
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

8-2020

Leveraging Programmable Data Plane For Compressing Leveraging Programmable Data Plane For Compressing

Forwarding Tables Forwarding Tables

Garegin Grigoryan
gg5996@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Grigoryan, Garegin, "Leveraging Programmable Data Plane For Compressing Forwarding Tables" (2020).
Thesis. Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10538?utm_source=repository.rit.edu%2Ftheses%2F10538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Leveraging Programmable Data Plane For Compressing Forwarding Tables

by

Garegin Grigoryan

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

August, 2020

Leveraging Programmable Data Plane For Compressing Forwarding Tables

by

Garegin Grigoryan

Committee Approval:

We, the undersigned committee members, certify that we have advised and/or supervised the candidate on the work described in

this dissertation. We further certify that we have reviewed the dissertation manuscript and approve it in partial fulfillment of the

requirements of the degree of Doctor of Philosophy in Computing and Information Sciences.

Dr. Minseok Kwon Date
Dissertation Advisor

Dr. M. Mustafa Rafique Date
Dissertation Committee Member

Dr. H.B. Acharya Date
Dissertation Committee Member

Dr. Yaoqing Liu Date
Dissertation Committee Member

Dr. Jayanti Venkataraman Date
Dissertation Defense Chairperson

Certified by:

Dr. Pengcheng Shi Date
Ph.D. Program Director, Computing and Information Sciences

ii

iii

c©2020 Garegin Grigoryan

All rights reserved.

Leveraging Programmable Data Plane For Compressing Forwarding Tables

by

Garegin Grigoryan

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences Ph.D. Program in

Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

The Forwarding Information Base (FIB) resides in the data plane of a routing device and is used to forward

packets to a next-hop, based on packets’ destination IP addresses. The constant growth of a FIB forces net-

work operators to spend more resources on maintaining memory with line-rate Longest Prefix Match (LPM)

lookup in a FIB, namely, expensive and energy-hungry Ternary Content-Addressable Memory (TCAM)

chips. In this work, we review two different approaches used to mitigate the FIB overflow problem. First,

we investigate FIB aggregation, i.e., merging adjacent or overlapping routes with the same next-hop while

preserving the forwarding behavior of a FIB. We propose a near-optimal algorithm, FIB Aggregation with

Quick Selections (FAQS), that minimizes the FIB churn and speeds BGP update processing by more than

twice. In the meantime, FAQS preserves a high compression ratio (at most 73%). FAQS handles BGP up-

dates incrementally, without the need of re-aggregating the entire FIB table. Second, we investigate FIB (or

route) caching, when TCAM holds only a portion of a FIB that carries most of the traffic. We leverage the

emerging concept of the programmable data plane to propose a Programmable FIB Caching Architecture

(PFCA), that allows cache-victim selection at the line rate and significantly reduces the FIB churn compared

to FIB aggregation. PFCA achieves 99.8% cache-hit ratio with only 3.3% of the FIB placed in a FIB cache.

Finally, we extend PFCA’s design with a novel approach of integrating incremental FIB aggregation and FIB

caching. Such integration needed to overcome cache hiding challenge when a less specific prefix in a cache

hides a more specific prefix in a secondary FIB table, which leads to incorrect LPM matching at the cache.

In Combined FIB Caching and Aggregation (CFCA), cache-hit ratio is maximized up to 99.94% with only

2.5% entries of the FIB, while the total number of route changes in TCAM is reduced by more than 40%

compared to low-churn FIB aggregation techniques.

iv

Acknowledgments

Research

I am very grateful to my first advisor, Dr. Yaoqing Liu for his constant help and motivation. Most of the

research work presented in this document, such as FIB Aggregation with Quick Selections (FAQS) and the

Programmable FIB caching Architecture (PFCA) was done under Dr. Liu’s direct support and guidance. I

hope to continue my collaboration with Dr. Liu as I consider it essential for my future research achievements.

I was very lucky to continue my Ph.D studies at Rochester Institute of Technology. My sincere gratitude

goes to my advisor Dr. Minseok Kwon for supporting and guiding through new areas of research as well as

helping me to restart my professional career. Specifically, I would like to thank Dr. Kwon for his insightful

comments on writing a research paper and doing a research presentation.

General

It has been an exciting journey, that started at the Clarkson University of the North Country. My gratitude

goes to the Computer Science faculty of Clarkson University, particularly, Dr. Christopher Lynch, Dr. Alexis

Maciel, Dr. Christino Tamon, Dr. Jeanna Matthews.

At RIT, I had a great opportunity to learn from and work with wonderful faculty and staff - that includes

Dr. Mohan Kumar, Dr. Pengcheng Shi, Dr. M. Mustafa Rafique, Dr. H. B. Acharya, Dr. Leon Reznik, Dr.

Peizhao Hu, Lorrie Jo Turner, Min-Hong Fu, Amanda Zeluff.

I am extremely grateful to my parents for supporting me from the very first day.

Thank you Alan Beadle for the support and motivation.

Thank you Ashok Babel for being a great and reliable friend.

Thanks to John Marshall and James Coole for supporting me during my Cisco internship. Special thanks

go to my friends and colleagues: Alain Lafaye, Behman Mofakham, Suman Bhowmick, Soham Dongar-

gaonkar, Igor Khokhlov, Sahil Gupta, Nibesh Shrestha, Avinash Maurya, Andrei Aleksandrov, Eleanor

Kellam, Matthiew Turner, Patrick Jaouen, Jeffrey D. Carr, Susan Gemmett, Mathieu Wong, Keivan Bah-

mani, Steve Liebich, Paul D. Holt, Austin Jantzi, Rasool Mazruee, Masoud Moghaddam, Hamid Eisazadeh,

William van Doorn.

v

To my parents, Hasmik and Alexandr Grigoryan, and my brother, Artashes Grigoryan.

vi

Preface

This thesis is based on the following conference papers and journal articles:

1. Grigoryan, G., Liu, Y., Kwon, M. 2020. PFCA: a programmable FIB caching architecture. To appear

in IEEE/ACM Transactions on Networking (ToN).

2. Grigoryan, G., Liu, Y., Kwon, M., 2020. Boosting FIB Caching Performance with Aggregation.

In Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed

Computing. 2020, ACM [31].

3. Liu, Y., Grigoryan, G., 2018, November. Toward incremental FIB aggregation with quick selections

(FAQS). In Proceedings of 17th International Symposium on Network Computing and Applications

(NCA) (pp. 1-8). 2018, IEEE [46];

4. Grigoryan, G., Liu, Y., 2018. PFCA: a programmable FIB caching architecture. In Proceedings of

the 2018 Symposium on Architectures for Networking and Communications Systems (pp. 97-103).

2018, ACM [30].

5. Grigoryan G., Liu Y. ”Toward a programmable FIB caching architecture,” In Proceedings of IEEE

25th International Conference on Network Protocols (ICNP), Toronto, ON, 2017, pp. 1-2 [29].

The co-authors of the listed papers gave their permission to use the papers for this document.

vii

Abbreviations

AS Autonomous System

BT Binary Tree

CFCA Combined FIB Caching and Aggregation

DRAM Dynamic Random Access Memory

FAQS FIB Aggregation with Quick Selections

FIB Forwarding Information Base

ISP Internet Service Provider

LPM Longest Prefix Match

LTHD Light Traffic Hitters Detection module

PFCA A Programmable FIB Caching Architecture

PSA Portable Switch Architecture

PT Patricia Tree

RIB Routing Information Base

RM Route Manager

SRAM Static Random Access Memory

TCAM Ternary Content-Addressable Memory

viii

Contents

1 Introduction 1

1.1 Problem overview . 1

1.2 FIB aggregation . 3

1.3 FIB caching . 3

1.4 Our contribution . 4

1.5 Organization . 6

2 Background 7

2.1 Routing basics . 7

2.2 Longest Prefix Match (LPM) rule . 8

2.3 LPM at the data plane . 9

3 FIB Aggregation with Quick Selections 11

3.1 Introduction . 11

3.2 Data structures . 12

3.3 Design . 14

3.3.1 Static FIB aggregation . 14

ix

CONTENTS x

3.3.2 Incremental FIB update handling . 17

3.4 Evaluation of FAQS . 20

3.4.1 Verifying the Forwarding Equivalence with VeriTable 21

3.4.2 IPv4 results . 23

3.4.3 IPv6 results . 26

3.5 FAQS. Conclusion . 27

4 A Programmable FIB Caching Architecture 28

4.1 Introduction . 28

4.2 Programmable data plane . 30

4.3 Design . 31

4.3.1 Overview . 31

4.3.2 Route manager . 33

4.3.3 Light Traffic Hitters Detection . 40

4.4 P4 prototype . 42

4.5 Complexity . 43

4.6 Evaluation of PFCA . 44

4.6.1 Experiment setup . 44

4.6.2 Tuning the FIB caching architecture . 44

4.6.3 Results . 45

4.7 PFCA. Discussion . 48

4.8 PFCA. Conclusion . 49

CONTENTS xi

5 CFCA: Combined FIB Caching and Aggregation 50

5.1 Introduction . 50

5.2 Design of CFCA . 51

5.2.1 Control plane workflow . 52

5.2.2 Data plane workflow . 60

5.2.3 Complexity of CFCA’s aggregation . 61

5.3 CFCA. Evaluation . 61

5.3.1 Experimental setup . 62

5.3.2 CFCA vs FIB Caching (PFCA) . 63

5.3.3 CFCA vs FIB Aggregation (FAQS/FIFA-S) . 66

5.3.4 Evaluating a heavier trace . 66

5.4 CFCA. Conclusion . 67

6 Related Work 68

6.1 FIB aggregation . 68

6.2 FIB caching . 69

7 Conclusion 72

7.1 Discussion . 72

7.2 Limitations . 73

7.3 Future work . 73

Appendices 82

CONTENTS xii

A Algorithms of FAQS 83

B Algorithms of PFCA 87

C Listings for Light Traffic Hitters Detection Module 88

D Algorithms of CFCA 91

E Algorithms of VeriTable 96

List of Figures

1.1 BGP table growth. 2

2.1 The architecture of a traditional router running BGP protocol. 8

2.2 Longest Prefix Matching in TCAM. 9

3.1 PT and BT for FIB entries from Table 3.1a. 13

3.2 Static FIB aggregation of FIB from Table 3.1a. 15

3.3 Incremental FIB update handling by FAQS. 19

3.4 Prefix withdrawal handling by FAQS. 19

3.5 VeriTable algorithm. 22

3.6 AS neighbor statistics. 23

3.7 FIB aggregation of IPv4 routing table (AS 3356). 25

3.8 FIB aggregation of IPv4 routing table (AS 3130). 25

3.9 FIB ratio, IPv4 FIB tables. 26

3.10 FIB aggregation of IPv6 routing table (AS 6939). 27

4.1 Cache hiding example. 29

xiii

LIST OF FIGURES xiv

4.2 Portable Switch Architecture (PSA). 30

4.3 FIB caching architecture. 32

4.4 Prefix extension in PFCA. 35

4.5 BGP updates processing by RM. 37

4.6 Data plane workflow . 39

4.7 Light Traffic Hitters Detection. Example. 40

4.8 Cache-miss ratio with popularity-based victim selection. 46

4.9 Cache-miss ratio with random victim selection . 46

4.10 Cache-miss ratio with heap-based victim selection. 46

4.11 Size of Level-1, Level-2 caches and the full FIB. 46

4.12 Installations and evictions in the full Level-1 cache. 46

4.13 Number of BGP updates in the Level-1, Level-2 caches and the full FIB. 46

5.1 The architecture of CFCA . 51

5.2 FIB aggregation in CFCA . 54

5.3 BGP update handling workflow in CFCA . 56

5.4 BGP updates handling by CFCA . 58

5.5 Comparison of node accesses between PFCA and CFCA (worst case scenario) 61

5.6 CFCA vs PFCA. Cache-miss ratio per 100K packets for 15,000 L1 and 20,000 L2 caches . . 64

5.7 L1 cache in CFCA and PFCA . 65

5.8 CFCA. Cache-miss ratio per 100K packets under a heavier load 66

5.9 BGP update handling time . 66

List of Tables

2.1 Forwarding Information Base (FIB). 9

3.1 FIB aggregation process. 12

3.2 FIB entries after aggregation by FAQS. 16

3.3 Evaluation summary. 24

5.1 Example of FIB aggregation . 51

5.2 CFCA vs FIB caching with PFCA. Evaluation summary. 63

5.3 CFCA L1 cache vs FAQS/FIFA-S . 64

5.4 CFCA vs PFCA (larger trace) . 67

E.1 Joint Patricia tree node’s attributes. 96

xv

Chapter 1

Introduction

1.1 Problem overview

A Forwarding Information Base (FIB) is used for IP prefix lookup and packet forwarding based on a packet’s

destination IP address. FIBs in backbone routers of many Internet Service Providers (ISPs) contain more

than 800,000 IPv4 and 70,000 IPv6 entries and the number of entries continues to increase [8] (see Fig-

ure 1.1). To achieve fast prefix lookups while overcoming Longest Prefix Match (LPM) rule challenges,

FIBs are usually installed in Ternary Content-Addressable Memory (TCAM) chips of modern high-end

routers. Unlike Dynamic Random-Access Memory (DRAM) or Static Random-Access Memory (SRAM)

with storage as a primary function, TCAM is a unique type of hardware solution that provides one-CPU-

cycle parallel search over hundreds of thousands of FIB entries [28]. However, TCAM chips are signif-

icantly more expensive and energy-consuming than SRAM or DRAM chips [16, 37, 44, 54]. Maintaining

power-hungry TCAM chips significantly increases operators’ production costs for TCAM usage, including

such expenses as providing cooling facilities for the networking hardware [6,71]. Moreover, the continuous

growth of the global FIB size and widespread adoption of IPv6 may lead to TCAM overflow problem and

thereby the Internet service disruptions [3]. These potential consequences drive network operators to buy

new high-capacity TCAM chips with higher cost and additional energy consumption or limit a memory

allocation for IPv6 routes [20]. Based on our market analysis, the price of the Cisco ASR 9000 Series Line

Card that can support up to 1M of TCAM entries can make up to 80% of the total cost of a router.

The super-linear growth of global FIB can be attributed to two main factors:

1. The growth of Internet users across the world. Since the beginning of 2018, the Internet Assigned

1

CHAPTER 1. INTRODUCTION 2

(a) IPv4 prefixes

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1985 1990 1995 2000 2005 2010 2015 2020

N
e

w
 a

c
ti
v
e

 p
re

fi
x
e

s
 i
n

 t
h

e
 F

IB

Year

(b) IPv6 prefixes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 2005 2008 2011 2014 2017

N
e

w
 a

c
ti
v
e

 p
re

fi
x
e

s
 i
n

 t
h

e
 F

IB

Year

Figure 1.1: BGP table growth.

Numbers Authority (IANA) allocated more than four thousands of new Autonomous System Numbers

(ASNs). The widespread deployment of IPv6 will trigger ASN and prefix allocations even more.

2. Traffic-engineering and multi-homing used to provide fine-grained routing [80]. Both techniques

imply prefix fragmentation or advertising more specific prefixes via BGP (Border Gateway Protocol).

Studies show that 50% of prefixes announced by BGP are more specific prefixes [53].

There are several approaches targeting TCAM overflow and FIB growth problems. Zhao et al. in [80] put

them into two broad categories, namely, long-term and short-term solutions. The long-term solutions [51,66]

include revision of the business relations between Autonomous Systems, e.g., network operators working in

the Default Free Zone (DFZ) can be compensated for keeping all routes in a FIB. Alternatively, re-design

of the routing architecture, e.g., splitting address space into a locator (for routing systems) and an identifier

(for end systems), may greatly reduce the size of the global FIB table. However, both strategies require a

coordinated deployment on a global scale. In this thesis, we investigate short-term solutions, that can be

applied locally in an Autonomous System (AS) and significantly prolong the lifetime of a TCAM chip. First,

we study FIB aggregation, which network operators believe to be one of the most feasible solutions as it has

a clear deployment strategy and benefit [80]. Next, we study FIB caching, that greatly compresses the FIB

on TCAM by offloading it from unpopular routes.

CHAPTER 1. INTRODUCTION 3

1.2 FIB aggregation

FIB aggregation [23, 46, 48, 72] merges prefixes that share the same next-hop in a FIB. The resulting com-

pressed FIB should maintain the same forwarding behavior as the original FIB. That is, a packet with an

arbitrary destination IP address should be forwarded to the same next-hop (or dropped) by a compressed

FIB as with the original FIB. In the meantime, a FIB aggregation algorithm must correctly and efficiently

handle numerous route updates, advertised through Border Gateway Protocol (BGP). FIB aggregation al-

gorithms, based on Optimal Routing Table Constructor (ORTC) [23, 48], may compress a FIB by at most

80% depending on the number of neighbors an AS has. However, those algorithms suffer from several

drawbacks:

1. High time costs for processing route updates, including additions, withdrawals, and changes (i.e.,

BGP updates). For instance, one of the state-of-the-art FIB aggregation algorithms, FIFA-S [48]

achieves optimal aggregation ratio for each update but needs to perform two subtree traversals in the

control plane for such a goal.

2. High BGP churn. Individual BGP updates result in a burst of changes in a FIB. An increase of writes

into a FIB is especially disadvantageous for TCAM chips, where an entry insertion may require up to

1000 operations [34].

3. Memory consumption at the control plane. The optimal compression ratio in ORTC is achieved at the

expense of high memory usage [76]: each node generated by the aggregation algorithm in the control

plane contains an array of a variable size, which stores next-hop candidates to be used for next-hop

selection for aggregated prefixes.

1.3 FIB caching

An alternative to FIB aggregation, FIB caching utilizes the high skewness between the number of popular

and unpopular routes in a global FIB. In fact, merely 1.93% of FIB entries cover more than 99.5% of flows

going through ISP network [25]. FIB caching addresses this important property of the Internet traffic by

storing the most popular routes in the expensive memory (such as TCAM) and relocating unpopular routes

to cheaper memory units (such as DRAM). The switch hardware manufacturers widely applied FIB caching

until the early 1990s. Specifically, Cisco’s fast switching [18] implied storing the recently used prefixes

in faster memory. While FIB caching has several advantages over FIB aggregation, such as a smaller FIB

size and a smaller BGP churn on TCAM, several flaws of current FIB caching architectures impede its

CHAPTER 1. INTRODUCTION 4

widespread deployment. First, increased amounts of a cache miss cause packet losses at slow memory

buffers of the data plane [41]. Second, FIB caching solutions lack an efficient procedure to select victim

cache entries for cache replacement. Random cache victim selection may result in evictions of popular

prefixes from the cache. Thus, popularity-based victim selection is more reliable and accurate. It was shown

that LRU (Least Recently Used) policy is the most efficient replacement algorithm [25, 41]. However, LRU

is a software solution and is impractical for implementing on high-end routers with large routing tables [47]

due to the performance concern. In [47], Liu et al. proposed to use idle timeouts to evict the least popular

entries. Yet, such a strategy may lead to TCAM overflow when the number of new cache entries exceeds the

number of idle cached flows.

1.4 Our contribution

First, we propose a near-optimal algorithm, FIB Aggregation with Quick Selections (FAQS), that doubles

the speed of BGP update processing and minimizes BGP churn in the data plane. Different from existing

aggregation algorithms, FAQS uses a single tree traversal to conduct both FIB aggregation and handle FIB

updates. It handles routing updates incrementally, without re-aggregation of an entire forwarding table. On

a single BGP update, in the worst case, FAQS will traverse only a subtree rooted at the updated node and its

parents’ nodes. Furthermore, unlike FIFA-S, FAQS keeps only a single next-hop at each node and consid-

erably reduces memory consumption for aggregation operations. The outcome of our improvements is the

significant acceleration of FIB aggregation and update handling. Although FAQS is still a heuristic aggrega-

tion algorithm, we experimentally prove its superior performance via multiple realistic datasets in different

Routing Information Bases (RIBs) with more than 1 billion route updates from Route Views Project [5] over

a 6-year period. The results are briefly described as follows:

1. FAQS achieves high and near-optimal compression ratios: reducing the number of FIB entries by up
to 73% for IPv4 and 42% for IPv6.

2. FAQS runs up to 2.53 and 1.75 times as fast as the existing ORTC algorithms for IPv4 and IPv6 FIBs,

respectively.

3. FAQS reduces the average number of FIB changes by 30% for IPv4 routing tables and by 10% for
IPv6 routing tables.

4. FAQS can save up to 30% of memory consumption compared with the algorithms that achieve optimal

aggregation ratio.

CHAPTER 1. INTRODUCTION 5

Second, we revisit the idea of FIB caching (or route caching) from a different perspective from traditional

approaches. We propose to leverage the programmable data plane, namely, Protocol Independent Switch

Architecture (PISA) and P4 language [2,13] to minimize cache-miss latency and enhance cache replacement

performance. We call our new design a Programmable FIB Caching Architecture (PFCA). In PFCA, we

adopt several features of PISA and P4. First, we take advantage of the programmability of match-action

tables to design two levels of caching structure. Second, we employ the programmability of the ingress

pipeline in PISA, which allows PFCA to process cache-miss packets at the line-rate. Third, PFCA uses P4

registers, counters and hash functions to identify unpopular and popular routes, trigger cache replacement

operations and conduct pipeline-based packet processing.

In summary, our key contributions in PFCA are as follows:

1. We designed PFCA, a programmable FIB caching architecture, where cache-miss operations are han-

dled entirely in the data plane.

2. We designed a pipeline-based mechanism for cache victim selection and emulated it in a virtual P4

switch.

3. Our evaluation shows that PFCA uses 3.34% entries (20K) of the full FIB to achieve 99.825% hit
ratio for Level-1 cache, and only 0.014% of the total traffic is redirected to the slow memory thanks

to the Level-2 cache with 6.68% (40K) entries of the full FIB. In addition, we show a significant

deduction of expensive writing operations on TCAM caused by BGP routes updates.

