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Abstract

Biped robots have come a long way in imitating a human being’s anatomy and

posture. Standing balance and push recovery are some of the biggest challenges

for such robots. This work presents a novel simplified model for a humanoid

robot to recover from external disturbances. The proposed Linearized Double

Inverted Pendulum, models the dynamics of a complex humanoid robot that

can use ankle and hip recovery strategies while taking full advantage of the

advances in controls theory research. To support this, an LQR based control

architecture is also presented in this work. The joint torque signals are gener-

ated along with ankle torque constraints to ensure the Center of Pressure stays

within the support polygon. Simulation results show that the presented model

can successfully recover from external disturbances while using minimal effort

when compared to other widely used simplified models. It optimally uses the

the torso weight to generate angular momentum about the pelvis of the robot

to counter-balance the effects of external disturbances. The proposed method

was validated on simulated ‘TigerBot-VII’, a humanoid robot.
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Chapter 1

Introduction

Humanoid robots are largely devised for applications with mundane and rou-

tine tasks that can be automated using the existing infrastructure specifically

meant for humans. These robots may need to walk or stand on uneven terrain

or even bump into potential obstacles in the environment. For these reasons,

standing balance and push recovery in humanoid robots is an important field of

research, with many questions yet to be answered. They are highly susceptible

to external disturbances and tend to fall over. The controls problem becomes

more complex as these robots are generally high degree of freedom, non-linear

dynamics, small support polygon, under-actuated systems with strong cou-

pling between joints. Representing the robot using a simplified model enables

us to facilitate real-time control of the biped robot.

1.1 Push Recovery Strategies

Achieving stability of the robot is a challenging task and implementation to

recover from say a push or an external disturbance is done using three strate-

gies: ankle, hip and stepping. When small disturbances are present, the robot

1



CHAPTER 1. INTRODUCTION 2

can use its ankle joints only to balance itself and recover from the push. For

larger disturbances, the robot can use ankle and hip joints to deal with the

external disturbances like humans do. For even larger disturbances, it may

not be possible to recover from external disturbances just by using ankle and

hip strategies and the robot will then need to take a step to avoid falling.

Thus, ankle and hip strategies can be used to maintain balance for smaller

disturbances, while stepping strategies are used for larger disturbances, shown

in Fig. 1.1.

Figure 1.1: Push recovery strategies for humanoid robots.

This work proposes a Linearized Double Inverted Pendulum Model (LDIP)

that incorporates both ankle and hip strategies for standing balance and push

recovery.
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1.2 Simplified Models for Humanoid Robots

A simplified model is essential to understand the dynamics of the real robot.

It is easier to then control this simplified model rather than the high Degree of

Freedom (DoF) robot with complex dynamics. The research proposed in this

work is motivated by the in-house robot TigerBot-VII [1]1. TigerBot-VII is a

complex 14 DoF humanoid robot with IMU sensors on the torso and six-axis

force/torque sensors on the ankle joints. The model proposed in this work is

to achieve balance and push recovery on this robot.

One of the most commonly used simplified model is the Linear Inverted

Pendulum Model (LIPM) [2] [3] and has been further discussed in Chapter 2.

In this model the entire mass of the robot is concentrated at its Center of Mass

(CoM) and the legs are assumed to have zero mass. This model also imposes

a constraint to maintain the CoM at a constant height and only allows motion

in forward/backward direction. When humans try to maintain their balance,

they generally rotate their arms and lunge their torso forward/backward in

an attempt to balance themselves. To capture this behaviour, an extension of

LIPM was later proposed called Linear Inverted Pendulum Model with flywheel

(LIPM-FW) [4] where the centroid angular momentum is explicitly modeled.

Linearized Double Inverted Pendulum model (LDIP) is built upon the concept

of LIPM with flywheel but the angular momentum is an implicit design of the

model, described in Chapter 2.

The proposed model is built upon the idea to redistribute the mass of the

robot’s upper and lower body to optimally control the torso and generate an-

1It is a humanoid robot designed and built at Rochester Institute of Technology, New
York https://youtu.be/lZBe5EtFKaQ

https://youtu.be/lZBe5EtFKaQ


CHAPTER 1. INTRODUCTION 4

gular moment about its pelvis. This angular momentum mimics the human

behavior of lunging their torso forward/backward while balancing. In essence,

the angular momentum is implicitly modeled in LDIP and the angular posi-

tion and velocity of the torso are a part of the system state variables. This

further enables us to control and use the torso optimally using modern control

techniques which takes into consideration the internal states of the system.

In order to control and actuate the robot in real-time, it is important to not

only have a simplified model representation but also one that is more realisti-

cally close to the actual robot. The LDIP model considers this trade-off and

successfully balances the robot using minimal effort at the joints.

The rest of the thesis report is organized as follows: Chapter 2 presents

related work in the field of humanoid balancing and push recovery, Chapter

3 proposes the model definition and equations for LDIP. Chapter 4 presents

a control architecture based on LDIP model for push recovery and standing

balance. Chapter 5 gives an overview of TigerBot-VII used for validation of the

proposed model. Chapter 6 presents the specifications of TigerBot-VII which is

used as a test platform, comparison between LDIP and other proposed models

in simulation and discusses the findings. Chapter 7 concludes this work and

presents the advantages of the proposed model. Chapter 8 lays out the future

work for this research and discusses issues and recommended modifications for

TigerBot-VII robot hardware.



Chapter 2

Literature Survey

This Chapter covers some of the many simplified models proposed by vari-

ous researchers and their implementations in the humanoid robot community.

