
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-2020

CLAM: Compiler Lease of Cache Memory CLAM: Compiler Lease of Cache Memory

Ian Prechtl
irp2474@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Prechtl, Ian, "CLAM: Compiler Lease of Cache Memory" (2020). Thesis. Rochester Institute of Technology.
Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10549?utm_source=repository.rit.edu%2Ftheses%2F10549&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

CLAM: Compiler Lease of Cache Memory
by

Ian Prechtl
A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering
Supervised by

Dr. Dorin Patru
Department of Electrical and Microelectronic Engineering

Kate Gleason College of Engineering
Rochester Institute of Technology

Rochester, NY
August 2020

Approved By:

Dr. Dorin Patru
Associate Professor - Rochester Institute of Technology Department of
Electrical and Microelectronic Engineering

Dr. Chen Ding
Professor - University of Rochester Computer Science Department

Prof. Mark Indovina
Senior Lecturer - Rochester Institute of Technology Department of
Electrical and Microelectronic Engineering

Prof. Carlos Barrios
Lecturer - Rochester Institute of Technology Department of Electrical
and Microelectronic Engineering

Dr. Ferat Sahin
Professor & Department Head - Rochester Institute of Technology
Department of Electrical and Microelectronic Engineering

CLAM: Compiler Lease of Cache Memory

by

Ian Prechtl

Submitted to the Department of Electrical and Microelectronic Engineering
August 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

Abstract

Caching is a common solution to the data movement performance bottleneck of to-
day’s computational systems and networks. Traditional caching examines program
behavior and cache optimization separately, limiting performance. Recently, a new
cache policy called Compiler Lease of cAche Memory (CLAM), has been suggested for
program-based cache management. CLAM manages cache memory by allowing the
compiler to assign leases, or lifespans, to cached items over a hardware-software in-
terface, known as lease cache. Lease cache affords new performance potential, by way
of program-driven cache optimization. It is applicable to existing cache architecture
optimizations, and can be used to emulate other cache policies.

This paper presents the first functional hardware implementation of lease cache
for CLAM support. Lease cache hardware architecture is first presented, along with
CLAM hardware support systems. The cache is emulated on an FPGA, and bench-
marked using a collection of scientific kernels from the PolyBench/C suite, for three
CLAM lease assignment policies: Compiler Assigned Reference Leasing (CARL),
Phased Reference Leasing (PRL), and Fixed Uniform Leasing (FUL). CARL and
PRL are able to achieve superior performance to Least Recently Used (LRU) re-
placement, while FUL is shown to serve as a safety mechanism for CLAM. Novel
spectrum-based cache tenancy analysis verifies PRL’s effectiveness in limiting cache
utilization, and can identify changes in the working-set that cause the policy to per-
form adversely. This suggests that CLAM is extendable to more complex workloads
if working-set transitions can elicit a similar change in lease policy. Being able to do
so could yield appreciable performance improvements for large and highly iterative
workloads like tensors.

Thesis Supervisor: Dr. Dorin Patru
Title: Associate Professor

2

Acknowledgments

Advisor

Dorin Patru

Thesis Committee

Mark Indovina

Carlos Barrios

CLAM Group

Chen Ding

Ben Reber

Dong Chen

Reviewers

Sreepathi Pai

Fangzhou Liu

Wesley Smith

Aaron Gindi

Donovan Snyder

Elias Neuman-Donihue

Joshua Radin

Katherine Seeman

This work was supported by a NSF grant sub-award from University of

Rochester.

3

Contents

1 Introduction 10

1.1 Data Locality . 10

1.2 Cache . 11

1.2.1 Cache Policy . 12

1.2.2 Software-Driven Management 14

1.3 Objective . 14

2 Background 16

2.1 Reuse Interval . 16

2.2 Lease Cache: CLAM . 19

2.2.1 CARL: Compiler Assigned Reference Leasing 20

2.2.2 CARL Extensions . 21

3 Lease Cache Hardware Design 25

3.1 Lease Cache Implementation . 25

3.1.1 Hardware . 26

3.1.2 Software Support . 32

3.2 Hardware Support for CLAM . 34

3.2.1 Lease Tracking . 37

4 Testing 39

4.1 Test System . 39

4.1.1 Processor Core . 40

4

4.1.2 Communication and Control 41

4.1.3 Design Parameters . 43

4.2 Cache Performance Metrics . 45

4.2.1 Cache Tenancy Spectrum . 46

4.3 Benchmark Applications and Policies 47

5 Results and Discussion 49

5.1 Fixed Uniform Leasing . 49

5.2 Variable Leasing . 54

5.2.1 CARL vs. PRL . 56

5.2.2 PRL Resolution . 61

5.2.3 Preliminary Set Associativity 63

6 Future Work 66

6.1 Scope Leasing . 67

6.1.1 Multiple Dual Leases . 68

6.2 Local Clocks . 68

6.3 Parallel Assignment . 69

7 Conclusion 70

Glossary 73

Acronyms 75

A Tables 78

5

List of Figures

1-1 Intel Haswell (i7-4770) cache memory hierarchy [1]. 12

2-1 Forward reuse interval calculation for an arbitrary access sequence.

Red circles indicate the re-access of an item whose original access is

circled in black. The first re-access includes directional arrows to show

how the reuse interval calculation traces back to the reference that is

associated with the interval. 17

2-2 CARL assignment procedure for a budget of one billion. Green items

indicate a lease assignment made at the current step. Blue indicates a

lease assignment previously made, which is contributing to the overall

cost. Red indicates assignment termination due to the budget being

exceeded. 24

3-1 Lease cache lookup stage hardware overview for fully and set associa-

tive cache. Component and signal sizings are given in Section 4.1.3.

Note that 𝑙𝑒𝑎𝑠𝑒_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟_𝑏𝑢𝑠 is driving a NOR reduction gate. . 28

3-2 Lease cache update stage for fully associative cache. Component and

signal dimensions are given in Section 4.1.3. Note that 𝑒𝑥𝑝 bus drives

an OR reduction gate. 30

3-3 Lease cache update stage for a generic four way set associative cache,

with update circuitry shown for three sets. The 𝑒𝑥𝑝 bits of each set

drive an OR reduction gate in the schematic. Component and signal

dimensions are given in Section 4.1.3. Parameter s is set size. 32

6

3-4 Mapping of lease cache memory partitions in application binary. Ad-

dresses are byte addressable. 33

3-5 Hardware reuse interval sampler system overview. Delimited text file

shown is output read from the sampler with same field order shown in

the buffer. 36

4-1 Top level test system diagram. 40

4-2 Cache tenancy spectrum for the example stencil (Listing 2.1). 47

5-1 FUL policy performance over a 16-bit lease range with 7-bit resolution.

FUL curves are normalized to baseline (LRU) performance, indicated

by the dashed lines. 50

5-2 FUL policy vacancy of the trials shown in Figure 5-1. 52

5-3 Normalized miss ratios of trialed caching policies [27]. Dashed line

indicates baseline (LRU) performance. Tabled results given in Figures

A.1 and A.2. 54

5-4 Cache aggregate vacancy (left) and cache tenancy spectrum (right) for

doitgen benchmark using CARL (top) and PRL (bottom). 57

5-5 Cache aggregate vacancy (left) and cache tenancy spectrum (right) for

nussinov benchmark using CARL (top) and PRL (bottom). 58

5-6 Cache aggregate vacancy (left) and cache tenancy spectrum (right) for

mvt benchmark using CARL (top) and PRL (bottom). 59

5-7 Cache aggregate vacancy (left) and cache tenancy spectrum (right) for

2mm benchmark using CARL (top) and PRL (bottom). 60

5-8 Cache aggregate vacancy (left) and cache tenancy spectrum (right) for

3mm benchmark using CARL (top) and PRL (bottom). 61

7

5-9 Comparing CARL and PRL for the four tests. Each PRL variant is

labeled with the phase count. The numbers at each bar show the

no vacancy ratio (above) and the multiple vacancy ratio (below the

bar top). CARL over-allocates the cache with its leases, shown by its

vacancy ratios as low as 36%. PRL eliminates over-allocation in the

first three tests, shown by their near 100% vacancy ratios [27]. Tabled

results given in Figure A.2. 62

5-10 How well set associative caches perform when using leases designed

for the architecture and ignoring set constraints. Blue bars are lease

assignments made by CARL, which assume a fully associative cache.

Red bars are lease assignments made by spatial PRL, which groups RI

distributions by set. The numbers at the top of each bar pair is the no

vacancy ratio of each bar respectively. Tabled results given in Figure

A.3. 64

8

List of Tables

2.1 Reuse interval (RI) histograms for four of the references of the five-

point stencil program. Each row represents a different reuse interval

that is observed for each reference. References with no reuses (b[i][j]

and a[i-1][j]) are omitted [27]. 19

4.1 Compiler options for RISC-V toolchain. 41

4.2 Hardware design parameters for base cache, lease cache, reuse interval

sampler, and lease tracker. 44

4.3 Benchmark programs and their baseline (LRU) performance. 48

5.1 Best FUL miss count reduction over LRU in four benchmarks. 51

A.1 Benchmark performance summary for reactive cache policies. 78

A.2 Benchmark performance summary for CLAM cache policies. Note:

MV Rep (Replacments) are the number of evictions made when there

are two or more expired cache lines - the numerator for MVR. 79

A.3 Benchmark performance summary for set associative CLAM cache poli-

cies. Note: Rep = Replacements. 80

9

Chapter 1

Introduction

For years, processor speeds have increased disproportionately to main memory speeds,

limiting computational ability. Distributed networks and servers have seen similar

effects in how they have scaled, especially with the rise in popularity of cloud com-

puting. As applications and networks continue to increase in size and complexity, the

impacts of the data bottleneck become that much more significant and hazardous to

performance. Caching has been the long-standing solution to this issue. Using inter-

mediate storage nodes, data can be more efficiently and effectively used, but only if

the cache itself is appropriately managed. This work studies an alternative method

of cache management, aimed at improving memory performance through program-

driven analysis. This chapter serves as an introduction to cache theory, practicality,

and management.

1.1 Data Locality

Locality is a highly exploitable, and equally dangerous, property of data. It is the

tendency of data to be re-accessed, once initially accessed. It arises from program

and data structuring, along with being an innate stochastic attribute of computer

systems. There are two main categories of locality,

1. Temporal locality - if a data object is accessed, then it is likely that the same

object will be re-accessed in the near future. Ex, an iterative control loop.

10

2. Spatial locality - if a data object is accessed, then it is likely that an adjacent

object will be accessed in the near future. Ex, the elements of a data array.

In computing, locality is used to improve performance. If data is known to have

temporal locality, then it would benefit the system to retain that data (as close to

the core as possible in CPU). Similarly, if data has spatial locality, it would benefit

the system to store data from the same memory region or node. Identifying these

properties gives predictive insight about how a particular computational sequence will

occur, which can consequently be used for performance gain.

1.2 Cache

Caching is an application of data locality. It is the practice of keeping often used

data closest to where it is needed, to decrease the time required to access it. In the

context of hardware, caches are intermediate storages between the processor and main

memory that manage data and service requests from the core. Cache is robust in that

it can be implemented in various configurations (size, architecture, etc.), but limited

in the performance that can be gained from these different designs. Intel’s Haswell

(i7-4770) architecture, released in 2013, features several levels of cache in order to

optimize the performance of the processor (Figure 1-1). Each level of increasing

capacity is characterized by higher latency and associativity (cache freedom). These

are common trade-offs; cache near the processor has more restrictive designs to retain

low latency, while caches further away are larger and more complex (to accommodate

more data, from multiple sources). The objective of the hierarchy is simple: keep

data that will be accessed most immediately closest to the processor (L1 cache), and

keep data that will be access later farther away (L2 or L3). If correctly managed, the

cost of moving data between these levels is minimized.

11

Registers

L1 Instruction Cache
32KB | 8-way

4 Stage Pipeline

L1 Data Cache
32KB | 8-way

4 Stage Pipeline

Instruction
Fetch

L2 Unified Cache
256KB | 8-way

L3 Shared
Unified Cache
8MB | 16-way

L3 Shared
Unified Cache
8MB | 16-way

Processor Package

Core (x4)

Main Memory

4-5 cycle latency

12 cycle latency

36 cycle latency

36 cycle + 57ns latency (~230 cycles)

Figure 1-1: Intel Haswell (i7-4770) cache memory hierarchy [1].

1.2.1 Cache Policy

Because hardware cache is finite, there is a limit to how many items it can hold, or

how many can be allocated. Conversely, a cache needs to remove, or evict, an item

if it is full when it needs to allocate a new item. Cache must manage its content so

that its performance is maximized (i.e. keeping any item that will be used soon, and

removing any that will not be). How it manages itself and its content is known as

the cache policy.

Cache policy is able to exploit data locality by targeting one or several attributes

of data, and managing itself in accordance with this. For example, data with high

temporal locality would be best managed by a policy that identifies which items have

been accessed least recently, and prioritizes them for eviction. Policy effectiveness is

generally discussed relative to access patterns, or patterns of locality. Examples of

such patterns are stream, thrash, recency-friendly, cyclical and sawtooth. All have

unique characteristics relating to recency, frequency, and size. General patterns of

recency-friendly, thrash, and stream are given in Equations 1.1-1.3. For these patterns

𝑎 is a data array of arbitrary length 𝑘, and 𝑁 is any positive integer.

12

(𝑎1, 𝑎2, ..., 𝑎𝑘−1, 𝑎𝑘, 𝑎𝑘, 𝑎𝑘−1, ..., 𝑎2, 𝑎1)
𝑁 ∀𝑘 (1.1)

(𝑎1, 𝑎2, ..., 𝑎𝑘)
𝑁 𝑘 > 𝑐𝑎𝑐ℎ𝑒 𝑠𝑖𝑧𝑒 (1.2)

𝑎1, 𝑎2, ..., 𝑎𝑘 𝑘 = ∞ (1.3)

Just as access patterns have unique attributes, there exist cache policies which

perform well for some patterns, and poorly for others. For the patterns shown in

Equations 1.1-1.3, a cache policy that manages based on preserving the most recently

accessed items will perform well for 1.1 and poorly for the others. Conversely, a policy

that preserves the least recently accessed items will perform well for 1.2 and poorly

for the others. The memory content, in terms of size and pattern, accessed by the

overarching algorithm directly affects the cache policy performance. This content is

formally called the working-set [12].

