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Abstract

Accessibility in User Reviews for Mobile Apps: An Automated
Detection Approach

Murtaza Tamjeed

Supervising Professor: Dr. Mohamed Wiem Mkaouer

In recent years, mobile accessibility has become an important trend with the goal of al-

lowing all users the possibility of using any app without many restrictions. Recent work

demonstrated that user reviews include insights that are useful for app evolution. However,

with the increase in the amount of received reviews, manually analyzing them is tedious

and time-consuming, especially when searching for accessibility reviews. The goal of this

thesis is to support the automated identification of accessibility in user reviews, to help

practitioners in prioritizing their handling, and thus, creating more inclusive apps. Particu-

larly, we design a model that takes as input accessibility user reviews, learns their keyword-

based features, in order to make a binary decision, for a given review, on whether it is about

accessibility or not. The model is evaluated using a total of 5326 mobile app reviews. The

findings show that (1) our approach can accurately identify accessibility reviews, outper-

forming two baselines, namely keyword-based detector and a random classifier; (2) our

model achieves F1-measure of 90.7% with relatively small training dataset; however, F1-

measure value improves as we add to the training dataset.
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Chapter 1

Introduction

1.1 Overview

Users are allowed to search and download apps for mobile devices from application distri-

bution platforms or app stores such as App Store1, Google Play2 and Amazon Appstore3.

Users are also allowed to write reviews in these platforms in the form of text or star ratings,

known as user reviews. Developers, app designers and analysts can study their users’ expe-

rience and identify issues with their apps using the user reviews [28][11][27]. Reviews that

users put can be feature requests, identification of issues, praises, complaints, and dissatis-

faction, among others. The reviews can also be classified on higher levels, for example, on

how good or bad a feature was implemented.

Moreover, this higher level classification of app reviews can also be about design and

usability. It can also be about accessibility — whether apps and webs are accessible to peo-

ple with disabilities when they are using mobile phones and other devices [21]. However,

accessibility in user reviews is rarely studied especially for mobile applications [15]. Right

now, accessibility-related research and associated guidelines are more towards websites

rather than mobile apps [40], while mobile app development has greatly increased lately.

This dramatic increase in the development of mobile apps invites a deeper understanding

of how accessibility concerns are discussed in user reviews; however, it’s not necessarily

easy to tackle.

1https://www.apple.com/ios/app-store/
2https://play.google.com/store
3https://www.amazon.com/mobile-apps/b?ie=UTF8node=2350149011
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1.2 Problem Statement

There are multiple challenges associated with studying accessibility in user reviews. First,

app stores contain a vast amount of reviews that require lots of effort to analyze. Developers

and analysts normally suffer from the burden of analyzing this enormous reviews. Second,

the manual process of identifying accessibility-related reviews (for sake of simplicity, we

call them accessibility reviews) is error-prone and it is subject to reader bias. A preliminary

work studying accessibility in user feedback [15], is entirely depending on manual inspec-

tion of app reviews. Third, identification of user reviews pertaining to accessibility can be

hard to accomplish through current state-of-the-art approaches (i.e. string-matching) due to

the lack of a set of standard keywords or phrases to filter those reviews. The current state-

of-the-art approach [15] relies on 213 keywords extracted from 54 British Broadcasting

Corporation4 (BBC) recommendations for mobile accessibility [6] to identify accessibil-

ity reviews. Ignoring that keywords derived from guidelines do not necessarily match the

words expressed in reviews posted by users. This mismatch includes but not limited to

situations when the keywords are incorrectly spelled by users. Finally, the presence of cer-

tain keywords in a review does not necessarily mean the review is about accessibility. For

example, consider the following reviews from Eler et al. dataset:

”This is the closest game to my old 2001 Kyocera 2235’s inbuilt game ’Cavern

crawler’. Everything is so simple and easy to comprehend but that doesn’t

mean that it is easy to complete right off of the bat. Going into the sewers

almost literally blind(sight and knowledge of goods in inventory) is a great

touch too. Keep at it. I’ll support you at least in donations.”

This review contains a set of keywords that could indicate accessibility (e.g. ”old”,

”blind” and ”sight”) but its not an accessibility review. In this review, the word ”old” is

referring to a device rather than a person. Both the words ”blind” and ”sight” refer to

knowledge of goods in the game rather than describing a player. Similarly, in the reviews:

4https://www.bbc.co.uk/guidelines/futuremedia/accessibility/mobile
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”Good to have your files easily accessible. Would like integration of caldav/

carddav”

”Very useful application. Gmail users must go for it blind eyes”

Users use keywords like ”accessible” and ”blind eyes” but they do not really express any

accessibility concern. Thus, these limitations in the identification of accessibility reviews

make the current state-of-the-art approach practically unreliable.

1.3 Proposed Approach

For reducing the efforts developers and analysts require in identifying and understanding

accessibility from user reviews, we use supervised learning to formulate the identification

of accessibility reviews as a binary classification problem. This approach takes a set of

accessibility reviews obtained by manual inspection in a previous study [15] as input for

training several classifiers.

The advantages of using a binary classifier, over the keyword-based detector, are at least

twofold. First, our approach automatically identifies new accessibility reviews which were

simply missed by the keyword matching approach. The reason why the new accessibility

reviews were identified is that our model depends on learning algorithms rather than a set of

predefined keywords. Second, in contrast to relying on words derived from guidelines, our

approach extracts features (i.e. patterns) from actual user reviews and learns from them.

