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ABSTRACT 

As displays continue to increase in resolution and refresh rate, new materials for thin film 

transistors (TFTs) are required. Low temperature polycrystalline silicon (LTPS) formed by 

excimer laser annealing (ELA) has been very successful and has been implemented in small 

displays, but cost and scalability issues prevent it from entering larger display products. Currently 

LPTS TFTs are top-gate structures due to manufacturing challenges associated with crystallizing 

thin film silicon when a thermally conductive gate is under portions and insulating glass under 

others. Bottom-gate devices offer the benefit of higher breakdown voltage, better dielectric-

semiconductor interface quality, and direct access to the back-channel region for interface trap 

passivation. The ability to fabricate bottom-gate devices would allow for different integration and 

design schemes and is a prerequisite for double gate structures. Flash lamp annealed (FLA) LTPS 

is an attractive method to expand the size of displays that use high mobility TFTs due to its 

scalability and parallel production nature. 

In this work bottom-gate LTPS TFTs were fabricated via FLA with indium tin oxide (ITO), a 

transparent conductive oxide, used as the gate electrode. A p-channel TFT with 4 µm channel 

length crystallized with a FLA energy of 4.4 J/cm2 for 250 µs demonstrated a low-field mobility 

of 190 cm2/(Vs), a subthreshold slope of 325 mV/dec, on/off state ratio of seven orders of 

magnitude, and a threshold voltage of -5.4 V. A dielectric failure mechanism was identified that 

compromised the transistor operation under high drain bias and an alternative dopant introduction 

techniques were proposed to mitigate this issue. An effect due to the transduction of optical energy 

from the field to thermal energy under the channel via the gate was observed. Details of the FLA 

crystallization process, device fabrication, and electrical characteristics will be presented. 
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Chapter 1. INTRODUCTION 

Thin film transistors (TFTs) are an integral part of modern flat panel displays. In order to 

continue to push the boundaries of displays there is a constant desire to improve TFT performance. 

Many different transistor configurations and materials have been explored and new concepts are 

consistently arising. One of these schemes is bottom gate low temperature polycrystalline silicon 

(LTPS) devices, which has demonstrated high performance operation and benefits over other 

existing technologies. Flash lamp annealing (FLA) has potential for improvement in production 

cost reduction and ability to scale to large panel manufacturing. A material such as indium tin 

oxide (ITO), would be an attractive electrode option due to its high transparency and conductivity. 

A combination of these three presents an opportunity for new design space with innovative 

fabrication and integration strategies. 

 FLAT PANEL DISPLAY MARKET TRENDS  

Like all consumer goods, there is always the push for a faster, cheaper, and better product. For 

the TV segment of the display industry there has been a push towards larger and larger screens. 

Analysis conducted by IHS and Corning Incorporated show the increase in the demand for TVs is 

expected to come from this large display segment, especially sixty inches and larger, as seen in 

figure 1.1 [1]. 
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Figure 1.1 Worldwide estimated demand for TVs and average screen size [1] 

 

To allow for the fabrication of the larger displays and higher factory capacity, manufactures 

have increased the size of the glass substrates. This has two main benefits; the overall size of the 

display can be increased, and the substrate can be utilized more efficiently. Figure 1.2 shows 75” 

displays on both Gen 8.5 and Gen 10.5 glass. The Gen 8.5 only allows for two displays to be 

fabricated on the substrate and has 56% utilization while the Gen 10.5 glass allows for six displays 

and is utilizing 94% of the substrate. Due to this the majority of new fabs in construction are 

designed to work with Gen 10.5 glass: 2940 mm by 3370 mm [2]. 
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Figure 1.2 Layout and glass utilization for 75 inch TVs on Gen 8.5 and Gen 10.5 glass [1] 

 

A major driver in the display market is the cost. As the manufacturing capacity of display fabs 

increase due to the larger substrates, economies of scale allow for the average unit price to come 

down, encouraging wider consumer adoption of larger displays.  

 DISPLAY PIXEL DESIGNS  

There are two main types of pixels for flat panel displays; filtering and emissive. Filtering 

displays use electrical signal to modify light. The most common type of filtering display is the 

liquid crystal display (LCD). Liquid crystals are materials that have the fluidity of a liquid but the 

order of a crystal. Their physical properties can be manipulated by applying heat, electrical or 

magnetic fields. The liquid crystal display was first demonstrated by George Heilmeier from Radio 

Corporation of America in 1968 [3]. Common liquid crystal materials are cyanobiphenyls, 
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phenylcyclohexanes, and cyclohexylcyclohexanes. Liquid crystal displays are the most common 

display technology.  

Liquid crystal displays have a liquid crystal layer that is sandwiched between two linear 

polarizers. When a voltage is applied across the liquid crystal it rotates, changing its optical 

properties. When the voltage is removed the liquid crystal relaxes to its original state, regaining its 

original optical properties. The two state conditions result in the light passing through the liquid 

crystal either maintaining its initial polarization state or rotating its polarization state 90°. If the 

polarization state after the liquid crystal is aligned with the second polarizer, the pixel can transmit 

light. If the light and second polarizer are 90° different in phase the light is blocked, and the pixel 

is off. Since a voltage is applied to the liquid crystal to set its state, liquid crystal-based pixels are 

controlled using voltage driven schemes [4]. Figure 1.3 shows an expanded view of an LCD 

display with the pixels at three different brightness levels. In figure 1.3 the two polarizers are 

crossed, meaning that if the polarization is not rotated no light is transmitted and if the polarization 

is rotated 90° all of the light is transmitted. For intermediate angles a fraction of the light makes it 

through the second polarizer and the pixel will be on but not at its maximum brightness. The top 

pixel in figure 1.3 is on as the liquid crystal is rotating the polarization 90°, the middle pixel’s 

liquid crystal is at an intermediate rotation so it is on with diminished brightness, and the bottom 

pixel is off since there is no change in the lights polarization as it passes through the liquid crystal.  
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Figure 1.3 Expanded view of an active matrix LCD display [4] 

 

Emissive displays directly convert an electrical signal to light. The two most common types of 

emissive displays are organic light emitting diode (OLED) and micro light emitting diode (µLED) 

displays. For an OLED display, each pixel is made up of organic light emitting diode (OLED) 

subpixels. A cut-away view of an OLED display is shown in figure 1.4. The µLED displays are 

made up of inorganic light emitting diodes (LEDs) that are transferred from their growth substrates 

onto the display. The “µ” portion of µLED comes from the fact that the transferred LEDs are tens 

to hundreds of microns in size. Both displays emit light when a current is passed through the diode.  
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Figure 1.4 Cut-away view of an active matrix OLED display [5] 

 

Emissive displays have the benefits of high brightness, low power consumption, fast response 

time, high contrast ratio, high resolution and a wide color gamut. OLED displays are currently 

available for purchase and are very popular for high end displays. Difficulties with processing and 

moisture sensitivity of the organic materials in the OLED are major areas that are restricting wider 

adoption. The µLED displays are seen as the next big trend in displays; they have many benefits 

when compared with OLED displays. They do not have the same moisture sensitivities, are more 

efficient, and have longer device lifetime due to their use of inorganic semiconductors [2]. The 

major hurdles holding them back are manufacturability and yield. Millions of µLEDs must be 

transferred from the growth substrate to the backplane to make a high-resolution display and any 

issues will lead to a dead pixel. Methods for transfer, bonding, inspection, and repair all need to 

be improved before µLED displays can become mainstream [2].  

To drive the pixels there are two main schemes; passive matrix and active matrix. For passive 

matrix each pixel is connected directly to the external driver circuitry. The liquid crystal or OLED 

is sandwiched between two grids of electrodes, where the columns are the data lines and the rows 
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are the select lines, as shown in figure 1.5. The rows are selected one at a time and the columns 

contain the data controlling if the pixel is on or off. Since only one row can be addressed at a time, 

all other pixels are off. Additionally, addressing all of the pixels in a row at once leads to a large 

intrinsic capacitance, causing propagation delay. Due to these two factors passive matrix displays 

are limited in both size and resolution. Most passive displays have fifty or fewer rows and columns 

and are at most a few inches in size [6]. 

