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Abstract

A Data-parallel Approach for Efficient Resource Utilization in
Distributed Serverless Deep Learning

Kevin Tunder Elom Assogba
Supervisor: Dr. M. Mustafa Rafique

Serverless computing is an integral part of the recent success of cloud computing, offer-
ing cost and performance efficiency for small and large scale distributed systems. Owing
to the increasing interest of developers in integrating distributed computing techniques into
deep learning frameworks for better performance, serverless infrastructures have been the
choice of many to host their applications. However, this computing architecture bears re-
source limitations which challenge the successful completion of many deep learning jobs.

In our research, an approach is presented to address timeout and memory resource lim-
itations which are two key issues to deep learning on serverless infrastructures. Focusing
on Apache OpenWhisk as severless platform, and TensorFlow as deep learning frame-
work, our solution follows an in-depth assessment of the former and failed attempts at
tackling resource constraints through system-level modifications. The proposed approach
employs data parallelism and ensures the concurrent execution of separate cloud functions.
A weighted averaging of intermediate models is afterwards applied to build an ensemble
model ready for evaluation. Through a fine-grained system design, our solution executed
and completed deep learning workflows on OpenWhisk with a 0% failure rate. Moreover,
the comparison with a traditional deployment on OpenWhisk shows that our approach uses

45% less memory and reduces the execution time by 58%.



vi

Contents

Dedication . . . . . . . . ... iii
Acknowledgments . . . . . . ... Lo iv
Abstract . . . . . . .. v
1 Introduction . . . . . . . .. ... 1
L1 Motivation . . . . . . . . .. e e e 1

1.2 Problem Definition . . . . . . . . .. ... L 3

1.3 Research Objective and Contribution . . . . . . . .. ... ... ... .... 5

1.4 Layoutofthe Thesis. . . . . . . . . . . . . . . . i 6

2 Literature Review . . . . . . . . . .. ... 7
2.1 Parallel and Distributed Deep Learning . . . . . . . . .. .. .. ... .... 7
2.2 Serverless Computing . . . . . . . . ... 10

2.3 Serverless Machine Learning . . . . . . .. ... ... .. .......... 11

24 Chapter Summary . . . . . . . . .. e e e e e 13
2.4.1 Limitations of Current Approaches . . . . . . .. ... ... ... .. 13

242 Common Challenges . . . . ... .. ... ... ... ....... 14

3 Enabling Technologies . . . . . . . . . . .. .. ... ... ... ... 15
3.1 Apache OpenWhisk . . . . . . . . .. .. ... . 15
3.1.1 System Workflow . . . . ... .. ... ... ... 16

3.1.2 OpenWhisk Invoker . . . . . . .. ... ... ... ... ....... 17

3.2 TensorFlow Framework . . . . . . . . .. .. ... ... ... ... .. 18
3.2.1 Distributed Computing Using TensorFlow Framework . . . . . . . .. 18

3.2.2 Distributed TensorFlow Performance Analysis . . . . . . .. ... .. 22



vii

4 A Scalable Serverless System for Deep Learning . . . . . . . .. .. ... .. 25
4.1 System-Level Improvement . . . . . . . ... ... ... ... ... 25
4.2 Distributed Serverless Deep Learning Module . . . . . . ... ... ... .. 31

4.2.1 System Interaction . . . . . . .. ... ... 31
4.2.2 Custom Action Runtime Image . . . . . . ... ... ... ...... 32
423 Controller . . . . . ... 33
424 Scheduler . . . . ... L 34
4.2.5 Model Training and Averaging . . . . . . . . . .. .. ... ..... 35

5 Computational Experiments . . . . . . . . . . . ... ... ... ... .. 37

5.1 Experiments Designand Data . . . . . . ... ... ... ........... 37
SATTestCases . . . . v v v i e e 38
S.12Datalnstances . . . . . . ... 38
5.1.3 Evaluation Metrics . . . . . . . . . ... 39

5.2 Analysis and Discussion . . . . . . . ... ..o 40
5.2.1 Numerical Analysis . . . . . . .. ... .. .. ... 40
5.2.2 Sensitivity Analysis . . . . . . ... 44
5.2.3 Discussion and Implications . . . . . . ... ... ... ....... 45

6 Conclusions . . . . . . . . .. 48
6.1 LessonsLearned . . . . . . ... ... . ... ... ... . 48
6.2 Future Work . . . . . . . ... 49

Bibliography . . . . . . . ... 50

TAppendix . . . . ... 57
7.1 Experiments Configuration . . . . . . . .. ... .. .. ... .. ... ... 57

7.1.1 Environment Setup . . . . . . ... ..o 57

7.1.2 Additional resources . . . . . ... ..o 59



viii

List of Tables

1.1 Comparison of some capabilities of virtual machines and serverless platforms. 3

5.1 Summary of experiments data instances. . . . . . . . . ... ... ... ... 40
5.2 Comparison of experiments results of the proposed solution and a brute-force
approach on OpenWhisk. Results obtained with 4 GB as maximum mem-
ory are labeledinbold. . . . . . ... ... oo 41
5.3 Comparison of failure rate of the proposed solution and a brute-force ap-
proach on OpenWhisk. Results obtained with 4 GB as maximum memory
are labeledinbold. . . . . . . ... Lo 42
5.4 Comparison of experiments results of the proposed solution and a deploy-

ment on a virtual machine. . . . . . . . ... ... o o 43



iX

List of Figures

1.1 Failed action invocation using default memory allocation. . . . . . . ... .. 4
1.2 Successful action invocation after increasing the memory limit. . . . . . . . . 4
2.1 Ilustration of the data parallelism strategy. . . . . . . . ... ... ... ... 8
2.2 Illustration of the model parallelism strategy. . . . . . ... ... ... .... 9
3.1 OpenWhisk action invocation workflow. . . . . . ... ... ... ... ... 16
3.2 Behind the scenes of OpenWhisk operations [10]. . . . . . . ... .. .. .. 17
3.3 Flowchart of TensorFlow Lite operations. . . . . . . .. ... ... ..... 21
3.4 Flowchart of TensorFlow Extended. . . . . ... ... ... ... .. .... 22
3.5 Variation of computation time with respect to the epoch parameter. . . . . . . 23
3.6 Variation of computation time with respect to the batch size. . . . . ... .. 23
4.1 Finite state machine illustrating the container pool-proxy contract. . . . . . . 27
4.2 Enhancement of the Run function within OpenWhisk’s docker runtime image. 30
4.3 Workflow of the controller of our proposed module. . . . . . . ... ... .. 33
4.4 Distributed deep learning workflow using serverless resources. . . . . . . . . 36

5.1 Impact of the serverless architecture on the model training accuracy and loss. 45
5.2 Impact of the batch size on the memory usage. . . . . . . . ... ... .... 46

5.3 Variation of the memory usage with regards to the number of epoch. . . . . . 47



Chapter 1

Introduction

1.1 Motivation

The scale and complexity of computations in this era of big data significantly challenge the
engineering of highly efficient software and systems. The end-to-end design of a modern
distributed system is subject to issues related to the location of the required data, commu-
nication overhead, latency, resource sharing, scalability, fault-tolerance, etc. Traditionally,
using a single compute node results in running problem-solving algorithms for hours, days
or weeks. But nowadays, the ability to perform trillions of tasks within seconds has mo-
tivated many researchers to employ advanced computing strategies for large scale prob-
lems. Several parallel and distributed architectures have evolved for high performance
computing, especially solving problems in deep learning, DNA sequencing, galaxies simu-
lation, etc. Existing strategies involve sharing resources of multiple machines and assigning
chunks of instructions and/or data to different processors without compromising minimum
latency and space requirements [15]. These distribution strategies are employed in a variety
of computing tools like TensorFlow [1], one of the most used deep learning frameworks.
Horizontally scaling by adding more machines reduces the workload of the existing sys-
tem and decreases the overall computation time. However, the ubiquitous practice of using
physical machines for occasional computations is economically inefficient, even for long
running jobs. Furthermore, deploying large scale deep learning algorithms on a cluster
of computers requires an extensive resource management, engendering additional opera-

tions costs to companies for the recruitment of systems administrators. Subsequently, more



companies are moving towards cloud computing, a compute paradigm where designs for
complex problems are simplified.

Diverse distributed systems are deployed in the cloud, and benefit from cloud comput-
ing features such as elasticity, pay-as-you-grow, diversity and ease of deployment. Services
such as Platform as a Service (PaaS) [17], Infrastructure as a Service (IaaS) [50], Software
as a Service (SaaS) [54], Function as a Service (FaaS) [65] are offered to cloud natice ap-
plication developers, and the list has been growing with the provision of more specialized
services like Machine Learning as a Service (MLaaS) [41] and Data Analytics as a Service
(DAaaS) [55].

Our research focuses on FaaS, also known as Serverless Computing. These services
offer a strong support to deep learning applications, hence more companies nowadays are
deploying their software using serverless resources. A classic example is IoT (Internet
of Things) where research are being conducted to improve the performance of edge de-
vices [61, 12]. Aware of the limited processing capacity of smartphones, watches, camera
or other small IoT devices at training or serving deep learning models, applications often
offload tasks to cloud infrastructures. While the maintenance of these infrastructures causes
an economic and operational burden, serverless computing services remove all operations
concerns and provide a high level of concurrency for faster executions [12]. The latter rep-
resents an effective support for inference jobs which are short-lived and can leverage the
concurrency level to reduce the response time [33]. Furthermore, the event-triggered archi-
tecture of serverless platforms offers an ideal environment to deploy IoT applications [37].