Third, we integrated FIB aggregation and caching for small FIB size with efficient use of TCAM and a

higher cache-hit ratio, but not compromising LPM matching correctness. To this end, we design Combined

FIB Caching and Aggregation (CFCA in short) by introducing an aggregation layer into the Route Manager

of the control plane in PFCA. Unlike other FIB aggregation algorithms [23, 46], CFCA does not produce

overlapping routes, and thus prevents cache hiding1, while handling BGP updates incrementally without

re-aggregation of the entire FIB. Specifically, CFCA uses prefix binary trees and prevents prefixes from

the same branch to be installed into the cache and the main FIB. CFCA’s aggregation frees up significant

space, dramatically increases cache-hit ratios, and stabilizes the cache compared to other FIB compression

mechanisms. Our results show that when the size of a FIB on TCAM is only 2.50% of a full FIB, TCAM

miss ratio is reduced by 80% while the churn is reduced by 40% in comparison to standard FIB aggregation,

indicating that both FIB aggregation and caching in CFCA mutually boost their advantages but eliminate

the disadvantages when applied together.
1Hiding of a longer matching prefix in the main memory, while a shorter matching prefix stays in a cache (See Section 4.1)

CHAPTER 1. INTRODUCTION 6

Our contributions with CFCA are as follows:

1. We design a FIB aggregation algorithm compatible with FIB caching. CFCA’s aggregation preserves

the forwarding behavior of a FIB without introducing overlapping routes. As a result, CFCA outper-

forms existing FIB caching techniques by achieving 99.94% cache-hit ratio with only 2.50% of the
FIB entries in a TCAM cache.

2. We design CFCA’s incremental BGP update handling algorithm. In CFCA, only 0.625% of BGP up-
dates trigger changes in TCAM; the total churn in TCAM is reduced by 40% compared to a standard

FIB aggregation. In the meantime, the time cost for BGP update handling by CFCA exceeds PFCA’s

by only 0.09µs (11.6%).

3. We evaluate CFCA using traffic traces with more than 3.5 billion of packets and 45,600 BGP updates.

Our simulation demonstrates the advantages of CFCA over standard FIB caching and aggregation

approaches in terms of cache-miss ratio and cache churn.

1.5 Organization

In Chapter 2, we give the necessary background on routing, LPM matching, and FIB compression. In Chap-

ter 3, we study FIB aggregation and propose FAQS, a faster FIB aggregation algorithm with the minimized

churn. In Chapter 4, we study FIB caching and propose PFCA, a Programmable Data Plane Architecture

for efficient FIB caching. In Chapter 5, we present CFCA, Combined FIB Caching and Aggregation for

boosting FIB compression while reducing cache-miss rations and data plane churn. In Chapter 6, we review

the related work in the area of FIB aggregation, caching and forwarding equivalence verification. Finally, in

Chapter 7, we conclude this thesis and discuss future work.

Chapter 2

Background

2.1 Routing basics

Routers are the key devices for computer networking. The control plane of a router collects and exchanges

paths towards other network destinations. The data plane of a router stores the routing table and forwards

packets accordingly to it.

The global Internet routing space is divided into Autonomous Systems (ASes) - sets of routers under a single

administration [33]. The ASes are allocated with blocks of IP addresses, unified into IP prefixes. While

intra-AS routing is regulated by Interior Gateway Protocols, defined internally by AS operators, the inter-

routing between ASes is conducted through the external Border Gateway Protocol (BGP). BGP protocol

allows an AS to advertise its network (i.e., its IP prefixes) and share paths to other networks with neighbor

ASes. In addition, each AS designs its own BGP policies for path selection and advertising. BGP peer

sessions result in a Routing Information Base (RIB), stored at the control plane of a router. A RIB contains

the known prefixes and paths towards them. In standard routers, these prefixes and the first hops from the

corresponding paths are directly installed into a Forwarding Information Base (FIB) of a router’s data plane.

When a packet arrives at a router, its destination IP address should be matched against the FIB in order to

obtain the next-hop, where the packet will be forwarded by the router’s forwarding engine. The IP matching

at the data plane adopts the Longest Prefix Matching (LPM) rule, discussed in the following section.

7

CHAPTER 2. BACKGROUND 8

Figure 2.1: The architecture of a traditional router running BGP protocol.

2.2 Longest Prefix Match (LPM) rule

According to the Longest Prefix Match rule, when an IP packet is matched against an FIB, among the

prefixes matching its destination IP address the longest one must be selected. We give the formal definition

below.

Definition 1. Suppose p is a prefix with length lp in a forwarding table T . We denote p as p1p2..plp , where

p={0, 1}lp (i.e., pi is 0 or 1 for i = 0, 1, 2, ..., lp). Also suppose there is a string s = {0, 1}ls , where ls is

the length of s. Then, according to the Longest Prefix Matching rule, we define that p is the Longest Prefix
Match for s in T , namely, p = LPMs(T), if and only if

1. lp ≤ ls

2. p is a prefix for s, i.e. p1p2..plp = s1s2..slp .

3. @ p′ in T , where p′ is a prefix of s and lp′ > lp.

We use Table 2.1 to illustrate the LPM selection. The table represents a sample FIB for IPv4 addresses with

32-bit address space. Several cases may happen during the matching process:

1. An IP destination address does not have a match in an FIB. In such a case, the packet will be dropped

by the router. For example, an IP destination address that does not start with the prefix 128.153.0.0/16,

for example, 45.56.76.120, will be discarded.

CHAPTER 2. BACKGROUND 9

Prefix Next Hop

128.153.0.0/16 1

128.153.64.0/18 2

128.153.128.0/17 3

128.153.192.0/18 4

128.153.96.0/19 5

Table 2.1: Forwarding Information Base (FIB).

Figure 2.2: Longest Prefix Matching in TCAM.

2. An IP destination address has a single match in a FIB. In such a case, the packet will be simply

forwarded to the corresponding next hop. An example of such an IP address is 128.153.0.11 with the

match 128.153.0.0/16 and next-hop 1.

3. An IP destination address has several matches in the table. In such a case, a match with the longest

prefix length will be selected. An example of such an IP address is 128.153.124.35, that matches

prefixes 128.153.0.0/16, 128.153.64.0/18, 128.153.96.0/19. However, only the prefix 128.153.96.0/19

will be selected by the data plane engine, since it is the Longest Prefix Match. Thus, the packet will

be forwarded to the next-hop 5.

2.3 LPM at the data plane

The amount of traffic at backbone networks may reach up to 170 Tbps in 2021 [24]. Such amounts of

traffic require backbone routers to perform the LPM at a line rate. This goal is achieved by placing a FIB

CHAPTER 2. BACKGROUND 10

in Ternary-Content Addressable Memory (TCAM) chips. Entries in TCAM should be sorted by their prefix

lengths, starting with the longest prefix. The bits of an IP address are matched against all the prefixes in

parallel, and the highest in position matching prefix is selected.

The design of TCAM makes it significantly more expensive than Static Random Access Memory (SRAM) or

Dynamic Random Access Memory (DRAM) chips [16, 37, 54]. The cost of storage per single bit in TCAM

is about 30 times more expensive than in SRAM due to the greater number of transistors [16], [54]. While

a TCAM chip occupies much larger physical space than SRAM [52], the number of entries that TCAM

is able to maintain is smaller compared to both SRAM and DRAM. The size of TCAM available on the

market in 2016 was ranging from 1Mb to 72Mb [45]. Due to the high power demands of TCAM chips, the

smaller capacity TCAM are the most popular on the market. Meanwhile, the constant increase of prefixes in

the global FIB leads to TCAM overflow problem and forces network operators to upgrade their forwarding

devices with bigger-size TCAM [80].

In this work, we leverage different FIB compression techniques to mitigate TCAM overflow problem. In the

following chapter, we present FAQS, a FIB aggregation with Quick Selection, that compresses the forward-

ing table at the smaller cost than previous FIB aggregation techniques.

Chapter 3

FIB Aggregation with Quick Selections

3.1 Introduction

FIB aggregation refers to a process, that merges FIB entries with different prefixes and the same next-hop.

The rationale is that as long as data packets can be forwarded with the correct next-hop and reach their

destinations correctly, it is irrelevant using which route, either the original one or an aggregated one with

a different prefix length. While FIB aggregation may greatly compress the size of a FIB, the aggregation

process must ensure 100% forwarding correctness and should not change the forwarding behaviors for any

packet. In other words, the original and aggregated FIB tables should be Forwarding Equivalent.

In the following definition, we denote:

1. LPMω(T) as a Longest Prefix Match of an IP address ω in a table T (see Definition 1 in Section 2.2

for a formal definition of a Longest Prefix Match).

2. NT (p) as a next-hop for a prefix p in a table T .

Definition 2. The forwarding tables T1, T2, ..., Tm are Forwarding Equivalent, if and only if, for every

single IP address ω = {0, 1}n, NT1(LPMω(T1)) = NT2(LPMω(T2)) = ... = NTm(LPMω(Tm)), where

n is the length of an IP address.

In Table 3.1a FIB entriesB andC have the same next-hop value as the entryA, which fully covers IP address

blocks of both B and C. Hence, excluding entries B and C from FIB table will not change the forwarding

behaviors for any packets matching against B or C, which preserves the Forwarding Equivalence of the

11

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 12

Table 3.1: FIB aggregation process.

(a) Original FIB table

Label Prefix Next-hop

A 141.92.0.0/16 1

B 141.92.64.0/18 1

C 141.92.0.0/19 1

D 141.92.192.0/19 2

E 141.92.224.0/19 2

(b) Compressed FIB table

Label Prefix Next-hop

A 141.92.0.0/16 1

D 141.92.192.0/19 2

E 141.92.224.0/19 2

original and aggregated tables. Excluding entries D or E, in contrast, will not preserve the Forwarding

Equivalence, e.g., packets with destination IP addresses from these blocks will be forwarded to the next-hop

1 instead of 2.

A compressed FIB after aggregation is given in Table 3.1b with 3 entries, which yields the same forwarding

behaviors as the original unaggregated FIB (Table 3.1a). While this is a simple example of correct FIB

aggregation, more complicated cases need to be handled by an efficient aggregation algorithm. These cases

include handling overlapping routes, where the majority of prefixes share the same next-hops, however,

certain prefixes have different next-hops. Finally, FIB aggregation complicates BGP update handling, since

these updates are designated for original prefixes, rather than aggregated prefixes.

FIB aggregation module needs to operate at the control plane of a routing device, to compress the FIB before

pushing its entries into the data plane. Next, we describe the data structures we utilize for our proposed FAQS

algorithm.

3.2 Data structures

To aggregate real FIB tables with hundreds of thousand entries, the control plane’s aggregation algorithm

needs to utilize compact and efficient data structures. In this work, we leverage PATRICIA tree (PT) [55]

to store FIB entries. Similarly to a prefix binary tree, the nodes in such a tree correspond to prefixes (or bit

strings). More specifically, the root node corresponds to the prefix with the length 0; the left or the right

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 13

Figure 3.1: PT and BT for FIB entries from Table 3.1a.

child of a node corresponds to a prefix with an appended bit 0 or 1 respectively. However, unlike a full

Binary Tree (BT), which requires the prefix length difference between a parent and child node to be exactly

one, the difference in a PT can be more than one. We illustrate the differences between a PT and a BT

representation in Figure 3.1 for the FIB in Table 3.1. Note that we call the nodes derived from the original

FIB table as REAL nodes, while ancillary nodes, required to bind real nodes are called as FAKE nodes.

In a BT, looking up the next-hop for a given destination address is based on its bits: starting from the first

bit, if a bit is 0, then move to the left branch of the BT, otherwise, move to the right. This is a recursive

process until an LPM prefix is found. In a PT, movements also stem from the difference between nodes’

levels and the bit values that reflect the branch that connects two nodes, however, a single movement can

include several bits instead of a single bit.

As we can observe, the use of a PT significantly reduces memory consumption and the number of memory

access times for a prefix search. This feature is especially critical for compact representation of IPv6 routing

tables which have 128-bit address space.

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 14

3.3 Design

3.3.1 Static FIB aggregation

As it was mentioned above, our proposed algorithm, FIB Aggregation with Quick Selections (FAQS) uses a

data structure based on the PATRICIA tree (PT) [55]. Each node in a PT has the following fields (we denote

a node as n):

1. Node type, denoted by T(n). If a node was derived from an original FIB entry, the value is REAL;

otherwise, if a PT node is only an ancillary node that helps to form the PT, the value is FAKE. In

Figure 3.2(a), T(F) and T(G) are FAKE, and all the other nodes’ types, i.e., T(A), T(B), T(C), T(D),

T(E) are REAL.

2. Original next-hop. The next-hop value that is associated with an original FIB prefix and mapped to a

PT node, denoted by O(n). For a REAL node, it is taken from the FIB; for a FAKE node, it is derived

from the original hop of its nearest REAL ancestor node during the top-down instantiation described

below. This instantiation process is carried out during aggregation.

3. Selected next-hop. The next-hop value of a prefix after aggregation, denoted by S(n). Note that a

selected next-hop may be different from an original next-hop for the same prefix as long as aggregated

FIB has exactly the same forwarding behaviors as the original one.

4. FIB status, denoted by F(n). Indicates whether the prefix and its selected next-hop should be placed

in the FIB or not after FIB aggregation. F(n) can be equal to IN FIB or NON FIB. All routes with the

status F(n) equal to IN FIB account for the entire aggregated FIB.

We illustrate the initial PT for the FIB from Table 3.1a in Figure 3.2(a). At this stage, the selected next-hop

value and the FIB statuses of each node are unknown. In addition, the original next-hops for FAKE nodes are

not defined yet. All these missing attributes are set within a single traversal that we call Aggregation Round

- a depth-first traversal over the PT in a post-order manner. For the illustration, we divide Aggregation Round

traversal into repeating top-down and bottom-up phases. During the top-down phases FAQS algorithm sets

the original next-hop value of FAKE nodes equal to their parent’s original next-hop value. During the

bottom-up phases, FAQS algorithm sets the selected next-hop for each processed node and the FIB statuses

of its existing child nodes.

The FAQS algorithm chooses a selected next-hop for a node according to the rule A:

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 15

Figure 3.2: Static FIB aggregation of FIB from Table 3.1a.

I. If a node n has both child nodes with prefix lengths more than n’s prefix length by one, then n’s

selected next-hop value is equal to:

1. Its original next-hop value O(n), if either left or right child nodes of n has the selected next-hop

value equal to O(n).

2. Left child’s selected next-hop value in other cases.

II. In all other cases, the selected next-hop S(n) is set equal to node’s original next-hop O(n).

Note 1: All leaf nodes’ selected next-hop values are equal to their original next-hop value.

Note 2: The root node with prefix 0/0 is always REAL and has a certain default original next-hop value,

if its prefix does not exist in RIB.

Intuitively, the selected next-hop value of a node is equal to its original next-hop if its corresponding prefix

is not fully overlapped by its children nodes’ prefixes or its original next-hop is equal to one of its children

nodes’ selected next-hop values. Otherwise, when a node n’s IP space is fully covered by its children’s

prefixes, we set n’s original next-hop value to its left child’s selected next-hop value. This rule allows FAQS

to preserve forwarding equivalence of the resulting FIB since the next-hop value of a prefix changes only

when (a) it was not a potential Longest Prefix Match in the original FIB table (i.e., its prefix space was fully

covered by other more specific prefixes); (b) the new next-hop value of a prefix p is equal to a next-hop

value one of p’s sub-prefixes.

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 16

Label Prefix next-hop

A 141.92.0.0/16 1

G 141.92.192.0/18 2

Table 3.2: FIB entries after aggregation by FAQS.

After a node’s selected next-hop value is set, FAQS makes decision on the FIB status of each of its existing

child nodes according to the rule B:

If the left (right) child of a node n has a selected next-hop value different from n’s selected next-hop value

S(n), then set the status of the left (right) child to IN FIB, otherwise to NON FIB.

Note: the root node is always IN FIB.

In other words, a node will be installed in the FIB if its selected next-hop is different from its parent’s

selected next-hop.

Intuitively, we start aggregation from the leaf prefixes and recursively assign selected next-hops based on

their original next-hops. When a child’s selected next-hop is the same as its parent’s, the child’s prefix and

selected next-hop can be excluded from the aggregated FIB. The process stops at the root node, which is

always IN FIB. The resultant aggregated FIB will have exactly the same forwarding behaviors as the original

one.

The illustration of the top-down and bottom-up phases of the initial aggregation are given in Figures 3.2(b)

and 3.2(c). Post-order traversal begins with the leftmost node (node C) in the PT. While reaching node C,

during the top-down phase, the original next-hop value of the FAKE node F is set to 1, the original next-hop

value of F ’s closest REAL parent A.

Node C has no children nodes, so its selected next-hop value is set to its original value 1. Similarly, the

selected next-hop is set for all other leaf nodes. According to the rule A, because the difference between

the prefix lengths of the nodes F and C is more than 1, D’s selected next-hop value is equal to its original

next-hop value. In contrast, the difference of the prefix lengths of the node G and its children D and E is

equal to one. Because the selected next-hop ofD andE is different fromG’s original next-hop,G’s selected

next-hop is set to 2. Finally, A’s selected next-hop is equal to 1 (similarly to the node F). Regarding FIB

status, according to the rule B, only nodes A and G will be installed in FIB, since A is the root node and

its selected next-hop is not equal to G’s selected next-hop. The resulting aggregated FIB is presented in

Table 3.2.

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 17

Compared with the state-of-the-art ORTC-based FIFA algorithms [48], FAQS algorithm requires only one

traversal for the static FIB aggregation. The worst-case complexity of the initial FIB aggregation is equal to

O(k ∗N), where:

• k is the maximum prefix length in the FIB. In real routing tables, the length rarely exceeds 24;

• N is the number of nodes in a PT1.

FIFA requires two rounds: first, a post-order traversal in order to merge next-hops for each node, second,

a pre-order traversal to choose a selected next-hop from the merged next-hop set and to set the FIB status.

When aggregating real routing tables, the merged next-hop array in ORTC algorithm may contain tens of

elements. Moreover, each node of the PT constructed by the FAQS algorithm has only half of the attributes,

used in FIFA algorithms. This fact also adds to the reduction of memory usage and the number of memory

access times, as the number of next-hops in merged next-hop arrays can surpass 70 (see Section 3.4 for the

evaluation). The complexity of FIFA algorithms is O(k ∗ n ∗ m), where m is the maximum number of

elements in the merged next-hop array.

3.3.2 Incremental FIB update handling

Through BGP updates, ASes exchange routes between each other. During spikes, the number of updates

reaches several thousand. Thus it is essential to efficiently handle such updates. BGP update handling should

preserve the Forwarding Equivalence between the aggregated and original FIB tables.

BGP updates to a FIB consist of two categories:

1. Route announcements, including new routes and route changes;

2. Route withdrawals.

In the following, we describe how FAQS algorithm handles both categories.

• Route announcements: If the announced route is a new route, FAQS algorithm generates a REAL node

with the corresponding original next-hop in the PT; if it is a route update, it simply changes the original

next-hop value accordingly to the value propagated from the control plane. In order to maintain a good

aggregation ratio and forwarding correctness, the aggregated FIB needs to be re-aggregated. In FAQS, two
1N = 2 ∗ p− 1 in the worst case, where p is the number of prefixes in the FIB.

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 18

portions of the PT may be affected: the subtree rooted at the updated node and the ancestors upon it. More

specifically, the original next-hop, the selected next-hop and the FIB status of each node under the sub-tree

need to be checked and updated if necessary. The process is similar to the procedure of the static FIB

aggregation for the entire PT. Also, the selected next-hop and the FIB status of each ancestor need to be

checked and refreshed if necessary to maintain forwarding correctness. The procedure seems to be tedious,

however, we leverage the following three crucial optimization techniques to greatly reduce the overall time

costs and memory access times.

1. When adding a REAL node or updating a FAKE node, if the original next-hop of this node’s parent

O(n.parent) is same as the new next-hop of the updated node O(n), then the top-down process can

immediately terminate, since a parent’s original next-hop in the subtree rooted at n does not change.

2. When updating the subtree, if the node type T(n) is REAL, then the top-down process can stop on

the current branch because the original next-hop of that node does not change. Similarly to the first

statement, the correctness is guaranteed because all FAKE nodes’ original next-hops are derived from

their nearest REAL ancestor’s original next-hop. When the updated node is above this REAL node n,

all original next-hops under n will not change.

3. During the period of updating the ancestors, if the newly selected next-hop of an ancestor n is the same

as the old one before the update, then the bottom-up traversal can stop. Since update only happens

on one branch and a parent’s selected next-hop is determined by its children’s selected next-hop, the

preservation of a selected next-hop of a node n guarantees the invariance of all nodes above it.

Algorithms 4, 5 and 6 (see Appendix A) illustrate the whole process of incremental update handling. Fig-

ure 3.3 demonstrates an example of a route update with a new next-hop, where the second and third opti-

mization techniques are applied. In the example, the node D has an update with the new next-hop 3. First,

the original next-hop changes to 3 and other fields are freed; then the update-tree process stops when en-

countering a REAL node G. After that, the update-ancestor process stops when the same selected next-hop

1 is discovered at node B. As a result, we can observe that only a small portion of the PT has been traversed

to incrementally handle the update.

In comparison with the FAQS algorithm, the ORTC-based FIFA algorithm [48] requires three steps for the

prefix update handling. First, it is the bottom-up post-order traversal in order to update the merged next-hop

sets. During the second step, the FIFA algorithm updates merged next-hop sets for each ancestor above

the updated node. The last step is the post-order traversal of the PT, where FIFA selects the next-hop

from the merged next-hop array and sets the FIB statuses as in the static aggregation algorithm. Overall,

FIFA achieves the optimal aggregation ratio at the cost of a greater number of memory accesses during the

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 19

Figure 3.3: Incremental FIB update handling by FAQS.

