
Rochester Institute of Technology Rochester Institute of Technology 

RIT Digital Institutional Repository RIT Digital Institutional Repository 

Theses 

8-4-2020 

Catalyst-free Heteroepitaxy of III-V Semiconductor Nanowires on Catalyst-free Heteroepitaxy of III-V Semiconductor Nanowires on 

Silicon, Graphene, and Molybdenum Disulfide Silicon, Graphene, and Molybdenum Disulfide 

Mohadeseh Asadolahi Baboli 
mxa9934@rit.edu 

Follow this and additional works at: https://repository.rit.edu/theses 

Recommended Citation Recommended Citation 
Asadolahi Baboli, Mohadeseh, "Catalyst-free Heteroepitaxy of III-V Semiconductor Nanowires on Silicon, 
Graphene, and Molybdenum Disulfide" (2020). Thesis. Rochester Institute of Technology. Accessed from 

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please 
contact repository@rit.edu. 

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10528&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10528?utm_source=repository.rit.edu%2Ftheses%2F10528&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu


Catalyst-free Heteroepitaxy of III-V Semiconductor

Nanowires on Silicon, Graphene, and Molybdenum Disulfide

by

Mohadeseh Asadolahi Baboli

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctorate of Philosophy in Microsystems Engineering

Microsystems Engineering

Kate Gleason College of Engineering

Rochester Institute of Technology

Rochester, New York

August 4, 2020



Catalyst-free Heteroepitaxy of III-V Semiconductor

Nanowires on Silicon, Graphene, and Molybdenum Disulfide

by

Mohadeseh Asadolahi Baboli

Committee Approval:

We, the undersigned committee members, certify that we have advised and/or supervised
the candidate on the work described in this dissertation. We further certify that we have
reviewed the dissertation manuscript and approve it in partial fulfillment of the requirements
of the degree of Doctorate of Philosophy in Microsystems Engineering.

Parsian K. Mohseni, Ph.D. Date
Assistant Professor, Microsystems Engineering

Karl D. Hirschman, Ph.D. Date
Professor, Department of Electrical and Microelectronic Engineering

Seth M. Hubbard, Ph.D. Date
Professor, Physics

Santosh K. Kurinec, Ph.D. Date
Professor, Department of Electrical and Microelectronic Engineering

Certified By:

Bruce W. Smith, Ph.D. Date
Director, Microsystems Engineering

ii



Abstract

Kate Gleason College of Engineering

Rochester Institute of Technology

Degree: Doctor of Philosophy Program: Microsystems Engineering

Author’s Name: Mohadeseh Asadolahi Baboli

Advisor’s Name: Parsian K. Mohseni, Ph.D.

Dissertation Title: Catalyst-free Heteroepitaxy of III-V Semiconductor Nanowires

on Silicon, Graphene, and Molybdenum Disulfide

The research presented in this dissertation pioneered three novel nano-material

systems, including vertically aligned InAlAs nanowires (NWs) on two-dimensional

(2-D) graphene, InAs NWs on 2-D MoS2, and GaAsP NWs on Si using metalorganic

chemical vapor deposition (MOCVD). Bottom up integratiton of NW structures enable

heteroepitaxy of largely dissimilar III-V compounds on foreign substrates and provide a

basis for design of high-performance devices that are otherwise inaccessible using thin-

films or planar geometries. During conventional heteroepitaxy of planar geometries,

strict constraints are imposed by the need to match lattice parameters, thermal

expansion coefficients, and polar coherence between adjacent dissimilar materials.

Semiconductor III-V NWs with small substrate footprints can permit relief of lattice

mismatch-induced strain in heteroepitaxial systems. Thus, high crystalline quality

III-V compound semiconductor NWs can be monolithically integrated with foreign

substrates for novel electronic and optoelectronic device designs.

This dissertation presents wafer-scale production of vertically oriented InAsyP1-y

and InxAl1-xAs NWs on single layer graphene (SLG) and MoS2 substrates, grown via

pseudo-van der Waals epitaxy (vdWE). The morphology, areal density, and crystal
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structure of InAsyP1-y NWs within the 1 ≤ y ≤ 0.8 range and InxAl1-xAs in the 1

≤ x ≤ 0.5 range are quantitatively analyzed by mapping a wide growth parameter

space as a function of growth temperature, V/III ratio, total precursor flow rate,

and molar flow ratio of precursors. Furthermore, through manipulation of growth

kinetics, selective-area vdWE of III-V NWs on 2-D MoS2 surfaces is demonstrated, and

pattern-free positioning of single NWs on isolated MoS2 micro-plates with one-to-one

NW-to-MoS2 placement is highlighted. Here, the highest axial growth rate of 840

nm/min and NW number density of ∼8.3 × 108 cm−2 for vdWE of high aspect ratio

(>80) InAs NW arrays on graphitic surfaces is reported.

Additionally, selective-area epitaxy (SAE) of GaAsP-GaP core-multi shell NW

arrays on patterned Si(111) substrates is reported. The composition of GaAsyP1-y

NWs is tuned toward a targeted value of y = 0.73 to achieve the bandgap of 1.75 eV.

The effect of growth rate on morphology, total yield, and symmetric yield of GaAsP

NWs is explored through modulation of the effective local supply of growth species.

Under the optimized SAE growth condition, > 90% yield of hexagonally symmetric

GaAsP NWs on Si is realized using a 100 µm × 100 µm field of nano-hole arrays in

the center of a 400 µm × 400 µm mesa with border width of 100 µm.
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Chapter 1

Motivations and Background

1.1 Motivations

Since the first methodical thermometer-based record of global temperature fluctuation

in 1880, the average temperature of the Earth climate systems has been warming

[1]. This change of temperature, known as global warming, causes adverse effects

on human health and the environment [2], [3]. In search for the underlying cause of

global warming, 97% of scientific papers expressing a position on this issue believe

that human actions, such as emission of greenhouse gases including carbon dioxide,

methane, and nitrous oxide, is the main reason [4], [5]. This scientific consensus often

uses the term anthropogenic global warming (AGW) to emphasis on the role of human

in this soon to be crisis and highlights the urge for taking actions. To mitigate the

emission of greenhouse gases, 195 countries as part of the united nations framework

convention on climate change (UNFCCC), agreed to keep the change in average global

temperature below 2.0 ◦C in the present time, compared to the pre-industrial level

and limit the increase to 1.5 ◦C. This historic climate accord is known as the Paris

Agreement. The roadmap designed by the international renewable energy agency

(IRENA), suggests that achieving this goal is technically possible if the global energy

system transformed from mainly based fossil fuels to an alternative renewable energy

that enhances efficiency [6].

Among different clean energy-conversion solutions, solar photovoltaics (PV) that
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directly convert sunlight to electricity, offers the second largest cumulatively installed

capacity [7]. Figure 1.1 shows how the total global cumulative installed PV capacity

has changed through years. By the end of 2017 this value had reached to 415 gigawatt

peak (GWp) with almost 25% increase in a year [7]. In the last 37 years, technological

improvements and economies of scale have led to 24% reduction in price of PV modules

with each doubling of the cumulated module production (Figure 1.2) [7]. While PV

market has shown significant improvement, historically high cost-per-watt ($/W) of

solar cells (SCs) productions has prevented PV to be able to compete with conventional

power plants. To further decrease cost-per-watt ($/W) in the PV market, PV systems

should either become less expensive or more efficient. For a PV system in utility

scale, the module itself takes less than 50% of the total cost with the rest breaks

down between different expenses such as wiring, inverters, labor, and land in use [7].

Since share of module cost is decreasing in a faster rate than other parts, it seems the

Figure 1.1: Global cumulative PV installation between 2008 and 2017. This graph shows
the fast growth of PV, in different markets [7].
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solution for a lower cost-per-watt ($/W) lies in realizing a PV module with higher

efficiency but within the current cost margin.

Due to their low-cost and long-term stability, the current PV market is dominated

by silicon-based cells that are capable of converting 8-19% of solar energy [8]. In

contrast, other more expensive technologies such as III-V semiconductors multijunc-

tion SCs (MJSCs) offer high conversion efficiencies (>40%) [9]. One way to reach

reasonable $/W is to integrate efficient III-V-based cells with the mature low-cost

silicon modules. Theoretically such a two-junction cell architecture can reach more

than 40% efficiency [10]. Though after two decades of research and development,

the fundamental challenges are still impeding the realization of this concept. One

of the main challanges in integraiton of planar III-V epilayer on Si substrate is the

difference between crystal lattice constant and thermal expansion coefficient of these

two material systems. One way to overcome these challenges is to use nanostructures

such as nanowires as the active medium in SC devices. In this way, the requirement

Figure 1.2: The price learning curve for PV module price in the market between 1980 and
2015. The Y-axis shows module price in logarithmic scale, the X-axis represents cumulative
power production. By doubling the cumulative production, module price has experienced
24% reduction [7].
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of the lattice matching criteria is reduced and novel designs for optoelectronic devices

can be implemented.

1.2 Challenges for Heteroepitaxy of Planar III-Vs-on-Si

Different approaches for integration of planar III-V films on Si have been introduced.

Since GaAs is one of the most studied and used substrates in MJSCs, realizing GaAs-

on-Si as a platform for growth of following top layers was one of the initial approaches

[44, 45]. Among other techniques is metamorphic SiGe graded buffer layers as a bridge

between GaAs and Si lattice constants. However, the low band gap of such a buffer

layer limits the application of Si to an inactive substrate and prevents Si to be used as

an active subcell. Choice of buffer layers with larger bandgap such as GaAsP can solve

this problem. Other approaches include: (1) lattice matched dilute nitrides GaAsPN

on Si [46], (2) lattice mismatched InGaN-on-Si [47]. In this section critical challenges

in heteroepitaxy of planar III-Vs on Si is discussed.

Mismatch in Lattice Constant and Thermal Expansion Coefficient The

inherent variance in lattice constant and thermal expansion coefficient between III-V

compounds and Si leads to crucial challenges in heteroepitaxy of III-V films on Si.

For example, GaAs and Si have large lattice mismatch of 4%, and large difference in

thermal expansion coefficient with 2.6×10−6 ◦C−1 for Si versus 5.73×10−6 ◦C−1 for

GaAs. This large variation in basic films parameters translates into incorporation of

defects and dislocations including antiphase domains, twinning and stacking faults,

misfit and threading dislocations. Such a degradation in quality of epitaxial layers

have a critical influence on performance of SCs by decreasing the minority carriers

lifetime. Multiple approaches are introduced for reducing the threading dislocation

density in GaAs-on-Si, such as thermal cycle annealing [48], and increasing GaAs

buffer layer thickness [44]. The mismatch in thermal expansion coefficient can cause

microscopic size cracks in the GaAs film. These cracks can introduce limitation in cell
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size and performance, and overall reduces the reliability of devices. Optimizing the

cooling process in a controlled fashion is one of the ways to minimize density of cracks.

Difference in Polarity of III-Vs and Si

Another critical challenge in achieving III-V-on-Si SC platform is formation of

antiphase domains (APDs) during heteroepitaxy of polar III-V compounds (e.g. GaAs)

on non-polar Si substrate. This type of crystallographic defects initiates from antisite

defects at the monoatomic steps located at the top surface of the substrate. For

instance, in the specific case of GaAs on Si, Si atoms form dimers in perpendicular

directions along a step. By initiating the III-V growth, As atoms (or Ga atoms) follow

the Si dimers directions, which results in As-As (or Ga-Ga) bonds. This extension of

antisite defect from Si to the III-V layer causes the APDs to shape. In heteroepitaxy

of thin films, one way to minimize density of APDs is to use offcut substrates [49].

Limitation in Design of Buffer Layer

Incorporation of buffer layers in a PV modules limits the choice of layer material,

design criteria, and fabrication cost. For the specific case of cells based on III-V-

on-Si, in order to use the Si substrate as an active cell, the buffer layer should be

optically transparent. For this reason, the wide bandgap GaAsP graded buffer layer

is a better option than narrow bandgap SiGe layer. In addition, it is important to

minimize the series resistance by choosing a material with high electrical conductivity

for the buffer layer. This is in specific important for the case of concentrator MJSCs.

Another criteria is that the selected buffer layer material should offer good surface

passivation for a Si sub-cell and can function as a window layer. In order to bridge

the lattice constant of Si and III-Vs, generally thick buffer layers are designed which

add additional fabrication cost. To compensate this problem, dilute nitride buffer

layers, such as GaAsPN, and strained layer superlattice for GaAs-on-Si are introduced.

These techniques allow design of a thinner metamorphic buffer layer. Therefore, there

are restricted tradeoffs for designing a thin, optically transparent buffer layer than can
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deliver minimized dislocation density, with good electrical conductivity and surface

passivation characteristics.
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1.3 Heteroepitaxy of Semiconductor Nanowires on Foreign

Substrates

Nanowire (NW) morphologies enable heteroepitaxy of largely dissimilar III-V com-

pounds and provide a basis for design of high performance electronic [11], [13] and

photonic [12, 13] devices that are otherwise inaccessible with planar structures. During

conventional heteroepitaxy of planar geometries, strict constraints are imposed by the

need to match lattice parameters, thermal expansion coefficients, and polar coherence

between adjacent dissimilar materials. For example, tetragonal distortion suffered

at the hetero-interface of two cubic compounds with largely incongruent lattice pa-

rameters results in the formation of misfit and threading dislocations after relaxation

of the epilayer beyond a pseudomorphic critical thickness. Several approaches are

available in thin film technology to overcome this fundamental limitation, such as

growth of compositionally graded buffer layers [14–16], epitaxial lateral overgrowth

[17–19], and aspect ratio trapping [20–22]. Although such techniques successfully

achieve heterogeneous integration while preserving high crystalline quality, they also

introduce additional pre-growth processing steps and/or require growth of passive

layers, which add design complexity and increase fabrication costs. On the other hand,

high aspect ratio structures with large surface area-to-volume ratios, such as NWs,

offer the potential for elastic relaxation via strain accommodation along their free

surfaces [23–25]. Consequently, without sacrificing the crystal quality or introducing

cost- intensive fabrication steps, III-V semiconductor NWs can be directly integrated

with various foreign substrates such as Ge [26], Si [27–29], glass [30], and even flexible

carbon-nanotube composite films [31, 32]. A summary of research conducted by the

author on growth of III-V NWs on foreign substrates is illustrated in Figure 1.3.

Except for the case of planar GaAs NWs, epitaxial growths of NWs exhibited in

Figure 1.3 are carried out by the metalorganic chemical vapor deposition (MOCVD)
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Figure 1.3: Various III-V semiconductor NWs grown on foreign substrates.
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tool at RIT. This dissertation focuses on three material systems. In particular, growth

and optimization of InAs-based NWs on graphene is presented in Chapter 3. The

first realization of InAs NWs on molybdenum disulfide (MoS2) nanohybrid system is

reported in Chapter 4.

Semiconductor NWs in contrast to their thin film counterparts can be adapted to

more highly lattice-mismatched material systems. This is mainly due to their small

foot-print, which equip NWs with excellent strain tolerance from differences in thermal

expansion and lattice constants between NWs and the substrate. Semiconductor NWs

have been used in different applications such as photovoltaic cells [33] light-emitting

diodes [34], and lasers [35]. Studies show that arrays of III-V NWs are a promising

platform for fabrication of SCs thanks to their crystal structure tunability with growth

conditions, advanced light absorption due to their large surface area to volume ratio,

and design flexibility for maximizing the light-matter interactions [36].

Furthermore, photovoltaic cells with NW configuration are cost-efficient because

while consuming less material compared to thin film heterostructure they can still

exhibit high absorption efficiency. Wallentin et al. reported an InP NW array-based

Figure 1.4: The two common doping profile in NW structures are in form of axial or radial
geometries. Different components of tandem SCs based on NW on Si [37].
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SC that generates short-circuit current of about 83% of the best planar InP cells

with only 12% surface coverage [33]. Development of various NW based photovoltaic

cells were reported in literature using binary or ternary III-V compounds such as InP,

GaAs, InGaAs, and InGaP [33], [38–40].

In addition, the ability to control the physical and chemical states of NWs including

length, diameter and alignment of nanowires as well as their elemental composition

allows for tunable optical and electrical properties of optoelectronic devices. The

two common NW heterostructures are in axial or radial geometries, shown in Figure

1.4. For axial heterostructures, growth species and dopant precursors are changed

during NW epitaxy. In contrast, radial geometries can be realized by changing growth

conditions (e.g., growth temperature, V/III ratio, etc.) to promote radial growth on a

core NW segment similar to film growth. Specifically, epitaxy of core segment material

at high temperature is followed by shell segment growth at lower temperature on NW

sidewalls. For PV cells based on NWs, axial or radial p-i-n junctions can be achieved

for various type of material systems and doping species. Reviews on NW growth and

their device applications can be found in [36], [41–43].
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1.4 Nanowires for Photovoltaics Applicaitons

1.4.1 Ideal Solar Cell Device Operation

The Sun, with surface temperature of 5777 K, emits radiation like a black body which

can be described with Planck’s radiation law shown in Equation 1.1 [38]

IA =
2πhc2

λ5
(

1

e
hc
λkT
−1

) (1.1)

Where λ and c are the wavelength and speed of light, respectively. T is tem-

perature, k and h are the Boltzmann and Planck constants, respectively. Based

on Equation 1.1, the solar energy spectrum that PV panels installed on satellites

utilize is equivalent to the spectra plotted in Figure 1.5, labeled as AM0 [32]. For

the case of terrestrial SCs, photons passing through atmosphere experience different

diffraction and absorption phenomena, resulting in changes of solar spectra intensity

Figure 1.5: Solar spectrum as a function of wavelength for three scenarios. The plot in
black illustrates solar spectrum outside Earth’s atmosphere, known as AM0. The spectrum
plotted in the blue line shows AM 1.5G which is related to direct and difused sunlight hitting
a surface on Earth sitting at an angle equal to 37◦. AM 1.5D, shown in red line, has the
same definition as AM 1.5G except it only considers direct light [32].
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similar to AM 1.5D, considering only diffused sunlight, and AM 1.5G, taking both

direct and diffused lights into accounts. These spectra are illustrated in Figure 1.5.

Considering various atmosphere thickness and relative positioning of Earth and sun

angle, PV modules in different locations on Earth experience dissimilar intensity of

solar spectrum. In order to be able to compare a variety of PV modules, a standard

solar spectrum is used for SC performance measurements. A solar simulator is a light

source that produces integrated power of 100 mW/cm2, defines as 1-Sun intensity,

with an air mass 1.5 global (AM1.5G) spectrum, shown in Figure 1.5.

Solar cells (SCs) are a type of optoelectronic device that convert the energy of

sunlight into electrical energy in two main steps. First, partial absorption of incident

photons within the solar spectrum, with energies higher or equal to the bandgap

energy of cell material, allows electron excitation from the valence to the conduction

band and generation of holes in the valence band. The introduced external energy

of photons to the system (i.e. energy difference between electrons and holes) would

ultimately disperse as carrier recombination, meaning energy in sunlight converts

to the undesirable thermal energy. Before this happen, the task of the SC device

is separate the photo-generated carriers, and promote their recombination via an

external circuit where the released energy can be put in a desirable work. This task

can be done by incorporation of a p-n-junction in a PV cells.

Figure 1.6: A simple schematic of a p-n junction and the corresponding band alignment.
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Figure 1.7: (a) A circuit model for a semiconductor PV cell, (b) A typical characteristics
plot of a SC showing the dark- and light- I -V curves.

Shown in Figure 1.6 is a simple schematic of a p-n junction and the corresponding

band alignment. The electric field in the depletion region of the p-n-junction (shown

as ε) promotes drift of electrons to the n-side (n-doped region) and holes to the p-side

(p-doped region). This results in generation of the photocurrent, Iph. As the built-in

electric field in the depletion region of a p-n junction restricts the current to flow

only in one direction, a p-n-junction can essentially be modeled by a rectifying diode.

Figure 1.7 (a) illustrates circuit model for a typical semiconductor PV cell. Increasing

the applied bias voltage at SC terminal counteracts the built-in potential difference at

the junction, reducing the barrier for diffusion current to across the junction. This

leads to an exponential boost in forward bias current [50]. Thermally generated

carriers, on the other hand, flow in the reverse bias condition of the diode and drift

through the built-in potential. The photogenerated current, is modeled as an ideal

current source parallel to diode and opposing its diffusion current (Figure 11.7(a)).

As in a typical electric circuit, the ideal current source shifts I -V characteristics on

the I axis. For an ideal cell, the I-V characteristics under sunlight is a superposition

of a simple diode under no light, i.e. dark I-V, and the generated photocurrent under
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sun, formulated in Equation 1.2 and illustrated in Figure 1.7(b)

J = J0(e
ev
nkT − 1)− Jph (1.2)

In Equation 1.2, J0 and Jph are the p-n-junction saturation current density and photo

generated current density, respectively. T is cell temperature, k and n are Boltzmann

constant and ideality factor, respectively. This equation shows the current density of

a SC connected to an external circuit with cell terminal voltage of V. Use of current

density (J ) notation instead of current (I ), makes performance comparison between

different cells be independent of cell size.

A typical current-voltage (I -V ) characteristics plot of a SC is shown in 1.5(b).

Such a plot reveal characteristic information about a cell. The I -V characteristic

can be produced for a cell under illumination from a solar simulator (light I -V ) or

absence of light (dark I -V ). To produce such a plot, voltage at terminals of a SC

are kept constant and the resulting current is measured. To quantify the performance

of a PV cell, and be able to compare performances of different cells, a series of

parameters can be extracted from the measured I -V curve. These parameters are:

recombination current densities in the quasi-neutral regions and surfaces (J0,1) and

in the space-charge regions (J0,2), ideality factors n1 and n2 , series resistance (Rs),

and the shunt resistance (Rsh). In addition to these parameters, open-circuit voltage

(VOC), short-circuit current (ISC), filling factor (FF), maximum power point (MPP),

and power conversion efficiency (PCE) are other important measures. The interception

of the I -V curve and the axes are the two extremes scenario in an ideal SC model:

(1) cell is connected to zero load (V = 0) which results in short-circuit current density

(Jsc) (Equation 1.3), and (2) case of an external circuit with an infinite load (J = 0),

leading to the VOC characteristic (Equation 1.4).

Jsc = Jph (1.3)
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Figure 1.8: The adverse effect of impedance phenomena on the FF.

VOC =
nkT

q
ln(

Jsc
J0

+ 1) (1.4)

Here, q stands for the elementary charge and all other variables are defined above.

The PCE for SCs is defined as the ratio of maximum output power to the total incident

power upon the cell (Equation 1.5). The output power is maximized when the product

of cell current and voltage is maximized, denoted as Jmpp and Vmpp, respectively.

Another measure of SC performance is the FF, which defines how well photogenerated

charges can be extracted from the cell, and it can be calculated with Equation 1.6

PCE =
Pout

Pin

=
Jmpp × Vmpp

Pin

=
Jsc × Voc × FF

Pin

(1.5)

FF =
Jmpp × Vmpp

Jsc × Voc
(1.6)

The recombination processes in the depletion region [50], [51] or at grain boundaries

[52] of cell material can be modeled as a parasitic resistance parallel to the diode

(Rsh). Another type of parasitic phenomena is the impedance at the cell contacts that

can be modeled as a series resistance (Rs). For a solar cell to act as an ideal current

source-rectifier diode, the Rsh should have an infinite value, whereas, Rs should have

a minimum value. These impedance phenomena adversely affect the FF. From the

system point of view, effect of these parasitic resistors are evident by looking at a
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typical I-V characteristics of a PV cell. This is illustrated in Figure 1.8. The decrease

in FF due to increase in Rs, is shown in Figure 1.8 where the slope of the I-V curve

changes without any alteration in the value of Voc. In general, the slope of an I-V

curve at Voc is a fair quantitative estimation value for Rs. In contrast, increase in

curve slope near Jsc of an I-V characteristics is associated with increase in the Rsh,

leading to decrease in FF and, therefore, reduction in PCE.

1.4.2 Light Management in Nanowire Solar Cells

The percent of reflected sunlight form the top surface of SCs depends on the wavelength

and angle of incoming light, as well as the cell material. There are two main techniques

to reduce this type of loss mechanism, (1) anti-reflection coating (ARC), (2) surface

texturing. Regarding ARC technique, the refractive indices of coating and cell materials

have relation similar to Equation 1.7

nARC =
√
nairnsolar (1.7)

where nARC, nair, and nsolar are refractive indices of ARC, air, and SC materials.

To design a coating for a cell with absorption peak at λ, selection of film thickness in

range of 4λ will permit maximum transmission at this wavelength. In other words,

the more divergent the wavelength of a photon is from the central designed λ, the

higher the probability of reflection will be. This allows filtering of a useful part of

solar spectrum for solar cell through ARC layer on top surface of a cell. One of the

challenges with ARC is that for cells without sun tracking systems, the incident angle

of sunlight on a cell changes constantly throughout a day. To change the sensitivity

of ARC material to incident angle and wavelength, multiple layers of ARC can be

implemented. For a reasonable tradeoff between cost and efficiency, usually two ARC

layers are used.
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Figure 1.9: SEM images of (a) randomly distributed pyramids on a mono-Si (100) surface,
(b) an uniform array of inverted pyramids [53].

Texturing, on the other, hand increases the chance of re-absorption of reflected

beams. To design a cell with an optimum thickness, there is a tradeoff between

absorption efficiency, material cost, and extraction efficiency. The thickness of a cell

should be higher than a limit for majority of incoming photons, with energies higher

than the SC material bandgap, to get absorbed. On the contrary, in addition to the

need for minimizing material cost, and therefore PV module price, cells should be

thin enough so that the photogenerated carriers can be extracted within a diffusion

length of a p-n-junction. To overcome this issue, usually structures are designed to be

physically thin but optically deep. This goal can be achieved by texturing the top and

back surfaces of the cells. This allows the incoming beam to get trapped in the cell by

multiple reflection events from the top and bottom surfaces. With an ideal scenario

of a Lambertian reflector, optical path length of photons can be enhanced by factor

of 4nsolar [48]. While implementing perfect texturing is very expensive, many PV

modules in the market take adventure of simple texturing designs. For monocrystalline

silicon (mono-Si) cells, pyramids texturing with random distribuiton can be obtained

by anisotropic etching in alkaline soluiton.

