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Experimental verification of a novel system ID technique called PLID using a flexible 3-D structure
Phillip Vallone and Mark A. Hopkins

ABSTRACT

Presented below is a summary of the results obtained to date on the verification of a novel state space model
identification technique called PLID (Pseudo Linear IDentification), given in Hopkins ef al.' This technique has several
unique features that include: (1) optimal joint parameter and state estimation (that gives rise to its nonlinearities); (2)
provisions for sensor, actuator, and state noise; (3) and it converges almost surely to the true plant parameters provided that
the plant is linear, completely controllable/observable, strictly proper, time invariant, and all noise sources are zero mean
white gaussian (ZMWG).

Experiments carried out on a flexible, modally dense 3-D truss structure standing 4 feet tall have shown PLID to
be a robust technique capable of managing significant deviations from the assumptions made to prove strict optimality.
Using the 3 actuators and 3 sensors attached to the structure, models varying in size from 24 to 64 states have been used to
approximate this infinite dimensional testbed in the frequency range between 50 to 500 Hz. Sensor signals with RMS
levels of approximately 2 volts have been predicted by PLID to within 0.01 volts RMS.

Keywords: system identification, MIMO, control system, piezo-ceramic actuator, accelerometer, LQG, large structures

1.0 INTRODUCTION

The need for system ID is twofold. First, in order to facilitate the design of a high-performance model based
controller, one must have a high fidelity math model upon which to base a design. For complex structures, the math
modeling tools most often used (e.g., finite element analysis) are not adequate. A more accurate model can be obtained
using experimentally determined plant parameters. Secondly, any analysis of the plant, not necessarily related to control
system design, can be performed using a model generated from input/output data. Such analyses may include health
monitoring, performance predictions, and on-line component testing, to name a few.

PLID is fully mathematically described in Hopkins et al. and will not be repeated below in great detail. Herein,
we wish to describe the testbed that has been used to validate PLID and the experimental results obtained to date. This
testbed has been fabricated for the purposes of showing PLID's general applicability, even to infinite dimensional (which
drives the need for model order reduction), modally dense systems such as a symmetrical 3-D truss structure.

As with most flexible structures, the testbed is modally dense, lightly damped, and, because of its construction,
slowly time varying and weakly nonlinear. PLID is shown to be able to perform what is essentially model order reduction.
Further, we demonstrate its robustness to deviations from the ideal time-invariant, linear, finite-dimensional requirements
needed to strictly prove PLID’s optimality. Both multi-input multi-output (MIMO) and single-input-multi-output (SIMO)
models were generated for the testbed. In general, PLID was able to produce a states space model that could mimic the
testbed’s sensor output (accelerometers) to within the sensor’s noise level of approximately 10 mV. Excited with the
actuators, the sensor could be driven to output 2 V RMS signals, yielding a “signal to prediction error” ratio of 46 dB.

2.0 BACKGROUND INFORMATION

2.1 Motivation

With “smart structures” covering an ever expanding range of physical devices from large space structures to
miniature disk drive read arms, a huge amount of research has gone into the modeling of these systems. And although the
underlying physics of flexible mechanical systems are well understood, often the system of interest is simply too complex
to model accurately enough to use with high performance MIMO feedback controllers. Detailed finite element math
models are difficult to generate and do not include noise sources. Further, exact dimensions, densities, and moduli of
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elasticity of the various materials that compose the structure are virtually impossible to come by. Thus the attraction of
model identification techniques.

Particularly for controls engineers, a state space input/output characterization of the system is often the end goal or
result of a modeling exercise. The effort expended to obtain this model can be considerable, if not prohibitive. System ID
techniques exist that can directly provide such a state space model using the same actuator-sensor suite to be used for
control. PLID is one such technique.

2.2 Model structure

As mentioned, PLID is a state space model identifier. When provided with an estimate of the sensor, actuator, and
state noise covariances, and input/output data of sufficient spectral richness (more on this later), PLID will generate an A
and a B matrix, with the C matrix known a priori. Given the nearly linear, relatively time-invariant nature of many flexible
structures, PLID should be able to estimate these matrices as long as one attempts to limit the observability and/or
controllability of high-frequency modes. That is, since every mechanical system can be described by an infinite
dimensional state space model, an attempt must be made to limit the bandwidth of interest to some reasonable bound, lest
the model become completely unwieldy.