Stability criteria and standing balance for bipedal robots is a vast field of

research. Based on the various stability criteria defined, a lot of research

has been conducted proposing several simplified models that could capture

a humanoid robot dynamics. Some of these criteria include Zero Moment

Point (ZMP) [2] [5] [6] [7] [8], Center of Pressure (CoP) [7] [8], Capture Point

(CP) [4], and Foot Rotation Indicator (FRI) [7].

2.1 Stability Criteria

In humanoid literature, many researchers have proposed different stability

criteria’s for these robots which can be used to identify whether the robot

is stable and maintaining its balance or not. When a humanoid robot is

moving, it needs to make sure that there is always a contact between it’s

5
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sole and the ground. This means, given a motion of a humanoid robot, we

need to determine whether or not there is a contact between the sole and the

ground and plan the motions to ensure this contact is maintained. Generally,

a humanoid robot is made to comply to one of the stability criteria for these

kind of purposes. For this, we first need to understand what is a support

polygon of a humanoid robot.

Support Polygon is a convex hull, which is the smallest convex set including

all contact points of the robot with ground. To get an intuition, if we take

an elastic cord and enclose all the contact points between the robot and the

ground, the polygon then formed will be called the support polygon, shown in

Figure 2.1.

Figure 2.1: Support Polygon of a humanoid robot.

2.1.1 Zero Moment Point

Zero Moment Point or ZMP is a point on the ground at which the horizontal

moment generated by the ground reaction force/torque equals zero [2].

In Figure 2.2, the sole of the robot and the ground are in contact and the

arrows below represent the ground reaction force distribution. The point on

the ground where the resultant moment of all the ground reaction forces is
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Figure 2.2: Zero Moment Point (ZMP).

zero, will be called the zero-moment point. For the robot to be stable, the

Zero moment point must always stay inside the support polygon. If this is not

true, the robot will have a tendency to topple over.

2.1.2 Center of Pressure

The field of pressure forces (normal to the sole) is equivalent to a single resul-

tant force, exerted at the point where the resultant moment is zero [8]. This

point is called Center of Pressure or CoP. The main difference between ZMP

and CoP is that CoP is linked to forces exerted by contact while ZMP is linked

to forces transmitted without contact.

2.1.3 Foot Rotation Indicator

The Foot Rotation Indicator or FRI point is a point on the foot–ground contact

surface, within or outside the support polygon, where the net ground reaction

force would have to act to achieve a zero moment condition about the foot

with respect to the FRI point itself [7]. The FRI point coincides with the ZMP

and CoP when the foot is stationary, and diverges from the ZMP for non-zero

rotational foot accelerations. This can be observed in Figure 2.3
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Figure 2.3: Foot Rotation Indicator (FRI).

2.2 Existing Simplified Models for Humanoid Robots

2.2.1 Linear Inverted Pendulum Model

The most commonly used model in humanoid literature is Linear Inverted

Pendulum Model (LIPM) [2] [3], shown in Figure 2.4. This model makes three

assumptions: (i) all the mass of the robot is concentrated at its center of mass

(CoM); (ii) the robot has zero mass legs, whose tips contact the ground at sin-

gle rotating joints; (iii) only the forward/backward and the up/down motions

of the robot is considered, neglecting lateral motion. LIPM also constraints

the CoM to a constant height. This model is popular among the humanoid re-

search community because the model is inherently linear which makes it easy

to control.

The dynamics of the model is described by the following equation:

ẍ =
g

z0
x (2.1)

where the z0 is the constant height of the CoM and x is the displacement of

the CoM in horizontal direction. S. Faraji et al. [9] used LIPM with a stepping
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Figure 2.4: Linear Inverted Pendulum Model.

strategy to recovery from large external disturbances which was based on time

projection control.

2.2.2 Spherical Inverted Pendulum Model

E. Ahmed et al. [10] proposed a Spherical Inverted Pendulum Model (SIP)

that does not have to follow the constraint to maintain a constant height for

CoM, shown in Figure 2.5. This helps their model to control and generate a

more natural motion.

The dynamics of the model is described by the following equation:

θ̈ =
g

l
θ (2.2)

where the l is the length of fixed pendulum arm and θ is the angular dis-

placement of the CoM. The authors also proposed an energy based controller
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Figure 2.5: Spherical Inverted Pendulum Model.

based on SIP model which has a critically damp response, achieving the fast

stabilization time with the least amount of energy consumption possible. The

proposed control law is as follows:

θ̈ = (1− kp)ω2θ − kpωθ̇ (2.3)

Both LIPM and SIP use only the ankle joints for balancing and thus only

consists of ankle based push recovery strategies when dealing with small dis-

turbances and stepping strategy for larger disturbances.

2.2.3 Linear Inverted Pendulum with Flywheel

As the push force increases, we need to incorporate hip strategy in conjunction

with ankle strategy to be able to maintain balance. J. Pratt et al. [4] proposed

that angular momentum about the CoM must also be considered to capture
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the behaviour of human beings rotating their arms rapidly or lunging forward

in an attempt to balance themselves. They explicitly model the angular mo-

mentum by replacing the point mass in the LIPM with a Flywheel, thus calling

it Linear Inverted Pendulum Model with Flywheel (LIPM-FW). They also pro-

posed the concept of Capture Points and Capture Regions where a Capture

Point is a point on the ground where the robot can step to in order to bring

itself to a complete stop and Capture Region is the collection of all Capture

Points. For the Linear Inverted Pendulum Model, there is a unique Capture

Point corresponding to each state and the ability to accelerate the CoM by

changing the angular momentum can extend the unique Capture Point to a

set of adjacent points, which is called Capture Region. If the Capture Region

overlaps with the support polygon, the robot will be able to stabilize itself

without moving, i.e., just using ankle and hip strategies. If they do not over-

lap, the robot will need to take a step to avoid falling. If the capture region is

out of the kinematically reachable region, then the robot will not be able to

avoid falling by taking just one step.