Figure 3.4: Prefix withdrawal handling by FAQS.

optimization of the updated PT. Later in Section 3.4 we show that this causes significant delays in processing

FIB updates if compared to the FAQS algorithm.

• Route withdrawals: The FAQS algorithm handles the prefix withdrawals within two steps:

1. Node removal. First, FAQS looks up the corresponding REAL node from the PT. If the node is found,

then FAQS checks if it is removable. A removable node refers to a node, which will not affect the PT

structure after its deletion. In such a case, FAQS deletes the node and reorganizes the pointers of its

parent and child. Otherwise, if the node is not removable, FAQS changes its type to FAKE and frees

the values of the original next-hop, the selected next-hop, and the FIB status.

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 20

2. PT update. Starting from the parent node of the deleted or updated node, the incremental update

process will be the same as the case of route announcements. First, FAQS does a top-down update of

the original next-hops of nodes on the subtree; next, it bottom-up updates the values of the selected

next-hops and the FIB status of each node all the way to the point where a newly selected next-hop

does not change. The three optimization techniques used in route announcements apply here as well.

We illustrate prefix withdrawal operation in FAQS in Figure 3.4. In the example, the prefix associated with

the node D should be removed. First, FAQS sets the type of the node D to FAKE and updates its next-

hop with the nearest ancestor’s original next-hop value. Since the node D has two children nodes, it is an

ancillary node and can not be removed from PT. Next, FAQS updates the sub-tree rooted at D and stops at

REAL nodes E and G. During this short traversal, D sets its selected next-hop to 1 (since the prefix length

difference between D and E is 2) and G is pushed into the FIB. Finally, FAQS updates performs a bottom-up

traversal and stops at B, since B’s next-hop does not change. Because B’s child node D has the same selected

next-hop, D is removed from the FIB.

Similarly to update handling, FAQS requires fewer memory accesses to process route withdrawals. As route

withdrawals are handled identically to route updates, both operations have the same worst-case complexity,

O(k ∗ N), where k is the longest prefix in the table, and N in the number of nodes in a PT. However, in

reality, the number of accesses is much less, thanks to the optimization techniques, namely, terminating the

top-down traversal on REAL nodes and the bottom-up traversal on the nodes that do not change their selected

next-hop.

3.4 Evaluation of FAQS

We used realistic IPv4 and IPv6 routing tables from 2011 to 2016 in Route Views project [5] for the eval-

uation. We collected several baseline routing tables on 01/01/2011 for both IPv4 and IPv6 and applied all

following updates to obtain the aggregation results. We use AS neighbors as the next-hops for FIB tables,

because local FIB interface information is not available in the dataset. Normally, the number of interfaces in

a FIB is much less than the number of its neighbors. Thus our results underestimate the real FIB aggregation

effects. We verified the forwarding equivalence of the aggregated and original tables with our designed tool

VeriTable [32]. We briefly describe VeriTable in the next subsection. We ran our experiment on an Intel

Xeon Processor E5-2603 v3 1.60GHz machine.

We compared our FAQS algorithm against the optimal ORTC-based FIFA-S [48] aggregation algorithm.

Unlike FIFA-T, a faster version of FIFA algorithms, FIFA-S has significantly smaller FIB bursts, which is

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 21

critical since writing operations on TCAM are slow [12].

We used the following metrics for our experiment:

1. FIB size: the total number of entries before and after aggregation. Aggregation Ratio is calculated as

the ratio between the total number of the FIB entries after aggregation and before aggregation.

2. FIB aggregation time: the time spent handling all route updates by the aggregation algorithm (before

pushing FIB changes into the data plane).

3. Total number of FIB changes: the total number of FIB changes that are pushed into the data plane by

the aggregation module upon handling all route updates. One route update from the control plane may

result in zero or more changes to the data plane FIB due to the incremental FIB aggregation process.

If there is no aggregation, one route update corresponds to one FIB change.

4. FIB burst: the number of FIB changes caused by a single route update, either a route announcement

or a withdrawal.

5. Peak aggregation time cost: the time spent to handle a routing announcement, that caused the heaviest

FIB burst.

3.4.1 Verifying the Forwarding Equivalence with VeriTable

Verifying the equivalence of forwarding behavior of routing tables is essential for several cases. First, it

is used in order to guarantee the correctness of the forwarding table in the data plane, derived from the

control plane [19,21,68]. Second, network operators need to verify the consistency of the forwarding tables

inside their networks [39, 40]. Finally, upon modification of the forwarding table due to FIB aggregation

or caching techniques, the forwarding behavior of a router shall not change. Specifically for this case, we

designed VeriTable [32], that is able to quickly verify the equivalence of multiple forwarding tables. The

algorithm of VeriTable is built upon a theorem we prove below.

The formal definition of the Longest Prefix Matching and Forwarding Equivalence is given in Section 2.2

(Definition 1) and Section 3.1 (Definition 2) respectively.

In addition, we denote:

1. LPMω(T) as a Longest Prefix Match of an IP address ω in a table T .

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 22

(a) Initial Joint PT (b) Joint PT after the top-down process (c) Joint PT after bottom-up verification
Nodes with non-empty labels are derived from at least one of the comparable forwarding tables, while the rest of the nodes are

auxiliary nodes helping to build the data structure. During the only post-order traversal over the tree, non-empty nodes are

initialized with the next-hops with respect to each forwarding table. Finally, the next-hops are compared within each node, to find

discrepancies between forwarding tables.

Figure 3.5: VeriTable algorithm.

2. NT (p) as a next-hop for a prefix p in a table T .

Theorem 1. Let T to be a joint forwarding table, built by merging individual forwarding tables T1, T2, ..., Tm.

Assume that p = LPMω(T), then we can prove that ∀ω = {0, 1}n, LPMω(Ti) = LPMp(Ti), where n is

the length of an IP address and i = 1, 2, ...,m.

Proof. Let a prefix p be p1p2..pl (l ≤ n), and ω be ω1ω2..ωn. Suppose, p = LPMω(T), then ω =

p1p2...plωl+1..ωn. We prove the theorem using contradiction. Suppose, LPMω(Ti) 6= LPMp1p2..pl(Ti),

namely, LPMp1p2...plωlωl+1..ωn(Ti) 6= LPMp1p2..pl(Ti). Then, according to the Definition 2, there exists a

different prefix p′ in the forwarding table Ti, such as its length lp′ > lp, and p′ is a prefix for w. But then, p′

exists in T . Thus, p can not be a Longest Prefix Match for ω in T (see Definition 2), which is contradictory

to the initial assumption of this theorem, that p = LPMω(T).

We derive VeriTable property based on the Theorem 1: comparing next-hops for each ω in T1, T2, ..., Tm
is equivalent to comparing next-hops for each p in T1, T2, ..., Tm. Thus the new definition of Forwarding

Equivalence:

Definition 3. The forwarding tables T1, T2, ..., Tm are Forwarding Equivalent, if and only if, ∀ω = {0, 1}n,

∀p = LPMω(T), where T is the union of T1, T2, ..., Tm, NT1(LPMp(T1)) = NT2(LPMp(T2)) = ... =

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 23

 20

 1000

 2000

 3000

 4000

2012 2013 2014 2015 2016

N
u
m

b
e
r

o
f
A

S
 n

e
ig

h
b
o
rs

Year

4.69.184.193 (AS 3356)
12.0.1.63 (AS 7018)

85.114.0.217 (AS 8492)
144.228.241.130 (AS 1239)

147.28.7.2 (AS 3130)

Figure 3.6: AS neighbor statistics.

NTm(LPMp(Tm)).

Based on this new definition, we designed an algorithm, that builds a joint forwarding table out of the

comparable tables (using the PATRICIA Tree data structure), identifies the next-hop values of LPM prefixes

in each of the comparable tables and compares those values in order to find discrepancies. The pseudo-code

of the algorithm is given in Appendix E. The efficiency of VeriTable was shown in [32].

3.4.2 IPv4 results

We use five routing tables from different ASes to demonstrate the dependency of aggregation performance

on the number of neighbors (i.e. the number of possible next-hops). The number of next-hops ranges from

21 to 4500. To illustrate the extreme cases, when an AS has the maximum or the minimum number of

neighbors, we took AS 3356 (hop IP address 4.69.184.193) and AS 3130 (hop IP address 147.28.7.2). AS

3356 had almost 3000 neighbors at the beginning of 2011 and more than 4500 neighbors on 12/31/2016.

For AS 3130 these numbers are 22 and 21 respectively. The number of neighbors was calculated according

to the routing tables of those ASes. See Figure 3.6 for the neighborhood statistics of each AS whose IPv4

data we used in this evaluation.

We begin with AS 3356. There are more than 426 million route updates to be handled for the 6-year period.

Figure 3.7(a) shows the size of FIB aggregated by FAQS and FIFA-S algorithms, as well as the size of the

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 24

AS nu pavg Algorithms r nc/nu taggr tpeak nb = 0 nb = 1 nb ≤ 30 bmax m

3356 426551755 3746
FAQS 0.43 1.27 0.94µs 3.09ms 12.75% 56.21% 99.97% 1443 175MB

FIFA 0.37 1.84 2.38µs 10.29ms 12.85% 64.23% 99.98% 1496 228MB

7018 782293331 2397
FAQS 0.41 1.21 0.94µs 3.09ms 16.43% 61.71% 99.99% 1854 175MB

FIFA 0.34 1.78 2.06µs 8.39ms 16.38% 54.57% 99.97% 1892 229MB

8492 1037150247 1126
FAQS 0.39 1.37 0.93µs 3.27ms 6.05% 69.45% 99.97% 4268 178MB

FIFA 0.32 1.90 2.33µs 12.14ms 6.40% 63.77% 99.97% 4657 233MB

1239 295214072 739
FAQS 0.42 1.28 1.09µs 3.56ms 13.18% 62.18% 99.98% 1585 175MB

FIFA 0.36 1.91 2.69µs 12.68ms 13.38% 55.03% 99.97% 1952 229MB

3130 402445005 23
FAQS 0.27 1.23 0.95µs 3.26ms 14.69% 63.50% 99.98% 6464 174MB

FIFA 0.20 1.68 2.04µs 16.02ms 14.91% 56.74% 99.98% 5524 228MB

(a) IPv4 routing tables

AS nu pavg Algorithms r nc/nu taggr tpeak nb = 0 nb = 1 nb ≤ 30 bmax m

6939 122903741 2725
FAQS 0.63 1.06 0.76µs 1.27ms 7.08% 84.19% 99.99% 181 11MB

FIFA 0.61 1.18 1.33µs 2.97ms 7.09% 81.19% 99.98% 258 14MB

33437 33486605 7
FAQS 0.58 0.98 0.90µs 1.42ms 17.47% 73.68% 99.99% 2447 11MB

FIFA 0.56 1.11 1.43µs 2.48ms 17.46% 68.33% 99.99% 2432 14MB

(b) IPv6 routing tables
nu - the number of FIB updates; pavg - average peer number; r - aggregation ratio; nc/nu - the ratio

between the number of FIB changes and FIB updates; taggr - average aggregation time per update; tpeak -

peak aggregation time; nb - percentage of updates with burst values 0, 1 and below 30; bmax - maximum

burst value; m - memory consumption.

Table 3.3: Evaluation summary.

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 25

(a) FIB size

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

o
f
F

IB
 e

n
tr

ie
s

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

(b) FIB aggregation time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300 350 400 450

T
im

e
(s

)

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

(c) FIB changes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

F
IB

 d
o

w
n

lo
a

d
s
/1

0
6

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

Figure 3.7: FIB aggregation of IPv4 routing table (AS 3356).

(a) FIB size

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

o
f
F

IB
 e

n
tr

ie
s

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

(b) FIB aggregation time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300 350 400 450

T
im

e
(s

)

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

(c) FIB changes

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450

N
u
m

b
e
r

o
f
F

IB
 d

o
w

n
lo

a
d
s
/1

0
6

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

Figure 3.8: FIB aggregation of IPv4 routing table (AS 3130).

original FIB during the 6-year period from 2011 to 2016. Figure 3.9(a) more clearly illustrates the margin

between FIB ratio values of FAQS and FIFA-S. At the end of 2016, FAQS algorithm reduces the FIB by

57%. FIFA-S reduces the same FIB by 63%. The better aggregation ratio by FIFA-S algorithm is achieved

by additional traversals. This results in higher aggregation costs, as illustrated in Figure 3.7(b). Aggregation

time costs when using FAQS are more than twice less. On average, FAQS spends 0.94µs per one FIB update.

For FIFA-S algorithm the average FIB update cost was 2.38µs. The peak aggregation time in FAQS is 3

times less than in FIFA (3.09ms vs 10.29ms).

The smaller number of FIB changes to the FIB, the better performance. Figure 3.7(c) shows that FAQS
algorithm generates 31% less number of FIB changes than that of FIFA-S algorithm (543,309,259 vs

786,633,132). The average number of FIB changes per update is 1.27 for FAQS and 1.84 for FIFA-S. Both

algorithms have similar distribution for the size of FIB bursts as shown in Table 3.3(a). The vast majority

of FIB bursts (more than 99.97%) in both algorithms consist of 30 FIB changes and less. The largest FIB

burst for FAQS is 1443, which is slightly smaller that FIFA-S (1496). Nonetheless, the update handling

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 26

(a) AS 3356

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 50 100 150 200 250 300 350 400 450

F
IB

 R
a
ti
o

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

(b) AS 3310

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 50 100 150 200 250 300 350 400 450

F
IB

 R
a
ti
o

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Figure 3.9: FIB ratio, IPv4 FIB tables.

time cost for the largest burst in FAQS takes only 30% of running time of FIFA-S.

Since AS 3130 has a considerably smaller number of neighbors than AS 3356, it is expected that the aggre-

gation ratio for its routing table is smaller. Indeed, Figure 3.9(b) shows that FAQS can reduce the FIB size

by 73% and FIFA-S by 80% at most. The more compressed state of FIB may cause larger FIB bursts, as we

can see from this experiment. In the case of AS 3130, the percentage of FIB bursts with less than 30 FIB

updates is again negligible: 99.98% for both FAQS and FIFA-S. The maximum FIB burst value for FAQS

was 6464, while for FIFA-S it was equal to 5524. However, FAQS’s peak aggregation time cost was 3.26
ms, which is less than FIFA-S’ (16.02 ms) by 80%. Figure 3.8 illustrates performance of FAQS and FIFA-S

for the next-hop AS 3130.

Table 3.3(a) presents other evaluation results of FIB aggregation for five ASes. It is interesting to observe

that a large percentage (6.05%-14.91%) of FIB updates result in zero FIB changes (column nb=0). Overall,

for IPv4 protocol, FAQS algorithm is more than two times faster than FIFA-S on average and is more than

three times faster during peak FIB bursts.

3.4.3 IPv6 results

To the best of our knowledge, in this work, we for the first time evaluate IPv6 routing tables aggregation.

We aggregated FIB tables from AS 6939 (hop IP address 2001:470:0:1a::1) and AS 33437 (hop IP address

2001:4810::1) with the maximum and the minimum (3501 and 7 respectively) number of neighbor ASes in

our collected dataset. The total number of route updates to be handled is more than 122 million. Figure 3.10

CHAPTER 3. FIB AGGREGATION WITH QUICK SELECTIONS 27

(a) FIB size

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 20 40 60 80 100 120 140

N
u

m
b

e
r

o
f

F
IB

 e
n

tr
ie

s

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

(b) FIB aggregation time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140

T
im

e
(s

)

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

(c) FIB downloads

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
F

IB
 d

o
w

n
lo

a
d
s
/1

0
6

Number of updates/10
6

FAQS algorithm
FIFA-S algorithm

Normal

Figure 3.10: FIB aggregation of IPv6 routing table (AS 6939).

shows the curves of FIB size, aggregation time and the total number of FIB changes. In Figure 3.10(a), we

can observe that the size of IPv6 routing tables has increased dramatically since six years back when there

were only less than 5,000 entries. At the end of 2016, it has been close to 35,000. Due to the small size, the

aggregation ratios for both FAQS and FIFA-S are around 60%, which are not as good as IPv4. Since FIFA-S

outputs the smallest aggregated FIB, FAQS’s aggregation ratio for IPv6 is close to optimal. Remarkably, the

running time of FAQS is a much lower than FIFA-S (90s vs 160s in Figure 3.10(b)) while they have similar

aggregation ratios, which again attributes to the one-time subtree traversal with three important optimization

techniques for FAQS while FIFA-S uses two traversals. Table 3.3(b) demonstrates results for both AS6939

and AS33437. AS33437 has only 7 next-hops, thus the aggregation ratio is better (58% vs 56% for FAQS and

FIFA-S, respectively) and the burst size is larger than the one in AS6939, because one update in AS33437

may affect a larger area of next-hops.

3.5 FAQS. Conclusion

FIB Aggregation with Quick Selections (FAQS) is a new FIB aggregation algorithm, that leverages compact

data structures and three unique optimization techniques to quickly and incrementally select next-hops when

handling route updates. As a result, FAQS can run up to 2.53 and 1.75 times faster for IPv4 and IPv6,

respectively, than the optimal FIB aggregation algorithm while achieving near-optimal aggregation ratio.

Meanwhile, it consumes much less memory and generates a significantly smaller number of FIB changes

when carrying out frequent updates. The performance enhancement of the new algorithm addresses many

concerns from ISPs regarding performance issues and enhances the probability to push FIB aggregation

techniques further to the level of production adoption by the industry.

Chapter 4

A Programmable FIB Caching Architecture

4.1 Introduction

FIB (or route) caching, i.e., storing popular IP prefixes in the expensive TCAM memory and the rest of it

on a cheaper memory, leverages the fact that only a small part of IP prefixes carries the most of the traffic.

In fact, according to the evaluation in [25], only 1.93% of FIB entries cover more than 99.5% of flows

going through an ISP network. Moreover, according to Comcast, 72% of FIB entries do not carry traffic

over a week [14]. The high skewness between the number of popular and unpopular routes was studied and

confirmed in [41, 64]. According to these statistics, FIB caching may greatly offload the routing table in

TCAM from unpopular routes, prolonging the lifetime of these expensive memory chips and reducing its

operational costs.

However, FIB caching faces several challenges that impede its widespread deployment at an ISP level. First,

it may result in latency issues when cache missing events occur, i.e., when an LPM lookup at TCAM fails

and an additional lookup is performed on a slow memory. Moreover, simultaneous cache misses can lead to

packet losses if a slow memory’s buffers are full [41]. Second, to the best of our knowledge, there is a lack

of an efficient cache victim selection procedure. LRU (Least Recently Used) policy, shown to be the most

optimal in [25,41], is a software solution and can not be implemented for large prefix tables [75] on TCAM.

Third, overlapping entries in a FIB cache and the secondary FIB might lead to the problem known as cache

hiding.

Cache hiding is a natural problem that comes from dropping entries from a routing table that uses the LPM

rule to find a match for an IP address. For example, suppose the secondary FIB contains a more specific

28

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 29

An IP packet was forwarded to the port B instead of the port A

due to the cache hiding error

Figure 4.1: Cache hiding example.

prefix pA = 128.153.64.0/18 than a prefix pB = 128.153.0.0/16 existing in a cache. The next-hop assigned

to pA in the secondary FIB is A, while IP packets with addresses matching pB are forwarded to a next-hop

B. In such case, a packet with IP destination address 128.153.183.226 matching pA will be forwarded to the

next-hop B rather than A, since in the cached FIB its Longest Prefix Match is the prefix pB . We illustrate

this case in Figure 4.1. Cache hiding may be caused by:

1. Incorrect initial cache with less specific prefixes than in the secondary FIB on a slow memory;

2. A BGP prefix announcement, when a more specific prefix than another prefix existing in a cache is

installed into the secondary FIB;

3. Similarly, BGP withdrawal might cause a situation when a cache contains less specific entries than in

the secondary FIB.

When designing PFCA, we aimed to minimize cache-miss latencies, develop an efficient and fast cache

victim selection procedure and avoid cache hiding problem. To this end, we leverage the emerging concept

of the programmable data plane which we briefly describe next in this work.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 30

Figure 4.2: Portable Switch Architecture (PSA).

4.2 Programmable data plane

The numerous emerging heavy-workload IT applications require the underlying network to quickly adapt to

their demands. Thus there is a need to build more programmable and less hardware-dependent networks.

OpenFlow protocol [50] and Software-Defined Networking [42] in general are important tools for build-

ing programmable networks focusing on a programmable control plane. However, OpenFlow switches are

constrained with a fixed data plane configuration. Differently, the switches standardized with the Portable

Switch Architecture (PSA) [58] provide the data plane with a reconfigurable parser, forwarding (or match-

action) tables, and ingress/egress pipelines. PSA switches can be fully programmed with P4 data program-

ming language [13]. In addition, PSA switches support packet cloning, packet recirculation, shared metadata

between different stages of the packet processing pipeline and provide access to data plane registers and hash

calculations.

Figure 4.2 shows the pipeline of PSA. It consists of programmable blocks, such as ingress and egress

pipelines, packet parsers and deparsers; hardware-constrained blocks responsible for packet replication and

buffering. The ingress and egress pipelines may contain registers and match-action tables with packet coun-

ters and meters attached to each entry. An output port is assigned to a packet when its’ headers leave the

ingress pipeline. Alternatively, a packet can be cloned to multiple output ports or forwarded to the control

plane. In addition, PSA data plane can be programmed to form packet digests for further analysis at the

control plane.

In our work, we leverage both PSA and P4 to design an architecture for efficient FIB caching. In addition

to our data plane program, we use API generated by P4 compiler to build the partial prototype of our FIB

caching solution and simulate it in a P4 software switch. Note that the work on PSA compiler is still in

progress, however, the design proposed in this work is compatible with the proposed PSA specification [58].

