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Abstract

Identifying abnormality in videos is an area of active research. Most

of the work makes extensive use of supervised approaches, even though

these methods often give superior performances the major drawback be-

ing abnormalities cannot be conformed to select classes, thus the need

for unsupervised models to approach this task. We introduce Dirichlet

Process Mixture Models (DPMM) along with Autoencoders to learn the

normality in the data. Autoencoders have been extensively used in the

literature for feature extraction and enable us to capture rich features

into a small dimensional space. We use the Stick Breaking formulation

of the DPMM which is a non-parametric version of the Gaussian mixture

model and it can create new clusters as more and more data is observed.

We exploit this property of the stick-breaking model to incorporate on-

line learning and prediction of data in an unsupervised manner. We first

introduce a two-phase model with feature extraction through autoen-

coders in the first step and then model inference through the DPMM in

the second step. We seek to improve upon this model by introducing

a model that does both the feature extraction and model inference in

an end-to-end fashion by modeling the stick-breaking formulation to the

Variational Autoencoder (VAE) setting.
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Chapter 1

Introduction

1.1 Motivation

There is a growing prevalence of surveillance cameras due to the ever-

increasing security and safety risks. Examples of such risks include

but are not limited to fire, accidents, falls, theft, misbehaviour, etc.

The CCTV cameras need constant human monitoring which is labour-

intensive. In places, where manned monitoring of CCTV footage is un-

available, the culprit identification is done after the event. The real usage

of CCTV would be when a warning is received to a concerned person

while the suspicious activity is happening. Thus, arises the need to use

artificial intelligence algorithms to accurately and autonomously detect

any questionable behaviour. With such a system, it may be possible to

avert the alarming situation and avoid potential damage.

1
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One of the challenges in this domain is that the ‘questionable’ be-

haviour depends on the context of the situation. An activity that is

transgressive in certain situations (like jumping over a compound wall)

might be perfectly normal in other situations (like jumping over a wall

in a park). Further, an anomalous behaviour cannot be conformed to a

set of suspicious actions, thus any rule-based system cannot work. It is

very important to detect anomalous behaviour based on the context of

the situation.

1.2 Objectives

One consensus that can be reached is that the percentage of occurrence

of anomalous activity is very less compared to any normal activity, we

set to exploit this very nature of an anomalous activity. The goal of this

thesis is to develop a model that works in a completely unsupervised,

as we have stated earlier, we cannot have predefined labels for normal

and abnormal as for any given situation. The model should be able to

adapt its predictions in an online fashion, as we have stated that our

definition of abnormality is where the number of occurrences of an event

is less and is a rare event. So, if a particular event is observed for the

first time, it should predict it as abnormal and multiple occurrences of

the event should encourage the model to change the events prediction to

normal. Thus we set to make two fold contributions, by introducing an

unsupervised model and a model adapts itself in an online manner.



Chapter 2

Background

In this chapter, we will discuss the essential concepts of the Dirichlet

Process Mixture Model, Autoencoder, and also review the concepts be-

hind the traditional Variational Autoencoder, which is used as a basis to

build our model of Stick Breaking Variational Autoencoder.

2.1 Autoencoder

Autoencoders are a type of neural network architecture whose task is

dimensionality reduction. They work trying to reproduce their input

data. While doing this, the input data is reduced to a lower-dimensional

size than the input data, and then again the size is increased to the

same dimensional size as the input. This helps in capturing the high

features in the input space in a compact lower-dimensional space. This

is particularly useful when we are dealing with large video-based input.

3
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It is much easier to make any inference from lower dimensional data.

Thus, autoencoders form a fundamental basis for our work.

Autoencoders are comprised of two sections encoders and decoders.

Encoders are responsible for the learning lower-dimensional representa-

tion, usually referred to as the bottleneck layer, from the input data.

While the decoders, learn the mapping from the learned bottleneck layer

to the input size, whilst trying to replicate the input space.

Figure 2.1 shows an example of an autoencoder.