The dynamics of the model is described by the following equations:

ẍ =
g

z0
x− 1

mz0
τh (2.4)

θ̈b =
1

J
τh (2.5)

where the z0 is the constant height of the CoM, x is the displacement of

the CoM in horizontal direction, θb is the angular displacement of the flywheel

and τb is the angular moment of inertia generated by the flywheel.
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Figure 2.6: Linear Inverted Pendulum with Flywheel Model.

The LIPM-FW model uses both, ankle and hip based push recovery strate-

gies for small disturbances and stepping strategy for larger disturbances. M.

Shafiee-Ashtiani et al. [11] and A. Elhasairi et al. [12] used LIPM-FW model

for push recovery and standing balance for position controlled robots but used

different control approaches.

2.2.4 Double Inverted Pendulum

B. Stephens et al. [13] [14] [15] [16] proposed an integral controller for hu-

manoid push recovery based on a Double Inverted Pendulum Model. They

presented a Center of Pressure Regulator (CoPR) with a model tracking con-

trol that allows the robot to behave like a double inverted pendulum with the

controller. Their proposed approach performed better than other standard

controllers like the constrained LQR controllers.
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Figure 2.7: Double Inverted Pendulum Model.

2.3 Active versus Passive Dynamics

2.3.1 Active Dynamics Robots

Humanoid robots tends to be built as a research platform for general control

and manipulation. These robots generally have a rigid actuators and follow a

precisely calculated motion trajectory. With enough actuators in their arms,

legs and body and a high acceleration potential, they can follow undisturbed

trajectories with precision while remaining statically stable and interact with

environment. Such humanoid robots have active dynamics and they are gen-

erally fully actuated and controllable. Simplified models discussed in Section

2.2 Even though, such active dynamics robots have a much more flexible range

of motion, they also tend to have a delicate stability and must have a detailed

maps of the environment to avoid collisions which cause large force spikes

and potentially damage their rigid gearing. Large impulsive disturbances tend
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to make these humanoid robots sensitive to external disturbances. Figure

2.8 shows some examples of active dynamics robots which also include RIT’s

TigerBot-VII.

Figure 2.8: RIT’s TigerBot-VII, Boston Dynamics’ ATLAS, NASA’s Valkyrie,
and Honda’s ASIMO.

One very success outlier amongst these robots is ATLAS. With the help

of high powered hydraulic actuators, ATLAS from Boston Dynamics have

managed to achieve a robust locomotion. Even though, no research regarding

ATLAS have been made public by Boston Dynamics, the robot simulation

model is made available online. ATLAS simulation model is a popular research

platform amongst humanoid research community.

2.3.2 Passive Dynamics Robots

Static stability is limited to stable terrain and the robots need to rely on

dynamic stability while moving or working in the real world. Passive dynamics

refers to the dynamical behavior of the humanoid robot when not drawing

energy from a supply. Many hoppers and biped robots are able to move
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robustly with the combination of passive compliance and intuitive control laws

by using techniques like placing the next step farther forward for higher speeds

and injecting energy with each stride. Figure 2.9 shows some examples of

active dynamics robots.

Figure 2.9: Oregon State University’s Cassie, MABEL, and ATRIAS.

One very successful semi-active dynamics biped robots is Cassie [17]. It is

designed with a low leg-to-torso inertia ratio and leg angle axes near the CoM

for simplified dynamics. As such, it is amenable to intuitive control schemes

and uses the spring-loaded inverted pendulum (SLIP) model as the simplified

model [18] [19].

Spring Loaded Inverted Pendulum Model

The SLIP can be seen as a simple, lumped-parameter representation of animal

limbs. The SLIP comprises a single point-mass body and a massless linear

spring for each leg. Being composed of only a point mass and springs, the
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SLIP is conservative and has no rotational inertia or angular momentum, and

the only control signal for the unactuated SLIP is the leg angle at touchdown.

Figure 2.10 shows the SLIP model for running gaits [20]. A point mass

m rebounds on a massless spring with stiffness k and rest length r0 in stance

while moving under the sole influence of gravity (g) in flight. Stance begins

when the point mass satisfies a landing condition in flight. Stance ends when

the spring has rebounded to its rest length.

Figure 2.10: Spring Loaded Inverted Pendulum Model (SLIP).

The next Chapter introduces the Linearized Double Inverted Pendulum

Model with all the assumptions and formulations for the model.



Chapter 3

Linearized Double Inverted

Pendulum

3.1 Model Definition and Assumptions

The robot models have historically been inspired by human stance and gener-

ally represented as an inverted pendulum. The proposed LDIP is modeled as a

double inverted pendulum with the following characteristics and assumptions

as illustrated in Figure 3.1:

1. The mass of the legs is concentrated at mass m1 and that of the torso

is concentrated at mass m2.

2. The distance between the hip joint and m2 is fixed, and denoted by l2.

Similarly, the distance between the ankle and the hip is variable, denoted

by l1.

3. m1 is fixed at the center of the length l1, equidistant from ankle and

17
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hip while maintaining a constant height of z0/2. This implies that hip

is always maintained at a constant height of z0.

4. Only forward/backward and up/down motion is considered with negli-

gible lateral motion.

Figure 3.1: Linearized Double Inverted Pendulum Model.

3.2 Model Dynamics - Equations of Motion

The equations of motion have been derived using Lagrange’s equations of the

form:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= τi (3.1)

where L is the Lagrangian which is defined as the difference between the
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kinetic energy, K, and the potential energy, P , of the system, i.e. L = K−P .

