to

each other, one can notice these subtle improvements, as seen in Figure 5.12.

The perturbations brought about in the inputs image, does not accurately

depict the letters “Lee” visibly, but the saliency map generated by the U-Net

model identifies the characters, as seen in the Figure 5.8.

When dealing with evaluations based on computer vision tasks, we have

discussed and analyzed the results and inferred reasons for developing better

and more optimized machine learning and deep learning algorithms.

We took the test set of the Fashion-MNIST dataset [57] and used these

images as input to a pre-trained ResNet model [20]. This pre-trained ResNet

model was trained to generalize on Fashion-MNIST’s training set.
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Figure 5.12: A combined version of the image from Figure 5.3, taken from the
Fashion-MNIST [57] dataset, that depicts the image at three different stages
of the model, where the topmost image is the original noisy image, the image
in between is the denoised and enhanced image and the image at the bottom
is the original image before noise was added to it.
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Table 5.3: Metric scores of the effectiveness of the original test images on the
pretrained model on the FashionMNIST dataset.

Class ID Class Name Precision Recall F1-score
0 T-shirt/top 0.890 0.870 0.880
1 Trouser 0.960 0.970 0.965
2 Pullover 0.880 0.850 0.865
3 Dress 0.920 0.890 0.905
4 Coat 0.920 0.910 0.915
5 Sandal 0.980 0.990 0.985
6 Shirt 0.850 0.810 0.830
7 Sneaker 0.970 0.950 0.960
8 Bag 0.990 0.990 0.990
9 Ankle boot 0.960 0.970 0.965
Average Scores 0.932 0.920 0.926

Once the model performed optimally on the validation set, we used

the test set and recorded metric results for all the classes, as seen in Table

5.3. The model was able to detect and classify each of the images into their

respective classes. Once this model performed optimally on the original test

set, we passed all the images of the test set through our proposed architecture

and re-recorded the same metrics in Table 5.4, we saw an improvement in the

metric scores overall. On comparing the metric scores from both the scenarios,

we notice that the average Precision, Recall, and F1-scores have improved from

0.932, 0.920, and 0.926 to 0.955, 0.947, and 0.951, respectively. We observe an

improvement of 2.3%, 2.7%, and 2.5% on the average Precision, Recall, and

F1-scores, respectively.
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Table 5.4: Metric scores of the effectiveness of the enhanced test images on the
pretrained model on the FashionMNIST dataset after being passed through
the proposed system.

Class ID Class Name Precision Recall F1-score
0 T-shirt/top 0.890 0.880 0.885
1 Trouser 0.960 0.970 0.965
2 Pullover 0.930 0.890 0.910
3 Dress 0.940 0.930 0.935
4 Coat 0.970 0.980 0.975
5 Sandal 1.000 0.990 0.995
6 Shirt 0.920 0.910 0.915
7 Sneaker 0.970 0.950 0.960
8 Bag 0.990 0.990 0.990
9 Ankle boot 0.980 0.980 0.980
Average Scores 0.955 0.947 0.951

To ensure the proposed model performs optimally on unseen images,

we built a system to remove as many types of noise as possible. To reach

this stage, we built a noise model using a Mixture of Gaussians that would

represent multiple patterns of noise. The resulting images looked similar to

those seen in Figures 5.13 and 5.14.

75



Figure 5.13: Instance of an Image from the MNIST [29] dataset, depicting
the number 7, with noise modeled as a Mixture of Gaussians is added to the
image.

Figure 5.14: Instance of an Image from the Fashion-MNIST [57] dataset, de-
picting a shoe, with noise modeled as a Mixture of Gaussians is added to the
image.
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To test the effectiveness of this blind denoising feature, we tested the

system on images with unseen noise added to them. Figures 5.15 and 5.16

depict the original image and Saliency Map generated, and a stacked image of

noisy, denoised and enhanced and original images when the model was tested

on images with unseen noise (a combination of Speckle and Gaussian noise)

added to it. From Figure 5.16, we can notice the finesse with which the model

denoised the image.