We call our new design a Programmable FIB Caching Architecture (PFCA). In PFCA, we adopt several

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 31

features of PSA, P4 and programming data planes in general. We enumerate those features below:

1. We take advantage of the programmability of match-action tables to design two different levels of a

FIB cache in the data plane. In addition, the rest of a FIB on a slow memory unit stays in the data

plane as well.

2. We leverage the programmability of the ingress and egress pipelines in PSA, which allows PFCA to

process cache-miss packets entirely in the data plane. Packets that did not find a matching entry in

Level-1 cache are directed to Level-2 cache and the slow FIB, located on the slower memory units.

3. Several of the targets for programmable data plane, like TOFINO switches, support parallel packet

lookup against multiple match-action tables [7, 13]. In our design, packets that found no matching

prefix in Level-1 cache are then matched against Level-2 cache and the slow FIB in parallel, in order

to decrease cache-miss latency.

4. PFCA uses P4 meters, registers and hash functions to identify unpopular and popular routes, trigger

cache replacement operations and conduct pipeline-based packet processing. More specifically, we

detect the heavy flows and collect the light-weight flows for the future cache replacement ”on-fly”,

without a need for iterating through large forwarding tables.

5. The programmability of PSA switches allows the network operator to tune a switch’s parameters, such

as cache installation thresholds, the cache sizes and light-weight flow filter size in order to adapt the

switch to different traffic patterns.

4.3 Design

4.3.1 Overview

We illustrate the design of PFCA in Figure 4.3. Same as in a typical router, the control plane in PFCA is

responsible for collecting and distributing routes, selecting best routes and installing them into the forward-

ing tables. In addition to that, the PFCA control plane contains the Route Manager module, which stores

the full FIB, generates the set of non-overlapping routes and distributes them among the tables of the data

plane. The data plane of PFCA is based on Portable Switch Architecture (PSA) and consists of a packet

parser, ingress and egress pipelines, packet deparsers and buffers. We construct the ingress pipeline of the

PFCA switch with three forwarding tables:

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 32

Figure 4.3: FIB caching architecture.

1. Level-1 cache stored in TCAM for the most popular prefixes;

2. Level-2 cache stored in SRAM for less popular prefixes;

3. The secondary FIB with unpopular prefixes in DRAM (a ”slow” FIB).

The essential part of our design is the Light Traffic Hitters Detection module, that is placed in the ingress

pipeline and processes packets that were assigned a next-hop in Level-1 or Level-2 cache. The two-layer

cache architecture with an SRAM chip in the Level-2 cache minimizes delays in case of Level-1 cache

misses. To keep track of the most popular flows, every FIB entry in Level-1 cache, Level-2 cache, and the

slow FIB is linked with a traffic popularity meter.

Overall, PFCA does not require specific hardware compared to standard programmable switches such as

Tofino, where the ingress pipeline is built upon different types of memory, such as TCAM and SRAM [74].

The two-layer cache architecture with an SRAM chip in the Level-2 cache minimizes delays in case of

Level-1 cache misses. To keep track of the most popular flows, every FIB entry in Level-1 cache, Level-2

cache and the slow FIB is linked with a traffic popularity meter.

PFCA’s overall workflow is as follows: first, when a packet arrives at the data plane, the parser decouples

the Ethernet and IP headers of a packet. Next, the packet’s destination IP address is matched against Level-

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 33

1 cache, located on a TCAM chip. If there is a hit, the matched prefix is processed through the Light

Traffic Hitters Detection module, that collects into its hash tables the least popular prefixes as cache victims.

Subsequently, the packet’s Ethernet frame header is rewritten, the packet is passed to the egress pipeline,

re-assembled and forwarded to the corresponding next-hop. If there is a Level-1 cache miss, the packet is

matched to both the Level-2 cache and DRAM table in parallel. The match on Level-2 cache leads to the

same procedure as with a Level-1 cache hit, except that in this case, Light Traffic Hitters Detection operates

with the prefixes from the Level-2 cache. For a match on DRAM, there is no further processing of a packet

and it is immediately passed to the egress pipeline.

We leverage parallel table matching [7,73] of the programmable data plane in order to minimize latencies in

case of a Level-2 cache miss. The overhead may be a concern here, but note that as we show in Section 4.6,

only a tiny part of the traffic (less than 0.2%) is forwarded towards the second stage table matching. For

instance, if the total traffic rate is 1 Tbps at a router, then Level-2 cache and DRAM only needs to handle less

than 2 Gbps of the traffic, which is an easy task for a typical modern routing device. Therefore, compared

with an existing router without caching capabilities, both hardware costs and energy consumption in the new

solution will be significantly reduced.

Next, we present the detailed description of the Route Manager functionality and Light Traffic Hitters De-

tection module.

4.3.2 Route manager

The Route Manager (RM) belongs to the control plane and is responsible for several tasks in PFCA:

1. Control plane initialization;

2. Data plane initialization;

3. BGP update handling;

4. Popular routes installation.

In this section, we give a detailed description of each of these tasks.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 34

Control plane initialization

RM receives the initial FIB entries from the control plane’s BGP instance. Alternatively, the control plane

may collect the network routes through OSPF, IS-IS or other network protocols; in this work, we assume

that the control plane uses BGP. To avoid cache hiding of a prefix (see Section 4.1), RM converts the original

prefixes into a set of non-overlapping prefixes. We call this procedure as ”prefix extension”. Prefix extension

is performed by adding the original prefixes into the full binary tree with the following properties:

1. Each node in the tree may have zero or two children.

2. The root node of the tree corresponds to the root prefix 0/0.

3. The left (right) child of a node corresponds to a more specific prefix with an appended 0 (1) bit.

To add a new prefix p with a length l to the full binary tree, RM traverses the tree from the root, using the

path defined by the bits of p. If the path ends at a level l’, RM will generate l-l’ sibling nodes to ensure

that the new set of leaf nodes will not contain any overlapping prefixes. The nodes generated during prefix

extension inherit the next-hops of their closest parent nodes that relate to an original prefix.

Alternatively, we could generate non-overlapping prefixes on-fly, when moving less specific prefixes into

the higher-lever memory. However, with such an approach, a ”hot” entry migration to a cache might be

delayed by prefix extensions due to costly computations at the control plane (see Section 4.5 for complexity

analysis). To avoid these delays, PFCA performs prefix extensions pro-actively upon BGP updates.

After all original prefixes are added to the full binary tree, RM collects the set of non-overlapping prefixes

using the leaf nodes of the tree. Each leaf node has four parameters:

1. The value of the prefix associated with a node;

2. The corresponding next-hop;

3. Cache flag, indicating the current location of the prefix in the data plane. Possible values are 0

(DRAM), 1 (Level-1 cache on TCAM) and 2 (Level-2 cache on SRAM).

4. REAL/FAKE flag, indicating if this node and its prefix was generated during prefix extension.

The new set has an equivalent forwarding behavior as the original routing table. Meanwhile, the size of

the non-overlapping set is larger than the size of the original routing table. For example, an FIB containing

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 35

The dashed nodes are generated when adding the prefix 128.153.64.0/18 to the tree.

Figure 4.4: Prefix extension in PFCA.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 36

599,298 prefixes generates 844,108 non-overlapping prefixes [32]. However, the increase in size of the

full FIB is not a concern here, as FIB caching dramatically reduces the number of entries in the expensive

TCAM memory, as we show in Section 4.6. In addition, since we use only non-overlapping prefixes, the

LPM operation on TCAM does not require strict ordering of the table’s entries by their prefix length.

We illustrate prefix extension in Figure 4.4, where we use prefixes from the cache hiding example given in

Figure 4.1.

Data plane initialization

Initially, the cache flag values for every node in a tree is set 0 and the corresponding prefixes are installed

only into the FIB table on DRAM. There are several ways to fill up the initial caches. One way is simply

a traffic-driven initialization (”cold start”), based on real-time pass-through traffic. More specifically, as

network traffic goes through the switch, popular prefixes are being identified and migrated to the Level-

2 cache table, located on an SRAM chip. Eventually, the most popular entries in the Level-2 cache are

migrated to the Level-1 cache. As RM performs the migration task, it updates the flags of corresponding

leaf nodes of its prefix binary tree.

Another way to initialize FIB caches is by analyzing the traffic history to identify the most popular routes

and install them into the cache before operating the router. Alternatively, in [47], authors select the less

specific routes for the initial cache. In this work, we use ”cold start”, as it results in a more stable cache than

the other approaches.

BGP update handling

BGP updates (i.e. route announcements and withdrawals) are notified to RM by the control plane’s BGP

daemon. Since caches and a full FIB in the data plane contain extended non-overlapping prefixes, a single

BGP update may result in multiple changes. In this subsection we describe how PFCA handles each type of

a BGP update.

• For an announcement of a new next-hop for an existing prefix, RM first updates its own version of the

full FIB (i.e., the prefix binary tree). If the updated prefix p is located on a leaf node, then RM needs to push

the update of p into the data plane. Otherwise, if the updated prefix p is located on an internal node, then

RM performs a tree traversal in order to update all FAKE nodes that inherited their next-hop value from p.

For each traversed leaf node, RM pushes the updates into the forwarding tables, according to the cache flag

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 37

Figure 4.5: BGP updates processing by RM.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 38

of that node.

• Announcement of a new prefix is less trivial since it requires additional check if such update introduces

new overlapping prefixes in the forwarding tables of the data plane, which can lead to the cache hiding

problem. By default, the route manager needs to install the new prefix into the slowest memory. If a new

prefix p is more specific than an existing prefix p′, RM fragments p′ into a set of non-overlapping prefixes

that includes the prefix p. This is done by installing the node for p and generating sibling nodes for each

level of the tree between p and p′. These nodes will inherit the next-hop value of p′ and will comprise the

set of fragments of p′. After, (1) RM installs those fragments into the table where p′ was located; (2) p is

being installed into DRAM.

• For a prefix withdrawal, RM checks if such prefix p or its fragmented prefixes exist in the data plane

and the hash tables of the Light Traffic Hitters Detection module and removes the prefix(es) from there if

so. More specifically, RM traverses the branch of its prefix binary tree rooted at p, and checks the flags of

the FAKE leaf nodes that inherited their next-hop from p and performs prefix deletions from the forwarding

tables, respectively to the values of the flags.

Although PFCA allows multiple changes in the forwarding tables upon a single BGP update, most of the

BGP updates do not affect the popular routes in both caches, as we show in Section 4.6. Therefore, a great

advantage of using PFCA is that it can avoid massive expensive writing operations on TCAM and SRAM,

and thus boost the network throughput.

We present the graph that illustrates a BGP update process in Figure 4.5. Note that the root node in the

binary tree at RM is assigned with a default next-hop 0.

Popular routes installation

In our design, RM performs prefix migration to a faster cache table once a prefix installed in the Level-2

cache in SRAM or the slow FIB in DRAM reaches a certain number of matches over a period of time, e.g.,

100 hits/s. A threshold can be configured depending on several factors, such as the volume of the traffic and

the available memory on TCAM/SRAM. After the prefix is migrated, its counter is set to 0. In case a faster

cache table is full, before installing a new entry, RM randomly picks a victim cache entry from the Light

Traffic Hitters Detection module and evicts that entry back to the slower memory (see Figure 4.6 for the data

plane workflow). We describe the cache victim selection process in the next subsection.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 39

p: Prefix NH(p): Next-hop for p

C(p): Counter for prefix p T : Threshold

Figure 4.6: Data plane workflow

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 40

(a) Insertion of the matched prefix 01011 into the 1st hash table

(b) Insertion of the prefix 11101 into the 2nd hash table

Removal of the duplicate of 01011 from the 2nd hash table

(c) The prefix 11111 does not replace the less popular

prefix 10010 in the 3rd hash table

Figure 4.7: Light Traffic Hitters Detection. Example.

4.3.3 Light Traffic Hitters Detection

One of the biggest impediments to implement an efficient FIB caching architecture was the lack of an

effective mechanism to quickly and accurately identify the unpopular routes for cache replacement. Due to

extremely high rates of the network traffic, the flow monitoring by the control plane is associated with high

bandwidth and computational costs.

In this work, we introduce a Light Traffic Hitters Detection module to find the least popular prefixes inside

the data plane, without real-time scanning through the entire prefix list in the caches. Our approach is

inspired by the algorithm described in [67] for finding n most popular flows (”Heavy-Hitters”). In their

work, Sivaraman et al. propose HashPipe, that uses d disjoint hash tables T1, T2, .., Td in a pipeline for

collecting and storing the heaviest flows at a line rate. Each table in HashPipe is associated with an

independent hash function h1, h2, .., hd which returns the ith slot in a corresponding table. When a packet

arrives at the first table (Stage 1), HashPipe calculates the hash key using h1 function and the flow key

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 41

k. Suppose, the output of h1(k) is the slot i. If the ith slot is empty, then HashPipe installs the flow key

k and its corresponding counter value c into the first table. If the slot is occupied by a flow with the same

key k, then its counter value is updated with c. If the slot is occupied by another flow with the key k′ and

it has a smaller counter value c′ < c, k′ is evicted from the first table and ”carried” to the next hash table

(Stage 2) along with its counter. The flow key k and the corresponding counter value is installed instead of

k′. Otherwise, if the flow with the key k′ is more popular than k, k flow is carried to Stage 2. The whole

process is repeated until the last stage.

One side effect of HashPipe is that duplicate entries may appear at different stages of the hash tables. For

example, let hn(k) represent the hash value of key k in the nth hash table. Now, suppose h1(k1) = h1(k2),

where k1 is a more popular flow than k2 and k1 occupies the ith slot in the first hash table. Assume at the

second stage, the flow k2 is installed in the jth slot. Later, the flow k2 becomes more popular than k1, and

when the flow k2 is carried through the first hash table, it displaces k1 and its counter from the ith slot. Thus,

the first and the second tables contain a duplicate entry with the flow k2 (at ith and jth slots respectively).

Based on the similar idea in HashPipe, we designed a new pipeline of multiple stages to detect the least

popular flows (i.e. prefixes) for quick cache replacement. In addition, we addressed hash entry duplicate

issues, since (a) the duplicate entries occupy the slots that can be used for other flows; (b) duplicates com-

plicate the hash entry removal upon cache eviction requests.

To collect the least popular prefixes, LTHD uses d disjoint hash tables T1, T2, .., Td in the data plane (see

Figure 4.7). Each of the tables is assigned with a specific hash key h1, h2, .., hd. On a cache hit, the matched

prefix p and its counter value c is pipelined through the hash tables. Consequently, LTHD selects the most

popular prefix among p and prefixes at in tables T1, T2, .., Td and replaces that prefix with p, unless p is not

the most popular one. Next, we describe the mechanism of Light Traffic Hitters step-by-step.

We divide the operation of LTHD into d stages, where each stage corresponds to a hash table in the pipeline.

Suppose, a prefix lookup in a cache resulted into a prefix p1. In this case, PFCA updates p1’s counter c1 and

passes the tuple (p1, c1) to LTHD.

At the first stage, LTHD calculates the hash value i = h1(p1). If the ith slot of T1 is empty, LTHD installs

(p1, c1) into T1 and terminates. Otherwise, if it is occupied by another prefix (p2, c2), c1 is compared against

c2. If c1 ≥ c2, (p1, c1) is carried to the next stage of the pipeline. Otherwise, (p2, c2) is evicted from T1

and replaced by (p1, c1). (p2, c2) is then carried to the next stage instead of (p1, c1). The rest of LTHD’s

operation is exact as at the first stage, i.e., the hash value j = h2(p2) for the prefix p2 and c2 is compared

against the counter c3 of the prefix p3 residing at the slot j in the table T2. If c2 ≥ c3, (p2, c2) is carried to

the next stage; otherwise, (p3, c3) is replaced with (p2, c2) and carried to the next stage. To avoid duplicate

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 42

entries in the pipeline, in case the initially carried tuple (p1, c1) is installed at a certain stage n, LTHD checks

the tables of the later stages m <= d until the first duplicate of p1 is found. Note that there is no need to

carry the key that was evicted at an earlier stage n and installed at a later stage m, d ≥ m > n, because

when the key was installed in the nth table, the possible duplicates in any table Tn′ , d ≥ n′ ≥ m > n,

should have been removed.

The pseudo-code of the first stage of LTHD is shown on Algorithm 7 (Appendix B). Figure 4.7 illustrates

an example 3-stage LTHD. At the first stage, the prefix p1=01011 with the hash h1(p1)=4 and counter c1=2

is compared against the prefix p2=11101 with counter c2=3, since p2 occupies the 4th slot in the first hash

table. Since c1¡c2, the prefix p1 replaces the prefix p2. At the next stage, the duplicate of p1 from the 2th

slot is removed; in addition, the prefix p2, carried from the first stage, replaces the more popular prefix

p3=11111. At the last stage, p3 does not replace the prefix 10010 since its counter c3 is greater by one.

Thus, the prefix p3 is evicted from the LTHD hash tables.

The pipelining in Light Traffic Hitters Detection happens in PFCA on each packet hit in Level-1 cache

(TCAM) or Level-2 cache (SRAM). Note that PFCA uses different hash pipelines for TCAM and SRAM to

separate victim prefixes for those forwarding tables.

4.4 P4 prototype

We built a partial prototype of PFCA in P416 data plane programming language [56] with respect to the

Portable Switch Architecture (PSA) [58]. The design of PSA is fully compatible with the PFCA architecture.

First, it allows the programmability of the ingress and egress pipelines. Next, a PSA switch can allocate

necessary registers to implement Light Traffic Hitters Detection module. The forwarding tables in the ingress

pipeline can be enriched with counters or meters per each entry, which enables heavy hitter detection with

PFCA1. Alternatively, P4 registers can be used for detecting the heavy flows. Upon such detection, the

ingress pipeline can generate a notification (via packet digest construction of PSA architecture) and send it

to the control plane port. Finally, several PSA targets support parallel matching against multiple tables in

the ingress pipeline [7, 73], as we design in PFCA with SRAM and DRAM forwarding tables.

In our P4 code, first, we defined the packet headers and the parser that decouples the Ethernet frame and IP

headers from a packet. Second, we defined the match-action tables for both caches and the FIB on DRAM.

Next, we defined the registers necessary for storing prefix counters and prefix hashes of Light Traffic Hitters

1According to the current specification of PSA, the values of the counters can not be read from the data plane. Implementing

PFCA with PSA will be facilitated if such constraint is eliminated.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 43

Detection module.

We show the snippets of the ingress pipeline code in Listing C.1 of Appendix C. Initially, we let ingress

traffic pass through Level-1 cache. In case of a table hit, a packet’s metadata field miss bit is set to zero,

so the control flow passes the packet’s header to a the Light Traffic Hitters Detection module. The module

is programmed in P4 using hashing functions available in the virtual P4 switch and the standard control

flow commands provided by P4. In case of a Level-1 cache miss, miss bit is set to one and the packet is

matched against Level-2 cache and the slow FIB. A Level-2 cache hit is treated similarly to a Level-1 cache

hit. We show the snippets of our P4 code for the Light Traffic Hitters Detection module in Listing C.2 of

Appendix C.

To program the prototype of the Route Manager in the control plane, we used API generated by P416 com-

piler based on our P4 code. As the works on P4 PSA compiler are still in progress, we used a different

switch model to run the emulation. We tested the partial PFCA implementation in bmv2 [57] virtual envi-

ronment for P4-programmed switches. In our current P4 prototype, PFCA is able to forward packets and

collect the victim routes into the hash tables of the Light Traffic Hitters Detection module. As the Route

Manager detects heavy flows in Level-2 cache or the slow FIB, it randomly chooses victim entries and per-

forms prefix migrations. In addition, the Route Manager handles the BGP update requests and applies them

to the forwarding tables of the data plane.

4.5 Complexity

In this section, we analyze the complexity of the algorithms proposed in PFCA. Adding a new prefix with the

length w into the binary tree at the Route Manager requires 2 ∗w memory accesses due to prefix extensions

at each level of a tree between the root node and the new node. Hence, the running time of a BGP update

handling is equal to O(2 ∗ w), when the new prefix is more specific than existing ones. In the meantime, in

a worst-case scenario, a BGP update for a less specific prefix p may require a full post-order traversal of the

tree rooted at a node corresponding to p. Such a traversal runs in O(2 ∗ n − 1), where n is the number of

entries in the routing table with the extended prefixes. As we show in Section 4.6, the BGP updates in fact

rarely affect popular entries in TCAM and thus the slight increase in the BGP update handling delay will

not degrade the forwarding correctness of the cache entries.

The complexity of the Light Traffic Hitters Detection (LTHD) module is critical for the performance of a

switch since it needs to track the least popular flows at high rates of the network traffic. Pipelining a matched

prefix through LTHD requires 2 ∗ d − 1 memory accesses at most, where d is the number of stages set up

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 44

by the operator of a switch (in our evaluation, we use only 4 stages). The additional d− 1 memory accesses

stem from the necessity of removing a possible duplicate key from the tables Tm+1, ..., Td when installing a

new key at a stage m (see Section 4.4).

4.6 Evaluation of PFCA

4.6.1 Experiment setup

For the experiment, we used the following realistic datasets: (1) A routing table with 599,298 entries from

the RouteViews project [5]; (2) A one-hour traffic trace with 45,730 BGP updates from the RouteViews

project; (3) A one-hour anonymized traffic trace collected by the CAIDA [1] with more than 3.5 billions of

packets. All datasets were collected at 03/17/2016. By combining these three datasets we simulated a one-

hour operation of an L3 switch/router with PFCA. For a full simulation, we coded PFCA in C, including

the control plane with BGP updates handler, the Route Manager and the ingress pipeline with the Light

Traffic Hitters Detection module. We ran the experiment on an Intel Xeon Processor E5-2603 v3 1.60GHz

machine. The correctness of BGP update handling for an extended FIB table in PFCA was verified with

VeriTable [32]. We evaluated our FIB caching architecture with the following metrics:

1. Cache-miss ratio per 100K packets for Level-1 and Level-2 caches.

2. The number of cache installations/evictions in Level-1 and Level-2 caches.

3. The number of BGP updates applied to Level-1 and Level-2 caches.

We did not measure cache-miss latencies in this experiment since the lookup latency depends on the switch

target. However, the delay for a cache-missed packet can be estimated approximately as an LPM search

time on TCAM (≈4ns [78]).