An example of such surface texturing is shown in Figure 1.9(a). An uniform array

of inverted pyramids can be realized on the surface of a cell by applying an etching
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mask, illustrated in Figure 1.9(b) [53]. In contrast, these texturing mechanisms are

not suitable for polycrystalline silicon (poly-Si) based PV cells. Instead, reactive ion

etching [54] and wet etching [55] are used for texturing poly-Si cells. For instance,

hydrofluoric acid (HF) and nitric acid (HNO3) isotropically etch poly-Si wafers resulting

in rounded surface features [55].

For planar SC structures, coupling of sunlight into the cell for a broad range of

wavelengths and angles is a major challenge. To compensate optical loss mechanism

originated from reflection of sunlight at the top surface of SCs, it is a common practice

to use ARCs. But in this method, it is challenging to absorb a broad wavelength range.

Broad band antireflection approaches can be realized by surface texturing to increase

the light trapping in cells. For example, inverted pyramid structures are known as

very effective texturing methods, but they add complexity to the fabrication process

and therefore increase cell cost [56–58].

In contrast, cell structures based on NWs show strong antireflection capabilities

for different wavelength, polarization and angles of incident. It is well studied that a

vertical array of NWs show higher absorption ability than the same amount of material

in planar configuration. For instance, for a planar Si SC without any antireflection

coating or texturing treatment, nearly 30% of incoming sun light can be reflected

and be lost [59]. For wavelengths below 700 nm, Tsakalakos et al. showed reflectance

measurements from Si samples with and without Si NWs showed superior absorption

for samples with NWs. In particular, reflectance for samples with Si film was more

than 30%, this value reduced to 5% for samples with Si NWs [60]. In a similar

study, Garnett et al. observed a 2.9 to 7.8 times reduction in transmission over the

broad range of 600 to 1100 nm for samples with NWs with average length of 2 µm in

comparison with planar Si film samples [61]. They also showed that this transmission

reduction factor between Si NW and film sample can be further maximized to factors

of 12-29 simply by increasing average NWs length to 5 µm [61].
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Superior functionality of NWs as an absorber layer in PV cells originates from

a combination of light interaction features that separates these nanostructures from

planar bulk geometries. In general, an array of NWs shows excellent light trapping

ability due to multiple scattering effect for a diffused beam into the absorbing medium..

In this way, a reflected beam of light from a NW surface can be absorbed by another

wire. This leads to a longer optical path and wider effective absorption angle for cells

based on NWs. Garnett et al. showed that for arrays of Si NWs, the optical path

length of incident sunlight is 73 times longer than for bare Si wafer [61].

Another optical feature of NW arrays is their effective refractive index being

between that of air and the substrate or the active underlying planar sub-cell [61, 62].

In this way, the incoming light does not experience an abrupt change in refractive index

[62, 63]. For GaP NWs on AlInP/GaAs substrate, Diedenhofen et al. demonstrated

enhancement in light transmission into the substrate as well as reduced reflectance for

a broadband absorption for a wide range of incident angles [64]. Guo et al. optimized

diameter (D), length (L), and filling ratio (D/P) to maximize absorption for vertical

array of GaAs NWs [65]. They found that for D = 180 nm, L = 2 µm, and D/P = 0.5,

the NW array demonstrates more than 90% absorption in visible light region. Zhang

et al. showed that with light trapping ability of InGaAs NWs, the short-circuit current

can be extended to 61.3 mA/cm2, three times more than an equivalent thin-film layer

[66]. Anttu et al. experimentally illustrated a PV cell based on array of vertical InP

NWs with 96% of the ISC of a perfectly absorbent bulk InP SC [66].

1.4.3 Charge Collection and Transport in Core-Shell Nanowires

To achieve high PCE in a PV cell, the active layer must be optically thick to facilitate

enhanced light absorption and electrically thin to facilitate carrier transport and collec-

tion. In other words, one of the challenges in planar bulk SCs is that photogenerated

charge carries need to travel the depth (thickness) of a cell, to be collected by the
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Figure 1.10: Carriers (a) collection and (b) transport in core-shell NW structure.

contacts. On the other hand, the carrier collection efficiency is strongly influenced by

the minority carrier diffusion length, and therefore by density of defects in the cell,

meaning in this type of cell architecture, for a cell with low recombination loss the

crystal quality of the cell materials should be very high.

This challenge can be addressed by decoupling the optical path for absorption

and electrical path for carrier transport and collection. Core-shell NWs enable light

absorption along their length and carrier separation and collection by radial p-n (or

p-i-n) junctions. This way, the distance that photo-generated carriers need to travel is

in range of tens to hundreds of nanometer and is comparable with minority carrier

diffusion length. This concept is depicted in Figure 1.10. While photons are absorbed

along the length of NWs, the in-built electric field between core p-segment and shell

n-segment, makes it possible for photogenerated charge carriers to be collected radially,

perpendicular to the absorption of photos. This superiority of core-shell structures

is most beneficial when the minority carrier diffusion length is shorter than optical

absorption length of the cell material. As a result, NWs open the possibilities for

fabrication of SCs based on materials with short minority carrier diffusion length, that

are not suitable for planar NWs structure. Sulfides [67], oxides [68], and heavy doped

Si [69] are some examples.

There are some challenges regarding core-shell NWs for PV applications. While
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large surface area to volume ratio of NWs provides a critical advantage for heteroepi-

taxy, feature in excellency of NWs for heteroepitaxy, it makes NW SCs sensitive to

depletion region recombination [70, 71]. By optimizing abruptness of p-i-n junction

and crystallinity of shell segment, the VOC of silicon NW based SCs was improved

from 260 mV to 500mV, and the FF from 55% to 73% [11, 71]. Another design

and growth optimization challenge is related to thickness and relative doping level

in the core and shell segments. A thin core (or shell) segment containing low carrier

concentration, can easily be depleted if the shell (or core) junction is more heavily

doped. Another challenge is related to high density of surface states for NWs geometry

with large surface to volume ratio. Here, it is worth noting that a theoretical study

by Yu et al. illustrated the advantage of radial p-i-n architecture in III-V NW array

SCs in comparison to cells based on NWs with axial junction structures. One possible

explanation here is that unlike radial junctions configuration, in axial junctions the

depletion region is exposed to the surface of wires.

1.4.4 Detailed Balance Limit for Solar Cells Based on Nano-Structures

Extensive studies have been done on calculating the limit of SC efficiency by means of

investigating the underlying thermodynamics in conversion of solar energy to electrical

work [72, 73]. In 1961, Shockley and Queisser applied the detailed balance theory

and calculated the maximum solar conversion efficiency of 33.7% with the following

assumptions: [72–74].

(i) A single p-n junction with bandgap energy of 1.34 eV under AM1.5 solar

spectrum

(ii) The absorption function for the solar cell is a step function, meaning only

photons with energy above the bandgap of the cell can be absorbed

(iii) For carriers with energy above the bandgap, thermal relaxation will happen

(iv) Radiative recombination is the only recombination loss mechanism
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(v) The Sun’s radiation spectrum is defined as a black body radiation with

temperature Tsun

In addition to these assumptions, the detailed balance limit indicates that for a

system at thermal equilibrium, absorption of every photon is accompanied by emission

of an electron hole pair (EHP), and this absorption-emission balance is true for every

frequency and solid angle. The direct implementation of the detailed balance limit for

the case of SCs, however, is not realistic since the operating point of PV cells is far

from thermal equilibrium. However, Shockley and Queisser found that the difference

between the emission spectrum at equilibrium and non-equilibrium conditions can be

compensated by using a scaling factor [72]. This idea was one of the main contributions

toward understanding of the efficiency limit of SCs in 1961.

In general, recombination mainly takes place with two mechanisms; either it is a

radiative recombination mechanism that produces a photon, or it is a non-radiative

mechanism, which is a loss mechanism for the cell. However, the SQ limit only takes

the former mechanism into account. The absorbed photons excite the valance band

Figure 1.11: An illustration of how a nano-scale structure can minimize the entropy factor
of Ωemit/Ωabs, (a) A conventional planar bulk solar cell with concentration optics can exhibit
larger conversion efficiency than the same cell without a concentrator. This is because the
Ωemit/Ωabs criteria will decrease as Ωabs increases and approaches Ωemit, (b) A nanosructure
photovoltaic cell uses opposite mechanism for diminishing the Ωemit/Ωabs factor. small top
surface area of a nano-scale SC results in minuscule emission angle [75].
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electrons. For photons with energy larger than the bandgap energy, excited electrons

lose their energy in the form of thermal energy and reach an equilibrium state with

the solar cell lattice through the thermalization process. The reason for this change in

energy is that excited electrons interact with lattice modes; after energy and momentum

of electrons transfer to the SC lattice, they form a thermally equilibrium state with the

lattice [76]. By applying an external voltage, these thermalized electrons either flow as

electrical current or recombine with valence band holes and emit luminescent photons.

Increasing the external voltage leads to enhanced luminescent recombination. At a

certain external voltage all the absorbed photons convert to the luminescent. Hence

this voltage is known as the open-circuit voltage (VOC) as no electrical current can

be generated and we only have radiative recombination. If we compare the electrons

energies at the thermalized stage and at the VOC condition, we can calculate the

thermodynamic loss [76]. The open-circuit voltage can be calculated form Equation

1.8 [77].

qVoc = Eg(1−
Tc
Tsun

)− kT [ln(
Ωemit

Ωabs

) + ln(
4n2

C
)− ln(QE)] (1.8)

It is worth noting that VOC is less than the bandgap energy. In order to understand

the formulation of VOC, we van separate the above relation into two terms. The

first term on the left-hand side of 1.8 is based on Carnot’s theorem that described

the thermodynamics loss in photovoltaic conversion process, in which TC is the cell

temperature and TSun is the Sun temperature. The second factor is the effect of

change in entropy on VOC. There are three different terms related to entropy change.

The first term (also the first term in the brackets) is related to the photon absorption

and emission of the cell with, respectively, solid angles of Ωabs and Ωemit. This term

indicates that the entropy increases because of the mismatch between these two angles

that is generally the case for most solar cells. Hence, this term of entropy loss would

be minimized if the emission angle become equal to the absorption angle of Ωabs. This

23



Chapter 1. Semiconductor Nanowires Photovoltaics

concept is illustrated in Figure 1.11 by comparing the absorption and emission angles

for a traditional cell with a concentrator and a nano-scaled solar cell. From this simple

illustration it can be concluded that for a PV cell with NW structures, the VOC and,

consequently, the efficiency would increase due to near unity value of Ωemit=Ωabs [77].

For the second factor of entropy, n represents refractive index of the cell and C is

the light concentration term. This factor demonstrates the relation of the VOC with

the light coupling capability of the device. Many different methods were suggested

for increasing C to reach value of 4n2 such as use of surface texturing [78]. In 1982,

Yablonovitch et al. proved that assuming classical ray optics limit the maximum

possible amount of light concentration is 4n2 [79]. However, Munday et al., in 2011,

showed that this limit can be exceeded by using nanostructures [80]. It should be

noted than for photons with energy slightly more than the absorber’s bandgap this

factor has a large impact on their absorption as they would not absorb strongly by

the nature of the material itself.

Finally, ln(QE) is included in VOC calculation when the non-radiative recombination

is taken into account. Here, the quantum efficiency (QE) is calculated by Equation 1.9

QE =
Rrad

Rrad +Rnrad

(1.9)

When Rrad is the radiative recombination rate and Rnrad is the non-radiative recombi-

nation rate.

In 2015 [75], Munday et al. tried to revisit the SQ limit for nanostructured

solar cells and asked an important question; is it possible for a non-third generation

photovoltaic cell to exceed the SQ limit? The answer to this question can be crucial for

avoiding the further misconception in the field of photovoltaics based on nanostructures

such as nanowires and lead the direction of future researches into the right direction.

Munday et al. suggested that nanostructured solar cells with any architecture such as

wires, cones or pyramids are limited to the efficiency limit of a planar photovoltaic cell
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with concentrating optics such as lens or parabolic mirrors. Also the only origin of

the efficiency improvement is due to an increase in the VOC. Based on the previously

presented introduction, the SQ limit assumes that the radiative recombination is

the only recombination mechanism. The maximum current of solar cell then can be

written as seen in Equation 1.10,

Itotal = q(Nabs −Nemit) (1.10)

Where Nabs and Nemit are the numbers of absorbed and emitted photons per unit

time by the solar cell, respectively, and q is the electron electric charge. The rates of

absorption (Nabs) and emission (Nemit), can be calculated by Equation 1.11 [75].

N(θmax, V, T ) =

∫ ∞
0

∫ 2π

φ=0

∫ θmax

θ=0

σabs(θ, φ, E)× F (E, T, V )cos(θ)sin(θ)dφdθdE

(1.11)

where θ max is the maximum angle for absorption or emission. Moreover, F(E,T,V) is

photon flux, which can be calculated from the generalized Planck blackbody law [81]

by Equation 1.12

F (E, T, V ) =
2n2

h3c2
E2

e
E−qV
kBT

− 1 (1.12)

where h, kb, and c are respectively the Planck’s constant, Boltzmann’s constant and

the speed of light. Also, n stands for the refractive index of the surrounding ambient,

which is usually equal to zero for vacuum. In addition, in Equation 1.13, σabs(θ, φ, E)

is the absorption cross-section, which is defined as the product of the top surface of

the cell and the probability of photon absorption based on the photons energy and its

angle of incidence (Equation 1.13)

σabs(θ, φ, E) = Acell × a(θ, φ, E) (1.13)

The cross-section absorption for a typical bulk solar cell structure can be idealized to
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a simple step function. In this case, the half-angle for cell emission is θmax = θc = 90◦

and the half-angle of incoming light from the Sun at the Sun temperature of 5760 K

is equal to θmax = θc = 0.267◦ [82]. Thus, the photogenerated current and the dark

current are calculated according to Equation 1.14 and Equation 1.15,

IL = qN(θs, Ts, V = 0) (1.14)

I0 = IR[e
qV
kBTc − 1] = qN(θs, Ts, V )− qN(θs, Ts, V = 0) (1.15)

where IR stands for the reverse saturation current. Here we use the notation of IBulkL

and IBulkR for the photocurrent and reverse current of an ideal bulk solar cell with

the above stated angles and top surface area. On the other hand, one can increase

the VOC by increasing the photocurrent or reducing the reverse saturation current

(Equation 1.16).

Voc =
kbTc
q
ln(

IL
IR

+ 1) ≈ kbTc
q
ln(

IL
IR

) (1.16)

Since, except the emission angle, all the other parameters in Equation 1.14 and

Equation 1.15 remain the same from case of an ideal bulk SC and a NW-based SC,

Munday et al. suggested a general absorption cross-section function as Equation 1.17


σabs = σmax 0 < θ < θmax

σabs = σmin θmax < θ < θc

(1.17)

where θm is defined by the structure. As expected, absorption cross-section is

defined as a step function for photon energies (σm = 0 for E<Eg). Using Equation

1.11 the photocurrent and dark current of a nanostructured photovoltaic cell with
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above parameters can be calculated by Equation 1.18 and Equation 1.19 [75] :

IL = qN(θs, Ts, V = 0) = qσmax

∫ ∞
Eg

∫ 2π

φ=0

∫ θ

θ=0

F (E, Ts, V = 0)× cos(θ)sin(θ)dφdθdE

=
σmax

Acell

IBulkL

(1.18)

IR = qN(θc, Tc, V = 0) =
πqσmin

2
[cos(2θm)− cos(2θc)]×

∫ ∞
Eg

F (E, Ts, V = 0)dE

+
πqσmax

2
[1− cos(2θm)]×

∫ ∞
Eg

F (E, Ts, V = 0)dE

=
σmax + σmin + (σmin − σmax)× cos(2θm)

2Acell

IBulkL

(1.19)

where θm=0 for E<Eg, IL,0 is the light generated current for an ideal bulk cell

with area Acell. And then the open-circuit voltage will be as Equation 1.20

Voc =
kBTc
q

ln(
2σmax

σmax + σmin + (σmin − σmax)× cos(2θm)
)

+
kBTc
q

[ln(
IBulkL

IBulkR

)]

=
kBTc
q

[ln(
IBulkL

IBulkR

) + ln(X)]

X =
2σmax

σmax + σmin + (σmin − σmax)

(1.20)

The factor X in Equation 1.20 is equivalent to the concentration factor for a

bulk solar cell with a concentration optics. By maximizing this factor for θm = θs

and θmin = 0 the concentration factor will be approximately equal to 46 and the

maximum efficiency will be 42% for a nanostructured photovoltaic cell. This amount
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Figure 1.12: The effect of absorption and emission angle on VOC for three different cases
of (a) A conventional bulk solar cell without back mirror. The emission half-angle for this
case is 2π because of the lack of reflection at back surface (b) A conventional bulk solar cell
with a back mirror configuration. The emission half-angle in this case equals π which can
result in an increas in VOC. (c) The ratio between emission angle and absorption angle will
be approximately equal to unity. (d) The I-V curves for three cases of (a-c). These curves
show efficiency improvement by means of reduced emission to absorption angle [75].

is exactly equal to the case of a bulk SC with concentration optics [82]. Additionally,

we can rewrite Euaiton 1.16 for the described nano-cell as a function of its absorption

cross-section assuming that minimum cross-section is bounded to the geometrical top

surface of the cell leading to X = σmax/σgeo, then,

Voc =
kBTc
q

ln[
σmax

σmin

(
IL,0
IR,0

)] (1.21)

Based on various studies on nanostructured SCs, the concentration factor is

commonly in the range of 1 to 10, therefore, efficiency of a nanostructured SC can

be increased due to its VOC [75]. In general, the efficiency of PV cells has direct

relation to the VOC and inverse relation to the input power [78]. As a result, the

same advantage of nanostructured SC can be formulated into the efficiency calculation

using Equation 1.8. As it was explained, the emission and absorption solid angles

can affect the open circuit voltage with the term kTln(Ωemit=Ωsun). The effect of

this factor is depicted in Figure 1.12. In conventional solar cells, without a back

mirror configuration, the difference between the absorption and emission angle is large

with Ωemit = 4π. But the ratio of these unmatched solid angles decreases in solar
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Figure 1.13: Reported I-V characteristics of (a) GaAs NW arrays SC [83], and (b) InP
NW arrays SCs [84] for 1 sun AM1.5G illuminaiton.

cells with back mirror, which reduced the emission angle to 2π. Nanostructured SCs,

on the other hand, minimizes this entropy-related factor by reducing the emission

angle such that it becomes so close to the absorption angle that their ratio will be

approximately equal to unity. This, in fact, is the origin of an elevated open-circuit

voltage in nanostructured photovoltaic cells.

1.4.5 State of the Art Nanowire-based Solar Cells

To date, the world record for SCs based on vertical NWs with highest efficiency belongs

to Hwang et al. with 18.9% for flexible cells based on vertically aligned Si microwires

realized by deep reactive ion etching (DRIE) on 50 µm c-Si substrate [85]. The next

best reported NW-based SC is realized by a top-down approach, where n- and p-doped

InP layers were epitaxially grown on an InP substrate followed by deposition and

patterning of a silicon nitride (SiN) template layer for dry etch of InP epilayers into

vertically aligned InP NWs. In this study, Dam et al. reported cell efficiency of 17.8%

[84].

In addition, studies from Åberg et al. on GaAs NWs array with 15.3% [83] and

Wallentin et al. on InP NWs array with 13.8% [33] demonstrated highest efficiencies
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for SCs based on epitaxially grown III-V NWs, which are the focus of this dissertation.

It is worth noting here that both cells were grown on their native III-V substrates via

Au-seeded VLS approach in a MOCVD reactor, with axial doping profile. To date,

published reports on NWs with radial junction geometry have not exceeded 7.5%

[86–92]. The main challenges in fabricaiton of SCs based on core-shell NW arrays will

be discussed in length in Chapter 5.

1.5 Organization of Dissertation

The objective of this dissertation is to demonstrate epitaxy of III-V NWs on for-

eign substrates via two different catalyst-free growth mechanisms for photovoltaic

applicaitons. This document is organized into seven chapters.

Chapter 1 introduces motivation and background for photovoltaic solar cell devices

based on III-V semiconductor nanowires. This includes motivation for harvesting

solar energy as a clean energy-conversion solution. This chapter reviews theoretical

background information of solar cell device operation and nanowire based solar cell

devices.

Chapter 2 details information related to experimentals methodologies used in this

study. This includes various material characterizations methods utilized to evaluate

nanowires morphology and composition, such as scanning electron microscopy and

X-ray diffraction spectroscopy.

Chapter 3 focuses on exploring the growth parameter space for self-assembly of

InAs, InAsyP1-y and InxAl1-xAs NWs arrays on graphene via van der Waals epitaxy.

In this chapter, change in NWs diameter, length and number density are studied as a

function of growth parameters.

Chapter 4 reports the first demonstration of selective-area van der Waals epitaxy

of vertically aligned III-V nanowires on 2D molybdenum disulfide (MoS2) micro-plates.

Chapter 5 presents selective-area epitaxy of GaAsP nanowire arrays on silicon
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for tandem junction photovoltaic solar cells. In this chapter, integration of nanowire

arrays via three different patterning methods and composition study of GaAsyP1-y

nanowires are reported.

Chapter 6 summarizes the conclusions made from the presented research projects

in Chapter 3 through 5.

Chapter 7 provides future works towards fabrication of a III-V-on-Si tandem

solar cell.

Chapter 8 presents a list of research products including peer-reviewed publica-

tions.
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Methodology

2.1 Metal Organic Chemical Vapor Deposition

To date, metal organic chemical vapor deposition (MOCVD), offering high throughput

III-V epitaxy, has become one of the major epitaxial growth techniques in industry.

In MOCVD, precursors in gas phase flow over the hot growth surface where pyrolyis

takes place and the growth species deposit on the substrate. Other techniques such as

liquid-phase epitaxy (LPE), chloride vapor-phase epitaxy (CIVPE), and molecular

beam epitaxy (MBE) are used for growth of semiconductor crystals of semiconductor

materials. The superiority of an epitaxy growth technique is defined by its capability

in realizing uniform structures with abrupt interfaces, high growth rate, ability to

grow a variety of different alloys, in situ monitoring, and scalability for industrial

production [93].

In academic material research labs, MBE has been the standard technique for

epitaxy of semiconductor alloys. Through MBE, heteroepitaxy of highly pure structures

with atomically abrupt hetero-interfaces is achievable. The main challenge with MBE

is in scalability for industrial manufacturing. Since MBE operates under ultra-high

vacuum (UHV), this lower base pressure often time needs to be broken for refill of the

source or performing maintenance. This leads to high cost of downtimes.

In contrast, MOCVD standard operating pressure is on the order of 75 torr (100

mbar), and precursors are maintained in separate cabinets using bubblers or pressurized
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gas reservoirs. The main limitations of MOCVD stems from the cost and challenges

in using and storing of hazardous precursors. Metal organic sources are expensive, as

they are very reactive and therefore difficult to purify. Precursors with low oxygen

content are essential for epitaxy of highly efficient semiconductor base devices. It is

shown that photoluminescence intensity of AlGaAs structure was increased by a factor

of 3-10 by upgrading the quality of trimethylaluminum (TMAl) precursors, with lower

oxygen content [94]. In addition, metal organic precursors are volatile liquids and

hence involve precise pressure controller systems.

In this work, all epitaxial growths experiments were done using an Aixtron 3×2”

close coupled showerhead (CCS) MOCVD reactor similar to the one shown in Figure

2.1. The fundamentals of MOCVD operation are discussed in this section. The reactor

is situated inside a nitrogen glovebox. This arrangement allows isolation of dangerous

precursors and their byproducts from the operator, as well as a protection for the

reactor itself from oxygen, water and other source of contaminations. A carrier gas,

hydrogen (H2) or nitrogen (N2), delivers metal organic (MO) and hydrides (Hyd)

precursors into the reactor through MO and Hyd lines (Figure 2.2).

Figure 2.1: An Aixtron 3×2” CCS MOCVD reactor
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There are various configurations of MOCVD reactors based on both lateral and

vertical gas flow. In the specific case of Aixtron 3×2” CCS MOCVD design, the

reactants enter the reactor from a quartz shower head, containing nearly 100 millimeter-

sized inlets, sitting 2” above the susceptor. The susceptor is a rotating disc, which

is heated to the growth temperature by a resistance heater. Growth temperature is

usually in the range of 500-1000◦C. The temperature profile of the susceptor surface,

and therefore the growth substrates, can be controlled by separate heating zones.

This allows a uniform and constant temperature profile on the entire surface of the

susceptor. In contrast the high temperature susceptor, the shower head and the

reactor wall are water-cooled ∼55◦C. This leads to a large temperature gradient inside

the chamber. The desired combination of MO, Hyd and carrier gases flow down the

shower head toward the growth surface. The reactants then undergo pyrolyis on the

heated growth surface and, based on the selected reactor parameters, the desired

growth mode can takes place. can take place. The remainder of the growth species

that do not adsorb on the growth surface or the reactor walls are vented out through

the exhaust line.

As for precursors for growth of III-V semiconductor compounds, organic group-V

element hydrides such as arsine (AsH3) and phosphine (PH3) are used. Except for Sb

Figure 2.2: Schematic diagram of gas delivery system in MOCVD reactor. Carrier gas
supply, Hyd and MO lines, shower head, susceptor and the exhaust line is depitcted.
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which is common to be in form of trimethylantimony, other group V and Si precursors

are hydrides and are kept in pressurized bottles at room temperature. Regarding

metal organic precursors, trimethyl and triethyl alkyls, such as trimethylindium

(TMIn) and triethylgallium (TEGa), are the two most common sources. The trimethyl

compounds are preferred due to their superior stability and higher vapor pressure.

These precursors are in liquid phase and are stored at temperatures around 4-22◦C

in bubbler vessels, where the liquid and vapor phases are in equilibrium. Through

the gas delivery system and mass flow controllers (MFCs), the carrier gas is injected

in the bubbler in a controllable fashion, resulting in a desired mixture of carrier gas

and precursor in vapor phase. The vapor pressure of the precursor in a bubbler is

always kept constant. This can be achieved by submerging the bubbler in a bath of

water that is held at a constant and stable temperature. In some cases, the growth

conditions are conducive for group V, III or both to have flowrates below the reliable

range of MFCs. In these cases, a double dilution system can be used. In double

dilution arrangement, mixture of carrier gas and precursors leaving the bubbler are

diluted with carrier gas in a separate line before injecting into the MO or Hyd lines.