A pattern refers to a keyword or a set of keywords extracted from accessibility-related

reviews that are not only important for classification algorithms, but they can also be useful

for developers to understand accessibility-related issues and features with their apps. The

patterns can be about assistive technologies that help people with disabilities (e.g. “text to

speech”, “word prediction” or “voice over”); about usability feature of the apps that helps

people with disabilities (e.g. “font customization”, “page zooming” or “speed control”); as

well as about disability comments (e.g. “low vision”, “handicapped”, “deaf ” or “blind”).
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We test our approach using a dataset of 5326 user reviews, provided by a previous study

[15]. We compare our approach against two baselines; (1) keyword-based approach and

(2) random classifier approach. Our approach provides a significant improvement in the

F1-measure score for identification of accessibility reviews, outperforming the baseline-1

(keyword-based approach) by 1.370 times, and surpassing the baseline-2 (random classi-

fier) by 39.434 times.

Since we also wanted to find the size of the training dataset needed to effectively iden-

tify accessibility reviews, we incrementally added batches of 100 reviews to our training

dataset until we reached 500 reviews. Then, we kept adding batches of 500 reviews until we

used all of our training data (5326 reviews). Our results show that the highest F1-measure

(i.e. 0.907) was achieved with 5326 reviews (our total training dataset) and the lowest F1-

measure value (i.e 0.635) was achieved with 100 reviews. We report in more details in

chapter 5.

The contribution of this study is multi-fold. In the first place, we propose an approach to

automating the detection of accessibility reviews with high performance. This approach can

help developers automatically detect accessibility-related reviews and filter out irrelevant

reviews. Second, we show that we need a relatively smaller dataset (i.e. 1500 reviews) for

training to get 85% or higher F1-Measure. However, the F1-measure score improves as we

add to the training dataset. Third, we make our model and datasets publically available5 for

analysts and developers to extend our work and gain further understanding of the topic.

The rest of this thesis is organized as follows. Chapter 2 describes key information

about software accessibility, user reviews analysis, various approaches in the classification

of text documents, metrics for evaluating the performance of classifiers, and other important

background knowledge to better understand this work. Chapter 3 reveals related studies that

motivated this work. Chapter 4 reviews our data preparation process; how we preprocess

data; how we extract features; how we train and build our models; as well as how we select

and evaluate various classifiers. We then discuss our experiments and findings in Chapter

5https://gallery.cortanaintelligence.com/Experiment/Automating-Detection-of-Accessibility-Reviews
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5. We examine threats to the validity of the study and motivate future work in Chapter 6

before concluding in Chapter 7.
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Chapter 2

Background

In this chapter, we review key information about software accessibility, user review, classi-

fication of text, and other information central to a thorough understanding of the problem

space.

2.1 Software Accessibility

About a billion people in the world have some form of disability, and this number is rising

with advances in medical care and population growth [9]. In the United States only, 26% of

individuals (1 in 4) above the age of 18 have some disability [34]. Since, a broken arm, low

vision, hearing loss, limited movement, stroke, aging, losing glasses, to name just a few,

can render someone disabled, thus, anyone can become disabled. Furthermore, everyday

life circumstances can mimic a disability, forcing someone to depend on the solutions built

for people with disabilities. For example, you must depend on your keyboard if your mouse

stops functioning. Similarly, audio transcripts become important for someone who is blind.

While, captions become necessary for someone with hearing impairments. Thus, when

tools and technologies are designed with accessibility in mind, people with disabilities can

use them.

Making technologies and tools accessible benefits individuals, society, and businesses

[49]. Today technologies such as web and mobile applications are increasingly important

in all walks of life. It’s also legally required that these technologies are accessible in or-

der for people with various abilities to get equal access and equal opportunities. Access
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to information and communications technologies is considered a basic human right in the

United Nations Convention on the Rights of Persons with Disabilities [3]. Furthermore, ac-

cessibility encourages inclusion not only for people with disabilities but also for minorities

[49].

There is also a strong business case for accessibility. It can enhance branding, drive

innovation, and boost marketability [49]. An accessible and inclusive app cannot only im-

prove user experience and satisfaction but also increases the user base. Thus, it is valuable

for developers to make their apps accessible and inclusive. In contrast, failing to account

for accessibility can not only cause inconvenience to users, but it could also shift a large

user base to alternative apps. Currently, many websites and mobile apps have accessibility

issues that make them too hard to use.

2.2 User Review

Smart devices such as smartphones, tablets and various wearable devices are ubiquitous;

so are applications for them. According to a survey, there are more than two billion smart-

phone users, and over twelve million app developers [4]. More than five million apps have

been developed and put on the app stores recording more than 204 billion downloads [1].

Digital application distribution platforms allow users to get apps for mobile devices,

also allow them to describe their experience about the apps as in the form of reviews.

Current research indicates that user reviews provide valuable information for analysts and

developers to identify user experience with their apps, issues, requests, and even the ra-

tionale for their likes and dislikes [29][13][24]. There are many types of reviews that the

reviewers write, such as feature requests, praises, complaints, dissatisfaction, and identifi-

cation of issues, among others. It is important for developers to address issues if any, in a

timely manner [32], otherwise users could simply choose to use different app [47].

Another study by Pagano and Maalej [35] shows that mobile apps receive about 23

reviews each day, while popular apps, receive 4,275 reviews every day. App developers
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consistently spent considering the amount of time in exploiting and classifying these re-

views to improve user satisfaction. Many previous studies [10][8][35] report that only one

third of these reviews are helpful for developers.

2.3 Classification of Text

In this section, we discuss various techniques that can be performed on text to predict their

types.