 

Figure 1.5 Passive matrix pixel design for LCD display [7] 

 

For active matrix displays, each pixel is attached to thin film transistors (TFTs) and capacitors, 

shown in figure 1.6. This allows for charge to be stored on the capacitor, allowing for the pixel to 

retain its state while other pixels are being addressed. By storing the charge at each pixel, the 

display resolution, contrast ratio, viewing angle, and maximum size can be improved. For modern 

color displays each pixel is made up of at least three subpixels: one red, one blue, and one green. 

Due to the total number of subpixels in a display and the limitation in the quantity of pixels for 

passive matrix, most modern color displays are active matrix design.  
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Figure 1.6 Active matrix pixel design for LCD display [7] 

 

As the market transitions away from liquid crystal-based designs to OLED and µLED displays 

the control circuitry must also switch from providing a voltage to supplying a current. For applying 

a fixed voltage to the pixel, a simple one transistor one capacitor pixel design can be used, as seen 

in figure 1.7a. To supply a constant current, the simplest pixel circuit is a two transistor one 

capacitor design, shown in figure 1.7b. Since the intensity of light emitted by the pixel is directly 

related to the amount of current flowing through the diode, variation in current will cause large 

differences in pixel brightness. To account for variations in threshold voltage, more complicated 

drive circuitry designs have been proposed [8]. 
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Figure 1.7 Simplest circuit for active matrix a) LCD b) OLED pixel [9] 

 TFT TECHNOLOGIES 

There are three different TFT materials used for displays currently in production: plasma 

enhanced chemical vapor deposited (PECVD) hydrogenated amorphous silicon (a-Si:H), the 

amorphous metal oxide indium gallium zinc oxide (IGZO), and excimer laser annealed (ELA) low 

temperature polycrystalline silicon (LTPS). All three materials have advantages and disadvantages 

to their use, so the applications where they are found vary accordingly. 
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1.3.1 a-Si:H 

Hydrogenated amorphous silicon was one of the first materials that was used for thin film 

transistors and the first that was commercially manufactured. The silicon is PECVD deposited 

allowing for it to be scaled to large substrates. Additionally, the process itself is relatively fast, 

allowing for high volume manufacturing. The film is hydrogenated to passivate dangling bonds in 

the amorphous silicon, allowing the devices to exhibit far better transistor characteristics. The 

TFTs can be fabricated using a four-mask process, minimizing the number of lithography steps. 

The main benefits of using an a-Si:H TFT are that the fabrication process is scalable up to and 

even beyond the largest generation glass (Gen 10.5), exceptional uniformity across the substrate 

due to the amorphous structure, and the fabrication process is simple and cost-effective. The main 

disadvantages of a-Si:H are that the threshold voltage of the transistor drifts under bias stress and 

that it has extremely limited electron channel mobility, µn < 1 cm2/(Vs). There are many 

applications that are not limited by the low channel mobility and can compensate or mitigate the 

threshold bias drift. Currently most displays have backplanes with a-Si:H TFTs, and it is a 

dominant technology for large displays as well as low cost displays. 

1.3.2 IGZO 

Indium gallium zinc oxide is the most mature of the amorphous metal-oxide semiconductors 

(AOS). IGZO has many appealing properties that make it an attractive candidate to replace a‑Si:H; 

it has a higher electron channel mobility, µn ~10 cm2/(Vs), and comparable off-state performance. 

One major challenge of using an amorphous metal oxide is that they are very sensitive to ambient 

conditions and temperature. Once the TFT backplane is completed additional processing steps are 

required to finish the display, some of which are hot enough to cause issues with the device 
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stability. IGZO is the most stable AOS and much work has gone into understanding encapsulation 

methods to extend usable device lifetimes and thermal stability. The IGZO is sputter deposited for 

manufacturing applications, which allows for both high throughput and scalability to larger 

substrate sizes. IGZO is currently used as the backplane in a number of tablets and TVs. 

1.3.3 ELA-LTPS 

Excimer laser annealed low temperature polycrystalline silicon is the primary method for 

fabricating high mobility TFT backplanes. The initial silicon is deposited using PECVD, similar 

to a-Si:H devices. The silicon is dehydrogenated and then exposed to twenty pulses or more of a 

XeCl laser (λ = 308 nm). This allows for the silicon film on top of the glass substrate to melt while 

leaving the glass below its thermal limit. This process results in a thin polycrystalline film. The 

channel mobility of the devices is greatly increased due to the crystallization. Unlike a-Si:H and 

AOS, polysilicon can be doped both n-type and p-type, thus allowing for the fabrication of CMOS 

circuits. Like bulk silicon devices, the mobility for electrons is higher than that of holes but it is 

not uncommon to see hole channel mobility µp > 100 cm2/(Vs).  

The major disadvantage of the ELA process is the excimer laser system itself. For ELA in 

manufacturing the systems are designed to expose a long narrow section at a time as to maximize 

for uniformity and tool throughput. The system exposes half the width or the entire width with 

each pass. With the larger generations this becomes increasingly challenging due to the power 

requirements of the laser and the complexity of the laser optics. Some work has been done to 

extend the usable substrate sizes by using multiple laser sources and combining them into one 

exposure, but this leads to an expensive and complicated system. Due to the cost, complexity, and 
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time associated with using ELA exposure the resulting backplanes are very expensive. For these 

reasons, ELA-LTPS is mostly used for small high-resolution displays, such as phones. 

 

Figure 1.8 Production Excimer Laser System [10] 

 TFT GATE CONFIGURATIONS 

Thin film transistors can have many different configurations due to the layers being 

deposited. The devices can be either top gate, bottom gate, or double gate, in reference to the 

gate being either below or above the semiconducting layer. For a double gate device there is 

both a top gate and bottom gate which can either be connected or biased independently, 

depending on the application. Additionally, the transistors can have a coplanar or staggered 

configuration, in reference to the gate position relative to the source/drain metals. If the 

source/drain metal is on the same side of the semiconducting layer the device is coplanar. If the 

source/drain metal is on the opposite side of the semiconducting layer the device is staggered. 

An illustration showing the different top and bottom gate configurations is shown in figure 1.9. 

Using TFT terminology, a traditional bulk MOSFET device would be a coplanar top gate. 
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Figure 1.9 Possible TFT Configurations [11] 
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Chapter 2. LOW TEMPERATURE 

POLYCRYSTALLINE SILICON: TECHNIQUES & 

TRAITS 

Amorphous silicon TFTs are struggling to keep up with the mobility and stability required 

for next generation display’s pixel circuitry. While polysilicon is an attractive replacement and 

already used widely in the IC industry, the display industry is unable to use those methods. 

Thermal limitations inherent to the display glass prohibit high temperature processing. There 

have been many investigations to modifying the crystallization process so that it is performed at 

a lower temperature. These methods are collectively known as low temperature polycrystalline 

silicon (LTPS).  

 DISPLAY GLASS THERMAL LIMITS  

For display glass a commonly referenced temperature is the strain point. The strain point is 

defined as the temperature at which the viscosity is 1014.5 poise [12]. An example of a glass 

viscosity curve is shown in figure 2.1. It highlights different key viscosities for different 

applications of glass. While the strain point is precisely defined, the maximum allowed processing 

temperature is more ambiguous and lower. For Corning® Lotus™ NXT display glass, the strain 

point is 752 °C [13] but extended processing above 630 °C for extended periods of time will cause 

dimensional issues. 