On running the same test on the Fashion-MNIST dataset, the model’s

effectiveness was similar to that when testing MNIST data. Figures 5.17 and

5.18 depict the original image and Saliency Map generated, and a stacked

image of noisy, denoised and enhanced and original images when the model

was tested on images with unseen noise (a combination of Speckle and Gaussian

noise) added to it. During the process of denoising the Fashion-MNIST image

[57] with unseen noise added to it, the Saliency Map, as seen in Figure 5.17, we

notice how the pattern of noise depicted in terms of the context of the image,

in this case the shape of the shoe.
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Figure 5.15: The original image and the corresponding Saliency Map generated
from the inner segmentation U-Net model, taken from the MNIST dataset [29]
to which we added a combination Speckle and Gaussian noise.
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Figure 5.16: An image with the noisy image, denoised and enhanced image
and original image stacked in that order for a clear representation of the image
during the process, when a combination Speckle and Gaussian noise was added
to an image from the MNIST dataset [29].
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Figure 5.17: The original image and the corresponding Saliency Map generated
from the inner segmentation U-Net model, taken from the Fashion-MNIST
dataset [57] to which we added a combination Speckle and Gaussian noise.
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Figure 5.18: An image with the noisy image, denoised and enhanced image
and original image stacked in that order for a clear representation of the image
during the process, when a combination Speckle and Gaussian noise was added
to an image from the Fashion-MNIST dataset [57].
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Table 5.5: PSNR and SSIM metric scores for models trained with noise mod-
eled as a Mixture of Gaussians on the MNIST and Fashion-MNIST datasets
respectively, when tested on images from the ImageNet dataset.

Trained on Dataset Metric Noisy Images Denoised Images

MNIST
PSNR 13.7270 19.5170
SSIM 0.2175 0.8840

Fashion-MNIST
PSNR 12.1119 18.5690
SSIM 0.2130 0.6890

To test the system for improvements in metrics on images with unseen

noise artifacts, we test the model that was trained on the MNIST and Fashion-

MNIST datasets using noise modeled as a Mixture of Gaussians (MoG). Any

improvements in metric scores, in this scenario, correlates to noise modeled

as a Mixture of Gaussians (MoG) to depict the generic occurrence of noise in

images correctly.

Once we got models that performed optimally, we tested these models

on a larger and complex dataset, ImageNet [8]. On testing the effectiveness

of our system trained on the MNIST and Fashion-MNIST dataset with noise

modeled as a Mixture of Gaussians. Using ImageNet dataset’s validation set

as our test data, we got results that showed significant improvements over

systems built over both datasets, MNIST and Fashion-MNIST. Improvements

in PSNR and SSIM metric scores can be seen in Table 5.5. The PSNR and

SSIM scores calculated on the system trained with the MNIST dataset have

better results, 19.5170 and 0.8840, respectively than with the system trained

with the Fashion-MNIST dataset.
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We believe that the added complexity introduced by Fashion-MNIST

compared to MNIST was the reason for the relatively better performance.

From these tests, we can infer a much better performance on unseen images if

the system trains from first principles using the ImageNet dataset. The added

complexity and high amount of data points would help the model generalize

more optimally.

Until this point, we have only discussed the effect of noise affecting

images visibly. Szegedy et al. [51] and Nguyen et al. [40] discuss how a small

amount of noise perturbations, when added to images, does not affect the vi-

sual structure of the image, but this small amount of perturbations are enough

to confuse complex deep neural networks. We utilized one such perturbation,

FGSM (Fast Gradient Sign Method). Linearity, introduced in the inner layers

of the model and high dimensionality of input features, is enough to generate

this type of noise in images. Being able to perform context-aware denoising

in such situations is of high importance, as this type of noise introduces very

little to no changes in images visible to the human eye.