4.6.2 Tuning the FIB caching architecture

Several parameters can affect the performance of PFCA. First, the number of stages in the Light Traffic

Hitters Detection module can be changed, along with the size of each hash table, similarly to HashPipe

proposed in [67]. Decreasing the size of the hash tables and increasing the number of stages may increase the

accuracy of the less popular routes selection. However, the tuning process is also constrained by the switch’s

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 45

memory limit. Second, the popularity threshold for migrating a prefix to a faster memory may be changed

in Level-2 (SRAM) cache and the FIB in DRAM. The threshold affects the frequency of installations into

Level-1 (TCAM) and Level-2 caches, as well as the frequency of cache victim evictions and replacements

when a faster memory is full. A low value of the threshold typically results in more frequent installations

and victim evictions. Furthermore, we observed that frequent installations into a cache lead to an increasing

number of cache misses. On the other side, the high value of the threshold deters installations of heavy flow

prefixes into a faster memory, which might increase the number of cache-misses as well.

The optimal tuning of PFCA also depends on the memory size of TCAM/SRAM chips and the patterns of the

traffic on the switch. While the theoretical approach to finding the optimal tuning parameters will constitute

our future work, in this work we demonstrate the simulation results based on the following parameters:

1. For the Light Traffic Hitters Detection module, we set the number of stages to be 4, and the size of

each hash table to be 10. Since each entry in the module contains a 4-byte prefix and a counter, the

memory overhead for Light Traffic Hitters Detection is calculated as (4+4)∗4∗10=320 bytes. Because

we use separate cache victim tables for Level-1 and Level-2 caches, the overall overhead for the switch

memory is 640 bytes.

2. When the caches are not full, we set low thresholds in Level-2 cache and the slow FIB, 15 and 1,

respectively, to quickly initialize them.

3. If Level-1 cache is full, the threshold in Level-2 cache is set to 300 matches per minute.

4. If Level-2 cache is full, the threshold in the slow DRAM FIB is set to 100 matches per minute.

In the simulation, we assume the limits of TCAM and SRAM memory sizes to be 20K and 40K entries,

respectively. To verify the effectiveness of the chosen parameters, we ran a second experiment with a

different traffic trace and obtained similar results.

4.6.3 Results

We started our experiment with the empty Level-1 and Level-2 caches. As it can be seen from Figure 4.11,

both caches are filled quickly because of the low thresholds we set for cache initialization. During the

experiment, PFCA restricts Level-1 and Level-2 caches to 20K and 40K maximum entries respectively.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 46

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10000 20000 30000

C
a
c
h
e
-m

is
s
 r

a
ti
o
 (

%
)

Number of packets/100K

Level-1 Cache
Level-2 Cache

Level-1 Cache (Avg)

Figure 4.8: Cache-miss ratio with

popularity-based victim selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10000 20000 30000

C
a
c
h
e
-m

is
s
 r

a
ti
o
 (

%
)

Number of packets/100K

Level-1 Cache
Level-2 Cache

Level-1 Cache (Avg)

Figure 4.9: Cache-miss ratio with

random victim selection

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10000 20000 30000

C
a
c
h
e
-m

is
s
 r

a
ti
o
 (

%
)

Number of packets/100K

Level-1 Cache
Level-2 Cache

Level-1 Cache (Avg)

Figure 4.10: Cache-miss ratio

with heap-based victim selection.

 1000

 10000

 100000

 1x10
6

 10000 20000 30000

N
u
m

b
e
r

o
f
e
n
tr

ie
s

Number of packets/100K

Level-1 Cache
Level-2 Cache

Full FIB size

Figure 4.11: Size of Level-1,

Level-2 caches and the full FIB.

 0

 5000

 10000

 15000

 20000

 10000 20000 30000

C
a
c
h
e
 i
n
s
ta

lla
ti
o
n
s
/e

v
ic

ti
o
n
s

Number of packets/100K

Light Traffic Hitters victim selection
Random victim selection

LRU-based victim selection

Figure 4.12: Installations and

evictions in the full Level-1

cache.

 1

 10

 100

 1000

 10000

 100000

 10000 20000 30000

B
G

P
 u

p
d
a
te

s

Number of packets/100K

Total
Level-1 Cache
Level-2 Cache

Figure 4.13: Number of BGP

updates in the Level-1, Level-2

caches and the full FIB.

Cache-miss ratio

Cache-miss ratio is one of the most important characteristics to measure the performance of a FIB caching

algorithm or framework. Figure 4.8 shows the cache-miss ratio with popularity-based victim selection for

every 100K packets passing through the ingress pipeline of the switch. The least popular prefixes were

collected by the Light Hitter Detection module. At the beginning of the experiment, the miss ratios for

both cache tables were relatively high, since we did not initialize them up with empirically popular entries.

However, the number of misses decreases quickly as the popular prefixes are filled into Level-1 and Level-2

caches. On average, the miss ratio for Level-1 cache is slightly less than 0.175%, and the miss ratio for

Level-2 cache rarely exceeds 0.1% and is 0.015% on average. In general, the larger sizes of TCAM and

SRAM caches, the lower cache-miss ratios for both caches.

Figure 4.9 shows the cache-miss ratio for Level-1 and Level-2 caches for a similar FIB architecture with

random cache victim selection. The average miss ratio for Level-1 cache is 0.248% and the highest miss

ratio after cache initialization is over 1%, which is much higher than that in the popularity-based victim

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 47

selection. For Level-2 cache, the average miss ratio is very close to the one for popularity-based victim

selection (≈0.015%). Such results for Level-2 cache can be explained by the observation that it consists of

prefixes whose popularity are more uniformly distributed. However, note that the random eviction results

are versatile and uncontrollable, thus it may lead to a large number of installations/evictions if a popular

prefix was selected. On the contrary, our popularity-based victim selection approach will always choose

relatively unpopular prefixes, and thus the results are more reliable and predictable.

In addition to evaluating random cache victim selection strategy, we simulated PFCA with the LRU-based

cache victim selection policy, i.e., an algorithm that stores prefixes in a heap and selects the last recently

matched prefix as a cache victim. Obviously, such an algorithm cannot be implemented in a switch due to

its complexity. However, our goal was to compare the results of LRU-based victim selection with our Light

Traffic Hitters Detection module. After running the simulation with the same data traces, we obtained the

average cache-miss ratio for Level-1 cache slightly worse than cache-victim selection based on light traf-

fic hitters (0.177% vs 0.175%). Similarly, for Level-2 cache, LRU-based victim selection resulted in more

cache-misses than when using Light Traffic Hitters Detection module (0.017% vs 0.015%). Figure 4.10

shows the cache miss ratio of LRU-based victim selection for every 100K packets during the experiment.

Overall, Light Traffic Hitters Detection achieves the smallest cache-miss ratio while using a line-rate algo-

rithm.

Installations/evictions in a full cache

Recall that the installations are triggered when a prefix in a slower memory becomes popular, i.e., its counter

reaches a threshold value. If the threshold is reached for a prefix in Level-2 cache, the prefix will be removed

from it and installed into Level-1 cache; if the threshold is reached for a prefix in the FIB on DRAM, the

prefix is installed into Level-2 cache and its Cache flag is set. Note that if a cache is full, each installation

requires eviction of another prefix from the cache.

Figure 4.12 illustrates the numbers of cache installations and evictions in a full Level-1 for (a) popularity-

based, (b) random and (c) LRU-based victim selection implementations. As we can observe in the graph,

the popularity-based approach yields nearly half of the number of cache installations and evictions, when

compared to the random victim selection approach. As expected, the LRU-based victim selection approach,

that chooses the least matched prefix as a cache victim, achieves the smallest value for installations and

evictions. However, as we show in 4.6.3, Light Traffic Hitters Detection module achieves the minimal cash-

miss ratio among those three approaches. On average, PFCA with the popularity-based approach installed

only 8 entries in Level-1 cache and 20 entries in Level-2 cache for every million of data packets.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 48

BGP updates impact

Figure 4.13 illustrates that 45,600 BGP updates triggered only 292 writes for Level-1 cache in TCAM and

1,120 writes for Level-2 cache in SRAM during a one-hour simulation. The results demonstrate that most of

the BGP updates are not linked with popular routes in the caches, which indicates that FIB caching utilizes

expensive routing memories more cost-effectively than existing practice. Intuitively, we can explain these

results by the fact that most of the BGP instability comes from misconfigurations and failures, which is

peculiar to the least popular destinations [22, 61].

An important advantage of PFCA is that it can minimize the number of expensive writing operations on

TCAM since each write in TCAM triggers resorting of the entries on the chip. Meanwhile, the number

of installations of popular routes is minimal once prefixes from heavy flows are installed into TCAM and

prefixes from active flows are installed into SRAM (see Figure 4.12). Note that the number of installations

into a table is equal to the number of evictions in case if the memory on a chip is full.

In general, the results show the efficiency of the proposed architecture. PFCA can achieve the minimal

number of misses with only 3.5% of the global FIB installed on TCAM and 13.2% of the global FIB

installed on SRAM, significantly reducing hardware and energy costs for these memory units.

4.7 PFCA. Discussion

One of the properties of PFCA is that its data plane operates with solely non-overlapping prefixes. Thus,

for each destination IP address, there can be only a single match in the FIBs of PFCA, rather than multiple

matches with different prefix lengths. This property cancels the necessity of conducting expensive Longest

Prefix Matching (LPM) lookups. While generating a non-overlapping set of prefixes increases the size of a

FIB and the churn caused by BGP updates, PFCA cancels these drawbacks by selecting a small subset of

popular prefixes for forwarding more than 99% of traffic; as we show in Section 4.6, this subset consists of

5% of entries of a full FIB rarely affected by BGP updates. With the elimination of LPM, prefixes on TCAM

no longer need to be sorted by their prefix lengths which significantly reduces the costs of entry insertions

and deletions. Moreover, it is possible to leverage PFCA for software switches that do not use expensive

TCAM memory and apply forwarding hash tables on a cheaper memory instead.

CHAPTER 4. A PROGRAMMABLE FIB CACHING ARCHITECTURE 49

4.8 PFCA. Conclusion

In this chapter, we introduce a Programmable FIB Caching Architecture (PFCA) with two levels of FIB

cache in TCAM and SRAM respectively, and the slow FIB in DRAM memory. A great advantage of this

architecture is that operators can flexibly configure their TCAM and SRAM for efficient memory utilization.

In addition, we proposed the Light Traffic Hitters Detection module that performs pipeline-based cache vic-

tim selection for cache replacement. We designed PFCA based on Portable Switch Architecture (PSA) and

partially implemented its prototype using the P4 programming language. We demonstrated the effectiveness

and efficiency of our architecture in terms of cache misses, route installations, evictions, and BGP updates

handling. We employed two-hour traffic traces to evaluate and verify the PFCA’s performance. According to

the evaluation, PFCA achieves 99.825% cache-hit ratio for the Level-1 cache with 3.34% entries of the full

FIB. Moreover, only 0.015% of the data packets were forwarded by the FIB on the slow DRAM memory,

thanks to the Level-2 cache with 6.68% entries of the full FIB. Finally, 45,600 BGP updates included in the

data trace resulted in merely 152 FIB changes in the Level-1 cache, showing that PFCA minimizes the BGP

churn in the TCAM memory.

Chapter 5

CFCA: Combined FIB Caching and
Aggregation

5.1 Introduction

The evaluation of the resulting FIB table in PFCA’s Level-1 cache showed that it is aggregatable by at least

30% by an algorithm like FIFA-S [48] of FAQS. There are two sources of the mergeable entries:

1. The original global FIB contains a large amount of adjacent or overlapping prefixes that share the

same next-hop.

2. To avoid cache hiding problem, when a more specific prefix hides in a secondary FIB table (which

leads to incorrect LPM matching at the cache), most of FIB caching techniques [25, 30, 41, 47], in-

cluding PFCA, perform conversion of a FIB into an equivalent FIB with fragmented non-overlapping

prefixes.

A large number of adjacent prefixes in PFCA occupies additional space and increases the cache-miss ra-

tio and cache churn, causing potential lookup latencies. This space can be freed with an FIB aggregation

procedure (see example in Table 5.1). Yet, integrating FIB caching and FIB aggregation remains an unin-

vestigated problem [9]. There are two considerations that should be taken into account when designing a

FIB aggregation in conjecture with FIB caching:

1. The FIB aggregation algorithm should not produce overlapping routes, that will lead to cache hiding

50

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 51

Figure 5.1: The architecture of CFCA

Label Prefix Next-hop

A 129.10.124.0/24 1
B 129.10.124.0/27 1
C 129.10.124.64/26 1
D 129.10.124.192/26 2

(a) Original FIB

Label Prefix Next hop

A 129.10.124.0/24 1
D 129.10.124.192/26 2

(b) Aggregated FIB

Table 5.1: Example of FIB aggregation

and incorrect forwarding behavior.

2. The FIB aggregation should incrementally handle BGP updates without significant increase of BGP

churn in TCAM.

In this chapter, we present Combined FIB Caching and Aggregation - CFCA - that integrated caching and

aggregation while addressing the above-mentioned considerations.

5.2 Design of CFCA

As shown in Figure 4.3, CFCA is built on top of Programmable FIB Caching Architecture (PFCA) [30].

The control plane of CFCA is responsible for collecting network routes and managing the tables in the

data plane, namely Level-1 (L1) cache in TCAM, Level-2 (L2) cache in SRAM, and the rest of the FIB

in DRAM. To avoid cache hiding (see Section 4.1 for details), the Route Manager (RM) extends the FIB

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 52

routes received from the network into a set of non-overlapping prefixes (see Figure 4.4). The main departure

of CFCA from PFCA lies with the addition of the FIB aggregation module that compresses the extended

prefix table of the RM into a smaller set of non-overlapping prefixes. The prefixes are aggregated via a

binary prefix tree where prefixes and their next-hops are represented as nodes and the sibling nodes with

the same next-hop merge into the parent node (see Figure 5.2). Important, the FIB aggregation module can

incrementally handle BGP updates and push those updates into FIB tables with no risk of cache hiding. The

FIB entries are provided with traffic counters to help detect frequently-accessed prefixes. A traffic counter

is incremented for each match, and when a threshold is reached, the entry migrates to a faster cache table.

In addition, the router keeps track of less popular routes (also known as light traffic hitters) in the cache for

future cache replacement. The rest of the section discusses details of the RM, the FIB aggregation module,

the data plane workflow, and the light traffic hitters detection algorithm.

5.2.1 Control plane workflow

The Route Manager (RM) first processes route updates from neighbor routers, and passes these updates to

the FIB aggregation module. The RM then performs prefix migration by moving popular prefixes into fast

memory and unpopular prefixes to slow memory. The FIB aggregation module serves as a filter between

the RM and the data plane. It keeps the routing table in a compressed state by performing incremental

FIB aggregation without introducing new overlapping routes nor changing the forwarding behavior. In the

following sections, we discuss how to achieve this task at each stage of computation.

Initial FIB installation

At the initialization stage, CFCA’s RM receives the current prefix table’s snapshot - a Routing Information

Base (RIB) - and extends it to get a set of non-overlapping prefixes, in order to avoid cache hiding due

to the rule dependencies (see Section 4.1). Prefix extension (see Figure 4.4 as an example) is done by

adding the prefixes to the binary prefix tree and generating additional nodes in order to get a full binary

prefix tree. While some of the previous work used PATRICIA trie for cache hiding avoidance [47], for our

first attempt of combined FIB caching and aggregation, we chose the binary tree data structure with pro-

active installation of extended prefixes to prevent the overlapping prefixes with different next-hop values.

With such an approach we aim to minimize frequency of node generation and removal in a tree after BGP

updates.

A binary prefix tree in CFCA has the following properties:

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 53

1. The root node root of the tree corresponds to the prefix 0/0 and is assigned with a default next-hop

value.

2. Each node n in the tree may have zero or two children.

3. The left (right) child of a node n.l (n.r) corresponds to a more specific prefix with an appended 0(1)

bit.

4. The set of non-overlapping prefixes is composed by all the leaf nodes of the tree.

Each node n in CFCA’s full binary tree has the following parameters:

1. The current table of a node, n.t. Possible values are NONE, Level-1 (L1) or Level-2 (L2) cache, or

DRAM.

2. The prefix corresponding to that node, n.p.

3. REAL/FAKE flag n.rf, that indicates if a node was originated from the RIB (REAL node) or was

generated as a result of prefix extension (FAKE node).

4. The original next-hop n.o, taken from the RIB. The FAKE nodes inherit the original next-hops of their

REAL parent nodes.

5. The selected next-hop n.s, set by CFCA’s FIB aggregation algorithm.

6. FIB status n.f : IN FIB or NON FIB which indicates if the corresponding prefix and its selected next-

hop should be in installed into the data plane.

Although prefix extension does not change the forwarding behavior of a prefix table, it may significantly

increase its size. CFCA’s aggregation algorithm mitigates this negative effect by recursively ”folding”

adjacent prefixes that share the same next-hop into a larger prefix and installing into the FIB only one

prefix per branch, thus preventing cache hiding. We show the pseudo-code of the initial FIB aggregation

in Algorithm 8 of Appendix D. The compression is done within a single post-order traversal over binary

prefix tree starting from the root node. Consider an example with entries from Table 5.1a. The initial binary

prefix tree for these entries contains 5 leaf nodes (see Figure 5.2(a)). However, at the left branch, nodes B

and G share the same next-hop from the RIB; thus, they merge into F. F selects its next-hop from B and G.

Since that next-hop is equal to C’s next-hop, F and C similarly merge into E. At the right branch, leaves I

and D have different next-hops from the RIB and do not merge; consequently, nodes E and H do not ”fold”

into A and the traversal terminates. As a result, instead of 5 prefixes, only 3 non-overlapping prefixes (from

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 54

(a) The prefix tree after prefix extension

(b) The prefix tree after FIB aggregation

Figure 5.2: FIB aggregation in CFCA

the nodes E, I and D) will be installed into the FIB. More specifically, at each node n, CFCA is running

two operations: (1) Setting the selected next-hop value of n; (2) Setting the FIB status of the left and right

children of n, namely n.l and n.r. Below is the detailed description of both operations.

1. Setting the selected next-hop value n.s for the noden. If n is a leaf node, then n.s is equal to the

original next-hop value n.o. In case n is an internal node, its selected next-hop depends on the selected

next-hops of n.l and n.r:

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 55

a. If n.l.s=n.r.s, then n.s=n.l.s;

b. Otherwise, n.s=0.

2. Setting the FIB status of the left and right child nodes of n (n.l.f and n.r.f). This operation is

performed for the internal nodes of the prefix binary tree. In case n.s is not equal to 0, then both n.l.f

and n.r.f are set to NON FIB. Otherwise, if n.s 6=0, the FIB status of a child node is set to IN FIB if its

own selected next-hop value is not equal to 0. Initially, the entries corresponding to IN FIB nodes are

pushed into the DRAM memory of the data plane. While the traffic is passing through the data plane,

those entries may migrate to L2 and L1 cache if they become popular.

Intuitively, a non-zero selected next-hop value n.s of a node n means that all the leaf descendant nodes of

n have the original next-hop value equal to n.s. Hence the FIB entries corresponding to those leaf prefixes

can be compressed into a single entry. We call the nodes with a non-zero selected next-hop as points of

aggregation. In the meantime, a zero value of n.s means that not all of the descendant leaf nodes of n

have the same original next-hop value. If a left or a right child node of n is a point of aggregation, then it

is assigned with IN FIB status. At this stage, our algorithm guarantees that the prefix region n.p is fully

covered with a set of IN FIB descendant nodes of n. Thus, n and its all ancestor nodes should be assigned

with NON FIB status.

CFCA’s initial aggregation algorithm consists of a single post-order traversal of a binary tree, hence its

complexity is O(N), where N is the number of nodes in a binary tree. The number of nodes N is equal to

2 ∗ Np − 1, where Np is the total number of non-overlapping prefixes (i.e., leaf nodes). In the worst case,

each original prefix p in a FIB can produce up to w non-overlapping prefixes, where w is p’s prefix length.

BGP update handling of CFCA has a similar complexity, as it leverages post-order traversals for keeping a

FIB in a compressed state. We demonstrate it further in this subsection.

BGP update handling

The RM receives BGP updates (new entry announcements, next-hop updates, and entry withdrawals) from

a BGP daemon running on the control plane. The RM applies these updates to the binary prefix tree by

updating or adding a node to it. Next, CFCA re-aggregates the sub-tree rooted at the updated (or added)

node, as well as the parents of that node (see Figure 5.3 for the workflow overview). However, in most cases,

the update affects only a few nodes of a tree. Below we give a detailed description of how CFCA handles

different types of BGP updates.

• Announcement of a new next-hop NH for an existing prefix p in a FIB. A next-hop update of a prefix

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 56

p, p0: Prefix n, n0: Nodes

NH: Next-hop value root: The root node of the tree

Figure 5.3: BGP update handling workflow in CFCA

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 57

p may affect not just p itself, but also the prefixes generated after prefix extension. The resulting changes

may require next-hop updates in the data plane, as well as de-aggregation or re-aggregation of prefixes

overlapping with p. Thus, CFCA needs to perform partial traversals of a tree branch on which p resides.

Next, we describe this process in details.