15 
 

The glass substrate imposed thermal limit is due to both the glass properties and the process 

by which display glass is formed. There are two main phenomena that define the glass’s thermal 

limit: viscous sag and thermal compaction. Viscous sag is caused when the glass is heated into its 

viscoelastic transition range, as shown in figure 2.1, and undergoes viscous relaxation, allowing 

the gravitational force to deform the substrate. This can cause issues with later substrate handling, 

both for transportation and on vacuum chucks [14]. Thermal compaction is the permanent 

dimensional change of the substrate after processing at elevated temperatures. This occurs due to 

the glass not reaching thermal equilibrium during the formation process. Subsequent thermal 

processing allows the glass to relax on the atomic scale and causes a change in volume. For the 

temperature range used in display manufacturing this change is almost always negative, leading to 

the nomenclature of compaction. Unfortunately, the magnitude of this effect is influenced by the 

thermal history of the batch that the glass came from so it cannot be compensated for in the 

manufacturing process [15]. This can cause both issues with device lithographic overlay and 

misalignment of the TFT backplane and color filter [14,15].  
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Figure 2.1 Example glass viscosity curve [16] 

 LOW TEMPERATURE POLYCRYSTALLINE SILICON 

LTPS is an attractive material for next generation TFTs for displays. It offers a wide variety of 

benefits including high mobility, CMOS compatibility, similarity to the a-Si:H TFT fabrication 

process, and bias and environmental stability. While the name includes ‘low temperature’, this is 

a bit of a misnomer; the low temperature portion refers to the temperature that the substrate 

experiences. Any process in which silicon is crystallized while the substrate stays below its thermal 

limit is considered to be LTPS. There are two schemes for the crystallization, bulk heating and 

surface heating. In bulk heating, the entire stack is uniformly heated, requiring the maximum 

temperature of the film to remain below the thermal limit of the glass. The second technique is 

surface heating, where the thin silicon film is heated rapidly, potentially entering the melt phase, 

while the substrate remains below the thermal limit.  
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2.2.1 Solid Phase Crystallization 

Solid phase crystallization (SPC) is the simplest of the LTPS methods. SPC is a bulk heating 

method where the substrate is heated up to ~ 600 °C for extended periods of time, i.e. 10 to 100 

hours. The film forms nucleation sites randomly; if they are smaller than a critical radius the nuclei 

are not stable and dissolve back into the amorphous film. If the nucleation site is the critical radius 

or larger the crystallite is stable, and the grain growth phase begins. The grains will continue to 

grow until the crystallization front meets that of another crystallization front or an interface. If the 

grains are different sizes the smaller grain will start to dissolve and will be incorporated into the 

larger, a process known as Ostwald ripening. However, if the two grains are relatively the same 

size, the grain boundary is metastable, and the grain growth will no longer continue in that 

direction. For most SPC growth conditions the final grain size is limited to the film thickness due 

to a high nucleation rate relative to the growth rate.  

A representative electrical characteristic for a p-channel SPC TFT is shown in figure 2.2a. The 

subthreshold region of the device is relatively shallow and demonstrates hysteresis, and the overall 

drive current is relatively low. Figure 2.2b shows an example transfer characteristics for an n-

channel SPC crystallized top-gate TFT, and an as-deposited (a-Si:H) device for comparison. The 

SPC device exhibits a higher drive current and comparable off state leakage when compared with 

the as-deposited a-Si device. The subthreshold slope in the two devices are similar, with 

SS ~ 1 V/dec. The shallow subthreshold limits the TFT switching ability, restricting the possible 

applications.  
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Figure 2.2 a) Hysteresis characteristics for a p-channel SPC TFT [17] b) comparison of n-
channel transfer characteristics for a top gate as deposited a-Si and SPC TFT with channel 

thickness of 25 nm [18] 

 

While SPC is a simple fabrication process for LTPS there are many disadvantages. One 

disadvantage of SPC LTPS is the size of the grains. For most TFT applications the thickness of 

the film is 100 nm or less, so this limits the grain size to at most 100 nm. These small grains 

produce numerous grain boundaries, lowering the carrier mobility. Another issue with SPC is the 

duration of the high temperature process. To achieve the highest crystallization rate the 

temperature of the processing is close to the thermal limit of the glass. The extended process time 

causes the substrate to compact and causes further processing issues, as discussed in section 2.1. 

Additionally, adding a 10 hour or longer thermal step greatly increases the fabrication time, 

causing a fabrication bottleneck. Due to the low mobility, substrate challenges, and processing 

time, SPC LTPS has not been adopted into mainstream display manufacturing. 
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2.2.2 Metal Induced Crystallization 

Metal induced crystallization (MIC) is another bulk heating method for forming LTPS. For 

MIC a thin layer of metal, less than 5 nm, is deposited on an amorphous silicon film. The stack is 

then heated in a furnace for an extended crystallization anneal. The crystallization occurs at a lower 

temperature and faster than SPC crystallized films. The most common metal used is nickel, 

however many other metals have been investigated such as aluminum, palladium, and copper [19].  

A schematic showing the mechanism of nickel induced crystallization is shown in figure 2.3. 

Initially the silicon and nickel form a NiSi2 precipitate. A thin epitaxial layer of crystalline silicon 

then forms on the {111} face of the silicide due to a small lattice mismatch, 0.4%. The stable 

crystalline phase lowers the free energy of the silicon from the initial metastable amorphous phase. 

The crystallization propagates due to the NiSi2 that is in contact with the a-Si being silicon rich 

relative to the portion in contact with the c-Si due to the relative chemical potentials of the Si and 

Ni. This causes Ni diffusion from the crystalline interface to the amorphous interface and the Si to 

diffuse in the opposite direction. The crystallization continues with the NiSi2 consuming the a-Si 

and leaving c-Si [20]. 
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Figure 2.3 Illustration showing mechanism for nickel induced crystallization [20] 

 

There are also two variants of MIC, metal induced lateral crystallization (MILC) and metal 

induced cap crystallization (MICC). MILC is similar to MIC but the metal film is patterned into 

islands before the crystallization to occur. This causes the crystallization to occur laterally in 

regions not covered by the islands. This causes the grains to have preferential crystal orientations 

and can result in larger grain sizes. MICC incorporates a thin nitride capping layer between the 

metal and film, shown in figure 2.4. The metal diffuses through the cap and into the underling 

silicon.  
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Figure 2.4 Illustration of film stack for MICC [21] 

 

Figure 2.5 shows the transfer characteristics for a top gate MICC device. The device exhibits 

a good threshold, mobility, and on/off state ratio. While these results are quite good, MICC has 

not been widely adopted in industry. The main challenges implementing MIC for TFTs is metal 

contamination. The residual metal left after crystallization degrades device electrical performance. 

It can increase the leakage current, degrade the subthreshold slope, and cause lower channel 

mobility. 

 

Figure 2.5 Transfer characteristics and mobility for a MICC top gate device [22] 
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2.2.3 Excimer Laser Annealing 

Excimer laser annealing (ELA) is a surface heating LTPS method that uses an excimer laser to 

crystallize the amorphous silicon with repeated nanosecond-duration pulses. The most commonly 

used laser is XeCl based (λ = 308 nm), but some research has been done with KrF lasers 

(λ = 248 nm). Each section of the film is irradiated multiple times and the substrate is moved a 

small amount between each pulse to produce a more uniform crystallization, shown in figure 2.6. 

This allows for a reduction of the effects of beam non-uniformity and pulse to pulse variation [23]. 

 

Figure 2.6 Illustration of excimer laser annealing process [24] 

 

The absorption length for the XeCl laser is 7.6 nm in amorphous silicon which is much smaller 

than the typical film thickness of 50 nm [25]. This means that the majority of the energy is absorbed 

and almost none is transmitted, which allows the film to receive enough energy that it can enter 

the melt phase while the substrate remains well below its thermal limit. Additionally, since each 

pulse discharge takes place on the nanosecond timescale the film is rapidly heated and there is 
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minimal thermal conduction to the substrate. This method allows for high quality polycrystalline 

silicon and is currently used in manufacturing for small high-resolution displays. 

ELA crystallization results in a film that has moderately sized grains with raised grain 

boundaries and protrusions as seen in figure 2.7. Protrusions are formed where three (or more) 

grains intersect. The raised topography is due to a difference in density between liquid and solid 

phase of silicon; when it solidifies it undergoes volume expansion. The displaced material deforms 

out of plane, resulting in the ridges and protrusions.  