2.3.1 String Matching Approach

A keyword-based approach, also known as pattern-based approach or string matching, re-

lies on a set of predefined keywords to categorize text into classes. We can first determine

a set of keywords that we look to find in text documents (e.g. user reviews). Then check if

any of the keywords are available in the text. For this work, we can use regular expressions

or SQL queries.

2.3.2 Machine Learning Approach

Classification systems are built using Machine Learning approaches. These approaches

are divided into supervised and unsupervised techniques. Both learning techniques classify

numbers and text using a previously defined set [37]. Machine learning algorithms, without

detailed domain-specific knowledge, are proven to solve problems from many fields such as

ASR (Automated Speech Recognition), computer vision, document classification, among

others [7].

In the supervised learning, algorithms are provided a set of labeled training examples.

Then, the algorithm uses the training examples to develop a classification rule that will

perform well over new data. The main characteristic of machine learning is learning from

one set of data in order to perform well on new data it has not seen yet. This key feature

distinguishes it from other algorithmic tasks.
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In this thesis, We focus on binary classification where documents are classified into

either positive class or negative class. Specifically, we are working on a binary classification

to automatically categorize app reviews into accessibility-related reviews (i.e. accessibility

reviews) and reviews that are not related to accessibility (i.e. for sake of simplicity, we call

them non-accessibility reviews).

2.4 Evaluation Metrics

To measure how well a classification model performs, the following metrics are needed to

be reviewed.

2.4.1 Accuracy

It’s the accuracy metric that measures the overall performance of a classification model.

Accuracy of a classification model is calculated as follow:

Accuracy =
tp+ tn

tp+ fp+ fn+ tn
(2.1)

True positives (tp) are the number of items correctly classified for the positive class, and

true negatives (tn) are the total correct classifications for the negative class. Similarly, false

positives (fp) are the number of incorrect classifications for the positive class; and false

negatives (fn) are the number of incorrect classifications for the negative class. To simply

put it, total correctly classified items are divided by the entire number of classifications —

correct and incorrect.

2.4.2 Precision

The precision metric measures accuracy of the positive class predictions. Specifically, it

shows the number of correct classifications out of the positive class predictions. Precision

can be presented as follows:
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Precision =
tp

tp+ fp
(2.2)

2.4.3 Recall

Recall calculates the accuracy of a classification model for true positive cases. Specifically,

how many were correctly classified as positive out of all of the positive cases. This intuition

is captured by the following:

Recall =
tp

tp+ fn
(2.3)

2.4.4 F-score

Finally, F-score (i.e. also known as F-measure or F1-score) is the harmonic mean of preci-

sion and recall that provides a trade-off between them; and allows mentioning one number

to represent both measures. This means that the f-score measure is a mean for us to de-

termine how well our model is performing on both precision and recall as seen in the

following:

F − score =
2 · Precision ·Recall

Precision+Recall
(2.4)

It’s worth noting that we mainly rely on the F-measure score to determine how effective

our machine learning algorithm is when comparing our approach with the state-of-the-art.
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Chapter 3

Related Work

In this chapter, we highlight several previous works that profoundly influenced our ap-

proach. We split our related work into three sections: user review, which briefly highlights

the role of user reviews in app evolution; accessibility in user reviews, focuses particularly

on detection of accessibility in user reviews; and classification of text documents, where we

focus on current approaches in the classification of text such as user reviews by different

taxonomies.

3.1 User Review

Many researchers concluded that reviews and ratings posted by users on app store plat-

forms can play an essential role in the evolution of mobile apps because a lot of developers

consider reviews when working on new release [11][27][36][39]. Maalej et al. [28] intro-

duces user review as the first means when eliciting requirements for software development.

Similarly, Vu et al. [48] emphasize on the users’ role in the software process by developing

an approach to identify useful information from users’ review. Moreover, Seyff et al. [44]

proposes the use of mobile devices to continuously gather end-user feedback. Since user

reviews are essential to mobile app evolution, we are looking into whether we can effec-

tively identify accessibility-related reviews from users’ feedback. In a highly competitive

market, it is necessary to identify accessibility-related issues from user reviews and address

them in order to build satisfaction for diverse users.
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3.2 Accessibility in User Review

Even though user reviews can be considered a powerful tool in the evolution of mobile

apps, and that even well-grown apps have many accessibility issues [16][51], only 1.24%

users report such issues to application distribution platforms [15]. In other words, 98.76%

mobile app users do not post accessibility issues in the form of reviews to app stores. In

an effort to find if mobile app users post accessibility-related issues to the platforms, Eler

et al. [15] investigate 214,053 mobile app reviews using a string-matching approach. They

report that in total 5076 reviews were identified as accessibility reviews. However, through

a manual inspection later, the researchers found that only 2663 of the reviews were really

about accessibility. We used these 2663 identified accessibility reviews as one of the two

groups in our training set required for a supervised machine learning. We created the

second group (i.e. non-accessibility reviews) from their total dataset (i.e. 214,053). So far,

this is one of the preliminary studies related to the accessibility in mobile app user reviews.

3.3 Classification of Text Documents

Many previous work classify app reviews by different taxonomies [11][14][20][31][38][39],

such as bug reports, complaints, praises, feature requests, and even user interfaces; how-

ever, none of them even mention accessibility [15].

A previous work [22] automated classification of user stories and identified 6 commu-

nication and clarification patterns with regards to requirements. They relied on NB (Naı̈ve

Bayes) algorithm in their classification. Their work is similar to ours in the use of a super-

vised machine learning approach, however, the focus of both works is different. We work

to classify user reviews into accessibility and non-accessibility categories.