By the assumption of complete observability and controllability (required for system ID), we can cast the system

into MIMO observable canonic form, with additive ZMWG noise vy, and wy, corrupting the input u; € R" and output yg

€ 9(”, respectively. State noise =, is also allowed. One can see from the below formulation, the C matrix is known a
priori, the B matrix is completely unknown, and the A matrix has exactly p unknown columns.

Thus the number of parameters to be identified is equal to pxn in the A matrix (referred to as A parameters), mxn
in the B matrix (B parameters), and n states, giving a total of (p+m+1)n unknowns. We are computing a minimum-mean-
square-error recursive prediction, conditioned on the past inputs and sensor outputs.

Since the cost functional for PLID is essentially the same as that used by a Kalman filter (KF), the form of the
PLID algorithm is very similar to Kalman’s algorithm (see Brown et al. for information on the KF).’ Like the KF, PLID
also has 3 essential equations: (1) the “gain computation”, (2) the “state propagation”, and (3) the “error covariance
propagation” equation. Only for PLID the “states” are now both states and system parameters that make up the A and B
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matrices. It is the joint state and parameter estimation that gives rise to the nonlinear terms in the gain and covariance
equations. As Hopkins et al. mention, at first glance the PLID equations look very much like those governing the KF,
which is linear. However, upon closer inspection, one sees that the PLID equations contain cross-multiples of the state
estimates. Hence the name “pseudo-linear”.

2.3 Overview of PLID

The derivation of PLID involves forming an extended state vector by appending the A parameters and the B
parameters to the states. Doing this forces the original state equations (Eq. 1 and 2) to be completely rewritten into an
“extended Salut form”, after the work of Salut ez al.’ Once in this form, the derivation parallels the KF.

The extended state vector has the form shown in Eq. 3. From this state vector s,, we can create the extended state
equations, or the implicit model S , as Hopkins et al. refer to it. The various matrices that appear in Eq. 3 are

I
O 4
xk
sp =10, ={074 (3)
...... :
O, O'p
m
OB ]
) T
-1 n,-1
where ©'4 = [a,l al l --Ia?l, oah ]
) T
-1 n, -1
and elB = [bl(,)l e bl',lll | s | bl(,)p ees b‘.,pp ]

elaborated. The “A parameters”, denoted by e’ 4, are the i" column of the A matrix, which has p such columns, as noted in
Eq. 1; similarly, the “B parameters”, ©®'g, hold the i" column of the m full columns in the B matrix. The variables n, n,
..., I, are called the observability indices, which refer to the number of states that are associated with a particular output;
e.g., the first n, states are associated with y (k) and the next n, states are associated with y,(k), etc...

Next, new state space equations are built around the extended state vector s,. We will skip the details of how these
equations are arrived at; these details are found in Hopkins et al.
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T
ne = W Vi ETh 0T(mpin] (4c)
and
0---01/0--- 00|---/0-- 00 1
0--00[0- 01 : 0
pX(m+p)n
= . . 4d
H : 0--- 00 0
0--00/0-- 00 0-- 01

Notice the upper left matrix partition of Eq. 4a. This submatrix is further subdivided into p, nxn, lower Jordan blocks
(J,) of zero eigenvalues. Also note that the lower right partition of F, is an identity matrix of dimension equal to the

number of A and B parameters. That is, s(k+1/) = s(k) for j>n, which agrees with the requirement that plant parameters be
time invariant.