In the reactor, the delivered precursors undergo pyrolyis and are cracked to group-III

and group-V constituents. These reactants interact on the growth surface and form

III-V compounds. For example, in case of a binary semiconductor compound of AB,

the chemical reaction equation can be written as follow

RnA+BHn → AB + nRH (2.1)

RnA+R′nB → AB + nRH + nR′H (2.2)

Where R and R’ stands for unspecified organic radicals.
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2.2 Nanowire Growth Mechanisms

2.2.1 Vapor-Liquid-Solid Epitaxy

In VLS, catalyst particles are placed on the substrate. Next, the substrate is heated to

a substantially high temperature for removing the native oxide. To prevent substrate

degradation, a flow of group-V precursors is supplied to the chamber. Next, the

temperature is set to the NW growth temperature, and flow of group-III precursors

is initiated. Growth species form a liquid-phase alloy with the particle, either by

diffusing on the substrate surface or by direct impingement on the particle. This

process continues to the point that the catalyst particle reaches a supersaturation

state, and solid-phase nucleation takes place at the interface of the liquid alloy and

the underlying substrate. A continuous supply of vapor-phase precursors guarantees

a steady-state regime, and the nucleation process is continued under the catalyst.

Therefore, with formation of each atomic layer, the catalyst particle is lifted further

from the substrate and NW growth is maintained.

2.2.2 Selective Area Epitaxy

Selective area epitaxy (SAE) is an important crystal growth technique for applications

across electronic, optoelectronic, and photovoltaic device fabrications. SAE is a

templated epitaxy technique, meaning a patterned film is used to limit the crystal

growth to the exposed substrate surface. It has been shown that high quality III-V

compound films can be achieved using MOCVD. This allows for high degree of control

on the thickness, composition, and doping. Achieving selectivity is straightforward for

growth techniques,such as liquid phase epitaxy, where the crystal growth takes place

close to the equilibrium. For MOCVD process, however, the crystal growth takes place

far from the equilibrium. In this case, to realize selectivity the growth condition should

have certain criteria, e. g. lower reactor pressure and elevated growth temperature.
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Figure 2.3: The growth template for SAE of III-V NWs is prepared by (a) deposition of
SiO2 film on the substrate, (b) patterning by electron beam lithography, (c) transfering the
pattern in the SiO2 template by wet etch, (d) epitaxy of NWs using MOCVD. Modified
from [95].

The right MOCVD conditions allow for three different types of diffusion mechanisms.

Firstly, vapor phase diffusion takes place across the gaseous boundary layer in the

chamber. Secondly, precursors impinging on the masked regions of the sample cannot

absorb on the template film and diffuse on the surface toward the exposed substrate

surface. Lastly, this spatial selectivity in the absorption and desorption of precursors

forms a local gradient in partial pressure of precursors. This is due to excess of gas

phase precursors on the masked regions and lower availability of precursors on openings

(exposed substrate regions). This allows for a third diffusion mechanism which is in

form of a lateral vapor phase diffusion. As a result of these diffusion mechanisms, the

crystal growth enhances in the pattern openings. For the specific case of NWs growth,

a right selection of growth conditions can result in an enhanced vertical growth rate

to the point that high aspect ratio NWs can be achieved via SAE. The most common

choice of substrate orientation for SAE of NWs is a (111) substrate. This results in

110 sidewall facets and high axial growth rate in (111) direction.

The sample preparation for SAE of NWs is illustrated in Figure 2.3. In this

process, first an amorphous mask is used to cover the substrate. Common materials

used as mask are silicon oxides (SiOx) or silicon nitrides (SiNx). These films have

high durability at an elevated temperature that is typical for SAE via MOCVD or
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MBE. In the current research, SiOx is deposited with plasma-enhanced chemical vapor

deposition (PECVD). Next, desired patterns are defined in the mask through different

lithography methods, such as electron beam lithography (EBL) and photolithography.

While compared to conventional photolithography, much smaller features can be

defined by EBL, this technique is more expensive and time-consuming, especially for

samples with a large surface area. Dry or wet etch techniques can be used to transfer

the pattern to the SiOx film. It should be noted that as crystal growth takes place on

Si surface only, it is a common practice to add a step to remove the Si native oxide.

This is usually done by a buffered oxide etch (BOE) before loading the sample into

the MOCVD glovebox.
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2.3 Electron Microscopy

2.3.1 Introduction

Electron microscopy is one of the most important characterization techniques for

understanding of nanomaterials beyond the spatial resolutions of optical microscopes.

The minimum resolution limit of an optical microscope can be calculated by

(∆l)min =
0.61λ

n sin β
(2.3)

where n is reflection index of the viewing medium, β is the semi-collection angle

of the lens, and λ is the wavelength of the incident light. In the specific case of

visible light, the resolution limit of optical microscopy is on the order of hundreds of

nanometers. In electron microscopy, however, highly accelerated electrons are used

to achieve tunable resolutions to several orders of magnitude lower that optically

achievable. To gain a better understanding of current electron microscopes range of

resolution, one can use the equation 2.4 to calculate the electron wavelength as a

function of the acceleration voltage:

λ =
h√

2m0qV (1 + qV
2m0C2 )

(2.4)

where m0 is the electron rest mass, q is fundamental electron charge, V is the

potential difference delivered for electron acceleration and c is the speed of light. For

a transmission electron microscope (TEM) with acceleratio voltage of 200 kV, the

electrons wavelength is calculated as approximately 2.5 pm. However, the practical

resolution of an electron microscope is typically lower than pico-meteres. This is

because after electrons are generated, an anode cylinder is used to accelerate the

electrons through a series of magnetic lenses which are used to control focussing and

magnification. The abberrations introduced by these magnetic lenses limits the image
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resolution on the order of angstroms.

2.3.2 Electron Beam/Sample Interactions

When an electron beam interacts with a specimen, various types of signals are

generated, as depicted in the Figure 2.4. If the electrons transmit through the

specimen without any interaction, they are denoted as direct beam or unscattered

electrons. Whereas, if the electrons interact with the sample atoms without any energy

loss, they are referred to elastically scattered electrons. In case of energy loss, electrons

are inelastically scattered. In particular, backscattered and secondary electrons are

Figure 2.4: The various signals originated from interaction of a high energy electron beam
with a thin sample.
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used in scanning electron microscopy (SEM), which will be explained in the next

section. The characteristic X-rays signals originate from the change in energy level of

an electron moving from a higher to a lower energy level. The characteristic X-rays

can be used for composition analysis since the differences in energy states are specific

to each element in the periodic table. Instead of generating an X-ray, an electron

relaxing from a higher to a lower level can give the release energy to another electron

and make it escape the sample. The escaped electron is called Auger electron (AE).

Finally, Bremsstrahlung X-ray originates from electrons interaction with the Coulumb

fields of the atomic nuclei.

2.3.3 Scanning Electron Microscopy

For the presented research in this work, SEM is used to characterize the morphology

of III-V nanostructures. Two SEM systems, the Hitachi S-4000 and Tescan MIRA3

instruments, are used for sample imaging. A simplified schematic of SEM is shown in

Figure 2.5. Typically in SEM systems, the electron gun filament is kept at a large

negative potential with respect to a grounded anode plate. Thus, an electron beam,

consisting of primary electrons (PEs) is accelerated toward the sample surface and

penetrates the sample in a pear-shaped region called the interaction volume (Figure

2.6).

To control the beam spot size, before electrons pass the objective lens and reach

the sample, the electron beam is shaped by a series of condenser lenses. Using scanning

coils, the beam can be deflected and scanned along various X-Y coordinates on the

sample surface. Detected signals from each point are then registered by a computer

system. These signals are generate through elastic or inelastic scattering processes from

the interaction of PEs with sample atoms within the interaction volume. Backscattered

electrons (BSEs) are electrons that undergo elastic scattering interactions with the

atomic nuclei in a given sample, and can escape the sample through Rutherford
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backscattering. The ratio of BSEs to PEs, called backscattering coefficient, gives

information about atomic number (Z) of the sample. Albeit, the higher energy of

these electrons (close to PEs energy), and therefore larger interaction volume, reduces

the resolution in the BSE imaging mode. Secondary electrons (SEs), generate from

an inelastic interaction, are lower in energy (10-50 eV) and have an escape depth of

around 10 nm. Compared to BSEs, SEs are more abundant and they are generated

from all locations in the interaction volume, but they only escape from areas closer to

the surface. Hence SEs carry information about the surface structure and topology.

For all experiments presented in this dissertation, all SEM images are generated

using SEs. The relative angle of sample and PEs can be set to different values, which

leads to different SE yield and shows various views of the sample. By tilting the

sample toward the detector, greater SE yield can be achieved. Except for top-view

Figure 2.5: Schematic of a SEM system illustrating different parts of a typical SEM system
[96].
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Figure 2.6: The interaction volume of primary electron beam with sample [96].

images, all images presented in this work are collected at a stage tilt angle of 45◦.

Planar and tilted-view SEM images mainly provide information about NW morphology,

length and diameter, orientation and areal density. Lastly, samples were mounted

on an aluminum based mounting stub with double sided copper tape. This allows a

conductive pathway for electrons and minimize accumulation of static charges in a

sample. For samples with less conductive characteristics, liquid silver paste was used

to draw a path from sample to the stub.

2.3.4 Focused Ion Beam

The focused ion beam (FIB) microscope is similar to SEM in basics of operation.

Unlike SEM, SEs are generated by an ion beam instead of an electron beam. These

SEs can be used for high spatial resolution imaging. There are FIB systems with

both electron and ion beam sources. In most FIB systems, the ion source type is

a liquid metal ion source (LMIS) with advantages of high degree of brightness and

focused beam. Ga-based LMIS is preferred among different types of LMIS such as

In, Bi, Sn, and Au. This is due to low melting point (30◦C), low volatility, and
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low vapor pressureof Ga. These characteristics makes Ga LMIS to be prepared at

low temperature and flow from a reservoir to a tungsten (W) needle. While liquid

Ga wets the tapered shape tip of the needle, a large electric field on the order of

1010 V/m forms a single Taylor cone (a point source) of Ga. For typical emission

current of around 2 µA, this process results in an ion beam with diameter around 5

nm. In addition to imaging, FIB enables site-specific sputtering and deposition. For

deposition, a gas-phase metal organic precursor is injected and delivered in vicinity

of samples by a nozzle. By rastering an ion beam or an electron beam on a specific

user defined location, desired deposition takes place. Many materials are available for

deposition such as W, Pt, and C. A simple schematic of a FIB system is shown in [97].

In the presented research, the Strata 400 Dual Beam FIB system was used to

prepare site-specific lamella from as-grown samples for TEM analysis. Figure 2.8 shows

steps toward preparation of a TEM lamella. In this sample preparation technique,

before loading the sample in FIB chamber, ∼10 nm carbon as a protective layer is

deposited on the sample via a standard sputter coater tool. Once the sample is loaded

and the desired region is located, the sample is covered with two additional protective

layers via (1) electron beam induced deposition (EBID), and (2) ion beam induced

deposition (IBID). The reason behind this selection is that IBID has high deposition

Figure 2.7: A simple illustration of FIB tool [97].
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rate but can cause surface damage and undesired sputtering on the features, whereas

the EBID-layer can protect the nanostructure surface and reduce the risk of the surface

damage during IBID.

The next step is to place markers at strategically important locations. The

suggested locations are: (1) at the two ends of a desired foil. For ease of actions

for future steps, it is important to measure the distance between markers and the

desired nanostructures at this step, and (2) at regions adjacent to the nanostructures

of interest. These mark features can be produced by milling a diamond shape and

filling it with Pt deposition. At this point the region of interest should be covered by

Figure 2.8: TEM lamella preparation steps using FIB. Perfomed at CCMR facilty, using
the Strata 400 Dual Beam FIB system.

45



Chapter 2. Methodology

a final protective layer via IBID Pt deposition. This defines the area of a foil that

contains the region of interest. Next, it is necessary to separate this foil from the bulk

sample by milling two trenches and form a J-shaped milled feature below the substrate

surface along the region of interest. A micro needle is inserted in the FIB chamber to

carry the foil from sample location to a TEM grid location. By welding one side of

the foil to the tip of the needle, the opposite side of the grid can be released. The last

step is to align and weld the foil to a TEM grid and separate the needle from the foil,

followed by ion milling to thin the foil such that it is electron-transparent.

2.3.5 Transmission Electron Microscopy

Transmission electron microscopy (TEM) technique is based on the interaction of an

atomically-thin specimen (< 250 nm) and electrons with high acceleration energy of

larger than 100 keV. Due to the high acceleration voltage of the electron beam and the

sufficiently thin sample, the primary electron (PE) can transmit through the sample.

There are two main mechanisms for formation of contrast, mass-thickness contrast

and diffraction contrast.

In a TEM image, the variation in intensity can be linked to the mass or thickness of

a specific region within the specimen. Meaning, thicker parts of the sample show lower

penetration depth and absorb more PEs, and segments with higher-Z elements cause

elastic scattering events with larger angles relative to the optical axis. In both cases,

these electrons can not be detected which lead to corresponding regions with dark

contrast on the TEM image. This type of imaging is known as bright-field imaging,

where only the direct PEs are detected, while diffracted or scattered electrons at

higher angles are filtered out by an aperture. In this dissertation, bright-field imaging

is used for qualitative study of the morphology and variation in elemental composition

of nanowires.

Furthermore, in high-resolution TEM (HR-TEM), the information about the phase
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contrast can be collected. In this scenario, a wide objective aperture is inserted such

that both diffracted and transmitted beams with different amplitudes and phases

can be collected. This way, a Fourier sum of these signals leads to a very precise

and highly detailed image. Using this technique, lattice resolved imaging of NWs

is achieved in this study. Throughout this work, two different methods for sample

preparation are used. First sample preparation technique is FIB, which is described

in Section 2.3.4. FIB is beneficial for thinning the samples and make them electron

transparent, especially when the heterointerface of NW and substrate is the region of

interest. Another way to prepare a TEM grid is to break off the NWs using a controlled

mechanical agitation. In this method, NWs can be removed from the substrate by

submerging the sample in a small volume of a solvent (e.g. 2 mL of methanol) and use

of ultra-sonication bath to apply agitation. Next, the solution containing suspended

NWs can be dispersed using a micro-pipet on a standard carbon holey copper TEM

grid.

2.3.6 Scanning Transmission Electron Microscopy

The scanning transmission electron microscopy (STEM) uses scan coils for raster

scanning of an electron probe. This permits for registering the detection of transmitted

or diffracted electrons in reference to the scanning address of the incident beam. In

STEM mode, annular dark field (ADF) or high angle annular dark field (HAADF)

images can be obtained. Electrons scattered with a certain angles can contribute to

acquiring of these type of images. In ADF imaging mode, only electrons scattered

within 10-50 mrad can contribute to imaging. Whereas for HAADF, electrons scattered

at an angle larger than 50 mrad can be detected. In this way, the image is mainly

formed by Z-contrast. Therefore, more electrons that are scattered from higher-Z

sample regions can be detected by ADF or HAADF detectors.
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2.4 X-Ray Diffraction

X-ray diffraction (XRD) is a technique to investigate the quality, composition and

strain in crystal structures. In this research, high resolution XRD characterization was

used to study the composition of InAsP NWs arrays on graphene. This characterization

was done using a Bruker D8 system with Cu Kα X-ray source. In XRD, an X-ray beam

incident on the surface of the sample at a specific angle (θ) reflects from the individual

crystalline planes of atoms. Here, we neglect the inelastic scattering meaning the

energy of reflected beam is equal to energy of the incident beam. Diffraction takes

place for beams reflected from crystal planes that interfere constructively. For a

material with interplanar spacing of d, this happens when the Bragg condition is

satisfied, meaning the path length difference (2dsinθ) should be equal to an integer

multiple of the X-ray wavelengths (nλ), as shown in Equation 2.5.

2d× sin(θ) = nλ (2.5)

In the XRD set up illustrated in Figure 2.9, the tilting stage sweeps the angle θ to

Figure 2.9: A simple diagram of a XRD set up showing an X-ray source hitting the sample
at Bragg angle, the detector collects the reflected beam at the same angle.
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satisfy the Bragg condition. In this way, the beam coming from the X-ray tube hits

the sample at θ angle, and the detector collects the beam at the same angle.
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Pseudo-van der Waals Epitaxy of III-V Nanowire Arrays on
2D Nanosheets

Project Title: Improving pseudo-van der Waals epitaxy of self-assembled InAs

nanowires on graphene via MOCVD parameter space mapping

Citation: M. A. Baboli, M. A. Slocum, H. Kum, T. S. Wilhelm, S. J. Polly, S. M.

Hubbard, and P. K. Mohseni, CrystEngComm, vol. 21, no. 4, pp. 602–15, 2019.

3.1 Introduction

In recent years, the integration of III-V NWs with inert graphitic surfaces and

functional two-dimensional (2-D) graphene nanosheets has been explored [99], [100–

109]. Monolayer nanomaterials including single layer graphene (SLG), hexagonal

boron nitride (h-BN), and transition metal dichalcogenides such as molybdenum

Figure 3.1: A schematic comparing different forms of epitaxy techniques. In the con-
ventional epitaxy, the two layers share covalent bonds at their interface vs. in the vdW
and quasi-vdW epitaxy the 2D layer surface provides no dangling bonds for covalent strain
sharing [98].
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disulfide (MoS2) and tungsten diselenide (WSe2) have shown promising performance in

electronics [110], optoelectronics [111], photovoltaics [112], [113], and photonics [114]

applications. Through integration of III-V semiconductor NWs with 2-D nanomaterials,

the unique properties of both nanostructure groups can be simultaneously exploited

in the form of nano-hybrid materials system [99], [100, 101]. Additionally, transfer

and re-distribution of interfacial charge states in such integrated nanomaterials can

enable unique optical and electronic properties that are distinct from those of the

constituent materials [115, 116]. Integration of this kind may be realized through

the pseudo-van der Waals epitaxy (vdWE) approach, whereby an epi-layer is formed

on an inert 2-D surface that provides no surface dangling bonds for covalent strain

sharing [98] (Figure 3.1). Weak vdW forces between a monolayer substrate and III-V

epilayer can accommodate nucleation and subsequent growth such that interfacial

lattice distortion is mitigated and dislocation-free crystal assembly can take place.

Unlike semiconductor substrates with reactive dangling bonds, the growth surface

of 2-D nanosheets offers limited positions for adatom adsorption and subsequent

extension of the III-V lattice. In the case of graphene, the carbon honeycomb lattice

allows three residence sites: (i) above a carbon site (T-site), (ii) above the bridge

between a C-C bond (B-site), (iii) above the center of a hexagonal carbon lattice

(H-site) [100]. As a result, and based on the lattice constant of a given III-V compound,

there are limited possibilities for arrangement of atoms at the growth interface. Munshi

et al. summarized possible atomic arrangement for binary III-V compounds with

different lattice constants [100]. From a thermodynamic perspective, not all of these

possible arrangements are achievable. This is due to the difference in binding energy

between carbon atoms in the honeycomb lattice and atomic growth species that

reside on T-, B-, or H-sites [117]. It has been shown that In adatoms may reside on

energetically favorable H sites with bond energy of 1.29 eV [118]. This allows InAs to

adopt its native lattice constant on SLG [119].
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Figure 3.2: Different orientations of III-V compounds lattice on graphene surface [100].

The simplicity of the MOCVD-based InAs NW vdWE approach, which requires

no pre-growth surface pattering or pre-deposition of catalyst droplets, is highlighted

as a key advantage. Nevertheless, precise tuning of growth conditions are needed and

realization of optimal growth is non-trivial. The term optimal is used here to define

the maximal aspect ratio of individual NWs comprising an array of maximal number

density. Additionally, the term optimal is intended to describe a parameter space

in which supplied growth species contribute predominantly to the formation of NW

structures, such that parasitic growth of polycrystalline nano-islands is minimized.

Although several studies on vdWE of InAs NWs on SLG have been presented in the

current literature, and optoelectronic and photovoltaic devices have been demonstrated

based on this nano-hybrid system [99], [120], extensive evaluation of the growth window

has only been carried out for the case of In-seeded NWs by MBE. Systematic mapping

of the extended parameter space and a self-consistent correlation of growth conditions

to NW morphology, NW number density, and areal coverage of parasitic islands during

self-assembly of InAs NWs on SLG is needed for the MOCVD approach.

Here, a comprehensive exploration of the growth parameter space for self-assembly

of InAs NWs on SLG by MOCVD vdWE is presented. In particular, the length,

52



Chapter 3. vdWE of III-V NW Arrays on 2D Nanosheets

diameter, and number density of NWs, as well as the areal coverage of parasitic

island growth is quantified as a function of MOCVD conditions including V/III ratio,

growth temperature, and total flow rate of precursors. Growth trends are discussed

in terms of underlying kinetic factors. By mapping a wide parameter space, growth

conditions are simultaneously tuned for the formation of arrays with maximum NW

aspect ratio, maximum NW number density, and minimum areal coverage of parasitic

three-dimensional (3-D) nano-islands. The crystal structure of NWs grown under

largely disparate conditions is analyzed to reveal a characteristically invariant polytypic

NW lattice that is formed throughout the entire growth window. The evolution of

NW morphologies over time is described with respect to axial and radial growth rates.

The influence of a pre-growth arsine surface treatment is studied as an additional

operational control that permits manipulation of NW densities. Finally, a two-step

flow-modulated growth procedure is introduced for further optimization of NW aspect

ratio and number density. Having a complete understanding of the MOCVD parameter

space for seed-free and pattern-free growth of InAs NWs on SLG can be extended

toward: (a) self-assembly of In-based ternary semiconductor compound NW structures

such as InAsyP1-y and InxAl1-xAs on 2-D surfaces [121], and (b) development of more

accurate theoretical models for pseudo-vdWE based on verified experimental growth

conditions. Such tuning of InAs NW growth conditions on 2-D nanomaterials is

expected to inform the vdWE of a wide-ranging set of III-V semiconductor compounds

and impact future device designs with applications in nanoelectronics, optoelectronics,

and photovoltaics.
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3.2 Self-Assembly of InAs Nanowire Arrays on Graphene

3.2.1 Experimental Details

Continuous CVD-grown monolayer graphene films transferred to 90 nm SiO2-coated

Si (100) substrates were commercially obtained from Graphene Supermarket Inc.

and used as the growth surface in all vdWE experiments. The quality of as received

graphene nanosheets was inspected by scanning electron microscopy (SEM), performed

using a Hitachi S-4000 instrument. Low defect densities and monolayer thickness

was confirmed via Raman spectroscopy using a multi-wavelength Jobin Yvon Horiba

LabRAM HR Raman microscope. No graphene surface treatment or oxidation steps

were carried out prior to loading in the MOCVD reactor, with the exception of a

degreasing with a standard solvents. Growth of NWs was performed in an Aixtron

3×2” close coupled showerhead MOCVD reactor. Trimethyl-indium [TMIn, (CH3)3In]

and arsine (AsH3) were used as precursors for supply of In and As growth species,

respectively. The growth parameter space investigated in the present work consisted

of the following ranges: (i) growth temperature (TG) was varied between 550 ◦C to

700◦C; (ii) V/III ratio was varied between 5 to 250 by changing AsH3 flow rates at

a constant TMIn flow rate; and (iii) TMIn flow rates (χTMIn) were varied between 8

to 32 µmol/min. During all growths, hydrogen (H2) was used as the carrier gas with

total flow of 7 L/min, and the reactor pressure was kept constant at 100 mbar. Unless

otherwise specified, all samples were heated to the desired TG under a constant AsH3

flow before initiation of growth, which was marked by the introduction of TMIn flow.

For all vdWE parameter space mapping trials, the total growth time (tG) was kept

constant at 300 seconds (shorter tG values are specified for the growth evolution study),

and growth of InAs NWs was terminated by stopping TMIn flow while samples cooled

under a constant AsH3 flow. For comparison, additional trials were also performed

wherein samples were cooled after growth termination under no AsH3 flow.
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As-grown NW samples were imaged for morphology and density measurements

using a Hitachi S-4000 SEM and a TESCAN MIRA 3 SEM, equipped with energy

dispersive x-ray spectrometry (EDXS) capabilities. The crystal structure of NWs grown

under various conditions was observed using a FEI F20 high-resolution transmission

electron microscopy (HR-TEM) system. Selected-area electron diffraction (SAED)

patterns were obtained using the same instrument.

3.2.2 Results and Discussions

The main objective of this study is to investigate the vdWE parameter space and

to correlate growth conditions to NW length, diameter, and density trends, as well

as to changes in the areal coverage of parasitic islands. For systematic evaluation of

growth parameter dependences, a series of growth trials are carried out wherein one of

three individual variables (i.e., V/III ratio, TG, and χTMIn) are altered in the ranges

specified above, while the other two variables are kept constant. In the following

discussion, all trends presented for NW length, diameter, and aspect ratio consist of

multiple data points, each of which quantifies the mean value measured from a set of 50

NWs per growth condition; error bars represent ±1 standard deviation from the mean.

Values for NW density are measured from plan-view SEM images, and each data point

represents the mean value based on 5 different sample locations consisting of >250

NWs; error bars represent the range of values measured at different locations. Values

for areal coverage of parasitic islands are also measured from 5 different locations on

the same sample based on plan-view SEM images, and each data point represents

the mean percentage of total InAs-covered area minus the percentage of total area

occupied by NWs; error bars indicate the range of measured values. Island and NW

structures are distinguished based on size and contrast variances.
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3.2.2.1 Mapping the V/III Ratio Parameter Space

Firstly, V/III ratio dependences are considered for InAs NWs grown at constant TG

= 650◦C and χTMIn) = 16 µmol/min. The V/III ratio is varied between 5 and 250.

