
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

2-2020

Cross-modal data retrieval and generation using deep neural Cross-modal data retrieval and generation using deep neural

networks networks

Premkumar Udaiyar
pxu4114@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Udaiyar, Premkumar, "Cross-modal data retrieval and generation using deep neural networks" (2020).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10562?utm_source=repository.rit.edu%2Ftheses%2F10562&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

1 | P a g e

Cross-modal data retrieval and generation using deep neural

networks

By

Premkumar Udaiyar

February 2020

 A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

Committee Approval:

Dr. Raymond Ptucha, Department of Computer Engineering

Dr. Alexander Loui, Department of Computer Engineering

Dr. Andres Kwasinski, Department of Computer Engineering

Department of Computer Engineering

2 | P a g e

Acknowledgments

I am deeply grateful to Dr. Raymond Ptucha for the constant support throughout my degree

completion. I would also like to thank Dr. Alexander Loui and Dr. Andres Kwasinski for

accepting to join my thesis committee. I am thankful to Dr. Shagan Sah for laying down

the foundation for us to build upon and guiding us. I would also take this opportunity to

thank my family members and friends for being with me in my ups and downs and

encouraging me to do more than I can.

3 | P a g e

Abstract

The exponential growth of deep learning has helped solve problems across different fields

of study. Convolutional neural networks have become a go-to tool for extracting features

from images. Similarly, variations of recurrent neural networks such as Long-Short Term

Memory and Gated Recurrent Unit architectures do a good job extracting useful

information from temporal data such as text and time series data. Although, these networks

are good at extracting features for a particular modality, learning features across multiple

modalities is still a challenging task. In this work, we develop a generative common vector

space model in which similar concepts from different modalities are brought closer in a

common latent space representation while dissimilar concepts are pushed far apart in this

same space. The developed model not only aims at solving the cross-modal retrieval

problem but also uses the vector generated by the common vector space model to generate

real looking data. This work mainly focuses on image and text modalities. However, it can

be extended to other modalities as well. We train and evaluate the performance of the model

on Caltech CUB and Oxford-102 datasets.

4 | P a g e

Contents

Cross-modal data retrieval and generation using deep neural networks 1

Contents ... 4

List of Figures .. 6

List of Tables ... 8

Acronyms ... 9

Chapter 1 .. 10

Introduction .. 10

1.1 Introduction .. 10

1.2 Motivation .. 11

1.3 Contributions.. 11

Chapter 2 .. 12

Background .. 12

2.1 Deep Learning .. 12

2.2 Convolution Neural Networks ... 12

2.3 Recurrent Neural Network ... 16

A. Long Short-Term Memory ... 18

B. Gated Recurrent Unit ... 20

2.4 Generative Adversarial Network (GAN) ... 21

A. StackGan [28] .. 23

2.5 Cross Modal Retrieval ... 24

2.6 Loss Functions ... 25

A. Triplet Loss Function ... 25

B. Contrastive Loss Function ... 27

C. Softmax and Cross-Entropy Loss .. 28

Chapter 3 .. 29

Methodology .. 30

3.1 Common Vector Space Network ... 30

3.2 Generative Network ... 32

3.3 Loss functions .. 34

Chapter 4 .. 35

Implementation .. 35

4.1 Datasets .. 35

A. Caltech CUB Dataset ... 35

5 | P a g e

B. Oxford-102 dataset ... 36

4.2 Implementation .. 37

4.3 Evaluation metrics ... 38

A. Mean Average Precision (mAP) .. 38

B. Inception score ... 38

Chapter 5 .. 40

Results and Analysis .. 40

5.1 Results .. 40

A. Retrieval output (Caltech CUB dataset) ... 40

B. Generative output (Caltech CUB dataset) .. 40

C. Retrieval output (Oxford-102 dataset) ... 45

D. Generative output (Oxford-102 dataset) .. 45

5.2 Analysis ... 50

A. Analysis for oxford-102 dataset ... 50

B. Analysis for Caltech CUB dataset ... 53

C. Analysis for captioning model ... 56

Chapter 6 .. 58

Conclusions .. 59

6.1 Conclusions .. 59

6.2 Future Work ... 59

Bibliography .. 59

6 | P a g e

List of Figures

Figure 1 Illustration of CNN. An input image is passed to multiple convolution and

pooling layers which is then passed to fully connected layers and softmax function to

output the probability for each class. .. 14

Figure 2 Convolution operation. I - input image, K – Filter kernel, I*K – convolution

output [50]. .. 15

Figure 3 Max-pool operation. Left – input, Right – max-pool output [52]. 15

Figure 4 Avg-pool operation. Left – input, Right – avg-pool output [53]. 16

Figure 5 Recurrent Neural Network model which takes in input from previous hidden

state and current input for predicting the next outcome [54]. ... 17

Figure 6 Internal structure of Long Short-Term Memory [55]. .. 18

Figure 7 Internal structure of Gated Recurrent Unit [56]. .. 20

Figure 8 Basic generative adversarial network [57]. .. 21

Figure 9 StackGan model [28]. ... 23

Figure 10 Working of triplet loss [58]. ... 26

Figure 11 Negative mining [59]. ... 28

Figure 12 shows the transformation of the data before and after training in the vector

space [60]. ... 31

Figure 13 CVS Network ... 31

Figure 14 Generative network .. 32

Figure 15 Model architecture .. 33

Figure 16 examples from Caltech cub dataset. [61] ... 36

Figure 17 Examples from Oxford-102 dataset. [61] ... 37

Figure 18 Sampled input images from the dataset. ... 41

Figure 19 input: image vector, output: image. .. 43

Figure 20 input: text vector, output: image. .. 44

Figure 21 Sampled images from Oxford-102 dataset. .. 46

Figure 22input: image vector, output: image. .. 48

Figure 24input: text vector, output: image. ... 49

Figure 24 input: text vector, output: image. .. 49

file:///C:/Users/dell/Desktop/thesis/Thesis_Report_Draft_v5_rwp.docx%23_Toc43049489
file:///C:/Users/dell/Desktop/thesis/Thesis_Report_Draft_v5_rwp.docx%23_Toc43049490

7 | P a g e

Figure 25 Adding captioning model along with generative network. 56

8 | P a g e

List of Tables

Table 1 Train and validation split for Caltech CUB dataset. .. 35

Table 2 Train and validation split for Oxford-102 dataset. .. 36

Table 3 mAP@50 score for Caltech CUB dataset. ... 40

Table 4 Inception scores for Caltech CUB dataset. .. 44

Table 5 mAP@50 score for Oxford-102 dataset. ... 45

Table 7 Analysis for oxford-102 dataset (good examples). .. 50

Table 8 Analysis for oxford-102 dataset (bad examples). .. 52

Table 9 Analysis for caltech CUB dataset (good examples). ... 53

Table 10 Analysis for caltech CUB dataset (bad examples)... 54

Table 11 Analysis for captioning model (Oxford-102 dataset). 57

9 | P a g e

Acronyms

CNN

 Convolution Neural Network

CVS

 Common Vector Space

RNN

 Recurrent Neural Network

GRU

 Gated Recurrent Unit

LSTM

 Long Short Term Memory unit

GAN

 Generative Adversarial Network

10 | P a g e

Chapter 1

 Introduction

1.1 Introduction

Deep learning models can extract features from the data automatically without any

manual adjustment. Deep Neural Networks (DNNs) have shown great ability at performing

tasks on a wide range of applications such as image captioning, object detection, and

segmentation. A better understanding of cost functions and the amount of training data has

helped the neural network model to learn complex structures in images, videos, audios, and

texts. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

have shown great results in working with image and text data respectively. However,

learning common features across the two modalities is still a challenging problem.