Unlike automatic approaches, classification of text documents using a set of predefined

keywords has been vastly performed across different domains in software engineering. For

instance, Eler et al. [15] relies on 213 keywords to identify accessibility-related reviews.

Another study [45] detects commits related to refactoring using one keyword, “refactor”.
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Similarly, Ratzinger et al. [41] used 13 keywords to detect refactorings. Then, Murphy-Hill

et al. [33] repeated Ratzinger’s approach in two open-source projects using the 13 keywords

he used. Interestingly, they negated their finding that commit messages in version history

of software projects present refactoring activities. Their findings show that developers not

usually report refactoring activities since such activities can simply be considered a differ-

ent activity by developers such as building new features. Similarly, we believe users can

express accessibility concerns without explicitly using any accessibility keyword presented

section 4.2.1.

In contrast to the keyword-based approaches, we use an automated machine learning

approach since learning approaches outperform the keyword-based approach by at least

1.6 times [5]. On the other hand, a keyword-based identification approach (i.e. relying on

an existing set of predefined keywords) could generally miss certain reviews, not only be-

cause reviews left by users might not always use those keywords to express an accessibility

concern, but also because a single word might not be enough to convey an accessibility

message. For example, the review ”I hope someday we change size of the fonts”; here

the context provides an accessibility concern even though the user is not explicitly using

keywords such as disabled, blind or low vision.
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Chapter 4

Approach

In this chapter, we first introduce our overall approach to the detection of accessibility

reviews. We then elaborate on technical details of our adopted classification technique, in

the following subsections.

4.1 Overall Framework

The goal of this work is to automate the detection of accessibility-related reviews in a

large dataset of app reviews. Our approach receives a set of reviews as input and makes a

binary decision on whether the review is accessibility pertaining or not (i.e., classifying app

reviews into accessibility reviews and non-accessibility reviews). To be able to do so, this

work goes through two main phases: (1) building a model and (2) prediction. In the first

phase, we build a classification model using a corpus of reviews and current classification

techniques. In the second phase, we use the created model in predicting types of new app

reviews.

Our framework, (1) uses a dataset of app reviews along with their ground truth cat-

egories previously identified through a manual approach [15] for learning purposes. (2)

Then, we apply data cleansing and text preprocessing on this set to improve the reviews

text for the learning algorithms. Some of the text preprocessing procedures we used are

namely, tokenizing, lemmatizing, removing stop words, and removing capitalization. (3)

Then, we extract features from the preprocessed review text to build a feature space. (4)

Next, a training set was built using the extracted features for the model to learn from. (5)
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Then, we examined a total of nine classification algorithms to evaluate the performance of

the model for prediction. These classifiers are chosen because they are commonly used for

classification of text such as app reviews [20][22]. After training and evaluating the model,

we use test data to challenge the performance of our model. Since the model has already

learned from the N-Gram vocabulary and their weights discussed in Section 4.2.3 from the

training dataset, the classifier will finally output predicted-labels and probability-scores for

the testing dataset. Figure 4.1 provides an overview of the process used in the detection of

accessibility reviews.

Data Preparation

Eler et al. 
Dataset of 

Accessibility 
Reviews 
(2663)

Random Selection of 
Non-accessibility Reviews

(2663)

 Our Dataset 
(5326)

Data Cleansing & Preprocessing

Lemmatization
Stop-Word 
Removal

Case 
Normalization

Tokenization Noise Removal

Feature Hashing for feature extraction

Model Training & 
Building

Classifier 
Selection & Model 

Evaluation

Model

Predicted Labels

App Reviews 
(214053)

Figure 4.1: Overall Classification Framework.
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4.2 App Review Classification

As mentioned, our classification method has five main phases. (1) Data preparation, (2) data

cleansing, (3) feature extraction using Feature Hashing (4), model training and building,

and (5) selecting classifier and evaluating the model.

4.2.1 Data Preparation

To prepare training data for the binary classification of app reviews we need to create two

groups of app reviews i.e. (1) reviews indicating accessibility and (2) reviews not related to

accessibility. Since a large number of app reviews had to be manually analyzed to obtain

sufficient reviews at least for the first group (i.e. accessibility reviews), we decided to

choose the set of reviews (i.e 2663) previously identified and validated as accessibility

reviews through manual inspection by Eler et al. [15].

The second group of the training data contains the negative set representing the non-

accessibility reviews, which can be created by randomly choosing reviews that simply did

not contain any of the accessibility keywords. However, we wanted to challenge and im-

prove the decision making of our model by adding reviews that are closest to neighboring

regions between the two groups. To do so, for the second group we added an equal number

of reviews that did contain one or more of the accessibility keywords (presented in 4.1 and

Appendix A), but, they were really excluded from the set of accessibility reviews after man-

ual verification. Since class starvation or an imbalanced training set (i.e., not having equal

size of both groups) could decrease the performance of a classification model [25][26], we

considered an equal size of reviews for both groups of the training dataset.

In summary, we used a total of 2663 accessibility reviews for the first group and added

another 2663 non-accessibility reviews to the training dataset as the second group. To chal-

lenge and improve the decision making of the model, the second group is created from

two sub-groups of reviews; (1) 1331 reviews that contain one or more accessibility key-

words but are previously excluded from the list accessibility reviews through manual in-

spection, (2) and 1332 reviews that are not related to accessibility and they do not contain
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Table 4.1: Eler et al. List of keywords having accessibility reviews.