Preserving the working-set is the general goal of the cache policy. Optimal caching

is given by MIN (minimum) [8] and OPT (optimal) [22]. To achieve the best perfor-

mance the items with the nearest future use should be cached. Although optimal, it is

not practical because implementation requires future access information, i.e. a level

of clairvoyance. Nevertheless, policies such as Hawkeye [17] still aim for OPT-like

performance, by way of approximation.

OPT is viewed as prescriptive, in that cache management is externally prescribed.

Conversely, reactive policies can self-manage. Basic policies like Least Recently Used

(LRU) are implemented using simplistic stacks [22], while more modern policies use

more complex architectures and theories for management. Enhancements of LRU

such as ARC [23], Talas [6], and RRIP [18] decrease susceptibility to non-recency

by cache partitioning and dynamic management. Such policies are significant im-

provements over earlier ones that require performance tuning, such as SLRU [24],

or are particularly sensitive to parameter selection as with GD* [19]. In more niche

applications like picture archiving, augmenting LRU with data mining and logistic

regression has proven successful [34]. To this point, caching can simply accommo-

13

date performance hints to improve management, also known as collaborative caching

[9, 16].

Caching is not restricted to be performed based purely on recency, frequency, etc.

LHD [5], EHC [33], and LACS [20] use alternative metrics for evaluation and eviction

(hit density, hit count, and caching cost respectively). Policies that use ranking

functions such as EVA [7] and LHD [5] can outperform LRU and can avoid/reduce

the impact of its common performance cliff access patterns (thrash). Additionally,

these policies are feasible for both hardware and software caches (LHD and EVA

respectively), making them highly applicable to general cache use.

1.2.2 Software-Driven Management

Prescriptive policies are realizations of software-driven cache management, while col-

laborative policies are software-augmented. Compiler management of the register

file [11] is a prime example of how software-driven memory management is performed

today. Caches have similarly been examined in this context [35], and there is an in-

creasing desire to incorporate static analysis into cache policy [32]. OPT is achieved

by retaining items with the most immediate need. Duong et al [13] formalize this

into a concept known as protection distance (PD). PD is essentially a lifespan for a

cached item. An item will remain in cache until the end of the PD, and then it is

removed. Their implementation of it, known as Dynamic Reuse Distances (DRD),

evaluates and tunes PD at run-time. Optimal Steadystate Lease (OSL) [21] is essen-

tially an offline implementation of PD. OSL analyzes memory access behavior at the

page level, and assigns PDs, known as leases, accordingly. This requires trace level

knowledge, which is not available at the program level, so OSL cannot be used by

compilers, without back-annotating trace information.

1.3 Objective

Although optimal, MIN [8], cannot be practically realized. Techniques like Hawk-

eye [17] approximate this, but neglect software optimization. OSL [21] optimizes

14

cache performance via software, but is not hardware feasible and cannot be compiler-

driven. Separate optimization of cache hardware and program structure ignores what

can be an avenue for significant improvement, yet doing both is not traditionally

possible. This work studies and implements a new prescriptive caching policy which

aims to bridge the gap between OSL, static memory management, and cache hard-

ware by using a software-hardware interface for program-driven cache control. This

enables application-specific memory optimization, which ultimately improves execu-

tion throughput. This is particularly true for large and iterative workloads [15], where

a slight improvement in memory management can elicit significant improvements in

kernel performance. The significant contributions of this paper are,

• The first hardware implementation of this prescriptive caching policy, lease

cache.

• Hardware support systems for lease assignment and lease cache performance

evaluation.

• A novel spectrum-based tool for lease cache tenancy analysis.

15

Chapter 2

Background

The optimal replacement policy for fixed size caches is one where the the data object

with the furthest future reuse is evicted, as given by MIN and OPT [8, 22]. While

optimal, it is not feasible to dynamically forward predict reuses. OSL [21] introduces

the concept of lease cache, where at every access the data item is assigned a lease,

and remains in cache for the duration of that lease. Although OSL is shown to, at

minimum, match OPT performance, it assigns leases per data page and for variable

sized caches, neither of which make it practical for hardware implementation. In this

chapter an extension of OSL is presented that targets fixed sized hardware caches

using reference leases. A general theory on lease caching is presented along with

algorithms for assigning leases.

2.1 Reuse Interval

The reuse interval (RI) of a data object is the elapsed time between two accesses to

the item. In the context of this paper, time is defined as logical time, or the memory

access trace length. It is a deterministic measure of how immediately a data object

will be reused (it carries no information about first access). If an object is accessed

at trace lengths of 2 and 7, then the RI of that object is 5. Similarly, if an object is

accessed at traces of 2, 7, 20, and 25, the RI distribution of the object is {5, 5, 13}.

Distributions are useful for describing how RIs deviate over the trace (logical time),

16

A
0

B
0

A
1

A
2

B
1

C
0

A
3

B
2

C
1

D
0

A
0

D
0

B
0

A
4

B
3

C
2

A
1

D
1

A
5

B
4

C
3

A
2

D
1

D
2

A
6

B
5

C
4

A
3

Ref W:

B
1

D
2

D
3

A
7

B
6

C
5

A
4

D
0

Ref X: Ref Y: Ref X:Ref Z: Ref W: Ref Z: Ref Z:

Logical
Time

t0

t1

t2

t3

t4

t5

t6

t7

Figure 2-1: Forward reuse interval calculation for an arbitrary access sequence. Red
circles indicate the re-access of an item whose original access is circled in black. The
first re-access includes directional arrows to show how the reuse interval calculation
traces back to the reference that is associated with the interval.

and provide information about the locality of the accesses [37].

Access based reuse intervals are introduced by Li et al [21]. These evaluations are

made at data page level and are used in dynamic cache allocation (require trace length

for assignments), which a compiler cannot use. Alternatively, RIs can be described

statically or at the reference level of abstraction. While dynamic RIs are associated

with a specific access, a static RI is associated with the reference instruction that

results in the access and does not change over the length of the trace. An example of

17

this is shown in Figure 2-1.

The first and second accesses to data object A occur at 𝑡0 and 𝑡3, resulting in an

RI of 3. This RI is associated with the reference that made the first access to the

pair, reference W. The interpretation of this is as follows: after reference W accesses

object A, it is known that the object will be accessed, or reused, either by reference

W or some other reference in three accesses. Similar to access level RIs, reference

level RIs can be defined by a distribution. Object D is first accessed at 𝑡4 and reused

at 𝑡5, resulting in a reuse interval of 1 being associated with reference X. At 𝑡7 object

D is again re-accessed by a different reference, yielding a new RI of 2 (RIs are relative

to the direct preceding access). This RI is associated with reference W, and does

not affect the previous RI associated with reference X. RIs that project reuses ahead

of time are called forward reuse intervals. For the purpose of this paper the term

forward reuse interval is synonymous with RI.

A more practical example of a five point stencil (Listing 2.1) is used for subse-

quent discussion in this paper. In this example RIs are associated with high level

programming language (HLPL) references, but there is no difference in concept be-

tween that and an instruction set architecture (ISA) level reference. The resulting

RI distributions are given in Table 2.1. The combination of nested loop and index

offsets in the stencil formula result in both immediate and long term reuses. There

are also two references without an observed reuse. This example has characteristics

of all three access patterns: recency-friendly (immediate reuses), scan (no reuses),

and thrash (long term reuses) if the array dimension exceeds cache capacity.

Listing 2.1: Example five-point stencil program.

for (i =1; i <1024; i++)

for (j =1; j <1024; j++)

b [i] [j]=a [i] [j]+a [i] [j−1]+

a [i] [j+1]+a [i −1] [j]+a [i +1] [j] ;

18

a[i][j] a[i][j+1] a[i][j-1] a[i+1][j]

RI Count RI Count RI Count RI Count

7 1,043,462 4 1,043,462 6,128 1,043,462 6,124 1,043,462
6,135 1,021 - - - - 6,128 1,021

Table 2.1: Reuse interval (RI) histograms for four of the references of the five-point
stencil program. Each row represents a different reuse interval that is observed for
each reference. References with no reuses (b[i][j] and a[i-1][j]) are omitted [27].

2.2 Lease Cache: CLAM

Lease cache is a new prescriptive cache interface where at every access a lease is

assigned to the accessed object by the program. The lease is a protection mechanism

for the object in that it acts like a lifespan. The object remains in cache for the

duration of the lease, and is evicted at the end of the lease term (lease expiration). In

this way lease cache is prescriptive - when accessed the program allocates a specific

amount of cache for the object and when expired the space is de-allocated. When

there is a cache miss, any expired cache line can be used for replacement.

This variant of lease cache differs from OSL by assigning leases to references (ISA

level memory instructions), called reference leases. At every access, the reference lease

of the instruction accessing the object is applied to the object (lease assignment or

lease renewal). For example, if reference X and W of Figure 2-1 have reference leases

of 1 and 2 respectively, then data object D is assigned a lease of 1 at 𝑡5 and 2 at 𝑡6.

Assigning any smaller lease results in the object’s lease expiring before its next reuse.

Conversely, assigning any larger lease results in over-allocation of cache (using more

cache resources than is required, limiting the possible resources other objects can use).

The relationship between lease and RI is apparent; when the two are equivalent an

object is minimally safe in cache until its next access and subsequent lease assignment.

In deciding what reference leases to assign the compiler can control how cache memory

resources are utilized. This is called Compiler Lease cAche Management or CLAM.

CLAM is an extension of OSL with improved characteristics for hardware caches.

19

Both make lease assignments based on reuse interval distributions, but CLAM does

so statically at the reference level. Any reference can access any object, so basic

properties extend to more complex programs and patterns (OSL reference groups are

limited to one target). Because OSL requires a lease per data page it is potentially

less scalable than CLAM (number of references can be many magnitudes less than

the number of data pages accessed). Furthermore, CLAM considers accesses at cache

block granularity, rather than at page level, which makes it applicable for low level

hardware caches.

2.2.1 CARL: Compiler Assigned Reference Leasing

Reference leases are assigned by the compiler using an algorithm called Compiler

Assigned Reference Leasing, or CARL [10]. CARL assigns reference leases with the

highest benefit until a target cache utilization budget is reached. CARL is designed

for variable sized caches (network, unified, or shared caches), meaning that it is

not absolutely constrained by cache size. Instead, the optimization budget is the

product of trace length (time quantity) and target cache size, an aggregate value.

When averaged across the trace length the budget is the target cache size, but the

instantaneous cache utilization is allowed to deviate from that, hence it is an algorithm

for variable sized caches.

The cost and profit of a specific lease assignment, 𝑙, is determined by the RI

distribution or histogram of the references. For simplicity assume RI distributions

are represented as vectors, 𝐻, where the index and value refer to the RI and number

of accesses with that RI (RI count) respectively. Lease profit is equivalent to the

number of cache hits that result from a specific assignment. The profit (2.1) is then

the number of accesses in 𝐻 whose RI is less than or equal to the assigned lease, 𝑙.

Profit(𝑙, 𝐻) =
𝑙∑︁

𝑖=0

𝐻[𝑖] (2.1)

The cost associated with a specific lease assignment is the overhead resulting from

the lease, i.e. how much cache space does the assignment allocate. Unlike lease

20

benefit, the cost of a lease is directly dependent on the value of the lease assignment.

All RIs less than the lease will only incur cost until they expire or are renewed, while

all RIs greater than the lease are limited by the selection of the lease. The first

summation of Equation 2.2 is the cost associated with RIs less than the lease, while

the second summation is the complementary condition.

Cost(𝑙, 𝐻) =
𝑙−1∑︁
𝑖=0

𝑖 *𝐻[𝑖] +
𝑅𝐼𝑚𝑎𝑥∑︁
𝑖=𝑙

𝑙 *𝐻[𝑖] (2.2)

CARL’s objective is to maximize the profit per unit cost (PPUC) of assignment.

CARL essentially looks at all references, and assigns the lease that provides the largest

PPUC, regardless of past assignments. CARL is a greedy algorithm and hence ignores

coverage - i.e. it will assign the highest value lease regardless if a lease has already

been assigned to the reference. Lease assignment for the stencil (Listing 2.1, Table

2.1) is shown in Figure 2-2. In this example an arbitrary budget of one billion is

used and PPUC is expressed as a marginal value to show the benefit in iteratively

updating lease values from prior assignments.

The first observation from the assignment process is that not all references are

assigned a lease. The target budget is exceeded at iteration 3 causing all remaining

references to be assigned a zero lease. Since the assignment at iteration 3 exceeds

the budget it also is not assigned; however, there is still residual budget. In order to

utilize this an extension to CARL, dual leases, is introduced in Section 2.2.2. The

second noticeable outcome is that the large PPUC of 𝑎[𝑖+1]𝑏[𝑗] does not result in an

assignment of that lease. In order to consider this lease the preceding assignment (of

a smaller lease) must first be made. The PPUC of this lease is not the largest of all

possible candidates, so CARL does not make the assignment.

2.2.2 CARL Extensions

Dual Leases

Assignment by CARL may result in unused residual budget due to further assignment

incurring more cost than there is remaining budget. In this case the cache is under-

21

allocated, which negatively impacts performance. To make use of this budget portion

CARL assigns a dual lease. A dual lease is a lease assignment that can result in

two possible values. Which of the two are assigned at an access is controlled by an

assignment probability. The goal of these assignments is to interpolate the cost of

assignment so that it equals the remaining budget. For example, if lease assignment

𝑙𝑜𝑣𝑒𝑟𝑏𝑢𝑑𝑔𝑒𝑡 exceeds the remaining budget by a factor of two then 𝑙𝑜𝑣𝑒𝑟𝑏𝑢𝑑𝑔𝑒𝑡 is only

assigned for half of its accesses. The remaining half are assigned a lease of zero so

that the budget is not exceeded. Dual leases are functions of the RI distribution while

the assignment probability, 𝑝, is given by Equation 2.3. For the stencil (Figure 2-2)

lease assignment would be terminated at step 3 because further assignment results

in over-allocation by a factor of roughly 6.5. With dual leasing CARL assigns the

red item with a probability of 15% so that the budget is not exceeded (lease of 4 is

assigned 85% of all accesses, lease of 6128 is assigned the remaining 15%).