 

Figure 2.7 SEM micrograph of ELA crystallized polysilicon a) top-view b) tilted view [26]. 
Grain size approximately 300 nm 

 

TFTs fabricated from ELA crystallized silicon can offer excellent electrical characteristics. A 

reprehensive transfer characteristic for a top gate ELA device is shown in figure 2.8. They have 

steep subthreshold, high drive current while maintaining minimal leakage current, CMOS 

compatibility, and are scalable to small device dimensions. One drawback in their electrical 

performance is their threshold voltage uniformity. Due to the large size of the grains the number 

of grains in the channel can vary, this results in a small variation in the mobility and has a larger 

impact on the threshold voltage.  
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Figure 2.8 Example transfer characteristics for ELA crystallized TFTs [27] 

  

For scaling to large display substrates, the systems become very complicated and expensive. 

The main issue for larger substrates is the excimer laser themselves; a proposed system is shown 

in figure 2.9. In order to crystallize the silicon on display glass the beam is converted into a line 

beam; a long narrow exposure window, allowing for better pulse to pulse repeatability and 

uniformity. To maximize the throughput of the tool each substrate is exposed at most twice. With 

panels larger than Gen 6 this becomes an issue as single lasers can no longer provide enough 

energy to crystallize the area required. Some companies have extended the usable range of ELA 

systems to Gen 8 by combining multiple lasers into a single beam [28]. This method requires a 

more complicated and expensive system and has not been adopted by industry.  
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Figure 2.9 Rendering of a potential ELA system for a manufacturing setting [29] 

2.2.4 Continuous Wave Laser 

Continuous wave laser annealing is being investigate as a replacement for ELA. There are two 

main types of continuous wave laser annealing, green laser annealing (GLA) and blue laser 

annealing (BLA). The most common type of GLA uses a second harmonic Nd:YAG laser, which 

has an output wavelength of 532 nm. This method has resulted in high quality LTPS films. 

Unfortunately, the absorption coefficient for amorphous silicon at that wavelength is low so the 

process requires high laser power. This can cause damage to the glass substrate due to the 

penetration depth and the power required for crystallization. Due to this GLA is better suited for 

films that are 200 nm or thicker; much thicker than typically used for TFTs [30].  

Blue laser annealing uses a GaN solid state laser. The wavelength of light used varies slightly 

depending on the device structure of the laser diode. The penetration depth of the light is longer 

than that of the excimer laser allowing for thicker films to be crystallized, but not so deep that is 

causes excessive heating of the glass substrate [30-32]. Additionally, the use of GaN laser diodes 
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allows for a much cheaper and more energy efficient system. BLA is a relatively new process and 

has demonstrated excellent results as seen in figure 2.10 [32]. However, many engineering 

challenges remain, such as an increase in beam size and reduction in cost, to overcome before it is 

manufacturable.  

 

Figure 2.10 Transfer characteristics for a blue laser annealed TFT with a 90 nm thick channel 
[32] 

2.2.5 Flash Lamp Annealing 

Flash lamp annealing (FLA) crystallizes the silicon by using a microsecond-scale pulse from 

a xenon flash bulb. The bulb emits a broad-spectrum pulse that melts the silicon while not 

significantly heating the substrate. The absorption coefficient versus wavelength and the emission 

spectra for a Xe flash lamp is shown in figure 2.11. 
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Figure 2.11 Emission spectrum for a generic Xe flash lamp and Si absorption coefficient versus 
wavelength [33] 

 

The ultra-violet portion of the light is absorbed by the thin film silicon and the longer 

wavelengths that make it through the silicon also pass through the glass substrate. The substrate is 

preheated to lower the intensity of the light required to melt the film. The temperature remains 

below the thermal limit and the duration is short enough that the dimensional stability of the glass 

is maintained. Figure 2.12 shows a simplified illustration of a FLA system.  

 

Figure 2.12 Illustration of a flash lamp annealing system with radiant or conductive heating 
[34] 
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FLA is an attractive alternative to ELA due to the fact that the exposure area is more easily 

scaled. A 3.8-meter-wide system is already commercially available and used for architectural glass 

coatings; a picture of this system is shown in figure 2.13. Due to the parallel nature of the system 

the crystallization window can be further enlarged by adding additional flash bulbs. 

 

Figure 2.13 A 3.8-meter-wide flash lamp system for architectural glass coatings [35] 

 INITIAL FLASH LAMP ANNEALED TFTS 

The first reported flash lamp annealed transistor was reported in 2010 by the group of Prof. 

Jing Jang from Kyung Hee University. They were able to fabricate a p-channel transistors that 

exhibited promising electrical characteristics. They used a multi flash crystallization of a 

dehydrogenated blanket undoped a-Si film. The substrate was preheated to 450 °C and crystallized 

with two 100 µs flashes separated by 5 minutes. The estimated energy delivered by each pulse was 

over 5.2 J/cm2. 

This process resulted in a polycrystalline film with grain size around 15 µm and branchlike 

grain boundaries. An optical micrograph of the resulting film and a cross-sectional TEM and 

electron diffraction pattern is shown in figure 2.14. Following crystallization, the individual 

transistor mesas were formed for electrical isolation and remaining processing was completed.  
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Figure 2.14 a) optical micrograph of FLA crystallized silicon showing branchlike morphology 
and an average grain size of 15 µm b) cross-sectional TEM micrograph of the TFT with electron 

diffraction pattern insert [36] 

 

The transfer characteristics and family of curves is shown in figure 2.15. The extracted 

mobility was 138 cm2/(Vs), a subthreshold swing of 400 mV/dec, threshold voltage of -1.3 V, and 

a difference of on/off current over 8 orders of magnitude. While the transfer characteristics for the 

low drain bias shows excellent device performance there is no high drain bias characteristics. 

Additionally, for the family of curves there is an absence of the small Vgs values. These two 

exclusions are most likely an indication that the device had difficulty shutting off for high drain 

biases.  
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Figure 2.15 Electrical characteristics for PMOS FLA TFT L = 8 µm W = 4 µm a) transfer 
characteristics b) family of curves [36] 

2.3.1 RIT’s First Demonstration of FLA TFTs 

Both a n-channel and p-channel devices were successfully fabricated on the same substrate. 

The amorphous silicon was patterned into mesas and the source and drain were implanted before 

crystallization. The substrate was preheated to 550 °C and crystallized by a single 200 µs flash 

with bolometer measured energy of 6 J/cm2. A SEM micrograph and EBSD mapping of a 

deprocessed device is shown in figure 2.16. The resulting film was smooth with scattered voids, 

most likely caused by the silicon melting and dewetting from the substrate during the 

crystallization. 
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Figure 2.16 SEM micrograph and EBSD mapping of deprocessed TFT showing individual grains 
[37] 

 

The best transfer characteristics for both device types are shown in both linear and log scale in 

figure 2.17. The best case NMOS device had a threshold voltage of 0.23 V, channel mobility of 

380 cm2/(Vs), and a subthreshold slope of 120 mV/dec. The best PMOS device had a threshold 

voltage of -2.82 V, a channel mobility of 143 cm2/(Vs) and a subthreshold slope of 140 mV/dec.  
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Figure 2.17 Transfer characteristics for NMOS and PMOS TFT Lmask = 32 µm W = 100 µm a) 
linear scale b) log scale [37] 

 

The change in effective channel length was calculated using Terada-Muta method and were 

6.3 µm for the NMOS device, and 13.4 µm for the PMOS device. This large change in effective 

channel length is most likely due silicon reaching melt phase during the crystallization and the 

dopant rapidly diffusing from the source and drain into the channel. Due to the large lateral 

diffusion, making scaled devices is not possible using this approach. 
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Chapter 3. DEVELOPMENT EFFORTS 

TOWARDS BOTTOM-GATE LTPS TFTS 

Bottom-gate LTPS TFTs have many attractive qualities for next generation displays, however 

fabrication of these devices has presented many challenges. Due to these challenges, the top-gate 

is the predominant configuration for LTPS devices. This section will discuss the potential benefits 

of a bottom gate structure and describe select works that provide details on device fabrication, 

process integration, and electrical characteristics.  

 BENEFITS OF BOTTOM GATE 

Bottom-gate LTPS devices have many attributes that make them attractive when compared to 

more traditional top-gate LTPS devices. Some of these benefits include better semiconductor 

interface quality, simpler channel passivation, higher gate breakdown voltage, different device 

integration strategies allowing a reduction in short channel effects, and ability to more aggressively 

scale devices.  