Figure 2.1: Autoencoder Architecture

2.2 Variational Autoencoder

Variational Autoencoders (VAE) [8] are class of generative models. The

main idea behind VAEs is that instead of trying to reproduce a specific

input, we try to generate a distribution. Instead of learning a single rep-

resentation in the lower dimensional space, in VAE, two representations

are learnt, signifying mean and the standard deviation of the represen-

tation. When we need a vector to pass through the decoder network, we
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need to sample from the distribution.

The encoding layer is a probabilistic model given by: qΦ(z|xi). The

decoding layer is given by another probabilistic model: pΘ(x|z).

The loss is given by the following equation:

L(Θ, φ, x, z) = Eqφ(z|x)[logpθ(x|z)]−DKL(qφ(z|x)||p(z))

The loss function is compromised of two parts, the reconstruction

loss and the KL divergence term. The reconstruction loss is similar to an

autoencoder’s loss, except that there is a expectation operator because

we are sampling from a distribution. The KL divergence term is used to

ensure that the distribution that is generated is not too far from a nor-

mally distributed Gaussian. Since we are sampling from the distribution

at the low dimensional layer, we cannot backpropagate through it. So,

to be able to calculate the gradients over the entire network, we use the

reparameterization trick, given by the equation: z = µ+ σ � ε

Figure 2.2: Variational Autoencoder Architecture
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2.3 Gaussian Mixture Model

The Gaussian Mixture Model is a parametric model that learns a weighted

sum over K Gaussian entities. Given a value of K, it creates K clusters by

learning the K different means and sigmas, in a completely unsupervised

manner.

2.4 Beta Distribution

It is a continous distribution between 0 and 1. It is modelled by two

paramters α and β.

The probaility distribution function of Beta distribution is given by:

f(x) =


1

B(a,b)
xa−1(1− x)(b−1) if 0 < x < 1

0 otherwise

Where, B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx

2.5 Kumaraswamy Distribution

The Kumaraswampy distribution [11] is given by the following equation:

Kumaraswamy(x; a, b) = abxa−1(1− xa)b−1.

Another interesting property of the Kumaraswamy distribution is

that when a=1 or b=1 or both are 1, the Kumaraswamy and Beta dis-

tributions are equivalent.
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2.6 Dirichlet Process Mixture Model

The Dirichlet Process Mixture Model is a non-parametric mixture model

that is, it is not bounded by the fixed K number of Gaussians. It can

infer the number of distributions in the data in an unsupervised manner.

The Dirichlet Process: The Dirichlet process is a probabilistic dis-

tribution model over discrete distributions. The Dirichlet process (DP)

can be specified by some base probabilistic distribution H0 and a scal-

ing parameter denoted as α. The α can take a value between 0 and ∞.

Values closer to 0 lead to more discrete distributions while those closer

to ∞ lead to a more continuous distribution.

Formally, a DP is defined for a sample H from a Dirichlet Process

with parameters H0 : Ω → R where α is a distribution over Ω. For

a disjoint partition of Ω: Ω1, ...Ωk, and given a sample H such that

H ∼ DP (H0, α), we have:

(H(Ω1)), ..., H(Ωk)) ∼ Dir(αH(Ω1)), ..., αH(Ωk))

Ω represents our sample space, and we are taking a discrete partition

over our sample space and creating a discrete distribution over our base

distribution.

The Stick Breaking Method: [27] The generative process of DP-

MMs proceeds as follows: First we draw, βi ∼ Beta(1, α) for i ∈ N. Then

draw Θi ∼ H0.

Then we construct the mixture weights π by taking πi(β1:∞) = βi
∏

j<i(1−

βj). The πi is an indicator function which evaluates to 0 everywhere ex-
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Figure 2.3: The Dirichlet Process Mixture Model

cept where πi = 1

Then for each observation n ∈ {1, ...N}, we draw zn ∼ π(β1:∞), and

then draw xn ∼ f(Θzn)

2.7 Stick Breaking Representation

The stick breaking model is one of the representations of the Dirichlet

Mixture Model.