𝑝 =
remaining budget

Cost(𝑙′, 𝐻)− Cost(𝑙, 𝐻)
(2.3)

PRL: Phased Reference Lease

CARL by design is for variable sized caches. While not guaranteed, it is likely that

for specific types of programs and patterns CARL may under-allocate or over-allocate

cache at specific points in time. An over-allocated cache, from a lease definition, is

one where no lease is expired when an eviction is needed. There is no clear eviction

choice in this situation, and arbitrarily evicting a line would most likely incur some

performance penalty, as all lines have non-zero leases (will be re-referenced). This

type of over-allocation stems from CARL allowing the lease budget to deviate from

the average along the entire trace length. The solution to this is to examine the

trace in phases, evaluating budget utilization in each. This is called phased reference

leasing, or PRL.

PRL splits the trace into 𝑛 phases and associates a local allocation budget of

𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑢𝑑𝑔𝑒𝑡/𝑛 and local RI distribution to each phase. Leases are assigned based

on the maximum global PPUC across phases, like CARL. When assigned, each phase

22

incurs a cost based on its respective RI distribution. Leases are assigned in the same

manner as CARL until a phase’s budget is fully utilized, whether by dual lease or

otherwise. From this point on (to algorithm termination) no other assignments can

be made that would increase the cost of the fully utilized phase. Although PRL is

described in terms of phases it also extends to set associativity. Instead of splitting a

trace into temporal phases it is split into access groups or spatial phases, and leases

are assigned in the same manner.

FUL: Fixed Uniform Lease

A program may not be amenable to performance optimization by CARL or PRL. This

can be due to compiler restrictions (lack of ISA or hardware clairvoyance) or program

structure (small or very complex programs would not elicit significant benefit). Fixed

uniform lease, FUL[26], is a safety feature extension of CLAM for these cases. As the

name suggests FUL assigns one static lease for the entire set of program references.

If the appropriate lease is chosen, then LRU equivalent performance is achieved.

Thus, FUL can be seen as a safety feature of CLAM in that LRU performance, at

minimum, is guaranteed. FUL assignments can be generated in the same manner as

variable leases; however, for this work is empirically studied (by parameter sweeping

the uniform lease value). FUL may also be used to emulate other cache policies

through alternative lease selection/s.

23

1.63185(10-4)

Iteration RI RI Count

a[i][j]

PPUCReference

a[i][j+1]

a[i][j-1]

a[i+1][j]

0

7

Accumulated Budget
Utilization

4

6128

6124

1,043,462

1,043,462

1,043,462

1,043,462

0.1427175

0.2500000

6135 1021 1.63185(10-4)

0.14276128 1021

1.63185(10-4)

1.63185(10-4)

0.73%

0.42%

639.43%

639.64%

n/a

n/a

a[i][j]

a[i][j+1]

a[i][j-1]

a[i+1][j]

1

7

4

6128

6124

1,043,462

1,043,462

1,043,462

1,043,462

0.1427175

0.2500000

6135 1021 1.63185(10-4)

0.14276128 1021

1.63185(10-4)

1.63185(10-4)

0.73%

n/a

642.11%

642.32%

n/a

n/a

a[i][j]

a[i][j+1]

a[i][j-1]

a[i+1][j]

2

7

4

6128

6124

1,043,462

1,043,462

1,043,462

1,043,462

0.1427175

0.2500000

6135 1021 1.63185(10-4)

0.14276128 1021

1.63185(10-4)

1.63185(10-4)

n/a

n/a

646.86%

647.07%

.74%

n/a

a[i][j]

a[i][j+1]

a[i][j-1]

a[i+1][j]

3

7

4

6128

6124

1,043,462

1,043,462

1,043,462

1,043,462

0.1427175

0.2500000

6135 1021

0.14276128 1021

1.63185(10-4)

1.63185(10-4)

n/a

n/a

646.86%

647.07%

n/a

n/a

Figure 2-2: CARL assignment procedure for a budget of one billion. Green items
indicate a lease assignment made at the current step. Blue indicates a lease assignment
previously made, which is contributing to the overall cost. Red indicates assignment
termination due to the budget being exceeded.

24

Chapter 3

Lease Cache Hardware Design

This section presents the first functional hardware implementation of lease cache that

supports all CLAM assignment policies. First, fully associative lease cache is consid-

ered, followed by an extension for set associative designs. The necessary hardware-

software interface and software level support for the cache is then detailed. In addition

to the cache hardware, two CLAM hardware support designs are also presented. One

a reuse interval sampling front-end to CLAM, and the other a lease cache dynamics

tracker. All three designs are considered the significant contributions of this work.

Note that the objective of this work is functionality, not optimal hardware design.

The designs outlined in this chapter are presented with generic parameters that are

later defined in Section 4.1.3 as they relate to performance testing.

3.1 Lease Cache Implementation

A practical hardware implementation of CLAM must run in real-time without limit-

ing the memory system, and its hardware-software interface must be simple enough

to integrate into existing technologies. In theory, the reference assignments gener-

ated by CLAM are unbounded in quantity and value, yet they must be used effective

enough such that CLAM is competitive with latencies seen in other caching policies.

Similarly, any overhead from leasing must be justified by the resulting cache perfor-

mance. As with traditional caching, lease case must be transparent to the processor

25

and user, otherwise one of the main benefits of caching is eliminated. The hard-

ware and software considerations for CLAM are discussed in sections 3.1.1 and 3.1.2

respectively.

3.1.1 Hardware

Lease cache hardware is divided into two stages,

1. Lease lookup - hardware necessary to translate memory access information to

lease assignment information; performed in parallel with cache access index/ad-

dress translation.

2. Lease update - hardware necessary to modulate/control active leases and gener-

ate an eviction victim; occurs after lease information is generated for an access.

In this way the lease cache can be viewed as a general two stage pipeline. The

dedicated lease components are built around existing cache infrastructure (traditional

communication buses, request-service sequencing/control, pipeline stages, etc.) so

that comparisons between lease and other policies are consistent. They in fact can

be viewed as system augmentations; the cache can still function under an auxiliary

replacement policy (discussed in Section 3.1.1) if leasing is disabled. CARL, PRL,

and FUL all utilize the same component structure detailed hereafter.

Lease Lookup

Lease lookup is the stage of lease cache responsible for generating lease information

and control signals based on a memory access request. It is implemented in parallel

with the cache target address translation (Figure 3-1), in a similar manner. When

an access is requested, the core provides an additional field, the reference address

(instruction address) of the access. The reference address is searched for in a lookup

table called the lease lookup table (LLT), which contains four fields,

1. Reference Address - the search parameter/input of the table. It is the address

of the instruction (load/store) responsible for the memory request. This field

26

results in a match status bit output.

2. Long Length Lease - if assignment is a dual lease, this field is the longer lease

assignment of the two. Otherwise, it is the sole lease assignment generated by

CLAM. This field is a direct output.

3. Short Length Lease - if assignment is a dual lease, this field is the shorter lease

assignment of the two. Otherwise, this value is redundant. This field is a direct

output.

4. Long Lease Probability - probability of assigning the long length lease upon an

access to the table entry. If the table entry is not a dual lease this field stored

in the table as a quantity equivalent to 100%. This field is a direct output.

LLT entries are consistently aligned such that finding a reference address match

produces all associated fields of that reference without additional hashing (all have

the same index). The direct outputs of the table are used to multiplex dual leases

while the match bit controls lease assignment.

Dual lease output selection is controlled by a linear feedback shift register (LFSR)

circuit. The LFSR output is compared against the long lease probability generated by

the LLT at an access. If the LFSR output is less than or equal to the table probability,

the long lease is multiplexed; otherwise the short lease is multiplexed. In cases of

non-dual leases the long lease is guaranteed to be assigned by fixing the probability

field to 100% so that the LFSR output never exceeds the probability field. While

leases are integer values (can only have integer reuse intervals), the lease assignment

probability is a floating point number. In order to store and use this in hardware the

value is discretized according to the bit width of the LFSR (with adjustments for the

unachievable space of the LFSR sequence - i.e. zero). The size required to sufficiently

discretize the probability values for the LFSR design is dependent on the program

being examined; however, this parameter can be constrained to a specified uniform

resolution and evaluated by CLAM (in theory - not a current feature of CLAM).

The correct adaptation of this is to floor the decimal probability value to the nearest

discrete value and incur this as a performance reduction due to under-allocation.

27

target_address[31:0]

Reference Address Long Lease Short Lease ProbabilityCache AddressBlock TAG

reference_address[31:0]

lease_multiplexer_bus [m-1:0]

le
as

e_
va

li
d

ca
ch

e_
ad

dr
es

s_
tr

an
sl

at
io

n_
hi

t

ca
ch

e_
ad

dr
es

s_
tr

an
sl

at
io

n
[l

og
2(

n)
-1

:0
]

long_lease [m-1:0] short_lease [m-1:0] long_lease_probability
[k-1:0]

le
as

e_
lf

sr
_e

na
bl

e

lease_mux
_select k-bit Comparator

k-bit LFSR

le
as

e_
de

fa
ul

t [
m

-1
:0

]

le
as

e_
by

pa
ss

Lease Policy Controller

Figure 3-1: Lease cache lookup stage hardware overview for fully and set associa-
tive cache. Component and signal sizings are given in Section 4.1.3. Note that
𝑙𝑒𝑎𝑠𝑒_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥𝑒𝑟_𝑏𝑢𝑠 is driving a NOR reduction gate.

A secondary multiplexer after the LFSR validates the lease assignment. If the

reference address is not found in the LLT during translation (LLT miss) the lease

assignment is overwritten by a default value, which is stored as a software configurable

register. The default lease serves the primary purpose of accounting for unmatched

references; however, this may also be used to reduce the number of LLT entries

needed by grouping together similar leases, a hardware resource specific detail. Given

an infinitely sized/scalable table and CLAM clairvoyance of program execution the

default lease is unnecessary. For an embedded system the LLT can be sized according

to the workload; however, CLAM clairvoyance requires that the application sequence

is deterministic enough for the compiler to analyze. This issue of program clairvoyance

28

is addressed in Section 3.2.

Section 2.2.1 describes how a cache is partitioned by CLAM. In cases where no

lease can be assigned due to the limited budget, all remaining references are assigned

a zero lease so that they do not impact assignment cost. Dual lease assignment is

similar in that either the primary or secondary lease can be a zero lease. The hardware

implementation of this is known as a zero lease bypass. It is initiated when a request

results in a cache miss, and the item is to be assigned a lease of zero. When this

occurs the request is serviced, but not cached so that the working set is preserved;

otherwise, this results in the forcible eviction of a cached item in order to allocate an

item of no benefit, i.e. zero lease, reducing performance. The occurrence of forcibly

evicting a cache line, regardless of its current lease value, is discussed in Section 3.1.1.

Lease Update

The lease update stage is where all active leases are maintained and updated. Each

cache line is associated with a lease register (Figure 3-2) that holds the line’s current

lease. At every access, the cache line targeted by the request loads its lease register

with the lease assignment generated by the lookup stage, while the lease registers of

all other cache lines are decremented, as long as they are non-zero. A cache (not to

be confused with LLT) miss necessitates that the stage generates an eviction victim

based on the state of the active leases. There are three possible eviction conditions

to consider,

1. 1 expired lease - the trivial eviction case; the sole expired cache line is selected

for eviction.

2. 2+ expired leases - the lowest address expired cache line is selected for eviction.

3. 0 expired leases - there is no eviction candidate according to lease policy, re-

placement follows an auxiliary policy.

A priority encoder (Figure 3-2) is used for victim selection when there is at least

one expired cache line. Each lease register drives a logical NOR reduction gate to

29

Lease Policy Controller

lease_multiplexer_bus [m-1:0]

lease_decrement [n-1:0]

lease_load [n-1:0]

le
as

e_
re

pl
ac

em
en

t_
pt

r
[lo

g 2(n
)-

1:
0]

le
as

e_
re

pl
ac

em
en

t_
pt

r_
va

lid

n-to-log2(n) Encoder

Lease R
egister 0

Lease R
egister 1

Lease R
egister n- 1

Lease R
egister n- 2

Lease R
egister n- 3

Lease R
egister 2

exp[0]

exp[1]

exp[2]

exp[n-3]

exp[n-2]

exp[n-1]

Figure 3-2: Lease cache update stage for fully associative cache. Component and
signal dimensions are given in Section 4.1.3. Note that 𝑒𝑥𝑝 bus drives an OR reduction
gate.

create an expired flag (logic high if every bit of the lease register is logic low). The

bus of expired flags subsequently drive a priority encoder which generates a pointer

to the cache address of the first (least significant bit priority) expired lease register.

The pointer is verified (necessary due to default encoder output) by taking the logical

OR reduction of the expired flag bus. If at least one flag is logic high the replacement

valid flag is driven high. In this way the lease encoding scheme can be efficiently used

to determine the trivial case victim, the multi-expired lease victim, and can identify

when there is no expired lease. Additionally, there is no theory to suggest that an

alternative method of victim selection, for the multiple expired lease case, would result

in cache performance improvement. It is shown in Section 2.2.1 that it is possible to

assign a reference lease that does not cover the entire RI distribution of a reference

due to budget limitations. In this scenario it would be beneficial to replace the "most

30

expired lease", or the cache line that has been expired for the longest amount of time.

Tracking this is unrealistic from a hardware view (additional counter per cache line

and comparison/stack circuit). Additionally, there is no guarantee that this is the

case for any lease, nor is there a way to predict this in hardware (without additional

information encoded in the LLT).

If there is no expired lease (replacement valid flag seen as logic low), the cache is

over-allocated and the lease policy cannot identify a victim. An auxiliary replacement

policy, random replacement, is then used to choose the victim. Random replacement

is used for several reasons,

• The LFSR from the lookup stage is efficiently reused.

• Regardless of the selected victim, a penalty is incurred due to early eviction.

• This eviction scenario is thought to be irregular or uncommon. It is assumed

that there will be an expired lease when an eviction is required, according to

CLAM theory. CARL budget averages to the target cache size so this may be

proved incorrect for certain types of program/patterns.

• Due to a finite budget leases may not be indicative of the actual reuse interval.

MIN [8] states that optimal replacement is when the furthest reuse item is evicted.

From this viewpoint evicting the largest active lease is best. CLAM however, can

irregularly assign leases based on PPUC so there is no guarantee that the largest

active lease in fact correlates to the longest reuse interval. Again, from a hardware

view the circuit required to identify the largest lease comes at unreasonable cost,

especially when a performance penalty will be absorbed regardless of choice. Section

5.1 further supports use of random policy.