Since NW growth is carried out here under a high TG regime in comparison to InAs

film growth, near-unity pyrolysis efficiency of TMIn is expected [125] such that metal

organic decomposition is not further increased in the presence of AsH3 [122], and

modification of the hydride supply alone will alter the true V/III ratio. Also, due

the absence of pre-deposited metallic droplets, variances in local effective V/III ratio

stemming from catalyst-mediated hydride decomposition are avoided [127]. Similar to

Figure 3.3: V/III ratio dependence: 45◦ tilted-view SEM images of as-grown InAs NWs
on SLG at V/III ratio of (a) 5, (b) 25, (c) 125, and (d) 250, under constant TG = 650◦C
and χTMIn = 16 µmol/min. All scale bars represent 1 µm. (e) Measured values for NW
length (black square data points with solid black line), diameter (white circle data point with
dashed black line), and aspect ratio (grey diamond data points with dotted grey line), and
(f) NW number density (black square data point with solid black line) and areal coverage of
polycrystalline islands (white circle data points with dashed black line), plotted as functions
of V/III ratio.
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the case of InAs NWs grown on Si by chemical beam epitaxy [123, 124], V/III ratios

above unity enable catalyst-free NW formation in the current study.

Shown in Figures 3.3(a)–(d) are 45◦ tilted-view SEM images of as-grown NW

arrays at V/III ratio of 5, 25, 125 and 250. Figure 3.3(e) quantifies values for mean

NW length (black square data points with solid trend line), mean NW diameter (white

circle data points with dashed trend line), and mean NW aspect ratio (gray diamond

data points with dotted trend line) as a function of V/III ratio. Consistent with Figure

3.3(a) and (b) SEM images, it is noted that raising V/III ratio from 5 to 25 results in

over 2-fold increase in NW length. Below this range, insufficient AsH3 supply results

in sub-optimal NW axial growth rates. At V/III of 25, a maximum NW length of

∼4.5 µm is observed within tG = 300 s. As the V/III ratio is further increased from

25 to 250, a gradual degradation in NW length is observed such that ∼1 µm tall NWs

are formed at V/III = 250. An opposite trend is found for NW diameter, which is

minimized at ∼50 nm in the V/III = 25 to 75 range, and increases monotonically

beyond this range. Aspect ratio variances with V/III ratio follow the same trend

as NW length, marked by a maximum aspect ratio of ∼75 found at V/III = 25. In

general, moderate V/III ratios in the range of 25 to 75 favor high aspect ratio NW

growth.

While similar NW length and aspect ratio trends were observed within a comparable

V/III ratio range in the case of In-seeded InAs NWs on graphite by MBE [105], NW

diameters follow opposite variation tendencies. In the MBE study, increase in V/III

ratio beyond ∼50 brought about a nearly 2-fold decrease in NW diameters. This may

be a result of catalyst droplet volume reduction via enhanced precipitation of In into

the NW lattice under As-rich conditions [125]. In the current MOCVD study, the NW

length and diameter trends may be understood simply in terms of surface mobility

of In adatoms. Use of higher V/III ratios promotes vapor-solid growth on the NW

sidewalls and thereby limits the supply of diffusive species toward the NW top facet
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[126]. The result of both effects is the acceleration of radial growth at the expense

of axial growth and, thus, the formation of thicker but shorter NWs. The surface

migration decay of growth species at elevated V/III ratios also results in reduced

NW areal densities and greater coverage of 3-D islands. Figure 3.3(f) quantifies the

number density of NWs per area (black square data points with solid trend line)

and percentage of total surface area occupied by parasitic 3-D islands (white circle

data points with dashed trend line). An inverse relationship between NW density

and parasitic island coverage is noted with increasing V/III ratio, which can likely

be attributed to a simple conservation of total supply of growth species. At V/III

= 5, NW densities of ∼3.21 × 108 cm2 are calculated in comparison to densities

of ∼4.75 × 108 cm2 at V/III = 25. Importantly, raising V/III ratio from 5 to 25

is accompanied with a dramatic reduction in areal coverage of islands (from ∼46%

to ∼24%). Further increase in V/III ratio to 75 results in negligible change in NW

density and moderate rise in island coverage (to ∼26%), followed by a rapid decline in

NW density and preferential formation of parasitic growth beyond V/III = 100. Use of

V/III ratios above the optimal range of 25 to 75 results in the mitigation of In surface

migration such that diffusive growth species are more effectively incorporated into

parasitic islands of larger volume. While high V/III ratios favor island formation over

NW growth, the lower number density NWs that are formed under such conditions

experience enhanced radial growth rates over axial growth rates. Thus, elevated

V/III ratio growth conditions are less conducive to fabrication of NW array-based

devices, but may be exploited in applications where positioning of widely spaced NWs

is required over extended 2-D nanosheet areas. To summarize, an extended V/III

ratio space was investigated here (i.e. 5 – 250) and has resulted in growth of NWs

with roughly twice the aspect ratio reported previously for seed-free InAs NWs grown

on graphene by MOCVD [109], and roughly 7 times greater than the aspect ratio

reported for In-seeded InAs NWs grown on graphitic substrates by MBE [105].
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3.2.2.2 Mapping the Growth Temperature Parameter Space

Growth temperature dependences are considered for InAs NWs formed at constant

V/III = 25 and χTMIn = 16 µmol/min. Under otherwise constant growth conditions,

TG is varied between 550 ◦C and 700 ◦C in increments of 50 ◦C. Figures 3.4(a)–(d) show

45◦ tilted-view SEM images of as-grown samples formed in this temperature range. As

shown in Figure 3.4(a), NW self-assembly is entirely quenched at growth temperatures

of 550 ◦C and below. In this low-TG range, a contiguous polycrystalline InAs film is

formed through the merger of adjacent islands. Thus, lower growth temperatures may

be exploited for pseudo-vdWE of III-V thin films on 2-D nanomaterials. At TG ∼600

◦C and above, vertically-oriented InAs NWs are self-assembled in large-area arrays

with aspect ratios and number densities that are strongly dependent upon temperature.

Figure 3.4: Temperature dependence: 45◦ tilted-view SEM images of as-grown InAs NWs
on SLG at TG of (a) 550 ◦C, (b) 600 ◦C, (c) 650 ◦C, and (d) 700 ◦C, under constant V/III
= 25, and χTMIn = 16 µmol/min. All scale bars represent 1 µm. Measured value for (e)
NW height, diameter, and aspect ratio and (f) NW number density and parasitic island
areal coverage are plotted as functions of TG. Inset of (f) shows total areal coverage of both
NWs and parasitic islands as a function of TG.
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In Figure 3.4(e), measured mean values for NW length (black square data points with

solid trend line), NW diameter (white circle data points with dashed trend line), and

NW aspect ratio (gray diamond data points with dotted trend line) are plotted with

respect to growth temperature. Similar to the observations by Anyebe et al. for InAs

NWs grown on graphitic surfaces by MBE [108], a maximum NW aspect ratio is found

at intermediate temperatures within the suitable TG range. In the current study,

while mean values of NW length and diameter are observed to monotonically increase

with TG in the 600 ◦C to 700 ◦C range, a relative enhancement of axial growth rate

over radial growth rate at the intermediate of TG = 650 ◦C results in a maximum

aspect ratio of ∼75 after a 300 s growth period.

The above trends can be understood in terms of a balance between temperature-

dependent surface mobility of group-III species and desorption of group-V species

at the optimal growth temperature. As TG is raised from 600 ◦C to 650 ◦C, a

corresponding increase in the thermally-activated surface mobility of group-III growth

species enhances a supply of adatoms at the axial NW growth front, leading to a

∼4-fold increase of mean NW length. Such a temperature change does not result

in a significant variation of the mean NW diameter (i.e., nominal diameter increase

between TG = 600 ◦C and TG = 650 ◦C is within measured statistical error). As TG

is further raised from 650 ◦C to 700 ◦C, mean NW length is marginally influenced,

quantified by an increase of ∼30%. In contrast, radial growth is more dramatically

impacted, resulting in over 3-fold enlargement of mean NW diameters. This can likely

be attributed to thermal decomposition and enhanced desorption of group-V species

at TG = 700 ◦C. A reduction in supply of diffusive growth species at the axial growth

front can lead to accelerated rates of sidewall nucleation and, therefore, diameter

expansion. A similar increase in radial NW growth at the expense of axial growth

under elevated temperatures has been reported for various seed-free InAs NW systems

[123], [127]. Moreover, the trends for NW length and diameter variation as a function
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temperature observed here are also representative of temperature-dependent growth

trends reported for the diffusion-limited NW growth regime [128–133].

The number density and areal coverage of parasitic islands is also dramatically

affected by growth temperature. Figure 3.4(f) plots the measured number density

of NWs per area (black square data points with solid trend line) and surface area

coverage percentage of parasitic 3-D islands (white circle data points with dashed trend

line) with increasing TG. As previously noted, low-temperature growth conditions

favor the formation of low aspect ratio island structures leading to the deposition of

contiguous films, quantified by nearly 100% areal coverage of parasitic growth at TG

= 550 ◦C. Above this temperature range, parasitic island coverage rapidly reduces,

coincident with the initiation of NW growth in high number densities at 600 ◦C. The

optimal TG range for high density NW array self-assembly is between 600 ◦C to 650

◦C. However, as indicated in Figure 3.4(f), both the number density of NWs and areal

coverage of parasitic island decrease with increasing temperature in the optimal TG

range.

These observations may be explained based on the low adsorption energy of both In

and As growth species on graphene, which itself possesses a low surface energy. While

direct nucleation is enhanced on an As-terminated graphene surface in comparison to

an unmodified and inert graphene surface [107], increasing TG results in preferential

desorption of group-V species and, therefore, leads to a reduction in InAs nucleation

rate. Consequently, the nucleation of both (111)-oriented InAs structures, which

lead to NW formation, and otherwise oriented InAs nuclei, which contribute to

parasitic growth, is quenched with increasing temperature. This is supported by the

observation that the total areal coverage of InAs on the graphene surface, stemming

from contributions from both NW and parasitic structures, rapidly decreases with

rising TG, as shown in the inset of Figure 3.4(f).

From a kinetic perspective, the notable distinction between growth at 600 ◦C and
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650 ◦C is that, under a constant supply of group-III species (i.e., given near-unity

decomposition efficiency of TMIn at all tested values of TG [134]), the diffusivity of

adsorbed In atoms on both SLG and InAs surfaces is enhanced with temperature.

Thus, surface migration toward the (111)-oriented NW top facet increases at 650 ◦C,

leading to taller NWs that comprise an array of lower number density. With further

increase of TG to 700 ◦C, the number density of NWs decays dramatically by ∼96

% in comparison 600 ◦C. Above the optimal temperature range only few NWs form,

likely due to prohibitively high group-V desorption. Parasitic structures with smooth

surfaces are also observed at 700 ◦C, in contrast to the 3-D islands with well-defined

crystalline facets found at lower temperatures; the former may result from preferential

In clustering on the SLG surface. Given that the current parameter space is not tuned

for self-catalyzed VLS growth, In droplets formed under the elevated temperatures fail

to accommodate seed-mediated NW assembly. The small collection of NWs that are

formed at 700 ◦C do so through a non-catalytic self-assembly mechanism, similar to

those NWs formed at lower temperatures (as evidenced by the absence of In seeds at

their tips via TEM inspection even under AsH3-free post-growth cooling; not shown).

Growth under such elevated temperatures may be exploited for applications that

require more sparsely positioned vertical NWs on SLG. In summary, the effect of

growth temperature on morphology and number density of InAs NWs, as well as

areal coverage of parasitic island, for the case of seed-free InAs NWs on graphene via

MOCVD has been investigated in a self-consistent approach. We highlight the highest

reported axial growth rate of 1174 nm/min at an elevated temperature of 700 ◦C (in

comparison to ∼900 nm/min at an optimal temperature of 650 ◦C). The maximum

growth rate found here is roughly 27 times faster than the reported growth rate of

MBE-grown InAs NWs on graphitic substrates [105], and roughly 3.4 times faster

than the growth rate of InAs NWs on SLG by MOCVD [109].
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3.2.2.3 Mapping the Total Molar Flow Rate Parameter Space

The final growth parameter variation investigated here is the total molar flow rate of

precursors. At constant TG = 650 ◦C, the total flow rate of precursors (i.e., χTotal =

χAsH3 + χTMIn), which can be considered as equivalent to a metric that tracks growth

rate, was modified while maintaining a constant V/III ratio of 25. For simplicity, the

results are reported and discussed with respect to the molar flow rate of TMIn, χTMIn,

as a single variable. However, it should be noted that the total flow of both metal

organics and hydrides was varied in sequential growth trials, while keeping V/III ratio

constant.

Figures 3.5(a)–(d) show as-grown NW arrays formed under increasing TMIn flow

rates, in the χTMIn = 8 to 32 µmol/min range. Figure 3.5(e) plots values of mean

NW length (black square data points with solid trend line), diameter (white circle

Figure 3.5: Flow rate dependence: 45◦ tilted-view SEM images of as-grown InAs NWs on
SLG at χTMIn of (a) 8 µmol/min, (b) 16 µmol/min, (c) 24 µmol/min, and (d) 32 µmol/min,
under constant TG = 650 ◦C and V/III = 25. All scale bars represent 1 µm. Measured value
for (e) NW height, diameter, and aspect ratio and (f) NW number density and parasitic
island areal coverage are plotted as a function of χTMIn.
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data points with dashed trend line), and aspect ratio (gray diamond data points

with dotted trend line) measured from samples grown at TMIn flow rates specified

in panels (a)–(d). For the same set of growth trials, measured values of mean NW

number density (black square data points with solid trend line) and surface area

coverage percentage of parasitic 3-D islands (white circle data points with dashed

trend line) are quantified in Figure 3.5(f). Under low-flow conditions of χTMIn =

8 µmol/min, NWs with mean lengths and diameters of ∼1.4 µm and ∼40 nm are

formed, respectively, after a growth period of 300 s. Doubling the flow rate to χTMIn

= 16 µmol/min induces a rapid enhancement of axial growth with only moderate

increase in radial growth, such that NW lengths and diameters increase to ∼4.5 µm

and ∼60 nm, respectively. The result is an approximate doubling of aspect ratio to a

value of ∼75 at 16 µmol/min. Under elevated precursor flow rate conditions, both

NW length and diameter show little deviation from mean values observed at χTMIn

= 16 µmol/min (i.e., within the measured error range), resulting in a saturation of

aspect ratio.

This seemingly counterintuitive trend, whereby a continual increase of precur-

sor supply fails to accommodate a corresponding increase in NW volume, can be

understood with respect to a reduction of In atom diffusivity under higher χTMIn

conditions and the role of parasitic islands as additional atomic sinks. As shown in

Figure 3.5(f), NW number densities experience a monotonically decreasing trend while

the areal coverage of parasitic islands continually grows with additional precursor

supply. Nearly a four-fold reduction of NW number densities and over two-fold ex-

pansion of parasitic island coverage results from increasing TMIn flow rates from 8

to 32 µmol/min under a constant V/III ratio. As surface migration of In atoms is

obstructed under higher flow rate conditions, preferential nucleation on 3-D islands

causes rapid expansion of parasitic structures, while diffusion along NW sidewalls

toward the low energy sink at the NW tips is quenched. Thus, excess supply of growth
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species under high χTMIn conditions contributes disproportionately to parasitic island

growth over NW growth. The reduction in NW number density may stem from the

coalescence of existing NW structures and laterally expanding parasitic structures

during higher precursor supply conditions. The observed growth trends indicate that

for simultaneous realization of NW arrays containing maximal number density and

aspect ratio, a two-step flow-modulated growth procedure involving a nucleation step

at low-χTMIn and a subsequent axial extension step at higher-χTMIn may be utilized.

Based on the above growth trends, a suitable parameter set has been selected that

represents a compromise between conditions that permit the formation of high aspect

ratio NWs in high number density arrays and minimal surface coverage of parasitic

3-D islands. This parameter set, defined by V/III = 25, TG = 650 ◦C, and χTMIn = 16

µmol/min, is used as a basis or comparison point for additional experiments with the

purpose of: (1) characterizing NW crystal structure; (2) tracking growth evolution;

and (3) tuning NW number densities via pre-growth in situ surface treatment and use

of a two-step flow-modulated growth procedure.

3.2.2.4 Crystal Phase Analysis

The influence of growth conditions on NW crystal structure is explored via HR-TEM

imaging and SAED pattern analysis. Figure 3.6 shows representative TEM images

of NWs obtained along the <110>ZB zone axis of the cubic phase from two different

growths at TG = 650 ◦C. Images in panels (a)-(c) were obtained from a NW grown

under a high V/III ratio of 250 and at the optimal precursor flow rate (i.e., χTMIn = 16

µmol/min). The black border in (a) highlights the approximate location of the image

shown in (b), while the white border in (b) indicates the approximate location of the

high-magnification and lattice-resolved micrograph displayed in (c). An SAED pattern

recorded at the corresponding location is shown in (d). For comparison, images in

panels (e)-(g) were collected from a NW grown at the optimal V/III ratio of 25, but
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under high precursor flow conditions (i.e., χTMIn = 32 µmol/min). The black and

white boxes in (e) and (f) mark the locations of higher-magnification micrographs in

subsequent panels, while (h) shows an SAED pattern recorded along the corresponding

location.

Firstly, it is noted that NW morphologies shown in Figure 3.6 are consistent

with dimensions described in the above discussion for the specified conditions. The

NWs preferentially assemble along the <111>ZB direction and are free of threading

dislocations due to in-plane pseudo-coherency between InAs and SLG lattices [101],

[103], [119]. Even in the absence of lattice-registry, strain relaxation via misfit

dislocation generation is not expected in the pseudo-vdWE regime, due to lack of

hetero-interfacial covalency and strain sharing [98], [109]. The NWs shown in Figure

3.6, as well as samples grown under all other conditions within the extended parameter

space, exhibit a disordered crystal structure consisting of zinc-blende (ZB), wurtzite

(WZ), and 4H polytype phases with a high density of stacking faults and rotational

Figure 3.6: TEM images (a-c, e-g) and corresponding SAD patterns (d, h) obtained from
two different NWs both grown at TG = 650 ◦C. The NW captured in (a-d) was formed
at high V/III ratio of 250, but at the optimal χTMIn = 16 µmol/min. The NW shown in
(e-h) was formed at the optimal V/III ratio of 25, but at high χTMIn = 32 µmol/min. The
highlighted regions in (a, b, e, f) are shown at higher magnification in subsequent panels.
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twin planes. Phase disorder and high planar defect density, visible as lateral striations

in the micrographs, are also translated by prominent streaking along the <111>ZB axis

in the SAED patterns. The crystal structures observed here are consistent with prior

reports on vdWE-synthesized InAs and InGaAs on SLG [99], [101], [105], [109], [119].

The representative NWs shown in Figure 3.6, which are either grown under moderate

precursor flow and high V/III ratio [i.e., panels (a)-(d)] or moderate V/III ratio

and high precursor flow conditions [i.e., panels (e)-(h)], exhibit no single phase WZ

segments beyond 10 monolayers, regardless of position along the NW body. Extended

ZB segments beyond 10 monolayers can be found, but such segments are not free of

rotational twin planes. The same characteristic polytypic crystal structure was also

observed for NWs grown under other conditions. Thus, crystal structure is observed

to be independent of growth kinetics in the explored parameter space. Notably, the

disordered structure extends throughout the tip region of all NWs inspected, regardless

of whether or not samples are cooled from the growth temperature under AsH3 flow.

Neither a transition to a single crystal phase nor distinguishable variation in planar

defect density is found along tip segments. This is in contrast to the commonly

observed “cooling neck” effect in the case of In-catalyzed and Au-seeded InAs NWs,

whereby a ZB/WZ phase transition occurs near the catalyst/NW interface under

reduced supersaturation conditions stemming from seed depletion in the absence of

group-III supply at the end of growth [126], [129], [135].

The subject of phase mixing and polytypism between ZB and WZ structures in

VLS-grown III-V semiconductor NWs has been extensively modelled on the basis of

fundamental thermodynamics, and crystal phase control has been reliably demon-

strated to be a function of growth kinetics [135–137]. The difference in bulk cohesive

energy between ZB and WZ phases (i.e., 10.6 meV/octet pair for InAs [136]) is com-

pensated in VLS-grown NW structures by a reduction in surface energy associated

with WZ nucleus formation at a triple phase line [135]. This can enable crystal phase
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modulation by controlling the supersaturation of the metallic droplet (i.e., chemical

potential difference between liquid and solid phases), which is realized by tuning of

growth conditions for a given III-V material system [135–138]. Thus, by kinetically

engineering the energy barrier to nucleation, the crystal structure of seed-based InAs

NWs can be precisely transformed from ZB to WZ to 4H polytype during growth,

as comprehensively demonstrated via both MBE and MOCVD [135], [133, 139–142].

In fact, it has been shown that even planar WZ InAs films can be formed through

lateral extension from the base of WZ InAs NWs on ZB substrates [143]. However,

for InAs NW self-assembly in the absence of a seed-mediated growth regime, control

over phase purity is very challenging.

For the three most commonly employed seed-free InAs NW growth modes, which

include selective- area epitaxy (SAE) of InAs NWs on various substrates [144–147],

direct epitaxy (DE) of InAsP, InGaAs, and InAs NW on Si (111) substrates [28],

[148], [149], and template-assisted epitaxy (TAS) of InAs NWs on Si (110) substrates

[150], a disordered lattice consisting of a high density of planar defects is routinely

found. While polytypism has been shown to be independent of Si dopant concentration

[151–153], some notable alternative strategies have been applied during growth of

catalyst-free In-based NWs to induce phase purity. Ji et al. have shown that the

introduction of trimethyl-antimony during SAE growth results in the formation of

purely ZB phase InAs1-xSbx NWs for x = 9.4 % [154]. Soo et al. realized catalyst-free

growth of purely WZ InAs NWs on Si (111) through a nano-porous Ni masking layer

by MOCVD [155]. While comparable χTMIn values were employed, the authors carried

out growth at a lower V/III ratio (i.e., V/III = 2.9) and a prohibitively lower growth

temperature (i.e., TG = 550 ◦C) than the current study. As described above, V/III

< 25 renders low NW aspect ratio and number densities, while TG = 550 ◦C is not

conducive to NW formation during vdWE of InAs on SLG. Lastly, Liu et al. have

recently carried out comprehensive analysis of phase mixing during SAE of InAs on Si
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(111) by MOCVD [156]. The authors successfully realized growth of over 90% WZ

phase, and concluded that high TG, low absolute precursor flow rate, and low V/III

ratio conditions are required to preferentially induce an InAs (111)B ”unreconstructed”

(1 × 1) surface, which favors hexagonal phase nucleation, as opposed to the (2 × 2)

reconstructed surface, which favors ZB phase nucleation. While comparable V/III

ratios and sufficiently high TG values were employed by Liu et al. as those in the

current work, substantially lower precursor flow rates (i.e., χTMIn = 1 µmol/min) were

required for phase purity. We conclude that, although modification of growth kinetics

beyond the parameter window explored here may permit appreciable phase purity as

realized by Soo et al. and Liu et al., our observations indicate that such conditions

provide critical limitations with respect to template-free self-assembly of high aspect

ratio InAs NW structures in arrays of high number density on SLG.

3.2.2.5 Time Evolution Study

Next, NW growth progression is tracked under the preferred parameter space defined

by V/III = 25, TG = 650 ◦C, and χTMIn = 16 µmol/min. The time evolution of axial

and radial growth is monitored over a series of seven runs toward the final growth

duration of tG = 300 s. Figure 3.7(a)–(d) shows images from as-grown NW arrays that

were formed under the above noted, constant growth conditions after growth periods

of tG = 60 – 240 s, respectively (an array formed under the same conditions but after

tG = 300 s is shown in Figure 3.7(b)). In Figure 3.7(e), the mean axial growth rates

(black square data points and solid guide line) and mean radial growth rates (white

circle data points and dashed guide line) are plotted for the 7 growth periods. While

axial growth rates appear invariant within the measured error values in Figure 3.7(e),

the inset plot showing NW length as a function of growth time clearly highlights a

tendency toward reduced axial growth after tG = 180 s, as indicated by the solid

portion of the gray fitted data line. Extrapolation of the same fitted curve toward the
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starting growth time, indicated by the dashed line segment, shows an absence of an

extended incubation period and is contrary to what has been observed in the case of

In-seeded InAs NW growth by Grap et al. [125]. Hertenberger et al. emphasized a

similarly absent nucleation phase prior to the onset selective-area MBE growth of InAs

NWs in support of a seed-free growth mode [156]. It is noted that sidewall nucleation-

mediated radial growth leads to continual expansion of the NW diameter over the

entire growth period. However, as shown in Figure 3.7(e), the radial growth rate is

observed to decline and saturate rapidly within this timeframe. The tendency toward

a reduction in axial and radial growth rates is attributed to an increasing competition

from additional surfaces for a limited material supply. As growth ensues, a constant

supply of growth species is competitively distributed over an expanding collection of

parasitic 3-D islands. Such a supply-limited competitive regime is exaggerated over

Figure 3.7: Growth evolution of NWs under the selected optimal conditions of V/III = 25,
TG = 650 ◦C, and χTMIn = 16 µmol/min. (a-d) show 45◦ tilted-view images after growth
durations of 60 s, 120 s, 180 s, and 240 s, respectively. All scale bars represent 1 µm. (e) NW
axial growth rates (black square data points with solid black line) and NW radial growth
rates (white circle data points with dashed black line) are plotted for various total growth
times between 30 s and 300 s. The inset in (e) shows a plot of measured mean NW length
versus growth time to demonstrate the growth rate saturation effect; a linear trend near
the origin (i.e., dashed grey line for tG ≤ 120 s) is used to demonstrate the absence of a
significant incubation phase prior to NW formation.
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time as island volumes grow and provide additional surfaces for nucleation, as visible

in Figure 3.7(a)–(d). Thus, NW volume expansion declines over time. While growth

rates are expected to saturate for longer growth times [157], the selected optimal

conditions permit rapid axial growth rates of approximately 900 nm/min within the

tested growth period. Compared to the reported growth rate of 43 nm/min for the

case of In-seeded [105] and 340 nm/min for seed-free [109] InAs NWs on graphene, 11

nm/min for catalyst-free InAs on Si (111) [157], and 275 nm/min for InAs SAE on Si

(111) [158], the optimized growth conditions in the current study enable maximum

NW volume yield which holds promise for low-cost manufacturing of InAs NW arrays

for applications in optoelectronics (i.e., photodetectors) and nanoelectronics (i.e.,

wrap-gated field–effect transistors).