The system state variables are q = [x θ]T , where x is the position of hip with

respect to CoP in horizontal direction, θ is the angular position of torso with

respect to the ground normal.

We start with the positions of mass m1 in xz-plane and differentiate it with

respect to time to get its velocity.

x1 =
x

2
z1 =

z0
2

ẋ1 =
ẋ

2
ż1 = 0

Similarly, for mass m2,

x2 = x+ l2Sθ z2 = z0 + l2Cθ

ẋ2 = ẋ+ l2θ̇Cθ ż2 = −l2θ̇Sθ

Next, we compute the square of total velocities for m1 and m2.

ṙ21 = ẋ21 + ż21 ṙ22 = ẋ22 + ż22

=

(
ẋ

2

)2

+ (0)2 =
(
ẋ+ l2θ̇Cθ

)2
+
(
−l2θ̇Sθ

)2
=
ẋ2

4
= ẋ2 + l22θ̇

2 + 2ẋθ̇l2Cθ
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The total kinetic energy, K, and potential energy, P , is as follows,

K =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2

=
1

2
m1

(
ẋ2

4

)
+

1

2
m2

(
ẋ2 + l22θ̇

2 + 2ẋθ̇l2Cθ
)

P = m1gz1 +m2gz2

= m1g
(z0

2

)
+m2g (z0 + l2Cθ)

The Lagrangian for the system is:

L = K − P

=
1

8
m1ẋ

2 +
1

2
m2

(
ẋ2 + l22θ̇

2 + 2ẋθ̇l2Cθ
)
−m1g

(z0
2

)
−m2g (z0 + l2Cθ)

Using equation (3.1), we can compute the equations of motion for the

system with q1 = x and q2 = θ.

(m1

4
+m2

)
ẍ+m2l2θ̈Cθ −m2l2θ̇

2Sθ = Fx (3.2)

m2l2ẍCθ +m2l
2
2θ̈ −m2gl2Sθ = τθ (3.3)

where Fx is the force in x-direction and τθ is the torque applied by the hip

joint. The force Fx will also be dependent on the force Fk as shown in Figure

3.1. Consider the free body diagrams for mass m1 and m2 shown in Figure

3.2.

For mass m1 to maintain a constant height, the forces on m1 in z-direction
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Figure 3.2: Free Body Diagram for mass m1 and m2.

must be zero. In Figure 3.2, free body diagram of m2 shows that F2Cθ = m2g

and F2Sθ = −ux where ux is the control force in x-direction discussed later in

this chapter.

FkCθk = m1g + F2Cθ = m1g +m2g

Fk =
(m1 +m2) g

Cθk

(3.4)

Fx = FkSθk + ux (3.5)
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Putting equation (3.4) in equation (3.5) we get,

Fx =

[
(m1 +m2) g

Cθk

]
Sθk + ux

= (m1 +m2) g tan θk + ux

= (m1 +m2) g
x

z0
+ ux

Fx =
(m1 +m2) g

z0
x+ ux (3.6)

Finally, by substituting Fx from equation (3.6) in equation (3.2) and taking

τθ as control torque uθ, we get the equations of motion for the systems.

(m1

4
+m2

)
ẍ+m2l2θ̈Cθ −m2l2θ̇

2Sθ =
(m1 +m2) g

z0
x+ ux (3.7)

m2l2ẍCθ +m2l
2
2θ̈ −m2gl2Sθ = uθ (3.8)

The following assumptions have been made in order to linearize them. θ

and θ̇ are much smaller than 1, i.e. θ << 1 and θ̇ << 1. It should be noted

that this assumption does not put any constraints on system variable x unlike

in a Double Inverted Pendulum Model [13] where linearization is needed on

all the system variables.

The linearized equations of motion are written in the state space represen-

tation as follows:

ẋ = Ax+Bu (3.9)

where x is the state variable vector, u is input variable vector, A is system
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matrix and B is the control matrix. They have been defined as:

x =



x

ẋ

θ

θ̇


u =

ux
uθ

 (3.10)

A =



0 1 0 0

4g
z0

(
1 + m2

m1

)
0 −4gm2

m1
0

0 0 0 1

−4g
l2z0

(
1 + m2

m1

)
0 g

l2

(
1 + 4m2

m1

)
0


(3.11)

B =



0 0

4
m1

−4
m1l2

0 0

−4
m1l2

1
l22

(
4
m1

+ 1
m2

)


(3.12)

Adhering to the above mentioned constraints of θ << 1 and θ̇ << 1, the

model can describe the dynamics of the robot assuming the required position

is kinetically reachable given by,

|x| ≤
√

(l11 + l12)
2 − z20 (3.13)

where l11 is the length of the tibia, l12 is the length of the femur, and the

overlap between the robot parameters and the LDIP model has been illustrated

in Figure 3.3.

The system variables defined for LDIP model will be used in balancing
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(a) (b)

Figure 3.3: (a) Overlap between the robot and the LDIP Model (b) Corre-
sponding lengths for Tigerbot-VII.

the robot utilizing modern control techniques. In the next Chapter, we will

discuss about the LDIP balance control strategy implementation proposed in

this work.



Chapter 4

LDIP Standing Balance

Control

The Linear Quadratic Regulator (LQR) has been used in conjunction with

Proportional Derivative (PD) controller for standing balance of the robot. The

complete control framework, shown in Figure 4.1 for LDIP consists of an LQR

block for push recovery and standing balance, along with a PD controller to

maintain a constant height z0 of the hip. These two controllers work together

to generate the joint control torques for the humanoid robot.