Figure 3-2 depicts the update stage for a fully associative cache. The expired flag

of every lease register drives the same encoder. A set associative cache can use the

same general concept to determine local (set) replacements (Figure 3-3). Each set

drives a unique encoder and reduction gate. The output buses of each component

are multiplexed by group (sub field of target address) which yields the appropriate

31

Lease Policy Controller

lease_multiplexer_bus [m-1:0]

lease_decrement [n-1:0]

lease_load [n-1:0]

le
as

e_
re

pl
ac

em
en

t_
pt

r
[lo

g 2(s
)-

1:
0]

le
as

e_
re

pl
ac

em
en

t_
pt

r_
va

lid

Lease R
egister 0

Lease R
egister 1

Lease R
egister n- 1

Lease R
egister n- 2

Lease R
egister n- 3

Lease R
egister 2

exp[0]

exp[1]

exp[2]

exp[n-3]

exp[n-2]

exp[n-1]

(s)-to-log2(s) Encoder

(s)-to-log2(s) Encoder

(s)-to-log2(s) Encoder

ca
ch

e_
gr

ou
p[

n-
s-

1:
0]

Figure 3-3: Lease cache update stage for a generic four way set associative cache, with
update circuitry shown for three sets. The 𝑒𝑥𝑝 bits of each set drive an OR reduction
gate in the schematic. Component and signal dimensions are given in Section 4.1.3.
Parameter s is set size.

set replacement pointer and validation flag. The lookup stage structure for set lease

caching is identical to the fully associative hardware shown in Figure 3-1.

3.1.2 Software Support

The architecture presented in Section 3.1.1 assumes that the LLT is populated with

all run-time lease information, and provides no mechanism for managing it. One of

the objectives of the lease cache implementation is to be transparent to the user, and

not require extraneous interaction. In support of this, lease information is embedded

in the application binary. Other than the cost of managing and storing more data,

32

TEXT

0x00000000

LEASE
0x02000000

0x01FFF5C0

DATA

BSS

0x04000000
I/O

0x04002000

HEAP & STACK

 0x01FFF5C0

 0x02000000

 0x01FFF700

 0x01FFF900

 0x01FFB00

 0x01FFD00

CONFIG

PROBABILITY

LEASE1

LEASE0

REF_ADDR

Figure 3-4: Mapping of lease cache memory partitions in application binary. Ad-
dresses are byte addressable.

this is a robust way of communicating lease cache information invisibly from software

to hardware.

Programs are compiled to executable and linkable formats (ELF), a common Unix

format. Figure 3-4 shows how lease cache information is linked in this format. LLT

data along with cache configuration information is placed at the end of read only

memory. It is sized such that the the benchmarks discussed in Section 4.3 can be

allocated in the partitions along with configuration data used in lease cache and the

hardware discussed in Section 3.2. The lease cache controller contains an internal

read only register initialized with the starting address of the configuration partition.

Out of reset the cache controller requests the first block of lease configuration data.

The content of this block provides LLT initialization information to the cache such

as the number of entries to write into the table. The cache controller then imports

the respective data from main memory to the LLT. This is referred to as static lease

caching.

LLT population by static caching is not considered to be performed at run-time,

33

since it occurs as a preprocess out of reset. It is however, directly extendable, in

terms of overhead. For an LLT with 128 entries, 32 block transfers are needed to

fully populate the table (1 LLT entry is 4 fields which is one-fourth of a block).

Current versions of CARL and PRL only produce one dual lease entry so the minimum

number of required transfers to populate the table is reduced to 17 blocks. For a given

workload, if leasing decreases the cache miss count (as compared to another policy)

by the block transfer overhead associated with filling the table, use of lease cache is

justified. Static lease caching incurs no run-time overhead to maintain the LLT.

3.2 Hardware Support for CLAM

Compiler driven analysis of reuse intervals is the basis for CLAM. In Section 2.1 the

five point stencil (Listing 2.1) is used to illustrate this. Compilers have the ability

to examine the HLPL of an application and analytically determine the resulting RI

distribution, as shown in Table 2.1 by the symbolic references. The issue with this

representation of references and RIs is that hardware lease cache requires binary map-

pings (memory addresses) for lease lookup/translation. CLAM must have both the

ISA support for the target environment and the ability to track how the intermediate

symbols translate to binary instructions (which first requires ISA support) in order

to be of practical use.

The current version of CLAM, which is discussed in this paper, does not have

ISA specific support. The proposed solution to this is a hardware front-end that

generates binary mapped RI distributions by profiling the target application. CLAM

then evaluates these statistical RIs, and generates leases through a CARL/PRL im-

plementation. This is referred to as hardware reuse interval sampling.

The hardware sampler is essentially a snooping agent placed on the communication

bus between the cache and processor core (Figure 3-5). The sampler continuously

monitors bus signals, and periodically samples/records transaction data, specifically

the reference address and target address. After sampling an item it looks for a re-

access of the same item (to calculate a reuse interval), and when one is seen stores

34

all reuse information about the item. The sampler has three main components,

1. Sample table - small capacity lookup table that holds all sampled data without

an observed reuse.

2. Reuse interval counters - maintain the active/running reuse interval of each

entry in the sample table. The counter increment at every observed memory

access.

3. Reuse interval buffer - large capacity memory that stores all sampled data with

an observed reuse. The buffer can be accessed by external hardware.

The communication bus is sampled at random variable sized intervals using an

LFSR to generate the sequence of intervals. Random sampling is chosen over fixed

interval sampling in order to improve sampling coverage (fixed interval sampling runs

the risk of continuously sampling the same reference and ignoring others). When

sampled, the communication bus’s current values are written to the next open location

in the table. A sample remains in the table until either: a reuse of the target address is

seen (reuse interval found), or the table reaches capacity (no unused table addresses).

Unused table locations are kept track of by an address stack (when writing to the

stack is popped, when evicting from the table the address is pushed).

When a table entry reuse is seen the entry is evicted from the table and written to

the buffer along with its associated reuse interval counter value and the current trace

length. The objective of the eviction is to minimize table utilization due to the table’s

finite size. Ideally, the sampler would observe at least one reuse for every possible

reference, for the application being profiled. It is not possible to track all memory

accesses (in most cases), and so once a reuse is identified the entry is removed. This

action frees up the table location for a new sample, which is likely to be different

from the sample that was just removed, presumably increasing the coverage rate of

references with an associated reuse interval.

There are two causes for the table reaching capacity: the table is not sized propor-

tionally to the working-set (specifically with respect to array sizes) and/or the table

35

Core

Trace Counter

Target AddressReference Address Reuse Interval
Counter

Reference
Address

Target
Address

Reuse
Interval

Trace
Length

Reference
Address

Sampler-to-I/O Bus

Sampler Data Buffer

Sampler Lookup Table and Metric Counters

Hardware Sampler

Cache

Host PC

Figure 3-5: Hardware reuse interval sampler system overview. Delimited text file
shown is output read from the sampler with same field order shown in the buffer.

contains non-reuse entries (entries that do not have a future reuse - stream pattern

characteristics). In these cases a table entry is forcibly evicted so that a new sample

can be allocated. The sampler finds the entry with the largest active counter value,

and removes it from the table. Although this is not a reuse, it is written to the buffer

as a negative RI value to flag this occurrence for CLAM. When sampling is complete,

all active table entries are likewise written to the buffer in the same format.

Comprehensive reference coverage is not guaranteed by sampling. There is no

analytical method for determining a minimum sampling rate or any similar control

parameter, nor is there a proof for what adequate coverage is considered. Moreover,

36

there is a direct trade-off between the sampling rate and range of reuse interval mag-

nitudes that can be captured. The higher the sampling rate, the faster the sampling

table reaches capacity (assuming program size > table size). Because the oldest en-

try is forcibly evicted when this occurs, only references with short reuses (RI < table

size) can be measured. Due to this, sampling is heuristic and highly dependent on

the program being profiled. Regardless, it is hypothesized that if sampled sufficiently,

all unsampled references are of low benefit due to irregularly large reuse intervals or

are part of a stream access pattern (no reuse). Being of low benefit, these references

can be associated with any arbitrarily small default lease, such that they do not

significantly impact CLAM assignment cost.

3.2.1 Lease Tracking

The state (current active values) of the lease register array is a direct indicator of

cache utilization and performance, a topic discussed in Section 4.2. If many leases are

expired the cache is under-utilized. Conversely, if no lease is expired the cache is over-

utilized. In reactive and collaborative caches, even ones with assumed re-reference

intervals [18], there is no concept of the cache state because there is no knowledge

of when an item will be reused. Lease caching (being a prescriptive policy) however,

enables one to evaluate the cache’s effectiveness by examining the lease register array

state. Real-time tracking of this can be used to quantify policy effectiveness and

theoretically enables performance adjustments to be made concurrent to execution,

such as repartitioning/sharing a network cache for other tasks.

Lease state tracking is possible using the same general infrastructure as the sam-

pler (Figure 3-5). Instead of monitoring reuses the tracker simply records the lease

register array state at fixed intervals. Comprehensive tracking of every lease register,

down to one bit resolution, is costly to perform, manage, and store, so the state is

octal approximated by Equations 3.1-3.4 as follows,

37

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝑒𝑎𝑠𝑒[3] = |(𝐿𝑒𝑎𝑠𝑒[31 : 24])224 (3.1)

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝑒𝑎𝑠𝑒[2] = |(𝐿𝑒𝑎𝑠𝑒[23 : 16])216 (3.2)

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝑒𝑎𝑠𝑒[1] = |(𝐿𝑒𝑎𝑠𝑒[15 : 8])28 (3.3)

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝑒𝑎𝑠𝑒[0] = |(𝐿𝑒𝑎𝑠𝑒[7 : 0]) (3.4)

The lease register is subdivided into eight bit groups, each driving a logic OR

reduction gate (similar to the NOR reduction array of the lease update stage shown

in Figure 3-2). Each bit of the approximation is associated with a reuse quantifica-

tion: future, near-future, near-immediate, and immediate (from MSb to LSb). If all

bits of the approximation are logic low the lease it is derived from is expired. This

approximation is a measure of how cache is allocated by the lease assignment. If

tracked over a period of time cache effectiveness for a given application or pattern

can be visualized. These quantities are further used in Section 4.2.

38

Chapter 4

Testing

While cache is an integral hardware of computer systems, it is not a standalone

component. The stencil (Listing 2.1) program demonstrates how leases can be used

for caching; however, a processing system is still required to execute the program, and

generate the related memory accesses. Similarly, the manner by which the program is

compiled, in terms of ISA and options, can significantly alter the execution sequence.

In this chapter the test architecture for the described lease cache is provided, along

with formal metric definitions for lease cache performance. A new visual tool for

evaluating lease cache utilization is also presented.

4.1 Test System

The hardware test system (Figure 4-1) is implemented on a CycloneV-GT FPGA

development board [4]. The system is comprised of a processor core, internal and

external memory subsystems, and a communication and control subsystem which is

interfaced to an external host computer. The lease cache, reuse interval sampler, and

lease tracker systems all use the same bare-metal architecture and components. The

FPGA hardware is responsible for processing and generating all data, in the case

of the sampler and tracker, while the host PC is used for system control and data

management. This section outlines the hardware subsystems that support the lease

cache.

39

Communication and Control

Processing

Host PC

DDR3

JTAG-UART

JTAG-UART
Driver

Proxy
Sequencer

Proxy
Arbiter

System
Controller

DMA Arbiter

RISC-V Core

L1-I Cache

Internal Memory
Controller

I/O
Registers

L1-D Cache

Figure 4-1: Top level test system diagram.

4.1.1 Processor Core

The processor core is designed according to the RISC-V ISA [36], and supports 32-bit

integer base instructions as well as the 32-bit integer multiplication extension (ded-

icated multiplication and division hardware). The core features a six stage pipeline

that uses fall-through branch prediction, and can be run with memory access laten-

cies of either one or two cycles, to support cache pipelines. The cache is integrated

with instruction and data buffers to the pipeline memory ports to accommodate this

functionality. Additionally, data request ordering is maintained by the data buffer

(in the case of multiple cycle access latencies), as requests to I/O addresses have a

fixed one cycle latency. When running in single cycle latency mode the buffers are

bypassed.

40

Table 4.1: Compiler options for RISC-V toolchain.

Compiler
Option

Option
Value Description

-march rv32im
Hardware system supports 32-bit base instructions
as well as 32-bit integer multiplication and division
extension.

-mabi ilp32 ’int’, ’long’, and pointers are all 32-bits in width.

-specs nosys.specs Specifies bare-metal compilation (no support for
system calls). Program linked against ’libnosys’.

-mno-div n/a
Generate code without using dedicated division
hardware instructions. Legacy option from
December 2019 FUL system.

RISC-V GNU Toolchain

Applications are cross-compiled for the core using the RISC-V GNU toolchain [2],

which supports C/C++ languages. Programs are compiled into generic ELFs for

newlib standard libraries, in support of the bare-metal/embedded execution envi-

ronment of the FPGA system. A custom linker script links the compiled objects

according to the memory segments shown in Figure 3-4. The complete list of com-

piler options used is given in Table 4.1. Note that applications for this work are

compiled using a now deprecated variant of the toolchain, riscv-none-embed. This

is a dedicated multilib toolchain for bare-metal applications and has since been ab-

sorbed into the riscv-unknown-elf distribution (set -march flag to include rv32e for

equivalent settings).

4.1.2 Communication and Control

The system runs in a bare-metal environment and requires a supporting infrastruc-

ture for testing, control, and data acquisition. Previous versions of the system were

emulated on a CycloneV-DE0 [31] which limited the complexity of the hardware sys-

tem (resource constraints), and how it could interface with other devices (aside from

an archaic PS/2 connector, it has no standardized input connection hardware). The

lack of I/O capability was circumvented by using an existing JTAG port connection,

which is used for configuring the FPGA through Intel’s proprietary software. This

41

subsystem is likewise implemented on the CycloneV-GT as a legacy design.

The hardware communication interface is comprised of a JTAG-UART circuit for

transmitting and receiving packets, and a communication proxy that sequences the

raw packets into a protocol, and communicates with other hardware blocks. The

proxy is interfaced to,

1. External memory DMA controller - used to directly write binaries (received

from the host) into external memory, DDR3.

2. Test controller - controls the processing system test and execution sequence

(resets, transfers, etc.).