Acting as an input to the implicit model is 7,. This is a vector of noise vectors, where all elements corresponding
to plant parameters are zero, which also agrees with the time invariant requirement. Although plant parameter time
invariance is needed to prove PLID’s optimality, it is useful to add very small amounts of noise to the parameters to
increase the algorithm’s stability when implemented using finite precision math and without using a square root algorithm.
If PLID is implemented using a square root formulation such as given by Bierman®, then parameter noise does not appear to
be needed; however, such robust algorithms do require significantly more computations. One may wish to directly
implement PLID, as is, for small problems not likely to exhibit stability problems; e.g., when the number of states is < 12.
Notice that the output equation in Eq. 4 is nearly the same as in Eq. 2 of the explicit model. This is a direct result of
formulating the system in the MIMO observable canonic form (see for example Kailath pp. 424 to 437)°

All noise sources encompassed in 7, are assumed to have known covariances and crosscovariances for all time ;

that is: _ _
wy wZ
l{k Sk Sk
w Ve
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where covariances: Elv,v,T1 = Q, E[w,w,”1= R,, and E[E,E 1= Z,, 6)
and cross-covariances: S(,:B = Elo, B kT ],
are as denoted. Further, Hopkins et al. goes on to denote the input/output cross-covariances of the implicit model by:
- 7
Rk
w
S, = Einge=| -
= Elnw = =
k KTk S, | %)
;0(m+P)n><P i

Finally, the cost functional is defined, which is the same functional used by the KF, as the linear conditional
minimum-mean-square-error (MMSE) recursive prediction §,,,, of the extended state vector s;,,. An optimal gain

matrix (K,) will be arrived at in the same way as in the KF. We will not reproduce the derivation here, instead we provide
the key results below:
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T T T -1
Optimal Gain: K, = [F,P,, H” + E, [G]S,] [HP,,_H" +R,] @)
Optimal State Projection: Sy, = FiS_; + Kk[zk - H§k] ©

Error Covariance Update: P, = FkPklk_leT + Ey, [GQzGT] - Kk[HPk,k_IHT + Rk]K: (10)

One can see that Eq’s 8, 9, and 10 are very similar to the those used in the KF. However, the terms E\m [G] and
E% [GQiGT] are conditional expectations, not known a priori as in the KF. Further, it is these two quantities that result in

PLID's nonlinearities. Before the PLID equations can be implemented, a method of calculating E,, [G] and E,, [GQZGT]

must be obtained. This is a lengthy process, which is detailed in Hopkins et al.; we wish to now focus on the results of the
on going experimental research. PLID has been coded into MATLAB on a 486 PC using Bierman's square root filter
algorithm, which helps to insure that P, ,, remains positive definite in the presence of numerical round off. Although

such algorithms add significantly to the number of computations per iteration (as much as 10x more), we are investigating
model sizes that range up to 64 states. With such a large number of parameters to estimate, we were forced to use square
root techniques.

3.0 RESULTS

3.1 Description of testbed

Conclusive determination of the value of an ID method can only be made after a hardware evaluation. Towards
this end, we have fabricated, instrumented, and taken experimental transfer functions (TF's) of a 3-D truss structure. The
graphic in Fig. 1 illustrates the testbed's important features.

Upper Delta Frame (UDF, steel) Z
35 Ibs
Accelerometer
as 1 actuator
3

e
| Y
\ <

6 Al Tube Assemblies
(Struts, active)

'@] AL Support Plate
105 Ibs

Fig. 1) Sketch of 3-D testbed

Total structural weight was measured at 140 lbs, with an overall height of 4-1/2 ft, including the support plate. The tubes
and support plate were constructed out of aluminum, while the UDF was made from steel to increase its weight. This was
done so that the vibrational modes of interest were below 200 Hz. We chose 200 Hz as the “soft” upper frequency limit
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because of the computational limitations of the PC used for this study. It is interesting to note that the 1% rigid body
vibrational resonance (or mode) of the UDF is approximately 136 Hz, as we shall see in Fig. 4. Considering that the UDF
weighs 35 Ibs, the support tube wall thickness is only 0.049", and that these struts are 3 ft long, one might expect that the 1*
mode would be significantly lower than 136 Hz. Kinematic mounts, such as the one utilized in this structure, are quite stiff
because all structural members are loaded purely axially.

3.2 Sensors

Notice the UDF in Fig. 1 has 3 accelerometers (manufactured by Wilcoxon Research, model 731-201) mounted
vertically at the 3 corners (see Fig. 2). These are placed to provide observability to tip, tilt, and delta-z (piston) motions of
the UDF. The accelerometer gain can be set at 10, 100, and 1000 V/g. We chose the 100 V/g sensitivity that can measure
acceleration levels down to 0.05 milli-g’s, corresponding to a 5 mV electrical noise floor (limited by the 12-bit A/D
converters). Weight of the sensor is ~0.067 lbs, or 30.5 grams.