3.2.2.6 Growth Optimization for High NW Number Density Arrays

Two additional optimization experiments are conducted with the intention of further

reducing the areal coverage of parasitic islands and/or improving the NW number

Figure 3.8: 45◦ tilted-view SEM images of as-grown InAs NWs formed under otherwise
constant conditions, but (a) with and (b) without the use of a pre-growth AsH3 surface
treatment.
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density under otherwise non-ideal conditions. In the first experiment, the purpose

is to test the influence of a pre-growth in situ AsH3 treatment on the formation of

parasitic islands. Here, a low V/III ratio growth condition (i.e., V/III = 5, TG = 650

◦C, χTMIn = 16 µmol/min) is selected as the starting point, which was shown earlier

to produce relatively low NW number densities and high areal coverage percentage

of parasitic islands. As demonstrated by Alaskar et al. [107], and noted earlier, the

generation of an As-terminated graphene layer greatly enhances the surface energy

and promotes further group-III adsorption. Thus, due to its chemically inert surface

in the absence of an As pre-layer, an enhancement of surface migration of growth

species is expected, leading to fewer nucleation sites and a reduction of parasitic

island coverage. Tilted-view SEM images of as-grown NW arrays formed with and

without a 300 second pre-growth AsH3 treatment at TG = 650 ◦C are shown in Figures

3.8(a) and (b), respectively. For growth without an AsH3 pre-layer, the run was

initiated at TG by simultaneously introducing TMIn and AsH3 flows. In this case, a

significant reduction (i.e., by a factor of ∼0.62) in areal coverage of parasitic islands is

Figure 3.9: 45◦ tilted-view SEM image of high aspect ratio and high number density InAs
NWs grown using a two-step flow-modulated sequence.
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Table 3.1: Metrics for NW growths at V/III = 5 with and without AsH3 pre-flow, compared
to V/III = 25 with AsH3 pre-flow.

observed. Correspondingly, a notable increase in NW number densities also occurs

such that NWs are on average ∼182% taller and ∼128% larger in diameter than those

NWs formed after pre-growth AsH3 treatment. Therefore, the absence of an AsH3

pre-layer not only results in the suppression of parasitic growth through a reduction

(enhancement) of growth species adsorption (surface migration), but also leads to the

formation of higher aspect ratio NWs in number densities under low V/III conditions

that are comparable to those formed under optimal V/III conditions. The quantitative

results from this growth are summarized in Table 1 and compared to results from

samples grown with AsH3 pre-layer under non-ideal and optimal V/III ratios of 5 and

25, respectively.

In the second optimization experiment, we return to the notion of a two-step

flow-modulated growth procedure. As noted above, reduced precursor flow rates

permit formation of high number density arrays of low aspect ratio NWs. Conversely,

as precursor flow rates increase, NW aspect ratio is enhanced at the cost of number

density and expansion of parasitic growth. In order to overcome this tradeoff, growth
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Table 3.2: Metrics for NW growth under fixed-flow and two-step flow-modulated conditions.

is first conducted at a low flow rate of χTMIn = 8 µmol/min for a period of 60 s as

an initial “NW nucleation stage” so as to force the formation of high number density

NW growth sites. Next, flow rates are increased such that χTMIn = 16 µmol/min for

an additional 240 s growth period. Both growth steps are conducted at TG = 650

◦C, and under constant V/III ratio (i.e., AsH3 flow is also doubled during the second

growth step).

A representative tilted-view SEM image of a sample formed under the two-step

flow-modulated growth mode is shown in Figure 3.9, which can be compared to Figures

3.5(a) and (b) for the cases of fixed-flow growth at χTMIn = 8 µmol/min and χTMIn =

16 µmol/min, respectively. The corresponding growth metrics are summarized in Table

2 for these three trials. Through use of the flow-modulated growth mode, NW number

densities are improved to comparable values that are realized under low flow rate

conditions (i.e., > 8 µmol/min), without sacrificing NW aspect ratio or significantly

influencing the axial growth rate (i.e., 840 nm/min). Thus, this optimized mode

permits simultaneous realization of dense of NW arrays and formation of structures
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with aspect ratios greater than 80. However, under the two-step growth mode, the

areal coverage of parasitic islands is observed to increase by more than a factor of two

in comparison to alternative fixed-flow conditions. This can likely be attributed to

rapid volume expansion during the second growth stage of a higher number density of

parasitic islands that were initially formed during the first growth stage.
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3.3 Self-Assembly of In-based Ternary III-V Nanowire Ar-

rays on Graphene

Project Title: Self-Assembled InAsP and lnAlAs Nanowires on Graphene Via

Pseudo-van der Waals Epitaxy

Citation: M. A. Baboli, M. A. Slocum, A. Giussani, T. S. Wilhelm, S. J. Polly, S.

M. Hubbard, and P. K. Mohseni, IEEE 18th International Conference on Nanotech-

nology (IEEE-NANO), pp. 1–5, 2018.

3.3.1 Introduction

In recent years, nano-hybrid materials systems consisting of GaAs, InAs, InGaAs,

and InAsSb NWs on graphene have been demonstrated through the vdWE approach

[104], [109], [159]. Growth of III-V NWs on graphene has been realized through

various mechanisms, such as self-catalyzed or Au-assisted vapor-liquid-solid (VLS)

growth using molecular beam epitaxy (MBE) and MOCVD [100], [102]. Additionally,

vertically oriented InAs and InGaAs can also be formed on inert graphitic surfaces

through a self-assembly mechanism, which unlike other methods requires no pre-

growth lithography step or deposition of metallic seeding agents [101], [109], [159].

However, to our knowledge, no studies have been reported on seed-free heterogeneous

integration of InAsP and InAlAs NW arrays on single layer graphene (SLG) via the

vdWE approach.

The objective of this study is to reach an InAsP composition of around 20%

phosphorous content, to use this composition as the low bandgap sub-cell at 0.5 eV in

a multi-junction solar cell. As shown in previous section, self-assembly of InAs NWs

on graphene was throughly studies. However, regardless of the growth conditions,

self-assembly of binary InP on graphene was not conducive to NW growth as shown

in Figure 3.10. Thus, to realize InAsP NW arrays with the target composition, solid
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Figure 3.10: 45◦ tilted SEM image showing (a) integraiton of a dense array of high spect
ratio InAs NWs on graphene via self-aasembly approach, (b) Failing self-assembly of binary
InP on graphene regardless of growh conditions.

phase P-incorporation was increased via three approaches:

(1) Increasing hydride molar ratio,

(2) Enhancing PH3 pyrolysis efficiency

(3) Introducing two-temperature heterostructure (TTHS) growth mode

Details of each approach along with the associated results are explained in 3.3.3.1.

In addition, compositional and morphological tuning of ternary InAlAs NWs on

graphene enabled by NWs self-assembly using MOCVD was studied and presented in

3.3.3.2. In this study, variations in NW morphology and number density are considered

with respect to compositionally-dependent atomic configuration and adatom binding

energy factors. In this section, the experimental details for self-assembly of InAsyP1-y

and InxAl1-xAs NWs is explained in the subsection 3.3.2, followed by results and

discussions for each material systems.

3.3.2 Experimental Details

Growth of NWs on SLG nanosheets was performed in an Aixtron 3×2” close coupled

shower- head MOCVD reactor. Trimethyl-indium [TMIn, (CH3)3In] and trimethyl-

aluminum [TMAl, (CH3)6Al2] were used as group-III precursors; arsine (AsH3) and
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Figure 3.11: 45◦-tilted SEM image of InAsyP1-y NWs grown at TG = 650 ◦C for ρPH3 of
(a) 0, (b) 0.95, (c) 0.98. All scale bars indicate 2 µm.

phosphine (PH3) were used for supply of group-V growth species. In the present work,

InAsyP1-y NWs were grown using various hydride precursor molar flow ratios, defined

by

ρPH3 =
χPH3

χPH3 + χAsH3

(3.1)

χAsH3 and χPH3 represent the molar flowrate of AsH3 and PH3, respectively. Simi-

larly, InxAl1-xAs NW compositions were modified by varying the molar flow ratio of

metal organic precursors, defined by

ρTMAl =
χTMAl

χTMAl + χTMIn

(3.2)

χ TMIn and χ TMAl represent the molar flow rate of TMIn and TMAl, respectively.

Growth temperatures (TG) in the 600 ◦C to 750 ◦C range were investigated. In

all cases, samples were heated to the desired growth temperature under a constant

AsH3 flow prior to growth initiation. The onset of crystal growth was marked by

the introduction of group-III precursor(s). After a growth duration of 300 s, samples

where cooled under constant supply of group-V precursors. For all samples, hydrogen

(H2) was used as the carrier gas with total flow of 7 L/min, and the reactor pressure
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was maintained at 100 mBar.

Samples were imaged with Hitachi S-4000 and TESCAN MIRA3 scanning electron

microscopes (SEM). X-ray diffraction (XRD) measurements were made using a Bruker

D8 high-resolution X-ray diffractometer.

3.3.3 Results and Discussions

3.3.3.1 Self-Assembly of InAsyP1-y Nanowire Arrays on Graphene

The focus of this study is to investigate self-assembly of InAsP and InAlAs NWs

on SLG through the vdWE approach, and to explore the influence of key growth

parameters on the composition and morphology of resulting NWs. Growth of these

two ternary III-V compounds is then compared with the well-studied case of binary

InAs NWs on SLG. Firstly, vertically oriented ternary InAsyP1-y NWs (i.e., for 1 ≤ y

≤ 0.8) were grown on SLG through vdWE. Three sets of experiments were carried

out to study the incorporation of solid phase phosphorous in InAsP NWs. In the first

experiment, TG was set to 650 ◦C while ρPH3 was varied from 0 to 0.98. In Figure 3.11,

InAs NWs (ρPH3 = 0, Figure 3.11(a)) are compared to InAsP NWs grown under (b)

ρPH3 = 0.95 (Figure 3.11(b)) and (c) ρPH3 = 0.98 (Figure 3.11(c)). Since nucleation

Figure 3.12: (a) NW number density versus percentage of solid phase P-content, (b) XRD
specular 2θ-ω scans used to quantify the InAsP solid phase P-content.
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Figure 3.13: 45◦-tilted SEM image of InAsyP1-y NWs grown at TG = 700 ◦C for ρPH3

of (a) 0.95, (b) 0.98. (c) Solid phase P-content in bulk GaAsP and InAsP as a function
of hydride molar flow ratio and temperature [93], (d) XRD specular 2θ-ω scans used to
quantify the InAsP solid phase P-content.

sites are not limited to any patterned openings or catalyst seeds, self-assembly by

vdWE results in growth of NWs as well as parasitic islands. NW lengths, diameters

and number density, as well as areal density of parasitic islands are independent of

ρPH3 (Figure 3.12(a)). Figure 3.12(b) shows XRD measurements from as-grown InAsP

NWs used to quantify solid phase phosphorous content for ρPH3 = 0.95 (red plot)

and ρPH3 = 0.98 (green plot). Compositional analysis of this sample set indicates

P-incorporation increases from 4 at% to 16 at% by increasing ρPH3 from 0.95 to 0.98.
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It is worth noting here that furthur increased in ρPH3 leads to higher P-incorporation,

however PH3 flows beyond this level are MFC-limited for our MOCVD reactor.

In order to achieve higher incorporation of solid phase P-content, this experiment

was also repeated at TG = 700 ◦C for the same molar flow ratios. Shown in Figures

3.13 (a) and (b) are 45 ◦C tilted SEM images of self-assmled InAsP NWs grown at

TG = 700 ◦C with ρPH3 of 0.95 and 0.98, respectively. The idea here is to increase the

pyrolysis efficiency of PH3 by increasing the TG. This concept is studied on similar

material systems (i. g. GaAsP and InAsP) for film growth, as demonstrated in Figure

3.13(c) [93]. As arrows in Figure 3.13(a) are showing, for the same hydride molar flow

ratio, increasing the temperature changes the solid phase P-incorporation. This is due

to strong dependance of solid composition to the growth temperature when AsH3 and

PH3 are used as group V precursors [93]. As before, NW morphology and number

density, as well as parasitic island coverage were observed to be independent of ρPH3 .

Figure 3.14: (a) Growth sequence and resulted heterostructured NW from TTHS growth
mode, (b) One-temperature InAsP NWs at TG = 700 ◦C. InAs - InAsyP1-y NWs grown
under two-temperature regimes: (c) TG1 = 650 ◦C,TG2 =700 ◦C.
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However, comparing Figure 3.11 with Figure 3.13 (a) abd (b) clearly shows increasing

TG adversely affects the NW number density. The same trend was also observed for

case of InAs NWs on graphene [159]. Figure 3.13(d) demostrated the XRD results for

the case of TG = 700 ◦C, for ρPH3 = 0.95 (red plot) and for ρPH3 = 0.95 (green plot).

For ρPH3 = 0.95, inchearsing TG from 650 ◦C to 700 ◦C resulted in a composition

change from InAs0.96P0.04 to InAs0.93P0.07. In the same way, for ρPH3 = 0.98, 50 ◦C

change in TG leade to InAs0.83P0.17.

To overcome the challenge with NW number density dependence at elevated

temperature, two-temperature heterostructure (TTHS) growths were performed in a

third experiment. A simple schematic of TTHS growth mode can be seen in Figure

3.14(a). InAs growth was first initiated at a low TG1 of 650 ◦C for 60 s to establish

a high number density of NWs acting as seeding or pedestal layer. Then TG was

ramped up to 700 ◦C and 750 ◦C, in different runs, while ρPH3 was raised to 0.95

in order to incorporate a higher P-content in the solid phase over a period of 240 s.

Figure 3.14(b) shows InAs0.93P0.07 NWs grown with ρPH3 = 0.95 at TG1 = 700 ◦C in

a one-temperature regime, where a low NW number density is observed. However,

Figure 3.14(c) shows that by using a two-temperature growth sequence (i.e., TG1 =

650 ◦C; TG2 = 700 ◦C at ρPH3 = 0.95), a high density array of InAsP NWs with

the same P-content (i.e., 7 at%) can be achieved (red plot in 3.15(a)). As expected,

increasing TG2 to 750 ◦C results in NW number density reduction, but enables P-

content enhancement for growth of InAs0.83P0.17 NWs (green plot in 3.15(a)). Similar

temperature-dependent density trends were observed for InAs NWs on SLG [159].

Figure 3.15(b) summarizes results of XRD measurements for all three experi-

ments, where solid phase phosphorus content is plotted as a function of ρPH3 . A

direct comparison between growths of InAsP NWs under the above set of conditions

indicates a non-linear P-incorporation trend for different growth temperatures, which

is in agreement with bulk InAsP growth trends by MOCVD shown in 3.13 (c) [93].
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Figure 3.15: (a) XRD specular 2θ-ω scans used to quantify the InAsP solid phase P-content
(Unpublished work by Mohadeseh A. Baboli et al.). (b) Summary of solid phase P-content
as a function of ρPH3 for all one- and two- temperature InAsP growths.

Importantly, XRD measurements show no evidence of compositional phase segregation

for InAsP NWs investigated here, which is in contrast to the case of InGaAs NWs

on SLG where the ternary phase is formed by group-III alloying [109]. Our results

indicate that vdWE of high P-content InAsyP1-y for y < 0.8 on SLG is difficult to

achieve via direct self-assembly within the explored growth parameter space. However,

higher P-content InAsP and even binary InP shell segments can be formed on existing

InAsP NW core segments grown on SLG.
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3.3.3.2 Self-Assembly of InxAl1-xAs Nanowire Arrays on Graphene

In a separate study, vdWE of InxAl1-xAs NWs on SLG was explored in two sets of

experiments. Firstly, at constant TG = 600 ◦C, InxAl1-xAs NWs are grown with ρTMAl

between 0 and 0.50 at a constant V/III ratio of 25. Figure 3.16 shows 45◦ tilted-view

SEM images of InAlAs grown on SLG, at (a) ρTMAl of 0, (b) ρTMAl of 0.25, and (c)

ρTMAl of 0.50. For ρTMAl of 0, a dense array of InAs NWs is observed. Introduction of

Al results in a dramatic change in NW morphology, number density, and directionality.

Unlike the case of InGaAs NWs on SLG [109], we find that reduction in In-content,

associated with incorporation of higher Al-content, does not induce NW bending.

Figure 3.16 quantifies the length and diameter of InAlAs NWs grown at TG =

600 ◦C under ρTMAl values between 0 and 0.5; data points represent mean values

measured from >20 NWs. Compared to binary InAs NWs (i.e., ρTMAl = 0) grown at

the same temperature, the introduction of TMAl causes a dramatic reduction of NW

length and enhancement of NW diameter. This can likely be attributed to limited

surface migration of Al atoms during epitaxy. Tapered NW morphologies are only

observed under high ρTMAl conditions and at TG = 600 ◦C, also likely due to low Al

surface migration compared to In. Moreover, NW verticality suffers with increasing

Al-content, such that mostly tilted NWs are found at ρTMAl = 0.5.

A growth temperature dependence study is performed for InAlAs NWs grown at

constant V/III = 25 and ρTMAl = 0.50. Shown in Figure 3.17 are 45◦ tilted-view SEM

Figure 3.16: 45◦-tilted-view SEM images of as-grown InxAl1-xAs NWs on SLG at ρTMAl

(a) of 0, (b) of 0.25, and (c) of 0.50. All scale bars represent 1 µm.
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images of InAlAs NWs formed on SLG at TG of (a) 600 ◦C, (b) 650 ◦C and (c) 700 ◦C.

Growth at TG = 600 ◦C results in formation of very few vertically oriented NWs on

SLG and favors formation of parasitic islands, from which NW structures may extend.

However, a 50 ◦C increase in TG modifies the growth kinetics such that the density of

vertically-oriented NWs increases, while areal coverage of parasitic islands reduces.

As TG is raised further from 650 ◦C to 700 ◦C, growth of InAlAs NWs is quenched,

leading to formation of a contiguous III-V film.

This trend can be explained in terms of a balance between decomposition efficiencies

of TMIn and TMAl and temperature-dependent surface mobility of In and Al atoms

at these temperatures. Since TMIn shows near-unity decomposition efficiency in

this TG range [134], the change in surface diffusion and availability of Al atoms

(i.e., decomposition percentage of TMAl) plays the predominant role. Thus, the

abundance of available In atoms is less sensitive to TG in the explored temperature

range than the abundance of Al atoms, while In atoms experience enhanced surface

migration compared to Al atoms at all temperatures [160, 161]. As a result, the

limiting factor at 600 ◦C is likely the low thermally-promoted surface diffusion of both

group-III species, leading to high polycrystalline island growth. Instead, at 700 ◦C, the

limiting factor for surface diffusion is the abundance of Al atoms due to greater TMAl

Figure 3.17: 45◦-tilted-view SEM images of as-grown InxAl1-xAs NWs on SLG at TG of
(a) 600 ◦C, (b) 650 ◦C and (c) 700 ◦C. All scale bars represent 1 µm.
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decomposition. This influence quenches NW growth and forces lateral extension of a

high-density collection of polycrystalline islands, thereby leading to film formation.

At intermediate temperatures, a balance point is reached between these competing

factors. Thus, TG = 650 ◦C may likely represent a tradeoff temperature at which

sufficient thermally-promoted surface migration of less abundant Al atoms occurs,

such that both group-III species can reach the top facets of <111> oriented nuclei

and, consequently, accommodate vertical InAlAs NW formation.

As a final point of discussion, the results of vdWE for InAsP and InAlAs NW groups

are compared. As briefly noted in the Introduction, due to the absence of covalent

bond formation, strain sharing is inhibited at the III-V epilayer/graphene interface.

Thus, the III-V lattice formed in the vdWE mode may not pseudomorphically adopt

a lattice constant other than its inherent one.

Additionally, for In-based structures grown in the vdWE regime on SLG, it has

been shown that the lower-most flatly reconstructed III-V monolayer possesses a

polar orientation such that group-III species are directly interfaced with C [119]. In

the case of InAs on SLG, the native InAs lattice allows for residence of In atoms

above graphene H-sites; the same may also be expected for InAs0.8P0.2 [100]. While

Figure 3.18: InxAl1-xAs NW number density versus percentage of solid phase Al-content,
(b) Mean InxAl1-xAs NW length (black data points) and diamter (blue data points) vs. at
TG = 600 ◦C.
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B-site residence is most energetically stable for both As and P atoms according to

calculations by Nakada and Ishii [118], the residency competition between group-V

species in the case of InAsP is not expected to change the position of In atoms from

H-site to B-site. Therefore, formation of ternary InAs0.8P0.2 (i.e., in comparison to

binary InAs) is not expected to shift In atom positions to B-sites. Correspondingly,

little variation in the number density of NWs is observed comparing vdWE of InAs

and InAsP on SLG. Figure 3.12(a) quantifies the change in NW number density for

InAsyP1-y NWs grown under otherwise constant growth conditions while ρPH3 is varied

between 0 and 0.98 (i.e., 1≤y≤0.84). However, introducing Al as a group-III species,

which can reside at the interface, into the InAs lattice significantly changes NW

morphology and number density. As shown in Figure 3.18(b), a ∼60-fold reduction in

NW number density results by increasing ρTMAl from 0 to 0.50. Chan et al. reported

calculations of binding energy for various group-III metallic atoms on graphene [117].

For InxAl1-xAs with low Al content, both In and Al adatoms were shown to reside

on the energetically favorable H-site [117, 118]. However, by increasing Al-content,

a reduction in the InxAl1-xAs lattice constant forces an altered atomic configuration

at the growth interface such that Al resides on the B-site [117, 118]. Since Al has

a higher binding energy when situated above the B-site, formation of InAlAs NW

structures (i.e., versus polycrystalline islands) on SLG likely becomes less favorable

and NW growth becomes quenched (i.e., Figure 3.16). In conclusion, formation of

InAsP, InAlAs, and InP/InAsP NWs via pseudo-vdWE on SLG is reported for the

first time. Self-assembly of InAsyP1-y NWs on SLG is achieved for 1 ≤ y ≤ 0.8.

Solid phase P-content and number density of NWs are strongly dependent on growth

temperature. Higher P-content NWs have been realized via a two-temperature growth

regime. The dependence of InxAl1-xAs NW composition and morphology on growth

temperature and ρTMAl have been investigated for 1 ≤ x ≤ 0.5. Although NW number

density was shown to have an inverse dependence upon Al-content, well-defined vertical
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NWs were realized at TG = 650 ◦C and ρTMAl = 0.5. A general trend for vdWE

of InAsP and InAlAs NWs has been discussed to relate NW number densities to

lattice coordination and binding energy of growth species on SLG. We anticipate

the use of such hybrid nanosystems in low-cost optoelectronics and high-efficiency

tandem-junction photovoltaics.

3.4 Conclusion

In the first part of this chapter, the exploration of an extended growth parameter

space for self-assembly of InAs NWs on graphene by MOCVD has been presented. The

dependences of NW length, diameter, and number density of as-grown arrays, as well as

the areal coverage of unintentionally deposited parasitic islands, have been quantified

as a function of critical epitaxy parameters including growth temperature, V/III ratio,

and absolute flow rate of metalorganic and hydride precursors. A compromise between

maximal NW aspect ratio, maximal NW number density, and minimal parasitic growth

coverage is reached for the set of growth conditions defined by TG = 650 ◦C, V/III =

25, and χTMIn = 16 µmol/min. While strategies for realization of the crystal phase

purity during seed-free InAs NW growth have been discussed, it is noted that the NW

crystal phase remains invariantly polytypic and comprised of disordered phases of ZB

and WZ layers under all currently explored sets of growth conditions. Tracking the

NW growth evolution under optimal conditions indicated that both axial and radial

growth rates reduce and saturate over time, likely stemming from a growth regime

wherein a constant precursor supply is competitively distributed amongst expanding

NW and parasitic island volumes. It has been shown that growth results can be further

optimized by two additional approaches. Elimination of a pre-growth in situ AsH3

treatment causes reduction of growth species surface adsorption during the vdWE of

InAs on SLG, which results in minimization of undesired parasitic growth. Moreover,

use of a two-step flow-modulated growth mode has enabled further NW aspect ratio
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enhancement (i.e., to values > 80) as well as substantial increase in NW number

densities (i.e. to values of ∼8.3 × 108 cm−2). Gaining an understanding of the current

parameter space provides a basis for the growth of additional InAs-based ternary

alloys through the incorporation of P and/or Al for extended bandgap engineering.

In the second part of this chapter, formation of InAsP, InAlAs, and InP/InAsP

NWs via pseudo-vdWE on SLG is reported for the first time. Self- assembly of

InAsyP1-y NWs on SLG is achieved for 1 ≤ y ≤ 0.8. Solid phase P-content and number

density of NWs are strongly dependent on growth temperature. Higher P-content

NWs have been realized via a two-temperature growth regime. The dependence of

InxAl1-xAs NW composition and morphology on growth temperature and ρ have been

investigated for 1 ≤ x ≤ 0.5. Although NW number density was shown to have an

inverse dependence upon Al-content, well-defined vertical NWs were realized at TG =

650 ◦C and ρ = 0.5. A general trend for vdWE of InAsP and InAlAs NWs has been

discussed to relate NW number densities to lattice coordination and binding energy of

growth species on SLG.

This work is intended to serve as a guide for control over desired NW morphologies

and number densities during vdWE growth of III-V NWs on inert substrates. While

this materials system enables a series of nano-hybrid flexible nanoelectronics and

optoelectronics device applications, it is also envisioned that III-V/SLG integrated

nano-composites can be coupled to existing device architectures as supplementary

components of hierarchical systems. Self-assembled arrays of In-based III-V NWs on

SLG are also considered for use in tandem-junction solar cell designs as low bandgap

sub-cells, such that SLG serves as a transparent and high-conductivity (i.e., n++)

component of a tunnel junction when coupled to intermediate (e.g., Si) or high (e.g.,

GaAsP) bandgap sub-cells.
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Chapter 4

Mixed-dimensional InAs Nanowires on Layered Molybdenum
Disulfide Heterostructures via Selective Area-van der Waals

Epitaxy

4.1 Introduction

The emergence of 2-D atomically thin materials with novel and tunable physical

properties has opened up new opportunities for design of new-generation nanoscale

electronic devices [162]. Since the isolation of single layer graphene in 2004, significant

effort has been dedicated to integration of novel nanostructures based on alternative

2-D materials. Among several classes of layered materials such as metal chalcogenides,

boron nitride, oxides and oxychlorides, only a few have been successfully isolated

in the format of 2-D mono- or multi-layers with high-crystal quality. Transition

metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2), molybdenum

diselenide (MoSe2), tungsten disulfide (WS2) are among the most studied vdW-bonded

layered compounds. Based on the number of transition metal d-electrons, the TMDCs

demonstrate metallic [163, 164], half-metallic magnetism [165], semiconducting [166]

or superconducting characteristics [167]. For example, semiconductor compounds

based on Mo and W, with their band gaps ranging from the visible to the near-infrared,

have been widely studied and employed in many applications [168–170].