The better interface quality is due to the ability to deposit the gate oxide and silicon in the same 

chamber without breaking vacuum between, minimizing contamination. Additionally, since the 

interface is present during crystallization a high-quality interface can be formed. Lastly, the bottom 

gate integration eliminates the channel interface plasma damage that can occur during gate 

dielectric deposition, which can occur with the top gate integration. Due to the back channel of the 
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device (channel region opposite the gate) being directly accessible, passivation is easier to perform 

either by either hydrogenation or other methods. 

Higher gate breakdown voltage in bottom gate devices is due to the smooth interface between 

the silicon and underlying gate oxide. For ELA crystallized silicon, there are protrusions formed 

where grains meet. For top gate devices, any protrusions or ridges in the silicon cause deformations 

that extend into the gate oxide. The protrusions present sites with higher localized electric field 

and lower dielectric breakdown voltage. The bottom gate does not have these issues since the 

interface is planer, leading to the field being uniformly distributed. The protrusions still occur but 

are in the backside passivation layer where there is no concern of applied bias. A Tsuprem4 

simulation showing the filed distribution and maximum field for a bottom and top gate device is 

shown in figure 3.1. 

 

Figure 3.1 Left: SEM micrograph of ELA crystallized silicon showing topography caused by 
grain boundaries and protrusions (discussed in section 2.2.3) Right: Tsuprem4 simulation of 

electric field distribution in gate insulator for a) top gate b) bottom gate with insulator thickness 
140 nm, 50 nm silicon with 45 nm tall and 140 nm wide protrusions, and VG = 90 V [26] 
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The use of a bottom gate also allows for the simple integration of a gate overlapped lightly 

doped drains (GOLDD) structure in devices. This structure greatly reduces the devices sensitivity 

to short channel effects. The LDD allows for a reduction of the maximum electric field at the drain 

end of the device, thus decreasing impact ionization. The improved interface quality inherent to 

the bottom gate configuration combined with the decrease in impact ionization supports device 

operational stability and long-term reliability. 

Bottom-gate devices also allow for more aggressive scaling since they exhibit suppressed short 

channel behavior for given dimensions. A reduction in oxide thickness would enable better channel 

control while still managing to avoid gate leakage and dielectric breakdown. Scaled bottom gates 

would allow for smaller pixel sizes or more complex pixel control circuitry.  

 BOTTOM GATE LTPS TFTS: FABRICATION & CHARACTERISTICS 

There have been many previous attempts to fabricate bottom gate LTPS TFTs with various 

levels of success. There are three main LTPS techniques that have been used to fabricate bottom 

gate devices; metal induced crystallization, excimer laser annealing, and continuous-wave laser 

annealing.  

3.2.1 Metal Induced Crystallization 

The group of Jing Jang from Kyung Hee University fabricated a n-channel LTPS TFT with a 

MoW bottom gate and n+ a-Si:H source and drain. The channel was crystallized via MICC (see 

section 2.2.2). Illustrations showing the devices at various processing steps are shown in figure 

3.2. A thin film of a-Si:H was deposited on the substrate on top of the gate and gate dielectric. 

Then the film was dehydrogenated and a 50 nm SiNx film was deposited as the capping layer. Less 
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than a monolayer of Ni was sputtered onto the capping layer. The sample was then annealed at 

580 °C for 10 hours to crystallize the film. The SiNx layer was then removed and the sample was 

annealed at 650 °C for 10 minutes in a pulsed rapid thermal annealer (PRTA) to improve the films 

quality and to reduce the Si/SiO2 interface states. The TFTs mesas were then defined and etched. 

A n+ a-Si:H layer was deposited to form the source and drain, and chrome was used for 

metallization. A SiNx film was PECVD deposited as the backchannel passivation.  

 

Figure 3.2 a) Device stack before crystallization b) device after crystallization and removal of 
cap c) completed MICC BG TFT [38] 

 

Prior to electrical testing the devices were annealed at 200 °C. This was most likely to 

dehydrate the surface of the passivation nitride. Any water that had adsorbed on to the surface 

between device completion and testing could act a source of charge on the back channel, thus 

distorting the results. The transfer characteristics were measured and are shown in figure 3.3. The 

device had a field effect mobility of 34.8 cm2/(Vs), a subthreshold swing of 1.08 V/dec, and an 

off-state current of less than 1 pA/µm at a VDS of 5 V. An extracted value for the threshold voltage 
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for the device was not given. Based on a visual interpretation of the figure the device would require 

an overdrive voltage to effectively turn off the device. 

 

Figure 3.3 Transfer characteristics of a bottom gate n-channel LTPS TFT W = 20 µm L = 4 µm 
[38] 

 

A subsequent work from the Kyung Hee University group investigated the use of a spin on 

glass at the gate dielectric for MICC crystallized bottom-gate p-channel TFTs. Figure 3.4 shows 

important steps during the TFT fabrication. After gate formation they spin coated and cured a spin 

on glass layer for the gate dielectric. Subsequently they PECVD deposited a 50 nm a-Si:H film 

followed by a 50 nm PECVD SiNx capping layer. There was no mention of a dehydrogenation 

process between the two depositions. Less than a monolayer of nickel was deposited on top of the 

nitride. The samples were then crystallized in a furnace at 590 °C for 20 hours. Post crystallization 

the nitride cap was removed, and the polysilicon was then etched into the final TFT mesas. The 
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source and drain were doped and activated. Then the source and drain electrodes were deposited 

and a thick SiNx film was deposited as the passivation layer.  

 

Figure 3.4 a) Formation of gate electrode b) coating of gate dielectric c) device stack before 
MICC d) completed device [39] 

 

Electrical characteristics for a device were provided and are shown in figure 3.5. The device 

exhibited a field effect mobility of 48.2 cm2/(Vs), a threshold voltage of -4.2 V, a subthreshold 

swing of 1.2 V/dec, an off state current of less than 0.4 pA/µm at VDS of -0.1 V. Additionally, the 

device exhibited a difference in on and off state current of 6 orders of magnitude.  
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Figure 3.5 a) Transfer characteristics and b) family of curves for a p-channel (L/W) 
10 µm / 10 µm  BG TFT [39] 

3.2.2 Excimer Laser Annealing 

Tsai et al. [40] fabricated a double gate TFT with the channel being crystallized by ELA. 

Illustrations of various key steps and a cross-sectional SEM of a completed device are shown in 

figure 3.6. For their experiments they used a silicon wafer with a thick oxide barrier and doped 

polysilicon for the gate. The gate oxide was deposited followed by 100 nm of a-Si for the channel. 

The samples were then crystallized using a KrF laser (λ = 248 nm) with the samples in a vacuum 

chamber at 10-3 Torr and room temperature. A laser energy density of 450 mJ/cm2 was used and 

the shots were overlapping 95% (20 shots per area). The polysilicon was then etched to form the 

device mesa. The top gate dielectric was deposited, and another polysilicon layer was deposited 

for the top gate. After formation of the top gate electrode the devices were implanted, doping the 

gate as well as the source and drain. An oxide was then deposited for passivation and the dopants 

were activated. The devices were sintered and underwent a plasma treatment. 
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Figure 3.6 Illustration of a) film stack pre crystallization b) during crystallization indicating 
super lateral growth (SLG) c) TFT after doping d) completed device e) SEM micrograph of 

completes double gate TFT [40] 

 

Three different devices were fabricated and compared, the ELA double-gate, a traditional ELA 

top-gate, and a SPC double-gate. The transfer characteristics for all three devices is shown in 

figure 3.7a and the family of curves is shown in figure 3.7b. The ELA double gate had a threshold 

voltage was -2.48 V, a field effect mobility of 396 cm2/(Vs), subthreshold swing of 335 mV/dec, 

and on/off current ratio greater than eight orders of magnitude. 
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Figure 3.7 Electrical comparison between SPC double-gate, top-gate ELA, and double gate ELA 
TFTs a) transfer characteristics b) family of curves; all devices L = 1.5 µm W = 1.5 µm [40] 

 