Despite the unequivocal advantages of serverless computing, Distributed Deep Learn-
ing (DDL) still accounts for a mere percentage of the research conducted on the subject.
Essentially, operations like MapReduce [22] in data science or hyper-parameters update in
deep learning are challenged by a requirement of the architecture restraining direct com-
munication between running cloud functions. Consequently, there is still substantial room
for further research on the topic of distributed deep learning on serverless infrastructure,

especially on how to train large models and large data sets.



Virtual Machine Serverless Platform
Ability to rollback during system updates No system update needed
Networking among multiple nodes Isolation of cloud actions
High Upfront cost No upfront cost and Pay as you grow
Complexity in cluster configuration and management No server management

Table 1.1: Comparison of some capabilities of virtual machines and serverless platforms.

1.2 Problem Definition

Consider a cloud native software company X which offers machine learning services to its
customers. Having built an image classification platform and trained model M to recognize
customers’ inputs and classify them accordingly, X stored an averagely accurate model M
on Y Cloud, and contracted OpenWhisk for inference jobs. After a certain period of time,
X noticed that the average inference accuracy has declined, and thus decided to adopt a
periodic re-training strategy to improve model M’s performance.

Considering available options such as contracting virtual servers or employing Open-
Whisk to retrain model M with a medium size data instance, X evaluates some of the ad-
vantages and disadvantages of each option summarized in Table 1.1, and decides to move
forward with OpenWhisk. The iterative process of deep learning jobs leverages the ad-
vantages offered by multiple layers in a neural network. However, these memory-intensive
operations significantly challenge an efficient deployment of deep learning applications on
serverless infrastructure.

As the basic unit of serverless computing, an action is configured with resource lim-
its to ensure concurrency, scalability and security. The configuration of action limits varies
among platforms, but differences are little. While there exists many platforms, this research
focuses on Apache OpenWhisk [9] as it is an open-source system and is considered as a
de-facto standard for conducting research in serverless computing [13]. On OpenWhisk,

the default timeout is 60 seconds allowing up to a maximum of 300 seconds; any action



Request Container

"error":
"The action did
not produce a
valid response
and exited
unexpectedly."

Data: MNIST
Task: Train
Batch: 64
Epoch: 5

Result

Timeout: 60 sec
Memory: 256 MB

Figure 1.1: Failed action invocation using default memory allocation.

Request Container
_ "batch": 64,
Data: MNIST Result "data™"mnist"
Task: Train “task“'- “4rain” ’
Batch: 64 Timeout: 60 sec ’

Epoch: § Memory: 1792 MB

Figure 1.2: Successful action invocation after increasing the memory limit.

exceeding the defined timeout exits with an error. Similarly, a default memory limit per
action of 256 MB applies. The maximum memory limit of 512 MB constrains the size of
self-contained packages, and challenges the deployment of applications with large depen-
dencies, e.g. of machine learning applications. OpenWhisk has other action limits related
to logs, payload size, number of triggers, etc., but our research only addresses the timeout
and memory resource limits.

To further illustrate the problem under consideration, we train a deep learning model for
image classification on the MNIST [40] dataset using TensorFlow on OpenWhisk platform.
The entire algorithm is written as a cloud function and therefore expected to fit in a single
action. Results are reported on Figure 1.1 and Figure 1.2 representing respectively cases
of error and successful completion. As shown on the figures, although the dataset size
(32.06 MiB) is significantly smaller than the default memory limit, the action exits with an
error message. However after several trials, setting 1792 MB as memory limit by adding the
tag —memory <value> during invocation yields a success response. In fact, the allocation of
more memory was necessary as each package imported within the function is loaded in the

corresponding container, and takes an amount of memory before assigning the remainder



to the variables.

In spite of these constraints on resource utilization, developers have found ways to
incorporate additional resources owing to OpenWhisk’s open-source nature. Serverless
distributed frameworks such as PyWren [35] and ExCamera [25] employ external services
to complete fork-join operations in order to ensure consistency, but thereby violate the basic
“no server management” policy of serverless platforms [13]. Another common approach
is the use of in-memory storage for shared objects in order to minimize latency [14], and
many applications use Redis [49] for such purpose.

In summary, unsuccessful completion due to timeouts or low memory availability are
common scenarios when running deep learning jobs on serverless infrastructure. The pur-
pose of our research is to address these challenges, and enable the migration of more deep
learning applications towards serverless computing by reducing the failure rate observed

with training deep learning models using serverless resources.

1.3 Research Objective and Contribution

In this thesis, we consider the need for a trade-off between cost, complexity, accessibility,
and user satisfaction, and propose a distributed system for DDL using Apache OpenWhisk.
Our main hypothesis is that the efficient management of resource utilization using dis-
tributed computing strategies would ensure the reduction of the failure rate of deep learn-
ing’s training jobs. In order to verify that hypothesis, we intend to enhance OpenWhisk’s
core system with the capabilities to collect resource utilization metrics and allocate addi-
tional resource when requested by running actions. This approach is also supported by the
implementation of an external module aiming at reducing the workload of individual ac-
tions through data parallelism and improving the rate of successful executions of training.
Considering its widespread in the community, open-source nature, and support from a large
number of contributors, our research employs TensorFlow as deep learning framework, cre-
ates models within the scope of TensorFlow Mirrored strategy [57], and deploys Apache

OpenWhisk system on Kubernetes. A series of experiments on the proposed solution is



conducted on CloudLab [23] using a collection of test instances and evaluation metrics.
While important contributions were already made on serverless deep learning, to the

best of our knowledge, research on training models using serverless resources are very

scarce, and very few work exist on the deployment of deep leaning jobs on Apache Open-

Whisk. Therefore, our research contributes in the following ways:

1. We focus on the time and memory resource constraints challenging to the utilization

of large packages as in deep learning,

2. We propose a fine-grained design of the deep learning workflow, and introduce data

parallelism to support the reduction of job failures.

3. Considering that machine learning on a distributed system usually requires users
to configure parameter server and workers, this research offers a single entry point
through command line interface and require user to simply specify the target dataset

and job.

1.4 Layout of the Thesis

The remainder of this manuscript is organized into 5 Chapters.

In Chapter 2, we introduce the background of the research through a detailed review of
existing theoretical and experimental advances in parallel and distributed computing and
in serverless machine learning. Chapter 3 describes OpenWhisk and TensorFlow which
are the technologies enabling deep learning using serverless architectures in the context of
our research. Chapter 4 presents our proposed solution approach, and includes a detailed
description of some failed attempts to modify OpenWhisk’s core system. Chapter 5 ex-
poses the settings of conducted experiments, explains in detail the different data-sets, test
cases and evaluation metrics. This chapter also presents the outcome of the experiments,
analyzes and discusses the computational results. Concluding remarks and future works

are proposed in Chapter 6.



Chapter 2

Literature Review

Extending on existing technologies, this research involves theoretically and experimentally
supported fields of research such as Distributed Computing, Machine Learning and Server-
less Computing. This section provides a review of previous research on the frameworks,
systems architectures, and strategies related to our topic. The following subsections will
explore related works and comment on how they offer an effective background for the

success of this research but could still benefit from further improvements.

2.1 Parallel and Distributed Deep Learning

Artificial Intelligence (Al) has existed since the 1950s [62], and is based on the assumption
that human cognition can be described in detail and be replicated by a machine. Since then,
Al has evolved into many sub-fields like Robotics and Machine Learning (ML). The latter
constitute the most widely explored Al field of research, and led to the introduction of new
topics like deep learning, whereas the former has revolutionized the manufacturing sector.

The rising complexity of deep learning models is tightly coupled with the advances in
High Performance Computing (HPC) where strategies involving the sharing of multiple
machines’ compute resources have emerged to facilitate faster computation. As the com-
munity grows, there is a considerable amount of research in parallel and distributed systems
for deep learning which leverages data, model, or hybrid parallelism to optimize resource
utilization without compromising latency and space requirements [15].

Data parallelism. Data parallelism [32] is the most widely used approach among the
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Figure 2.1: Illustration of the data parallelism strategy.

aforementioned parallel computing models for its simplicity and ease to modify. It is a
data batch splitting approach which consists in assigning batches to different processors.
Figure 2.1 shows data parallelism with TensorFlow where each compute node completes
the entire program on a given set of data. Following the computation of the error func-
tion, a collective all-reduce is applied to update the gradient on every device and maintain
consistency throughout all epochs. Among early DDL frameworks, DistBelief [21] of-
fered significant performance, but as the number of parameters has grown exponentially,
TensorFlow’s release propelled a faster emergence of DDL. Subsequently, researchers in-
creasingly focused on integrating more features to TensorFlow to yield new distributed ar-
chitectures. For example, Message Passing Interface (MPI) was used and proved efficient
as a communication interface for TensorFlow in a large distributed cluster [64].

Model parallelism. Model parallelism [41] consists in splitting the model and having
each processor perform a specific task from the model’s graph. This approach eliminates
synchronization between devices for hyper-parameters update, but it requires data transfer
between operators. An example of model parallelism is shown in Figure 2.2, where device
placement is employed to assign a given operation to each device. Therefore, data is trans-
ported in its entirety, and operations are performed following their order of implementation
in the model graph. In most cases, collective all-reduce communication occurs to update
the gradient before launching the following epoch.