In particular, MoS2 is one of the most studied 2-D TMDC materials owing to its

many outstanding properties such as large carrier mobility (10 cm2/V.s) [171]. Similar

to other TMDC compounds, MoS2 exhibits layered atomic structure with weak vdW
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interaction between layers and strong intra-layer bonding. Each monolayer of MoS2 is

a tri-layer sandwich structure, which consists of hexagonal S and Mo atomic layers

wherein each Mo atom resides at the center of six S atoms creating a trigonal prism.

Interestingly, in its bulk form, MoS2 displays an indirect bandgap (Eg = 1.2 eV),

whereas mono-layer MoS2 has a direct bandgap (Eg = 1.8 eV). The transition from

indirect to direct bandgap from bulk to monolayer MoS2, was predicted theoretically

by Li et al. in 2007 [22]. In 2010, Splendiani et al. investigated this bandgap transition

by photoluminescence (PL) of ultrathin MoS2 layers and found that PL enhances by

decreasing the number of layers. In particular, they observed that the monolayer MoS2

shows strong peaks between 627 nm and 677 nm [172]. With these properties, MoS2

is a great candidate for integration in devices such as field-effect transistors (FETs)

[173, 174], light-emitting diodes (LEDs) [175], photodetectors [176], and photovoltaics

[177].

Heterostructures and superlattices are essential building blocks of electronic and

optoelectronic devices. Among the current material integration techniques, chemical

epitaxy approaches such as molecular beam epitaxy (MBE) and metal organic chemical

vapor deposition (MOCVD) have offered the highest-quality implementation of more

complex heterostructure designs. Chemical epitaxy of two covalently bonded material

systems is based on one-to-one chemical bond formation at the heterointerface. For

materials with significantly dissimilar lattice structures, the heterointerface is suscep-

tible to misfit dislocations, which could propagate and evolve into extensive threading

dislocations, resulting substantial decay in intrinsic properties of the heterostructure.

Thus, successful integration of heterostructures via conventional heteroepitaxy is gen-

erally reduced to materials with comparable lattice parameters (i.e., lattice constants,

symmetry, thermal expansion coefficient, and polarity). The class of 2-D materials

with dangling-bond-free inert surfaces provides an alternative pathway for integration

of heterostructures via van der Waals epitaxy (vdWE), wherein two or more dissimilar
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2-D materials can be assembled together via weak interplanar vdW interactions. Unlike

conventional epitaxy, covalent strain sharing is not permitted at the heterointerface

during vdWE. Thus, vdW heterostructures can be formed using a wide range of 2-D

materials with dissimilar crystal structures. For example, high performance photode-

tectors based on various vdW heterostructures such as MoS2/tin diselenide (SnSe2)

[178], MoS2/graphene/tungsten diselenide (WSe2)[179], and MoS2/black phosphorus

[180] have been reported. Additionally, such an integration technique is not limited

to 2-D layered materials and can be applied to materials of dissimilar dimensionality

to form mixed-dimensional heterostructures of radically different crystal structures.

Recent research and development on mixed-dimensional vdW heterostructures as well

as challenges and opportunities have been reviewed in [181, 182].

Semiconductor nanowire (NW) nanostructures provide an excellent platform for

formation of complex 3-D heterostructures of dissimilar compounds in both radial and

axial directions [183]. This flexibility in design of active nanostructures can provides

promising solutions for design of high-performance electronic [184], optoelectronic

[183], and photonic [13] devices. In additions, owning to their large surface area-

to-volume ratio and small foot print on the substrate, NWs exhibit excellent strain

tolerance. Therefore, III-V NWs offer outstanding potential for integration with variety

of different foreign substrates such as silicon [27–29], germanium, glass [30], indium

tin oxide [185], and 2-D vdW surfaces like graphene [99, 101, 103, 121, 159, 186].

In this chapter, we present for the first time lithography-free selective-area vdWE

(SA-vdWE) of InAs NWs on MoS2 micro-plates by MOCVD. The growth parameter

space is mapped by altering V/III ratio, growth temperature and total flow rate of

precursors. The influence of these parameters on self-assembly of vertically-aligned

InAs NWs as well as growth of parasitic islands on 2-D MoS2 surfaces is explored;

growth trends are discussed independently for each set of growth trial. The impact

of pre-growth surface treatment on MoS2 is investigated toward selective-area vdWE
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of a single InAs NW on each MoS2 micro-plate. The crystal structure of InAs NWs

grown under the optimal growth condition conducive to the formation single NW

per MoS2 micro-plate is analyzed. Finally, the common sub-lattice registry between

vertical InAs NWs and MoS2 flakes is discussed using a super-cell model based on the

coincident alignment of NW sidewall facets and MoS2 micro-island plate-edges. The

result of this study is expected to be a basis for future investigations on integration of

III-V NWs on 2-D layered materials and realization of novel mixed-dimensional vdW

heterostructures with application in nano-scale optoelectronic and electronic devices.

4.2 Experimental Details

Discrete MoS2 nanosheets were grown on 90 nm SiO2-coated Si (100) substrate using

chemical vapor deposition (CVD). Molybdenum trioxide (MoO3) and sulfur (S) were

used as precursors at furnace temperature of 700 ◦C. The isolated MoS2 triangular

micro-plates with side lengths ranging between ∼3 µm and 5 µm act as the growth

surface in all InAs crystal growth experiments. For growth of InAs NWs, trimethyl-

indium [TMIn, (CH3)3In] and arsine (AsH3) were used as precursors for supply of

group-III and group-V growth species, respectively, in an Aixtron 3×2” close-coupled

showerhead metal organic chemical vapor deposition (MOCVD) reactor. For all

growth runs, substrates were heated to the targeted growth temperature under a

constant AsH3 flow. Growth of NWs was initiated by introduction of TMIn flow into

the chamber. After a growth duration of 300 seconds, NW growth was terminated by

turning off TMIn flow. All samples were cooled under a constant AsH3 flow.

The optimal SA-vdWE conditions were established by investigating the growth

parameter space in three sets of experiments. The three sets of growth runs explored

the MOCVD parameter space in the following ranges; (i) the V/III ratio was varied

in the range of 5 to 250, (ii) TMIn flow rate (χTMIn) was varied between 8 to 32

µmol/min for a constant V/III ratio, (iii) the growth temperature (TG) was varied
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between 600 ◦C to 750 ◦C. For all trials, hydrogen (H2) was used as the carrier gas

with total flow of 7 L/min, and the reactor pressure was kept constant at 100 mbar.

During the initial series of parameter space optimization experiments, no surface

treatment was performed on MoS2 surfaces prior to loading in the MOCVD reactor.

Next, to achieve selective-area single NW synthesis per MoS2 micro-plate, a surface

treatment step was performed prior to loading, which involved dipping MoS2 samples

in a poly-l-lysine (PLL) solution for a duration of 120 seconds, followed by rinsing in

deionized water for 5 seconds.

The morphology of of as-grown samples was evaluated using a Hitachi S-4000 SEM.

The surface roughness of pre-treated and PLL-treated MoS2 nano-sheets was measured

using a Bruker DI-3000 atomic force microscope (AFM). The crystal structure of NWs

was characterized using a FEI F20 high-resolution transmission electron microscope

(HR-TEM). The TEM lamella was prepared using FEI Strata 400 STEM focused

ion beam (FIB). Selected-area electron diffraction (SAED) patterns were obtained

using the same instrument. Compositional analysis at the InAs/MoS2 interface was

performed through electron energy loss spectroscopy (EELS) using a Nion ultraSTEM

100 TEM.

4.3 Results and Discussions

The main objective of this study is to investigate epitaxy of a covalently bonded III-V

compound system upon a 2-D vdW layered TMDC film. Here, CVD-grown discrete

MoS2 micro-plates are used as the growth surface for pseudo-vdWE of InAs NWs.

A top-view optical image from a representative surface of a MoS2 sample used for

SA-vdWE experiments is shown in Figure 4.1. In the first part of this study, the

MOCVD growth parameter space is mapped (i.e., V/III ratio, TG, and χTMIn) to

find suitable conditions for vdWE of vertical InAs NWs on MoS2 micro-plates. To

investigate the influence of each parameter independently, one parameter is varied
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Figure 4.1: Optical image of discrete MoS2 micro-flakes grown by CVD on SiO2/Si
substrate.

in the ranges stated above while the other two parameters are kept constant. In

these growth trials, similar to previously reported studies on integration of III-V NWs

on vdW-surfaces, poly-crystalline parasitic islands are formed on the growth surface

along with vertically-oriented NWs [99, 101, 121, 159]. To evaluate each trial run,

tilted-view SEM images of 20 MoS2 micro-plates are used to measure the mean values

of NW lengths and diameters. In the second part of this study, the focus is on limiting

the crystal growth to formation of a single and isolated NW per MoS2 micro-plate,

and to eliminating the formation of parasitic islands. This was achieved by focusing

on the surface and plate-edge characteristics of MoS2 micro-plates as well as further

tuning of growth conditions.

In the first set of experiments, the influence of V/III ratio on formation of InAs

NWs on 2D MoS2 micro-plates is investigated. Here, the V/III ratio is changed in the

range of 5 to 250 at a growth temperature of 650 ◦C. The V/III is modified by altering

the molar flow rate of AsH3 under a constant molar flow rate of TMIn (χTMIn = 16

µmol/min). Shown in Figure 4.2(a)-(d) are 45◦ tilted-view SEM images of as-grown

samples. For V/III = 5 [Figure 4.2(a)], the MoS2 micro-plates are fully covered with

polycrystalline InAs islands. Increasing the V/III ratio to the 25 to 125 range results
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Figure 4.2: Influence of V/III ratio on pseudo-vdWE of InAs NWs on MoS2 micro-plates.
45◦ tilted-view SEM images of as-grown samples at V/III ratio of (a) 5, (b) 25, (c) 125, and
(d) 250, with χTMIn = 16 µmol/min and TG = 650 ◦C. All scale bars represent 1 µm.

in the formation of NWs near the center of MoS2 flakes as well as parasitic islands

around the plate-edges. For V/III ratio of 250, InAs crystal formation is limited to the

edges of MoS2 and no growth takes place along the interior area of the micro-plates.

To understand these results, it should be noted that the sticking coefficient of

MoS2 micro-plates is not homogenous throughout its surface. When adatoms impinge

upon a surface, there are three possibilities: (i) to adsorb on an impingement site, (ii)

to migrate on the surface and adsorb on a secondary surface site, or (c) to desorb

from the surface. The sticking coefficient is defined as the ratio of the number of

adsorbed atoms to the number of atoms that either migrate or desorb [187]. Here, for

instance, the SiOx surface exposed between neighboring MoS2 microplates has a very
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low sticking coefficient and no crystal growth can be observed on the oxide surface.

As for the MoS2 micro-plates, due to an abundance of available dangling bonds at the

plate-edges, the sticking coefficient is greater at the plate-edge sites compared to the

interior microplate surface. Under low V/III ratio growth conditions (i.e., V/III = 5),

high surface migration of growth species allows for adatoms to diffuse to the central

part of MoS2 micro-plates and overcome the diffusion barrier along the plate-edges. In

contrast, under high V/III ratio growth conditions (i.e., V/III = 250), crystal growth

is limited to formation of parasitic islands around the edges of MoS2 micro-plates

due to low surface migration and high local sticking coefficient at the edges. For the

intermediate values of V/III ratio of 25 and 125, those growth species that are able to

reach the interior segment of MoS2 micro-plates form vertical NWs. The difference in

dimensions of NWs grown under V/III of 25 and 125 is negligible. While for V/III

= 25, the mean NWs lengths is 1.92 µm and the mean NWs diameters is 0.40 µm,

for the case of V/III = 125, the mean NWs lengths and diameters are 1.78 µm and

0.44 µm, respectively. The observed trend with respect to the influence of V/III ratio

on pseudo-vdWE of InAs on 2-D MoS2 micro-plates can be understood in terms of

the fraction of growth species that can migrate across the plate-edges, where the

sticking coefficient is high, and adsorb on the interior region of MoS2 plate. Here, the

surface migration of adatoms is tuned by changing the V/III ratio, and intermediate

values of V/III ratio in the range of 25 to 125 represent favorable growth condition

for self-assembly of vertical InAs NWs on MoS2 surface under pseudo-vdWE regime.

Next, the effect of growth rate was studied by altering the total molar flow rate of

both metal organic and hydride precursors (i.e., χTotal = χAsH3 + χTMIn) under the

constant V/III ratio of 25 and growth temperature of 650 ◦C. To avoid any confusion,

here the results are discussed with references to the molar flow rate of TMIn, χTMIn.

Figure 4.3(a)–(d) illustrates the results of SA-vdWE of InAs NWs for χTMIn values in

the range of 8 to 32 µmol/min. For χTMIn = 8 µmol/min, the growth is limited to the
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Figure 4.3: Effect of total flow rate on growth of InAs NWs on MoS2 micro-plates via
pseudo-vdWE. 45◦ tilted-view SEM images of as-grown samples at χTMIn of (a) 8 µmol/min,
(b) 16 µmol/min, (c) 24 µmol/min, and (d) 32 µmol/min, with V/III = 25 and TG = 650
◦C. All scale bars represent 1 µm.

edges of MoS2 micro-plates resulting in formation of NWs as well as parasitic islands,

and no growth is observed along the interior region of the 2-D MoS2. By increasing

the total flow of precursors, the growth front is no longer localized to the MoS2 edges

and nucleation proceeds toward the center of the micro-plates. Under the intermediate

total flow rate range (i.e., χTMIn = 16 µmol/min to 24 µmol/min), the formation of

NWs is predominantly observed at the central area of the MoS2 micro-plates, while

parasitic islands are observed to form around the plate-edges. In the case of χTMIn =

32 µmol/min, the MoS2 surface is fully coated with a continuous poly-crystalline film

of InAs formed by coalescence of parasitic islands.

In the specific case of χTMIn = 8 µmol/min, NWs with mean lengths and diameters
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of ∼2.30 µm and ∼0.26 µm, respectively, are formed around the edge of MoS2 micro-

plates. Increasing the flow rates to χTMIn = 16 µmol/min leads to growth of NWs

with mean lengths of ∼1.92 µm and the mean diameter of ∼0.40 µm. While under

high-flow condition of χTMIn = 24 µmol/min, the coverage of parasitic islands on MoS2

micro-plates increases, the mean length of NWs reduces to ∼1.64 µm and the mean

of NWs diameter increases to ∼0.54 µm. The trend in influence of total flow rate

on pseudo-vdWE of InAs NWs on 2-D MoS2 suggests that by increasing precursors

supply, the growth front moves from edge of MoS2 micro-plates toward the central

region. Meanwhile, the aspect ratio of NWs reduces due to role of parasitic islands as

the predominant atomic sink.

Next, the effect of growth temperature on the formation of InAs NWs on MoS2

micro-plates under pseudo-vdWE regime is investigated. In this trial, TG values of 600

◦C, 650 ◦C, and 700 ◦C are tested under constant V/III ratio of 25 and χTMIn = 16

µmol/min. The result of this trial is summarized in Figure 4.43(a)-(c) via tilted-view

SEM images labeled with the corresponding growth temperature. As it can be seen in

Figure 4.4(a), at TG = 600 ◦C, the formation of NWs is fully quenched. As seen in

Figure 4.4(b) and 3(c), at the elevated growth temperature (TG = 650 ◦C and TG

= 700 ◦C), vertical InAs NWs are self-assembled on MoS2 micro-plates along with

Figure 4.4: Influence of growth temperature on self-assembly of InAs NWs on MoS2

micro-plates via pseudo-vdWE. 45◦ tilted-view SEM images of as-grown samples at TG of
(a) 600 ◦C, (b) 650 ◦C, and (c) 700 ◦C, with V/III = 25 and χTMIn = 16 µmol/min.
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parasitic islands forming on the center and edges of the micro-plates. For the case of

TG = 650 ◦C, the mean NW height and diameter are measured to be 2 µm and 0.35

µm, respectively. By increasing the growth temperature to TG = 700 ◦C, the mean

NW length and diameter are increased to 2.35 µm and 0.43 µm, respectively.

In the low temperature range (i.e., TG = 650 ◦C and below), parasitic islands are

mainly formed around the edges of MoS2 micro-plates and few islands are seen beyond

the edges. This observation can be understood in terms of temperature-dependent

surface mobility of group-III species and the abundance in availability of dangling

bonds at the edges of MoS2 micro-plates. The edges of MoS2 micro-plates act as

favorable nucleation sites for growth species with low surface mobility, where adjacent

parasitic islands merge and form a ring-shape contiguous film around the MoS2 micro-

plates. By increasing TG, and as a result of enhancement in the surface mobility

of adatoms, the growth species have overcome the barrier at the edges and travel

onto the interior region of the MoS2 micro-plates. It is noted that the density of

parasitic islands changes dramatically by further increase in TG to 700 ◦C. This can be

attributed to preferential incorporation of diffusive growth species into NWs instead

of parasitic islands.

The above trend in influence of growth condition on formation of NWs and areal

density of parasitic islands is used as a survey in realization of SA-vdWE of vertical

InAs NWs on MoS2 micro-plates. In summary, V/III = 25, χTMIn = 16 µmol/min

and TG = 650 ◦C allows for formation of NWs along the interior surface of MoS2

micro-plates and, simultaneously, extensive growth of parasitic islands around the

edges of MoS2 micro-plates. On the other hand, keeping the V/III ratio and TG

constant and reducing χTMIn to 8 µmol/min results in further reduction in formation

of parasitic islands due to decrease in availability of precursors at the low group-III

precursor flow rate. The results of TG-dependent growth experiment suggests that

elevated temperatures are conducive to the formation of NWs and minimum coverage
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Figure 4.5: Comparison of height profile on MoS2 micro-plates surfaces pre- and post-PLL
treatment. The height profile was measured via AFM.

of parasitic islands at the edges of MoS2, which is a necessary criterion for realization

of single NW per MoS2 micro-plate. Thus, the growth conditions of V/III = 25, χTMIn

= 8 µmol/min and TG = 750 ◦C were selected as optimal SA-vdWE condition for

InAs NWs on MoS2 micro-plates.

Next, the influence of a pre-growth PPL surface treatment is investigated. The

effect of PLL as a coating reagent for changing the surface charge was reported by

Umehara et al. [188]. Here, PLL is used for charge compensation of dangling bonds

at the edges of MoS2 micro-plates. Accordingly, the diffusion barrier at the MoS2

plate-edges is expected to be affected by passivating the available dangling bonds

at those regions. Furthermore, the surface roughness of individual micro-plates is

investigated via AFM measurements of pre- and post-PLL treated MoS2 samples.

Figure 4.5 shows the height profile of a MoS2 micro-plate before and after the PLL

treatment, where a pre-PLL treatment height profile is shown in a solid black line and

a post-PLL treatment height profile is plotted in a solid blue line. This comparison
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Figure 4.6: Pseudo-vdWE of InAs NWs on MoS2 micro-plates under V/III = 25, χTMIn

= 8 µmol/min and TG = 750 ◦C. As-grown samples using MoS2 micro-plates (a) without,
(b) with PLL treatment.

indicates that the PLL surface treatment reduces the step height at the MoS2 plate-

edge from ∼90 Å(pre-PLL treatment) to ∼25 Å(post-PLL treatment). This height

difference can likely be due to dissolution of MoO3 during the surface treatment (i.e.,

due to PLL treatment and DI water rinse). Representative AFM images of the sample

pre- and post-PLL treatment samples are shown as insets in Figure 4.5, highlighted

with black and blue borders, respectively. The particles seen on the surface and edges

of MoS2 micro-plates are significantly reduced after the PLL-treatment. Presence of

these particles are reported in various studies and is likely to be un-reacted MoO3

[174] [189].

In the second part of this study, the results of optimized growth parameter space

and influence of PLL surface treatment are used for integration of single InAs NW on

individual isolated MoS2 micro-plates. To this end, samples with and without PLL

treatment were loaded for growth under the previously determined optimal SA-vdWE

conditions (i.e., V/III = 25, χTMIn = 8 µmol/min, and TG = 750 ◦C). Tilted-view SEM

images of as-grown samples on MoS2 micro-plates without and with PLL treatment

are shown in Figure 4.6(a) and (b), respectively. As expected, using untreated MoS2

as growth surface under the stated MOCVD conditions results in formation of NWs
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Figure 4.7: (a-c) HR-TEM images of InAs NW grown under V/III = 25, χTMIn = 8
µmol/min and TG = 750 ◦C. Panel (b) and (c) show higher magnification of highlighted
region in white border and black border in panel (a), respectively. SAED pattern shown as
an inset of panel (b) confirms the polytypic crystal phases in the InAs NW.

as well as parasitic islands. Since this growth is performed under elevated growth

temperature, high surface mobility of growth-III species as well as high desorption

of group-V species lead to formation of discrete parasitic islands (unlike continuous

poly-crystalline film of InAs formed under lower TG of 700 ◦C). Under the same growth

conditions, SA-vdWE of InAs NWs is achieved on the PLL-treated MoS2 surface.

As noted earlier, PLL likely changes the MoS2 surface in two ways: (i) it allows

charge compensation of dangling bonds available at the edges of MoS2 micro-plates,

thereby quenching sites for the formation of parasitic islands; and (ii) it allows for the

dissolution of the residual particles and consequent smoothening of the MoS2 surface,

which minimizes the availability of atomic sinks for nucleation and formation of more

than one NW or parasitic islands per MoS2 micro-plate.

To investigate the crystal structure of NWs and to probe the InAs/MoS2 interface,

a TEM lamella is prepared from a NW grown under SA-vdWE condition using FIB.

Figure 4.7 shows HR-TEM images of the NW acquired along the <110>ZB zone

axis of the cubic phase. The base of the NW is shown in Figure 4.7(a), the NW

growth direction along <111>ZB is indicated with black arrow in Figure 4.7(b). The

approximate locations of the HR-TEM images shown in Figure 4.7(b) and (c) is

illustrated on Figure 4.7(a) using solid white and dotted white borders. Firstly, it is
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Figure 4.8: (a) HR-TEM from the hetero-interface of InAs and MoS2, EELS spectrum for
(b) In, (c) As, (d) Mo, and (e) Si detected on the locations shown on the panel (a).

noted that under the SA-vdWE conditions (i.e., V/III = 25, χTMIn = 8 µmol/min and

TG = 750 ◦C), the crystal structure through the length of the NW consist of zinc-blend

(ZB), wurtzite (WZ), and 4H polytype phases. This characteristic disordered crystal

structure along with high density of stacking faults and rotational twin planes was also

observed for InAs NWs grown on graphene under vdWE mode [103], [101] as well as for

InAs NWs grown via SAE mode on Si substrates [127, 145, 158]. The SAED pattern,

shown as the inset of Figure 4.7(b), exhibits streaking along the <111>ZB axis, which

confirms the polytypical crystal phase of the InAs lattice. Next, the interface of InAs

NW and MoS2 micro-plate is shown in high-magnification micrograph (figure 4.7(c)).

Here, at the location of NW growth, a total of five vdW-bonded layers of MoS2 are

observed in the micro-plate. Despite the large NW diameter (i.e., >300 nm), misfit

dislocations are not found at the InAs/MoS2 hetero-interface and the NW lattice is

free of threading dislocations, likely due to the absence of strain sharing between the

dissimilar lattices.

Using the same TEM grid, the hetero-interface of the MoS2 and InAs was explored

using the NION ultraSTEM 100 with electron energy loss spectroscopy (EELS)
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Figure 4.9: (a) Top view SEM image of single InAs NW on a MoS2 micro-plate, (b) the
schematic of NW core-segment and radial over-growth, and orientation of their sidewall
facets relative to MoS2 plate-edges.

capability at CCMR facility. Shown in Figure 4.8(a) is the HR-TEM image of

multilayer MoS2 and InAs NW base. The locations of scans to obtain EELS signals are

shown on the this figure with dots. Figure 4.8(b), (c), (d), and (e) shows EELS spectra

and peaks for In, As, Mo and Si, respectively. Here, five layers of MoS2 can be counted.

In the process of synthesis of MoS2 flakes via CVD, the high concentration of MoO3-x

and S vapor precursors motivates the self-seeding nucleation mechanism, resulting in

formation of a central particle-type feature with a multilayer MoS2 structure [190]. In

contrast, by lowering the concentration of reactants in the CVD chamber, the 2-D

planar nucleation mechanism leads to production of monolayer or bilayer MoS2 [190].

Next, the lattice alignment and in-plane orientation of InAs NWs relative to

MoS2 micro-plates are considered. Figure 4.9(a) shows a plan-view SEM image of

a representative InAs NW grown under the optimized SA-vdWE conditions on a

triangular MoS2 micro-plate, where the sides of the latter are outlined by white

dashed lines. The hexagonally cross-sectioned NW is situated near the center of the

micro-plate. From the plan-view SEM image, two separate sets of NW sidewall facets

(i.e., two families of sidewall planes) can be observed. The sidewall planes can be

indexed with reference to SAED pattern analysis from TEM characterization. The
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interior facets of the NW are principally {211}-oriented, and three of six visible interior

facets are aligned with parallel orientation relative to the three {1010}-oriented sides

of the MoS2 micro-plate. The exterior NW sidewall facets, however, appear to be

rotated 30◦ relative to the interior facets. Therefore, the exterior facets of the NW

are principally {110}-oriented. Accordingly, the legend at the top-right corner of

Figure 4.9(a) indicates the corresponding directions along the cubic InAs lattice. The

apparent rotation of the planar sidewall structure can likely be attributed to the

evolution of radially-overgrown shell layers upon an axially-grown NW core segment.

This stems from preferential adatom nucleation along NW sidewalls, initiated at

the low-energy vertices of hexagonal core segment, primarily due the relative lack

of nucleation sites on the vdW-surface. Preferential nucleation of adatoms on NW

sidewalls leading to modulation of the faceting structure from the {211}-orientation

(i.e., central core segement) to the {110}-orientation (i.e., external shell segment) has

been previously reported for III-V NWs synthesized under different growth modes.