Current states of the system, x, ẋ, θ, θ̇ and zhip are determined using

Forward Kinematics (FK). The system state vector
[
x ẋ θ θ̇

]T
is fed to the

LQR controller block which generates the required force inputs [ux uθ]
T to

balance the robot using the feedback control law given by,

25
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Figure 4.1: Control architecture for push recovery using LDIP model.
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ux
uθ

 = −KLQR



x

ẋ

θ

θ̇


(4.1)

Additionally, the PD controller shown in Figure 4.1 computes the force

required to compensate the deviation in height. The current height of the hip,

zhip, is compared with the fixed desired height, z0. PD controller uses this

error with its derivative to calculate the control force. This control force is then

added to the constant force applied on the robot due to gravity, (m1 +m2) g,

and computes the total force required in z-direction, Fz.

Fz = (m1 +m2) g + kp (z0 − zhip)− kd ˙zhip (4.2)

The required force inputs from LQR and PD controller are used to generate

the joint torques for the robot. Jacobian of the robot is used to calculate the

ankle and knee joint torques as shown in equation (4.3). Required input torque

uθ computed using LQR is used to generate torque at the hip joint.

τankle
τknee

 = JT

ux
Fz


τhip = uθ

(4.3)

Next Chapter will give an overview of TigerBot-VII used for the validation

of LDIP model.



Chapter 5

Overview of TigerBot-VII

5.1 Introduction

Tigerbot-VII is a humanoid robot designed and built at Rochester Institute of

Technology, New York as a part of multi-disciplinary senior design project1 [1].

It is a 14 DoF humanoid robot that is about the size of a human being. It is

the 7th iteration of RIT’s TigerBot humanoid series, hence called TigerBot-

VII. The robot was originally intended to be a 22-DOF robot including arms

and head rotation, however, the current version consists of each 7-DOF legs

and a static torso. Figure 5.1 shows the CAD model and the real robot.

TigerBot-VII has an IMU sensor in the chest to detect the torso orien-

tation and a Six Axis Force/Torque (SAFT) sensors in each foot to get the

force/torque feedback from the feet. Each joint has an external absolute en-

coder to read the current joint states of the robot.

1Most of the information in this section is based on the work of student members who
designed and built the robot.

28
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(a) (b)

Figure 5.1: TigerBot-VII (a) Real Robot (b) CAD Model.

5.2 TigerBot-VII’s Anatomy

TigerBot-VII is a human sized 14 DoF humanoid robot that has 7 indepen-

dently controlled joints in each leg and is a fully active dynamics robot. Figure

5.2 shows the axis of rotation for each joint in the robot with respect to the

universal coordinate frame. Each leg in TigerBot-VII features a three-axis

hip joint, a knee joint, two-axis ankle joint and an active toe with a passive

heel. Each of the joint except the ankle joints is driven by a 1:100 gear ratio

harmonic drive to increase the torque output from each joint.

Figure 5.3 shows the hip and knee joints of TigerBot-VII. As shown in Fig-
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Figure 5.2: Joint axis of TigerBot-VII.

ure 5.3(a), the joint is designed such that the axis of rotation of each actuator

within the hip joint intersects each other. This allows a 3 degree of freedom

motion for the hip joint with a roll, pitch and yaw motion. Collectively, the

hip joint resembles a ball and socket joint just like the hip and shoulder joints

in humans. Figure 5.3(b) shows the one axis knee joint which is driven by a

belt and pulley mechanism, which in turn is driven by an actuator attached

close to hip joint in the upper femur. The placement of the actuator makes

the joint compact and keeps the weight of the heavy motors close to the torso.

The two axis ankle joint is controlled through two linear actuators on

the sides of the tibia as shown in Figure 5.4. The linear actuators drive the

fibula up/down to move the ankle, shown with yellow dashed arrow lines.

Furthermore, it also depicts the range of motion of the ankle joint if only one
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(a) (b)

Figure 5.3: (a) Three axis hip joint with intersecting axis of rotation (b) Single
axis knee joint.

actuator is moved. Ankle’s pitch is controlled by driving the actuators at the

same speed in the same direction, while the roll is controlled by driving the

actuators at the same speed in opposite direction. Thus, by controlling the

speed and direction of the two linear actuators appropriately, we can control

the roll and pitch of the ankle joint simultaneously. The measure of velocity

to travel one degree per second for each axis is used to calculate the actuator

velocities to move the desired change in angle with the desired time for each

axis independently. Adding the desired actuator velocities for the two axis give

the required velocities to move the joint in both axes simultaneously. Note

that the ankle joint actuators do not have the harmonic drive.

The feet of the robot consists of two separate sections, one is the active
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Figure 5.4: Two axis ankle joint.

Table 5.1: Physical Robot Parameters for Tigerbot-VII.

Parameter Value Parameter Value

Height (m) 1.689 Mass (kg) 51.51071
Leg length (m) 0.9798 Foot Length (m) 0.33921

Femur Length (m) 0.44288 Tibia Length (m) 0.43513

powered toe which is driven by a motor through a harmonic drive and the

other is a passive heel which helps to absorb the shocks while walking by

passively damping them. The feet of the robot also houses a custom Six Axis

Force/Torque (SAFT) sensor which can be used to get force/torque feedback

for standing balance, push recovery and walking. The soles of the feet have

been lined with a foam cushioning to absorb shocks while stepping and load

cells are attached between the foam cushion and the feet on all four segments

of the feet that touches the ground. Table 5.1 summarizes the real robot’s

parameters.
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5.3 Hardware Specifications

The robot uses Teknic Clearpath SDSK series motors for all joints. These mo-

tors are powerful actuators with multiple operation modes. Tecknic Clearpath

SDSK [21] is a Step and Direction series of motors which are essentially in-

dustry grade stepper motors with added functionality. These motors have an

enable input pin, direction input pin and a step input pin, all these pin are

digital input pins. The direction pin is used to set the direction of the motion

and the step pin is fed a train of pulses to control the speed of the motion.