Expert designed parallelization strategies are also used to achieve high performance in
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deep learning. Some researchers integrate data, model and other types of parallelism [26],
whereas others use reinforcement learning for operator assignment in model. To reduce
the level of uncertainty and non-suitability in the choice of parallelization strategies, some
experts determine the most suitable in a search space through simulations. FlexFlow [34]
was proposed to simultaneously integrate operators, parameters, data, and attributes of the
model graph for tasks distribution. The system uses SOAP (Sample, Operator, Attribute,
and Parameter) search space to determine the most effective strategy for parallel training.
To this end, FlexFlow employs a fast, incremental execution simulator to evaluate different
strategies, and a Markov Chain Monte Carlo search algorithm which takes advantage of the
incremental simulator to rapidly explore the large search space.

In summary, the advent of HPC and the design of multiple parallelism models have
facilitated the evolution of distributed deep learning. The aforementioned strategies proved
efficient in different applications, but also bear certain disadvantages. Despite its pop-
ularity, data parallelism may need excessive memory and higher latency to synchronize
parameters updates when training very large models. Model parallelism suits very large
models [52], but the implementation of algorithms for model parallelization is complex
due to the amount of involved operations. In view of these possible scenarios, several fac-

tors such as the type of the problem, the available memory resource, the concurrency limit,
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etc., should be under consideration during the design of any distributed system for deep

learning.

2.2 Serverless Computing

The abstraction of server management, the reduction of computation costs, the scalabil-
ity of compute systems and the availability of resources on request are key features of
serverless computing as defined by Amazon Web Services (AWS) [6]. For many years,
this computing model has revolutionized ways of deploying software, and offers economic
and engineering advantages to users from different level of technical skills. It provides an
architecture which facilitates an ease-of-deployment and ease-of-management, and thereby
attracts diverse applications irrespective of the programming language [4, 67, 53]. Many
use cases of serverless applications exist and an increasing range of serverless platforms
are being engineered by researchers and developers [8, 27, 9, 24]. Moreover, aiming at
alleviating the deployment overhead of an application, orchestration frameworks have also
been released [7, 43, 11], allowing developers to define compositions and launch sequences
of actions with a single call. Comparing the overhead of sequential computations and par-
allel workflows, Barcelona-Pons et al. [13] used a benchmark of 5 to 320 parallel tasks to
analyze the efficiency of Amazon Step Functions (ASF) [7], Azure Durable (ADF) [43],
and OpenWhisk Composer [11]. Conducted experiments predefined 20 seconds as fixed
duration for a task, and concluded Composer as better at performing parallel workloads.
Research related to serverless computing also focused on solving the cold start, commu-
nication, and storage issues, to name a few issues observed during the deployment of a soft-
ware. Common to all existing platforms, the cold start problem refers to the extra-latency
caused during the initialization of newly requested resources [42]. Openwhisk pre-warms
containers to reduce the firing time, but only few container runtimes are cached because
they use additional resources. Consequently, solutions ranging from agile implementations
to an additional application layer are introduced by researchers to achieve a better perfor-

mance. Mohan et al. [44] introduced a strategy to pre-warm and cache network endpoints,
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and bind the latter to containers upon requests for creation. This procedure consumes less
space and reduce the initialization delay. From another perspective, Bermbach et al. [16]
proposed three different additional mechanisms on top of the serverless platform to lever-
age the knowledge of an action invocation to cold start the containers before sending the
request. Following experiments using AWS Lambda and OpenWhisk, authors conclude a

40% reduction of cold start delay.

2.3 Serverless Machine Learning

Within few years of its advent, serverless computing has emerged as an efficient model
to perform a large number of parallel tasks. The computation intensity of machine learn-
ing and serverless platforms’ capability to perform event-triggered executions led some
researchers to develop and evaluate serverless architectures for machine learning.

Related research primarily focused on lightweight computations, specifically on edge
computing [47, 46] and serving models for inference [42, 28, 20]. For example, Lin and
Glikson [42] deployed a cat/dog image classification model on Knative [28] for inference
using TensorFlow, while Ishakian et al. [33] employed AWS Lambda to serve large deep
learning models with TensorFlow serving. Rausch et al. [47] explored the feasibility of
Edge Al workflow on serverless platforms and proposed a serverless model using edge de-
vices as cluster resources and forming an edge cloud platform. Palade et al. [46] defined
a hypothesis that the incorporation of serverless computing at the edge of IoT devices for
small tasks will improve their processing time. Accordingly, the authors evaluated quali-
tatively and quantitatively the performance of frameworks such as Kubeless, OpenWhisk,
OpenFaaS and Knative, and concluded that Kubeless offers better response time and higher
throughput. Although those research concluded the possibility of machine learning on
serverless infrastructure, yet they only consider a single phase (inference) in the entire ma-

chine learning workflow.
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Exploring the structure of training jobs in neural networks and the challenges to server-
less computing, Feng et al. [39] argued that serverless runtime is also beneficial to train-
ing small models, and minimizing data transfer between subsequent actions increases the
performance of the platform. Carreira et al. [19] expanded the design of serverless ar-
chitectures to end-to-end machine learning to develop Cirrus, a system which integrates a
stateless server-side back-end and addresses resource constraints as well as workers’ scal-
ability issues. The authors designed Cirrus to meet three critical goals defined in their

preliminary work [18]:

e A high level language based API;
e A low latency and scalable data storage; and

o A lightweight and high performing worker runtime.

Some of the existing serverless platforms for ML do not support worker failure [18],
increasing the probability of sudden job interruption, which in turn would impact the ac-
curacy of trained models. Consequently, many developers use additional supports such
as external server disks, in-memory data storage like REDIS [49] or cloud data storage
like Amazon S3. In-memory data storing has proven more efficient in terms of latency
compared to the other options [14], and is employed by a large community of practitioners.

In summary, numerous researchers focused on exploring ways to achieve efficiency and
performance in machine learning using serverless architectures. Nevertheless, while some
authors address a segment of the machine learning workflow, the review of related work
also displays an imbalanced attraction towards commercial platforms like AWS Lambda.
Among other reasons supporting its selection, authors accredit better resource constraints.
This can also be proven by the comparison of AWS Lambda limits [5] and Openwhisk
system limits [45] which shows that AWS Lambda offers more resources. For example,
while the maximum memory allocation on the former is 3008 MB, the latter just allows up

to 512MB. In addition, as a commercial platform, AWS Lambda provides a better interface
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and easier configuration. Although commercial serverless platforms facilitate the integra-
tion of an application with other systems such as databases, there exists many developers
with needs for small scale deployments, or just for experimental purposes in academic and
research settings. Under such circumstances, open source frameworks are more effective,
as they offer a larger breath for system-level modifications in order to adapt the platform to

different problems.

2.4 Chapter Summary

2.4.1 Limitations of Current Approaches

The preceding literature review evaluates research work which are related to distributed
deep learning and its achievement using serverless resources. As can be seen, earlier sys-
tems have benefited from a significant amount of enhancement, which led to the wide
application of distributed computing approaches in deep learning, and in recent years on
serverless platforms. However, while the majority of research on parallel and distributed
deep learning proposed problem-specific or job-specific designs, little attention was given
to resource utilization for distributed deep learning on serverless platforms.

Meanwhile, the few research articles on distributed serverless deep learning have fo-
cused on training models. In fact, many authors have argued that this type of jobs poses a
challenge to the deployment on serverless platforms as it requires more data, more opera-
tions, and subsequently more memory. Training also necessitates the underlining architec-
ture to accommodate the statefullness of hyper-parameters.

The consideration of these problems would drastically improve computations’ effi-
ciency as well as user experience, and offer multiple research opportunities especially in
this era where the majority of computations, both in academia and industry, are moving

towards cloud and edge computing.
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2.4.2 Common Challenges

Many limitations of existing serverless platforms undermine the effectiveness of an end-to-
end fully server-free deep learning job. Among other issues, the memory and compute time
constraints predominantly influence the design of solutions to address the problem under

consideration. These two challenges can be described as follows:

1. Memory size limit. Existing serverless frameworks have hard memory constraints

conditioning running functions with a higher data storing requirement.

2. Compute time constraints. Deep learning jobs consume more time, but actions are
constrained to complete within given time windows, often defined for few thousands

of milliseconds.

At the core of our research, we propose and implement approaches of solutions to by-
pass these obstacles in order to yield a fully-functional software for end-to-end distributed

deep learning.
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Chapter 3

Enabling Technologies

3.1 Apache OpenWhisk

The revolution of open-source software development has been a strong enabler of cloud
computing [29], yet fewer serverless platforms are available as open-source projects. One
of the few open-source serverless computing platforms, Apache OpenWhisk was developed
as a joint project by IBM and Adobe and latter released under Apache Software Founda-
tion’s flag as open-source project.

OpenWhisk supports multiple concurrent cloud functions with key-value outputs, where
each function, also referred to as action, is deployed in a docker container. However, an in-
voked action is restricted from communicating with any other running one. The invocation
often follows a threefold procedure involving the emission of a user request, its validation
and assignment, and the execution of the requested action. This process can be expanded
to a more comprehensive approach including an event source, a trigger, some rules, and
the target action. Illustrated in Figure 3.1, the event source can be a web-based request,
an external feed from a database, a Git update, or commands executed by the user through
OpenWhisk CLI. An event would automatically fire a defined trigger in order to complete a
given action or sequence of actions. The developer can also optionally specify rules stating
actions to execute, or use a single trigger to call for different actions. It is important to note
that actions and triggers are not always linked, thus any user can invoke an action without

defining a trigger.
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Figure 3.1: OpenWhisk action invocation workflow.