Goodfellow et al. [18] defines FGSM as:

advx = x+ ε ∗ sign(∇x · J(θ, x, y)) (5.11)

Where,

• advx represents the Adversarial image
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• x represents the original input image

• y represents the original input label

• ε represents the multiplier that ensures that the perturbations are small

• θ represents model parameters

• J represents the loss

This type of noise occurs when the ε values are very low. To test the

effectiveness of our proposed system, we tested the system against multiple

values of ε ranging from 0 to 0.3. where extreme visible changes are observed

around 0.3. We made use of a pre-trained “LeNet” model, defined by LeCunn

et al. [29], that classified the digits in the following two scenarios:

1. Original Images affected with Adversarial (FGSM) noise

2. Original Images affected with Adversarial (FGSM) noise after being

passed through proposed model, pretrained with noise represented as

a mixture of Gaussians.

To test the Fashion-MNIST dataset being affected by adversarial noise,

we used a pre-trained ResNet model, fine-tuned to fit the Fashion-MNIST data

distribution and tested similar to the process used with MNIST [29].
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Figure 5.19: The Accuracy-Epsilon plot for values of epsilon ranging from 0 to
0.3, where the accuracy is of a classification model on the MNIST dataset [29].
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Figure 5.20: The Accuracy-Epsilon plot for values of epsilon ranging from 0
to 0.3, where the accuracy is of a classification model on the Fashion-MNIST
dataset [57].
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Figure 5.21: Examples of images from the test set that were affected by FGSM
noise and classified by a pretrained LeNet model. This image depicts the image
being tested, with its ground truth and predicted values displayed above the
image, in that order respectively. The images were taken from the MNIST
dataset [29].
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Figure 5.22: Examples of images from the test set that were affected by FGSM
noise, passed through the proposed system, and then classified by a pretrained
LeNet model. This image depicts the image being tested, with its ground truth
and predicted values displayed above the image, in that order respectively. The
images were taken from the MNIST dataset [29].
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Figure 5.23: Examples of images from the test set that were affected by FGSM
noise and classified by a pretrained ResNet model. This image depicts the
image being tested, with its ground truth and predicted values displayed above
the image, in that order respectively. The images were taken from the Fashion-
MNIST dataset [57].
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Figure 5.24: Examples of images from the test set that were affected by FGSM
noise, passed through the proposed system, and then classified by a pretrained
ResNet model. This image depicts the image being tested, with its ground
truth and predicted values displayed above the image, in that order respec-
tively. The images were taken from the Fashion-MNIST dataset [57].

In both the plots, 5.19 and 5.20, there is a significant improvement in

the classification accuracy after the noisy images are denoising and enhanced

using our proposed system. The difference in performance accuracy is much

higher in MNIST in comparison, and we can infer from Figure 5.19 that at

an epsilon value of 0.3, the classification performance drops significantly to

20% versus around 65% in the other scenario. A few examples are depicted

in Figures 5.21 and 5.22 that are taken from MNIST and 5.23 and 5.24 that

are taken from Fashion-MNIST. These depict images with their ground truth
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and predicted class mentioned above the image. We can see how numbers that

are easily identifiable by us humans are misclassified with the smallest epsilon

value.

Figures 5.25 and 5.26 depict images from MNIST and Fashion-MNIST

respectively, where the topmost image is the one affected with the perturba-

tions, the middle one is the denoised and enhanced version of the image found

as an output of the proposed model, and the bottom-most image is the original

image. One can notice how there seem to be deceivingly no visual changes in

the image affected by noise, and its similarity to the original image. As the

epsilon value is increased in Equation 5.11, the effect can be noticed visually.
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Figure 5.25: An image with the noisy image, denoised and enhanced image,
and original image stacked in that order for a clear representation of the image
during the process of denoising, when a Adversarial (FGSM) perturbations was
added to the image, taken from the MNIST dataset [29].
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Figure 5.26: An image with the noisy image, denoised and enhanced image,
and original image stacked in that order for a clear representation of the image
during the process of denoising, when a Adversarial (FGSM) perturbations was
added to the image, taken from the Fashion-MNIST dataset [57].
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Chapter 6

Future Work

Given the time and scope of this thesis, we were able to run experi-

ments with most of the hyperparameters set initially. An extension to this

study would be to look into each model’s efficacy, by fine-tuning each models’

hyperparameters. Apart from fine-tuning the hyperparameters, the vanilla

convolutional layers in the encoding stage could be replaced by more complex

and deeper networks, such as those found in the feature extraction layers of

the ResNet model. We could also look into replacing the outer model’s de-

coding layers from CNN-based to LSTM-based layers. Changes in the outer

model’s decoding structure can be made by introducing the LSTM model and

the self-attention mechanism. This could improve the reconstruction process

by generating a finer content-aware denoised and enhanced image.