3. I/O registers - allows for direct communication with the sampler and tracker

data buffers, RISC-V core, and other subsystems.

Test Sequence

The lease cache and sampler/tracker have similar operational sequences. Application

binaries are sent, from the host, over the UART-JTAG interface, packetized by mem-

ory segments. Those packets are then sequenced into write commands and issued

by the proxy. When the transfer is complete, the host pulls all remaining hardware

subsystems out of reset and into execution. Depending on the system being run

(lease, sampler, or tracker) the host polls different I/O registers to check either the

application execution status or for a buffer interrupt.

When the main of the program is exited an I/O register is written to, signaling

the event to the host so that a subsequent system command can be issued. When the

host acknowledges that the main has been exited, all cache performance data is read.

Each cache has a dedicated performance monitor which tracks hits, misses, etc. This

hardware (and the analogous sampler and tracker circuits) is enabled by special I/O

writes executed before entering and after exiting the kernel of the program, limiting

the performance evaluation and data acquisition to it (the kernel). The pre-kernel

entrypoint/bootload sequence has little cache utilization impact and is consistent for

42

all benchmarks and cache policies/systems tested, so the cache is not flushed prior to

entering the kernel.

When the hardware sampler or tracker is enabled there is another level of polling

required. In addition to checking the execution status, the sampler/tracker buffer

interrupt flag is also read. This interrupt signals to the host that the buffer is full,

and the core has been temporarily stalled. After reading the data from the buffer,

the host clears the interrupt, which subsequently re-enables the core.

FUL is tested using the same interface and methodology as CARL and PRL;

however, the best performing lease is not known a-priori. In order to determine this

parameter the system is empirically parameter swept with leases of increasing value.

The range of trialed leases spans zero to 65536 in 7-bit increments, as leases exceeding

the range did not show further improvement for the benchmarks trialed. Aside from

altering the lease, the FUL replacement policy configuration is also controlled (FUL

was the first policy trialed so it has more variants). In the event of no expired lease the

auxiliary policy is either random, eviction of the Largest Remaining Lease (LRL), or

eviction of the Smallest Remaining Lease (SRL). When evicting by LRL or SRL the

cache lines are randomly pooled. The cache line associated with the largest (LRL) or

smallest (SRL) active lease (of the pooled subset), is then evicted. Pool sizes of four

and eight are trialed for both SRL and LRL. Pool sizes are non-zero and smaller than

the cache size because a zero pool size results in random replacement. Conversely, if

every line is evaluated LRL and SRL default to MRU and LRU respectively.

4.1.3 Design Parameters

Sizing of lease cache hardware components is application specific. The main focus of

the hardware implementation is functionality, rather than speed or efficient resource

utilization. Similarly, the design is not meant to be universally applicable for all

workloads (in terms of lease register sizing, LLT size, etc.). Nonetheless, embedded

system hardware can be designed according to its narrow workload, making it an

appropriate candidate for functional lease cache implementation. Table 4.2 lists the

lease cache, reuse interval sampler, and lease tracker design parameters that are used

43

Table 4.2: Hardware design parameters for base cache, lease cache, reuse interval
sampler, and lease tracker.

Design Parameter Value
Sampler table entries 64
Sampler table fields per entry 3
Sampler table field width 32-bit
Sampler RI counter width 32-bit
Sampler trace counter width 64-bit
Sampler LFSR width 9-bit
Sampler average sampling rate 1/256 [samples/access]
Sampler clock frequency 20 MHz
Sampler latency to replace oldest entry 64 cycles
Sampler buffer entries 8192
Sampler buffer fields per entry 4
Sampler buffer field width (excluding trace) 32-bit
Sampler buffer trace field width 64-bit
Tracker buffer entries 4096
Tracker buffer fields per entry 4
Tracker buffer field width 128-bit
Tracker sampling rate 1/256 [samples/access]
Tracker clock frequency 20 MHz
Cache clock frequency 20 MHz
Cache access latency 1 cycle
Cache write-out to main memory latency 16 cycles
Cache read-in from main memory latency minimum 17 cycles
Cache transfer throughput 1 word per cycle
Cache write-out buffer entries 1
Cache word size 32-bit
Cache block size 16 words
Cache data bus width 32-bit
Cache levels 1
L1-I capacity 8kB (128 blocks)
L1-D capacity 8kB (128 blocks)
Lease cache clock frequency 20 MHz
Lease cache victim selection latency 1 cycle
Lease cache LLT entries 128
Lease cache LLT reference address width 32-bit
Lease cache LLT primary and secondary lease width, m 24-bit
Lease cache LLT lease probability width, k 9-bit
Lease cache LLT data bus width 32-bit
Lease cache default lease 1 [-]
Lease cache lease register count (same as cache block size), n 128
Lease cache lease register width 24-bit
Lease cache LFSR width 9-bit

to generate the results presented in Chapter 5.

44

4.2 Cache Performance Metrics

Cache performance is evaluated most commonly by metrics derived from the number

of misses incurred by the replacement policy. Lease cache, being prescriptive, can

also be evaluated by how efficiently the cache is allocated. CARL and PRL assign

leases until a target budget is reached, on average. Ideally for a fixed size cache, both

algorithms would make assignments such that the lease cost never exceeds the budget

at any point in the trace (i.e. cache block capacity is never exceeded). For this to

occur at least one lease in cache must be expired at every access miss, so that the

requested/missed item can be safely allocated. If however there is no expired cache

line, the resources required by CLAM to cache that item exceeds the average, and

the cache is said to be over-allocated. Conversely, having an expired lease at every

miss does not strictly equate to optimal performance. An expired lease is associated

with an item that has no future benefit, meaning there is no benefit to letting the

item remain in cache. If, at a miss, there are multiple expired items in cache, one will

be used for replacement while the others continue to serve no future benefit. This is

synonymous with cache under-allocation.

While over-allocation is directly related to performance, under-allocation is a rel-

ative metric. Assume a cache that is significantly larger than the working set. In

this case the cache will be significantly under-allocated; however, regardless of the

replacement policy, performance is optimal. Lease cache is similar in that under-

allocation resulting from a ‘small’ program or pattern does not necessarily correlate

to reduced performance. For this reason several formal metrics for aggregated lease

cache performance are defined,

1. No Vacancy Ratio - the ratio of evictions by auxiliary policy to the total evic-

tions (lease + auxiliary).

2. Multiple Vacancy Ratio - the ratio of expired evictions to total evictions (by

lease expiration or auxiliary policy, i.e. random replacement) when there are at

least two expired cache lines.

45

The no vacancy ratio is a measure of over-allocation; the higher this metric the

more common it is to make an eviction by auxiliary policy due to no expired lease.

Conversely, the multiple vacancy ratio measures under-allocation. The higher this

number the greater the probability of there being multiple expired items in cache

at any given eviction. Vacancy metrics reflect cache performance as an aggregate

average over a given time interval, in this case the trace length. Ideal allocation, as

defined above, would be defined as both vacancy metrics being zero. In such a case

there would always be a sole eviction victim candidate by lease policy.

4.2.1 Cache Tenancy Spectrum

CARL assigns leases based on a variable cache size, an issue PRL attempts to mit-

igate through phase-based analysis. PRL limits the cost of each phase in order to

reduce over-allocation. At the same time a cost reduction in one phase may lower the

cost in adjacent phases, increasing overall under-allocation. To examine the temporal

dynamics of CLAM a new visualization and evaluation graphic, the cache tenancy

spectrum is used. The spectrum is a two dimensional performance plot of each cache

line’s lease over a time interval. Leases are octal discretized as described by Equa-

tions 3.1-3.4, and are accordingly periodically sampled every 256 accesses (minimum

frequency for octal resolution).

An example spectrum is shown in Figure 4-2 for informative purposes only. The

horizontal axis represents logical time while the vertical axis represents a specific

cache line (8kB cache has 128 lines, thus the axis ranges from 0 to 127). The value

of a lease is indicated by the color/intensity of a data point, which is referenced to

the colorbar to the left of the graphic. In this spectrum, roughly, the top third of

the graphic is yellow, while the bottom is predominantly blue. The interpretation

of this is that cache lines at high addresses are commonly expired (lease update

stage encoder prioritizes low addresses for replacement), and thus the cache is under-

allocated. There are also instances where all cache lines are have non-zero leases,

which is indicated by all pixels in a vertical slice being non-yellow. These are instances

of either full allocation or over-allocation; there is no straightforward way to discern

46

Figure 4-2: Cache tenancy spectrum for the example stencil (Listing 2.1).

between the two. This spectrum graph is heavily used in Chapter 5 to evaluate the

performances of CARL and PRL.

4.3 Benchmark Applications and Policies

CLAM performance is evaluated using PolyBench/C 4.2.1, a benchmark suite which

contains 30 numerical kernels [25]. Whereas the stencil (Listing 2.1) or any other

arbitrary pattern demonstrates lease cache potential, this suite evaluates it. The ker-

nels have real applications, being taken from linear algebra, image processing, physics

simulation, dynamic programming, and statistics. Of this collection seven programs

are selected for testing. These seven are chosen on the basis of having integer support,

or can be directly ported for integer based data types. To make the benchmark pro-

grams completely compatible with the bare-metal FPGA environment POSIX APIs

are removed and replaced where necessary. Table 4.3 highlights key parameters of

the benchmarks along with baseline cache policy performance for reference.

Lease cache performance is compared against three reactive cache policies, LRU,

47

pseudo-LRU (PLRU), and static re-reference interval prediction (SRRIP). LRU acts

as the baseline policy as many cache architectures use approximations of it as their

policy, and it is used in Intel’s Itanium [14] and AMD’s Zen [3] L1 instruction caches.

PLRU is a practical and commonly used policy [14, 29]. In this work, the policy is

implemented using a single status bit in each cache line [30]. SRRIP [18], proposed

as a more contemporary policy for insertion [28] with scan resistance potential, is a

more general application of Not Recently Used (NRU), which is used in Itanium as

well [14], so it is trialed as well.

Table 4.3: Benchmark programs and their baseline (LRU) performance.

Benchmark
Input
Size
(N)

Kernel
Memory

References

Memory
Accesses

LRU
Miss

Count

Benchmark
Description

Atax 120 60 491454 924 Matrix transpose and vec-
tor multiplication

Doitgen 25 59 8885194 941 Multiresolution analysis
kernel (MADNESS)

Floyd-Warshall 180 35 116868071 364160 Dynamic programming:
path search

2mm 60 86 6213792 19447 2 matrix multiplications
(D=A.B; E=C.D)

3mm 60 115 10892247 34990 3 matrix multiplications
(E=A.B; F=C.D; G=E.F)

Mvt 120 54 491302 15331 Matrix vector product and
transpose

Nussinov 180 98 20051779 335369 Dynamic programming:
table sort

48

Chapter 5

Results and Discussion

In this chapter, the performance of all three CLAM algorithms (FUL, CARL, and

PRL) are evaluated. FUL is first presented as a lease cache safety feature, in that it

can guarantee LRU equivalent performance if variable leases cannot be assigned by

CARL or PRL. After showing CLAM safety, variable lease performance is compared

against baseline cache policies and the best FUL assignment. Following this, PRL

temporal sensitivity is evaluated for its impacts on cache performance. The analysis is

concluded by examining preliminary results for CLAM’s extension to set associative

lease cache architectures.

5.1 Fixed Uniform Leasing

Across all seven programs FUL is able to, at minimum, perform as well as LRU,

and in some cases perform significantly better (Figure 5-1). Atax, doitgen, and floyd-

warshall all exhibit FUL-LRU equivalency. Regardless of the configuration, each FUL

curve is coincident with the LRU performance over an extended range of leases. In

the case of atax, the program has a relatively low amount of memory accesses (Table

4.3) making it more difficult for policy effects to manifest and be prevalent. Doitgen

has a similar LRU miss count to atax, but at 20 times the number of accesses. This

indicates that LRU already performs fairly well for doitgen’s program structure, so

FUL can only match its performance. On average, each data array in doitgen is 25

49

0 25000 50000

1

1.2

1.4
SRL

0 25000 50000

LRL

0 25000 50000

0.4

0.6

0.8

1 SRL

0 25000 50000

LRL

0 25000 50000
1

1.5

2
SRL

0 25000 50000

LRL

0 25000 50000
1

1.5

2
SRL

0 25000 50000

LRL

0 25000 50000
1

1.5

2
SRL

0 25000 50000

LRL

0 25000 50000

1

1.1

1.2

1.3
SRL

0 25000 50000

LRL

0 25000 50000
0.2
0.4
0.6
0.8

1 SRL

0 25000 50000

LRL

LRU Random Pool Size 4 Pool Size 8

F
U

L
M

is
s

R
at

io
 N

or
m

al
iz

ed
 to

 L
R

U
 M

is
s

R
at

io

FUL Lease Length

Nussinov

Mvt

2mm

3mm

Atax

Doitgen

Floyd-Warshall

Figure 5-1: FUL policy performance over a 16-bit lease range with 7-bit resolution.
FUL curves are normalized to baseline (LRU) performance, indicated by the dashed
lines.

elements, so even when nesting loops the cache will retain the working-set. Floyd-

warshall has similar attributes to doitgen, having a large number of accesses and a

low LRU miss ratio. FUL likewise matches LRU performance for this benchmark.

50

Table 5.1: Best FUL miss count reduction over LRU in four benchmarks.

Benchmark FUL
Eviction

Pool
Size

Miss Count
Reduction [%]

Best FUL
Lease

Nussinov LRL 8 60.28 3683
Mvt LRL 8 85.15 2286
2mm All All 3.92 1778
3mm All All 5.62 1905

For all three programs, the FUL configuration (auxiliary policy and pool size)

does not impact the best achievable performance, only the range over which it is

equivalent. Increasing the aggression (larger pool size) of SRL leads to a larger

equivalence range (better approximation of LRU), while the opposite is true for LRL.

A similar consistent characteristic is seen when examining the vacancy curves of these

policies (Figure 5-2). The vacancy rate is static or decreases very slightly over the

range of LRU equivalence. When exiting that range, the curve begins to decrease

more rapidly, indicating that the uniform lease is now over-allocating cache, and the

working-set is not being properly managed.

Similar LRU equivalence characteristics are seen in 2mm and 3mm, but with a

narrower range of leases. There is a point at which FUL outperforms LRU (Table

5.1), regardless of the eviction configuration. The previous three programs displayed

characteristics of having a minimum equivalency range that is not affected by the

pooling, eviction, etc; only when leaving that range do those factors elicit different

performance. 2mm and 3mm corroborate this observation, while also showing that

performance improvements within this range can be similarly independent of the

configuration.