After the RM finds the node n corresponding to p in the prefix binary tree, it assigns the new value of the

next-hop to n.o, the original next-hop of n. Next, it partially traverses the branch rooted at n in a post-order

manner (see Algorithm 9 of Appendix D), avoiding the branches rooted at REAL nodes and visiting FAKE

nodes only. Intuitively, the REAL descendants of n are not affected by the next-hop update of n and traversing

them is useless. The FAKE nodes, on the contrary, are generated during prefix extension in CFCA. Since

they inherit next-hop values from n, they are updated with every change to n.o.

During the traversal, at each traversed node, CFCA:

1. Updates the node’s original next-hop with NH.

2. Sets the selected next-hop of the node in the same manner as in the Initial FIB Aggregation. More

specifically, for the leaf nodes, the selected next-hop is equal to their original next-hops. For the

internal nodes, the selected next-hop is equal to 0 if their children nodes have different selected next-

hop values. The procedure setSelectedNextHop(n) is shown in Algorithm 12 of Appendix D.

3. Sets the FIB status of the node’s children (if they exist) and pushes the next-hop changes to the

data plane. More specifically, if a node has a non-zero selected next-hop, its children should not

be present in the FIB. Otherwise, the children nodes with a non-zero selected next-hops (i.e., points

of aggregation) should stay or be installed into the data plane. Note that the RM tracks the current

location of entries with the value of n.r.t and thus is able to push the updates to the correct data plane

destination (L1, L2 caches or DRAM). We give the pseudo-code of setFIBstatus(n) in Algorithm 13

of Appendix D.

Once the post-order traversal is done, the ancestors of the node n should be traversed in a bottom-up manner.

There are two reasons why such procedure is necessary: first, the ancestors’ selected next-hop value depends

on their children’s selected next-hops. Second, in CFCA, the FIB status of a node is defined by its parent.

Since the changes in a tree propagate through selected next-hops, the bottom-up traversal can terminate if a

node’s selected next-hop does not change. Similarly to the post-order traversal, at each visited node n, CFCA

calls both setSelectedNextHop(n) and setFIBstatus(n). We show the pseudo-code of bottomUpUpdate(n) in

Algorithm 10 of Appendix D. Note that bottomUpUpdate(n) is called only if the value of n.s is changed

after calling setSelectedNexthop(n).

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 58

(a) Update for C and announcement of a prefix at H

(b) Nodes E, F, C, H, I, D have been affected

Figure 5.4: BGP updates handling by CFCA

Although a new route announcement and a route withdrawal require more operational steps by the RM, they

mostly rely on the same routines as with a route update, i.e., postOrderUpdate(n, NH) and bottomUpUp-

date(n). We show it below in this section.

• Announcement of a new route (p, NH), where p is the prefix and NH is its next-hop value. Two cases

may happen. In the first case, a node n associated with p already exists in the binary prefix tree. CFCA

handles such announcements similarly to the next-hop updates. The RM updates n’s original next-hop

value, changes its type to REAL (if it was FAKE prior to the update) and runs postOrderUpdate(n, NH) and

bottomUpUpdate(n) routines.

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 59

In the second case, the node n for p should be first added to the binary prefix tree. For that goal, the RM

traverses the tree accordingly to the bits of p, to find n0, the existing leaf ancestor for n. Next, the RM installs

the node n while generating FAKE sibling nodes for each level of the tree between n0 and n. Such generation

is necessary to avoid cache hiding. These siblings nodes will inherit their original next-hop value from n0
and their prefix values will belong to the prefix range of n0 with exclusion of p. We call this procedure

prefix fragmentation, since it fragments the prefix of n0 into a set of non-overlapping prefixes with p. The

psedo-code of prefix fragmentation is given in Algorithm 11 of Appendix D.

The newly added nodes need to be aggregated, thus CFCA calls the initial aggregation aggrInit start-

ing from the node n0. Finally, in case the selected next-hop of the node n0 is changed, CFCA runs

bottomUpUpdate(n0) to re-aggregate the upper part of the branch, until the first unchanged ancestor.

•Withdrawal of a prefix p. Suppose n is the node that represents p in the binary prefix tree. CFCA handles

prefix withdrawals as follows:

1. The Route Manager sets the type of n to FAKE.

2. The node inherits its original next-hop value from the parent node. This value might be a default

next-hop, inherited from the root node of the tree, or an arbitrary next-hop from a less specific prefix

existing in the original RIB.

3. Similarly to the next-hop updates, the aggregation module runs postOrderUpdate(n, NH) and bot-

tomUpUpdate(n) routines.

Intuitively, the prefix withdrawal operation in CFCA can be represented as a node’s original next-hop update

with that node’s parent’s original next-hop value. In the meantime, CFCA ensures the compacted state of

the binary prefix tree, by detecting and removing sibling FAKE leaf nodes from the data structure.

In Figure 5.4, we illustrate BGP update handling by CFCA. We continue using the entries from Table 5.1a.

In this example, the RM received two BGP updates: a next-hop update for the prefix 129.10.124.64/26 and

an announcement of a new prefix 129.10.124.128/25. For the first update, CFCA reaggregates the tree with

bottom-up traversal from the node C, after which the nodes E, F and C change their FIB status. For the

announcement of the 129.10.124.128/25, the algorithm first changes the type of the corresponding node H

from FAKE to REAL. Next, it performs the post-order and bottom-up traversals from the node H, after which

the prefixes at the nodes I and D aggregate into H.

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 60

Popular routes installation

The RM ”migrates” the entries of a FIB to faster memory once a route in the L2 cache table or the DRAM

reaches a certain amount of hits, for example, 100 hits per second. The threshold can be pre-configured by

the control plane of a switch. If a faster memory is full, then the RM frees it by picking a victim cache entry

with the help of Light Traffic Hitters Detection module of the data plane and moving that entry to slower

memory.

5.2.2 Data plane workflow

Similarly to PFCA, the essential part of the CFCA’s data plane is the Light Traffic Hitters Detection (LTHD)

module, designed in order to collect the least popular routes of Level-1 (L1) and Level-2 (L2) caches for

future cache replacement. LTHD can be built in the switches with the Portable Switch Architecture [58].

Its design is described in details in 4.3.3 of Chapter 4. The flow between the match-action tables of the

data plane (L1, L2 caches and the DRAM FIB) is managed by the programmable ingress pipeline. When a

packet arrives at a CFCA switch, its destination IP address is matched against the L1 cache FIB on TCAM.

In the case of a match, the matching prefix’s counter is increased by one and its value is passed through the

LTHD module. The packet is then forwarded to the next-hop.

In the case of an L1 cache miss, the packet’s IP header is passed to the L2 cache and the DRAM table in

parallel. On an L2 cache match, CFCA increases the counter value of the matching prefix and checks if

it reached a pre-configured threshold. If so, the prefix is being installed into the L1 cache. In case the L1

cache is full, CFCA randomly picks an unpopular route from the LTHD module’s tables and replaces it with

a new route from the L2 cache. Lastly, the unpopular prefix from the L1 cache migrates back to the L2

cache. If the threshold on the L2 cache for a matched prefix is not reached, CFCA passes the prefix and its

counter value through the LTHD module of the L2 cache. In each case, a match in the L2 cache results in

the forwarding of the packet to the next-hop, corresponding to the matched prefix.

Finally, if the match happens on DRAM, then, similarly to the L2 cache, CFCA checks if the matched

prefix’s counter value reached a pre-configured threshold and installs that prefix into the L2 cache if needed.

As with the L1 cache, if the L2 cache is full, the cache victim entry is selected from the LTHD module and

migrated into the FIB on DRAM.

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 61

(a) Original tree

(b) Node K added (c) Node D updated

Figure 5.5: Comparison of node accesses between PFCA and CFCA (worst case scenario)

5.2.3 Complexity of CFCA’s aggregation

As CFCA is built upon PFCA (see Section 4) with addition of the aggregation layer, it comes with additional

costs for BGP update handling compared to pure FIB caching. Consider two cases:

1. Addition of a new prefix with the length w into the binary tree. In such a worst-case scenario, PFCA

needs simply to generate 2 ∗ w nodes to avoid cache hiding. In addition to generating the nodes and

recursive bottom-up aggregation up to the first REAL ancestor node, CFCA will need to perform re-

aggregation of the updated branch (total O(2 ∗ 32 − 1) node accesses in the worst case, when the

bottom-up update propagates up to the root node).

2. Updating an existing node with length λ and n derived leaf nodes. While PFCA, similarly to the first

case, does not perform any bottom-up operations, in the worst case, it will need to accessO(2∗n−1)

leaf nodes. CFCA will have to perform O(λ ∗ 2 − 1) additional node accesses to reaggregate the

ancestors of the updated note.

Figure 5.5 illustrates number of nodes accessed by both algorithms in a specific example.

5.3 CFCA. Evaluation

We evaluate the performance of CFCA by comparing it to pure FIB caching (PFCA) and FIB aggregation

algorithms with incremental BGP updates handling (FAQS and FIFA-S):

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 62

• PFCA is a FIB caching-only architecture for a programmable switch described in [30]. We use PFCA

for comparison in terms of cache-miss ratio and BGP-related FIB changes.

• FAQS [46] is a FIB aggregation algorithm with minimal data plane churn and suboptimal aggregation

ratio.

• FIFA-S [48] is an ORTC-based FIB aggregation algorithm with an optimal aggregation ratio.

To emulate the operation of a programmable switch with CFCA we designed its data plane prototype with

P4 language. As works on the P4 compiler for PSA are in progress [69], our prototype was designed for

the Simple Switch architecture [70], and thus had limited capabilities compared to the original design of

CFCA. First, ”Simple Switch” lacks the generation of packet digests in a data plane, i. e., messages that

can be forwarded to a control plane, which is necessary for detecting the heavy hitters at the latter. Another

obstacle for building the full prototype with P4’s ”Simple Switch” is that the packet counters attached to the

entries in routing tables can not be accessed directly from the data plane.

While our future work will focus on designing the full P4 prototype of CFCA based on PSA, in this work,

we evaluate the efficiency of CFCA’s combined FIB caching and aggregation using a trace-driven simulator

written in C.

5.3.1 Experimental setup

We use RouteViews [5] to build a routing table that contains 599,298 entries. Our experiment simulates

router operations for about an hour by processing a mixed trace of 45,600 BGP updates of RouteViews

and an anonymized traffic trace from CAIDA [1] with 3.5 billion packets. For performance evaluation, we

measure the following metrics:

1. Cache-miss ratio per 100K packets for Level-1 (L1) and Level-2 (L2) caches.

2. The number of popular route installations/evictions in L1 and L2 caches.

3. The number of BGP updates applied to L1 and L2 caches compared to the total number of BGP

updates.

We tune both CFCA and PFCA in the same way as follows:

1. We set the number of stages in the Light Traffic Hitters Detection (LTHD) module to four.

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 63

CFCA/

PFCA

L1 size

ratio, %

L1

size

L2

size

L1 misses,

%

L2 misses,

%

L1

installations

L2

installations

L1 BGP

updates

L1 BGP

max burst

CFCA

0.83 5,000 10,000 1.133 0.153 109,070 623,994 88 2

1.67 10,000 15,000 0.144 0.017 18,108 150,547 156 5

2.50 15,000 20,000 0.058 0.004 17,277 37,842 285 6

PFCA

0.83 5,000 10,000 4.135 1.258 302,337 664,580 51 8

1.67 10,000 15,000 0.873 0.211 72,400 118,847 133 12

2.50 15,000 20,000 0.316 0.071 32,242 58,246 195 12

Table 5.2: CFCA vs FIB caching with PFCA. Evaluation summary.

2. Each stage has a hash table of size 10.

3. Initially, L1 and L2 caches are empty; however, they are quickly filled up as the initial threshold for

route installations in DRAM and Level-2 cache are 1 and 15 matches, respectively.

4. Once the L1 and L2 caches are full, we set the thresholds to 100 matches per minute for DRAM and

to 300 matches per minute for L2 cache.

5. We compare the performance of CFCA and PFCA for different sizes of L1 and L2 caches, namely 5K

with 10K, 10K with 15K, and 15K with 20K.

We verified the correctness of BGP update handling by CFCA, PFCA, FAQS and FIFA-S with VeriTable [32]

(see Section 3.4.1), a tool designed for fast verification of forwarding equivalence of multiple forwarding

tables.

5.3.2 CFCA vs FIB Caching (PFCA)

The results that compare CFCA with PFCA are shown in Table 5.2. In the table,

1. L1/L2 size ratio, %: the ratio between the maximum number of entries in L1/L2 cache and the total

number of entries;

2. L1/L2 size: the maximum number of entries in L1/L2 cache.

3. L1/L2 misses, %: the ratio between successful LPM lookups and the total number of LPM lookups in

a table.

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 64

CFCA/FAQS/FIFA-S Size compared to the original FIB, % FIB updates BGP max burst

CFCA 2.50 21,495 6

FAQS 28.04 36,386 43

FIFA-S 25.08 48,672 33

Table 5.3: CFCA L1 cache vs FAQS/FIFA-S

(a) CFCA

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 20000 30000

C
a

c
h

e
-m

is
s
 r

a
ti
o

 (
%

)

Number of packets/100K

Level-1 Cache
Level-2 Cache

Level-1 Cache (Avg)

(b) PFCA

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 20000 30000

C
a

c
h

e
-m

is
s
 r

a
ti
o

 (
%

)

Number of packets/100K

Figure 5.6: CFCA vs PFCA. Cache-miss ratio per 100K packets for 15,000 L1 and 20,000 L2 caches

4. L1/L2 installations: the total number of popular route installations into L1/L2 caches.

5. L1 BGP updates: the total number of changes in TCAM caused by BGP protocol.

6. L1 BGP max burst: the maximum observed number of FIB changes after a single BGP route update

during the experiment.

Cache-miss ratio

We first measure cache-miss ratios. Here, the larger values are, the more IP lookups are to be performed

at slow memory causing packet forwarding delays and even losses. It is ideal to have the L1 cache miss

ratio is minimized. In CFCA, the average cache-miss ratio is 1.13% when the L1 cache contains only

0.83% entries of the FIB. Also, if the L1 cache contains more prefixes (2.50% of the FIB), the cache-miss

ratio drops drastically to 0.058%, which is more than five times less than PFCA’s average cache-miss ratio

(0.316%). Figure 5.6 shows this cache-miss ratio improvement through FIB aggregation (see the red line

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 65

(a) Popular route installations and evictions

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10000 20000 30000

Cache
initializationC

a
c
h

e
 i
n

s
ta

lla
ti
o

n
s

Number of packets/100K

CFCA
PFCA

(b) Number of BGP updates

 1

 10

 100

 1000

 10000

 100000

 10000 20000 30000

B
G

P
 u

p
d

a
te

s

Number of packets/100K

Total
CFCA L1
PFCA L1

Figure 5.7: L1 cache in CFCA and PFCA

for the average). The number of L1 cache-miss lookups in CFCA rarely exceeds 0.4%, while the number of

cache-misses is negligible for L2. In contrast, the cache-miss ratio of PFCA reaches nearly 1% in the worst

case.

Popular route installations and evictions into L1/L2 caches

In CFCA, the control plane aggregates FIB entries before pushing them into the data plane, and this aggrega-

tion dramatically decreases both L1 and L2 popular route installation and eviction rates. The low installation

and eviction rates help save energy and improve performance as writing on TCAM is computationally ex-

pensive [34]. We show the L1 popular route installations for both PFCA and CFCA in Figure 5.7a. We set

the sizes of the L1 and L2 caches to 15,000 and 20,000 entries, respectively. A cache entry installation does

not require eviction until the cache is fully initialized (see the dashed lines in the figure). Note that both

CFCA and PFCA apply the cold start strategy, i.e., L1 and L2 cache tables are initially empty and are filled

up with traffic later. Once the cache tables become full, cache replacement is needed for a new popular route

installation, and we use Light Traffic Hitters Detection to identify victims for eviction.

BGP updates impact

One drawback of FIB aggregation is the potential cache churn increase in TCAM due to the BGP updates

applied to a compressed FIB. Table 5.2 shows that BGP-related cache updates in the L1 cache of CFCA are

slightly increased compared to PFCA because PFCA does not aggregate the FIB. However, the percentage

of TCAM updates in CFCA remains low. As an example, only 0.625% of all BGP updates result in TCAM

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 66

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10000 30000 50000 70000

C
a
c
h
e
-m

is
s
 r

a
ti
o
 (

%
)

Number of packets/100K

Level-1 Cache
Level-2 Cache

Level-1 Cache (Avg)

Figure 5.8: CFCA. Cache-miss ratio per 100K

packets under a heavier load

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 300 600 900 1200

T
im

e
(m

s
)

Number of BGP updates/1K

CFCA
PFCA
FAQS

FIFA-S

Figure 5.9: BGP update handling time

updates when the L1 cache size is 15,000 (see Figure 5.7b). In addition, we evaluate BGP maximum burst in

L1, i.e., the maximum number of FIB changes caused by a single BGP update. Interestingly, CFCA shows

lower BGP maximum burst in all the configurations as shown in Table 5.2. The FIB aggregation compresses

prefixes generated by the prefix extension, and therefore a single next-hop update of a parent prefix affects

fewer entries in TCAM than PFCA with more extended prefixes present in TCAM.

5.3.3 CFCA vs FIB Aggregation (FAQS/FIFA-S)

FIB aggregation minimizes its disadvantages when applied together with FIB caching. Table 5.3 shows

that the total number FIB updates, which includes L1 popular route installations, evictions, and next-hop

updates, in CFCA with 15,000 entries is far less than in FAQS, that is a FIB aggregation scheme with the

minimal BGP-related churn. For ORTC-based algorithms with optimal aggregation ratio like FIFA-S, the

total number of FIB updates is even larger. Moreover, CFCA does not produce large BGP bursts, which we

attribute to the observation that BGP updates are mostly related to unpopular routes. The only strength of

FIB aggregation over FIB caching is that all the routes stay in a cache. In FIB caching, on the other hand,

the lookups that do not find a prefix match in a cache are forwarded to lower memory obviously increasing

forwarding delay. CFCA mitigates this drawback as it reduces the cache-miss ratio to 0.058% for the L1

cache with only 2.50% entries in the FIB.

5.3.4 Evaluating a heavier trace

In the previous subsections, we showed the performance of CFCA under a traffic load with the mean trans-

mission rate of about 1M packets per second. To test the behavior of CFCA under a heavier load, we

CHAPTER 5. CFCA: COMBINED FIB CACHING AND AGGREGATION 67

CFCA/PFCA L1 cache size, % L1 misses, % L1 installations L1 BGP max burst Total BGP cost, s

CFCA 2.50 0.27 40,315 5 1.07

PFCA 2.50 0.81 162,737 18 0.93

Table 5.4: CFCA vs PFCA (larger trace)

collected a more recent (01/17/2019) 1-hour trace from CAIDA [1] with 7.7 billions of packets and a 1-hour

BGP update trace with 1,364,963 routing updates. We also used a larger routing table with 725,344 entries

and L1/L2 cache with 20,000 and 30,000 entries respectively.

Due to significantly increased packet frequency, the average cache-miss ratio for this trace is higher (≈0.27%).

However, CFCA keeps it within 1% (see Figure 5.8 and Table 5.4). For this trace, we also compared the

BGP update handling time by CFCA vs PFCA, FAQS and FIFA-S (see Figure 5.9). CFCA’s control plane

takes only 0.78µs per a BGP update on average, slightly slower than PFCA (0.69µs per update), due to the

additional FIB aggregation. In the meantime, the time cost of FIB aggregation algorithms is much higher

(2.11µs and 3.50µs per update for FAQS and FIFA-S respectively).

5.4 CFCA. Conclusion

In this chapter, we present CFCA, Combined FIB Caching and Aggregation, which uses two FIB compress-

ing techniques to offload the expensive TCAM memory used for FIB from unpopular routes. Evaluation

of CFCA on large traffic trace and BGP update traces shows remarkably low cache-miss ratios and total

number of FIB updates compared to the existing FIB caching solutions. In particular, CFCA achieves up

to 99.94% cache-hits and stabilizes the cache by more than 46% with 2.5% of the entire FIB in the cache.

Finally, compared to FIB aggregation algorithms, CFCA avoids large bursts of TCAM updates, reducing

costly TCAM updates by 40% on average.

Chapter 6

Related Work

TCAM overflow problem and possible approaches for solving it were analyzed in in [80]. While IP pro-

tocol re-designing cannot be applied solely at a local ISP level and requires consistency between all of the

Autonomous Systems (ASes), both FIB aggregation and FIB caching are local solutions and can signifi-

cantly prolong the lifetime of a routing device. Specifically, a network operator can run FIB caching and

aggregation techniques only within its AS without changing the traffic behavior within or outside that AS.

6.1 FIB aggregation

A number of FIB aggregation algorithms have been proposed. We highlight a few of them here. SMALTA

algorithm [72] uses the binary tree data structure and bases on ORTC algorithm [23], which can achieve

one-time optimal aggregation. SMALTA takes ORTC as the initial FIB aggregation algorithm and processes

updates without the optimization of a subtree, rooted at the updated node. Eventually, SMALTA requires

full re-aggregation of the FIB table upon reaching a FIB size threshold. It results in computational spikes

and high time costs. In [65], authors study and employ the locality of FIB updates to build Locality-aware

FIB Aggregation (LFA) algorithm. In LFA, reaggregation for an updated prefix region is delayed until it is

stabilized. However, such an approach requires timers attached to nodes which may significantly complicate

its operation in the real routers. Bienkowski et al. [10] present a formal study on the trade-off between

FIB aggregation and update bursts. In addition, the paper presents the algorithm HIMS that attaches time-

dependent counters to each node as well. However, the paper provides no information on the performance

of the algorithm when processing real network routing data. In [36], authors propose MMS, the Memory

Management System designed to prolong the lifetime of legacy routers in an ISP. MMS uses parallelization

68

CHAPTER 6. RELATED WORK 69

of ORTC and can aggregate routing tables locally or on an AS-level. Moreover, MMS may change the

forwarding behavior of routers in order to gain additional compression. Such an approach, in combination

with aggregation algorithms, may result in the minimal FIB size. However, it cannot be deployed locally

due to the potential forwarding loops.