Keywords

(1) dark mode (26) metadata (51) grouped
(2) zoom (27) too bright (52) seizures
(3) customization (28) haptic (53) select language
(4) font size (29) scaling (54) understandable
(5) volume (30) control key (55) vibration feedback
(6) cannot see (31) voice command (56) actionable
(7) accessibility (32) text-to-speech (57) audio cue
(8) readable (33) eyestrain (58) missing label
(9) change font (34) strain (59) navigable
(10) hard to see (35) background image (60) verbose
(11) background color (36) screen reader (61) captcha
(12) light mode (37) change language (62) audio description
(13) mute (38) small widget (63) container
(14) contrast (39) stop button (64) distinguishable
(15) subtitle (40) impaired (65) input type
(16) adjustable (41) text reflow (66) keyboard language
(17) blind (42) timeout (67) page refresh
(18) header (43) consistency (68) page title
(19) overlap (44) epilepsy (69) sign language
(20) pause button (45) assistance (70) svg image
(21) flicker (46) colour coding (71) switch device
(22) spacing (47) transcript (72) touch target
(23) migraine (48) default language (73) adjust size
(24) input method (49) older device (74) adjust colour
(25) autoplay (50) visual cue



18

any accessibility-related keywords. Meanwhile, we wanted to provide the model enough

reviews that could speak for all possible accessibility reviews. Thus, unlike the thresholds

used in many previous text classification studies, our training data is consisting of 5326

reviews. Table 4.2 explains our training dataset.

Table 4.2: Training dataset.

Accessibility Non-accessibility Total

With keywords Without keywords
2663 1331 1332 5326

To decide on the number of reviews necessary for training purposes, we analyzed pre-

vious text classifications works to find the thresholds. The average number of items used in

comparable studies was close to 2000. Since our goal was to provide the model with suffi-

cient reviews that could represent all possible accessibility topics, unlike existing works we

chose a total of 5326 reviews for training purposes. However, we did evaluate our model

with different sizes of training sets to understand the size of the training set that yields the

best results. We report the results of our evaluations with regard to the testing of different

training sizes in Section 5.3.

4.2.2 Data Cleansing and Preprocessing

After data preparation, we used a common approach detailed in [23] for preprocessing. For

a model to classify text documents correctly, the text needs to be cleaned and preprocessed.

To preprocess the app reviews text, we use some techniques in Microsoft Azure ML [2]

such as tokenization, lemmatization, capitalization, and stop-words removal.

Tokenization

This technique is the process of splitting natural text data into tokens (i.e., words, phrases,

and other elements) that contain no white space. In this work, we tokenize each review by

breaking them into their constituent set of words.
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Lemmatization

Lemmatization is about getting the base form of words by either removing the suffixes of

the words or replacing the suffixes. It’s also the process of reducing the number of unique

occurrences of similar words. We use this preprocessing technique to represents words in

their canonical form in order to reduce the number of unique occurrences of similar text

tokens.

Stop-Word Removal

Stop-Word removal is about removing words such as (is, am, are, if, for, the, etc.) that do

not play any good role in classification.

Case Normalization

Since we wanted the same words with different letter cases (e.g., “Accessibility” and “ac-

cessibility”) to be treated as the same word, we converted original review texts to lower

case. This type of text cleansing helps to ignore words that differ just in letter case to have

different features.

avoid having repeated features differing only in the letter case.

Noise Removal

We removed any noise that could deteriorate classification performance and confuse the

model when learning. Examples of the noise we removed include removing special char-

acters, numbers, symbols, email addresses, and URLs.

4.2.3 Feature Extraction Using Feature Hashing

After cleansing and preprocessing the reviews text, we extract features from the prepro-

cessed text that matter the most in distinguishing between the two classes in classification.

Particularly, we use the Feature Hashing technique for feature extraction. The Feature

Hashing transforms text documents into a set of features and represent as numeric vectors.
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Internally, the Feature Hashing creates a dictionary of N-Grams. We use 2-Gram in our

classification since it greatly improves the performance of text classification [46]. Gen-

erally, N-Grams have more meaning and semantic than any isolated word. For example,

the word “font” does not provide enough information by itself. However, when N-Gram

features extracted from reviews e.g. (“small font”, “font customization”, “font size”, etc.)

the word “font” could indicate accessibility reviews.

4.2.4 Model Training and Building

We built a model on the Azure ML platform to automatically classify app reviews as ac-

cessibility pertaining or not. During this phase, we applied a ten-fold cross-validation

technique to evaluate the reliability and variability of our classifier. We split our data set

into ten different folds each containing the same size of app reviews. Then, we performed

10 evaluations with various testing datasets. Nine folds were used as a training dataset and

the other fold was used as a testing dataset in each evaluation. We analyze the results of all

evaluations and report the average stats tested with multiple classifiers.

4.2.5 Classifier Selection and Model Evaluation

Choosing an appropriate classification technique for optimal performance is hard by itself

[17]. In this work, we are tackling a binary classification problem as we are categorizing

app reviews into two groups, accessibility and non-accessibility. Our approach relies on the

supervised machine learning algorithms to assign each review into one of the two categories

since we already have a predefined set of classes.

Since knowing which classification algorithm works better is important, several stud-

ies have compared many classifiers, namely Naive Bayes Multinomial (NBM), K-Nearest

Neighbor (KNN), Gradient Boosting Machine (GBM), and Random Forest (RF) [26][25].