3.1.1 System Workflow

The architecture supporting OpenWhisk’s operations integrates several well-know software
stacks such as Nginx, Kafka, Docker, CouchDB, Kubernetes, to name a few. Each com-
ponent plays an important role backing the two main entities of the serverless computing
platform which are the controller(s) and invoker(s).

OpenWhisk can be deployed through a standalone platform using Docker containers or
with Kubernetes to manage the entire cluster. While the former option is straightforward
and simpler, the latter is more resilient for middle or large scale clusters. Figure 3.2 depicts
what happens behind the scenes of Openwhisk system, showing the interaction between the
enabling packages. Nginx, a high performance open-source web-server, opens the system
to the outside exposing HTTP services to clients. This server is primarily used for SSL
termination and a reverse proxy to forward the client’s request to the controller.

At the core of OpenWhisk, the controller implements a REST API to authenticate and
proceed with the system’s orchestration. Upon reception of a call, the controller checks
the credentials of the user, and verifies the authenticity of the user’s request on the basis
of data stored in CouchDB. After validation, an activation message is generated and pub-
lished by the loadBalancer to an invoker through Kafka. In addition to the loadBalancer,

OpenWhisk’s controller encompasses a leanBalancer which directly communicates with
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CouchDB

Figure 3.2: Behind the scenes of OpenWhisk operations [10].

the invoker without Kafka as intermediary. The loadBalancer has a holistic view of the en-
tire system, and the workload of the invokers, hence proceeds to the selection of the most
appropriate one considering its availability and features.

The invoker, manager of the pool of containers, picks the activation messages from
Kafka or through feeds, collects the code corresponding to the action from CouchDB, and
proceeds to the invocation. In comparison to the controller, the invoker is the closest entity
to the action’s container. Consequently, its in-depth evaluation is conducted in the follow-
ing chapter in order to examine possible improvements for a better memory management.

Meanwhile the following section describes the operations of the invoker.

3.1.2 OpenWhisk Invoker

The invoker is the final stage in the OpenWhisk flow of processing actions. Upon detection
of an activation message through the procedure described in Algorithm 1, a container with
the runtime language corresponding to the action is selected among warmed containers, or

created if none is available for use. OpenWhisk supports several programming languages
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Algorithm 1: OpenWhisk Invoker workflow.
Data: Command line arguments: invoker [options] [proposedInvokerld]

Result: Void (Launches server and listens for activation messages)
basic system configuration;
Kamon shutdown;
load properties from the environment;
if properties and runtime manifest are valid then
L initialize execution runtime manifest;

get command line arguments and assign invoker ID;
initialize Kamon with the assigned 1D;

instantiate the invoker provider;

launch Invoker server;

such as Nodels, Java, Python, Go, Swift, PhP, and has docker images for each runtime
hosted in its repository. After the selection or creation of a target container, the action
code is extracted from CouchDB, and injected into the container for execution. In the end,
results and logs are collected and stored back into CouchDB. The container is afterwards
destroyed or kept warm for future use.

The direct interaction of the invoker with the pool of containers makes it an ideal target
for understanding how action memory is handled in the system. Through the analysis of
source codes, and as Algorithm 2 shows, we noticed that an invoker is instantiated with the

configuration of the entire container pool, and has access to the user memory limit.

3.2 TensorFlow Framework

3.2.1 Distributed Computing Using TensorFlow Framework

TensorFlow [1] is a machine learning platform which is widely used in the community
by developers and researchers for fast computation and efficient completion of jobs like
image classification, pattern recognition, regression, etc. TensorFlow allows developers
to perform data, model or hybrid parallel computations with very high accuracy for many

problems while maintaining a simple parallelism design. It has extensively been improved
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Algorithm 2: OpenWhisk Invoker Provider workflow.
Data: WhiskConfig, InvokerInstanceld, MessageProducer, conttainerPoolConfig,
ConcurrencyLimitConfig
Result: Invoker Provider
Execution context and whisk configuration;
instantiate a container factory to provide container proxy actor;

initialize container factory;

clean runtime containers if any existed;

initialize necessary databases;

initialize message consumers;

define ack messages transmision pipeline;

instantiate a container proxy actor which will be parsed to the container pool and
used when containers are called;

define an activation feed with a method to process activation messages read from
Kafka(refer to Algorithm 3);

create the container pool with the proxy, pool configuration instructions, and the
activation feed;

since its initial release by Google Brain in 2015 as an open-source software, and currently

counts variants such as TensorFlow Lite, TensorFlow Extended, Mesh TensorFlow, etc.

TensorFlow Lite

TensorFlow Lite (TFLite) [58] is the lightweight version of TensorFlow, designed for mo-
bile and embedded devices. The architecture consists of a converter which transforms a
TensorFlow model into TensorFlow Lite format, and an interpreter which reads and works
with the converted model. An illustration of the workflow is provided in Figure 3.3. Note
that currently only sequential inferences are implemented, offering research opportunities

for distributed training on mobile devices.
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Algorithm 3: How activation messages are processed.
Data: Activation message

Result: Sends request to container
get transaction ID;
set trace context;
load properties from the environment;
if action namespace not blacklisted then
get the action;
create action executable;
send Run(executable, message) request to the poll for assignment to an idle
container;

TensorFlow Extended

TensorFlow Extended (TFX) [59] is a distributed architecture ensuring a rapid software
production where the developer distributes tasks like transforms, model analysis and serv-
ing to different components of the distributed computing platform. The framework incor-
porates Apache Beam, and supports Flink, Spark or Dataflow to ensure data transmission
across the entire pipeline.

As shown in Figure 3.4, TFX uses a driver to read from a metadata store, where infor-
mation about the model is kept, and passes it to an executor. Executions of tasks mentioned
above can run in parallel before sending the ready-to-serve product to the publisher. The
publisher uploads the data back to the metadata store. Note that the executor does not read
or write directly to the storage, thereby it can avoid read-write problems which may emerge

out of running tasks in a distributed environment.

Mesh TensorFlow

Mesh TensorFlow (MTF) [51] incorporates both data and model parallelism. It is effi-
cient at addressing problems with a large number of parameters, attributes, operators. This
method can stipulate the type of parallelism through the setting of the mesh shape and the

computation layout. As well, it can define the size and configuration of the computational
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Figure 3.3: Flowchart of TensorFlow Lite operations.

resources as 1D, 2D, or moreD meshes. A Mesh TensorFlow graph consists of parallel

operations coupled with all-reduce as collective communication.

Distributed TensorFlow

Distributed TensorFlow consists in distribution strategies such as Mirrored, Parameter server,
One-device, Multi worker Mirrored, to name a few, and follows a dataflow computational
model. Operations are represented as a direct acyclic graph replicated on each compute
node. The process is common to the majority of the strategies, except parameter server
which employs a slightly different approach to update hyper-parameters. The cluster spec-
ification, in case of the parameter server strategy, requires the definition of at least one
device as parameter server. At the end of each epoch, every worker device sends its gra-
dient to the designated parameter servers to update the global value. Similarly, devices
refer to the parameter servers to collect the necessary parameter for a given computation.
Thus, less space will be used on each worker, however, it may create a communication

overhead owing to the number of concurrent requests [15]. The mirrored strategy [57] is a
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Figure 3.4: Flowchart of TensorFlow Extended.

base model in Distributed TensorFlow where variables are maintained as mirrored objects
across devices. The common reduction methodology is an all-reduce approach which mir-
rors the variable onto all devices forming the compute cluster. All-reduce is analogous to
broadcasting a value to all components of a network. In TensorFlow, a value-destinations

pair is maintained and used to ensure that the same value is broadcast to all the devices.

3.2.2 Distributed TensorFlow Performance Analysis

We evaluate the performance of Distributed TensorFlow through the computation time
taken per iteration, and per batch size. For comparative analyses, we respectively trained
an image classification model with a sequential program and within the scope of the Mir-
roredStrategy distribution. One CPU-enabled node from CloudLab hosting Ubuntu 18.04
was instantiated. We imported version 2.0.0b0 of the TensorFlow framework, and defined
other parameters as following: data ={MNIST, CIFAR-10, CIFAR-100}; epochs = 5, for
visualization and interpretation purposes; batch size ={8, 16, 32, 64}; buffer size = 10000.

Computation results are collected and presented on Figures 3.5 and 3.6 for comparison.

Accordingly, our observations and conclusions can be summarized in the following points:

e An increase in the batch size yielded more computation speed. From a distributed
computing standpoint, this observation implies the reduction of communication over-

head because larger batches minimize the number of parameter updates. In addition,
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Figure 3.6: Variation of computation time with respect to the batch size.

larger batches improve randomness in the training, which does not only avoid over-
fitting, but also allows faster convergence. However, the batch size should not be

extreme as doing more job at a time will impact the accuracy of the output.