The π are random independent weights drawn from a base distribu-

tion H0 which satisfy the following two conditions: 0 ≤ πk ≤ 1 and∑
πk = 1.

πk =

 v1 if k = 1

vk
∏

j<k (1− vj) for k > 1
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Where v is drawn from a Beta distribution such that vk ∼ Beta(1, α)

which gives rise to the stick-breaking formulation.



Chapter 3

Related Work

Anomaly Detection in videos is a field of active research. A lot of work

has been done for the past several years. Though most of the work has

been based upon classical machine learning techniques using handcrafted

features and most of them have been based upon supervised learning

techniques. Though supervised techniques help us to achieve good results

they can work only as well as the labels we have. It is not possible to

have a global set of all possible cases that can be anomalous. Thus arises

the need to have an unsupervised approach to detecting an anomaly.

3.1 Supervised Learning Approaches

Lavee et al. [12] create histograms of the video events for both normal and

abnormal events, once these are created, the new test sample’s histograms

are compared to the histograms whose classes are known, to make the

10
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predictions.

Xu et al. [29] use autoencoders (AE) to obtain the low dimensional

latent representation of videos. Once the embedded layers are obtained

in a supervised learning approach one-vs-all Support Vector Machines are

used to classify between normal and abnormal videos. The autoencoder

architecture used is a stacked autoencoder where one AE is trained on

the video input as is, another AE is trained on the optical flow of the

video and a third AE is trained to learn a joint representation from both

the input types.

Sultani et al [24] use a weakly-supervised approach where the labels

were at video-level instead of frame-level. For each video, they knew if

it contained anomaly or not, the training for performed using Multiple

Instance Learning (MIL) [1]. The training was performed by dividing the

videos into chunks, for each individual chunk it is not known if it con-

tains anomaly. So they use the bag-of-videos approach, where chunks of

samples belonging to normal videos are grouped together likewise chunks

of samples belonging to abnormal videos are grouped together. Then a

pre-trained three-dimensional convolutional network is used to extract

features from the video chunks, and finally, another convolutional net-

work is applied to rank these instances into normal/abnormal samples.

A major limitation with supervised approaches in the context of ab-

normality detection is that in a general scenario it is not known prior,

the entire set of abnormal cases that can occur, which tends to limit the
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practical use-cases.

3.2 Semi - Supervised Learning Approaches

In this approach, generally, the model is trained on just the normal class

and during testing, both the normal and abnormal samples are shown to

the model. This kind of setting enables us to avoid defining the labels for

the abnormalities and thus overcome the major drawback with supervised

approaches. Although such settings do not allow for online learning of

the model and limit model adaptability.

Jacob [21] uses autoencoders to obtain the embedded low-dimensional

video representation, but along with the AE training, K-Means clustering

is also performed in order to cluster the embedded space into clusters

of known ”normal” spaces. They argued that clustering the embedded

space allowed better learning of the Gaussian mixture model and helped

in improving the prediction score. The K-Means centers are used as

initial clusters of the Expectation-Maximization algorithm which would

formulate k Gaussian distributions, each representing known ’normal’

space. Also to note is that the training of the AE-KMeans clustering is

performed only on ’normal’ instances and only in testing both the normal

and abnormal instances are provided to the model.

Ravanbaksh et al [19] use a similar approach wherein they use optical

flow and temporal frames, they quantize them into 7 bits and then map

these bits into histograms, histograms of normal frames would conform
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to a similar distribution, whereas an abnormal one would have a very

different representation.

[30] compute gradients and optical flow of the normal videos. Then

they compute histograms of optical flow (HOF) and histogram of gradi-

ents (HOG), using these features they build the Gaussian model. They

found that increasing the number of Gaussians up to a certain value,

increased the model’s performance, although increasing beyond a certain

point, it leads to overfitting.