They reported that Random-Forest works better than others. However, we tested nine dif-

ferent classification algorithms ourselves as to see which one provides the best results in the

context of accessibility and app reviews classification. While testing the nine classifiers,
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we compared them based on their common statistical measures (i.e. precision, recall, and

F1-Score). The classifiers we tested are: Decision Forest (DF)[12], Logistic Regression

(LR), Boosted Decision Tree (BDT)[2], Support Vector Machine (SVM)[50], Neural Net-

work (NN)[18], Averaged Perceptron (AP)[2], Bayes Point Machine (BPM)[19], Decision

Jungle (DJ)[2], and Locally Deep SVM (LD-SVM)[2]. These experiments were performed

on the Azure ML platform because it provides a built-in web service once the classification

model is deployed. We report the results of our classifier comparison and evaluation in

Section 5.1.
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Chapter 5

Experimental Results and Evaluation

In this chapter, we review the results of our experiments and evaluate the performance

of our approach. For evaluating the various accessibility models, we use the statistical

measures (Precision, Recall, Accuracy, F1-Score). Using the evaluation results we provide

answers to our research questions.

5.1 Classifier Evaluation

RQ1: Is it possible to accurately perform two-class classification of app reviews (i.e. into

accessibility reviews and non-accessibility reviews) using a machine learning technique?

To a certain extent its possible to manually identify accessibility reviews from a given

set of user reviews as done in a previous work [15]. However, manually reading a large

number of reviews is challenging. The manual process of filtering accessibility reviews

from other reviews is human-intensive, error-prone, and could be subject to reader bias.

Developers and analysts frequently face the burden of analyzing large user reviews. Con-

sidering the lack of an automated approach to detect accessibility-related reviews and filter

out irrelevant reviews, we performed an experiment as to figure if the automatic classi-

fication of user reviews using machine learning techniques can be performed with high

accuracy. Answering this research question is important as can help determine the limita-

tions and opportunities of the machine learning technique in the automated identification

of accessibility reviews.
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A comparison between different classification algorithms tested in this study is pre-

sented in Table 5.1. This table shows that the accuracy and F1-measure of the Boosted

Decision Tree (BDT) are clearly higher than its competitors for the classification of app

reviews. The BDT with the accuracy of 90.6% and F1-measure of 90.7%, outperforms

other classification algorithms. The table also shows that the Bayes Point Machine (BPM)

and Averaged Perceptron (AP) with F1-measure of 88.7% and 88.3% respectively, yielded

higher predictive power after the Boosted Decision Tree. The BDT, with the best perfor-

mance, is selected to classify the test data.

The fact that BDT achieves top performance rate can be explained by the fact that a

boosted decision tree aggregates several learnings since it is an ensemble learning method.

In the ensemble method, the errors of the first tree are fixed by the second tree, and the

errors of the second tree is fixed by the third, and so on. In this method, the entire ensemble

trees together form the prediction.

Table 5.1: Performance of binary classification techniques.

Classifier Accuracy Precision Recall F1-measure

Logistic Regression 0.881 0.920 0.834 0.875
Decision Forest 0.880 0.914 0.838 0.874
Boosted Decision Tree 0.906 0.898 0.916 0.907
Neural Network 0.854 0.825 0.901 0.860
Support Vector Machine 0.869 0.892 0.840 0.865
Averaged Perceptron 0.886 0.903 0.864 0.883
Bayes Point Machine 0.889 0.906 0.869 0.887
Decision Jungle 0.870 0.914 0.818 0.863
Locally Deep SVM 0.873 0.882 0.860 0.871

Summary. We found that our approach with the accuracy 90.6% and F1-measure of

90.7%, can accurately identify accessibility reviews and filter out irrelevant reviews.
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5.2 Approach Comparison

RQ2: How effective is our machine learning approach in identifying accessibility reviews?

Our goal is to recommend an automatic approach for identification of accessibility

reviews that can effectively outperform current state-of-the-art baselines, Keyword-based

(i.e. also called Pattern-based or String-matching) [15] and Random Classifier [30]. An-

swering this question is important to understand if the detection of accessibility reviews

is a learning problem. We hypothesize that learning algorithms can outperform String-

matching algorithms. If a learning algorithm does not perform better than a String-matching

algorithm, then there is no need to propose such a framework. To examine if the hypothesis

holds true, we chose to investigate the following two baselines similar to [5] and [30], and

compare them with our learning approach.

5.2.1 Baseline 1 (Keyword-based Approach)

The keyword-based (string-matching) approach for identifying accessibility reviews is sug-

gested by Eler et al. [15]. In their work, they inspected 214,053 user reviews to identify

the reviews pertaining to accessibility. Their String-matching approach classified a total of

5076 reviews as accessibility reviews. However, manual verification of the 5076 reviews

later found that only 2663 of the reviews were correctly identified.

For calculating statistical metrics for baseline 1, we randomly selected 1000 reviews

from the list of accessibility reviews and non-accessibility reviews provided by [15] with

their ground truths. Then, we inspected these reviews to determine true positives (tp),

true negatives (tn), false positives (fp), and false negatives (fn) by comparing the classifi-

cation (labels) of the random reviews with the manual classification results performed by

Eler et al. [15]. If a review had the same classification as the manual classification, we

will assign a true positive (tp) or true negative (tn). True positives are when the keyword-

based approach correctly detected accessibility reviews, and true negatives are when non-

accessibility reviews are correctly identified. Likewise, if the classification in the random
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reviews is different from the manual classification, we assign false positive or false nega-

tive. False positives are the reviews identified as accessibility reviews while they are not;

and false negatives are the reviews identified as non-accessibility reviews while they are

accessibility reviews. Since we already had the reviews labelled, we were able to count tp,

tn, fp and fn as shown below.

tp 243
tn 509
fp 248
fn 0

After having the values for tp, tn, fp and fn, we could easily calculate the precision

(P = tp
tp+fp

), recall (R = tp
tp+fn

), and F1-measure (F = 2·P ·R
P+R

) of the keyword-based

approach. The results are presented in Table 5.2, however, we only use F1-measure score

for comparing different approaches. F1-measure being the hormonic mean of precision

and recall, provides a good trade-off between them and allows mentioning one number that

represents both measures.