Karpathy et al. [24] introduced two different networks for solving image captioning

problems. They used a CNN to extract features from images and passed these features into

a Long Short-Term Memory (LSTM) network to generate the caption for each image. For

the past few years, Generative Adversarial Networks (GAN’s) have been successful in

generating realistic images from a noise vector. Goodfellow et al. [26] introduced GAN’s

for generating real-looking images from a noise vector. Since, variants of GAN’s solved

many real-world problems such as mode collapse [27, 28 29].

The performance of deep learning algorithms is directly proportional to the amount of data

available for training. Deep learning algorithms simultaneously learn feature extraction and

classification parameters through the process of backpropagation. Converting data from

one modality to another is a challenging task. Singh et al. [30] have shown how to convert

a sensor data into an image. Zhou et al. [31] have shown how to fuse two modalities for

more accurate predictions. Lee et al. [32] fused the data in the final stage of learning method

for a medical application.

11 | P a g e

1.2 Motivation

Vectors are used as an input and output to a deep learning model. These vectors are

a bunch of numbers which are learned as we train the model to minimize the loss. The data

coming from various modalities (image, text, audio, video.) is first converted into its vector

representation before passing on to the deep learning models. Therefore, it is important that

the vector is good enough to represent the data properly.

The main contribution of this work is to develop a novel architecture which can retrieve

data across the image and text modalities while simultaneously generating real looking text

and image data using the learned vector representation. In this work, we bring similar

concepts closer in the vector space and pull dissimilar concepts far apart. For example, an

image of a dog and a text describing a dog would lie closer to each other in the vector space

and a text describing a truck would lie far away from the dog image. Simultaneously, the

vector representing this data would be used to generate data which is similar to the input

data. For example, given a query image about a dog, the model would be able to both

retrieve text samples about dogs as well as generate new text samples about dogs.

Similarly, given a query text about a dog, the model would be able to both retrieve images

about dogs as well as generate new sample images of dogs.

1.3 Contributions

The main contributions of this thesis work can be summarized as:

 Build a model which can retrieve data across the modalities.

 Extend the model to not only perform cross modal retrieval but also generate

realistic looking images.

 Try different loss functions and report the performance.

12 | P a g e

Chapter 2

 Background

2.1 Deep Learning

Deep learning is a subdomain of machine learning in which algorithms are inspired

by the structure of the human brain. Deep learning models are built upon the way the human

brain is structured, having several layers and the information passes through each layer to

generate an output. Traditional machine learning models are not scalable i.e. the model

performance does not improve as we add more data to the training set. On the other hand,

deep learning models are scalable. Deep learning model performance increases as you add

more data to the training set. The deep learning model can extract features from the data

automatically without extensive handcrafted feature engineering. There are a lot of deep

learning algorithms out there for different problems such as CNNs and RNNs. CNN’s are

good at extracting features from image data, while RNN’s perform well on temporal data.

2.2 Convolution Neural Networks

CNN's have become the most important tool for extracting features from visual

data. CNN’s are a modified version of a multi-layer perceptron. CNN’s have evolved

exponentially since the invention of the VGG-Net [9] model. Szegedy et al. [10] and

Kaiming et al. [11] came up with more complex models to increase the accuracy on

multiple benchmark datasets such as CIFAR10 [12] and ImageNet [13]. CNN’s perform

well on static gridded data. However, some researchers use CNN’s for temporal data as

well. Yoon Kim [20] used CNN for sentence classification where the model takes a

sentence as an input and outputs the probability of all the classes. CNN’s are also used in

other applications such as image segmentation and object detection.

CNN’s consists of four basic components:

 Convolution layer

13 | P a g e

 Pooling layer

 Activation layer

 Fully connected layer.

 Convolution layers perform convolution operations on input images using finite

impulse response filters. Pooling layers are used to reduce the size of the input image. Fully

connected layers perform nonlinear operations in the network. The last fully-connected

layer of the model is used for classification and regression. Both the features and classifiers

are trained simultaneously through the process of backpropagation. Backpropagation

updates the weights of the network based on the error generated at the output of the

network. The early layers of the CNN learn high-level features such as horizontal and

vertical edges while later layers learn the low-level features such as colors, shapes, and

structures.

The convolution layer typically convolves with the filters and preserves the size of the

image given that necessary padding is provided to the input and with a stride of 1. While

the pooling layers reduces the size of the input image. Max-pooling and avg-pooling are

two regularly used pooling functions. Max-pooling takes the maximum value from the

selected frame and avg-pooling takes the average of all the values in the frame. Max-

pooling adds more non-linearity to the model as compared to avg-pooling. Fully connected

layers are used to convert the convolution filter into a vector form. Parameters learned

connecting the last convolution layer to the first fully connected layer are often higher than

all other layers combined.

Figure 1 shows the CNN architecture for the image classification task. An input

image is passed to multiple convolutions and pooling layers to extract a different level of

features. The output of the last convolution layer is passed to a fully connected layer to

flatten the features. The last fully connected layer is passed through a softmax function

which outputs the probability for each class and the class with maximum probability is

assigned to that input. The convolution layers use non-linear activation functions such as

14 | P a g e

ReLU, sigmoid, tanh, and eakyReLU to learn the complex features in the data. ReLU is

perhaps the most widely used activation function.

Figure 1 Illustration of CNN. An input image is passed to multiple convolution and pooling layers which is then passed

to fully connected layers and softmax function to output the probability for each class.

Equation (2.2.1) demonstrates the convolution operation.

 𝑀(𝑖,𝑗,𝑘)
𝑙 = 𝐾𝑎𝑏𝑐𝐼(𝑟+𝑎,ℎ+𝑏,𝑐)

𝑙−1 (2.2.1)

 Where:

 𝐼(𝑥_𝑟+𝑎,𝑥_ℎ+𝑏,𝑐)
𝑙−1 – input image at (r, h) convolved with filter size of (a, b)

 𝐾𝑎𝑏𝑐 – Kernel

 𝑀(𝑖,𝑗,𝑘)
𝑙 – Convolution output

15 | P a g e

Figure 2 Convolution operation. I - input image, K – Filter kernel, I*K – convolution output [50].

Figure 2 illustrates the working of a convolution operation. Input (I) is convolved

with kernel filter (K) to output (I*K) convolution map. K is learned during the process of

backpropagation. These filters are used to learn low-level and high-level features from the

data.

Figure 3 Max-pool operation. Left – input, Right – max-pool output [52].

16 | P a g e

Figure 4 Avg-pool operation. Left – input, Right – avg-pool output [53].