As the index of the epoch increases, less variation is observed in the computation.
However, there is an improvement in the accuracy and reduction of the loss. On
the one hand, it illustrates the process of gradient descent, where the update of the
gradient at the end of an epoch allows better performance during the next one. On

the other hand, it explains the iterative process where the entire dataset, in the form



24

of mini batch, goes through the neural network at each epoch.

e Distribution of tasks to multiple compute nodes allows faster computation. The co-
ordination of each node’s resources reduces their workload, and consequently allows

to make an efficient use of the CPU cycles for more operations.
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Chapter 4

A Scalable Serverless System for Deep
Learning

With regards to OpenWhisk timeout and memory resource constraints, our research aims at
enhancing the system and providing the most efficient approach to train deep learning mod-
els and/or infer testing data. Therefore, we explore two different enhancement strategies,

and analyze their feasibility taking into account the design of the current platform.

4.1 System-Level Improvement

The overview of Apache OpenWhisk presented in Section 3.1.2 has introduced the factors
which define the selection of a pre-warm or warm container to execute requested functions.
We emphasized on the choice of a container which kind (runtime language) matches the
invoked action, but the memory requirement of the request is also considered. As a matter
of fact, an action can be configured by the user with a desired value for memory allocation,
and it is part of the invoker’s responsibilities to ensure that the selected container satisfies
the request. Henceforth, not only does the kind of a warm container play a role in deciding
whether or not to cold start a new container, but the capacity of the latter is also assessed.
A record of the memory allocated to active containers is maintained by the invoker.
Using a pool hierarchy to track free, busy, pre-warm starting and prewarmed containers,
an OpenWhisk invoker communicates with managed containers through their proxies, and

established a contract to define the interaction. The container proxy is a representation of
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the running container, and is used to route connections that would have otherwise directly
reached the invoker. While communication is achieved through HTTP, the proxy contract
defines the content of the request as well as actions to perform on the basis of the response.

The contract between the invoker and the container proxy is implemented using Akka
Actor model [2]. The interaction is interpreted by a Finite State Machine (FSM) [3] using
a set of relations as follows: In the occurrence of Event E in State S, perform Action A and

move to State T.
State(S) x Event(E) — Action(A), State(T)

Figure 4.1 describes the contract established with the proxy in order to efficiently man-
age resources. A container can be in one of eight different states (Initialized, Starting,
Started, Running, Ready, Pausing, Paused and Removing), and one or more actions can be
performed following the occurrence of an event. For example, following transmission of
a Run request with pre-warmed data, a started container changes its state to Running. The
current system configuration allows the container proxy to receive Start, Run, Remove and
HealthPingEnabled requests from the pool, respectively to initialize, launch computations,
reclaim the container, and check if the container is healthy. In return, the container proxy
can send to the invoker requests such as NeedWork, ContainerPaused, ContainerRemoved,
RescheduleJob, PreWarmCompleted, InitCompleted and RunCompleted.

A running container is allowed to request for more work from the container pool. In
view of the possibility of such action, can we redirect this mechanism to request for more
memory? In order to evaluate the feasibility, we formulate the following proposition and

verify them on OpenWhisk.

Proposition 1. Let the container proxy periodically check for memory usage, and send a
NeedMemory request to the pool when the remaining memory is critical.

The implementation of a resource monitor in the container proxy is our first attempt to
achieve a dynamic memory management. As shown in Algorithm 4, the container would

periodically get the remaining memory, checks if there are less than 10 MB available. Be
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Figure 4.1: Finite state machine illustrating the container pool-proxy contract.

the result true, the container would notify the pool through a NeedMemory request. The
container’s information is encapsulated inside a warmData variable which is forwarded
along with the request. In case of a NeedMemory event, Algorithm 5 shows that the pool
checks if it has enough memory to assign an additional 256 MB to the requesting actor,
otherwise assign the amount of free memory in the pool. In order to successfully compile
these algorithm, we had to also modify the variable holding the memory limit of an ac-
tion from "val" to "var" as the former defines immutable variables while the latter allows
modifications after the variable’s definition.

Although this approach maintains the consistency of resource inventory on every actor
of the transaction, it failed to collect the accurate memory usage because the container

proxy does not operate inside the docker container where the action is run. Henceforth, the
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Algorithm 4: Memory resource monitor.

while status is running do
get remaining memory;
if remains less or equal to 10.MB then
ContainerPool <— NeedMemory(WarmData);
end
end

Algorithm 5: ContainerPool handling of NeedMemory requests.

if Event: NeedMemory then

if hasPoolSpaceFor(freePool, 256.MB) then

/I If there is not enough memory, increase by 256.MB;
warmData.increaseMemoryBy(256);

else

// Remove a a too cold container to free up space in the containerPool;
availableSpace = Math.min(256, memoryConsumptionOf(freePool)).MB;
ContainerPool.remove(freePool, availableSpace).map(removeContainer);

warmData.increaseMemoryBy(availableSpace.toMB.toInt);

end
end

resource monitor just keeps track of what is internally happening inside the invoker pod,

which is not the desired behavior.

Lemma 1. The container proxy, entity which holds metadata about the running container
is hosted by the invoker pod. Therefore, we cannot monitor the active memory usage of a
running container from the proxy.

Proposition 2. Aware that actions run inside docker containers within a different pod
from that of the invoker, let adapt the existing communication strategy between the run-
ning docker container and the invoker and incorporate a warning notification in case of
critical memory consumption level.

As mentioned above, the invoker uses HTTP to send requests to the container. Two
routes, namely /init and /run, are available in the existing system architecture respectively to

initialize the container and launch the execution of the action. The expansion mentioned in

Proposition 2 involves modifying the behavior of the run function executed upon reception
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Algorithm 6: Implementation of the run function.

set parameters in the global context;
launch memory monitor; //This step will be added for our metrics collection;
execute code in global context;
get results of the execution;
if result is a dictionary then
‘ return result with a 200 status code;
else
‘ return a 502 status code with an error message;
end

of a request through the /run route. The resource monitor is launched inside the container
before the execution of the code, as shown in Algorithm 6. Once the monitor detects the
usage in the critical region, our implementation summarized in Figure 4.2 requires the
container to return a 200 HTTP status code with the word "memory" as a warning, and
continue listening until the execution of the code is completed. The container proxy then
forwards a NeedMemory to the pool which update the entire deployment accordingly. Our
choice of the response status is defined by the current system in which the invoker considers
any response with a 500 status code as a failure, and removes the corresponding container
from the pool. Willing to maintain the action running until completion, an HTTP response
with a 200 status code appears ideal.

In part, this system enhancement works because the memory usage of the running con-
tainer is accurately monitored. However, setting a new memory limit was not successful
as the underlying deployment environment is Kubernetes, and the resource limits of a run-
ning pod cannot be modified. The destruction of the running pod, cold starting a new one
and resuming the action from beginning does not present an efficient strategy as it infers a
longer execution time and worse results.

In summary, an OpenWhisk deployment on Kubernetes creates separate pods for the
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Figure 4.2: Enhancement of the Run function within OpenWhisk’s docker runtime image.

invoker and the docker container hosting the execution of the invoked action. The com-
munication is established and maintained through HTTP services, and we could moni-
tor the utilization of either pod successfully. However, the modification of the memory
resource limits of the action’s pod failed as Kubernetes does not support the update of
a running pod’s resources. The execution of the command kubect! patch pod wskwsktf-

"on

invoker-00-1-prewarm-nodejs10 -n openwhisk -p ’{"spec":{"containers":[{ "name": "user-
action","resources":{ "limits":{ "memory":"512Mi"}}}]}}’ aiming at externally modifying
the memory limit of a testing pod ”wskwsktf-invoker-00-1-prewarm-nodejs10” failed with
an error which declares that The Pod "wskwsktf-invoker-00-1-prewarm-nodejs10" is in-
valid: spec: Forbidden: pod updates may not change fields other than ‘spec.containers/-
*].image‘, ‘spec.initContainers[*].image‘, ‘spec.activeDeadlineSeconds* or ‘spec.tolera-
tions* (only additions to existing tolerations). Although we can destroy the running con-
tainer an assign more memory before redeploying, yet this approach would undermine the

efficiency of our solution because there would be a significant and inefficient memory re-

source utilization. Considering the risk of a worse performance, our research has expanded
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to explore the feasibility of an external support module and the implication of its imple-

mentations in the following section.

4.2 Distributed Serverless Deep Learning Module

A deep learning workflow is an iterative process which improves the efficiency of the
trained model on the basis of hyper-parameters update. Employing serverless computing to
perform such tasks necessitates the ability to synchronize actions and accordingly update
parameters. However, not only is this feature unavailable on OpenWhisk, but communica-
tion between actions is also restricted, thereby requiring for an outside support. Moreover,
the timeout and memory resource limitations enforced by serverless platforms expose deep
learning jobs to a higher risk of unexpected termination, compromised results and worse ac-
curacy. Considering the challenges of a dynamic memory allocation at the system level, our
research proposes a distributed module to provide scheduling and task assignment support
using a fine-grained system design. We introduce DISDEL, a distributed serverless deep
learning module, which employs data-parallelism to ensure a fine-granularity of deployed
actions, and computes containers memory resources based on an SAP (Sample - Attributes
- Parameters) feature set. These features are factored to determine the appropriate memory
allocation of a container in order to avoid over-provisioning or under-provisioning as the
former would lead to a poor resource utilization and the latter to the interruption of running

containers.