Some FIB compression work uses smart data structures to minimize storage size of FIB [59]. In [60],

authors present a tunable aggregation algorithm with compressed prefix trees. By changing the deepness of

the compression, network operators can manage the trade-off between the aggregation ratio and BGP update

overhead. Similarly, Yang et al. in [77] present two algorithms, EAP-slow and EAP-fast and compare

it with ORTC. Unlike FAQS, EAP algorithms use leaf-pushed binary tree data structure. EAP achieves

faster aggregation by traversing the leaf-pushed trie only once. In [49], authors propose an aggregation

algorithm for OpenFlow flow tables, including non-prefix rules and prefix-based rules. For prefix-based

rules, wildcard aggregation technique is used. FIB aggregation scheme, that applies multiple selectable next

hops, is proposed by Li et al. [43]. Abraham et al. [4] create a virtual network system to implement and

study FIB aggregation. It is a reusable framework to test the performance of FIB aggregation algorithms in

a realistic environment.

Aggregation algorithms such as Level-1 and Level-2 [79] compress FIB quickly but bear costly update

handling operations. In 2013, Liu et al. developed FIFA algorithms [48], which improves ORTC algorithm

by applying PATRICIA tree (PT) with incremental FIB aggregation features. The basic of FIFA algorithms,

FIFA-S, reduces FIB size by at least 70% for an IPv4 routing table. The faster update handling is achieved

by applying formally proved properties, which allow to considerably reduce the number of FIB entries to be

accessed. The main weakness of FIFA-S is the high number of changes in a FIB per routing announcement

and related processing delays. Overall, the average number of FIB changes can be twice as more than the

total number of FIB updates. Challenging FIB update churn problem,

Our work, FAQS algorithm [46], makes a balance of aggregation time, ratio and memory consumption. It

sacrifices very little aggregation ratio compared with the optimal solution but speeds up the aggregation

more than twice with much less memory consumption.

6.2 FIB caching

The idea of caching entries in a forwarding table goes back to the early stages of the Internet. In [35], Raj

Jain et al. showed the ”source locality” of packets and proposed caching FIB entries for active flows and

prefetching entries for the corresponding reverse flows. Route caching was studied for Layer-4 switching

CHAPTER 6. RELATED WORK 70

as well [75]. Kim et al. give an overview of route caching in [41]. The paper studies traffic patterns in

a large ISP network and measures the performance of route caching when applied to that ISP. Similarly,

Gadkari et al. study FIB caching in [25]. In addition, the paper proposes a FIB caching solution that reaches

99.5% cache-hit ratio with 10K cache size, given the size of a FIB less than 500K entries. Both papers show

that FIB caching achieves higher hit ratio under LRU policies. However, LRU cache victim selection may

become a bottleneck when handling real Internet traffic. Alternatively, Sarrar et al. in [64] propose Traffic-

aware Flow Offloading (TFO) strategy that outperforms LRU for a cache with less than 10,000 entries. The

heavy-hitter selection process is performed at the control plane and may create a bottleneck when processing

ISP traffic. In [63], authors apply rule caching for lossy compression of packet classifiers and show that 3%

of the original classifiers are sufficient for handling 99% of the traffic. The paper does not elaborate on a

chosen real-time cache victim selection strategy. Liu et al. in [47] use OpenFlow’s variable idle timeouts to

identify unpopular routes in the fast memory. The proposed strategy achieves 99.95% cache-hit ratio with

5.28% of the original FIB rules. Similarly to our work, the authors solve the cache hiding problem by prefix

extensions. Katta et al. in Cacheflow [38] build dependency graphs and identify independent groups of rules

to avoid cache hiding. Such an approach requires the control plane to perform graph computations each time

a flow becomes popular and needs to be installed in the cache. Similarly, Bienkowski et al. in [11] propose

an online Tree Caching algorithm, that requires no prefix extensions of the FIB. Evaluation of Cacheflow

showed 97% cache-hit rate with 10%-sized TCAM; the authors of Tree Caching do not provide experimental

results but instead give a theoretical analysis of its algorithm. Both algorithms are suited for a data center

Software-Defined Networks with medium-sized FIBs. Our work, PFCA [30] leverages the programmable

data plane in order to build a FIB caching architecture with two levels of cache. The data plane workflow

and the Light Traffic Hitters Detection module of PFCA allow to install and remove entries from TCAM

cache at the line rate.

In [62], Rottenstreich et al. propose lossy packet classifier compressors for optimal rule caching, that can be

used for identifying the most popular flows in a FIB and offloading TCAM from idle flows. The approximate

classification achieves the optimal cache-hit ratio given the size of the cache. However, it allows false

classifications for cache-misses which can lead to the incorrect forwarding behavior of a router. The cached

classification achieves the full forwarding correctness by redirecting some of the lookups to slow memory.

Both algorithms are based on dynamic programming with non-linear time complexity, which may impede

the deployment of the optimal rule caching in backbone networks with constantly changing traffic patterns

and thousands of BGP updates per second.

IHARC [17] speeds up software IP lookup by utilizing CPU cache for route caching. It merges prefixes in

the cache by selecting index bits that point to different cache sets with maximum mergeability. However,

IHARC’s architecture has several shortcomings. First, IHARC leverages a 3-level NART (Network Address

CHAPTER 6. RELATED WORK 71

Routing Table) data structure, with prefixes, flattened to the lengths 8, 24 and 32. This significantly increases

the size of a routing table and consequent update churn. Second, the index selection routine is an expensive

operation invoked at each routing update. The updates require IHARC to entirely invalidate its caches for

maintaining forwarding correctness, increasing cache-miss ratios. In [27], the authors improve IHARC with

selective cache invalidations and reduced recomputations of index bits.

Chapter 7

Conclusion

7.1 Discussion

The global routing table growth poses risks of Internet disruptions and forces network operators to upgrade

their TCAM chips. The widespread deployment of IPv6 protocol will increase the FIB size even further.

In this work, we take two different approaches to mitigating the FIB overflow problem. First, we studied

FIB aggregation and proposed a new FIB aggregation algorithm, FIB Aggregation with Quick Selections

(FAQS), that significantly reduced the time costs of BGP update handling and the BGP churn on TCAM,

compared to the existing algorithm. We evaluated FAQS on a 6-year BGP traces and show it achieves

near-optimal FIB compression.

Second, we studied FIB caching. For the first time, we leveraged the programmable data plane concept to

propose a new Programmable FIB Caching Architecture (PFCA) with cache-miss lookups handled entirely

in the data plane. Furthermore, we proposed a new cache victim collection algorithm, that collects the

light-flow prefixes into the data plane’s registers for future cache replacements. We built the prototype of

PFCA’s victim selection mechanism in P4 data plane language. We simulated PFCA on real network traces

and showed that it achieved 99.8% cache-hit ratio and minimized the BGP churn compared to the FIB

aggregation solutions.

When analyzing the resulting FIB table in the caches of PFCA, we noticed that algorithms like FAQS can

compress it by 30%. The freed space in the cache may maximize the cache-hit ratio. However, the problem

of integrating FIB caching and aggregation had not been studied yet. In addition, the existing FIB aggre-

gation algorithms, including FAQS, could not be directly applied along with FIB caching, since they would

72

CHAPTER 7. CONCLUSION 73

have produced overlapping prefixes which would lead to cache hiding and incorrect forwarding behavior of

the data plane. To this end, we designed and evaluated the Combined FIB caching and Aggregation (CFCA)

architecture with two main components:

• An FIB aggregation layer, that (a) compresses the forwarding table before pushing it into the data

plane; (b) incrementally handles BGP updates to keep the FIB compressed; (c) prevents the presence

of overlapping routes in the data plane.

• An FIB caching layer, that offloads TCAM from the unpopular routes.

CFCA avoids producing overlapping routes by using the binary tree data structure and preventing prefixes

from the same branch to be installed into the cache and the main FIB. In CFCA, cache-hit ratio is maximized

up to 99.94% with only 2.50% entries of the FIB, while the churn in TCAM is reduced by more than 40%

compared to low-churn FIB aggregation techniques. We verified our experiments with VeriTable, a tool we

designed for fast verification of forwarding equivalence and presented in this work. The promising results

motivate us to implement the full prototype of CFCA programmable switch hardware built with respect to

Portable Switch Architecture.

7.2 Limitations

While we built a limited prototype of the FIB caching architecture presented in this document, we were

not able to build the complete prototype for programmable switch emulator due to several reasons. First,

the Portable Switch Architecture’s compiler works are in progress, thus we could not leverage its properties

such as sending packet digests to the control plane, which is necessary to make the control plane aware of

”hot” entries in the routing table. In the meantime, table entries, as well as counters and meters attached to

those entries are not accessible from within the data plane. The simple addition of such functionality will

make PFCA and CFCA able to move the entries between different tables without invoking the control plane.

7.3 Future work

With respect to the limitations listed in the above subsection, we plan to work with academia and industry

community in order to build the full prototype of CFCA in a programmable switch emulator and later on

programmable switch hardware. In the meantime, we plan to optimize our control plane code. In particular,

CHAPTER 7. CONCLUSION 74

optimizations can be applied to the data structure we use for the FIB aggregation, as well as the reduction

of memory accesses during the post-order aggregation traversals of CFCA.

Bibliography

[1] Center for Applied Internet Data Analysis. http://www.caida.org/home/, 2017.

[2] P4 Language Consortium. https://p4.org/, 2019.

[3] The 768k or Another Internet Doomsday? Here’s how to deal with the TCAM overflow at the 768k

boundary. https://www.noction.com/blog/768k-day-512k-tcam, 2019.

[4] Jerald Paul Abraham, Yaoqing Liu, Lan Wang, and Beichuan Zhang. A flexible quagga-based virtual

network with FIB aggregation. IEEE Network, 28(5):47–53, 2014.

[5] Advanced Network Technology Center and University of Oregon. The RouteViews project.

http://www.routeviews.org/, 2017.

[6] Ishfaq Ahmad and Sanjay Ranka. Handbook of Energy-Aware and Green Computing-Two Volume Set.

Chapman and Hall/CRC, 2016.

[7] Barefoot. Tofino P4-programmable switch. https://www.barefootnetworks.com/

products/brief-tofino/, 2019.

[8] BGP Routing Table Analysis Report. Active BGP entries (FIB). http://bgp.potaroo.net/,

2019.

[9] Marcin Bienkowski, Jan Marcinkowski, Maciej Pacut, Stefan Schmid, and Aleksandra Spyra. Online

tree caching. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architec-

tures, pages 329–338. ACM, 2017.

[10] Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and Steve Uhlig. Competitive FIB aggregation with-

out update churn. In Proceedings of the 34th International Conference on Distributed Computing

Systems, pages 607–616. IEEE, 2014.

75

BIBLIOGRAPHY 76

[11] Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and Steve Uhlig. Online aggregation of the forward-

ing information base: Accounting for locality and churn. IEEE/ACM Transactions on Networking

(TON), 26(1):591–604, 2018.

[12] Roberto Bifulco and Anton Matsiuk. Towards scalable sdn switches: Enabling faster flow table entries

installation. ACM SIGCOMM Computer Communication Review, 45(4):343–344, 2015.

[13] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole

Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4: Programming protocol-

independent packet processors. ACM SIGCOMM Computer Communication Review, 44(3):87–95,

2014.

[14] Brian Field. Approaches for IPv4 as a Service. In 2015 Spring Technical Forum Proceedings. Comcast,

2015.

[15] H.J. Chao and B. Liu. High Performance Switches and Routers, pages 5–9. Wiley - IEEE. Wiley, 2007.

[16] Ray CC Cheung, Manish K Jaiswal, and Zahid Ullah. Z-TCAM: An SRAM-based architecture for

TCAM. IEEE Transactions on very large scale Integration (VLSI) systems, Digital Object Identifier,

10, 2015.

[17] Tzi-Cker Chiueh and Prashant Pradhan. Cache memory design for network processors. In Proceedings

of the 6th International Symposium on High-Performance Computer Architecture, pages 409–418.

IEEE, 2000.

[18] Cisco Systems. How to Choose the Best Router Switching Path for Your Network . {https:

//www.cisco.com/c/en/us/support/docs/ip/express-forwarding-cef/

13706-20.html}, 2005.

[19] Cisco Systems. Troubleshooting Prefix Inconsistencies with Cisco Express Forwarding. http:

//www.cisco.com/c/en/us/support/docs/ip/express-forwarding-cef/

14540-cefincon.html, 2005.

[20] Cisco Systems. CAT 6500 and 7600 Series Routers and Switches TCAM Allocation Adjust-

ment Procedures. https://www.cisco.com/c/en/us/support/docs/switches/

catalyst-6500-series-switches/117712-problemsolution-cat6500-00.

html, 2014.

[21] Cisco Systems. Configuring CEF Consistency Checkers. http://www.cisco.com/

c/en/us/td/docs/ios-xml/ios/ipswitch_cef/configuration/12-4/

isw-cef-12-4-book/isw-cef-checkers.html, 2016.

BIBLIOGRAPHY 77

[22] Shivani Deshpande, Marina Thottan, Tin Kam Ho, and Biplab Sikdar. An online mechanism for bgp

instability detection and analysis. IEEE Transactions on Computers, 58(11):1470–1484, 2009.

[23] Richard Draves, Christopher King, Srinivasan Venkatachary, and Brian D. Zill. Constructing Optimal

IP Routing Tables. In Proceedings of the 1999 IEEE Conference on Computer Communications, 1999.

[24] Tobias Enderle and Uwe Bauknecht. Modeling dynamic traffic demand behavior in telecommunication

networks. In Photonic Networks; 19th ITG-Symposium, pages 1–8. VDE, 2018.

[25] Kaustubh Gadkari, M Lawrence Weikum, Dan Massey, and Christos Papadopoulos. Pragmatic router

fib caching. Computer Communications, 84:52–62, 2016.

[26] Geoff Huston. BGP in 2016. https://blog.apnic.net/2017/01/27/bgp-in-2016/,

2017.

[27] Kartik Gopalan and Tzi-cker Chiueh. Improving route lookup performance using network processor

cache. In Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pages 22–22. IEEE,

2002.

[28] Greg Hankins. FIB Scaling: A Switch/Router Vendor Perspective. https://archive.nanog.

org/meetings/nanog39/presentations/fib-hankins.pdf, 2007.

[29] G. Grigoryan and Y. Liu. Toward a programmable fib caching architecture. In 2017 IEEE 25th Inter-

national Conference on Network Protocols (ICNP), pages 1–2, 2017.

[30] Garegin Grigoryan and Yaoqing Liu. Pfca: a programmable fib caching architecture. In Proceedings

of the 2018 Symposium on Architectures for Networking and Communications Systems, pages 97–103.

ACM, 2018.

[31] Garegin Grigoryan, Yaoqing Liu, and Minseok Kwon. Boosting FIB Caching Performance with Ag-

gregation. In Proceedings of the 29th International Symposium on High-Performance Parallel and

Distributed Computing, page 221–232. ACM, 2020.

[32] Garegin Grigoryan, Yaoqing Liu, Michael Leczinsky, and Jun Li. Veritable: Fast equivalence verifi-

cation of multiple large forwarding tables. In Proceedings of the 2018 IEEE Conference on Computer

Communications, pages 621–629. IEEE, 2018.

[33] John Hawkinson and Tony Bates. Guidelines for creation, selection, and registration of an Autonomous

System (AS). Technical report, MCI Inc., 1996.

[34] Peng He, Wenyuan Zhang, Hongtao Guan, Kavé Salamatian, and Gaogang Xie. Partial order theory

for fast tcam updates. IEEE/ACM Transactions on Networking (TON), 26(1):217–230, 2018.

BIBLIOGRAPHY 78

[35] Raj Jain and Shawn Routhier. Packet trains–measurements and a new model for computer network

traffic. IEEE journal on selected areas in Communications, 4(6):986–995, 1986.

[36] Elliott Karpilovsky, Matthew Caesar, Jennifer Rexford, Aman Shaikh, and Jacobus Van Der Merwe.

Practical network-wide compression of ip routing tables. IEEE Transactions on Network and Service

Management, 9(4):446–458, 2012.

[37] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Infinite cacheflow in software-

defined networks. In Proceedings of the 3rd workshop on Hot topics in software defined networking,

pages 175–180. ACM, 2014.

[38] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker. Cacheflow: Dependency-aware

rule-caching for software-defined networks. In Proceedings of the 2016 Symposium on SDN Research,

page 6. ACM, 2016.

[39] Peyman Kazemian, George Varghese, and Nick McKeown. Header Space Analysis: Static Checking

for Networks. In Proceedings of the 2012 Symposium on Networked Systems Design and Implementa-

tion, volume 12, pages 113–126. USENIX, 2012.

[40] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P Godfrey. Veriflow: Verifying network-wide

invariants in real time. ACM SIGCOMM Computer Communication Review, 42(4):467–472, 2012.

[41] Changhoon Kim, Matthew Caesar, Alexandre Gerber, and Jennifer Rexford. Revisiting Route Caching:

The World Should Be Flat. In PAM, volume 9, pages 3–12. Springer, 2009.

[42] Diego Kreutz, Fernando MV Ramos, Paulo Verissimo, Christian Esteve Rothenberg, Siamak Azodol-

molky, and Steve Uhlig. Software-defined networking: A comprehensive survey. Proceedings of the

IEEE, 103(1):14–76, 2015.

[43] Qing Li, Mingwei Xu, Dan Wang, Jun Li, Yong Jiang, and Jiahai Yang. Nexthop-selectable FIB

aggregation: An instant approach for internet routing scalability. Computer Communications, 67:11–

22, 2015.

[44] Wenjun Li, Dagang Li, Xinwei Liu, Ting Huang, Xianfeng Li, Wenxia Le, and Hui Li. A power-saving

pre-classifier for tcam-based ip lookup. Computer Networks, 164:106898, 2019.

[45] Alex X Liu, Chad R Meiners, and Eric Torng. Packet classification using binary content addressable

memory. Biological Cybernetics, 24(3):1295–1307, 2016.

[46] Yaoqing Liu and Garegin Grigoryan. Toward incremental fib aggregation with quick selections (faqs).

In Proceedings of the 17th International Symposium on Network Computing and Applications (NCA),

pages 1–8. IEEE, 2018.

BIBLIOGRAPHY 79

[47] Yaoqing Liu, Vince Lehman, and Lan Wang. Efficient fib caching using minimal non-overlapping

prefixes. Computer Networks, 83:85–99, 2015.

[48] Yaoqing Liu, Beichuan Zhang, and Lan Wang. Fifa: Fast incremental fib aggregation. In Proceedings

of the 2013 IEEE Conference on Computer Communications, pages 1–9. IEEE, 2013.

[49] Shouxi Luo, Hongfang Yu, and Lemin Li. Practical flow table aggregation in sdn. Computer Networks,

92:72–88, 2015.

[50] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford,

Scott Shenker, and Jonathan Turner. Openflow: enabling innovation in campus networks. ACM SIG-

COMM Computer Communication Review, 38(2):69–74, 2008.

[51] Danny McPherson, Shane Amante, and Lixia Zhang. The Intra-domain BGP Scaling Problem. RIPE

58, Amsterdam, 2009.

[52] Chad R Meiners, Alex X Liu, Eric Torng, and Jignesh Patel. Split: Optimizing space, power, and

throughput for tcam-based classification. In Proceedings of the 2011 ACM/IEEE Seventh Symposium

on Architectures for Networking and Communications Systems, pages 200–210. IEEE Computer Soci-

ety, 2011.

[53] Xiaoqiao Meng, Zhiguo Xu, Beichuan Zhang, Geoff Huston, Songwu Lu, and Lixia Zhang. IPv4

address allocation and the BGP routing table evolution. ACM SIGCOMM Computer Communication

Review, 35(1):71–80, 2005.

[54] Mehrdad Moradi, Feng Qian, Qiang Xu, Z Morley Mao, Darrell Bethea, and Michael K Reiter. Caesar:

High-speed and memory-efficient forwarding engine for future internet architecture. In Proceedings

of the 2015 ACM/IEEE Symposium on Computer Communications, pages 171–182. IEEE, 2015.

[55] Donald R Morrison. PATRICIA - practical algorithm to retrieve information coded in alphanumeric.

Journal of the ACM (JACM), 15(4):514–534, 1968.

[56] P4 Language Consortium. P416 Language Specification. https://p4lang.github.io/

p4-spec/docs/P4-16-v1.0.0-spec.pdf, 2017.

[57] P4 Language Consortium. Behavioral Model Repository. https://github.com/p4lang/

behavioral-model, 2018.

[58] P4 Language Consortium. Portable Switch Architecture (PSA). https://p4.org/p4-spec/

docs/PSA.html, 2019.

BIBLIOGRAPHY 80

[59] Gábor Rétvári, Zoltán Csernátony, Attila Körösi, János Tapolcai, András Császár, Gábor Enyedi, and

Gergely Pongrácz. Compressing ip forwarding tables for fun and profit. In Proceedings of the 11th

ACM Workshop on Hot Topics in Networks, pages 1–6. ACM, 2012.

[60] Gábor Rétvári, János Tapolcai, Attila Kőrösi, András Majdán, and Zalán Heszberger. Compressing ip

forwarding tables: Towards entropy bounds and beyond. ACM SIGCOMM Computer Communication

Review, 43(4):111–122, 2013.

[61] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. Bgp routing stability of popular destinations.

In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages 197–202. ACM,

2002.

[62] Ori Rottenstreich and János Tapolcai. Optimal rule caching and lossy compression for longest prefix

matching. IEEE/ACM Transactions on Networking, 25(2):864–878, 2016.

[63] Ori Rottenstreich and János Tapolcai. Optimal rule caching and lossy compression for longest prefix

matching. IEEE/ACM Transactions on Networking (TON), 25(2):864–878, 2017.