Follow up work by Wang et al. [23] fabricated bottom gate devices. The fabrication process 

used was nearly identical to that of the double gate devices and the electrical results were also 

comparable and are shown in figure 3.8. The bottom gate device with 50 nm of gate oxide exhibited 

a field effect mobility of 323 cm2/(Vs) and nearly 9 order of magnitude between the on and off 

state currents. 
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Figure 3.8 Electrical comparison between top-gate ELA with 50 nm gate dielectric, bottom gate 
ELA with 100 nm gate dielectric, bottom gate ELA with 50 nm gate dielectric. Left: transfer 

characteristics Right: family of curves; all devices L = 1.5 µm W = 1.5 µm [23] 

 

As part of their study they fabricated transistors with various channel dimensions. The mobility 

of each channel dimension is shown in figure 3.9. For short channel length devices, the mobility 

of the bottom gate devices is much higher than the comparable top gate devices. As the channel 

length gets longer the top gate devices start having higher mobility than the bottom gate.  
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Figure 3.9 Comparison of top-gate and bottom-gate mobility as a function of device dimensions, 
insert showing SEM micrograph of bottom-gate devices length 1.5 µm and 2 µm [23] 

 

This is due to the crystallization regime that is being used for the bottom gate devices, the super 

lateral growth (SLG) regime. An illustration showing the regime is shown in figure 3.10. This type 

of crystallization occurs when the laser is high enough intensity to melt the majority of the film 

with the exception of the thicker region caused by the topography of the gate, this thicker region 

then acts as a seed for the solidification of the liquid silicon. This technique allows for large grain 

growth, allowing for the short channel devices to have high mobility. For the longer bottom gate 

devices, the liquid silicon starts to randomly nucleate before the crystallization front arrives, 

resulting in small grains in the middle of the channel, decreasing mobility. These two cases are 

shown in the insert of figure 3.9. Top-gate devices are extremely difficult to tune to the SLG regime 

due to the lack of variation in the film thickness. They are uniformly melted resulting in random 

nucleation and smaller grains with low mobility. 
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Figure 3.10 Illustration showing super lateral growth regime during pulse and final result [23] 

 

In 1995 Hayashi et al., a research group at Sony, fabricated both n-channel and p-channel 

bottom gate devices using ELA crystallization. Additionally, they fabricated the n-channel devices 

both with and without a lightly doped drain (LDD). An illustration of cross-section of a completed 

n-channel device with LDD is shown in figure 3.11. They patterned and etched a Mo/Ta stack to 

for the gate electrode. The gate was then anodized to form a thick Ta2O5 layer. Subsequently SiNx 

and SiO2 were PECVD deposited to complete the gate dielectric stack. The channel, 30 nm a-Si, 

was then PECVD deposited. Prior to crystallization the a-Si was dehydrogenated. The silicon was 

then crystallized using a XeCl laser (λ = 308 nm) with a pulse duration of 25 ns, total energy of 

360 mJ/cm2, and a beam overlap of 90% in a nitrogen ambient at room temperature. Next SiO2 

was deposited on the silicon. Backside illumination was then used to self-align the source and 

drain and the oxide was etched. The doping was done using a non-mass-separated ion doping 

system. The dopant was activated using the same laser conditions as crystallization but with an 

energy of 280 mJ/cm2. An interlayer dielectric was then deposited, and Al interconnects were 
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formed. A thick SiNx layer was deposited for passivation and then the devices underwent a 

hydrogenation. 

 

Figure 3.11 Schematic cross-section of ELA crystallized BG device [41] 

 

Electrical transfer characteristics were measured from L = 10 µm W = 10 µm device with n-

channel both with and without LDD and p-channel without the LDD. The characteristics for these 

three devices are shown in figure 3.12. All devices had a 7 orders of magnitude difference for on 

and off currents. The extracted field effect mobility was 73 cm2/(Vs) for the n-channel and 

30 cm2/(Vs) for the p-channel. The subthreshold swing was 390 mV/dec for the n-channel and 

570 mV/dec for the p-channel. The n-channel with LDD exhibited a leakage current of less than 

1 pA/µm. By introducing the LDDs they were able to lower the leakage current of the device, but 

this also resulted in a reduction on the drive current due to the increased series resistance. 
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Figure 3.12 Left: transfer characteristics of a n-channel TFT a) without LDD b) with LDD; 
Right: transfer characteristics of p-channel TFT without LDD [41] 

 

The research group of Oh et al. from LG display, fabricated a bottom gate device via ELA with 

a tapered metal gate to minimize the gate step height. Crystallization with a bottom gate requires 

a higher energy exposure to compensate for the thermal sink of the gate. With a thick gate this 

leads to discontinuities in the channel as the film goes over the gate edge. To eliminate this issue, 

they developed a dry etch process resulting in the rounding of the gate edges, thus reducing the 

step height. For device fabrication they started with a glass substrate with an oxide buffer layer 

and gate metal. Then gate was then defined and etched by the dry etch process resulting in a taper 

below 40°. Then the gate oxide and a 50 nm a-Si layer were PECVD deposited and subsequently 

dehydrogenated. A 95% overlap (20 shots) was used to crystallize the Si with multiple different 

energies used. They then used phosphorus implants to form the source and drain. Additionally, a 



47 
 

lightly doped drain region was formed. SiO2 and SiNx layers were deposited for the interlayer 

dielectric. The dopants were then activated, and the devices were then hydrogenated. Last the 

source and drain electrodes were formed.  

 

Figure 3.13 Illustration of ELA crystallized TFT at various stages a-c) gate dry etch to introduce 
a gate taper d) TFT stack before crystallization e) after crystallization f) completed device [42] 

 

A transfer characteristic curve and family of curves for top-gate and bottom-gate device is 

shown in figure 3.14. In the log scale transfer characteristics there is negligible difference between 

the two gate configurations. However, for the family of curves the bottom gate configuration 

outperforms in drive current and greatly suppresses short channel effects. The bottom gate is able 

to do this due to the addition of a gate overlapped lightly doped drain (GOLDD) reducing the 

impact ionization at the drain end of the device, as discussed in section 3.1.  
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Figure 3.14 Comparison of transfer characteristics and family of curves for top gate and bottom 
gate ELA crystallized TFTs; L = 20 µm W = 4 µm [26] 

 

The breakdown voltage for the top gate of 4.25-5.3 MV/cm and 7.0-8.7 MV/cm for the bottom 

gate. The higher breakdown voltage is partially due to the improvement in interface quality, but 

the major contributor is the protrusions into the gate oxide for the top gate devices. Extracted 

average parameters for thirty devices of dimensions W = 4 µm L = 3 µm and a 3 µm LDD were 

given. The average mobility was 77.8 cm2/(Vs), the average subthreshold slope was 160 mV/dec, 

the average threshold voltage was 0.81 V with a standard deviation of 0.30 V, and the average off 

state current was 0.03 pA/µm. The variation in the threshold voltage is quite significant for the 

magnitude of the voltage. This could limit some of the applications of the end device.  

3.2.3 Continuous Wave Laser 

The research group of Akito Hara from Fujitsu Laboratories [43,44] fabricated double gate 

continuous wave laser crystallized (CLC) devices. In the initial work [43,44], they started with a 

metal gate on a thick SiO2 buffer layer. Then PECVD deposited the gate oxide and a 100 nm thick 
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a-Si film. Subsequently the film was dehydrogenated and formed into ribbons. The crystallization 

was performed using the second harmonic of a Nd:YVO4 laser (λ = 532 nm). Following 

crystallization, the silicon was etched into islands and a window was etched for the bottom gate 

contact. They then deposited the top electrode and used backside illumination to pattern the gate. 

Then they etched the gate, ion implanted the source and drain, and activated the dopant. Lastly the 

interlayer dielectric was deposited, and source/drain metallization was performed. A 

cross‑sectional SEM micrograph and an insert of top down optical micrograph of completed device 

is shown in figure 3.15. 