A plan-view diagrammatical representation of the in-plane orientation of the axially-

grown NW core segment (light blue, interior hexagon) and radially-overgrown NW shell

segment (dark blue, exterior hexagon) relative to the triangular MoS2 micro-flake (gray

triangle) is shown in Figure 4.9(b). The legend at the top-right corner of Figure 4.9(b)

indicates crystallographic directions corresponding to the hexagonal MoS2 lattice.

The representative planar indices of the interior and exterior NW sidewall facets and

the exterior MoS2 plate-edge facets are labelled. As a guide to the eye, the white

dashed triangular border depicts the coincident sidewall orientations of the NW core

segment and the MoS2 micro-flake. Since the NW core segment with {211}-orientated

sidewall facets is formed directly on the MoS2 surface, the epitaxial relationship, which

guides the formation of vertically-oriented freestanding NWs during SA-vdWE, can be

understood in terms of their coincident in-plane alignment of these two components.

Based on the above observed symmetrical orientation and coherent alignment
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Figure 4.10: Atomic arrangement of cubic InAs and hexagonal MoS2 lattices. The InAs
(111) unit cell is highlighted as a reference along with hexagonal MoS2 (0001) unit cell.
The legend shows Mo-, S-, In-, and As-atoms illustrated in blue, yellow, grey and orange,
respectively.

between the NW and 2D micro-plate, a model for a nearly-commensurate super-cell

lattice configuration for <111>-oriented InAs NWs on MoS2 is proposed. Figure 4.10

depicts the relative atomic arrangement of InAs and MoS2 compounds on equivalent

(111)- and (0001)-oriented surfaces, where Mo-, S-, In-, and As-atoms are shown in

blue, yellow, gray, and orange, respectively. The cubic 2×2 InAs unit cell is shown as

a reference (i.e., rhombus highlighted with blue borders), along with the hexagonal

MoS2 (0001) unit cell. As indicated in Figure 4.10, a common sub-lattice is formed

such that a distance equal to three multiples of the cubic InAs unit cell along the

[211] direction is nearly commensurate with a 14-fold multiple of the Mo-Mo (or S-S)

spacing along the [1010] direction of hexagonal lattice. The proposed lattice registry

is in agreement with the observations based on the top-view SEM image shown in
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Figure 4.9, where the sidewall facets of the InAs core segment are parallel to the MoS2

micro-flake facets.

4.4 Conclusions

In summary, SA-vdWE of vertically aligned InAs NW arrays on MoS2 micro-plate via

MOCVD has been reported. The growth parameter space is explored for optimizing

positioning of single InAs NWs on discrete MoS2 micro-plates with one-to-one NW-to-

MoS2 placement. The influence of pre-growth surface treatment is examined using

PLL and DI water. The SA-vdWE growth condition is achieved for V/III = 25, TG

= 750 ◦C, and χTMIn = 8 µmol/min on PLL-treated MoS2 micro-plates. The NWs

grown under mentioned condition exhibit polytypic crystal phases, similar to the case

of vdWE of InAs on graphitic surfaces. The sidewall faceting modulation during radial

growth of NWs is observed using top view SEM images. It is shown that the sidewalls

of the NWs core-segment are predominately {112}-oriented and in parallel with MoS2

plate-edges. Finally, a nearly commensurate atomic arrangement of cubic InAs on

hexagonal MoS2 lattices is suggested, wherein one-half of the cubic InAs unit cell along

the [112] direction is approximately equal with a seven-fold multiple of the Mo-Mo (or

S-S) spacing along the [1010] direction of MoS2 hexagonal lattice. This work offers a

guide for integration of mixed-dimensional nanosystems based on vertically aligned

III-V NWs on 2-D materials via SA-vdWE. Such a nano-hybrid system can be used as

a basis for design of novel architectures for nanoelectronic and optoelectronic devices.
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Chapter 5

Selective-Area Epitaxy of GaAsP Nanowire Arrays on
Silicon for Tandem Junction Photovoltaic Solar Cells

5.1 Motivations

To date, the terrestrial PV market is dominated by crystalline Si SCs with record

efficiency of 26.7% reaching the detailed balance limit for such a structure [9]. Planar

III-V MJSCs with significantly higher efficiency of 38.8% could overcome the limitation

of Si single-junction PV modules [191]. Due to their high fabrication cost, primarily

because of III-V substrates and materials share of cost, planar III-V multijunction

solar cells (MJSCs) technology is primarily attractive for space and concentrator PV

applications. The tandem configuration of high-efficiency III-V MJSC cell on a cost

efficient Si cell/substrate has been an attractive path toward the $/W reduction. There

are two main techniques for realizing planar III-V-on-Si configurations; (1) mechanical

stacking and (2) monolithic heteroepitaxy integration. In a joint study between

NREL, CSEM and EFPF, mechanically stacked III-V sub-cells on Si was reported,

where a double junction GaAs/Si with 32.8% and triple junction GaInP/GaAs/Si

SCs with 35.9% efficiency was illustrated [192]. In these modules, a transparent

adhesive material is used to mechanically stack the subcells. One of the challenges

with mechanical stacking is that pre-growth bonded heterointerface can potentially

suffer from the thermal coefficient mismatch between the layers leading to cracks or

bowing in the layers. On the other hand, the option of post-growth bonding has its
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own challenges such as the need for a sacrificial substrate and extra fabrication cost of

two separate cells. Direct heteroepitaxially grown III-V compounds on Si is another

approach that is promising for low cost and efficient cells [193]. The main challenges

for this approach are (1) lattice mismatch criteria and thermal coefficient difference,

(2) formation of antiphase domain defects due to growth of polar III-Vs on non-polar

Si, (3) limitation in design of buffer layers. These topics are described in details in

section 5.2.

In contrast, in heteroepitaxy of III-V NWs on Si, the induced strain at the

heterointerface due to lattice mismatch can be relaxed through the NW sidewall

surfaces. In this sense, NWs provide a platform for assembly of highly-crystalline

III-V active cells on Si acting as either a growth surface or an active sub-cell [33]. In

addition, compared to bulk III-V structures, NW nanostructures permit lowering the

fabrication cost by substantial reduction in material usage. These facts combined

by the already discussed advantages of NWs-based SCs in Chapter 1 are the main

motivations for the research presented here.

5.2 Introduction

A novel architecture for multi-junction bifacial III-V-NWs-on-Si SC is proposed in

section 5.2. The basic idea behind MJSCs is to be able to selectively absorb photons

within a wide energy range. In MJSCs, the sequence of sub-cells is engineering in a

way that photons with greatest (least) energy can be absorbed in the top (bottom)

cell. De Vos calculated the detailed balance limit for tandem cells with n number

of junctions and found 49% efficiency for an ideal three-junctions cell [10]. With Si

(1.1 eV) as middle cell and bifacial growth substrate, a possible selection of III-V

compounds for the other two sub-cells are GaAs0.73P0.27 (1.75 eV) and InAs0.84P0.16

(0.5 eV). Calculations show that such a stack of III-V/Si/III-V MJSC structure can

reach to efficiency of 48% under one sun AM1.5G spectrum [10].
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The schematic of the proposed III-V on Si MJSC is shown in Figure 5.1 (a). This

design takes advantage of the two III-V NW array sub-cells on Si SC structures

discussed in sections 5.2 and 5.2. This MJSC design is based on the SQ detailed

balance efficiency calculation, shown in 5.1 (b), for a fixed middle cell with Eg of 1.12

eV where the maximum efficiency calculated for the triple junction device is 48%

for a one sun AM1.5G spectrum. Based on this calculation, the maximum efficiency

for such MJSC design can be achieved by adding a top cell with 1.75 eV bandgap

(GaAs0.73P0.27) and a rear sub-cell with 0.5 eV bandgap (InAs0.800P0.20). Fedorenko

et al. performed a theoretical study to maximize the absorption and optimize the

current matching between the three sub-cells by finding the suitable NWs diameter

and spacing for the propsed MJSC design [194]. This work is summarized in this

section. In this study, the Diffract MOD simulation engine of Synopsys TCAD RSoft

software was used employing the Rigorous coupled wave analysis (RCWA) technique

for calculating absorption in NW arrays. A typical single-crystalline Si solar cell

thickness of 200 µm was used to find the absorption in the middle Si cell and the

current matching optimization.

To optimize the top cell geometry, the Jsc for different diameter and pitch of

Figure 5.1: (a) Schematic of the proposed triple junction SC showing the top, middle
and bottom sub-cells. (b) SQ detailed balance plot calculated for a triple MJSC with
GaAs0.73P0.27 (1.75 eV) top cell, Si (1.1 eV) middle cell, and InAs0.84P0.16 (0.5 eV) bottom
cell for AM1.5G spectrum [10].
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Figure 5.2: (a) Jsc of GaAsP NW arrays as a funciton of NWs diameter and center-to-center
pitch for AM1.5G spectrum. The difference between the Jsc values of the GaAsP (top) and
Si (middle) cells as a function of top cell geometry [194].

GaAsP NWs for AM1.5G spectrum is calculated and illustrated as Figure 5.2(a) [194].

This calculation shows two local maxima for top cell Jsc at DA =150 nm, PA =250 nm

and DB = 300 nm, PB = 500 nm. To pick the best values for D and P, it is essential

to map the difference between the Jsc values of the top and middle cell assuming that

all absorbed flux is converted into electrical current. As it can be seen in Figure 5.2(b)

[194], interestingly, although a maximum Jsc of 19.65 mA/cm2 can be extracted from

a top cell with arrangement A, the best current matching between top and middle

cells can be achieved by configuration C with DC = 350 nm and PC = 500 nm with

Jsc difference of 0.01 mA/cm2.
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Self-Assembly of InAsP Nanowire Array on Silicon Substrate

Growth and composition tuning of InAsyP1-y NWs on SLG nanosheets were

presented in section 3.3.2. With the similar growth recipe, self-assembly of high

density vertical array of InAsP NWs on Si was developed. The growth of InAsP NWs

is performed in an Aixtron 3×2” close coupled showerhead MOCVD reactor. Figure

5.3 (a), exhibits a half 2” Si (111) wafer after direct epitaxy of InAsP NWs. Prior

to loading the sample in the reactor, the native oxide on the Si wafer was removed

by submerging the sample in a BOE 10:1 solution. Next, poly-l-lysine (PLL) was

deposited on the sample surface. After two minutes, the sample was dipped in DI

water and was loaded into the reactor shortly after. Cross-sectional SEM image from

the same sample is shown in Figure 5.3 (b). The average length of NWs was measured

to be 18 µm (Figure 5.3 (c) and (d)).

Figure 5.3: (a) Self-assembly of InAsP NWs on Si(111) wafer. The black regions on the
sample are the dense arrays of NWs with average height of 18 µm shown in (b) cross-sesctional,
(c) and (d) tilted view SEM images.
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Selective Area Epitaxy of GaAsP Nanowire Array on Silicon Substrate

Heteroepitaxy of GaAsP NWs on Si(111) was demonstrated via self-catalyzed VLS

technique using MBE [195, 196] and MOCVD [142]. In contrast, SAE of this ternary

III-V compound on Si substrate was reported only by Fujisawa et al. [197]. For

integration of GaAsP NWs via SAE, the first step is to define nanopore openings in

the SiO2 template on Si (111) substrate.

Here, SAE of GaAsP NWs was studied for different sizes and densities of nanopore

in order to achieve epitaxy of large area NW arrays with uniform diameters and

lengths. In addition, the effect of size and separation of patterned atomic sink regions

surrounding NW arrays was studied. In this study, four different patterning techniques,

nano-sphere lithography (NSL), photolithography, electron beam lithography (EBL)

and Talbot displacement lithography (TDL) have been used. The cost-effective NSL

samples were used in three set of experiments including, (i) the growth parameter

space optimization and (ii) composition tuning. However, the lack of uniformity and

repeatability in these samples motivated us to use photolithography, EBL and TDL

techniques to pattern samples in subsequent growth experiments. Results for each set

of experiments are discussed in this section.
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5.3 Selective Area Epitaxy Using Nanosphere Lithography

5.3.1 Experimental Details

Nanosphere lithography (NSL) is a type of patterning technique with low fabrication

cost compared to other types of lithography methods such as photolithography,

nanoimprint and electron beam lithography. In this patterning method, no fix hard

mask or mold is needed. However, tunability of this method is very limited. Meaning,

diameter, spacing and in general the pattern shape is restricted.

Here the implemented NSL process flow is explained using the schematic diagram

shown in Figure 5.1. First, a 170 nm SiO2 layer was deposited on a Si (111) substrate

using P5000 PECVD, following by annealing under N2 flow at 600 ◦C in the Bruce

furnace (not shown in the schematic). Next, 200 nm-diameter nanospheres were

deposited on the SiO2/Si surface. Using reactive ion etch (RIE) with O2 plasma, the

radius of the nanospheres was reduced to the targeted size. Nanosphere size can be

tuned by power, partial pressure of chamber and RIE time. At this step, a 12 nm

aluminum (Al) film was deposited on the sample by e-beam evaporation delete system.

Figure 5.4: Fabrication steps for patterning by NSL, (a) nanosphere deposition, (b)
reducing the nanospheres radius by O2 plasma, (c) deposition of Al-film, (d) removal of
nanospheres in toluene sonication bath, (e) RIE to transfer the pattern to the SiO2 template.
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Figure 5.5: A 45◦ tilted view SEM image showing a random array of pores with D = 100 -
200 nm defined in SiO2 by NSL technique.

This step was followed by removal of nanospheres in a toluene sonication bath. Next,

nanosphere patterns were transferred in the silicon film by RIE, leaving behind a 20

nm-thick oxide film inside inside the pores. It should be noted here that the last step

designed and optimized in a way that the 20 nm oxide keeps the Si surface undamaged

during the dry etch step. This oxide layer is removed prior to loading of the sample

into the MOCVD reactor. In the last step, the Al film is completely removed leaving

no residue behind.

Shown in Figure 5.2 is a 45◦ tilted view SEM image of a random array of pores with

diameters in range of 100-200 nm defined in the SiO2 layer. It is worth mentioning

here that generally NSL is not conducive to fabricaiton of an ordered array of patterns

with specific pore diameters. However, the average diameter and spacing of patterns

can be controlled to some extent by the initial nanosphere size and the RIE conditions.
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5.3.2 Results and Discussions

Growth of NWs was performed in an Aixtron 3×2” close coupled showerhead MOCVD

reactor. Trimethyl-gallium (TMGa, (CH3)3Ga), arsine (AsH3), and phosphine (PH3)

were used as precursors for supply of Ga, As, and P growth species, respectively.

During all growth runs, hydrogen (H2) was used as the carrier gas with total flow of

14 L/min, and the reactor pressure was kept constant at 50 mbar. The NSL-patterned

SiO2 film on Si (111) substrate was used as the growth surface. As it was discussed in

Chapter 2, in SAE for nucleation to be initiated, the growth surface should be exposed

and free of native oxide layers. Thus, prior to loading the sample in the MOCVD

reactor, the Si native oxide layer was removed in a 10:1 BOE solution. Then, samples

were heated to 1000 ◦C and kept at this elevated temperature for a 10 min desorption

step under a constant flow of group-V precursors. This was followed by adjustment

in the growth surface temperature to TG = 950 ◦C. At this point, flow of AsH3 and

PH3 were set to growth values of 406 µmol/min and 487 µmol/min, respectively. The

growth of NWs was initiated by introduction of TMGa flow into the reactor for the

V/III ratio value of 500. After a growth duration of tG = 40 min, heteroepitaxy of

GaAsP NWs was terminating by stopping TMGa flow. Lastly, to avoid desorption,

samples were cooled under a constant group-V flow. As-grown NW samples were

Figure 5.6: Tilted view SEM images of SAE of GaAsP NWs grown by MOCVD on a
NSL-patterned sample are shown at three different magnifications.
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Figure 5.7: Single point EDX analysis of GaAsP NWs grown by SAE on Si(111), composi-
tion values of (a) GaAs0.93P0.07, (b) GaAs0.75P0.25 were measured.

imaged for morphology measurements using a Hitachi S-4000 SEM. The results for

heteroepitaxy of vertical GaAsP NWs on Si are shown in Figure 5.3. The variation in

diameter of NWs is due to the difference in size of pores.

To evaluate the solid phase incorporation of PH3, a TESCAN MIRA3 SEM

equipped with energy dispersive x-ray spectrometry (EDXS) capability was used.

The result of a point scan from a single NW (shown as an inset) is demonstrated

in Figure 5.4 (a). By calculating the integrated intensity of detected peaks of the

EDX spectrum, the composition was shown to be GaAs0.93P0.07. In order to achieve

the target GaAsyP1-y composition of y = 0.73, the flowrate of PH3 was increased by

a factor of 5, while keeping AsH3 and TMGa flowrates at fixed values. The EDX

measurment showed that this 5-fold increase in availability of PH3, lead to ∼3.5 times

increase in solid incorporation of P-content (Figure 5.7(b)).
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Selective Area Epitaxy of GaAsP NW Arrays Using Photolithography

In order to generate an ordered array of NWs with full wafer coverge, photolithography

was performed using the ASML stepper at the SMFL facilities at RIT. The common

problem with SAE on NSL samples is illustrated in Figure 5.5(a). Unlike the sample

prepared by photolithography (Figure 5.8(b)), only part of the NSL-patterned sample

was suitable for NW growth. For photolithography, first a 50 nm SiO2 layer was

deposited on a 6” Si(111) wafer by PECVD. After spin coating of AZ MIR 701

photoresist, the wafer was patterned with the optimum exposure condition using a

mask containing an array of pores with 500 nm diamter and center to center pitch of

1 µm. The result is shown in the 45◦-tilted view SEM image shown in Figure 5.6(a).

The heteroepitaxy of GaAsP NWs using these fabricated samples were performed

using the similar experimental method explained in the previous section. Here the

motivation is to use the low-cost patterning technique of photolithography which leads

to realization of holes larger in diameter than the target NW dimensions. However,

this challenge can be addressed by adding a simple fabrication step between epitaxy

of core and shell segments. As an example, this can be done by forming an isolating

layer of spin on glass (SOG) after growth of the NW core segments.

Even though for III-V compounds such as InAs, it is possible to grow NW arrays

with smaller diameter than the diamter of pattern itself, unfortunately this was not

Figure 5.8: (a) Partial coverage of NWs growth on a sample prepared by NSL method.
(b) Full coverage of a sample patterned by photolithography.
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Figure 5.9: (a) Patterns on a Si (111) wafer prepared by photolithography, (b) Heteroepi-
taxy of GaAsP NWs on the same sample in (a). (c) high radial growth rate of GaAsP NWs
is conducive to integration of features with low aspect ratio.

feasible for SAE of GaAsP in our explored growth parameter space. Here, for the

constant flow of 3580 nmol/min TMGa, the V/III ratio was changed between 800

and 1600 by doubling both PH3 and AsH3 flowrates. These flowrate values were

repeated for TG equal to, (i) 850◦, (ii) 950◦, and (iii) dual temperature growth mode

of 850◦-950◦. In all cases, the resulted height of NWs did not exceed 0.5 µm, as

demonstrated in Figure 5.6. This unsuitable SAE results for fabrication of NW-based

SCs led us to use of EBL, which is explained in the next section.
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5.4 Selective Area Epitaxy Using Electron Beam Lithogra-

phy

5.4.1 Experimental Details

Electron-beam lithography (EBL) is a technique that uses a focused electron-beam

(e-beam) to generate a custom pattern on a surface covered with an e-beam resist.

For a positive (negative) resist, rastering of the e-beam changes the solubility of the

chemical and enables a selective removal of the exposed (unexposed) part of the sample

by submerging it in a solvent. The main advantages of EBL are: (1) capability of

generating small size patterns on the order of ∼10 nm or less and (2) no need for a

physical hard mask. Both features offer great flexibility for testing new ideas during a

design trial phase of an experiment.

Here, the JEOL JBX9500FS EBL system, located at Cornell NanoScale Science

and Technology Facility (CNF), was used to generate an ordered array of nanopores

with diameter ∼200 nm and center-to-center pitch of 500 nm in SiO2 layer on Si (111)

substrates. This tool operates at accelerating voltage of 100 kV, with maximum beam

current of 100 nA. With field size of 1 mm and minimum beam diameter of 3.2 nm,

JEOL 9500 is capable of writing large area patterns with features as small as 6 nm.

Before exposing the substrate, two sets of preparations are needed: (1) providing

the desired pattern file and write condition details for the JEOL 9500, (2) sample

preparation prior to loading the substrate in the tool. This process initiates with

preparing the pattern files using a CAD tool and extracting the file in .gds format.

Here, the L-Edit software was used to draw arrays of dots and borders in two separate

files. Next, using a Beamer software the .gds file should be converted to .v30 files.

This step translates the pattern file for the JEOL 9500, meaning type of pattern,

shape and pitch of shots, and beam step size for each specific pattern are defined for

the EBL tool. Next, specific code scripts as job (.jdf) and schedule (.sdf) files bridge
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Figure 5.10: Spin curve for ZEP520A e-beam resist for diluted and not diluted solution.
Here, ZEP520A with no dilution (green curve) is used [198].

the information embedded in .v30 files and the details of the writing procedure. The

prepared and translated pattern and write conditions should be checked in the JEOL

9500 software. Finally, before starting the exposure, the tool should be calibrated for

beam current reading, correct alignment of sample, and a very precise electron gun

column alignment. It is important to note that if an EBL write uses more than one

beam current, the electron gun column should be calibrated for each value of beam

current. This is the case here and will be discussed more in the following paragraphs.

Prior to initiating EBL, a 2” Si (111) wafer was cleaned using the RCA process.

Next, a ∼50 nm SiO2 film was deposited using the P5000 PECVD. This step was

followed by measuring the film thickness using a Woollam VASE ellipsometer, via

averaging multiple point measurements. For 5 sec deposition of low stress TEOS, using

“1kA-TEOS-LS” recipe, the average thickness of the film was measured to be ∼50 nm.

Here ZEP-520A was chosen as the positive e-beam resist. Compared to poly(methyl

methacrylate) (PMMA), ZEP 520A is 5 times more sensitive to the e-beam. This

characteristic allows for a faster writing speed and makes ZEP-520A economically a

better choice. ZEP 520A was spin coated on the prepared wafer at 5500 rpm for 30 sec

followed by 2 min bake at 170 ◦C. The thickness of spin coated resist was measured to
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be ∼300 nm using using the FilMetrics F50-EXR optical film measurment instrument

at the CNF. This value is in good agreement with the expected thickness for undiluted

ZEP520A at 5500 rpm (Figure 5.10).
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5.4.2 Results and Discussions

For the desired SAE pattern, the size of the main two features of nanopores (d =

200 nm) and border (w = 100 µm) differ by three orders of magnitude. Therefore, to

optimize the EBL write duration, and thus make the patterning step more cost-efficient,

two separate sets of exposure conditions were used. The dose matrices tests revealed

the optimum write conditions for these features. For realizing holes, a 60 µm objective

aperture was selected, along with minimum beam current of 2 nm and areal dose of

592 µC/cm2. The combination of these conditions lead to a beam size of 5 nm. In

contrast, to pattern borders with mesa size of 400 µm, a 110 µm objective aperture, a

beam current of 20 nm, and areal dose of 350 µC/cm2 was used. For the specific case

of JEOL 9500, this advanced double beam exposure technique takes advantage of a

precise automatic positioning of apertures.

A representative SAE masking template patterned using this procedure is shown

in Figure 5.11. After exposure and developing the e-beam resist, the 100 µm wide

border and an array of dots can be seen in the optical image shown in Figure 5.11 (a).

The regions with/without e-beam resist, as well as array of holes, are marked on this

figure. The planar view SEM image of the same feature, after emerging the sample in

10:1 BOE and stripping the extra e-beam resist, is shown in Figure 5.11 (b). Higher

magnification images of the same region of the sample show a well-defined array of

nanopores in the SiO2 layer (Figures 5.11 (c-d)). The exposed Si (111) substrate

inside the holes will be the growth surface for SAE of GaAsP NWs. A series of various

optimization steps lead to write time of 14 min (22 min) for 230 patterns of nanopore

arrays (border).

After the e-beam the writing step, the post-exposure development of the resist

was performed by submerging the sample in ZED-N50 (n- amyl acetate) for 45 sec,

followed by 30 sec in methyl isobutyl ketone (MIBK) and 30 sec spraying isopropyl

alcohol (IPA) solvent. Lastly, RIE was used to transfer the pattern to the SiO2 film.
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Figure 5.11: (a) An optical image of an array of dots surrounded by 100 µm wide borders
after e-beam exposure and development, (b) top view SEM image of the same pattern after
RIE and resist removal, (c) and (d) top view SEM images showing array of dots from the
same pattern.

The RIE step was optimized for a 20 nm/min etch rate on planar SiO2 film. Differnt

RIE times were tested in order to find a RIE condition conducive to exposing the

Si surface in all of the patterned pores. Since NW growth via SAE is very sensetive

to the uniformity of exposed Si surface, 200% of time needed to remove 50 nm SiO2

film was selected to clear the pores. It is worth noting here that the e-beam resist,

ZEP-520A, showed a very good stability during the RIE step and was removed by a

descum step followed by RIE using the P5000 PECVD instrument at the SMFL.

So far, realization of SAE-suitable masking templates via EBL is described. Here

the reasons for design of such a pattern, and initial results on SAE of GaAsP will be

discussed. Based on rigorous coupled-wave analysis (RCWA) modeling performed at

RIT, for GaAsP NWs on Si cell, arrays of NWs with the pitch of 500 nm and diameter
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Figure 5.12: The influence of mesa border (atomic sink region) on the morphology of NWs
grown by SAE. (a) An array of GaAsP NWs in the center of aof a mesa with border width
of 10 µm after MOCVD growth, (b) Tilted view SEM image zomed-in on the array of NWs,
(c) A NW array centered in a mesa with border width of 100 µm, (c) NWs at the center of
the pattern shown in panel (c).

of 350 nm enables optimal light absorption and current-matching with a Si sub-cell in

a tandem-junction device. Thus, the same values were targeted in the preparation of

pattern files for EBL except the diameter was set to 200 nm for NW core segment.