Levine et al [4] use Variational Autoencoders (VAE) to learn the

normal distribution of the embedded space. The KL-divergence used in

VAE enables the data of similar nature to group together, thus in a way, it

clusters the embedded space. To learn the temporal and spatial features

they incorporate architecture similar to [29] with one AE learning the

spatial features and another AE learning the temporal features through

the dynamic flow. The two autoencoders give different predictions finally

the scores are combined to give a joint prediction.

Another approach tackling the problem of abnormality detection is

through future frame prediction, this approach has been used by [14], [16],

and [25].

Tang et al [25] have used Generative Adversarial Networks [5] to pre-

dict the future frame. They argue that the generally accepted way to

observe anomalies by finding the large difference in reconstruction loss

is not robust. The reconstruction loss is more pronounced when a frame



CHAPTER 3. RELATED WORK 14

is predicted, generally, a normal frame predicted would have a low re-

construction loss whereas an anomalous frame will have a reconstruction

loss.

[16] also used the approach of predicting future frames. The frames

are predicted using an architecture involving ConvLSTM layers [23].

Another work using ConvLSTMs is [2] in which they follow a similar

approach of semi-supervised training by training on normal samples, al-

though they do not predict the future frame, they predict abnormality

by directly checking the reconstruction loss.

3.3 Unsupervised Learning Approaches

In this section, we review the unsupervised approaches in the literature.

Though a good quality of work has been done, most of the work uses

handcrafted features for model building and little work has been done

using neural networks, which have proven to outperform classical machine

learning approaches in various other applications [10].

[31] is a classical unsupervised approach to abnormality prediction.

They circumvented the model building approach to solve the task by

building a co-occurrence matrix. The matrix mapped the videos to pro-

totypes, which were obtained from hand crafted features. Then abnor-

malities were found by finding similarities between the matrix space.

Wang et al [28] introduce an unsupervised approach. They use Latent

Dirichlet Allocation (LDA) and Hierarchical Dirichlet Process (HDP) to
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model activities. They use optical flow to get the input vectors, the

optical flow captures both the magnitude and direction of motion. They

compute the likelihoods of the samples from the LDA model to make the

predictions.

Similarly, [18] proposed a completely unsupervised approach of both

feature generation and modeling. They use Hidden Markov Models

(HMM) to model the trajectories of motion in videos. Another unsu-

pervised technique [6] which again uses HMMs to model the motion tra-

jectories. They incorporate clustering of the trajectories and then these

trajectories are fit using an HMM, they repetitively perform this step,

that is after an HMM is fit, the data is again clustered and a new HMM

is fit on the data. This helped them to avoid overfitting the data.

Roshtkhari [20] used spatiotemporal video volumes (SVT). These

SVTs are then clustered and so that similar SVTs get grouped together.

They model these SVTs using a probabilistic distribution while each data

point being a single SVT or a group, arguing that a group of SVTs allow

for capturing context across the long temporal dimension. To predict

abnormalities they develop a codebook of the SVTs with each codeword

being an SVT. A prior probability is assigned to a codeword based on its

earlier occurrences.

Recently, [3] showed that Deep Generative Models often fail to detect

abnormalities in data. They showed that the abnormalities can be cap-

tured by using Bayesian deep generative models. In this approach they
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rather than sampling from the decoder parameters, they infer the poste-

rior distribution by using probabilistic measures over the parameters of

the generative network.



Chapter 4

Datasets

4.1 Datasets

We will be performing our tests on these datasets: UCSD Ped1, UCSD

Ped2, Avenue Dataset, Shanghai Dataset and our own Custom Dataset

In the UCSD datasets, all the training videos provided are of nor-

mal instances and each test video consists of both normal and anomaly

instances.

The UCSD datasets are of people walking across a walkway, and any

instance of a cyclist, skater, or a car passing through the walkway is an

anomaly.

The Ped1 dataset has 6800 frames of training data all of the normal

instances. While it has 2000 frames of pixel-level labeled test frames.