5.2.2 Baseline 2 (Random Classifier)

Like Da Maldonado et al. [30], we considered Random Classifier as a baseline to compare

our approach with. The precision of this technique is calculated by dividing total accessi-

bility reviews by total user reviews (i.e. 2663
214053

= 0.012). When it comes to the recall, there

is only 50% probability for a review to be classified as accessibility review since there are

two possible classifications available. Finally, the F1-measure of baseline 2 is calculated as

2 ∗ 0.012∗0.5
0.012+0.5

= 0.023.

Table 5.2 shows the standard statistical measures of the three approaches, also the im-

provements in our approach compare to the other approaches. As we can see, F1-measure

obtained by the machine learning approach is much better compared to other approaches.

F1-measure achieved by the machine learning approach is 90.7, while the F1-measure val-

ues using the keywords and the random classifier are 0.662 and 0.023 respectively. Figure
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Figure 5.1: F1-score for different approaches.

5.1 presents a visual comparison of the three approaches in terms of F1-measure. Both

Figure 5.1 and Table 5.2 show that our approach outperforms the keyword-based approach

by 1.354x and the random classifier by 39.434x when identifying accessibility reviews.

Table 5.2: Comparing performance of different approaches.
Our approach keyword-based Random classifier

Precision Recall F1 Precision Recall F1 Precision Recall F1

Classification 0.898 0.916 0.907 0.490 1 0.662 0.012 0.500 0.023

Improvement – – – 1.832 x 0.916 x 1.370 x 74.833 x 1.832 x 39.434 x

It is worth knowing that the keyword-based approach has low precision but high recall.

The high recall is due to the fact that accessibility reviews make only a small subset of

app reviews. The number of accessibility reviews for mobile apps is around 1.24% of all

reviews available on app distribution platforms [15]. On the other hand, low precision is be-

cause the presence of a keyword (derived from guidelines) in a review does not necessarily

mean the review is about accessibility.
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Summary. Our machine learning approach can effectively outperform the current

state-of-the-art approaches in the classification of accessibility reviews. We obtained

an F1-measure score of 90.7% with an improvement of 1.370x and 39.434x over the

keyword-based and random classifier approaches respectively.

5.3 Training Size Impact Evaluation

RQ3: How much training dataset is needed for the classification to effectively identify

accessibility reviews?

So far, we saw that our machine learning approach can accurately identify user reviews

that pertain to accessibility. However, the performance of a classifier relies on the size of

the training dataset. Also, creating a good training dataset is a tedious and challenging

task. Thus, the question is: how much training data is needed to effectively classify user

reviews? If our approach requires a very large training dataset than our approach will

require a considerable time and effort to be applied to other similar contexts. However,

if less training dataset is required to effectively classify accessibility reviews, then our

approach can be extended and applied with little efforts. That being said, we hypothesize

that the performance of a classifier improves as we add to the training dataset.

In order to answer this RQ, we add reviews to the training dataset incrementally then

evaluate the performance of the classification. We begin by creating a large training dataset

that contains equal size of accessibility reviews and non-accessibility reviews as explained

in Table 4.2. Then, we divide the dataset into 10 folds making sure they contain equal size

of both the classes. Next, we test our approach using a 10-fold cross-validation technique,

9 folds for training and 1 fold for testing. Since we want to monitor the performance of our

classifier as training dataset gets increased, we incrementally add batches of 100 reviews

until we reach 500 reviews, then we start adding batches of 500 reviews until we use all of

our training data (e.g. 5326 reviews). It’s important to note that we consider equal size of
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accessibility reviews and non-accessibility reviews even with batches incrementally added

to the training dataset. Next, we compute the F1-measure value of each iteration (e.g.

after adding batches of new reviews to the training set) and record the average F1-measure.

Then, we report the number of reviews needed to achieve at least an F1-measure of 80% to

90%.

Figure 5.2 shows F1-measures calculated when detecting accessibility reviews, while

incrementally adding batches of reviews to the training dataset. Our results show that the

highest F1-measure (i.e. 0.907) was achieved with 5326 reviews (our total training dataset)

and the lowest F1-measure value (i.e 0.635) was achieved with 100 reviews. Our results

also show that 80 to 90 percent F1-measure is achieved with 400 to 5000 reviews in the

training dataset. Such that, we need only 400 reviews to get around 80% F1-measure and

we need at least 1500 reviews to get 85% or higher, while with 5000 reviews we got around

90% F1-measure. Finally, we found that the F1-measure score improves as we add to the

training dataset.
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Figure 5.2: F1-score received by incrementally increasing the training data size
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Summary. We find that we need a relatively smaller dataset (i.e. 1500 reviews) for

training to get 85% or higher F1-Measure. However, the F1-measure score improves

as we add to the training dataset.
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Chapter 6

Threats to Validity and Future Work

In this chapter, we identify several threats to the validity of our study and identify future

work for this topic. We discuss threats in two groups, construct and external threats. Then,

we review a list of potential areas of future work that could prove valuable to this study

going forward.