Microdot \\
4 IE‘ N\ r
L1"
BTN,
— i ——

Fig. 2) Sketch of Wilcoxon 731-201 accelerometer

Using these sensors, measurements were taken of the undisturbed testbed to measure the ambient vibrations.
Levels varying between 15 mV to 20 mV RMS were recorded. Thus, a typical noise level of 17.5 mV RMS was used to
estimate the noise covariances. It is difficult to precisely pinpoint how each of the three noise sources (input, state, and
output) contributed to this 17.5 mV RMS total noise signal. However, we had to make an “educated guess” in order for
PLID to have a realistic representation of the sensor signal from which it will generate its parameter estimates.

Sensor noise was estimated to be approximately 5 mV. In part, this was motivated by the resolution of the 12-bit
A/D converters used to digitized the sensor signal. The smallest signal that can be registered is 2.5 mV, and typically this
bit is flipping, yielding 2*2.5 = 5 mV. Output measurements made of the actuator power amps with its inputs grounded
showed that the actuators also contained approximately 5 mV of noise. Further, they too are driven by 12-bit D/A
converters, which limits the resolution to 2.5 mV. One can consider this quantization error as noise, albeit not white. As
we shall see, PLID is robust to such noise approximations. Subsequent study revealed that a 1V RMS actuator command
(white noise) produced ~0.5 V RMS sensor signal. Based on this, we assumed that the 5 mV actuator noise could account
for 2.5 mV of the observed total sensor noise (17.5 mV). This left 17.5 - 5 - 2.5 = 10 mV RMS of noise remaining, which
was attributed to state noise. Sensor noise displayed little correlation between the 3 channels. Thus, it was assumed that
the actuator, state, and sensor noise covariance matrices were diagonal. That is, the actuator noise was entered into
MATLAB as Q , = 0.005*eye(m,m), sensor noise was given by R, = 0.005*eye(p,p), and the state noise entered as X, =

0.010*eye(n,n).

3.3 Actuators

Actuation is provided by 0.02" x 1.00" x 2.00" piezo-ceramic wafers (manufactured by Vernitron®, type PZT-5H)
epoxied onto the flat section of an aluminum tube assembly (struts) using a cyanoacrylate instant epoxy (see Fig. 3).
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Piezos on the two struts that connect to the same corner of the UDF are wired together such that when a voltage is applied,
the associated UDF corner will translate bidirectionally along the Z-axis.

Square adapter is needed to

N\ accomodate the flat wafers l /7
A

Piezo-wafer

0.125"
Cut-away of thin Squﬂfcdadag:er is
walled support tube epoxied to the
support tube

Fig. 3) Sketch of the mid-section of the support tube where that piezo-actuators are attached

Because of the thin wall of the aluminum support tubes (0.049"), the square adapter had to be epoxied, instead of
welded to the tube. This resulted in a joint with higher than desired damping, and a slow time varying stiffness. Stiffness
is also a function of temperature. Nonlinearities have been observed and are attributed to this joint. The result is a
challenging testbed, which required several re-identification steps to account for time variations. Both the time variance
and nonlinearities were not so severe as to cause PLID any difficulty, as we shall see.

When a voltage is applied, the piezo-wafers will elongate or contract depending on the voltage polarity. We can
estimate the effectiveness of these actuators using knowledge of the piezo's electro-mechanical properties, and the
geometry of the substructure. To do so rigorously is difficult because the piezo-properties are seldom known to better than
10%. This is one of the reasons system ID is so attractive, because all we need to do is size the actuator approximately to
provide the desired actuation, and let the system ID algorithm provide, in effect, the calibration.