FUL elicits the most unique characteristics in the remaining two programs, nussi-

nov and mvt. These programs are the only instances of the zero lease assignment

(equivalent to MRU) outperforming LRU, indicating that LRU is not optimal for

these applications, and that the programs are more amenable to improvement by an

alternative policy. Contrary to the equivalence ranges seen in the other benchmarks,

neither benchmark has such a region, but rather a more defined optimal lease oper-

ating point. Additionally, cache performance at this point is now dependent on the

51

0 25000 50000
0

50

100
SRL

0 25000 50000

LRL

0 25000 50000
0

50

100
SRL

0 25000 50000

LRL

0 25000 50000
0

50

100
SRL

0 25000 50000

LRL

0 25000 50000
0

50

100
SRL

0 25000 50000

LRL

0 25000 50000
0

50

100
SRL

0 25000 50000

LRL

0 25000 50000
0

50

100
SRL

0 25000 50000

LRL

0 25000 50000
0

50

100
SRL

0 25000 50000

LRL

Random Pool Size 4 Pool Size 8

F
U

L
V

ac
an

cy
 L

ik
el

ih
oo

d
[%

]

FUL Lease Length

Nussinov

Mvt

2mm

3mm

Atax

Doitgen

Floyd-Warshall

Figure 5-2: FUL policy vacancy of the trials shown in Figure 5-1.

configuration. When using SRL the best performing lease is negatively impacted by

more aggressive evictions because this more accurately emulates LRU. Conversely,

LRL performs best with this configuration; however, the window over which this is

true is short and well approximated by random replacement. Because of this, random

auxiliary eviction is considered the best policy for these two applications.

52

The most significant outcome of the FUL trials is the robustness and effectiveness

of the random auxiliary policy. Random eviction is the most simple to implement and

resource friendly of all policies, making it desirable to use if possible. Furthermore,

the FUL results suggest that there is no benefit to using a policy other than random

when there is no expired lease. In cases where FUL can significantly outperform FUL

random is the best auxiliary policy outright. When significantly better-than-LRU

performance is not possible, the choice of policy does not impact the lease range

over which equivalence holds. Rather, the policy affects how quickly the vacancy

curve decreases from a focal point, which in turn can effectively extend that range.

Essentially, the lease and policy are orthogonal. The uniform lease portions the

working-set, while the policy affects the remaining cache content. This is why the

focal point exists in the vacancy curves. Hence, if the working-set is sufficiently

portioned, the policy choice is arbitrary. This is directly extendable to variable leasing

because both CARL and PRL evaluate analytically, instead of empirically. When

using variable leases, it is assumed that the working-set is sufficiently partitioned

by the assignment algorithm, and the cache is operating within this equivalence or

better-than-LRU range, by nature of the assignment. Thus, the auxiliary policy has

little impact, and can be chosen arbitrarily. This is the premise for choosing a random

auxiliary policy in Section 3.1.1.

The results of each benchmark support the use of a singular lease as a safety

measure; however, there is a nuance to this (which is most noticeable in 2mm). The

range of equivalence is roughly the lease subset, [1000, 15000]. After exceeding 15000,

the lease results in over-allocation, which is verified by the decreasing vacancy curve.

Shortly after the focal point, the curves disjoint and appear to have piecewise charac-

teristics (specifically referencing LRL), something that is not seen in other programs.

This is theorized to be the result of the structure of 2mm. 2mm is comprised of

two nested loop computational sequences, each with unique memory references and

sizes. Because each loop (and consequently each working-set) is unique, each has

different equivalence conditions (the lease range). When a lease of around 35000 is

reached, the curves change behavior and cease to be monotonic. The working-set for

53

Figure 5-3: Normalized miss ratios of trialed caching policies [27]. Dashed line indi-
cates baseline (LRU) performance. Tabled results given in Figures A.1 and A.2.

one loop is now disproportionately portioned compared to the other, which results

in the irregular behavior. If two program segments are different enough or if there

are many unique patterns LRU equivalence may not hold true, so it is important to

recognize that this attribute is dependent on the evaluation scope. This concept is

further examined using spectra in Section 5.2.

5.2 Variable Leasing

For six of the seven benchmarks CARL outperforms the LRU baseline (Figure 5-3).

Atax, doitgen, and floyd-warshall are shown to be immune to improvement by uniform

lease (Figure 5-1); yet, variable leasing elicits considerable positive change. Atax is

difficult to meaningfully optimize due to its small number of accesses; even so an 8%

improvement is achieved with CARL. A similar improvement is seen in floyd-warshall,

which shows that leasing is scalable with access quantity. Of the three programs to

which FUL fails to achieve better-than-LRU performance, doitgen is confirmed to be

the least amenable to leasing (a modest miss reduction is still seen).

54

FUL performs best on nussinov and mvt, which suggests that a similar perfor-

mance improvement should be possible when using variable leases. While CARL

does outperform LRU to the same general degree that FUL does, it fails to do better

than or equivalently to FUL. FUL shows that the kernels perform better when using

MRU (as compared to LRU), indicating that the programs have higher degrees of non-

recency based patterns. CARL partitions cache to the working-set, which explains

the significant improvement over LRU. The inability to outperform FUL however,

requires a more in-depth evaluation of how the cache resources are being utilized.

This is discussed in Section 5.2.1.

A similar irregularity is exhibited by 2mm, but to a much more severe degree. This

is the only instance of a lease assignment algorithm performing worse (20% increase

in misses) than LRU. Unlike the previous two benchmarks, this has a straightfor-

ward explanation. As previously discussed with the FUL results, the benchmark is

comprised of two separate loop scopes, each with distinct reuse interval distributions.

These distributions are different, and yet they use the same set of leases, which yields

different costs for each. CARL evaluates budget utilization as one aggregate term by

projecting the statistical reuse interval distributions to the trace length size. When

multiple distinct distributions exist two possible situations can occur: CARL over-

allocates one program segment and under-allocates another so that the average cost

meets the target budget, or CARL mis-projects the distributions causing the lease

assignment cost to be valued incorrectly. Discerning between the two based solely on

cache miss performance is not possible, so cache spectra are used in Section 5.2.1 to

identify the issue.

3mm is an extension of 2mm (same algorithm, but with 3 sequential nested loops),

so a similar cache performance is expected. Interestingly, CARL is able to perform

better than both LRU and FUL. Miss performance is measured relative to the LRU

baseline so it is possible that LRU innately performs worse on 3mm, a statement

which the FUL results support based on the improvement percentages provided in

Table 5.1. FUL is able to more significantly improve 3mm performance, as compared

to 2mm, so CARL is expected to produce a similar effect. Although, with CARL the

55

improvement is much more significant, suggesting a fundamental difference in how

the lease cache performs under the assignment policy.

5.2.1 CARL vs. PRL

In every benchmark PRL shows improvement over LRU, and performs equivalently or

better than CARL. PRL and CARL are roughly equivalent in the first three programs

(atax, doitgen, floyd-warshall). For atax and doitgen, this is a result of the cache being

under-utilized, due to program structure. The CARL and PRL spectra for doitgen

(Figure 5-4) are shown to prove this. The spectrums of each algorithm are exactly the

same, which is confirmed by the aggregate vacancy curve of each. Even when forcing

the cache to fill up from cold start before enabling lease-based evictions, no additional

re-accesses occur. Thus, for the reuse intervals sampled, the leases generated for atax

and doitgen, by either CARL or PRL, optimally allocate the working-set. The cache

utilization for optimal doitgen performance is 50%. When using a reactive policy,

such as LRU, the entire cache is blindly allocated; however, only half that is actually

needed. This realization has obvious extensions to network caches. If occurrences

such as this can be recognized, network resources can be moved and re-allocated to

maximize overall utilization and performance. The same can be said about higher

level processor caches. Shared levels of caches can be allocated to cores or hardware

threads based on this predictive need, which can improve data movement efficiency.

PRL performs similar to CARL in nussinov as well, but not due to under-allocation.

Nussinov is a dynamic programming application, essentially a sorting algorithm. Its

reuses are not entirely dependent on the structure of the program, but rather the

arrangement of items to sort, which can result in a varied reuse distribution. The

complication of this is that it creates a more complex hybrid access pattern; this is

why LRU performs poorly for this benchmark. Assignments from both CARL and

PRL result in large tenancy oscillations (Figure 5-5) forcing the auxiliary replacement

policy. PRL fails to prevent over-allocation, but does show signs of attempting to

limit it. Zero/no cache vacancy is reached later on in PRL (5 million accesses) than in

CARL (3 million accesses), which shows the policy somewhat limiting the phase costs.

56

Figure 5-4: Cache aggregate vacancy (left) and cache tenancy spectrum (right) for
doitgen benchmark using CARL (top) and PRL (bottom).

Additionally, the top of the PRL curve is bounded higher than CARL, indicating that

on average there are more vacancies resulting from PRL than CARL (a byproduct of

PRL more strictly limiting allocation). Based on cache performance (Figure 5-3) the

benefit of limiting the over-allocation is negated by the induced under-allocation.

Mvt is the first instance of PRL outperforming all trialed cache policies, a direct

result of its phase-based analysis. Similar to how 2mm is described to be a 2 scope

program, mvt is comprised of a vector product and transpose. When CARL generates

the leases for mvt, it under-allocates the first scope and over-allocates during the

second scope (Figure 5-6). PRL similarly under-allocates the first scope; however,

does not over-allocate in the second. At face value the aggregate vacancy curves

indicate that CARL allocates more effectively in the first half, and as a result might

perform better overall than PRL. Only by examining the spectrum is this proven

wrong. The increase in tenancy during the first scope is due to large leases, that

57

Figure 5-5: Cache aggregate vacancy (left) and cache tenancy spectrum (right) for
nussinov benchmark using CARL (top) and PRL (bottom).

presumably have small PPUC (due to their large cost). These cache lines are not

re-accessed during this interval, and as such are not providing any real benefit. This

is something that PRL recognizes, and accordingly re-assigns leases (this is why there

is no triangular dark blue region). CARL and PRL then, essentially contribute the

same benefit during the first scope, or phase, of the program. Then, during the second

program phase PRL more effectively manages the cache, resulting in improved overall

performance. The aggregate curves confirm that PRL vacancy does not reach zero

during this phase, something that is corroborated by the ‘yellow marbling’ seen in

the latter interval of the spectrum.

PRL is able to achieve the most significant improvement in performance, compared

to CARL, with the 2mm benchmark. CARL’s spectrum (Figure 5-7) shows that

the algorithm is inefficiently assigning leases (consistently under-allocating). Even

though this is true, the target cost of optimization is met, which verifies that CARL

58

Figure 5-6: Cache aggregate vacancy (left) and cache tenancy spectrum (right) for
mvt benchmark using CARL (top) and PRL (bottom).

mis-projects the reuse interval distributions. Essentially, sampling by a factor of x,

reduces the allottable budget by x. This assumes that the trace has the same reuse

characteristics over its length (equivalent to uniformly scaling the distribution counts),

which for 2mm is known to be untrue. As a result, CARL overvalues its assignments.

PRL is less susceptible to this because of how it partitions RI distributions by phase.

It projects distributions to smaller subsets which limits how error scales. Using this

PRL improves first phase utilization by increasing the dual lease allocation rate from

6% to 23%. When the second phase is entered, this increased dual lease results in

larger allocation oscillations, as seen in nussinov, but is offset by reduced single lease

assignment costs.

3mm is an extension of 2mm, yet lease cache performance does not follow the same

trend as seen in 2mm. Both assignment algorithms outperform LRU (and FUL), and

there is less relative improvement when using PRL over CARL. 3mm is a series of

59

Figure 5-7: Cache aggregate vacancy (left) and cache tenancy spectrum (right) for
2mm benchmark using CARL (top) and PRL (bottom).

matrix multiplications, where the third matrix product is the result of the first two.

Because of this dependency, changes in allocation to either of the first two phases

elicit changes in the third, and vice versa. PRL limits the first phase allocation

to prevent over-utilization, which results in increased under-allocation of the third

phase, compared to CARL. The independence of the first two matrix operations would

theoretically allow the second and third phase allocations to be improved through

a shared reference; however, the compiler does not generate a reference mutually

exclusive of the first phase (i.e. any additional assignment increases the cost of the

first phase). With 2mm, RI projection error results in general under-allocation; yet,

3mm is able to avoid this, and is shown to be over-allocated in its first phase. The

exact cause of this is unknown.

60

Figure 5-8: Cache aggregate vacancy (left) and cache tenancy spectrum (right) for
3mm benchmark using CARL (top) and PRL (bottom).

5.2.2 PRL Resolution

Benchmarks with multiple scopes such as 2mm and mvt showcase how a phase-based

analysis can improve lease cache performance. Figure 5-9 presents the sensitivity of

PRL phase resolution using the metrics defined in Section 4.2. Atax, doitgen, and

floyd-warshall are omitted due to their similarity in how CARL and PRL perform.

Mvt exhibits the most apparent characteristics of the four benchmarks. As the

no vacancy ratio (NVR) decreases the cache performance improves. When the phase

count is increased past five, the complementary effect is seen, showing how increasing

over-allocation (increasing NVR) directly reduces performance. Evaluating multiple

vacancy ratio (MVR) is less straightforward; it is previously explained in Section 4.2

that this metric does not necessarily related to performance. As the phase number

grows, MVR increases disproportionately to NVR, or rather it converges to the in-

verse of NVR (1−𝑁𝑉 𝑅) at an increasing rate. PRL is more restrictive on the cost of

61

Figure 5-9: Comparing CARL and PRL for the four tests. Each PRL variant is
labeled with the phase count. The numbers at each bar show the no vacancy ratio
(above) and the multiple vacancy ratio (below the bar top). CARL over-allocates
the cache with its leases, shown by its vacancy ratios as low as 36%. PRL eliminates
over-allocation in the first three tests, shown by their near 100% vacancy ratios [27].
Tabled results given in Figure A.2.

each phase, hence the eventual increase in NVR. The accompanying impact of this is

that the lease restrictions imposed by PRL similarly contribute to under-allocation.

If cache performance were predictable based entirely on NVR, PRL-10 would outper-

form CARL and PRL-2, which it fails to do. PRL-10’s MVR is very similar to its

NVR inverse which shows that performance is instead being lost due to cached items

of no future benefit.