Each pulse rotates the motor by a certain degree based on a customizable

resolution set for the motor. These motors also have a Regressive Auto Spline

(RAS) feature which is a vibration and resonance suppression features. It is a

jerk limiting, and jerk-derivative limiting feature. It uses advanced algorithms

to analyze each commanded move and rapidly calculate and ”fit” a forth-order

polynomial spline to it. This converts the sharp transitions between constant

velocity and acceleration with more gradual, rounded corners.

Figure 5.5: I/O Connector pinout for Teknic Clearpath motors.
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These motors operate on 75V DC power supply. Due to the surge current

drawn by these high power motors, it is essential that the Teknic power supply

is used to power them up which is especially designed to suppress these surges.

A Teknic power supply is mounted as an integral part of the torso of the robot

with a built in emergency stop. All the power lines to each motor and the

robot runs through the Teknic power supply.

Since the Clearpath motors does not give access to their internal encoders,

external encoders have been used for each joint in TigerBot-VII. AMT203

modular absolute encoder from CUI Inc. is used for every joint except the hip

rotation joint where IncOders from Zettlex is used. AMT203 modular abso-

lute encoder is a 12 bit resolution encoder which communicates over SPI. This

encoder could not be used in the hip rotation joint as the encoder placement

was not possible due to design and space constraints around that joint. In-

cOders from Zettlex are inductive absolute encoders that consist of two rings

that must be mounted parallel to each other but not touching each other. It

measures the angle difference between the two rings through inductance. Al-

though, this encoder also uses SPI for communication, it does not follow some

aspects of SPI in the sense that it does not have a slave select line (SS). Com-

municating with a mix of AMT203 modular absolute encoder and IncOders on

the same SPI channel is thus handled by using a multiplexer to add a virtual

slave select line in IncOders.

A custom three-layer PCB stack is used as an interface to control the joints

where each PCB stack can handle up to three joints. The main processing

unit in each PCB stack is a Teensy 3.2 that handles all the communication

with the motors and encoders. The first two layers house the Teensy 3.2 and



CHAPTER 5. OVERVIEW OF TIGERBOT-VII 35

have connectors for communication with motors and encoders while having

an option of adding a multiplexer by using a jumper between two pins. The

third layer takes in the 75V DC power line and distributes the power between

the 3 motors connected to the PCB stack through a current measuring circuit.

There are 3 current measuring circuits on the third layer of the PCB stack for

each motor. This could be used to measure the current drawn by each motor,

hence indirectly measuring the torque applied by each motor. Note that the

encoder and the other electronics on the PCB stack is powered separately and

are not connected to the 75V DC power line. There are also 12V rails for each

PCB stack, which gets converted locally to 5V for sensors, and 5V rails for

the ODroid XU4 and the USB hubs. The Teensys can be powered from the

PCB stack or from the USB hub.

Figure 5.6: Three layered PCB stack to control 3 joints per PCB stack.

All the Teensy 3.2 in each PCB stack are connected to an Odroid XU4

which acts as the master CPU for the robot. An IMU from Variense is also
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connected to the Odroid XU4 which is placed at the center of the torso. It has

a 3-axis gyroscope, a 3-axis accelerometers, and a magnetometer. It is a plug-

and-play sensor which can be directly connected to a single board computer

through a USB. It outputs readings from the accelerometer, gyroscopes, and

magnetometer, and can be configured to output data as Quaternions, Euler

angles, and the heading. The sensor has ROS libraries available online and

can be interfaced directly as a separate ROS-node.

The robot’s feet have 4 load cells that measure how the robot’s weight is

distributed and if the feet are in contact with the ground. TigerBot-VII also

has a custom Six-Axis Force/Torque (SAFT) sensor module in each foot for

precise force and torque feedback. This sensor also has a Teensy 3.2 inside it

that can be directly connected to the Odroid XU4 and made into a ROS-node

through rosserial for effective communication.

5.4 Gazebo Simulation

Gazebo simulation, which is a physics engine has been setup to validate the

LDIP model to closely represent the real robot’s complex dynamics based on

the information given in the URDF of the robot model. The initial framework

for TigerBot’s model in Gazebo was setup in 2018 [1] and that framework has

been modified to work more effectively.

The simulation model previously had an issue where it was using very

detailed meshes for each link and rendering those detailed meshes took a lot

of computation power. The simulation time lagged much behind as compared

to the real time and the system slows down considerably. To overcome this
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problem, the number of vertices in the mesh were reduced by running a cluster

decimation on each mesh in MeshLab2. Figure 5.7 shows the comparison of

TigerBot-VII model before and after the simplification of the meshes.

(a) (b)

Figure 5.7: TigerBot-VII Gazebo model with (a) High mesh vertices (b) Low
mesh vertices.

Furthermore, sensors were added to the Tigerbot-VII Gazebo model. IMU

sensors were added at the torso and feet of the robot, marked with red in

Figure 5.7. This helped in finding the orientation of the torso and the feet at

any given time. Force/Torque sensors and contact sensors were added at the

feet to mimic the SAFT sensor and contact sensors in the feet of the robot

as discussed in section 5.2. A separate Gazebo plugin was written to create a

2MeshLab is an open source system for processing and editing 3D triangular meshes.
http://www.meshlab.net/

http://www.meshlab.net/
http://www.meshlab.net/
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transport node and push information from gazebo to ROS topics.

To validate the LDIP model, we needed a way to emulate external distur-

bances in Gazebo. Two methods were used for testing and validation of the

model.