Actuator sizing was accomplished as follows. A full-scale sensor signal is 5 volts; with a sensitivity of 100 V/g,
we have 0.05 g's peak acceleration. The highest acceleration occurs at the highest frequency if the displacement is kept
constant. Indeed, the actuators provide a constant displacement for a constant voltage. We do not wish to go into great
detail of how piezo-ceramics are used and modeled; there are a great many excellent papers on the subject.”® Briefly, the
key parameter, in this case, is the “d,,” coefficient. It is defined as the strain generated along the wafer length divided by
the electric field applied through the wafer thickness. The table below summarizes the important piezo properties:

Table 1) Piezo-ceramic properties for PZT-5H (£ 20%)

Parameter Value Units Description
d, 1.1x10* | in fin./ V/in. Charge constant
Ep 8.8 x 10° lbs /in.? Young's modulus
t 0.020 in. Wafer thickness
l 2.00 in. Wafer length
w 1.00 in. Wafer width
C 24 nf Bonded wafer capacitance
Max. Voltage 200 \'2 Break down limit

If we assume we have a perfect bond, we can greatly simplify our task. This allows us to simply ratio the stiffness
of the square adapter to that of the piezo-ceramic. Below we derive the actuator output equation:

Strain Output @ wafer: € "%" = dy - =, (11)
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where V, = actuator voltage,

V Ep -t
Strain Output of actuator: €," = dSI(_‘LI‘D—J, (12)
t Eal “ s
where E, = Young's modulus for the aluminum (10 x 10° psi), and t, = thickness of square adapter (0.125"); finally:
I} Ep- ¢
Actuator Displacement output: AL = d31("I-p—}/a , (13)
t Eal "l

The minimum number of wafers that can be epoxied to the square adapter is 2, one on either side as shown in Fig.
3 (to avoid bending the tube). Equation 13 must therefore be multiplied by 2. The only free parameter is the square

adapter's thickness ¢, because the wafers pre-dated this project, fixing all of its parameters (d,,, /, £, Ep). Sensor full-scale
range must be taken into consideration to find ¢, . The equations below will determine z_,
frequency.

gmax(386 ln2 )
sec

where () is the operating

Max. output displacement: AL{ (max) = o7 , (14)
Solving for ¢, we find:
l Ep -t o
Square Adapter Thickness: f;, = d3| ~ : a (15)
t max n.
Eal - 8 (386 _——2_)
sec

Finally, recall that g™ = 0.05 g's, ® =200 Hz = 1256.6 rad/sec, and V,(max) = 100 V. After substitution, t,, is found to
be ~0.16". Early on, we assumed that the bond was perfect. To allow for bond compliance, and to use a standard wall
thickness, we decided to set ¢, = 0.125", as noted in Fig. 3.

Of course this analysis is very simplistic, especially considering that the actuator excitation will not be a pure sine
wave at 200 Hz. Instead, filtered (or shaped) white noise with a bandwidth of O to 200 Hz will be used, which will
generate significantly less acceleration because of the @ term in Eq. 14's denominator. However, we have not included
the amplification effect that a lightly damped structural resonance has. All we were after here is a “ball-park” actuator
strength; we can adjust the power amp's gain if we need to account for simplifications made above.

Power amps were designed and built using the Apex PA-85A op-amps, which can provide up to 200 mA of output
current, and 100 V peak. The D/A output signal is increased from + 10 V to 100 V by the amp's 10x fixed gain. Attached
to the nearly pure capacitive load of the piezos, these amps maintain a bandwidth of over 10 kHz. Thus, we have a means
by which we can excite the testbed using the piezos and sense the resulting vibrations with the accelerometers, giving us
the required input/output data.

In an attempt to limit the high-frequency gain of the system (motivated by the ®? actuator to sensor relationship),
all 3 actuators were augmented by a one pole filter with a break frequency of 260 Hz. These poles, although known, were
assumed to be part of the unknown plant. We did this to “fool” PLID to avoid an over emphasis on noisy high-frequency
dynamics. We will discuss this further in the following sections. Two pole butterworth filters with a 1000 Hz break
frequency provided aliasing protection.

3.4 Testbed characterization

Transfer functions were produced experimentally using a Hewlett Packard 3562A Dynamic Signal Analyzer (here
forward referred to as the “HP”) by random excitation in through the piezoelectric wafers and sensing with the
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accelerometers. For every input/output pair a TF is generated, thus there are 3*3 = 9 such pairs. Figure 4 shows output
#2/input #1, between 50 to 300 Hz. The first group of peaks seen near 60 Hz are the support tubes resonating. They are
low in amplitude because the tubes are light relative to the UDF and the frequency is low, yielding a low acceleration.
With each tube we have 2 modes, and 2 states per mode. Thus, 12 states would be needed to model these dynamics
exactly. However, because these modes are about 40 dB below the dominant peaks, we would like to be able to use only a
few states to model an average level.