Figure 3 depicts the working of max-pool operation. The maximum of the cell is selected

and passed on to the output buffer. Figure 4 depicts the working of avg-pool operation.

The average of each cell is passed on to the output buffer.

2.3 Recurrent Neural Network

RNNs are good at extracting features from sequential data such as time series, text,

and audio. RNNs consists of an encoder which encodes the data into a vector and a decoder

which decodes the vector into a destination data format. RNNs use some information from

the previous layer to predict future outcomes. RNNs such as Long-Short Term Memory

[21] and Gated Recurrent Unit [22] consists of a memory cell which helps remember

previous layer information. RNN’s are widely used in applications such as image

captioning [17, 18], and video summarization [19].

17 | P a g e

Figure 5 Recurrent Neural Network model which takes in input from previous hidden state and current input for

predicting the next outcome [54].

Figure 5 shows the basic RNN which takes input from the previous time step and current

input to predict the next outcome. h0, h1, h2, h3,… ht are the inputs to the time steps t = 0,

1, 2, 3, …., t which are used along with x1, x2, x3, …., xt to predict the output y1, y2, y3, ….,

yt.

 ℎ𝑡 = 𝑓(𝑊ℎℎℎ𝑡−1 + 𝑊ℎ𝑥𝑥𝑡) (2.3.1)

 ℎ𝑡 = tanh(ℎ𝑡) (2.3.2)

 𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 (2.3.3)

The above equations describe the working of RNN. Equation (2.3.1) calculates the current

hidden state using current input and previous hidden state. In (2.3.2), it is passed through

a tanh function to constrain the output values in the range of -1 and 1 which adds non-

linearity in the model. Finally, (2.3.3) calculates the final output by multiplying with the

weight matrix. The weights are updated for each time step by backpropagation using the

error calculated for that time step.

18 | P a g e

RNNs do a great job at extracting features from temporal data but they sometimes

face the problem of vanishing gradients. The vanishing gradient problem occurs when the

value of gradients exponentially decreases (with repeated multiplies of values less than 1.0)

as it reaches to the early layers. To tackle this problem, LSTM’s and GRU’s are used

instead.

A. Long Short-Term Memory

Figure 6 Internal structure of Long Short-Term Memory [55].

Figure 6 shows the internal structure of the LSTM. LSTM’s are used for problems

containing temporal data. LSTM’s solve much of the vanishing gradient problem which is

observed in basic RNN’s. LSTM’s come with a memory cell that helps remember the

previous information for longer time steps. They were introduced by Hochreiter and

Schmidhuber [21]. Several other works use this method and have refined it.

 𝑖𝑡 = 𝜎(𝑥𝑡𝑈𝑖 + ℎ𝑡−1𝑊𝑖) (2.3.5)

19 | P a g e

𝑓𝑡 = 𝜎(𝑥𝑡𝑈𝑓 + ℎ𝑡−1𝑊𝑓) (2.3.5)

𝑜𝑡 = 𝜎(𝑥𝑡𝑈𝑜 + ℎ𝑡−1𝑊𝑜) (2.3.6)

Ć𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑈𝑔 + ℎ𝑡−1𝑊𝑔) (2.3.7)

𝐶𝑡 = 𝜎(𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ Ć𝑡) (2.3.8)

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝐶𝑡) ∗ 𝑜𝑡 (2.3.9)

 Equations (2.3.5) – (2.3.9) describe the working of LSTM. Input gate i

calculates the new information that is to be stored. Forget gate f tells the information that

is not important for the model to store. Output gate o is used to provide activation to the

final output of the LSTM block. 𝜎 represents the sigmoid function. It outputs values

between 0 and 1. The sigmoid function determines the percentage of information to be

passed through the gate. C is the internal memory unit which is used to store the previous

information. 𝐶𝑡 grabs the information from previous hidden state and current input to

calculate current hidden state output. The final hidden state output is calculated by

combining 𝐶𝑡 and output gate. This hidden state is a vector representation of the data which

is then further used for a variety of applications such as classification and captioning.

20 | P a g e

B. Gated Recurrent Unit

Figure 7 Internal structure of Gated Recurrent Unit [56].

 Figure 6 shows the internal structure of the GRU network. The GRU was

first introduced by Chung et al. [22]. GRU is a variant of LSTM. Unlike LSTM, GRU has

two gates (reset and update gates). GRU doesn’t have a memory unit. It outputs the entire

hidden unit without any control. GRU is less complex and computationally more efficient

as compared to LSTM.

𝑧𝑡 = 𝜎(𝑥𝑡𝑈𝑧 + ℎ𝑡−1𝑊𝑧) (2.3.10)

𝑟𝑡 = 𝜎(𝑥𝑡𝑈𝑟 + ℎ𝑡−1𝑊𝑟) (2.3.11)

ĥ𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑈ℎ + (𝑟𝑡 ∗ ℎ𝑡−1)𝑊ℎ) (2.3.12)

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ĥ𝑡) (2.3.13)

21 | P a g e

 Equations (2.3.10) – (2.3.13) describe the mathematical working of GRU.

Update gate 𝑧𝑡 is calculated using the current input and the previous hidden state output.

Reset gate 𝑟𝑡 is calculated to decide how much information about past information to

forget. Both, update and reset gate use sigmoid functions to constrain the output between

0 and 1. ĥ𝑡 calculates the current memory that is to be passed to final output. ℎ𝑡 calculates

the final memory at the time step t.

2.4 Generative Adversarial Network (GAN)

Recently, GAN’s have shown great performance at generating realistic looking

images from a noise vector. GAN’s were first introduced by Goodfellow et al. [26]. Follow

on work [27, 28, 29] popularized GAN with valuable refinements. Unlike a conventional

neural network, GAN’s use two networks competing with each other. The model learns to

generate data from the training distribution using a 2-entity game. The two entities are a

generator and a discriminator. These two networks fight with each other throughout the

training process.

Figure 8 Basic generative adversarial network [57].

22 | P a g e

Figure 8 shows the basic GAN model. The generator’s job is to generate fake

images form a D-dimensional noise vector while the discriminator’s job is to identify if its

input is real or fake. Both the networks are in a constant battle where the generator tries to

fool the discriminator and the discriminator’s job is not to be fooled. The generator tries to

learn the training distribution and generates images that are close to training images. One

problem that is commonly faced by GAN models is mode collapse. Mode collapse occurs

when the generator network discovers the same or a series similar looking images which

fools the discriminator, and thus outputs these images frequently. To tackle this problem,

Zhang et al. [28] introduced conditioning augmentation. Conditioning augmentation adds

smoothness to the latent distribution. Smoothness removes the clusters formed in the

distribution which are used by the generator to move from mode to mode to fool the

discriminator. Arjovsky et al. [27] used a different loss function to train the model. They

used a distance function to calculate the distance between the training distribution and the

generated distribution and this distance is then used to train the model through the process

of backpropagation.

 Loss D = log (𝐷(𝑥)) + log (1 − 𝐷(𝐺(𝑧)))) (2.4.1)

 Loss G = log (1 − 𝐷(𝐺(𝑧)))) (2.4.2)

Equation (2.4.1) shows the loss function used to train the discriminator and (2.4.2)

shows the loss function used to train the generator. D(x) is the output of discriminator given

real input and D(G(z)) is the output of discriminator given the generated image as an input.