 

Figure 3.15 Cross sectional SEM micrograph of completed device with insert of top down 
optical micrograph [44] 

 

In addition to the CLC double gate device they fabricated a CLC top gate and an ELA 

crystallized top gate. A comparison of the transfer characteristics for the three devices is shown in 

figure 3.16. The double gate device had a subthreshold slope of 89 mV/dec and a nominal field 

effect mobility of 950 cm2/(Vs). The mobility was calculated as if it was a single gate device with 

similar properties, so the actual mobility of the carriers is less than half. The double gate device 

also has approximately double the drive current of the top gate device, again this is expected 

because it has effectively double the channel width.  
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Figure 3.16 Transfer characteristics comparison for top gate ELA, top gate CLC, and double 
gate CLC device [44] 

 

Later work from group of Akito Hara, now at Tohoku Gakuin University, fabricated both n-

channel and p-channel devices [46]. The fabrication of the devices was similar to the previous 

work except the silicon layer was thinner, 90 nm. The transfer characteristics for both the device 

as well as top gate only devices is shown in figure 3.17. The double gate n-channel device had a 

subthreshold slope of 130 mV/dec and a nominal field effect mobility of 638 cm2/(Vs). The double 

gate p-channel device had a subthreshold slope of 120 mV/dec and a nominal field effect mobility 

of 156 cm2/(Vs). As with the previous work the double gate has a roughly double the effective 

mobility of the single gate.  
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Figure 3.17 Transfer characteristics comparison for top gate and double gate CLC devices [45] 

 COMPARISON OF METHODS 

The MICC papers show devices that exhibit good on and off states, but the subthreshold slope 

is quite shallow. For the SLG ELA devices exhibit high mobility and acceptable subthreshold. One 

major issue with the method is the strong impact of device length on device mobility. The random 

nucleation on larger devices limits the maximum channel length. Additionally, since all of the 

work was done on oxidized silicon wafers there could be compatibility issues that remain when 

transitioning to display glass. The ELA work from LG shows excellent results, but the process is 

most likely more complicated than their publication describes. For CW laser the results are very 

promising and are worthy of further investigation.  
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Chapter 4. BOTTOM GATE STRUCTURE AND 

FLA PROCESS INTEGRATION 

The ability to fabricate bottom gate LTPS TFTs offers many attractive benefits for next 

generation displays. The introduction of the bottom gate causes new challenges due to its influence 

on optical and thermal properties. While LTPS made via ELA offers excellent device performance, 

the associated cost makes it prohibitively expensive to scale to larger substrates. FLA offers an 

attractive replacement for LTPS on large substrates due to easier scalability and reduction in cost, 

with the potential for comparable device performance.  

 INITIAL FLA BOTTOM GATE ATTEMPTS 

The initial attempt for bottom-gate FLA devices at RIT used a molybdenum bottom gate. 

Molybdenum was chosen since it is a common gate material for TFTs, and is a refractory metal 

allowing for high temperature processing without melting. An optical image of a mesa after FLA 

crystallization is shown in figure 4.1. The portion of the mesa that is over the gate crystallized as 

if it was exposed to a higher energy than the portions that were not over the gate. This increased 

effective energy is due to two factors: the reflection and absorption of the light that passed through 

the mesa and the absorption of the gate causing it to heat and funnel heat under the mesa, causing 

the region to have reduced heat loss. 
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Figure 4.1 Optical image of a molybdenum bottom gate structure after FLA crystallization 

 

In addition to the channel being crystallized during the flash the dopant was also activated. The 

electrical characteristics for the best device are shown in figure 4.2. The device exhibits good 

transfer characteristics with a good off state for the low drain bias. Due to the low yield of the 

process the effective channel length was not able to be extracted.  

 

Figure 4.2 Transfer characteristics for a L = 12 µm W = 24 µm device 
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Due to the inclusion of the molybdenum bottom gate the required energy for crystallization of 

the channel is greatly reduced. Indium tin oxide (ITO) is a transparent conductive oxide that is 

already commonly used in display manufacturing. By using a transparent material for the gate, 

differences between sections over and outside the channel region should be reduced, resulting in a 

more uniform crystallization.  

 ITO PROPERTIES 

ITO is a transparent conductive oxide with electrical and optical properties that depend on 

multiple factors including deposition and annealing conditions. A transmission, reflection, and 

absorption plot for a generic ITO film is shown in figure 4.3. For the visible wavelengths the 

transmission of the film is high. For short wavelengths the transmission of the film drops off 

rapidly as the absorption becomes significant.  

 

Figure 4.3 Generic transmission, absorption, and reflection plot for an ITO film [46] 
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A comparison between the transmission of bare Lotus NXT glass, an as deposited ITO film, 

and a post anneal ITO film is shown in figure 4.4. Annealing the film results in higher transmission 

for all wavelengths. For the ITO used in the experiment the transmission was over 75% for the 

visible range and the transmission drops off below 375 nm. The post anneal sheet resistance of 

125 Ω/sq with standard deviation of 50 Ω/sq, measured using the four-point probe method. 

 

Figure 4.4 Experimental transition plots for Lotus glass, unannealed, and annealed ITO film 

 DEVICE FABRICATION 

A 50 nm indium tin oxide (ITO) film was pulse DC sputtered on 150 mm diameter Corning 

Lotus NXT glass with no barrier layer. The ITO was then patterned and etched with dilute 

hydrochloric acid. Next the wafers were annealed at 400 °C for two hours in room air ambient. 

The annealing step is required to increase the transparency and decrease the resistivity of the ITO 

film. Additionally, the anneal increases the etch resistivity of the ITO layer in both concentrated 

hydrochloric and buffered oxide etch. The gate dielectric of 100 nm TEOS PECVD deposited 

oxide was then formed. A 60 nm thick hydrogenated amorphous silicon film was PECVD 
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deposited from a silane precursor. The film was then dehydrogenated at 450 °C for 2 hours in a 

nitrogen ambient and then patterned into mesas for crystallization. Next an additional 100 nm thick 

PECVD oxide film from a TEOS precursor was deposited to act as a capping/thermal 

barrier/antireflective layer for the silicon. The mesas were then crystallized via FLA. The 

crystallization was done on an open hotplate preheated to 400 °C with the flash pulse length of 

250 µs. Four different pulse energies were used, 4.2, 4.3, 4.4, and 4.5 J/cm2, measured by a 

blackbody bolometer. 

 

Figure 4.5 a) Super mesa post crystallization b) final mesa patterned before etching c) device 
with implant hard mask pre implant d) post implant before activation anneal 

 

After a piranha clean, the capping oxide was removed, and the final mesa was defined and 

etched. The purpose of the final mesa is to remove the edges of the crystallization super-mesa, 

which is less crystallized due to proximity effects, defining the final channel width. After the final 
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mesa etch, a 100 nm TEOS PECVD deposited oxide is used as the capping/screen oxide. 

Aluminum was deposited to be used as an ion implant hard mask, allowing for a higher beam 

current. After the hard mask was patterned and etched the wafers were implanted with 11B+ at an 

energy of 35 keV and a dose of 4×1015 cm-2. After the hard mask was removed the dopant was 

activated using a furnace anneal at 630 °C for 12 hours in a nitrogen ambient. The source, drain, 

and gate contact cuts were etched with 10:1 BOE, and 500 nm of aluminum was deposited as the 

source and drain metal. Lastly the wafers were sintered in forming gas (5% H2 in N2) using a two-

step process, 450 °C for 30 minutes than 300 °C for 30 minutes, to allow for both good contact 

formation and hydrogenation of dangling bonds within the polysilicon.  

 FABRICATION RESULTS 

The amorphous silicon crystallizes differently over the ITO gate compared to regions over just 

glass; the former region behaves as if it was exposed to a higher energy pulse than the latter region, 

despite both receiving the same delivered FLA intensity. An example of this is shown in figure 4.6. 