The next resonance occurs at 136 Hz, corresponding to a rigid body mode of the UDF. Following this we have
modes at 168, 186, and 212 Hz. These four modes are the ones of most interest to us because they fall within, or near, the
bandwidth where disturbance vibrations exist (in our case, 10-200 Hz). However, we cannot completely ignore the
dynamics between 212 and 400 Hz, because these modes are likely to be in the roll-off region of the closed loop controller.
That is, in order to achieve some level of vibration attenuation, we must have significant controller gain in the frequency
band of interest. Opposing this is our need to roll-off the compensator as fast as possible to avoid high-frequency
instability. We must decide, at some point, on the frequency above which detailed knowledge is no longer required,
otherwise our model will become too large to implement in a real-time controller, which is our goal (to be documented in
the future).

X168, 44 Hz Y=--20.0 dB

Ya=5.70432 dB ‘
FREQ RESP 64AvV 0%0vlip Hann
20.0
10.0 _
/DAv 'R

‘-B0.0 | ‘
Fxd ¥ 50 Hz S2/A1, ARND 8V, B21RL 1A 300

Fig. 4) TF generated by the HP 3562A using random excitation with 64 averages [sensor #2 / actuator #1]

The decision of what frequency to begin “truncating” the model depends on numerous factors. Two important
ones are; (1) the performance level desired, and (2) the type of controller to be used. Our performance goal is modest;
attenuate by 15 to 20 dB the dominant resonant peak levels below 200 Hz. The proposed controller is an LQG type
augmented with high-frequency shaping filters (yet to be designed).”® With such a controller, it should be possible to roll
the loop transfer gain(s) off quickly, such that no resonance above 2*200 = 400 Hz will cause an instability. This may be
wishful thinking, but this is what we have assumed for now.
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It is possible to use the HP to create a model of the testbed. One way to accomplish this is by performing
narrowband zooms at each resonance, curve fitting these zooms, and compiling all of the damping and natural frequency
measurements in a large Laplace transfer function, or matrix of transfer functions in the MIMO case. Clearly this becomes
an impractical method for large flexible structures. PLID needs only a few seconds of input/output data to generate a
model (in this case). PLID can be used to create SISO or MIMO models, and makes no assumptions on the open loop plant
stability, nor does it require the plant to be minimum phase.

3.5 Testbed data collection

To de-emphasize the high-frequency dynamics, it was necessary to roll-off the actuator input energy. This was
done by passing the white actuator time series through a 6 order butterworth low-pass filter (see PSD in Fig. 5). PLID will
recognize that the input has structure, which will not be included in the state space model. Thus, input frequency shaping is
an effective way to reduce the model order. Model reduction done in this way will be “graceful” because PLID will not

PSD of Input 1, T = 8 secs of data, Fs=1600Hz Time domain plot of U1 for 1/10th of a second
R R N R 6 ! T ! T T

a_
i
Volts
o
e ————
—
e

10° 5 i i i i i i i
10 ‘ 26-Sep-94 . 0 20 40 60 80 100 120 140 160
Freg intiz. Sample #

g

Fig. 5) PSD (left) and time domain (right) plot of the actuator signal

give as much attention to modes that are only weakly excited. Part of the reason is that in the setup for the solution of the
optimal gain K, we used the extended state error as the quantity to be minimized. Recall that the MIMO observable
canonic form has the observations as states, thus directly wrapping the sensor error into the quantity to be minimized. The
result is that high frequency modes not excited will not receive as much attention. Eventually, the 6 pole low-pass filter
will reduce the actuation signal to well below both the actuator and sensor noise floor; PLID will not assign any poles
above this frequency. With 6 poles, we reach this frequency around 600 Hz.