Both the generator and discriminator are trained to output D(x) close to 1 and output

D(G(z)) close to 0.

23 | P a g e

A. StackGan [28]

Figure 9 StackGan model [28].

Zhang et al. [28] developed a model called StackGan. StackGan takes text as an

input and outputs an image related to the text. The StackGan model introduced conditional

augmentation to tackle the problem of mode collapse. The generator uses the conditional

input and is forced to generate a variety of images. These images are both required to fool

the discriminator as well as meet the conditional requirements. The conditional

requirements may, for example be to generate an image such that when this image is passed

through an automatic captioner, the generated caption matches the input (conditional)

caption.

StackGan consists of two stages of learning. Figure 9 shows the architecture of

StackGan model. The stage-I of StackGan sketches the shape and color of the object based

on the text input. The stage-II takes the output from the stage-I along with the text as an

input, and outputs realistic-looking image.

24 | P a g e

2.5 Cross Modal Retrieval

Retrieving data across multiple modalities is a challenging task. One solution is to

map all modalities to a common space. Different modalities come with different structures

and mapping them into the same space can be tricky at times. Ultimately, we have to

convert all the data points from different modalities into a vector of the same dimensions

so that we can compare data across the modalities. The problem of cross-modal retrieval

has been extensively studied by researchers in the past few years.

Traditional approaches use a latent space to compare the data belonging to different

modalities. Canonical Correlation Analysis (CCA) [33] was used to maximize the

correlation between the data from different modalities.

The cross-modal retrieval problem has been tackled by [2, 3] with different loss

functions and different model architectures. Lee et al. [1] computed the similarity between

image regions and words in sentences to find the overall similarity between image and text

modalities. [4, 5, 6] show cross-modal retrieval by using category information. Zhen et al.

[7] included three loss functions while training which helped the model to learn inter- and

intra-modal discrepancies. Specifically, they use label information from the image and text

data to learn discriminative features and use weight sharing to learn inter-modal

discrepancies in the common space. Sanakoyeu et al. [8] jointly divided the embedding

space and data into k subparts and learn different metric distances for all of them. They

show retrieval, clustering and re-identification tasks using one model.

Recent work uses different models and loss functions to get better results. Xu et

al. [34] used the adversarial loss function to minimize the distance between the data vector

and built a model to map the 4096-dimensional vector to 200 dimensions using multiple

multi-layer perceptrons. Zhen et al. [35] combined three different networks to retrieve data.

They used a linear classifier that classifies each instance of the data to a class, a modality

25 | P a g e

invariance loss to minimize the error within modality, and intermodal loss to minimize

error across modalities.

An attention mechanism was introduced to solve the image captioning problem [36]

to correlate the words and the image regions which in turn boosts the performance of the

model. This was also adopted in cross-modal retrieval. Lee et al. [37] used attention

mechanisms to correlates the image regions generated by mask-RCNN [38] with each word

in the sentence.

2.6 Loss Functions

One of the important aspects of creating a deep learning model is to define an

appropriate loss function for a task. Metric learning loss functions map similar concepts

closer to each other and maximizes the distance between dissimilar concepts. These loss

functions form pairs of positive and negative samples which is then used to calculate a loss

depending on the task.

Steps involved in metric learning models are as follows (using image and text modalities

as an example):

 Extract features from images and texts using CNN and LSTM respectively.

 Further convert these features into embeddings by learning fully connected layers.

 Formulate positive and negative pairs based on the class of the data

The following are some of the metric learning loss functions.

A. Triplet Loss Function

The triplet loss was introduced by Schroff et al. [14]. It compares an anchor input

with both a positive input and a negative input. The distance between the anchor and

positive input is minimized, and the distance between the anchor and negative input is

maximized. The triplet loss ensures that the distance between negative inputs is at least a

margin away from the positive inputs.

26 | P a g e

 𝐿𝑐 =
1

2𝑁
∑ max (0 , |𝑓𝑎

𝑖 − 𝑓𝑝
𝑖|

2
− |𝑓𝑎

𝑖 − 𝑓𝑛
𝑖|

2
+ ∝) (2.6.1)

Where

 N is the number of samples

 𝑓𝑎
𝑖 is the anchor

 𝑓𝑝
𝑖 is positive input

 𝑓𝑛
𝑖 is negative input

 ∝ is the margin

Figure 10 Working of triplet loss [58].

Figure 10 shows the working of triplet loss. Before training, the negative sample

can be closer to anchor as shown on the left side of the figure. After training, the negative

sample is at least ∝ away from the positive sample.

We can modify this loss functions to account for the classes which are closely

related to each other to lie closer to each other in the vector space. This can be done by

having low values of alpha for the classes such as person and policeman or car and bus and

so on. This will allow the similar looking classes to lie closer in the vector space.

27 | P a g e

B. Contrastive Loss Function

The contrastive loss was invented by Hadsell et al. [39]. This loss tries to maximize the

distance between the negative and positive samples. The goal is to push the negative sample

at least margin away from the positive sample. This loss function is mostly used for

instance-level retrieval where we don’t have class information.

𝐿𝑐 =
1

2𝑁
∑((𝑦)𝑑2 + (1 − 𝑦) 𝑚𝑎𝑥(𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑑, 0)2) (2.6.2)

Where

 𝑦 is either 0 or 1, 1 if the both the samples are similar

 𝑑 is the euclidean distance between the samples

 𝑁 is the number of samples

Negative samples can be categorized into three types:

 Hard negatives

 Semi-hard negatives

 Easy negatives

28 | P a g e

Figure 11 Negative mining [59].

Figure 11 shows the distribution of negative samples around the anchor and the

positive sample. Hard negative samples lie close to the anchor sample as compared to the

positive sample. Semi-hard negative samples lie within the margin and positive sample.

Easy negative samples lie far away from the anchor sample and those samples do not

contribute much to the overall loss. Hard negative takes the negative sample in each batch

which is very close to the anchor. Since the hard negative is close to the anchor, it generates

a high loss and higher gradients which in turn can make the training unstable. Semi-hard

negatives produce good loss values to backpropagate and this strategy is often used to train

the model.

C. Softmax and Cross-Entropy Loss

Softmax is used before most of the loss function. Softmax takes N dimensional array as

input and outputs values between 0 and 1 which can be added up to 1.

Equation (2.6.3) is used to calculate cross-entropy loss.

29 | P a g e

𝑆𝑗 =
𝑒

𝑎𝑗

∑ 𝑒𝑎𝑘𝑁
𝑘=1

 ∀𝑗 ∈ 1 … 𝑁 (2.6.3)

Equation (2.6.4) is used to calculate softmax probability.

Cross-Entropy loss is used to observe the performance of the model when classifying the

object as belonging to two or more classes. The output of this loss is 0 when classification

is done perfectly and gradually increases when samples diverges from the actual label.