The Ped2 dataset has 2550 training frames and 2010 test frames with

17
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Figure 4.1: PED1 dataset samples

pixel-level labels.

Figure 4.2: PED2 dataset samples

Figure 4.1 and Figure 4.2 shows the examples of UCSD Ped1 and

UCSD Ped2 respectively. The upper rows show the examples of nor-

mal samples and the bottom rows show instances of abnormalities, the
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Figure 4.3: Avenue dataset samples

abnormal regions are denoted with bounding red box.

The Avenue dataset is a more challenging one. It has 15328 training

frames and 15324 testing frames. The abnormality examples include

a person running, dropping and throwing a bag in the air, and people

moving in the direction.

Figure 4.4: Shanghai dataset samples [14]

The Shanghai dataset would be by far the most challenging dataset

to work on, as it has 130 different types of abnormalities. It has 274,515
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training frames and 42,883 test frames. Also, pixel-level labels are avail-

able for all test frames.

Figure 4.5: PCA on PED2 dataset, Showing the challenge of abnormality

detection in videos.

Figure 4.5 shows the PCA plot obtained of the PED 2 dataset, the

plot motivates the need for a model that can classify the abnormalities

from the normal samples. It depicts the overwhelming imbalance in the

classes of normal (blue samples) and abnormal (green samples). The

plot also demonstrates why a classifier like SVM may not be the best

approach to detect abnormalities in video samples as even in the principal

components with most variance, the abnormalities seem to be overlaid

on the normal samples.



Chapter 5

Methodology

5.1 Input Format

We train on cuboids of data which are sub-samples of the videos, specif-

ically our input data is processed to be of shape 32x32x20. Where the

height and width are 32 and the depth obtained by concatenating con-

secutive frames is 20. Which chose our depth of the cuboid to be 20,

as on an average video input, it enables us to capture about one second

worth of input. We decided to choose 32x32 size because it is a standard

size used in popular computer vision tasks, example CIFAR dataset [9]

has images of size 32x32 and LeNet [13] also expects the same size of

input.

Figure 5.1 visually shows how cuboids are formed. The cuboidal

samples help in capturing both the spatial and temporal information

21
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and alleviates the computational complexity incurred upon using optical

flow. We are able to use spatio temporal cuboids by making use of 3d

convolutions [26].

Figure 5.1: Spatio-Temporal Samples

Figure 5.2: Sample of input to Autoencoder

5.2 Two stage Dirichlet Process Model

The proposed approach expands on the work of [21] wherein we make use

of the fact that activities captured in videos can be conformed to a spe-

cific group of activities, thereby, clustering the data allows us to find pat-

terns of normal behavior. Thus the general framework is as follows: We

perform unsupervised feature extraction using autoencoders and these
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extracted features are passed on to a non-parametric Dirichlet Process

Mixture Model, specifically the Stick Breaking implementation [22]. The

weights of a stick breaking model adapt to the input data and the num-

ber of sticks (weights) can theoretically grow to infinite as a new type of

data is observed.

In this approach, we divide our training process into two steps. In

the first step, we use an autoencoder simply acts as a feature extractor,

and in the next step, we train a Dirichlet process mixture model on the

extracted features.

Figure 5.3 shows the autoencoder architecture used. The autoencoder

acts as a feature extractor and learns the low dimensional representation

of the input data. The Stick breaking model is then trained on these

extracted features.

Figure 5.3: Feature extraction using autoencoder
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5.3 Dirichlet Process Model - Variational

Autoencoder

We attempted to improve upon the two-stage model by proposing a

single-stage end-to-end model, which performs feature extraction and fit

the Dirichlet process mixture model as the neural net is getting trained.

The theoretical definition of the model is based on the work by [17].

Figure 5.4 shows the architecture of our proposed model.

In this, unlike the traditional VAE, samples are not drawn from a

Gaussian Distribution, rather they are drawn from a GEM distributuon.