2mm and 3mm phase results are similar to mvt. In both programs cache per-

formance apexes at PRL-5, and become progressively worse with increasing phases.

The programs however, exhibit continuously decreasing NVR and increasing MVR

with phase. 2mm, the smaller of the two programs, results in 12 times more accesses

than mvt. Phasing splits the number of accesses into bins, reducing RI distribution

density. 2mm and 3mm, having a larger number of total accesses than mvt, have

more statistically significant sample distributions per phase, which may impact how

accurately leases can be assigned. Additionally, PRL-2 negatively impacts perfor-

mance in 3mm, even though NVR decreases. In this instance the phase split does

62

not equal or exceed the number of program scopes (2 splits < 3 scopes), a potential

reason as to why PRL-2 is unable to improve over CARL. It has since been verified

that increasing the PRL phase split to 3 improves cache performance to roughly a

PRL-5 equivalent assignment. 3mm is the only three scope program examined so

there is no benchmark to verify this theory against.

Nussinov is the exception to almost every observation made in mvt, 3mm, and

2mm. NVR decreases and MVR increases with the number of phase splits, but there

is no correlation to cache performance. The previous three programs trended towards

a NVR of 0% fairly quickly; however, nussinov is resistant to this, and its MVR does

not converge to the NVR inverse. Figure 5-5 shows that there are no significant

differences between CARL and PRL-5. This may suggest a more fundamental issue,

that nussinov is not amenable to predictable lease-based optimization (although not

predictable, but can still be improved using leases as compared to baseline policies).

The results suggest that the best number of phases is dependent on the number

of program scopes, and by the sensitivity of the vacancy metrics. 3mm is resistant to

improvement until PRL-5, presumably because the program is three phased. 2mm is

similar in behavior to this; yet, mvt isn’t shown to be as resistant (still benefits from

increasing the phases to five). Conversely, the phases can be overly discretized, as

evident by the decreased performance and vacancy metrics at high phase counts. In

most cases the optimal phase number is where NVR is closest to zero and MVR is

‘furthest from the NVR inverse’ (a generalization of ideal allocation).

5.2.3 Preliminary Set Associativity

As of this work the impact of set associativity on lease cache performance is not yet

conclusively studied; however, the initial work is presented. Using a spatial version of

PRL (instead of splitting by time intervals, cache lines are grouped by set) the effects

of cache freedom on lease potential is shown in Figure 5-10. For this analysis, CARL

lease assignments, which assumes a fully associative cache, are compared against

spatial PRL lease assignments (designed for set associative cache).

Without exception, the higher the associativity the better the cache performance.

63

Figure 5-10: How well set associative caches perform when using leases designed for
the architecture and ignoring set constraints. Blue bars are lease assignments made
by CARL, which assume a fully associative cache. Red bars are lease assignments
made by spatial PRL, which groups RI distributions by set. The numbers at the top
of each bar pair is the no vacancy ratio of each bar respectively. Tabled results given
in Figure A.3.

Higher degrees of associativity afford the assignment algorithm more freedom in mak-

ing assignments, due to smaller numbers of phase splits (less chance of fully allocating

a set, causing PRL to terminate early). This is expected of PRL due to its set-aware

allocation, yet CARL is competitive, and even outperforms PRL in floyd-warshall

and mvt (two-way). Ignoring the two exceptions, PRL results in a greater VR than

CARL. The root cause of the floyd-warshall exception is not yet identified; the mvt

exception is attributed to how PRL allocates the sets. It has been identified that

64

PRL heavily allocates about 15% of the total sets in the two-way architecture when

evaluating mvt. Figure 5-6 shows that the second phase utilization of the program

is high for a fully associative cache, so by limiting cache utilization to 15% PRL is

inducing this significant performance hit, which CARL avoids.

The significant outcome of this preliminary study is that it confirms the theory

that reduced cache freedom reduces lease cache potential. Eight-way performance is

fairly similar to fully associative, and even four-way is able to avoid the performance

cliff seen with two-way cache. How these results compare to baseline policies has not

been studied yet; however, the fact that four-way and eight-way are within the same

performance range as fully associative is a promising find to spur subsequent study.

65

Chapter 6

Future Work

This work focuses on embedded workloads for bare-metal execution environments.

Although these programs are scientific applications that would be realistically com-

puted in such an environment, they are predictable. Because these applications are

predictable and repeatable, they can be profiled, as is done with the hardware sam-

pler. The ultimate objective of lease cache is to be able to run operating system

workloads. The issue with this is twofold. In this work the LLT is sized according to

the benchmarks executed, and statically populated. Larger workloads however, will

have more reference assignments than can be stored in a hardware lookup table which

requires a mechanism for managing lease information - specifically when multitask-

ing. The second issue relates to the practicality of storing and managing leases in

hardware. In this work the lease registers are 24-bit because floyd-warshall produces

a lease of that width, the largest of all trialed programs. In larger scale applications

and caches the leases will continue to grow because CLAM does not bound param-

eters. In order to accommodate this all of the lease cache circuitry, specifically the

update stage, will exponentially increase in size and power. The immediate first steps

in solving each issue are,

1. Scope Leasing - the LLT is written to at run-time, allowing the table content

to be altered either by an operating system, or directly at the machine level.

2. Local Clocks - lease registers, or groupings of, are decremented by local clocks

66

instead of global logical time.

3. Parallel Assignment - the executing program is sampled, and reference leases

are assigned to lease cache in parallel.

6.1 Scope Leasing

Scope leasing at the machine level is the most immediate development step. It requires

no changes to the lease cache circuitry, only changes to the controller logic involved

with populating the LLT. The cache is able to utilize multiple lease sets, allowing

CARL or PRL to optimize each set independent of the other, resulting in greater

cache utilizations (no phase-cost dependencies of independent sets). This is directly

extendable to set-associative caches, as increasing spatial phase allocation (sets) will

have the same benefit. Once the LLT population mechanism switches from static to

scope the overhead associated with this data movement becomes a more important

performance factor to consider.

For a bare-metal system the cost of determining when to switch is absorbed at the

machine level, so it doesn’t attribute to latency cost. Two simplistic mechanisms have

been evaluated: switching by trace length and by call (for bare-metal is a memory

mapped load instruction). Given a predictable program sequence the trace lengths at

which the LLT should be re/populated can be determined statically. Those lengths

are then stored as configurations in the binary, just like lease information is currently.

When the cache controller sees that number of accesses, it requests updated LLT data

and writes in the new content. This method for leasing is not seen as scalable due to

the degree of execution clairvoyance required.

A more realistic approach is to use the concept of phase markers. A compiler has

the ability to place special instructions preceding what it determines to be a phase.

This instruction can act like a system call, where it prompts the cache to fetch the

phase encoded by the instruction. This way regardless of the execution sequence, the

LLT will always be populated pre-phase. Implementing this to be tolerant of flow

control instructions requires some degrees of redundancy in how the cache determines

67

what phase content the LLT currently has, and what is needed. Hashing the call write

value or using a lookup table would accomplish this.

6.1.1 Multiple Dual Leases

CLAM is limited to generating one dual lease per trace evaluated. For programs

with multiple scopes/phases, this can cause under-allocation as seen with mvt and

3mm (Figures 5-6 and 5-8 respectively). Incorporating additional phase-specific lease

assignments can be used to locally improve allocation without increasing the cost in

adjacent phases. To implement this, each lease can be associated with a phase ID.

Similar to the effect of process IDs in memory managed cache, the phase IDs would

be used on lease lookup to apply leases that only corroborate the current phase.

Associating each lease with an ID would also improve LLT population efficiency.

This enables several phases worth of information to be written to the table in one

burst, which would theoretically optimize the memory transaction.

6.2 Local Clocks

Local clocks are a way of decreasing the resource overhead of the lease registers. Lease

update stage circuitry scales with lease size, so minimizing the largest reference lease

that can be applied is critical for practical applications. Set associativities provide

an opportunity to modulate each group of lease registers independent of the other

groups. The size of the reference leases decreases as a result because now they only

depend on a subset of all accesses, only those inclusive to the set. Each cache group is

associated with a local clock/counter, that increment uniquely based on global logical

time. The lease registers of the set then decrement relative to this local counter. This

is simple to implement in hardware; however, the software support for this is difficult

(a comment made by the software collaborators of this work). Implementing this

would most likely require a secondary register that implements some sort of modulo

quantity to extend reference leases to any set, at any time.

68

6.3 Parallel Assignment

To use lease cache with operating systems the workload needs to be sampled, a

statistical distribution of reuse interval distribution accumulated, and CLAM needs

to assign leases, all in parallel with workload execution. Sampling and accumulation

are tasks that can be performed easily at the machine level; however, implementing a

variable lease CLAM algorithm in real-time is difficult. It would most likely require

dedicated hardware, and even then the latency associated with generating leases

may be too great to practically use. An alternative algorithm to use is FUL. Since

FUL only generates a single lease, the algorithm can be implemented with simpler

hardware, and presumably at greater speeds. The key obstacle to implementing this

is how to do so when running parallel tasks, so that performance is not bottlenecked

by CLAM.

Along the same lines of assigning lease in real-time, lease cache can be used as

a collaborative policy instead of strictly prescriptive. For set associative caches in

particular, under-allocation is a potential issue as discussed in Section 5.2.3. If lease

cache is able to monitor each set’s utilization over time, it can adjust lease assignments

to achieve better performance. A simple implementation of this would be to apply

a unique dual lease percentage correction factor for each set, which increases the

effective percentage used to multiplex LLT leases. Sets with lower utilizations would

have larger correction factors applied in order to improve the local allocation. Such

a hybrid approach may also extend to improved OS support because it has reactive

elements.

69

Chapter 7

Conclusion

CLAM gives the compiler complete control of cache memory, unlike traditional caching

techniques. This allows software to emulate other policies or to target optimal cache

performance by means of the lease assignment policy. Using FUL, LRU equivalent

performance is matched in every benchmark, at minimum. Conversely, setting the

uniform lease to zero achieves MRU performance, while making the lease arbitrarily

large emulates random eviction. In this way FUL can easily imitate other policies,

and affords lease cache a safety mechanism in the event that variable lease assignment

cannot be accomplished.

The assignments made by CARL are optimal for variable sized caches; however,

the cache tenancy spectrum developed for this work shows that practical CARL per-

formance is reliant on program structure. Programs with multiple levels of complexi-

ties are less amenable to appropriate allocation by CARL. Using PRL, the deficiencies

of CARL are mitigated, and clear improvements over all baseline cache policies are

achieved. For recency-friendly applications CLAM is able to marginally improve per-

formance (<15%) over LRU, which is viewed as an efficient policy for this pattern.

Conversely, when LRU fails (stream or thrash patterns) CLAM is able to achieve

between 50% to 70% miss reduction (as compared to LRU). CLAM has only been

comprehensively studied for fully associative cache architectures; however, PRL is

shown to have applications in spatial phase-based allocation as well, demonstrat-

ing improvement in set associative cache allocation and performance (relative to the

70

benchmarks trialed).

The immediate next development steps are identified for residual issues. Scope

leasing will solve program scalability, while set-locality will support hardware scala-

bility. Based on the allocations of the multi-phased programs examined in this work,

there is a high probability that using non-static leasing methods to control lease

lookup table content will improve local phase allocation and lease cache performance,

a significant first step towards developing lease cache for general workloads.

71

72

Glossary

Aggregate Vacancy the total number of expired cache lines at any given time.

Cache Tenancy Spectrum time-space visualization of lease cache tenancy.

Dual Lease a two value lease probabilistic assignment generated by CLAM to allo-

cated cache to the working budget, without exceeding it.

Lease a value used to protect items in cache for the duration of the value.

Lease Auxiliary Policy the replacement policy implemented on a cache miss when

there is no expired lease.

Lease Update the stage of lease cache where lease register content is managed and

eviction victims are identified.

Lease Lookup the stage of lease cache where memory access information is decoded

into lease assignment information.

Lease Renewal a cache line’s lease register content being updated with a new value.

Lease Expiration a cache line’s lease register reaching zero.

Long Length Probability probability of assigning the long length lease upon a

memory access.

Long Length Lease if assignment is a dual lease, this field is the longer lease as-

signment of the two. Otherwise, it is the sole lease assignment generated by

CLAM.

73

Multiple Vacancy Ratio the ratio of expired evictions to total evictions (by lease

expiration or auxiliary policy) when there are at least two expired cache lines.

No Vacancy Ratio the ratio of evictions by auxiliary policy to the total evictions

(lease + auxiliary).

Reuse Interval the time between two accesses to the same data item.

Scope Leasing run-time management of the lease lookup table prior to entering a

new program scope.

Short Length Lease if assignment is a dual lease, this field is the shorter lease

assignment of the two. Otherwise, this value is redundant

Static Leasing static management (pre-execution) of the lease lookup table.

Working-set the collection of information referenced by the process during the pro-

cess time interval.

Zero Lease Bypass the action of servicing a cache miss without caching the re-

quested item due to a zero lease assignment.

74

Acronyms

AMD Advanced Micro Devices

ARC Adaptive Replacement Cache

CARL Compiler Assigned Reference Lease

CLAM Compiler Lease of Cache Memory

DDR3 Double Data Rate 3 (Synchronous Dynamic Random-Access Memory)

DMA Direct Memory Access

DRD Dynamic Reuse Distance

EHC Estimated Hit Cost

ELF Executable and Linkable Format

EVA Economic Value Added

FPGA Field Programmable Gate Array

FUL Fixed Uniform Lease

GD* Greedydual*

HLPL High Level Programming Language

I/O Input/Output

75

ISA Instruction Set Architecture

JTAG Joint Test Action Group

LACS Locality Aware Cost Sensitive

LFSR Linear Feedback Shift Register

LHD Least Hit Density

LLT Lease Lookup Table

LRL Longest Remaining Lease

LRU Least Recently Used

MIN Minimum

MVR Multiple Vacancy Ratio

NRU Not Recently Used

NVR No Vacancy Ratio

OPT Optimal

OSL Optimal Steady-state Lease

PD Protection Distance

PLRU Pseudo Least Recently Used

PPUC Profit Per Unit Cost

PRL Phased Reference Lease

RI Reuse Interval

RISC-V Reduced Instruction Set Computer V

76

RRIP Re-reference Interval Prediction

SLRU Segmented Least Recently Used

SRL Shortest Remaining Lease

SRRIP Static Re-reference Interval Prediction

UART Universal Asynchronous Receiver/Transmitter

VR Vacancy Ratio

77

Appendix A

Tables

Table A.1: Benchmark performance summary for reactive cache policies.