 𝐻(𝑦, 𝑝) = − ∑ 𝑦
𝑖

log 𝑝
𝑖𝑖 (2.6.4)

Where:

 y – label

 p – output probability

30 | P a g e

Chapter 3

Methodology

The aim of this thesis is to create a multi-task model which can perform cross modal

retrieval and image generation at the same time. A lot of work has shown good performance

on the cross modal retrieval problem, and independently, recent methods have been shown

to generate realistic-looking images. However, it is difficult to find works that have created

a unified model to solve both of these problems. We have created a model such that given

an input image, the model will retrieve the closest text to that image and also generates a

similar-looking image. Likewise, given a text input, the model will retrieve the closest

image to that text and also generate an image that well aligns with the input text.

The model is comprised of two networks:

 Common Vector Space Network

 Generative Network

3.1 Common Vector Space Network

The goal of the Common Vector Space (CVS) network is to bring similar concepts

from different modalities closer in the vector space and maximize the distance between

dissimilar concepts. Figure 10 shows the before and after training visualization of data

points of different modalities. Different shapes are the data from different modalities and

different colors are different data points. These are vector representations of data points

that are projected onto the lower dimensional CVS. As we can see from the figure, the data

is projected at random onto the vector space before training. However, as we train the

model, the data belonging to different modalities conveying the same meaning are

projected closer in the vector space.

31 | P a g e

Figure 12 shows the transformation of the data before and after training in the vector space [60].

Figure 13 CVS Network.

Figure 13 shows the structure of the CVS network. The CVS network [23] takes

image and text samples as input and converts them into their respective feature

representations. A CNN is used for extracting features from the image data and an RNN is

used to extract features from the text data. The output of these feature networks is then fed

to multiple fully connected layers to bring the inputs into a latent vector representation.

These CVS vectors have the property such that similar concepts (irrespective of input

modality) are brought together and dissimilar concepts are pulled far apart.

The similarity between the two vectors is calculated by using a distance function.

Usually, distance functions used are Euclidean distance and cosine distance.

32 | P a g e

3.2 Generative Network

Figure 14 Generative network

Figure 14 shows the structure of a generative network. The input to the network is

a vector (vector input) which is generated by the CVS network. This input is then fed to

the generator network to generate an image. Generated images along with a real image

from the dataset are passed through the discriminator network to calculate the loss. This

loss is backpropagated to update the weights of the network.

33 | P a g e

Figure 15 Model architecture

Figure 15 shows the overall architecture. The input to the model is a pair of images

and text. These data are passed through the feature extraction network whereby the image

is passed through the CNN model and text is passed through the RNN model. Once the

feature is generated, it is passed through multiple fully connected layers before it is given

to the loss function. The Loss function ensures that the data belonging to the same class is

mapped closer to each other and the data belonging to a different class is mapped far apart

from each other. The vector output of the last fully connected layer of both the data is

passed to the generator network to generate a realistic-looking image. The generated image

along with the real image is then passed to the discriminator network to classify the image

as real or fake.

This work is mostly inspired by Peri et al. [33]. They use a captioning model after

the CVS network to generate captions for the images and paraphrase the sentence input.

We take this architecture a step further and use generative model along with the captioning

model to generate realistic looking images.

34 | P a g e

3.3 Loss functions

The CVS network is trained using the triplet, cross-entropy and GAN loss functions. Triplet

loss is used to bring positive pairs closer to each other and maximize the distance between

negative pairs as discussed in section 2.6.A. Cross-entropy loss is used to maximize the

inter-class distance as discussed in section 2.6.C. The overall loss is a combination of all

three losses:

𝐿𝑐𝑣𝑠 = 𝐿𝑡𝑝 + 𝐿𝑐𝑒 +∝ 𝐿𝐺𝐴𝑁 (3.3.1)

Where

 𝐿𝑐𝑣𝑠 : Loss for CVS network

 𝐿𝑡𝑝 : (2.6.1) triplet loss

 𝐿𝐺𝐴𝑁 : (2.4.1) LossD + (2.4.2) LossG

 ∝ : scaling factor

𝐿𝐺𝐴𝑁 = 𝛽𝐿𝐺−𝑡𝑥𝑡 + 𝛾𝐿𝐺−𝑖𝑚𝑔 (3.3.2)

Where:

 𝐿𝐺−𝑡𝑥𝑡 : Adversarial loss using text vector as an input

 𝐿𝐺−𝑖𝑚𝑔: Adversarial loss using image vector as an input

The generative network is trained by adding the adversarial loss generated by image and

text vectors.

35 | P a g e

Chapter 4

 Implementation

4.1 Datasets

We use datasets which have multiple modalities. We are only dealing with images and

texts in our experiments.

A. Caltech CUB Dataset

The Caltech CUB dataset [16] has images of 200 different bird species. The dataset

comes with 6033 images and 10 sentences associated with each image. Corresponding

sentences describe the features of the bird in the image such as color, appearance, and

shape. Figure 16 shows example images from the Caltech CUB dataset.

Table 1 Train and validation split for Caltech CUB dataset.

 Caltech CUB dataset

Train, Test 8855, 2933

Categories 150, 50

36 | P a g e

Figure 16 examples from Caltech cub dataset. [61]

B. Oxford-102 dataset

The Oxford-102 dataset [15] has 102 different flower categories. Each class consists

of 40 and 258 samples. Each image is associated with five sentences describing the

features of the flower in the image.

Table 2 Train and validation split for Oxford-102 dataset.

 Oxford-102 dataset

Train, Test 7034, 1155

Categories 102

37 | P a g e

Figure 17 Examples from Oxford-102 dataset. [61]

4.2 Implementation

This work is implemented in Tensorflow and training on Nvidia GPUs. We use pre-

trained Resnet-152 [41] architecture to extract features from the images. The last layer

before softmax is used as a feature vector for the images. The size of the image vector is

2048. We use the pre-trained SkipThought [40] model to extract features from texts. The

size of the text vector is 4096. We use two fully connected layers after the feature extraction

of size 2048. The size of the image text vectors are fixed as they are extracted from a pre

trained networks. We experimented with the size of the fully connected layers after the

feature extraction part such as 512, 1024 and 2048 and, found 2048 to be giving good

results. The reason being 2048 vector can hold more contextual information as compared

38 | P a g e

to low dimension vector. This can be seen from the results. We use StackGan model to

generate images from the vector input.

4.3 Evaluation metrics

Evaluation metrics allow us to evaluate the performance of the model given the dataset.

We use two metrics to evaluate the overall performance of the model.

 Mean Average Precision (mAP) – to evaluate the retrieval performance

 Inception score – to evaluate the generated images

A. Mean Average Precision (mAP)

We use mean average precision (mAP) to evaluate the performance of our model.

Equation (4.3.1) describes the formula to calculate the

 𝐴𝑃 =
1

N
∑ (𝑝(𝑟). 𝑟𝑒𝑙(𝑟))

𝐾

𝑛=1
 (4.3.1)

Where:

 N is the number of samples retrieved

 K is the number of queries

 𝑝(𝑟) is precision at r

 𝑟𝑒𝑙(𝑟) is a flag indicating if the result retrieved is a match or not

B. Inception score

Evaluating the performance of the generative model is a difficult task. We use inception

score [43] to evaluate the performance of the generative model quantitatively.