In this way, the SiO2 template acts to isolate conduction pathways from NW shell

segments through the substrate in a coaxial NW device design. As for border, it allows

for realization of a more controllable NW growth regime and acts as an atomic sink

for excess of materials. This concept is illustrated in Figure 5.12, where results from

a single MOCVD GaAsP NWs SAE growth run are compared between NW arrays
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Figure 5.13: The influence of masking template geometry on morphology and yield of
SAE-grown NWs. (a) Top view SEM images of arrays; Array 1 with W = 100 µm and M =
150 µm × 150 µm, Array 2 with W = 50 µm and M = 150 µm × 150 µm, Array 3 with W
= 50 µm and M = 400 µm × 400 µm, Array 4 with W = 100µm and M = 400 µm × 400
µm. (b) and (c) Tilted view SEM image of the corresponding NW arrays.

shown in panels (a) and (c). In both cases, a 100 µm × 100 µm field of nanopores

with similar size and seperation is centered on a 400 µm × 400µm mesa surrounded by

borders with width of 10 µm in panel (a) and 100 µm in panel (c). The 45◦ tilted-view

SEM images in Figure 5.12 (b) and (d) demonstrates how the growth rate of NWs

can be controlled by the size of atomic sink regions (mesa borders). In panel (d), due

to larger border size (100 µm), the SAE growth rate enhancement effect is mitigated,

meaning that growth is more controlled and an array of ordered non-tapered NWs is

achieved. In panel (b), however, the 10 µm border acts as a weak sink and the high

growth rate leads to overgrowth of islands and non-homogeneous growth of NWs.
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Figure 5.14: Average length, diameter and aspect ratio of NWs in Figure 5.13 for Arrays
1 through 4, on samples with 3 sec (black bars) and 7 sec (red bars) pre-growth BOE
treatment.

To further explore suitable patterns for SAE of NWs on Si, a combination of two

mesa sizes (M) an two border widths (W) were tested in the four patterns shown

in Figure 5.13(a). In all four cases, a 100 µm × 100 µm array of nanopores with

diameter D = 200 nm and center-to-center pitch P = 500 nm is used, centered in

mesas of different sizes with exposed borders of different widths. Top view SEM

images shown in Figure 5.13(a) represent; Array 1 with W = 100 µm and M = 150

µm × 150 µm, array 2 with W = 50 µm and M =150 µm × 150 µm, Array 3 with

W = 50 µm and M = 400 µm × 400 µm, Array 4 with W =100 µm and M= 400

µm × 400 µm. To evalute the effect of mesa and border sizes on SAE of GaAsP

NWs, a sample was prepared with EBL containg all four different patterns, and the

NW lengths, diameters, and aspect ratio, as well as NW yield, were measured by

post-growth SEM imaging. The growth of NWs in the array of pores and overgrowth

of parasitic islands in the border area is shown in Figure 5.13(a). Since SAE is a

templated epitaxy technique, nucleation sites are limited to the exposed Si surface

only and SiO2 film suppresses any form of growth outside of the array and border

areas. This selectivity is not limited to the SiO2 PECVD prepared template layer,

even the native oxide on Si surface inside the pores can be a diminishing factor for

the total yield of a NW array. This means that a pre-growth wet etch step prior to

loading the sample into the reactor has a strong influence on NW growth. In this
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Figure 5.15: Top view SEM images from Array 1, 2, 3 and 4 shown in Figure 5.10(a). The
width and area of the borders in Array 4 allows heteroepitaxy of GaAsP NWs on Si with
high yield.

sense, to find the optimal pre-growth oxide removal step, 3 sec and 7 sec oxide removal

treatment were performed on two sets of samples by submerging the samples in a 10:1

BOE solution follow by a quick rinse in DI water.

The 45◦-tilted SEM images in Figures 5.13(b) and (c) shows the result of GaAsP

NWs heteroepitaxy on Si (111) in the four arrays illustrated in Figure 5.13(a), labeled

by Array 1 through 4. Average NW lengths and diameters were measured for 100

NWs in each array for the two sets of samples with 3 sec and 7 sec pre-growth BOE

treatment. The results of these measurments are plotted in Figure 5.14. As expected

for the sample with 7 sec BOE treatment, in all four arrays, the NWs height (diameter)

is less (more) than the wires grown on the sample with 3 sec BOE treatment. This is

because the wet etch is not a directional etch process and therefore the pre-growth

treatment leads to unavoidable increase in a diameter of the patterned pores, and

consequently a decrease in NWs length. Array 1 and 2, as well as Array 3 and 4,

129



Chapter 5. SAE of GaAsP NW Arrays on Si for Tandem Junction Solar Cells

Figure 5.16: The measured (a) total, and (b)symmetric yields of NW arrays shown in
Figure 5.15 for arrays 1 through 4, on samples with 3 sec (black bars) and 7 sec (red bars)
pre-growth BOE treatment.

share the same mesa size. Therefore the direct comparison between these arrays is

straightforward. For two arrays with the same mesa area, the array with larger border

area allows a smaller amount of material to be captured by the exposed area in the

nanopores arrays. Naturally this leads to smaller average length and diameter for the

NWs. For example, Figures 5.14(a) and (b) show that the NWs in Array 1 exhibit

a reduced average length and diameter compared to the NWs in Array 2, due to

the larger atomic sink region surrounding Array 1. Similar results are observed for

Array 4 compared to Array 3. Although the measurments in Figure 5.14(c) illustrate

the highest aspect ratio belongs to Array 3 and 2, but the tilted SEM images in

Figure 5.13(b) and (c) exhibit superior uniformity in Array 1 and 4. To have a better

understanding of areal coverage of NWs in each array, top view SEM images are shown

in Figure 5.15. This Figure shows the difference in NW yield between Arrays 1 - 4 for

samples subjected to a 3 sec pre-growth BOE treatment.

To evaluate the best pattern, evaluate the best pattern two types of yield measures

for NW arrays are defined and measured in Figure 5.16(a) and (b). The total yield

is defined as the ratio of total number of NWs to total number of pores, which is

an indication of global NW areal coverage. As Figure 5.16(a) illustrates, the longer

pre-growth wet etch treatment leads to a slightly higher number of pores with exposed

Si surface. The symmetric yield shown in Figure 5.16(b), on the other hand, is defined
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as the ratio of total number of hexagonally symmetric NWs to the total number of

pores. The symmetric yield demonstrates if the ratio of exposed area in the borders

and size of the mesa are suitable for heteroepitaxy of NWs with target value of NW

diameter. Based on 5.13 (a) and (b), array 4 on the sample with 3 sec BOE shows

the highest values of total and symmetric yield. These measurments are in agreement

with Figure 5.13(b) and (c), and Figure 5.15.

5.5 Selective Area Epitaxy Using Talbot Displacement Lithog-

raphy

5.5.1 Experimental Details

As described in section 5.3, samples prepared using NSL were used to establish SAE

of GaAsP and composition study. Unlike NSL, a specific array of nanopores with

targeted diameter and pitch can be defined using EBL. The EBL-prepared samples

were used to explore SAE of GaAsP NW array, presented in section 5.4.2. The EBL

Figure 5.17: Cross-sectional SEM image of patterned SiO2 template on Si substrate using
TDL method (prepared by NanoLund lab).
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Figure 5.18: Top view SEM images showing results of dose exposure matrix for doses in
the range of 1.5 mJ/cm2 to 3.5 mJ/cm2. The average diameter for each dose test is indicated
on each panel. All scale bars represent 500 nm (prepared by NanoLund lab).

technique is conducive to small area patterning and it is not cost effective to use this

lithography method for wafer scale patterning. Therefore, TDL was used to pattern

samples for large area SAE trials. The process flow of TDL performed in collaboration

with the NanoLund Lab (Lund University, Sweden) is listed below. Figure 5.17 shows

a cross-sectional SEM image of a Si substrate patterned with TDL method. The

deposited SiO2 film acts as a template for the SAE of NWs. The results of dose

exposure matrix performed by NanoLund lab is shown in Figure 5.18.

132



Chapter 5. SAE of GaAsP NW Arrays on Si for Tandem Junction Solar Cells

1. Wafer dehumidifying

2. Resist spining and baking

3. Exposure in TDL-Phabler 100DUV for 1.5 mJ/cm2 to 3.5 mJ/cm2

4. Post exposure baking

5. Development

6. Dry etch of SiO2 in RIE Sirius T2 for 180 sec, with 20 sccm CHF3, with chamber

pressure of 20 mT, with set point power of 75 Watts

7. Oxygen plasma for 3 × 1 min, with chamber pressure of 5 mBar

8. Remover 1165 at 100 ◦C for 5 min, DI water flowing 5 min, N2 drying

9. Oxygen plasma for 1 min, with chamber pressure of 5 mBar
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5.5.2 Results and Discussions

Here, highly n-doped single side polished 2” Si (111) wafers with 0◦ off-cut is used

as growth surface for assembly of NWs. First, ∼50 nm SiO2 film is deposited as the

growth template for SAE of GaAsP-GaP core-shell NW arrays. This step was perfomed

using the PECVD P5000 tool at the SMFL facility at RIT. Next, samples were sent

to NanoLund lab for TDL patterning. The details of TDL process is explained in the

previous seciton. Prior to loading samples into the MOCVD reactor, BOE surface

treatment was used on patterned Si substrates to remove the native oxide and expose

the Si surface inside the pores. Trimethylgallium (TMGa), diethylzinc (DEZn), arsine

(AsH3), phosphine (PH3), and disilane (Si2H6) are used as metal organic and hydride

precursors. Prior to initiation of NW growth, a desorb step was performed at 970

◦C for a duration of 10 minutes under AsH3 and PH3 flow. Then, the susceptor

temperature was stabalized at the growth temperature (TG) of 930 ◦C, and AsH3 and

PH3 flowrates were set to 10 sccm and 60 sccm, respectively. The NW growth step

was marked by flow of TMGa and Si2H6 into the reactor chamber for duration of

45 minutes. To adjust the growth parameters for growth of the GaP shell segment,

the flow of TMGa and Si2H6 were stoped while the TG was set to 830 ◦C, AsH3

flowrate was terminated and PH3 flowrate was set to 70 sccm. The GaP shell segment

Figure 5.19: SAE of GaAsP:Si-GaP:Zn core-shell NW arrays on patterned n-type Si
substrate.
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Table 5.1: Comparison between simulated and experimental parameters for GaAsP-GaP
core-shell NW heterostructures.

was grown for a period of 10 minutes by flowing TMGa and DEZn at the reduced

temperature, after which samples were cooled under a constant flow of AsH3 and

PH3. For both core and shell segments the V/III ratio was set to 795. It is crucial

to ensure that the core segment of NWs fully fill the patterned pores, and the SiO2

layer isolates the shell layer from the substrate. This was done by performing a radial

growth rate study to calculate that the growth time for the core segment. The resulted

GaAsP:Si-GaP:Zn core-shell NW arrays is showen in Figure 5.19.

Table 5.1 compares the parameters obtained from simulation and experimental

trials for GaAsP-GaP core-shell NW arrays. A series of growth trials were carried

out to tune and measure the growth rate of the core GaAsP segment. The presented

values for NW length and diameter are average values obtained from measurements

done on 50 NWs using tilted-view SEM images. It should be noted that the thickness

correlated to the overgrowth of shell segment is an estimation based on the studies
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carried out on the core segment morphology. Furthermore, the doping concentrations

are targeted values based on previous growth calibrations of GaAs planar film. These

targeted values are counted as a fair estimation for doping concentrations in NW

arrays.

5.6 Conclusions

In the photovoltaics market, Si-based solar cells have 95% of the production share

and are capable of producing a maximum theoretical efficiency of ∼30%. III-V

semiconductor solar cells can exceed the Si conversion efficiency threshold, particularly

with use of tandem junction device structures; however, III-V photovoltaics suffer

from high materials and manufacturing costs. To resolve these challenges, tandem

junction devices comprised of III-V semiconductors coupled with Si are one of the

most promising candidates. The main obstacle in heteroepitaxy of high crystal quality

III-V semiconductors on Si can be addressed via growth of high aspect ratio NW

structures. Due to their large surface-area-to-volume ratio and small footprints,

NWs can effectively accommodate heterointerfacial strain without risk of threading

dislocation formation during highly lattice mismatched heteroepitaxy. Ternary III-V

compounds of GaAs0.73P0.27 with the band gap energy of 1.75 eV provide an optimal

solution as a top-surface III-V sub-cell in tandem with a Si sub-cell. Reports on

epitaxy of GaAsP NWs on Si(111) is limited to the vapor-liquid-solid approach.

Here, for the first time, SAE of vertically-aligned GaAsyP1-y NW arrays on pat-

terned Si(111) substrates using MOCVD is presented. Trimethyl-gallium (TMGa),

arsine (AsH3), and phosphine (PH3) are used as precursors for the supply of Ga, As,

and P growth species, respectively. In prior work, we have theoretically determined

that maximum current density in a current-matched GaAsP NW array on Si tandem

device can be realized using GaAsP NWs with 350 nm diameter, center-to-center

distance of 500 nm, and heights of 1.5 µm. Here, SiO2 SAE masking templates
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on n-type Si substrates are patterned with 200 nm diameter pores for growth of

n-type GaAsP NW core segments, and subsequent lateral extension of p-type NW

shell segments with thickness of 75 nm, to reach the targeted diameter of 350 nm.

The SAE condition is established for V/III ratios between 500 and 1600 at growth

temperatures between 850 ◦C and 950 ◦C. Compositional tuning of GaAsyP1-y NWs

toward a targeted composition of y = 0.73 is realized by altering the molar flow ratio

of hydride precursors between 0.55 and 0.86.

The effect of growth rate on morphology, total yield, and symmetric yield of GaAsP

NWs is explored through modulation of the effective local supply of growth species.

Here, nanopores are patterned within arrays of 100 µm × 100 µm dimensions at the

center of oxide mesas, which are surrounded by mesa borders where the underlying Si

substrate surface is exposed. Various configurations of mesa areas and mesa border

widths are examined for a constant array size. Thus, by customizing the area of exposed

Si in the mesa borders, which serves as an atomic sink, the yield and morphology of

resulting SAE NWs is controlled. Under optimized growth conditions, > 90% yield of

hexagonally symmetric GaAsP NWs on Si is realized using 400 µm × 400 µm mesas

with border widths of 100 µm. This work is presented as a practical low-cost platform

for high-efficiency III-V-on-Si tandem junction photovoltaic solar cells.
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Dissertation Conclusions

This dissertation presents heteroepitaxy of vertically aligned III-V NW arrays on

foreign substrates using MOCVD. The three main growth surfaces used here are: (i)

graphene, explored in Chapter 3, (ii) MoS2, reported in Chapter 4, (iii) Si, described

in Chapter 5. In this chapter, a summary of conclusions from all the projects is

presented.

Chapter 3 focuses on an in-depth study of vdWE of InAs-based binary and ternary

compounds on graphene via heteroepitaxy of high aspect ratio, vertical NWs. This

work is categorized into two main parts. In the first part, the MOCVD growth

parameter space had been explored to optimize length, diameter and number density

of InAs NWs, as well as, areal coverage of parasitic islands. Epitaxy parameters

including growth temperature (TG), V/III ratio, and absolute flow rate of precursors

are tuned for 650 ◦C ≤TG≤ 700 ◦C, 5 ≤V/III≤ 250, 8 µmol/min ≤χTMIn≤ 32

µmol/min. The MOCVD growth trials showed that the growth parameters can be set

to TG= 650 ◦C, V/III = 25, and χTMIn=16 µmol/min for maximal NW aspect ratio,

number density and minimal parasitic growth coverage. Next, an extensive TEM study

revealed that NWs crystal structure is a characteristic polytypic and disordered phases

of ZB and WZ and is invariant of the explored parameter space. Furthermore, to sudy

the NWs growth evolution, a set of growth trials with fixed growth parameters and

incremental growth durations were performed. This study showed that both axial and

radial growth rates exhibit a gradual reduction, most likely due to a supply-limited
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competitive growth regime. To further optimize the vdWE of NWs, two approaches

were introduced. Firstly, by removing a pre-growth in situ AsH3 treatment from the

growth recipe, parasitic island coverage has been reduced by a factor of ∼0.62, with

simultaneous enhancement of both NW aspect ratio and number densities. This is

likely due to the reduction of growth species surface adsorption during the vdWE of

InAs on SLG. Secondly, a two-step flow-modulated growth technique has been used

to for integration of dense fields of high aspect ratio InAs NWs. The result of this

work is published in [159], where the highest axial growth rate of 840 nm/min and

NW number density of ∼8.3 × 108 cm−2 for vdWE of high aspect ratio (>80) InAs

NW arrays on graphitic surfaces is reported.

In the second part of Chapter 3, the growth parameters of InAsyP1-y (1≤y≤0.8)

and InxAl1-xAs (1≤x≤0.5) NWs have been explored by alloying group-V and group-III,

respectively. In the case of InAsP, the goal was set to achieve bandgap energy of 0.5

eV. This allows for incorporation of InAsP NW arrays as a bottom cell in a triple

junction solar cell design with Si as a middle cell, which is described in Chapter 5. To

increase the P-content beyond the MFC limits, one way is to increase the TG. However,

it has been shown that the NW number density suffers significantly under elevated

TG. To overcome this challenge, a two-temperature growth regime has been applied,

where a dense array of InAs stubs were grown under the optimal growth condition,

followed by InAsP segments grown under high axial growth rate. Next, composition

and morphology of InxAl1-xAs NWs have been investigated as a function of TG and

flow rates of group-III precursors. Formation of vertically aligned InAlAs NWs under

TG=650 ◦C and ρ=0.5 has been shown. The result of this work is published in [121],

where integration of InAlAs NWs on graphene was reported for the first time.

Chapter 4 reports integration of a novel nanohybrid system consist of InAs NWs

grown on MoS2 micro-plates, with one-to-one NW-to-MoS2 placement. In this study,

selective-area van der Waals epitaxy (SA-vdWE) of NWs was achieved for TG=750
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◦C, V/III=25, and χTMIn=8 µmol/min, using a PLL-treated MoS2 samples. The

TEM study showed that similar to the case of InAs NWs formed on graphitic surface,

the NWs grown under mentioned condition also exhibit polytypic crystal phases.

Furthermore, the top-view SEM imaging showed a sidewall faceting modulation during

radial growth of NWs. Specifically, it is shown that the sidewalls of the NWs core-

segment are predominately {112}-oriented and in parallel with MoS2 plate-edges.

Finally, a nearly commensurate atomic arrangement of cubic InAs on hexagonal MoS2

lattices is suggested, wherein one-half of the cubic InAs unit cell along the [112]

direction is approximately equal with a seven-fold multiple of the Mo-Mo (or S-S)

spacing along the [1010] direction of MoS2 hexagonal lattice. This work offers a guide

for integration of mixed-dimensional nanosystems based on vertically aligned III-V

NWs on 2-D materials via SA-vdWE. Such a nano-hybrid system can be used as a

basis for design of novel architectures for nanoelectronic and optoelectronic devices.

Chapter 5 presents integration of core-multi shell heterostructure of GaAsP NW

arrays on Si substrate via SAE technique. The SAE of GaAsP NWs is achieved for

TMGa flow rate of 3580 µmol/min, V/III=800, and TG= 950 ◦C. The composition

was tuned for GaAs0.73P0.27 NWs, aiming for band gap energy of 1.75 eV, by altering

the molar flow ratio of hydride precursors between 0.55 and 0.86. This allows for

incorporation of NW arrays as a top-cell in a III-V-on-Si tandem junction SC. Next,

the influence of growth rate on morphology, total yield, and symmetric yield of GaAsP

NWs has been studied by altering the effective local supply of growth species. This

was achieved by using a set of four different patterns prepared by EBL. Under the

optimized SAE growth condition, > 90% yield of hexagonally symmetric GaAsP NWs

on Si is realized using a 100 µm × 100 µm field of nano-hole arrays in the center of a

400 µm × 400 µm mesa with border width of 100 µm. This work is presented as a

practical low-cost platform for high-efficiency III-V-on-Si tandem junction photovoltaic

solar cells.
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Future Works

7.1 Fabrication of III-V-on-Si Tandem Solar Cells

The focus of this chapter is to explore experimental steps toward fabrication of III-

V-NWs-on-Si tandem junction solar cells (SCs). The process steps for fabrication of

GaAsP NWs on Si is presented. However, under unfortunate circumstance of a nation

wide shutdown during the COVID-19 pandamic, the laboratories at RIT were closed.

As a result, further testing and optimization of the SC device is incomplete in the

presented work. The future works for completion of device fabrication is details here.
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Figure 7.1: Schematic representation of process steps for fabrication of single junction
GaAsP NWs on Si substrate.

7.2 Fabrication Process Flow

In this section the fabrication process for single-junction GaAsP NW array-based

solar cells on Si is described. The fabrication steps are presernted in Figure 7.1. First,

growth of NW arrays with core-shell hetrostructure is presented (Figure 7.1(a)). Next,

planarization of vertical NW arrays is detailed wherein methods for encapsulating

matrix (Figure 7.1(b)) and exposing NWs tips (Figure 7.1(c)) are demonstrated. The

formation of transparent conductive oxide (TCO) on NWs and encapsulation matrix

is explored. Finally, deposition of back and top surface contacts is presented (Figure

7.1(d)).

7.2.1 Planarization of Vertical Nanowire Arrays

To planarize the NW arrays, AZ Mir 701 photoresist (PR) was spin coated on the

samples for 30 seconds at 5500 rpm. Next, samples were baked at 110 ◦C for 60

seconds using a hot plate. Figure 7.2(a) and (b) show 45◦-tilted SEM images of NW

arrays encapsulated in a PR matrix. To expose NW tips for contacting NW arrays,
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Figure 7.2: Planarization step: 45◦-tilted view SEM images of (a), (b) NW arrays are
encapsulated in a photoresist matrix, (c), (d) NWs tips are exposed using a RIE etch back
step.

the PR matrix was etched back using reactive ion etch (RIE). After a 60 seconds

initial stabalization step, 100 sccm of O2 and 50 sccm of He gases were used, at 224

mTorr under 225 watts for 45 seconds. This step was performed using LAM 490 tool

at SMFL facility. Figure 7.2(c) and (d) show 45◦-tilted SEM images of NW array

after the etch back step. Finally, samples were baked at 250 ◦C for 30 minutes. This

step locks the PR encapsulation matrix and makes it unsusceptible to change during

the following fabrication steps.

7.2.2 Transparent Conductive Oxide

Next, indium tin oxide (ITO) was used as the TCO layer. This step was performed

using the CVC 601 sputter at SMFL facility. Figure 7.3 shows ITO sputtered on the

143



Chapter 7. Future Works

Figure 7.3: 45◦-tilted view SEM images of NW arrays with sputtered ITO film as the top
layer.

NW arrays shown in Figure 7.2(c) and (d). In this step, pulsed DC sputtering mode

was used. The chamber vaccum level was reached to 5×10−8 Torr. First, while the

shutter was closed, the power level was stabalized to 180 Watts at chamber pressure of

5 mTorr for 300 seconds. The Ar gas flow was stabalized at 40 sccm. Next, by opening

the shutter, a 2000 Å ITO film was sputtered on the samples. A deposition rate of

Figure 7.4: Low magnification, 45◦-tilted view SEM images of ITO layer on NW arrays.
Blistering and delamination defects can be seen in the ITO film. Defected areas are
highlighted in dotted white borders.
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0.64 Å/sec was measured for this process. Next, samples were baked at 250 ◦C for 30

minutes using a hot plate. As shown in Figure 7.4, the ITO film showed blistering and

delamination defects. This can be attributed to lack of adhesion between the ITO,

NWs tips and the PR matrix.

7.2.3 Back and Top Surface Contacts

For the back surface contact, a blanket film of Al was sputtered on backside of the

Si substrates using CVC 601 sputtering. Prior to loading, backside of the samples

were cleaned using IPA and acetone to remove any organic residues. In this process,

the chamber pressure, power level, and Ar flowrate were set to 5 mTorr, 1000 Watts,

and 20 sccm, respectively. The deposition rate was measured to be 2 Å/sec. Next,

an array of patterns were defined for the top surface contact using photolithogrpahy

using a Suss MA56 mask aligner. After exposure and developing steps, samples were

loaded in the Lasker PVD75 thermal evaporator for deposition of Au. First, a 10 Å

Ti film was deposited acting as an adhesion layer between ITO and Au. Then, 100

Å of Au film was deposited as top contact. Figures 7.5 shows an array of fabricated

devices. The Au film is patterned in different sizes to contact NWs arrays.

As shown in Figure 7.6 and Figure 7.7, extensive blistering and delamination

Figure 7.5: Photograph of an array of SC devices based on GaAsP:Si-GaP:Zn core-shell
NW arrays on a n-type Si substrate.
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defects are observed by SEM and optical images. These failures can be attributed

to lack of adhesion between NW/PR matrix and ITO, as well as, at ITO and Ti/Au

interface. To reduce these defect, an adhesion layer can be incorporated at the NW/PR

matrix and ITO interface. Additionally, the thickness of the Ti adhesion layer could

be optimized to ease the delamination problem. By patterning the ITO film the

global problems associated with contacting NWs can be localized. Furthermore, by

improving the quality of the ITO film, the absorption and delamination challenges

can be addressed.

Moreover, in the presented study, the doping concentrations are targeted values

based on previous growth calibrations of GaAs planar film, wherein the thickness

of film layers were measured by in situ emissivity-corrected pyrometry and doping

concentrations were measured with Hall effect. These targeted values can be counted

Figure 7.6: Optical images of SC devices showing blistering and delamination defects.

146



Chapter 7. Future Works

Figure 7.7: (a) 45◦-tilted view SEM image after ITO deposition and anneal at 250 ◦C for
30 minutes, (b) Optical image of same sample as shown in panel (a), after Au deposition
and lift-off.

as a fair estimation for doping concentrations in NWs core-shell hetrostructures.

However, the difference in growth conditions between NWs SAE and planar films

(i.e. growth temperature, V/III ratio and flowrates) suggests a possible divergence in

the resulted doping concentrations of the two structrues. Therefore, the radial p-n

junction in GaAsP-GaP heterostructure NWs could be independently investigated by

mapping the doping profile of each segment. This allowss a more accurate design of

growth parameter space for doping of core and shell segments.
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