The latent samples are sampled from the generative model using the fol-

lowing equation: πi ∼ GEM(α0). Where π is the vector of stick breaking

weights. α0 is the concentration parameter of the GEM distribution.

5.4 Implementation Details

All our neural nets were run on 8 Tesla T4 GPUs parallelly. We used

Adam optimizer [7] for our gradient descent optimization. We used the

Mean Squared Error loss function for both our models. The quantitative

metrics we use are Area Under the Curve (AUC). Regarding the threshold

value, in the plots, we are not reporting an accuracy based on a single

threshold value, rather we are using multiple thresholds, to create the

(receiver operating characteristic (ROC) curve and then computing AUC
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Figure 5.4: Proposed Architecture of Stick Breaking Variational Autoen-

coder

which lies between 0 and 1. This is the only quantitative metric we report,

as others have done in the literature.

Our procedure to plot the ROC: We find the likelihoods for all the

samples normal and abnormal. We then calculate the average likelihood

for all the normal samples and the average likelihood for all the abnormal

samples. The likelihood scores for the abnormal samples are always less

than that of the likelihood of the normal samples.So, we take a very

small jump of 0.05 and vary our threshold from the average abnormal

score to average normal likelihood score, and in each iteration increase

the threshold by this jump value. During each iteration, we examine the

likelihood of the sample; if it is greater than the threshold we predict it

as normal and if it is less than the threshold, we predict it as abnormal.
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Then, for that iteration, we calculate the count of true positives, false

positives, true negatives, and false negatives. Based on these values, we

calculate the true positive rate (TPR) and the false positive rate (FPR).

Each TPR and FPR represents a point for our ROC curve. Once the

entire ROC curve is generated, the AUC score is calculated using all the

TPR and FPR values.
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Results

We have obtained pixel-level accuracies for the two-stage model and the

Stick Breaking Variational Autoencoder (SB-VAE) on the UCSD Pedes-

trian datasets, Avenue dataset, and the Shanghai dataset.

The pixel-level evaluation strategy is followed as mentioned in [15].

This works in the following manner, if more than 40% of the pixels de-

tected as anomalous overlap with the ground truth, the patch is termed

as true positive.

For the two-stage model, we first train the autoencoder on normal

videos to learn the low dimensional feature representation. Once we

get the low dimensional representation we pass these to the Dirichlet

Mixture Model which maps the data to a non-parametric Gaussian rep-

resentation of the features. After this entire process, our model training

is completed. We then pass the test video samples to the autoencoder to

27
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extract the features and these extracted features are then passed to the

trained Dirichlet mixture model to get the log-likelihood scores. Since

the Dirichlet model is trained on normal samples, the log-likelihood for

the normal test samples tends to be higher and the log-likelihood for the

abnormal samples is lower. We then use some threshold value in between

these values, to predict whether a sample is normal or abnormal.

For the SB-VAE model, the low dimensional feature learning and

the mapping to learn to the non-parametric Dirichlet Mixture Model is

a simultaneous process. The Kumaraswamy distribution learns the µ,

from the low dimensional features. Once, the model is well trained, that

is the loss is low, the autoencoder has learned a good low dimensional

representation of the data. We then use this learned mu to get an average

µ from all the training samples. Again, we are training only on normal

videos. During testing, we get µ, for each test sample, and we measure

the distance of the test sample’s µ to the learned average training µ.

For normal samples, this distance is less and for the abnormal samples,

this distance is more. We then use some threshold value to predict each

sample to abnormal or normal.

6.1 Results on PED1 dataset

The plot shown in figure 6.1 demonstrates the likelihood values of the

normal and abnormal samples. It shows that most of the normal samples

have high likelihood values whereas the likelihood significantly drops for
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real abnormal samples.

Figure 6.1: Likelihood Plot on PED1

Table 6.1: AUC scores comparison on PED1

Pixel-level AUC scores

AnomalyNet 0.452

Detection at 150 FPS 0.638

AMDN 0.67

GMM Two stage 0.74

GMM VAE 0.71

Our Two Stage Model 0.77

Our SBVAE 0.66
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6.2 Results on PED2 dataset

We have tested our two-stage model on PED2 dataset and we are com-

paring our model against that of [21] whose pixel wise on PED2 dataset

is the highest with 0.79 AUC. Figure 6.2 show our ROC plot against the

ROC of [21].