𝐼 = exp (𝐸𝑥𝐷𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦))) (4.3.2)

Where:

 𝑥 denotes generated image

39 | P a g e

 𝑦 is the label predicted by inception model [42]

 𝐷𝐾𝐿 is KL divergence

Good models should generate diverse images that are meaningful. Therefore, the KL

divergence between the marginal probability distribution 𝑝(𝑦) and 𝑝(𝑦|𝑥) should be high.

We take the pre-trained model for COCO [44] dataset. We then fine-tune the model for

Caltech CUB and Oxford-102 datasets. We take a large number of samples to evaluate the

model (30k randomly selected samples). The inception score calculation involves passing

generated images to the inceptionv3 model to calculate conditional probability for each

generated images p(y|x). The marginal distribution is calculated using the average of

conditional probability for all the images p(y).

 𝐷𝐾𝐿 = 𝑝(𝑦|𝑥)(𝑙𝑜𝑔(𝑝(𝑦|𝑥)) − 𝑙𝑜𝑔 (𝑝(𝑦))) (4.3.3)

Equation (4.3.3) is used to calculate the KL divergence between p(y|x) and p(y).

The inception score ranges from 1.0 to the number of classes in the dataset.

40 | P a g e

Chapter 5

 Results and Analysis

In this section we will discuss the performance of the model discussed in Chapter 3 on

the datasets discussed in Chapter 4.

5.1 Results

A. Retrieval output (Caltech CUB dataset)

We calculate mAP@50 for both images to text retrieval and text to image retrieval. For

example, given an image input, the model will retrieve the closest text to the image from

the dataset and given a text input, the model will retrieve the closest image to the text from

the dataset. We perform zero-shot retrieval on the Caltech cub dataset. We train the model

on 150 categories and evaluate the performance of the model on the remaining 50 unseen

categories. The goal of this test to see the robustness of the model on the unseen categories.

The numbers inside the square brackets next to the two G-CVS entries represent the

embedding dimensions used.

Table 3 mAP@50 score for Caltech CUB dataset.

Method img2txt txt2img

Bow [63] 44.1 39.6

Word2Vec [64] 38.6 33.5

Word CNN [65] 51.0 43.3

Word CNN-RNN [66] 56.8 48.7

GMM-HGLMM [67] 36.5 35.6

Latent Co-attention [68] 61.5 57.6

CVS+AA [70] 58.9 56.2

G-CVS (ours) [1024] 54.5 53.2

G-CVS (ours) [2048] 55.6 54.8

B. Generative output (Caltech CUB dataset)

41 | P a g e

The vector output of the CVS network is passed to the generative network. Figure 18 shows

the randomly sampled images from the dataset. Figure 19 shows the generated images

using the image vector and Figure 20 shows the generated images using text vector.

Figure 18 Sampled input images from the dataset.

Captions of top 10 sampled input images:

1: a small bird with very long wings, and a large bill.

2: a bird with a large, hooked bill, white superciliary and

cheek patch, brown crown, and brown body.

3: this is a brownish gray bird with large wings and a

long, hooked bill.

42 | P a g e

4: this large seabird is mostly a light brown with a long,

hooked bill, dark oval eyes and a white crown and throat.

5: this bird is nearly all gray with a blunt beak.

6: a mostly brown bird with a white face and a brown beak.

7: this bird is nearly all brown with a hooked bill.

8: this bird is predominately grey with a large, curved,

grey beak.

9: this bird is almost completely dark gray, it has a light

gray crown.

10: a greyish-blue colored bird with a white-grey face, and

big blue feet.

43 | P a g e

Figure 19 input: image vector, output: image.

44 | P a g e

Figure 20 input: text vector, output: image.

Table 4 Inception scores for Caltech CUB dataset.

Method Inception score

GAWWN [47] 3.62

StackGAN [28] 3.82

AttnGAN [46] 4.36

G-CVS (ours) 5.36

45 | P a g e

C. Retrieval output (Oxford-102 dataset)

Table 5 mAP@50 score for Oxford-102 dataset.

Method img2txt txt2img

Bow [63] 57.7 57.3

Word2Vec [64] 54.2 52.1

Word CNN [65] 60.7 56.3

Word CNN-RNN [66] 65.6 59.6

GMM-HGLMM [67] 54.8 52.8

Latent Co-attention [68] 68.4 70.1

CVS+AA [70] 66.1 67.1

G-CVS (ours) [1024] 61.5 60.7

G-CVS (ours) [2048] 62.2 61.1

D. Generative output (Oxford-102 dataset)

46 | P a g e

Figure 21 Sampled images from Oxford-102 dataset.

Captions of top 10 sampled input images:

1: this flower has four large rounded light purple petals

that are yellow in the middle with stamen.

2: the flower has a smooth purple petal with white pollen

tubes and yellow anther

3: this flower has big purple petals and white filaments

with a yellow anther.

4: this flower has petals that are dark pink with a light

green center.

47 | P a g e

5: the flower shown has yellow pistil with large pink

petals

6: the flower has purple petals with a green center and

white pollen tubes

7: this flower has petals that are pink with purple lines

8: leaves are green in color,petals are light pink in color

9: this flower has white petals and yellow pistil as its

main features

10: the petals on this flower are a flat purple with a

white pistil in the center

48 | P a g e

Figure 22input: image vector, output: image.

49 | P a g e

The image generated for image vector looks better than the text vector. This can be because the

image vector has more insightful information about the image as compared to the text vector which

helps the model to generate more realistic looking images.

Table 6 Inception scores for Caltech CUB dataset.

Method Inception score

GAWWN [47] -

StackGan [28] 3.26

AttnGan [46] -

G-CVS (ours) 3.29

Figure 23input: text vector, output: image. Figure 24 input: text vector, output: image.

50 | P a g e

5.2 Analysis

In this section, we will analyze the output of the generative models.

A. Analysis for oxford-102 dataset

1) Good examples

Table 7 Analysis for oxford-102 dataset (good examples).

Inputs

Generated image outputs

this flower has four large rounded light

purple petals that are yellow in the middle

with stamen.

51 | P a g e

the flower is pale pink and has a white

center and yellow stamen.

the flower with petals that are fused

together supporting and surrounding the

yellow stamen in the center.

Table 7 shows some example output from the Oxford-102 dataset. The left column

represents the input pair of image and caption and the right column represents the images

generated given the image or text input. The images generated by the generative model are

almost similar. This shows that the vectors of the same class projected on the CVS are

closely clustered. So, the distance between the vectors is minimal which allows the

generator network to generate similar images.

52 | P a g e

2) Bad examples

Table 8 Analysis for oxford-102 dataset (bad examples).

Inputs

Generated image outputs

this flower has white petals and yellow

pistil as its main features.

the flower is pale pink and has a white

center and yellow stamen.

Table 8 shows some bad samples generated by the model. In the first case the model

wrongly interprets the yellow pistil keyword and uses that to generate a flower that has

yellow-colored petals. In the second case the model again misinterpreted the inputs and

53 | P a g e

generated the image of a different class. These can be because the model failed to extract

the contextual features from the image and text.

B. Analysis for Caltech CUB dataset

1) Good examples

Table 9 Analysis for caltech CUB dataset (good examples).