Improvements in representing the multiple noise patterns, as a mixture

of Gaussians, would help build a system that would perform blind denoising

and enhancing. Ideally, we aimed to build a blind denoising system, blind

because this system could ideally denoise all possible types of noise artifacts

present in images.

One could also look into image size-independent denoising and enhanc-
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ing the system. Ideally, not all image datasets have the same image size.

Converting every image to a standard size, followed by performing an image

to image conversion (noisy to clean) and then reconverting it back to its orig-

inal size, would be an essential goal to accomplish. While working on the

denoising process in this case, one would also have to account for noise gen-

erated during the upsampling and downsampling process. Only then will the

system indeed be size-independent.

To build a scalable denoising system capable of denoising and enhanc-

ing multiple types of images, training the proposed architecture on a large and

complex dataset like ImageNet from first principles might prove more effec-

tive than transfer learning from models built on MNIST and Fashion-MNIST

datasets.

In the process of this study, we have only scratched the surface with

adversarial noise. Dealing with adversarial noise and deep fake images, gener-

ated by masking and mapping features of one image on the other, can make

this problem extremely difficult to use. With every image, one would have to

check for the presence of adversarial noise and if the image appears to be a

deep fake. Due to the study’s limitation of time and scope, we could not delve

deeper into this aspect of the study.
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Chapter 7

Conclusion

In this thesis we have introduced two image denoising architectures,

one that only uses the output of the inner U-Net segmentation model, the

Saliency Map, and the other takes the advantage of the Saliency Map along

with the original noisy image. We have observed an increase in effectiveness

in denoising when the image is reconstructed by stacking the Saliency Map

and the original noisy image compared to other proposed architecture and the

baseline. The use of skip connections in deep architectures is an important

structural element that helps alleviate the vanishing gradients problem during

backpropagation. PSNR scores improved by 7.814 and 9.5331, and SSIM scores

improved by 0.0258 and 0.1544 for the MNIST and Fashion-MNIST datasets

respectively, when skip connections were introduced in the architecture.

The effectiveness of the models trained with L2 loss was more consistent

over our proposed architectures, hyperparameters, and all other experiments

compared to all other loss functions. ElasticNet, as defined by Equation 2.15

with a λ of 0.75, had the best results compared to all other loss functions but

did not produce consistent results. Using Adam optimizer helped speed up

the convergence process in comparison to Stochastic Gradient Descent (SGD).
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Consequently, the resulting systems improved the effectiveness on the com-

puter vision task of object detection and classification, where Precision, Recall,

and F1-scores improved by 2.3%, 2.7%, and 2.5%, respectively.

Due to the presence of multiple patterns of noise in a variety of images,

modeling a system with these multiple noise types makes the process non-

trivial. We empirically represent noise as a mixture of Gaussians. Making use

of this noise representation enables our proposed system to perform optimally

in various scenarios. On optimizing our systems’ parameters, we tested our

system on a more complex and larger dataset, ImageNet [8]. Training our

system on the ImageNet dataset would be a step towards building a completely

blind denoising and context-aware image enhancement system.

While dealing with a variety of noise types that visually affect images,

there are adversarial perturbations that affect images structurally but make

minimal changes in the image, aesthetically and visually. Working with im-

ages that have these perturbations can get extremely complicated as they can

easily fool complex deep learning systems. Our system successfully mitigated

this noise by improving the effectiveness of the model by 46% on the MNIST

dataset and 15% on the Fashion-MNIST dataset when epsilon was 0.3, which

is considered high for adversarial noise.
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