Our Model has AUC of 0.82 on PED2 dataset. At least for PED2

dataset our model out performs [4] (0.78 AUC) and [21].

Figure 6.2: ROC Comparisson on PED2

6.3 Results on Avenue dataset

Table 6.3 shows the pixel-level performance of our models on the Avenue

dataset.



CHAPTER 6. RESULTS 31

Table 6.2: AUC scores comparison on PED2

AUC scores

AnomalyNet 0.528

GMM Two stage 0.79

GMM VAE 0.78

Our Two Stage Model 0.82

Our SBVAE 0.79

Table 6.3: AUC scores comparison on Avenue

AUC scores

AnomalyNet 0.94

Our Two Stage Model 0.72

SBVAE 0.63

6.4 Results on Shanghai dataset

Shanghai dataset is relatively a very new dataset. In the literature only

frame level accuracies are available on the Shanghai dataset.
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Table 6.4: Pixel-level AUC scores comparison on Shanghai

AUC scores

Our Two Stage Model 0.62

Our SBVAE 0.55

Table 6.5: Frame level AUC scores on Shanghai Dataset

AUC scores

Future Frame Prediction 0.728

Our Two Stage Model 0.67

Our SBVAE 0.58

6.5 Online learning results

We have trained our two-stage model on the PED 1 dataset and we

are testing on the PED 2 dataset. As each sample from the PED 2 is

evaluated from the Dirichlet Process Mixture Model, we also fit the new

sample to the previously trained model on the PED 1 dataset. Figure

6.3 demonstrates how the likelihood plot drops initially, as the model is

earlier trained on PED1 and prediction begins on PED2. Although, as

we go on training on PED2 the likelihood values for PED2 normal data

increase to near 1. The likelihood values do drop when an abnormal

sample is seen.
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We have demonstrated our results qualitatively on the two-stage model.

We show that for normal samples the likelihood samples are near 1 and

for abnormal samples, the likelihood values drop and are relatively closer

to 0.

Figure 6.3: Online Learning of PED2

We wanted to check the performance on PED1 after fitting it to the

PED2 dataset. We see that the likelihood scores of PED1 tend to vary

a lot more than that of the PED2. Though the difference between the

normal likelihood scores and abnormal likelihood scores is still large. This

has been shown in figure 6.4
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Figure 6.4: Re-checking performance on PED1



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have proposed two approaches for the anomaly identi-

fication in videos. The Dirichlet Process Mixture Model (DPMM) two-

stage model built upon the ideas from the literature review, shows to

perform as well as the state of the art models in the literature for the

pixel-level evaluation. We have validated this claim by performing our

evaluations on several datasets. We also attempted at adapting the two-

stage process into an end-to-end model. Although we have not been able

to reproduce the performance of the two-stage DPMM model on our Stick

Breaking VAE model.
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7.2 Future Work

We feel that the results of the Stick Breaking VAE can be further im-

proved upon. One way would be to perform an ablation study on the

size of the input spatio-temporal cuboid, hyper-parameter tuning of the

stick-breaking parameters could further help in performance enhance-

ment. We have worked with the MSE loss, autoencoders tend to slightly

perform better when used with the SSIM loss function, this could be

another criterion to experiment with.

As suggested in the paper [3] it would be interesting to try stochastic

gradient MCMC optimization over the maximum likelihood.

For the online learning methodology that we demonstrated, while

fitting the PED2 samples we also have to fit the PED1 samples that we

have trained on earlier. We have to do this because no standard API

implementing Dirichlet Process Mixture (DPMM) provides a ’partial-fit’

function that allows us to build on the model we new data. A good future

work would be to implement this function for the DPMM.
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