Inputs

Generated image outputs

this bird has a very long beak is gray and

white in color and has very long wings and

short little legs.

a small bird that is golden yellow with

traces of brown on the wings.

54 | P a g e

a grey bird with webbed feet and a brown

head.

Table 9 shows some example output from Caltech-CUB dataset. The left column

represents the input pair of image and caption and the right column represents the images

generated given the image or text input. The images generated by the generative model

go along with the inputs and the generated images from image and text look similar

which shows that the vectors are projected close to each other in the latent vector space.

2) Bad examples

Table 10 Analysis for caltech CUB dataset (bad examples).

Inputs

Generated image outputs

55 | P a g e

this large seabird is mostly a light brown

with a long, hooked bill, dark oval eyes and

a white crown and throat.

light tan colored bird with a white head and

an orange beak.

Table 8 shows some bad samples generated by the model. In both the cases model

completely misinterprets the inputs which leads to poor feature extraction.

56 | P a g e

C. Analysis for captioning model

We experimented with adding a captioning model along with the generative model. Figure

23 shows the model architecture after adding the captioning model. The image captioning

model takes the last layer of the CVS network as input and outputs the caption for both

image and text input. Similar to the generative network, the last fully connected layer is

used as the feature vector for the inputs. We used the basic image captioning model with

one layer of LSTM. This experiment is to show the use of CVS embedding to generate

captions for the given inputs.

Figure 25 Adding captioning model along with generative network.

Table 11 shows the output of the captioning model. The left column shows the inputs and

the right column is the output captions. This simple model can capture the colors in the

image and caption input. The input captions mostly start with ‘this flower’ which is

reflected in the generated captions as well.

57 | P a g e

Table 11 Analysis for captioning model (Oxford-102 dataset).

Inputs

Generated captions

this flower has white petals and yellow

pistil as its main features.

this flower has petals that are white with

yellow.

this flower has petals that are white with

yellow pistil.

the flower is pale pink and has a white

center and yellow stamen.

the flower has petals that are pink.

the flower has petals that are white with

yellow.

Table 12 shows some bad captions generated by the captioning model. These poor quality

captions may be because the model used to generate the captions is a very basic LSTM

model with only one layer. More complex models presumably would generate better

results.

58 | P a g e

Table 12 Analysis for captioning model (bad example).

Inputs

Generated captions

this flower has white petals and yellow

pistil as its main features.

this flower has petals that are white with

yellow.

this flower has petals that are white with

yellow pistil.

the flower is pale pink and has a white

center and yellow stamen.

the flower has petals that are pink.

the flower has petals that are white with

yellow.

59 | P a g e

Chapter 6

 Conclusions

6.1 Conclusions

This work develops a unified model which shows the performance on diverse tasks

such as cross modal retrieval and image generation. This work exhibits training multiple

models for different task in a joint fashion. This thesis work demonstrates the use of CVS

for image generation task. Even though the CVS is used to bring the two vectors from

different modalities closer to each other in the vector space, this work proves that the vector

from the CVS can be used to generate realistic looking images.

6.2 Future Work

We demonstrate the performance of the model on image and text modalities. Further

extension of this work is possible. Some possible extensions are:

 Adding complex image captioning model to generate more detailed caption for the

image input and paraphrase sentence for the text input.

 Extending this to other modalities such as audio and video and generate images

based on the vector generated by the CVS.

60 | P a g e

Bibliography

[1] Lee, Kuang-Huei, et al. "Stacked cross attention for image-text matching." Proceedings

of the European Conference on Computer Vision (ECCV). 2018.

[2] Faghri, Fartash, et al. "Vse++: Improved visual-semantic embeddings." arXiv preprint

arXiv:1707.05612 2.7 (2017): 8.

[3] Malinowski, Mateusz, Marcus Rohrbach, and Mario Fritz. "Ask your neurons: A

neural-based approach to answering questions about images." Proceedings of the IEEE

international conference on computer vision. 2015.

[4] Rasiwasia, Nikhil, et al. "A new approach to cross-modal multimedia

retrieval." Proceedings of the 18th ACM international conference on Multimedia. ACM,

2010.

[5] Wang, Bokun, et al. "Adversarial cross-modal retrieval." Proceedings of the 25th

ACM international conference on Multimedia. ACM, 2017.

[6] Wei, Yunchao, et al. "Cross-modal retrieval with CNN visual features: A new

baseline." IEEE transactions on cybernetics47.2 (2016): 449-460.

[7] Zhen, Liangli, et al. "Deep Supervised Cross-Modal Retrieval." Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2019.

[8] Sanakoyeu, Artsiom, et al. "Divide and Conquer the Embedding Space for Metric

Learning." Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2019.

[9] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for

large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

[10] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2015.

[11] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of

the IEEE conference on computer vision and pattern recognition. 2016.

61 | P a g e

[12] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

“Improving neural networks by preventing co-adaptation of feature detectors,”

arXiv:1207.0580 [cs], Jul. 2012.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-

Scale Hierarchical Image Database. In CVPR09, 2009.

[14] Florian Schroff, Dmitry Kalenichenko, and James Philbin, “Facenet: A unified

embedding for face recognition and clustering,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2015, pp. 815–823.

[15] Nilsback, Maria-Elena, and Andrew Zisserman. "Automated flower classification

over a large number of classes." 2008 Sixth Indian Conference on Computer Vision,

Graphics & Image Processing. IEEE, 2008.

[16] Welinder P., Branson S., Mita T., Wah C., Schroff F., Belongie S., Perona, P.

“Caltech-UCSD Birds 200”. California Institute of Technology. CNS-TR-2010-001.

2010.

[17] Jeffrey Donahue et al., “Long-term recurrent convolutional networks for visual

recognition and description,” in CVPR, 2015, pp. 2625–2634.

[18] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio, “Show, attend and tell: Neural image

caption generation with visual attention,” in International conference on machine

learning, 2015, pp. 2048–2057.

[19] S. Sah, S. Kulhare, A. Gray, S. Venugopalan, E. Prud’Hommeaux, and R. Ptucha,

“Semantic Text Summarization of Long Videos,” in 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), 2017, pp. 989–997.

[20] Kim, Yoon. "Convolutional neural networks for sentence classification." arXiv

preprint arXiv:1408.5882 (2014).

[21] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural

computation 9.8 (1997): 1735-1780.

62 | P a g e

[22] Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on

sequence modeling." arXiv preprint arXiv:1412.3555 (2014).

[23] Sah, Shagan, et al. "Multimodal reconstruction using vector representation." 2018

25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018.

[24] Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating

image descriptions." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2015.

[25] Shi, Haichao, et al. "Image captioning based on deep reinforcement

learning." Proceedings of the 10th International Conference on Internet Multimedia

Computing and Service. 2018.

[26] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural

information processing systems. 2014.

[27] Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan." arXiv

preprint arXiv:1701.07875 (2017).

[28] Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked

generative adversarial networks." Proceedings of the IEEE international conference on

computer vision. 2017.

[29] Zhang, Han, et al. "Stackgan: Text to photo-realistic image synthesis with stacked

generative adversarial networks." Proceedings of the IEEE international conference on

computer vision. 2017.