1. The first method was using Gazebo’s in-built tools and utilities. Specif-

ically, the apply body wrench service in Gazebo that applies a wrench

(force/torque) on a link of the robot. The Gazebo interface is shown in

Figure 5.8(a).

2. The second method was creating a GUI using python tkinter library to

give an initial velocity to the pelvis. This emulates an impulsive external

disturbance that would change the velocity from the state of rest to the

test case velocity. The python tkinter based interface uses GetModelState

and SetModelState Gazebo services to get the current state of the robot

model and set the velocities to the test case velocity for the model. The

interface is shown in Figure 5.8(b).

The robot was shifted from position controlled implementation to effort

controlled implementation in Gazebo for validation of this work.

The model performance and its ability to balance the robot in the pres-

ence of disturbance has been simulated and tested on MATLAB. The model

functionalities and capabilities were validated using Gazebo physics simulation

with TigerBot-VII robot model. The calculated joint torque signals have been

used to balance the robot in Gazebo while emulating external disturbances. In

the next Chapter, the simulation setup has been described and the recorded

results have been discussed.
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(a)

(b)

Figure 5.8: Emulating external disturbance by (a) applying force at the pelvis
(b) giving an initial velocity to the pelvis.



Chapter 6

Simulation Results

To verify the proposed model, simulation experiments were conducted in MAT-

LAB and LQR has been used as the controller for the model. Further valida-

tion was done on Gazebo using TigerBot-VII simulation model.

6.1 Torque constraints for balance criteria

It is assumed there is no slippage between the foot of the robot and the ground.

The ankle torque must be constrained to ensure that the CoP does not leave

the support polygon of the robot. CoP can be calculated using equation

(6.1) [7].

xcop = − τ

fz
(6.1)

where fz is the normal force equivalent to the force due to gravity, fz =

(m1 +m2)g. When CoP is at the edge of the support polygon, the maximum

40
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constrained torque that can be generated at the ankle is given by,

τmax = −xcop max(m1 +m2)g (6.2)

The input state variable ux, shown in equation (4.1) is restricted to approx-

imate the required constraints on ankle torque, τ . The maximum constrained

force ux max at the hip in x direction is computed by approximating its re-

lation with the ankle joint torque τmax given xmax << z0, shown in Figure

6.1,

ux max ≈
τmax cos θk√
x2 + z20

=
τmaxz0
x2 + z20

≈ τmaxz0
z20

=
τmax
z0

(6.3)

Figure 6.1: Relation between ankle torque and ux.
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Table 6.1: Robot Parameters for Tigerbot-VII used for Standing Balance.

Parameter Value

m1 8.781401 kg
m2 15.510074 kg
l11 0.431687 m
l12 0.439994 m
l2 0.383356 m
g 9.81 m/s2

z0 0.75 m

6.2 Experimental Setup and Results

As discussed in Chapter 5, Tigerbot-VII robot model is used for the simulation

experiments. It is a 14 Degree of freedom humanoid robot IMU sensor on the

torso and six-axis force/torque sensors on the ankle joints. For simulation,

Tigerbot’s URDF parameters are used as summarized in Table 6.1. The LQR

weight matrices Q and R are manually tuned to get the desired response given

by,

Q = diag

[
1e2, 1e3, 0.1, 0.1

]
R = diag

[
200, 100

]
The computed state-feedback matrix KLQR is

KLQR =

 309.718 74.309 41.231 22.626

−449.198 −74.492 56.857 −14.693


The balancing capabilities of the proposed model is inspected by giving an

initial velocity at the pelvis of the robot. This simulates an external impulsive

disturbance that changes the velocity from state of rest to the given test case

velocity. Figure 6.2 shows the change in system states and the torque generated
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Figure 6.2: Response to an impulsive disturbance that would change the ve-
locity from 0.54 m/s.
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(a)

(b)

Figure 6.3: Animation of the LDIP Model response to an impulsive dis-
turbance that changes the velocity from rest to (a) 0.54 m/s and (b)
0.9 m/s using robot parameters mentioned in Table 6.1. Video Link :
https://youtu.be/89pCQ5W1myM

https://youtu.be/89pCQ5W1myM
https://youtu.be/89pCQ5W1myM


CHAPTER 6. SIMULATION RESULTS 45

as a function of time for an initial velocity of 0.54 m/s. The input force ux is

limited to ±31.7732N to restrict xcop ∈ (−0.1, 0.1) which in-turn constraints

the ankle torque τankle to ±23.8299N-m. The hip torque τhip is also limited

to ±90N-m for these experiments. Figure 6.3(a) shows the animation of the

LDIP model in response to the external impulsive disturbance corresponding

to Figure 6.2.

From Figure 6.2 and 6.3, it can be observed that by lunging the torso in

the direction of disturbance, the robot can generate enough moment of inertia

about the pelvis to effectively recover from the external disturbance. The

restrictions imposed on ux successfully constraints the maximum torque on

ankle τankle between ±23.8299N-m which ensures that the CoP is inside the

support polygon. As the magnitude of external disturbance is increased, the

swing of the torso increases to generate more angular moment of inertia while

having minimal changes in the system state variable x, position of pelvis.

When compared with other similar models like LIPM and LIPM-FW, it

can be observed that LDIP model has a lower force requirement to recover

from an external disturbance, given constraints over the forces and torques

that can be generated by the robot. Furthermore, the angular moment of

inertia generated by lunging the torso forward/backward is an implicit part

of the model and the torso position is a system state variable. Due to this,

applying modern control techniques on this model does not require explicit

control over the torso.