A sample rate of 1600 Hz was chosen based on the 200 Hz control bandwidth. It is high enough over 200 Hz to
avoid sample rate effects, but not so high as to create a high correlation between samples. That is, we wish to set the
sample rate as near to 2*600 Hz as possible to maintain a high information content in each sample. Doing this minimized
the number of samples that PLID must be given to converge on the dynamics of interest.

Three independent signals are sent to each of the three actuators, while simultaneously sampling each of the three
sensors. Simultaneity is important to avoid introducing artificial lag into the system. Both input and output are digitized
by 12-bit zero order hold (ZOH) I/O cards (made by Intelligent Instrumentation) installed in a 486-66DX2 EISA (extended
industry standard architecture) PC. Their boards were chosen because they allow the A/D and D/A to be synchronized.
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Data collected are then copied from a memory buffer to the hard disk, and stored in ASCII single precision. Up to 13
seconds of data at a 1600 Hz sample rate can be taken this way with 3 channels.

3.6 Experimental results

3.6.1 MIMO results

The input/output data files are read in by MATLAB and stored in the work space. This is then fed to PLID one
sample at a time. At every iteration, a plot of the absolute value of the maximum difference between the actual sensor
voltage and the one-step ahead predicted sensor voltage is updated. We call this curve a “convergence plot”, since our goal
is to be able to reproduce or converge to the actual sensor signal. Every 50 iterations, a bode magnitude plot (or TF) of the
estimated model, automatically annotated with frequency and peak level measurements from the HP, is provided. This is
very useful for tracking PLID’s progress.

To reduce the effects of noise, 10 data series, each 4 seconds long, are collected using exactly the same actuator
input series. A linear system should return the same sensor data each time, differing only by the noise. Averaging these
time series will decrease the effects of noise, as well as nonlinearities, as long as they are uncorrelated between time series.
Peak noise levels were reduced from 40 mV to 20 mV with 10 averages. Noise reduction has a direct impact on the
convergence plot as shown in Fig. 6. The plot on the left reaches a steady state level of ~30 mV, versus ~20 mV for the
right plot.

Run5a, Max. Sensor Error: |Prediction - Actual|, States = 24 Run7b, Max. Sensor Error; |Prediction - Actual|, States = 24
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Fig. 6) Convergence plot without (left) and with (right) averaging

It also improves the match between the HP and PLID generated TF plot. We have annotated a TF plot generated
in MATLAB with data taken by the HP for purposes of comparing experiment to theory. (Note: we apologize for not
overlaying the HP and PLID plots directly. We were not able to get the HP data into the PC where we could plot the two
together. Further, scanning the HP plots requires more RAM than we have available.)
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Rz|g|5a: FRF U1 to the dominant output #2, States ID=24, Time=0.5s, Fs=1600Hz Run7b: FRF U1 to the dominant output #2, States ID=24, Time=0.5s, Fs=1600Hz
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Fig. 7) TF plots using input #1 to output #2 without (left) and with (right) averaging

In the above plots, the MIMO version of PLID was used. That is, all three actuators and sensors were analyzed
simultaneously. One can see from the right-hand plot in Fig. 7 that, even with averaging, we have not accurately
converged to the correct dB level of the 136 Hz mode, but averaging clearly improves the performance. Many of the other
modes are also not accurately captured. Sensor noise or algorithm limitations maybe the cause of this. Model size could
also be to blame; it is very easy to check this hypothesis by increasing the model size, and re-generating the TF plot.

Unfortunately, when we ran a 36-state MIMO analysis, we ran out of RAM and virtual memory before the
algorithm was done. However, we were able to try 27 states and 30 states, which show improvements as we increase the
number of states. Figure 8 shows the 27 state (left) and 30 state TFs, both generated with 10 averages.

Run;lg: FRF U1 to the dominant output #2, States 1D=27, Time=0.5s, Fs=1600Hz Ru%c: FRF U1 to the dominant output #2, States 1D=30, Time=0.5s, Fs=1600Hz
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Fig. 8) MIMO TF plots using input #1 to sensor #2, 27 (left) and 30 states (right)

Predicted peaks that match the experimental peaks to within 3 dB are considered a match because of the time-
varying nature of this plant. To keep the number of times that the experimental TFs had to be regenerated, we were forced
to use data that was a month old. For this discussion, however, we are able to see that 30 states is, in general, the best
match. However, the 168 Hz mode is significantly lower than measured. (Note: It was found later that this error occurred
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because we had not let PLID run through enough samples. We'll discuss this in section 3.6.2). We cannot increase the
states any more due to memory limitations, and increasing the number of samples given to PLID would result in an
excessive run time. In order to go any further, a reformulation of the problem was needed. PLID was told to treat the
problem as 3 separate SIMO systems, the results of which are given next.