This effect causes the silicon to begin forming voids as it dewets from the underlying oxide. The 

most likely cause is the uncovered portion of the gate absorbing the UV wavelengths and heating, 

with reduced thermal loss towards the center of the mesa. 
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Figure 4.6 Optical image of a FLA crystalized mesa with bottom gate showing proximity effects 

 

In the completed TFT there is an optical difference between the implanted source/drain and 

the channel, shown in figure 4.7. This is due to crystalline damage in of the source/drain regions 

due the high-dose boron implant and subsequent recrystallization during the activation anneal. The 

channel region remains unmodified, protected by the hard mask.  
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Figure 4.7 Optical image of an ITO bottom-gate FLA PMOS TFT before sinter 

 ELECTRICAL RESULTS 

The best device transfer characteristics were obtained from a length 4 µm width 8 µm device 

crystallized with a nominal exposure energy of 4.4 J/cm2 with a pulse duration of 250 µs. The 

transfer characteristics of this device on log and linear scale is shown in figure 4.8. The device 

exhibited a field effect mobility of 190 cm2/(Vs), a subthreshold swing of 325 mV/dec, on/off ratio 

of more than seven orders of magnitude, and a threshold voltage of -5.4 V. In the linear 

characteristics, once the gate voltage increased past -10 V the drain current exhibited erratic 

behavior that may have been related to the bias sweep rate used during the test.   



60 
 

 

Figure 4.8 Linear and log-scale transfer characteristics of a bottom-gate PMOS TFT with 
L = 4 µm and W = 8 µm, crystallized via FLA intensity of 4.4 J/cm2 over a 250 µs pulse. 

 

Unfortunately, this device was not able to survive a high drain bias of -10 V and became an 

open circuit when the gate voltage was around -10 V, shown in figure 4.9. Additionally, under the 

high drain bias there is a significant shift in the off-state region indicating trap states. Multiple 

devices in the same region exhibited this behavior. 

 

Figure 4.9 Transfer characteristics for L = 4 µm W = 8 µm showing device failing at 
VDS = ‑10 V 
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The most likely cause of the devices failing and becoming open circuits is a failure of the gate 

dielectric. During the source/drain implant a large portion of the dose goes through the channel 

and enters the gate dielectric underneath. This portion of the dose causes displacements and 

compromises the integrity of the gate oxide. Due to the devices being non-self-aligned there is a 

large overlap between the drain and the gate to accommodate for potential device misalignment. 

The compromised gate oxide fails when the high drain bias is applied across it. A SRIM simulation 

was performed to confirm that a large portion of the dose is entering the gate dielectric, the results 

are shown in figure 4.10. 

 

Figure 4.10 Left: SRIM collision plot showing locations of damage caused by source/drain 
implant Right: Concentration of B11

+ from the implant 

 

The failure was more common in better performing devices, but some devices survived the 

higher bias and had good transfer characteristics. Figure 4.11 shows a L = 8 µm and W = 16 µm 

device that survived a high drain bias of -10 V. Like the devices that had failed, there was 

significant off state leakage for the high drain bias. 
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Figure 4.11 Transfer characteristic for L = 8 µm W = 16 µm device that survived drain bias of 
‑10 V without dielectric failure. 

 

The mobility values for both the linear and saturation modes of operation were calculated and 

are shown in figure 4.12. The maximum mobility in the linear mode was ~85 cm2/(Vs) and 

~55 cm2/(Vs) for the saturation mode. While lower than the best device, both values are very good 

for p-channel LTPS TFTs. 

 

Figure 4.12 Channel mobility calculated using the transconductance method in the linear and 
saturation mode for L = 8 µm W = 16 µm device at VDS = ‑0.1 V and ‑10 V, respectively 
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When the maximum gate voltage applied was reduced from -20 V to -10 V and the high drain 

bias was reduced from -10 V to -5 V no additional devices failed under high drain bias. The transfer 

characteristics for another L = 8 µm and W = 16 µm device from the same die is shown in 

figure 4.13. The device exhibits less off state leakage and has less separation between the low and 

high drain biases. Additionally, the subthreshold between the two bias states are parallel. These 

results show that by reducing the maximum drain bias the degradation of the device is minimized 

if not entirely avoided.  

 

Figure 4.13 Transfer characteristic for different L = 8 µm W = 16 µm device from the same die. 

 

Device performance across the wafer varied greatly due to nonuniformity of the flash lamp 

exposure. Additionally, device location within the test die influenced the device performance with 

devices towards the center of the die working better than those closer to the streets. Such 

observations are being used to obtain an understanding of exposure proximity effects and develop 

a qualitative model.  An example of the variability caused by the nonuniformity and proximity 

effects is shown in figure 4.14.   The device crystallized at 4.4 J/cm2 was in the same die as the 

best measure devices but the characteristics were that of the lower energy exposure due to its 
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location near the street. Additionally, the 4.5 J/cm2 device located near the street exhibited 

performance similar to the best 4.4 J/cm2 while other 4.5 J/cm2 devices had performance issues 

related to the high crystallization energy. 

 

Figure 4.14 Transfer characteristics for L =12 µm W =24 µm with crystallization energies 
4.4 J/cm2 (left) and 4.5 J/cm2 (right) 

 

 SUMMARY 

A high conductivity high transparence ITO film was characterized and successfully 

incorporated into a FLA crystallized bottom gate TFT. The FLA exposure of 4.4 J/cm2 for 250 µs 

produced the best results with high mobility, steep subthreshold, and a large on/off state difference. 

Under low bias the devices showed low influence of defect states, but under high drain bias the 

device exhibited increased leakage and failed under high gate bias. The failure mechanism is 

proposed to be damage to the gate dielectric as a result of dopant entering the dielectric during the 

source/drain implant. Reducing the high drain bias and reducing the maximum gate voltage applied 
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to the gate reduced the occurrence of the failure mechanism. High variability between devices was 

noted due to experimental equipment and processing capabilities. 
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Chapter 5. CONCLUSION 

This thesis has presented an investigation on bottom-gate TFTs fabricated using FLA 

crystallization, with ITO implemented as the gate electrode material. The ITO deposition and 

anneal process was characterized focusing on the optical and electrical properties of the film, 

achieving high transparency with sheet resistance Rs ~ 125 Ω/sq. Devices that were crystallized 

using an FLA exposure of 4.4 J/cm2 over 250 µs pulse duration achieved superior electrical 

characteristics. The best-case results were demonstrated on a TFT with L = 4 µm W = 8 µm 

channel dimensions, exhibiting a hole channel mobility of 190 cm2/(Vs), a subthreshold swing of 

325 mV/dec, on/off state ratio of seven orders of magnitude, and a threshold voltage of -5.4 V. For 

many devices, a transfer characteristic sweep at high drain voltage (-10 V) resulted in open circuit 

behavior due to dielectric failure. This behavior is most likely due to gate oxide damage from 

boron ions during the source/drain implant; the implant profile results in a large portion of the dose 

entering the oxide causing displacements. A reduction in the applied gate and drain voltage 

conditions avoided device failures.  

A key finding was the observed crystallization dependence on the gate electrode region outside 

of the mesa polygon. This effect may be utilized to engineer transduction structures specifically to 

supply and manage energy transfer to the channel region.  

High variability was observer across all treatment conditions due to nonuniformity in the 

exposure window, proximity effects within a die, and device dimensional dependence. These 

factors made it difficult to determine the optimum exposure conditions and required extensive 

device sampling. While these factors complicated initial interpretation, none are insurmountable 
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limitations and can be compensated for through equipment design and device design rules. The 

preliminary results are very encouraging and warrant further study. 

 FUTURE WORK 

One area of further investigation is the improvement of the gate oxide integrity by reducing 

the source/drain implant energy. This would reduce the dose that is making it through the channel 

and damaging the gate oxide. The implant step could also be replaced by a plasma immersion or 

monolayer doping process which should have a similar effect. These techniques of dopant 

introduction could also offer improvements in device operation considering that they may suppress 

defects in the transition between the source/drain and channel regions. 

Defect passivation techniques represent an additional area of interest. The addition of a NH3 

plasma process could add additional benefits to device performance. Similarly, sintering before 

the patterning of the source/drain metal would allow for an alternative site for monatomic 

hydrogen liberation, allowing for more complete hydrogenation. Subsequent patterning and 

etching would result in no impact on device electrostatics. Additionally, a top gate structure could 

be added to the device making it become a double gate device. This would improve channel 

electrostatics and help mitigate some of the non-ideal behavior due to interface traps. 
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