4.2.1 System Interaction

The proposed architecture follows a workflow applicable to many problems be it image
classification, object detection, text processing, etc. In view of storage constraints of cloud
actions and aware that communication between actions is not supported on existing plat-
forms, our strategy combines both client and serverless resources. As shown in Figure 4.4,
the entry point into the system is a command line interface where users submit their re-

quests by providing the target dataset and the job type, and optionally specify the desired
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batch size and the number of epochs. In case of omission of optional parameters, default
values of 64 data entries per batch and five epochs are applied.

A user request is received by a controller, which is the main component of our additional
module, and the only part which is launched on the host system. As the name specifies,
the controller processes the request and proceeds accordingly. An example is used in Fig-
ure 4.4 to illustrate a training request from a user who targets the mnist dataset. First, an
initialization phase occurs and consists in reading the parameters, computing the number of
actions to create, and creating a package to wrap the entire composition. Another use of the
package is to define all the parameters as a dictionary which can be inherited and accessed
by invoked actions. Second, actions are created. For the example under consideration, only
the training and collectWeights actions are created, but if the requested job were an infer-
ence, an additional action would have been created for the evaluation phase. Third, training
actions are invoked concurrently with a blocking call maintaining the main thread until all
worker threads join. Each action stores the trained model in a Redis in-memory data store
for later use. The fork-join mechanism is employed to ensure that more data points are used
to build a more accurate ensemble model. Following the join operation, the collectWeights
action collects all trained models from the data store for a weighted averaging of each layer
and generates an ensemble model. This model is stored back into Redis, and can be used

at time of inference.

4.2.2 Custom Action Runtime Image

Considering the different entities enabling deep learning on OpenWhisk, the default stack
consists in the execution of docker containers inside Kubernetes pods, with an underly-
ing docker image built from the base OpenWhisk docker runtime image. Under several
circumstances, images specific to the runtime of the requested action are often used, or
recreated as custom images with additional packages to accommodate applications which
import additional modules. Nevertheless, it is important to point out that although Open-

Whisk is compatible with custom runtime images, the system requires the implementation
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Figure 4.3: Workflow of the controller of our proposed module.

of the action interface, an interface where routes for invocation requests are defined.

The default python action runtime image does not contain TensorFlow framework, thus,
it is imperative to parse a custom docker image with the —docker flag at creation. However,
in our setting where many actions are concurrently deployed, we reduced the overhead of
parsing the image each time by building a custom image which contains all the required
modules for the python runtime along with TensorFlow, TensorFlow-datasets and Redis.
For simplicity and ease of reproduction, we adapt OpenWhisk’s image for python actions',
and define the resulting custom image as default runtime for python actions in the invoker

pod’s manifest.

4.2.3 Controller

At the core of DISDEL, the controller is the main processing unit of our proposed module.
Its primary functions, as shown in Figure 4.3, are the reception and authentication of the
user’s request, the generation of application configuration parameters, the transmission of a
request to the scheduler to determine the memory allocation, the initiation of the fork-join
operations, and the transmission of the result back to the user. The validation of the job is
a simple comparison to ensure the entry is either train or infer, whereas that of the dataset

ensures the target data is available in the TensorFlow Dataset Catalog [56].

! Available using "docker pull openwhisk/python3action”
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Data is a critical ingredient in every deep learning model training or inference. The
availability and quality of collected data does not only impact the execution’s duration, but
it also influences the accuracy of the generated model. Our goal being to enable the training
of medium and large datasets on serverless platforms without the failure of any invoked
container, we implemented our module around a data parallelism approach. Based on the
number of actions, the controller splits the target dataset into smaller chunks which would
fit in a single action. The fitness of the obtained data size is evaluated with the assistance
of a scheduler which determines the most suitable memory allocation for the data. More
on the scheduler is provided in the next section. Upon reception of the memory to allocate,
the controller creates and invokes serverless actions which are executed on OpenWhisk.

Finally the result of the execution is collected and returned to the user.

4.2.4 Scheduler

Training a deep learning model is a memory-intensive job. From the assembly of the model
to its compilation and fitting, a significant amount of the host’s resources are consumed,
and the shortage in the amount of memory needed for an operation leads to the sudden
interruption of the entire training. In this section, we introduce our scheduler, one of the
main components of DISDEL, which has the primary responsibility of partitioning memory
based on a set of features.

The memory computation considers three different features which are the Sample (num-
ber of examples/records in the dataset), Attribute (input size, number of output classes,
number of channels in a given sample), and Parameter (number of trainable parameters at
each layer). The defined model is of three layers (one convolution layer and two dense
layers) with a max pooling phase after the first layer. Therefore, the total number of param-
eters is computed as the aggregation of each layer. At the convolution layer, the number of
trainable parameters is computed using p = (m x k? x n) + n [36] where m designates
the number of input channels, k is the filter size and n the number of output channels. Sub-

sequently, we estimate the memory usage of fitting the model as fit = e X p X s where e
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represents the number of epoch, p refers to number of parameters and s denotes the number
of steps during training.

Considering the number of parameters and the memory estimation for the fir function,
we include the size of the generated runtime image pkg, the size of the dataset dta, the size
of the compiled model mod and a safety limit saf in order to compute the total memory
estimation of an action as memory = fit + pkg + dta + mod + saf. The purpose of
the safety limit is to ensure that there is enough space to hold generated variables, the

directories containing logs and checkpoints, and a .A5 file storing the generated model.

4.2.5 Model Training and Averaging

The maximum user memory on OpenWhisk is defined by default as 2048 MB, which is the
maximum memory allocated to a pool of container as well. Aware of the memory usage
of the custom runtime image, the compiled model, logs and checkpoints, training a large
dataset in a single action represents a significant risk of execution failure due to the lack of
memory. However, the restriction on inter-action communication prevents the concurrent
use of multiple actions to perform all-reduce updates of parameters.

We propose a fork-join strategy in which training is performed concurrently on portions
of the dataset inside different containers. Upon completion of all training jobs, we invoke
a single action to collect all models stored during training actions from a designated data
store, proceed to their weighted averaging (equal weights are used in our implementation),
and return the ensemble model to the data store for future use during inference. With
regards to the traffic between actions and the storage, the selection of a suitable intermediate
storage proves critical as it may incur additional delay. For the sake of faster insertion and
retrieval, we employ Redis due to its efficiency as proved by many researchers and its
popularity in the open-source community. An experience with 1 KB payload also supports
the performance of Redis as the average latency of put and get requests to an Amazon S3

database largely exceeds storage on Redis [14].
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Figure 4.4: Distributed deep learning workflow using serverless resources.

Our strategy does not only yield an efficient performance, but is also scalable as a con-
troller takes care of the scheduling of the number of actions, implements data parallelism,
manages the fork-join process, and returns the result. Ultimately, the user would not have
to manage the burden of individually determining the amount of data to assign to an action
or the number of action to create. The proposed system just requires the name of the dataset

and the job to complete. The rest is handled internally and results are returned to the user.



37

Chapter 5

Computational Experiments

This section presents computational experiments designed to evaluate the performance of
the proposed module. In section 5.1 we introduce different components of our experiments
starting from the system configuration, and explain the considered data instances along
with comparison metrics used to assess the implemented test cases. Section 5.2 reports the

results and discusses their implications.

5.1 Experiments Design and Data

The proposed module is validated on a CloudLab testbed where OpenWhisk is deployed
in a Kubernetes cluster. Prior to computation, we installed software packages such as
Docker [63], Kind [60], Helm [30], Kubernetes [31], OpenWhisk CLI (wsk) [9] that are re-
quired for the cluster deployment. Kind creates the cluster for running Kubernetes locally;
Helm installs the deployment; Kubernetes orchestrates the OpenWhisk system; Docker
containers host the execution of users’ requested actions. The script used to setup the ex-
periment is provided in Appendix 7.1 and the code is available in the GitHub repository of
RIT’s High Performance Distributed Systems Lab'.

DISDEL is developed in Python to ensure that it is lightweight and user-friendly, and
additional shell scripts are written to orchestrate the creation and invocation of our actions.
A collection of five data instances from the TensorFlow datasets catalog [56], six evaluation

metrics and three different test cases were used to facilitate the validation of our solution.

'https://github.com/hpdsl/disdel
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5.1.1 Test Cases

Three different scenarios are evaluated in our experiments in order to assess diverse run-
time environments and validate the efficiency of our proposed solution. The test cases are

described as following:

e DISDEL: This implementation employs our proposed module for distributed server-

less deep learning as described in Section 4.2.

e Brute Force: We directly run the algorithms on OpenWhisk and increase either the
memory size by 256 MB or the timeout by 10 seconds every time the container fails
based on the returned error type. These values are maintained as they avoid restarting
the containers many times which ends up increasing the total memory usage and

duration.

e Virtual Machine: We execute the deep learning algorithms on the host virtual ma-

chine to imitate deep learning on a server and for further comparisons.

5.1.2 Data Instances

Five data instances classified into two groups are used. Table 5.1 describes each instance
and presents their respective size, number of labels, number of examples and the job re-
quested in our computational experiments. The first set refers to datasets of size measured

in KiB and the second set groups datasets measured in MiB.

e Binary_Alpha_Digits’: This dataset contains 20 x 16 representations of numbers

from O to 9 and capital letters from A through Z.

o CIFARI10 [48]: From the Canadian Institute For Advanced Research (CIFAR), this
dataset is a collection of images that are commonly used to train machine learning
and computer vision algorithms. Ten different classes representing airplanes, cars,

birds, cats, deer, dogs, frogs, horses, ships, and trucks are included.