6.1 Threats to Validity

Construct Threats relate to the appropriateness of our dataset and accuracy of the pre-

vious work [15]. A potential threat is related to creating a training dataset or the manual

classification. Since developing a training dataset is typically a tedious job also subject to

reader bias, we mitigated this by choosing a dataset of accessibility reviews as our training

data that were previously identified and validated [15]. Additionally, we are not certain

if the manually identified accessibility reviews cover all possible accessibility topics. To

reduce this risk we used all of the identified reviews as training input rather than choosing

a sample set of reviews. A total of 2663 reviews were previously identified as accessibility

reviews from 214,053 app reviews through manual inspections and validations.

Another potential threat relates to the keywords used for the identification of acces-

sibility reviews through string-matching approach. The string-matching approach relied

on 213 keywords derived from 54 accessibility recommendations by BBC. The keywords

and phrases users use in their reviews do not necessarily match the keywords available in

the guidelines and recommendations. This mismatch includes but not limited to situations
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when keywords would be spelled incorrectly by reviewers. A related concern is whether

the set of keywords is inclusive of all possible keywords that users use to express their

accessibility concerns. We leave these tasks as our future work.

External Threats relate to the generalizability of our findings for this evaluation. We

evaluate and test our findings on a dataset collected by previous researchers [15]. The

dataset is from android open source applications. Obviously this dataset cannot represent

entire mobile apps on the App stores. Also, commercial and open source apps may be dif-

ferent. Still, we believe the size of the dataset makes it inclusive and diverse. Meanwhile,

we removed reviews written in any language other than English during our reprocessing

phase. Since we only analyzed the reviews written in English, our approach is not applica-

ble to non-English reviews.

6.2 Future Work

We can at least explore three areas for future work — exploring the suitability of different

learners; performing a multi-class classification on the accessibility reviews; and introduc-

ing a set of accessibility keywords that users use in their reviews.

6.2.1 Active learning

Typically, the first step towards the automatic classification of app reviews is creating a

training dataset. The training dataset has to be manually labeled by developers or subject

matter experts. As our results show, having an adequately large training size is essential for

optimal performance. The training process for an adequate training set can be cumbersome

and laborious since there a large number of reviews available on app stores. In order to

further reduce the efforts needed in creating a training data, we are planning to explore

Active Learning [42] [43], a well-known machine learning paradigm for classification.
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6.2.2 Multi-class classification of accessibility reviews

Another potential future direction is performing a multi-class classification on the identi-

fied accessibility reviews — dividing them into categories such as text, audio, video, UI,

gestures, and others.

6.2.3 Introducing accessibility keywords that users use in their re-
views

Another good contribution can be the introduction of a set of keywords that reviewers use

to express accessibility concerns. The current set of keywords available is driven from

guidelines. Keywords used in guidelines can differ from the keywords used by users in

their reviews.
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Chapter 7

Conclusion

Developers can use user reviews to improve their apps. This thesis presents an approach

that automates the classification of app reviews as accessibility-related or not so developers

can easily detect accessibility issues with their products and improve them to more accessi-

ble and inclusive apps utilizing the users’ input. We conduct an evaluation of nine different

two-class classifiers — presented in table 5.1. Our evaluation shows that the Boosted De-

cision Tree classifier offers higher accuracy than the other approaches in the classification

of app reviews. Additionally, we compared our approach with two baselines, namely a

keyword-based approach, and a random classifier. The results indicate that our approach

outperforms the two state-of-the-art approaches with the F1-measure of 90.7%. Finally, we

conduct an experiment to evaluate the impact of training data sizes on our classifier’s accu-

racy. Our evaluation shows that we need a relatively smaller dataset (i.e. 1500 reviews) for

training to get 85% or higher F1-measure. However, the F1-measure score improves as we

add to the training dataset.
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Table A.1: Eler et al. List of all accessibility keywords.
Keywords

accessibility control key light mode spacing
accessible customization light theme speech synthesizer
actionable dark mode link description stop button
adaptability dark theme logical order strain
adaptable decorative background logical sequence subtitle
adjust color decorative content magnify suplementary information
adjust colour decorative element metadata svg image
adjust font decorative image migraine switch device
adjust size default input format minimum space talkback
adjustability default language missing image target area
adjustable difficult to read missing label text alternative
alert dialog difficult to see missing layout text equivalent
alternative format disabled person mute text reflow
alternative text disabled user narrative audio text resize
animated content disorientating nausea text resizing
aria label disorientation navigable text size
assistance distinguishable navigational aids text-to-speech
assistive dizziness night mode timeout
audible content duplicate link no label timing out
audio conflict epilepsy non actionable tiny font
audio cue explicit labels non executable too bright
audio description eyestrain non text tooltip
auto-play fatigue non visual touch size
autoplay flicker non-actionable touch target
background color focus order non-executable transcript
background colour focusable non-text understandable
background image font size non-visual unexpect open
black mode font sizing older device unexpected audio
black theme grouped operable unexpectedly opening
blind haptic overlap unfamiliar
button order hard to see page refresh unique description
can’t read have focus page title unique label
can’t see headache pause button unsupported style
cannot read header perceivable verbose
cannot see heading personalization verbosity
captcha hearing loss photosensitive vertigo
change focus hidden text play automatic vibration alert
change font images of text plays automatic vibration feedback
change language impaired properly grouped visible focus
choose language impairment readable visible label
clear error message impossible to read repeated link vision impairment
clear label impossible to see scaling visual cue
colour coding inactive space screen glare visual formatting
complex control input method screen reader voice command
component order input sign screen title volume
consistency input type screenreader wcag
consistent label keyboard language seizures white mode
container keyboard trap select language white theme
content description label absent self voicing widget order
content order label place sign language zoom
content resizing landmark small button
contentDescription large font small control
contrast larger font small font
control focus leave focus small widget
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