Benchmark Policy Time [cycles] Hits Misses Writebacks
atax LRU 1444374 491454 924 133

doitgen LRU 28411706 8885194 941 940
floyd-warshall LRU 358136746 116868071 364160 364160

matrix2 LRU 20241099 6213792 19447 448
matrix3 LRU 33675508 10892247 34990 643

mvt LRU 1865464 491302 15331 142
nussinov LRU 72231152 20051779 335369 1270

atax PLRU 1444356 491454 924 133
doitgen PLRU 28411906 8885194 947 943

floyd-warshall PLRU 358141360 116868071 364311 364185
matrix2 PLRU 20257713 6213792 20023 448
matrix3 PLRU 33724264 10892247 36643 692

mvt PLRU 1869798 491302 15502 142
nussinov PLRU 72346314 20051779 338935 1280

atax SRRIP 1444358 491454 924 133
doitgen SRRIP 28411732 8885194 941 940

floyd-warshall SRRIP 358148562 116868071 364357 364188
matrix2 SRRIP 20352806 6213792 23303 448
matrix3 SRRIP 33725494 10892247 36650 642

mvt SRRIP 1863048 491302 15251 142
nussinov SRRIP 71626283 20051779 313439 1259

78

Table A.2: Benchmark performance summary for CLAM cache policies. Note: MV
Rep (Replacments) are the number of evictions made when there are two or more
expired cache lines - the numerator for MVR.

Benchmark Policy Time
(cycles) Hits Misses Writebacks Auxiliary

Rep.
MV
Rep.

atax CARL 1442574 491454 879 36 879 879
doitgen CARL 28411302 8885194 930 927 930 930

floyd-warshall CARL 357477938 116868071 345342 345313 345342 345342
matrix2 CARL 20363587 6213792 23460 628 10578 8890
matrix3 CARL 33644658 10892247 33983 802 22493 21265

mvt CARL 1492866 491302 2563 151 1721 835
nussinov CARL 67469191 20051779 171194 2962 62049 47603

atax PRL-2 1442548 491454 879 36 879 879
doitgen PRL-2 28411309 8885194 930 927 930 930

floyd-warshall PRL-2 357477938 116868071 345342 345313 345342 345342
matrix2 PRL-2 20143225 6213792 16140 472 14607 12348
matrix3 PRL-2 33671330 10892247 34851 750 26724 25121

mvt PRL-2 1484539 491302 2276 145 1777 970
nussinov PRL-2 67302055 20051779 165632 2818 64914 51082

atax PRL-5 1442560 491454 879 36 879 879
doitgen PRL-5 28411306 8885194 930 927 930 930

floyd-warshall PRL-5 357477940 116868071 345342 345313 345342 345342
matrix2 PRL-5 20114329 6213792 15191 448 15119 14926
matrix3 PRL-5 33514016 10892247 29579 643 29348 29045

mvt PRL-5 1483006 491225 2277 137 2151 1994
nussinov PRL-5 67315025 20043758 171003 2343 91659 73249

atax PRL-10 1442544 491454 879 36 879 879
doitgen PRL-10 28411306 8885194 930 927 930 930

floyd-warshall PRL-10 357477938 116868071 345342 345313 345342 345342
matrix2 PRL-10 20120610 6213792 15403 447 15401 15394
matrix3 PRL-10 33516020 10892247 29665 642 29576 29459

mvt PRL-10 1497170 491085 2844 136 2627 2626
nussinov PRL-10 67397521 20039191 176549 2159 105258 87012

atax PRL-20 1442574 491454 879 36 879 879
doitgen PRL-20 28411302 8885194 930 927 930 930

floyd-warshall PRL-20 357477938 116868071 345342 345313 345342 345342
matrix2 PRL-20 20130695 6213792 15721 439 15721 15721
matrix3 PRL-20 33527650 10892247 30029 642 29975 29958

mvt PRL-20 1566204 489073 6435 98 4206 4206
nussinov PRL-20 67410189 20038184 177563 2139 108275 90064

79

Table A.3: Benchmark performance summary for set associative CLAM cache policies.
Note: Rep = Replacements.

Benchmark Cache
Arch.

Lease
Policy

Time
(cycles) Hits Misses Writebacks Auxiliary

Rep.
atax 2-way CARL 1468887 491439 1718 317 1113

doitgen 2-way CARL 28475717 8885178 2953 1529 870
floyd-warshall 2-way CARL 358232176 116868062 366967 360128 350626

matrix2 2-way CARL 20786267 6213774 37040 2712 15815
matrix3 2-way CARL 34557699 10892221 63603 4652 29685

mvt 2-way CARL 1576061 481112 11714 56 1270
nussinov 2-way CARL 68352849 19981581 242564 4446 83338

atax 4-way CARL 1443869 491439 939 7 796
doitgen 4-way CARL 28413301 8885178 1014 870 870

floyd-warshall 4-way CARL 357756580 116868062 353370 352557 347231
matrix2 4-way CARL 20418343 6213774 25304 759 14303
matrix3 4-way CARL 34122911 10892221 49828 1806 26387

mvt 4-way CARL 1520059 490233 4140 71 2341
nussinov 4-way CARL 67685489 20045798 181546 4057 62086

atax 8-way CARL 1443877 491439 939 6 796
doitgen 8-way CARL 28413303 8885178 1014 870 870

floyd-warshall 8-way CARL 357623080 116868062 349525 349147 346166
matrix2 8-way CARL 20357345 6213774 23257 576 12419
matrix3 8-way CARL 33881299 10892221 41888 1038 25953

mvt 8-way CARL 1517545 491286 3405 95 1628
nussinov 8-way CARL 67472880 20051767 171103 3313 56959

atax 2-way PRL 1467329 491439 1672 292 1108
doitgen 2-way PRL 28475717 8885178 2953 1529 870

floyd-warshall 2-way PRL 358233704 116868062 366964 360190 350549
matrix2 2-way PRL 20782487 6213774 36911 2688 15881
matrix3 2-way PRL 34552813 10892221 63427 4659 29801

mvt 2-way PRL 1576609 480697 11993 53 1145
nussinov 2-way PRL 68327984 19978906 243407 4367 83979

atax 4-way PRL 1443869 491439 939 7 796
doitgen 4-way PRL 28413301 8885178 1014 870 870

floyd-warshall 4-way PRL 357757713 116868062 353404 352564 347339
matrix2 4-way PRL 20410207 6213774 25026 744 14454
matrix3 4-way PRL 34117929 10892221 49644 1824 26539

mvt 4-way PRL 1519163 490258 4097 64 2312
nussinov 4-way PRL 67631709 20043416 181285 3893 64415

atax 8-way PRL 1443877 491439 939 6 796
doitgen 8-way PRL 28413303 8885178 1014 870 870

floyd-warshall 8-way PRL 357622978 116868062 349525 349130 346186
matrix2 8-way PRL 20348079 6213774 22967 558 12549
matrix3 8-way PRL 33880163 10892221 41865 1031 26143

mvt 8-way PRL 1517549 491286 3408 84 1630
nussinov 8-way PRL 67480415 20051767 171332 3360 56976

80

Bibliography

[1] Intel haswell. https://www.7-cpu.com/cpu/Haswell.html.

[2] Risc-v gnu compiler toolchain. https://github.com/riscv/
riscv-gnu-toolchain.

[3] Advanced Micro Devices. Software optimization guide for AMD Family 17h
Processors, 4 2017. "Rev. 3".

[4] Altera. Cyclone V GT FPGA Development Board Reference Manual. Altera.

[5] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: Improving cache
hit rate by maximizing hit density. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages 389–403, Renton, WA,
April 2018. USENIX Association.

[6] Nathan Beckmann and Daniel Sanchez. Talus: A simple way to remove cliffs in
cache performance. pages 64–75, 2015.

[7] Nathan Beckmann and Daniel Sanchez. Modeling cache performance beyond
LRU. pages 225–236. IEEE, 2016.

[8] L. A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Systems Journal, 5(2):78–101, 1966.

[9] Kristof Beyls and Erik H. D’Hollander. Generating cache hints for improved
program efficiency. Journal of Systems Architecture, 51(4):223–250, 2005.

[10] Dong Chen, Pengcheng Li, Chen Ding, Colin Pronovost, Fangzhou Liu, Wesley
Smith, Mingyang Jiao, and Hannah Simons. Optimal program allocation of
cache: Theory and potential. In PLDI, 2020.

[11] Keith Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann,
2nd edition, 2010.

[12] Peter J. Denning. The working set model for program behaviour. Communica-
tions of the ACM, 11(5):323–333, 1968.

[13] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and
Alexander V. Veidenbaum. Improving cache management policies using dynamic
reuse distances. pages 389–400, 2012.

81

https://www.7-cpu.com/cpu/Haswell.html
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain

[14] James Evans and Gregory Trimper. Itanium architecture for programmers.
Hewlett-Packard Books, 1st edition, 2003.

[15] Evangelos Georganas, Kunal Banerjee, Dhiraj Kalamkar, Sasikanth Avancha,
Anand Venkat, Michael Anderson, Greg Henry, Hans Pabst, and Alexander Hei-
necke. High-performance deep learning via a single building block, 2019.

[16] Xiaoming Gu and Chen Ding. A generalized theory of collaborative caching.
pages 109–120, 2012.

[17] Akanksha Jain and Calvin Lin. Back to the future: Leveraging Belady’s algo-
rithm for improved cache replacement. In ISCA, pages 78–89, 2016.

[18] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. High
performance cache replacement using re-reference interval prediction (rrip). In
ACM SIGARCH Computer Architecture News, volume 38, pages 60–71. ACM,
2010.

[19] Shudong Jin and Azer Bestavros. Greedydual* web caching algorithm: Exploit-
ing the two sources of temporal locality in web request streams, 2000.

[20] M. Kharbutli and R. Sheikh. Lacs: A locality-aware cost-sensitive cache replace-
ment algorithm. IEEE Transactions on Computers, 63(8):1975–1987, 2014.

[21] Pengcheng Li, Colin Pronovost, William Wilson, Benjamin Tait, Jie Zhou, Chen
Ding, and John Criswell. Beating OPT with statistical clairvoyance and variable
size caching. In ASPLOS, pages 243–256, 2019.

[22] R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM System Journal, 9(2):78–117, 1970.

[23] Nimrod Megiddo and Dharmendra Modha. Arc: A self-tuning, low overhead
replacement cache. 03 2003.

[24] K. Morales and B. K. Lee. Fixed segmented lru cache replacement scheme with
selective caching. In 2012 IEEE 31st International Performance Computing and
Communications Conference (IPCCC), pages 199–200, 2012.

[25] Louis-Noel Pouchet and Tomofumi Yuki. Polybench/c 4.2.1. http://https:
//sourceforge.net/projects/polybench/files/, 2016.

[26] Ian Prechtl, Dorin Patru, and Chen Ding. Design and evaluation of a fixed-size
programmable working-set cache on fpgas. Technical report, March 2020.

[27] Ian Prechtl, Ben Reber, Chen Ding, Dorin Patru, and Dong Chen. Clam: Com-
piler lease of cache memory. submitted, 2020.

[28] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel
Emer. Adaptive insertion policies for high performance caching. SIGARCH
Comput. Archit. News, 35(2):381–391, June 2007.

82

http://https://sourceforge.net/projects/polybench/files/
http://https://sourceforge.net/projects/polybench/files/

[29] K. Shoemaker. The i486 microprocessor integrated cache and bus interface.
In Digest of Papers Compcon Spring ’90. Thirty-Fifth IEEE Computer Society
International Conference on Intellectual Leverage, pages 248–253, 1990.

[30] Kimming So and Rudolph N. Rechtschaffen. Cache operations by MRU change.
TOC, 37(6):700–709, 1988.

[31] Terasic. DEO-CV User Manual. Terasic.

[32] Tian Xingyan and Du Hongyan. Static cache hint generation based on a profile
of the opt cache replacement. In 2010 International Conference on Computer
Application and System Modeling (ICCASM 2010), volume 9, pages V9–84–V9–
87, 2010.

[33] A. Vakil-Ghahani, S. Mahdizadeh-Shahri, M. Lotfi-Namin, M. Bakhshalipour,
P. Lotfi-Kamran, and H. Sarbazi-Azad. Cache replacement policy based on ex-
pected hit count. IEEE Computer Architecture Letters, 17(1):64–67, 2018.

[34] Y. Wang, Y. Yang, C. Han, L. Ye, Y. Ke, and Q. Wang. Lr-lru: A pacs-oriented
intelligent cache replacement policy. IEEE Access, 7:58073–58084, 2019.

[35] Z. Wang, K. S. McKinley, A. L.Rosenberg, and C. C. Weems. Using the compiler
to improve cache replacement decisions. Charlottesville, Virginia, 2002.

[36] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. The
risc-v instruction set manual, volume i: Unpriviledged isa. Technical report,
EECS Department, University of California, Berkeley, June 2019.

[37] Liang Yuan, Chen Ding, Wesley Smith, Peter Denning, and Yunquan Zhang. A
relational theory of locality. ACM Trans. Archit. Code Optim., 16(3), August
2019.

83

	CLAM: Compiler Lease of Cache Memory
	Recommended Citation

	Introduction
	Data Locality
	Cache
	Cache Policy
	Software-Driven Management

	Objective

	Background
	Reuse Interval
	Lease Cache: CLAM
	CARL: Compiler Assigned Reference Leasing
	CARL Extensions

	Lease Cache Hardware Design
	Lease Cache Implementation
	Hardware
	Software Support

	Hardware Support for CLAM
	Lease Tracking

	Testing
	Test System
	Processor Core
	Communication and Control
	Design Parameters

	Cache Performance Metrics
	Cache Tenancy Spectrum

	Benchmark Applications and Policies

	Results and Discussion
	Fixed Uniform Leasing
	Variable Leasing
	CARL vs. PRL
	PRL Resolution
	Preliminary Set Associativity

	Future Work
	Scope Leasing
	Multiple Dual Leases

	Local Clocks
	Parallel Assignment

	Conclusion
	Glossary
	Acronyms
	Tables