2The homepage is https://cs.nyu.edu/~roweis/data/
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o CIFAR100 [38]: This dataset is similar to CIFAR10, but contains 100 classes with

600 images each.

e MNIST [40]: The Modified National Institute of Standards and Technology (MNIST)
database is a large database of handwritten digits that is commonly used for training

various image processing systems.

e Fashion_MNIST [66]: This dataset consists of gray scale 28 x 28 images labeled

from ten different classes.

5.1.3 Evaluation Metrics

We use the following six metrics to measure the performance of our test cases:

1. Number of created containers

2. Total memory usage

3. Total execution duration

4. Total container initialization time (cold start)
5. Number of failed containers

6. Failure rate

Computational results are obtained on a 3-node cluster composed of Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz machines from the CloudLab [23] Wisconsin data center.
Each node has 40 CPUs with 32-bit and 64-bit op-modes, offers 196 GB of RAM, and
hosts an Ubuntu 18.04 operating system. For the sake of diversity among the results, we
ran experiments varying the batch size and number of epochs such that: batch={32, 64,

128}; epochs={5, 10}.
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Set Name Size Classes | Number of examples | Jobs requested
1 (KiB) Binary_Alpha_Digits | 519.83 | 36 1404 train
CIFAR100 292.74 | 100 60000 train
CIFARI10 294.58 | 10 60000 train & test
2 (MiB)
Fashion_ MNIST 65.78 | 10 70000 train & test
MNIST 32.06 |10 70000 train & test

Table 5.1: Summary of experiments data instances.

5.2 Analysis and Discussion

5.2.1 Numerical Analysis

We provide the results of our computations with a batch size of 64 over five epochs shown in
Table 5.2, Table 5.3 and Table 5.4. Among others sets of parameters, we report results with
the aforementioned values as they provide the best sample for analysis, especially with "Out
Of Memory" errors which are obtained as outcomes of some experiments. For all the tables
reporting the computational results, Column 1 states the dataset used during the experiment
under consideration. In Table 5.2 and Table 5.4, Columns 2 and 3 respectively report the
memory usage during the execution of the deep learning job in each of our test cases;
Columns 4 and 5 contain the duration of the execution, while Table 5.2 specifically has
Columns 6 and 7 present the time taken by the initialization of a container for the requested
action. We have not measured the initialization time for the direct deployment on a virtual
machine as this case does not use serverless resources. In Table 5.3, Columns 2 and 3
report the number of containers used to execute jobs requested in cases of deployments
using OpenWhisk; Columns 4 and 5 present the number of restarted containers due to out-
of-memory or timeout failures; Columns 6 and 7 compute the failure rates in the compared
cases.

We first evaluate the performance of DISDEL with respect to a brute-force approach as
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Memory (MB) Duration (s) Initialization (s)
Instance
DISDEL | Brute Force | DISDEL | Brute Force | DISDEL | Brute Force

Binary_Alpha_Digits | 1268 1536 42 60 6 6
CIFAR100 8060 16896 279 510 9 20
CIFARI10 7952 16896 262 630 9 20
Fashion_ MNIST 4201 7168 178 400 7 12

MNIST 3904 7168 89 210 7 12

Table 5.2: Comparison of experiments results of the proposed solution and a brute-force
approach on OpenWhisk. Results obtained with 4 GB as maximum memory are labeled in
bold.

summarized in Table 5.2. The over-performance of DISDEL is shown to be consistent over
all the data instances, and expresses the efficiency and ellitism of our module at executing
training and inference jobs on serverless infrastructure. The considerable difference in the
memory usage and the execution duration proves the importance of data parallelism in
the efficient resource allocation and deployment of an application to train deep learning
models. On the one hand, pre-allocating enough memory ensure lower resource utilization
and faster computation. As a consequence under the same setting of 2048 MB as maximum
memory limit, we achieved up to 45% and 58% reduction respectively in the memory usage
and duration. On the other hand, our approach eliminates the need to restart a container
every time its fails, and as reported in Table 5.3 reduces the rate of failed executions to 0%.

Further analyses of the results in Table 5.2 show that the execution of deep learning
jobs does not only depend on the size of the dataset, but it is also influenced by the size of
the model. Compared to the brute-force solution, the proposed data-parallel approach has
successfully trained more models, namely instances such as Binary_Alpha_Digits, Fash-
ion_MNIST, MNIST while maintaining the default maximum memory allocation intact.
Indeed, following the estimation and allocation of memory, DISDEL launched the concur-

rent execution of requested actions, but containers went out of memory during training.
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Used Containers Restarted Containers Failure Rate
Instance
DISDEL | Brute Force | DISDEL | Brute Force | DISDEL | Brute Force

Binary_Alpha_Digits | 3 3 0 2 0% 67%
CIFAR100 5 11 0 10 0% 91 %
CIFARI10 5 11 0 10 0% 91 %
Fashion_ MNIST 4 7 0 6 0% 86%
MNIST 4 7 0 6 0% 86%

Table 5.3: Comparison of failure rate of the proposed solution and a brute-force approach
on OpenWhisk. Results obtained with 4 GB as maximum memory are labeled in bold.

These failures are due to requirements for more memory as an assignment of 2048 MB was
not enough, and allocating more would yield an error: Unable to create action 'nameOfAc-
tion’: The request content was malformed: requirement failed: memory ’allocatedMem-
ory’ MB exceeds allowed threshold of 2147483648 B. Consequently, we raised the maxi-
mum consumable memory of an action to 4096 MB in order to successfully train models on
CIFAR10 and CIFAR100 datasets. Note that fashion_MNIST, an instance with the largest
size of 65.78 MB among successful cases, has an input shape of (28, 28, 1). Meanwhile,
CIFARI10, an instance with the largest input shape (32, 32, 3) among successful cases, has
a size of 308.89 MB. Henceforth, we can conclude that the size of compiled models stood
a significant amount of memory, and that data-parallelism did not have enough impact as
the entire model is replicated inside each running action.

Table 5.4 reports the results out of the execution of requested jobs on a virtual machine.
We observe a percentage decrease compared to our solution, suggesting that a bare-metal
deployment consumes less memory and time. However, reported results for the virtual
machine do not account for the launch time of the machine as well as the memory usage of
installed packages and modules. Meanwhile, each container deployed by DISDEL includes

a runtime docker image of 225 MB, logs and checkpoint files which size is specific to
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Memory (MB) Duration (s)
Instance
Proposed | Virtual Machine | Proposed | Virtual Machine

Binary_Alpha_Digits | 1268 118 42 4

CIFAR100 8060 255 279 28

CIFAR10 7952 527 262 29

Fashion_ MNIST 4201 449 178 31

MNIST 3904 408 89 29

Table 5.4: Comparison of experiments results of the proposed solution and a deployment
on a virtual machine.

the data and the model, and requires a minimum memory limit of 128 MB. Aware of the
considerable time taken to fire-up a virtual machine, and in view of the size of TensorFlow
installation package (wheel file of size 320 MB), we could argue that our implementation is
more efficient. As a supporting argument, we proceeded to only serve the previously trained
model for inference using the Fashion_ MNIST and MNIST test data. Without including
the size of the runtime docker image and the downloaded dataset in the memory usage
of DISDEL, results show a higher performance of our system. For Fashion_MNIST, we
yielded a memory usage of 327 MB compared to 345 MB for the virtual machine, whereas
the inference with MNIST consumed 267 MB against 326 MB for the virtual machine.
Consequently, our approach is also efficient from the system performance perspective for
inference jobs.

In summary, the aforementioned results support the benefits of data parallelism at re-
ducing the workload of running actions, and allow them to execute without failure. Sub-
sequently, our solution raises the capacity of serverless infrastructures at training and/or
inferring deep learning models. Nevertheless, the model size also influences the memory
allocation of serverless actions, and should be taken into consideration for a more compre-

hensive and accurate estimation.
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5.2.2 Sensitivity Analysis

To further investigate the merits of distributed serverless deep learning, we ran a set of
experiments aiming at measuring the sensitivity of the memory usage to the batch size and
the number of epochs, as well as the influence of a deployment with OpenWhisk on the
accuracy and the loss throughout the training phase.

Accuracy and loss are two key features which measure the efficiency of a model. While
many algorithms have proved accurate on physical or virtual machines, employing server-
less resources to train models with similar algorithms could raise some questions as to
what effect does the infrastructure has on the quality of the model. Therefore, to answer
that question, an impact analysis is conducted on the MNIST and Fashion_MNIST datasets.
Results on Figure 5.1 compare the accuracy on the sub-figures above and the loss on the
lower level. On the legend, we denote Openwhisk’s curb by "wsk" and that of the vir-
tual machine by "vm". According to the measurements, the serverless infrastructure is as
effective as the virtual machine to run deep learning jobs. In certain cases, a slight over-
performance of the serverless approach is also noticed through a higher accuracy and lower
loss. Consequently, we can conclude that DISDEL does not only improve cost and resource
utilization, but also maintains a high accuracy for trained models.