[64] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin Huang. Leveraging zipf’s law for

traffic offloading. ACM SIGCOMM Computer Communication Review, 42(1):16–22, 2012.

[65] Nadi Sarrar, Robert Wuttke, Stefan Schmid, Marcin Bienkowski, and Steve Uhlig. Leveraging locality

for fib aggregation. In Proceedings of the 2014 Global Communications Conference, pages 1930–1935.

IEEE, 2014.

[66] Damien Saucez, Luigi Iannone, Olivier Bonaventure, and Dino Farinacci. Designing a deployable

internet: The locator/identifier separation protocol. IEEE Internet Computing, 16(6):14–21, 2012.

[67] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, Shan Muthukrishnan, and Jennifer

Rexford. Heavy-hitter detection entirely in the data plane. In Proceedings of the 2017 Symposium on

SDN Research, pages 164–176. ACM, 2017.

[68] Ahsan Tariq, Sana Jawad, and Zartash Afzal Uzmi. TaCo: Semantic Equivalence of IP Prefix Tables.

In Proceedings of the 20th International Conference on Computer Communications and Networks,

pages 1–6. IEEE, 2011.

[69] The P4 language consortium. Compiler for PSA. https://github.com/p4lang/

behavioral-model/issues/873, 2020.

[70] The P4 language consortium. The BMv2 simple switch target. https://github.com/p4lang/

behavioral-model/blob/master/docs/simple_switch.md, 2020.

BIBLIOGRAPHY 81

[71] Inayat Ullah, Zahid Ullah, and Jeong-A Lee. Ee-tcam: An energy-efficient sram-based tcam on fpga.

Electronics, 7(9):186, 2018.

[72] Zartash Afzal Uzmi, Markus Nebel, Ahsan Tariq, Sana Jawad, Ruichuan Chen, Aman Shaikh, Jia

Wang, and Paul Francis. SMALTA: practical and near-optimal FIB aggregation. In Proceedings of the

2011 Conference on emerging Networking EXperiments and Technologies, 2011.

[73] V. Gurevich. Programmable Data Plane at Terabit Speeds. {https://conferences.sigcomm.

org/sigcomm/2018/files/slides/p4/P4Barefoot.pdf}, 2017.

[74] Vladimir Gurevich. Programmable Data Plane at Terabit Speeds.

[75] Jun Xu, Mukesh Singhal, and Joanne Degroat. A novel cache architecture to support layer-four packet

classification at memory access speeds. In Proceedings of the 2000 IEEE Conference on Computer

Communications, volume 3, pages 1445–1454. IEEE, 2000.

[76] Tong Yang, Jinyang Li, Chenxingyu Zhao, Gaogang Xie, and Xiaoming Li. Mathematical analysis on

forwarding information base compression. CCF Transactions on Networking, 1(1-4):16–27, 2019.

[77] Tong Yang, Bo Yuan, Shenjiang Zhang, Ting Zhang, Ruian Duan, Yi Wang, and Bin Liu. Approaching

optimal compression with fast update for large scale routing tables. In Proceedings of the 20th Inter-

national Workshop on Quality of Service, IWQoS ’12, pages 32:1–32:9, Piscataway, NJ, USA, 2012.

IEEE Press.

[78] Fang Yu, Randy H Katz, and Tirunellai V Lakshman. Gigabit rate packet pattern-matching using

tcam. In Proceedings of the 12th IEEE International Conference on Network Protocols, 2004, pages

174–183. IEEE, 2004.

[79] X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the Aggregatability of Router Forwarding Tables. In

Proceedings of the 2010 IEEE Conference on Computer Communications, 2010.

[80] Xiaoliang Zhao, Dante J Pacella, and Jason Schiller. Routing scalability: an operator’s view. IEEE

Journal on Selected Areas in communications, 28(8):1262–1270, 2010.

Appendices

82

Appendix A

Algorithms of FAQS

Algorithm 1 shows the pseudo-code of the initial FIB aggregation via post-order traversal in FAQS. Al-

gorithm 2 shows the process of selection of a new next hop for a PT node. Next, algorithm 3 shows the

pseudo-code of FAQS’s decision making on installing a prefix into the data plane. Finally, Algorithm 5

show the pseudo-code of BGP update handling by FAQS.

Algorithm 1 Static FIB Aggregation

1: procedure StaticAggregation(node)

2: p← node.parent

3: l← node.left

4: r ← node.right

5: if T (node) 6= REAL then
6: O(node)← O(p)

7: end if
8: if l 6= NULL then
9: StaticAggregation(l)

10: end if
11: if r 6= NULL then
12: StaticAggregation(r)

13: end if
14: setSelectedNexthop(node)

15: setChildFIBstatus(node)

16: end procedure

83

APPENDIX A. ALGORITHMS OF FAQS 84

Algorithm 2 Assignment of Selected Next Hop

1: procedure SetSelectedNexthop(node)

2: l← node.l

3: r ← node.r

4: if l 6= NULL ∧ r 6= NULL∧
len(l)− len(node) = 1∧
len(r)− len(node) = 1∧
O(node) 6= S(r) then

5: S(node)← S(l)

6: else
7: S(node)← O(node)

8: end if
9: end procedure

Algorithm 3 Determine FIB status for Children Nodes
1: procedure SetChildFIBstatus(node)
2: l← node.l

3: r ← node.r

4: if l 6= NULL then
5: if S(node) 6= S(l) then
6: F (l)← IN FIB

7: else
8: F (l)← NON FIB

9: end if
10: end if
11: if r 6= NULL then
12: if S(node) 6= S(r) then
13: F (r)← IN FIB

14: else
15: F (r)← NON FIB

16: end if
17: end if
18: end procedure

APPENDIX A. ALGORITHMS OF FAQS 85

Algorithm 4 Incremental FIB Update Handling

1: procedure UpdateNode(prefix, nexthop)

2: node← find(prefix)

3: if node = NULL then
4: node← initialize(prefix, nexthop)

5: T (node)← REAL

6: p← node.parent

7: if O(p) 6= O(node) then
8: UpdateSubtree(node)

9: UpdateAncestors(node)

10: end if
11: else
12: if T (node) 6= REAL then
13: T (node)← REAL

14: end if
15: if O(node) 6= nexthop then
16: O(node)← nexthop

17: UpdateSubtree(node)

18: UpdateAncestors(node)

19: end if
20: end if
21: end procedure

Algorithm 5 Update Subtree

1: procedure UpdateSubtree(node)
2: l← node.l

3: r ← node.r

4: if l 6= NULL ∧ T (l) 6= REAL then
5: O(l)← O(node)

6: UpdateSubtree(l)

7: end if
8: if r 6= NULL ∧ T (r) 6= REAL then
9: O(r)← O(node)

10: UpdateSubtree(r)

11: end if
12: setSelectedNexthop(node)

13: setChildFIBstatus(node)

14: end procedure

APPENDIX A. ALGORITHMS OF FAQS 86

Algorithm 6 Update Ancestors
1: procedure UpdateAncestors(node)
2: p← node.parent

3: while p 6= NULL do
4: oldSlctNexthop← S(p)

5: setSelectedNexthop(p)

6: setChildFIBstatus(p)

7: if oldSlctNexthop = S(p) then
8: break

9: end if
10: p← p.parent

11: end while
12: end procedure

Appendix B

Algorithms of PFCA

On Algorithm 7 we present PFCA’s cache victim selection procedure, described in Section 4.3.3.

Algorithm 7 Light Traffic Hitters Detection (Stage 1)
1: procedure LTHD(p, c) . p← prefix, c← its counter; d← number of stages; h1, h2, .., hd ←

independent hash functions; T1, T2, .., Td ← hash tables.

2: i = h1(p)

3: if ith slot of T1 is empty then
4: Install (p, c) into T1
5: Carry p to remove possible duplicates in T2..Td.

6: goto the next stage

7: else if ith slot in T1 is occupied by (p, c0) then
8: c0 = c

9: else if ith slot in T1 is occupied by (p′, c′) ∧ c < c′ then
10: Replace (p′, c′) by (p, c) in T1
11: Carry (p′, c′) for installation in the next stages

12: Carry p to remove possible duplicates in T2..Td. goto the next stage

13: else if ith slot in T1 is occupied by (p′, c′) ∧ c ≥ c′ then
14: Carry (p, c) to the next stage.

15: goto the next stage

16: end if
17: end procedure

87

Appendix C

Listings for Light Traffic Hitters Detection
Module

The following listings present PFCA’s P4 code listings for Section 4.3.3.

88

APPENDIX C. LISTINGS FOR LIGHT TRAFFIC HITTERS DETECTION MODULE 89

Listing C.1: Ingress pipeline at PFCA

{ i f (hdr . i pv4 . i s V a l i d ()) {
l e v e l 1 . a p p l y () ;

i f (meta . m i s s b i t == 1){
l e v e l 2 . a p p l y () ;

i f (meta . m i s s b i t == 1){
dram . a p p l y () ;

i f (c o u n t e r > t h r e s h o l d){
/∗ B u i l d i n g a p a c k e t d i g e s t f o r

t h e c o n t r o l p l a n e ∗ /

meta . p a c k e t d i g e s t . p r e f i x = p r e f i x ;

meta . p a c k e t d i g e s t . memType = DRAM;

}

}
e l s e {
i f (c o u n t e r > t h r e s h o l d){
meta . p a c k e t d i g e s t . p r e f i x = p r e f i x ;

meta . p a c k e t d i g e s t . memType = L2 ;

}
/∗ Go t o LTHD f o r Leve l−2 ∗ /

}
}
e l s e
/∗ Go t o LTHD f o r Leve l−1 ∗ /

. . .

}

APPENDIX C. LISTINGS FOR LIGHT TRAFFIC HITTERS DETECTION MODULE 90

Listing C.2: Light Traffic Hitters Detection at Level-1 cache

/∗ D e f i n i n g r e g i s t e r s and t h e hash f u n c t i o n ∗ /

R e g i s t e r <b i t <32>, b i t <32>>(20) l t h d k e y s 1 ;

R e g i s t e r <b i t <32>, b i t <32>>(20) l t h d k e y s 2 ;

R e g i s t e r <b i t <8>, b i t <32>>(20) l t h d c o u n t e r s 1 ;

R e g i s t e r <b i t <8>, b i t <32>>(20) l t h d c o u n t e r s 2 ;

Hash<b i t <32>>(PSA HashAlgor i thm t . CRC32) h1 ;

Hash<b i t <32>>(PSA HashAlgor i thm t . IDENTITY) h2 ;

.

/∗ LTHD module ∗ /

/∗ S t a g e 1 f o r a t u p l e (p r e f i x , c o u n t e r) ∗ /

h a s h e d p r f x = h1 . g e t h a s h (p r e f i x) ;

p r e f i x k e y 1 = l t h d k e y s 1 . r e a d (h a s h e d p r f x) ;

p r e f i x c o u n t e r 1 = l t h d c o u n t e r s 1 . r e a d (h a s h e d p r f x) ;

/∗ Case 1 : t h e s l o t i s o c c u p i e d by t h e same p r e f i x ∗ /

i f (p r e f i x k e y 1 == meta . m a t c h e d p r e f i x){
/∗ Update t h e c o u n t e r and l e a v e t h e p i p e l i n e ∗ /

l t h d c o u n t e r s 1 . w r i t e (h a s h e d p r f x , c o u n t e r) ;

c a r r y = 0 ;

}
/∗ Case 2 : t h e s l o t i s empty ∗ /

e l s e i f (p r e f i x c o u n t e r 1 == 0){
/∗ I n s t a l l t h e key and t h e c o u n t e r

and l e a v e t h e p i p e l i n e ∗ /

l t h d k e y s 1 . w r i t e (h a s h e d p r f x , p r e f i x) ;

l t h d c o u n t e r s 1 . w r i t e (h a s h e d p r f x , c o u n t e r) ;

c a r r y = 0 ;

}
/∗ Case 3 : t h e s l o t i s o c c u p i e d by

a h e a v i e r f l o w ∗ /

e l s e i f (p r e f i x c o u n t e r 1 > c o u n t e r){
/∗ Rep lace t h e t u p l e (p r e f i x k e y 1 , p r e f i x c o u n t e r 1)

by (p r e f i x , c o u n t e r) and move t o S t a g e 2 ∗ /

l t h d k e y s 1 . w r i t e (h a s h e d p r f x , p r e f i x) ;

l t h d c o u n t e r s 1 . w r i t e (h a s h e d p r f x , c o u n t e r) ;

c a r r y = 1 ;

}
/∗ Case 4 : t h e s l o t i s o c c u p i e d by

a l i g h t e r f l o w ∗ /

e l s e {
/∗ Carry (p r e f i x , c o u n t e r) t o t h e n e x t s t a g e ∗ /

p r e f i x k e y 1 = p r e f i x ;

p r e f i x c o u n t e r 1 = c o u n t e r ;

c a r r y = 1 ;

}
i f (c a r r y == 1){
/∗ S t a g e 2 f o r a t u p l e

(p r e f i x k e y 1 , p r e f i x c o u n t e r 1) ∗ /

. . . .

}

Appendix D

Algorithms of CFCA

Below we present the algorithms described in Section 5.2. Algorithm 8 shows the pseudo-code of the initial

aggregation in CFCA. Algorithm 9 and 10 shows the pseudo-code of post-order and bottom-up traversals in

CFCA upon a BGP update. Algorithm 12 shows the pseudo-code of next hop selection process for a node

in CFCA. Algorithm 11 shows the pseudo-code for prefix fragmentation in CFCA, when a more specific

prefix than existing in the routing table is added via BGP. Finally, Algorithm 13 shows the pseudo-code of

FIB status selection process in CFCA.

91

APPENDIX D. ALGORITHMS OF CFCA 92

Algorithm 8 Static FIB Aggregation in PFCA

1: procedure aggrInit(n) . n← node, n.o← its original next-hop; n.s← its selected next-hop; n.f ←
its FIB status; n.t← the table assigned to the corresponding route, n.l, n.r ← its left and right children

2: if n is a leaf node then
3: n.s = n.o

4: else if n is an internal node then
5: Call aggrInit(n.l) and aggrInit(n.r)

6: if n.l.s = n.r.s then . Case 1: children nodes share the same next-hop

7: n.s← n.l.s

8: n.l.f ← n.r.f ←NON FIB

9: else . Case 2: children nodes have different next-hops

10: n.s = 0

11: if n.l.s 6= 0 then . The left child of n is a point of aggregation

12: n.l.f ← IN FIB, n.l.t← DRAM

13: Push the prefix and the selected next-hop of n.l into DRAM memory

14: else
15: n.l.f = NON FIB

16: end if
17: if n.r.s 6= 0 then . The right child of n is a point of aggregation

18: n.r.f ← IN FIB, n.r.t← DRAM

19: Push the prefix and the selected next-hop of n.r into DRAM memory

20: else
21: n.r.f ← NON FIB

22: end if
23: end if
24: end if
25: end procedure

APPENDIX D. ALGORITHMS OF CFCA 93

Algorithm 9 Post-order update in CFCA

1: procedure postOrderUpdate(n,NH) . n← node, n.o← its original next-hop; n.l, n.r ← its left

and right children; n.rf its REAL/FAKE flag, NH is the new next-hop value.

2: if n.l.rf = FAKE then
3: n.l.o← NH

4: postOrderUpdate(n.l)

5: end if
6: if n.r.rf = FAKE then
7: n.r.o← NH

8: postOrderUpdate(n.r)

9: end if
10: setSelectedNextHop(n)

11: setFIBstatus(n)

12: end procedure
Algorithm 10 Bottom-up update in CFCA

1: procedure bottomUp(n) . n← node.

2: repeat
3: n← parent node of n

4: oldSelectedNextHop← n.s

5: setSelectedNextHop(n)

6: setFIBstatus(n)

7: until oldSelectedNextHop = n.s

8: end procedure

APPENDIX D. ALGORITHMS OF CFCA 94

Algorithm 11 Prefix fragmentation in CFCA
1: procedure FRAGMENTPREFIX(p,NH) . p is the newly announced prefix; NH is p’s next-hop.

2: n0 ← The root node of the tree

3: for each bit b of p do
4: if n0 is a leaf then
5: break

6: end if
7: n0 ← b = 0 ? n0.l : n0.r

8: end for
9: l0, l←Prefix lengths of n0.p and p

10: for each level of the tree ∆ ∈ (l0, l) do
11: Generate sibling FAKE nodes with the original next-hop of n0
12: Generate the REAL node n for p, n.o← NH

13: Generate the FAKE sibling node for n, n.o← n0.o

14: end for
15: return n0
16: end procedure
Algorithm 12 Selecting next-hop in CFCA

1: procedure setSelectedNextHop(n) . n← node, n.s← its selected next-hop.

2: if n is a leaf node then
3: n.s = n.o

4: else if n is an internal node then
5: if n.l.s = n.r.s then
6: n.s← n.l.s

7: else
8: n.s = 0

9: end if
10: end if
11: end procedure

APPENDIX D. ALGORITHMS OF CFCA 95

Algorithm 13 Setting FIB status of a node in CFCA
1: procedure setFIBstatus(n) . n← node.

2: if n is an internal node then
3: if n.s 6= 0 then . Case 1: n is the point of aggregation

4: if n.l.f = IN FIB then
5: Remove n.l from the data plane table n.l.t

6: n.r.f ← NON FIB

7: end if
8: if n.r.f = IN FIB then
9: Remove n.r from the data plane table n.r.t

10: n.r.f ← NON FIB

11: end if
12: else if n.s = 0 then . Case 2: n’s descendants prefixes should be present in FIB

13: if n.l.f = NON FIB then
14: n.l.f ← IN FIB, n.l.t← DRAM

15: Push the prefix and the selected next-hop of n.l into the DRAM memory

16: else
17: Push the selected next-hop update of the prefix of n.l into the data plane table n.l.t.

18: end if
19: if n.r.f = NON FIB then
20: n.r.f ← IN FIB, n.r.t← DRAM

21: Push the prefix and the selected next-hop of n.r into the DRAM memory

22: else
23: Push the selected next-hop update of the prefix of n.r into the data plane table n.r.t.

24: end if
25: end if
26: end if
27: end procedure

Appendix E

Algorithms of VeriTable

For the description of each node field in the algorithms see Table E.1.

Name Data Type Description

parent Node Pointer Points to a node’s parent node

l Node Pointer Points to a node’s left child node
if exists

r Node Pointer Points to a node’s right child node
if exists

prefix String Binary string

length Integer The length of the prefix, 0-32 for
IPv4 or 0-128 for IPv6

nexthop Integer Array Next-hops of this prefix in
T1...Tn, size n

type Integer Indicates if a node is a GLUE or
REAL

Table E.1: Joint Patricia tree node’s attributes.

96

APPENDIX E. ALGORITHMS OF VERITABLE 97

Algorithm 14 Building a Joint PT T

1: procedure BuildJointPT (T1, T2, ..., Tn)

2: Initialize a PT T with its head node

3: Add prefix 0/0 on its head node.

4: Set default next hop values in the Next Hops array.

5: for each table Ti ∈ T1, T2, ..., Tn do
6: for each entry e in Ti do
7: Find a node n in T such as n.prefix is a

longest match for e.prefix in T

8: if n.prefix = e.prefix then
9: n.nexthopi ← e.nexthop

10: n.type← REAL

11: else
12: Generate new node n′

13: n′.prefix← e.prefix

14: n′.nexthopi ← e.nexthop

15: n′.type← REAL

16: Assume n has a child nc
17: if the overlapping portion of nc and n′ is longer than n.length but shorter than n′.length

bits then
18: Generate a glue node g

19: n′.parent← g

20: nc.parent← g

21: g.parent← n

22: g.type← GLUE

23: Set g as a child of n

24: Set n′ and nc as children of g

25: else
26: n′.parent← n

27: nc.parent← n′

28: Set nc as a child of n′

29: Set n′ as a child of n

30: end if
31: end if
32: end for
33: end for
34: end procedure

APPENDIX E. ALGORITHMS OF VERITABLE 98

Algorithm 15 Forwarding Equivalence Verification. The initial value of ancestor is NULL, and the initial

value of node is T → root. For simplicity, we assume the root node is REAL.

1: procedure VeriTable(ancestor, node)

2: if node.type = REAL then
3: ancestor = node . The closest ancestor node for a REAL node is the node istelf

4: end if
5: l← node.l, r ← node.r

6: if l 6= NULL then
7: if l.type = REAL then
8: InheritNextHops(ancestor, l) . A REAL child node inherits next hops from the closest

REAL ancestor to initialize “empty” next hops

9: end if
10: LeftF lag ← V eriTable(ancestor, l) . LeftFlag and RightFlag signify the existing leaks at

the branches

11: end if
12: if r 6= NULL then
13: if r.type = REAL then
14: InheritNextHops(ancestor, r)

15: end if
16: RightF lag ← V eriTable(ancestor, r)

17: end if
18: if l = NULL ∧ r = NULL then
19: CompareNextHops(node) . The leaf nodes’ next hops are always compared; a verified node

always returns the false LeakFlag.

20: LeakF lag ← False

21: return LeakF lag
22: end if
23: if l 6= NULL ∧ l.length− node.length > 1 then
24: LeakF lag ← True

25: else if r 6= NULL ∧ r.length− node.length > 1 then
26: LeakF lag ← True

27: else if l = NULL ∨ r = NULL then
28: LeakF lag ← True

29: else if LeftF lag = True ∨RightF lag = True then
30: LeakF lag ← True

31: end if
32: if LeakF lag = True ∧ node.type = REAL then
33: CompareNextHops(node)

34: LeakF lag ← False

35: end if
return LeakF lag

36: end procedure

	Leveraging Programmable Data Plane For Compressing Forwarding Tables
	Recommended Citation

	tmp.1597845495.pdf.vIfcN