[30] Singh, Monit Shah, et al. "Transforming sensor data to the image domain for deep

learning—An application to footstep detection." 2017 International Joint Conference on

Neural Networks (IJCNN). IEEE, 2017.

[31] Zhou, Tao, et al. "Feature learning and fusion of multimodality neuroimaging and

genetic data for multi-status dementia diagnosis." International Workshop on Machine

Learning in Medical Imaging. Springer, Cham, 2017.

63 | P a g e

[32] Lee, Sheng Long, Mohammad Reza Zare, and Henning Muller. "Late fusion of deep

learning and handcrafted visual features for biomedical image modality

classification." IET Image Processing 13.2 (2018): 382-391.

[33] Hardoon, David R., Szedmak, Sandor R., and Shawe-taylor, John R. Canonical

correlation analysis: An overview with application to learning methods. Neural

Computation, 16:2639–2664, 2004.

[34] X. Xu, L. He, H. Lu, L. Gao, and Y. Ji, “Deep adversarial metric learning for cross-

modal retrieval,” World Wide Web, vol. 22, no. 2, pp. 657–672, Mar. 2019.

[35] L. Zhen, P. Hu, X. Wang, and D. Peng, “Deep Supervised Cross-Modal Retrieval,”

presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019, pp. 10394–10403.

[36] P. Anderson et al., “Bottom-Up and Top-Down Attention for Image Captioning and

Visual Question Answering,” presented at the Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 6077–6086.

[37] K.-H. Lee, X. Chen, G. Hua, H. Hu, and X. He, “Stacked Cross Attention for Image-

Text Matching,” presented at the Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 201–216.

[38] He, Kaiming, et al. "Mask r-cnn." Proceedings of the IEEE international conference

on computer vision. 2017.

[39] Hadsell, Raia, Sumit Chopra, and Yann LeCun. "Dimensionality reduction by learning

an invariant mapping." Computer vision and pattern recognition, 2006 IEEE computer

society conference on. Vol. 2. IEEE, 2006.

[40] Kiros, Ryan, et al. "Skip-thought vectors." Advances in neural information processing

systems. 2015.

[41] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016.

[42] Szegedy, Christian, et al. "Rethinking the inception architecture for computer

vision." Proceedings of the IEEE conference on computer vision and pattern recognition.

2016.

[43] Salimans, Tim, et al. "Improved techniques for training gans." Advances in neural

information processing systems. 2016.

64 | P a g e

[44] Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." European

conference on computer vision. Springer, Cham, 2014.

[46] Xu, Tao, et al. "Attngan: Fine-grained text to image generation with attentional

generative adversarial networks." Proceedings of the IEEE conference on computer vision

and pattern recognition. 2018.

[47] Reed, Scott E., et al. "Learning what and where to draw." Advances in neural

information processing systems. 2016.

[48] Wang, Bokun, et al. "Adversarial cross-modal retrieval." Proceedings of the 25th

ACM international conference on Multimedia. 2017.

[49] Wei, Yunchao, et al. "Cross-modal retrieval with CNN visual features: A new

baseline." IEEE transactions on cybernetics 47.2 (2016): 449-460.

[50] “Detection and Tracking of Pallets using a Laser Rangefinder and Machine Learning

Techniques | Request PDF,” ResearchGate. [Online]. Available:

https://www.researchgate.net/publication/324165524_Detection_and_Tracking_of_P

allets_using_a_Laser_Rangefinder_and_Machine_Learning_Techniques. [Accessed: 11-

Oct-2018].

[51] https://github.com/crisbodnar/text-to-image

[52] https://software.intel.com/sites/products/documentation/doclib/daal/daal-user-and-

reference-guides/daal_prog_guide/GUID-9B434D4F-C723-4191-9A88-

69148C75A3F1.htm

[53] https://embarc.org/embarc_mli/doc/build/html/MLI_kernels/pooling_avg.html

[54] https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce

[55] https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[56] https://www.data-blogger.com/2017/08/27/gru-implementation-tensorflow/

[57] https://www.sentiance.com/2018/05/03/venue-mapping/

[58] https://pathmind.com/wiki/generative-adversarial-network-gan

[59] https://omoindrot.github.io/triplet-loss

[60] Gopalakrishnan, Sabarish, "Vector Spaces for Multiple Modal Embeddings" (2019).

Thesis. Rochester Institute of Technology.

https://github.com/crisbodnar/text-to-image
https://software.intel.com/sites/products/documentation/doclib/daal/daal-user-and-reference-guides/daal_prog_guide/GUID-9B434D4F-C723-4191-9A88-69148C75A3F1.htm
https://software.intel.com/sites/products/documentation/doclib/daal/daal-user-and-reference-guides/daal_prog_guide/GUID-9B434D4F-C723-4191-9A88-69148C75A3F1.htm
https://software.intel.com/sites/products/documentation/doclib/daal/daal-user-and-reference-guides/daal_prog_guide/GUID-9B434D4F-C723-4191-9A88-69148C75A3F1.htm
https://embarc.org/embarc_mli/doc/build/html/MLI_kernels/pooling_avg.html
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.data-blogger.com/2017/08/27/gru-implementation-tensorflow/
https://www.sentiance.com/2018/05/03/venue-mapping/
https://pathmind.com/wiki/generative-adversarial-network-gan
https://omoindrot.github.io/triplet-loss

65 | P a g e

[61] Li, Ao-Xue, Ke-Xin Zhang, and Li-Wei Wang. "Zero-shot Fine-grained

Classification by Deep Feature Learning with Semantics." International Journal of

Automation and Computing 16.5 (2019): 563-574.

[62] Peri, Dheeraj Kumar, "Multi-modal learning using deep neural networks" (2018).

Thesis. Rochester Institute of Technology. Accessed from.

[63] Zhang, Yin, Rong Jin, and Zhi-Hua Zhou. "Understanding bag-of-words model: a

statistical framework." International Journal of Machine Learning and Cybernetics 1.1-4

(2010): 43-52.

[64] Mikolov, Tomas, et al. "Distributed representations of words and phrases and their

compositionality." Advances in neural information processing systems. 2013.

[65] Zhang, Xiang, Junbo Zhao, and Yann LeCun. "Character-level convolutional

networks for text classification." Advances in neural information processing systems.

2015.

[66] Wang, Jiang, et al. "Cnn-rnn: A unified framework for multi-label image

classification." Proceedings of the IEEE conference on computer vision and pattern

recognition. 2016.

[67] Klein, Benjamin, et al. "Fisher vectors derived from hybrid gaussian-laplacian mixture

models for image annotation." arXiv preprint arXiv:1411.7399 (2014).

[68] Li, Shuang, et al. "Identity-aware textual-visual matching with latent co-

attention." Proceedings of the IEEE International Conference on Computer Vision. 2017.

[69] Peri, Dheeraj, Shagan Sah, and Raymond Ptucha. "Show, Translate and Tell." 2019 IEEE

International Conference on Image Processing (ICIP). IEEE, 2019.

	Cross-modal data retrieval and generation using deep neural networks
	Recommended Citation

	tmp.1598015939.pdf.LbunX