Furthermore, we evaluated the impact of the batch size and the number of epochs on
the memory usage, and report computational results on Figure 5.2 and Figure 5.3. For the
sake of more variations, we have selected the Binary_Alpha_Digits as target data instance
in these experiments. With its reduced size, this dataset facilitates training the model over
more than 50 epochs. The trend of generated graphs illustrate a gradual increase in the
memory usage with respect to the increment of either the batch size or the number of
epochs. Specifically, as shown in Figure 5.2, training jobs consumes more memory as the
batch size increases. Similarly in Figure 5.3, increasing the number of epoch shows a rise
in the usage. The peak and drop trend of the diagram shows variations in the memory usage
for the same jobs at different times, and eventually memory leaks which is a common issue

in the training phase of machine learning models.
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Figure 5.1: Impact of the serverless architecture on the model training accuracy and loss.

5.2.3 Discussion and Implications

In this section, we discuss the results from the computational experiments, and present their
implications from both design and economic standpoints. One the one hand, the examina-
tion of the diverse diagrams throughout this chapter yields some observations described in
the following paragraphs.

First, the design of a supportive system for resource allocation is beneficial to reduce the
rate of failing training jobs, and attain a more efficient resource utilization during the entire
deep learning workflow. The implementation of a brute-force mechanism may ensure the
successful training of some models, but as the scale of the data and the model enlarges,
the entire application is exposed to more failures and resource utilization. Standing on this
remark, we can infer that our proposed data-parallel strategy offers more scalability to the
deployment of deep learning jobs on serverless infrastructures.

Second, the necessity of a fine-grained design to address OpenWhisk’s timeout limit
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Figure 5.2: Impact of the batch size on the memory usage.

compelled us to deploy multiple actions. Subsequently, the approximation of the most suit-
able memory allocation resulted in a little but existing amount of unused memory resources.
Similarly, the timeout of the proposed approach combines the timeout of each action, and
the transmission delay of the parameters to and from the Redis data store. Consequently,
there is still a scope of improvement to DISDEL as part of the optimization of the entire
system.

Third, we observed that fitting the model to the data is most memory intensive part of
training jobs. The increase in the batch size or the number of epoch induces more memory
usage, but these factors do not impact the accuracy of training deep learning models on
OpenWhisk. In other words, the infrastructure and architecture of serverless computing
do not reduce the accuracy of the model provided the memory and execution duration are
within permissible ranges.

Combining the analysis of OpenWhisk in Section 4.1 and the results of our computa-

tional experiments, we can formulate the following conclusions:

1. The proposed module, DISDEL, successfully reduce the failure rate of training deep
learning models on serverless infrastructures down to 0%. Therefore, the efficient

management of resource utilization using distributed computing strategies ensures
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Figure 5.3: Variation of the memory usage with regards to the number of epoch.

the reduction of the failure rate of deep learning’s training jobs.

. Our solution opens new perspectives for distributed serverless deep learning by en-
abling the execution of training and inference jobs on medium size datasets. Al-
though data parallelism addresses with success issues related to the size of the dataset,
our results illustrate a significant challenge with the model size for certain instances.
Under circumstances where the trained model is expected to be large, our approach

would require additional enhancement to avoid containers running out of memory.

. There is a significant challenge operating a system level modification to OpenWhisk’s
core infrastructure in order to dynamically update the memory allocation of running
containers. However, deep learning is attainable by adding a module which integrates
parallel and distributed computing strategies to alleviate the heavy workload of each

cloud actions.
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Chapter 6

Conclusions

6.1 Lessons Learned

An application level enhancement allows distributed deep learning developers to deploy
their software using serverless architecture with a very high success rate. Formerly rep-
resenting an ordeal for the deployment of applications, the handling of memory and time-
out limits led many users to adopt commercial platforms known for their flexibility, user-
friendliness, and the availability of accessories such as database to store large datasets. Our
research has focused on an open-source serverless infrastructure, OpenWhisk, and exam-
ined possible improvements to the system which would accommodate a dynamic scaling
of memory limits and computation timeouts while solving deep learning problems.

Subsequent to the evaluation of OpenWhisk, we observed two challenges to the imple-
mentation of a resource partitioner within core components like the Invoker or the Con-
troller. On the one hand, changes to OpenWhisk invoker does not impact the container
executing the action because the two entities just interact through HTTP services, and do
not run inside the same Kubernetes pod. On the other hand, a deployment of OpenWhisk
in a kubernetes Cluster uses docker containers to execute actions. However, executing con-
tainers inside Kubernetes pods challenges the update of the container’s resources among
which the memory limit is of interest in the problem under consideration.

Consequently, we have introduced a fine-grained system design which employs data
parallelism to assign jobs to concurrent actions, and averages intermediate outputs in order

to generate an ensemble model. The proposed module, DISDEL, uses Redis in-memory
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data store to maintain the intermediate state of the training job. From the results of our com-
putational experiments, we can conclude that although distributed serverless deep learning
using TensorFlow framework is achievable without any enhancement, yet the implementa-
tion is subject to a high failure rate. On the contrast, DISDEL improves the performance
by reducing the memory usage by 40% while saving up to 58% of the execution time, but

also ensures a failure rate of 0% for requested deep learning jobs.

6.2 Future Work

Expanding on the results, remarks, and failures of this research, there are two future di-
rections which can be categorized as enabling more support and optimizing the current
system.

In view of our incapacity at changing the memory limit of a running action because
it executes inside a pod, the examination of a standalone OpenWhisk deployment (only
using docker containers) could provide better insights on how to perform system level
modifications.

Moreover, the optimization of the performance of the current system will be our focus,
and solutions like the reduction of the number of cold started containers will be developed.
Observing that all the containers used by DISDEL started cold, integrating additional strate-
gies to optimize containers’ initialization phase will systematically reduce the total duration
of serverless deep learning jobs.

Besides, the improvement of the data input pipeline to accommodate datasets in tra-
ditional formats will provide the system with more flexibility. Further, we will improve
the performance of DISDEL by combining data and model parallelism to implement a hy-
brid parallel system in order to train medium to large size models. As well, we intend to
diversify compatible deep learning modules to attract developers outside the TensorFlow

community.
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Chapter 7

Appendix

7.1 Experiments Configuration

7.1.1 Environment Setup

To setup up the environment, follow the following steps.

Installation of Docker

echo
sudo

curl
sudo
sudo

sudo

"CONFIG INFO:: Installation of Docker......... "
apt—-get install -y apt-transport-https \
ca-certificates curl gnupg-agent \
software-properties—common
—-fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
apt-key fingerprint OEBFCD88
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/
ubuntu $(lsb_release -cs) stable"
apt—-get install -y docker-ce docker-ce-cli containerd.io

# Manage docker as non-user root

sudo
sudo

groupadd docker
usermod —-aG docker SUSER

newgrp docker

Installation of Golang

curl

-0 https://storage.googleapis.com/golang/gol.13.5.1linux-amd64.tar.gz

tar —xvf gol.13.5.linux—amdé64.tar.gz

sudo
sudo
echo
echo

chown -R root:root ./go

mv go /usr/local

—e "export GOPATH=\$HOME/go" >> ~/.profile

-e "export PATH=\S$PATH:/usr/local/go/bin:\$GOPATH/bin" >> ~/.profile

source ~/.profile
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Installation of Kubernetes and Helm and Kind

echo "CONFIG INFO:: Installation of Kubernetes......... "

sudo apt-get update && sudo apt-get install -y apt-transport-https
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg |
sudo apt-key add -

echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" |
sudo tee -a /etc/apt/sources.list.d/kubernetes.list

sudo apt-get install -y kubectl

echo "CONFIG INFO:: Installation of helm.......... "
curl -L https://git.io/get_helm.sh | bash

echo "CONFIG INFO:: Installation of kind.......... "
GO111MODULE="on" go get sigs.k8s.io/kind@v0.6.1

Installation of wsk CLI

echo "CONFIG INFO:: Configuring wsk api............ "
cd $SGOPATH

go get github.com/apache/openwhisk-cli

cd SGOPATH/src/github.com/apache/openwhisk-cli

go get -u github.com/Jjteeuwen/go-bindata/...

sudo apt install go-bindata

go-bindata -pkg wskil8n -o wskil8n/i18n_resources.go wskil8n/resources
go get -u github.com/kardianos/govendor

sudo apt install govendor

govendor sync

rm -rf vendor/github.com/spfl3

go build -o wsk

# Create a folder maned bin and copy binary into it
mkdir bin
mv wsk bin

# Setting the path to the binary with"

echo -e "export PATH=$PATH:~/go/src/github.com/apache/openwhisk-cli/bin" >>
~/.bashrc

source ~/.bashrc

Continue to setting the OpenWhisk API host and authentication

# Values are as in the cluster deployment yaml file
wsk property set —--apihost <whisk.ingress.apiHostName>:<whisk.ingress.apiHostPort>
wsk property set —--auth <whisk-auth-key>
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7.1.2 Additional resources

This section groups the links to the homepage of the different components enabling our

research.

Disdel (Our module):
https://github.com/hpdsl/disdel

TensorWhisk Docker Image:

https://hub.docker.com/repository/docker/kevinassogba/tensorwhisk

Apache OpenWhisk:

https://github.com/apache/openwhisk—-deploy—-kube

OpenWhisk Python Runtime:

https://github.com/apache/openwhisk—-runtime-python

OpenWhisk Docker Runtime:

https://github.com/apache/openwhisk—-runtime-docker

TensorFlow:

https://github.com/tensorflow/tensorflow

Redis:

https://github.com/redis/redis
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https://github.com/apache/openwhisk-runtime-docker
https://github.com/tensorflow/tensorflow
https://github.com/redis/redis
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