3.6.2 SIMO results

The SIMO formulation has several advantages over the MIMO version. First, in this case, the execution time was
cut in half when comparing a single SIMO run to the MIMO run. With the ever-dropping price of multi-CPU computers,
comes the possibility to run each of the 3 SIMO models simultaneously on separate CPUs. Thus, the effective speed up is
2x. With even larger number of inputs and outputs, and more CPUs, the speed up could be much higher.

The second advantage follows directly from the first. Less computations means less computational error
propagating through the simulation. All that remains to be done is to come up with an automated method of concatenating
the 3 SIMO models into 1 MIMO model. We can perform this procedure “by hand”, but this ad hAoc concatenation requires
detailed knowledge of the system and a certain amount of experience. We do believe, however, that automation is possible
using only the information gathered by PLID. Work is continuing in this area.

Figure 9 shows the results of a 1500 sample run of SIMO PLID. The first 4 modes agree very well with the HP.
At the 243 Hz mode a discrepancy still exists. A reasonable explanation for this can be seen from the convergence plot.
The peak error is nearly always below the noise floor of the sensor. When this occurs, PLID will essentially assume it is
done. Further, the 243 Hz mode is the 2* smallest resonance and occurs after the 200 Hz 6 pole filter has begun to strongly
roll-off. All of these factors, coupled with only 5 dB of error, suggests that the resulting sensor prediction errors will be
small indeed.

Run1b: FRF U1 to the dominant output #2, States 1D=30, Time=0.9375s, Fs=1600Hz Run1b, Max. Sensor Error. |Prediction - Actual|, States = 30
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Fig. 9) SIMO plots using input #1 to sensor #2, TF (left) and convergence plot (right)

With the speedup realized by the SIMO models, we could explore still larger models, stepping through 35, 40, 45,
50, and 64 states. Again, RAM limited us to 64 states. These results are summarized by plotting the execution time
(sec/iteration) versus the mean of the absolute value of the difference between the actual and PLID's one-step ahead
predicted sensor voltage. Sensor error is averaged over the last 200 iterations of that particular run. Figure 10 shows the

results obtained to date. This chart is useful for trading model accuracy with size, especially if you plan on using the model
for real-time control.
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Cost vs. Performance for Different Model Sizes (SIMO)
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Fig. 10) SIMO performance plot, CPU cost vs model size

4.0 CONCLUSIONS

We have shown that PLID is a promising technique for identifying a state space model of a plant whose dynamics
are unknown, and whose states, inputs, and outputs are all corrupted by noise. Results from the testbed are very
encouraging, resulting in an “signal to residual error” ratio of greater than 200x (46 dB) using a reduced order model.

The one-step ahead predicted sensor output agrees with the actual output to within the peak noise levels of the
accelerometers. Thus PLID must have optimally, or very nearly optimally, chosen the reduced order model to approximate
the actual system, otherwise one would see a structured difference between the actual and predicted sensor output. The
absence of such correlated error implies that the prediction is accurate to within the noise level of the system.

Future work will involve closing the loop on the testbed using an LQG controller, possibly augmented with Loop
Transfer Recovery (LTR) techniques used to improve robustness. However, the purpose of the system ID work is to
lessen, or entirely eliminate the need for LTR and to automate the controller design process. Typically a significant
amount of “human intervention” is needed in the controller design. With a high-fidelity model and a well-defined
bandwidth and performance goal, it is hoped that a batch adaptive controller can be realized for systems as complex as
flexible structures. Most controller designs include gain and phase margins, which are conservative in order to avoid
stability problems. Typically, with increased gain margin comes decreased performance. If the system can be periodically
ID’d, the need for the larger gain margin goes away, improving performance.
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