Figure 6.4 shows the trajectories and applied force/torque to balance the

humanoid robot using LQR from a disturbance that can change the veloc-

ity of pelvis from state of rest to 0.34m/s. The LIPM-FW model behaviour
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Figure 6.4: Comparison between LIPM, LIPM-FW and LDIP to an impulsive
disturbances that changes velocity of pelvis from rest to 0.34m/s.
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Table 6.2: Performance comparison between different models when subjected
to different external impulsive disturbances.

Model Maximum initial
velocity before falling

LIPM 0.35 m/s
LIPM-FW 0.41 m/s

LDIP* 0.8 m/s

simulation for comparison is similar to the implementation in [4]. For LIPM,

the input forces and torques needed to balance the robot are large as it only

uses ankle strategy to recover from the disturbances. The LIPM-FW shows

a similar performance when small disturbances are applied, however it is able

to balance against larger disturbances as compared to LIPM. This is because

of the added effects of the angular moment generated about the CoM, which

aids in increasing the capture region. In LDIP model, the torque signals to

generate the angular moment of inertia about the pelvis of the robot is directly

calculated by the LQR controller. This enables us to optimally move the torso

of the robot and create effects similar to a human lunging forward/backward

or rotating the arms for balance Table 6.2 shows a performance comparison

between different models by showing the maximum initial velocity at the pelvis

from which each model can recover before falling or deviating too much from

the constraints.

To validate the proposed model, LDIP has been implemented for push re-

covery scheme using Tigerbot-VII on Gazebo physics simulation environment,

shown in Figure 6.5. PD controller parameters used for this implementation

are kp = 2500 and kd = 100. A small constant bias force was also added to

ux in the Gazebo implementation. This was done in order to offset the effects
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of x = 0 point being the center of ankle which is not always the Zero Moment

Point or ZMP of the robot. State variables and motion torque trajectories are

shown in Figure 6.6.

Figure 6.5: Gazebo simulation response with constrained LQR on LDIP model
to an impulsive disturbances that changes velocity of pelvis from rest to
0.35m/s. Video Link : https://youtu.be/89pCQ5W1myM

If the external disturbance is applied at an angle, velocity component in

x direction is handled by the LQR controller and the velocity component in

z direction is handled by the PD controller as it is responsible to maintain a

constant height z0 of the hip and compensate for any deviations in the height.

Figure 6.7 and 6.8 shows the gazebo simulation and the system states and

motion torque trajectories respectively in response to an external disturbance

that changes the velocity of the pelvis from rest to 0.4243 m/s diagonally

upwards, i.e., v = (0.3̂i + 0ĵ + 0.3k̂)m/s. It was observed that if the velocity

in positive z direction is significantly large, the robot’s feet will no longer stay

on the ground and will become unstable.

https://youtu.be/89pCQ5W1myM
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Figure 6.6: State variables and motion torque trajectories in response to an
initial velocity of 0.35 m/s, v = (0.35̂i+ 0ĵ + 0k̂)m/s
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Figure 6.7: Gazebo simulation response with constrained LQR on LDIP model
to an impulsive disturbances that changes velocity of pelvis from rest to 0.4243
m/s in the diagonally upward direction, v = (0.3̂i+ 0ĵ + 0.3k̂)m/s.

Figure 6.9 and 6.10 shows the gazebo simulation and the system states and

motion torque trajectories respectively in response to an external disturbance

that changes the velocity of the pelvis from rest to 0.4243 m/s diagonally

downwards, i.e., v = (0.3̂i + 0ĵ − 0.3k̂)m/s. It was observed that the PD

controller is able to handle larger velocities in the negative z direction as

compared to positive z direction. If the controller fails to balance the robot,

the robot will need to switch to stepping strategy and take a step to avoid

falling.
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Figure 6.8: State variables and motion torque trajectories in response to an
initial velocity of 0.4243 m/s in the diagonally upward direction, v = (0.3̂i +
0ĵ + 0.3k̂)m/s
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Figure 6.9: Gazebo simulation response with constrained LQR on LDIP model
to an impulsive disturbances that changes velocity of pelvis from rest to 0.4243
m/s in the diagonally downward direction, v = (0.3̂i+ 0ĵ − 0.3k̂)m/s.

Figure 6.10: State variables and motion torque trajectories in response to
an initial velocity of 0.4243 m/s in the diagonally downwards direction, v =
(0.3̂i+ 0ĵ − 0.3k̂)m/s
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In addition to using the feedback matrix KLQR computed by LQR in MAT-

LAB, intuitive manual tuning of the K matrix was tested out in this imple-

mentation. In the process, we stumbled upon another interesting finding, the

robot moved its torso in the opposite direction of the external disturbance in an

attempt to maintain its CoM within the support polygon rather than trying to

lunge its torso to generate angular moment of inertia as discussed earlier. This

implementation was also able to balance the robot from smaller external dis-

turbances. The intuition behind this attempt was that the robot should move

the torso further back based on how much the pelvis moved in x-direction.

Figure 6.11 shows the robot recovering from an impulsive disturbances that

changes velocity of pelvis from rest to 0.33m/s using this implementation. The

manually tuned K matrix used for this implementation is

K =

120 25.695 0 0

800 0 800 30.3
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Figure 6.11: Gazebo simulation response using constrained LQR on LDIP
model with modified K to an impulsive disturbances that changes velocity of
pelvis from rest to 0.33m/s. Video Link : https://youtu.be/QFVxtds2hbI

https://youtu.be/QFVxtds2hbI


Chapter 7

Conclusion

7.1 Conclusion

This work presents the Linearized Double Inverted Pendulum model for hu-

manoid robots’ standing balance and push recovery. The simplified model

efficiently describes the system with linearization of angular position and ve-

locity of the torso to recover from external disturbances. The implicit modeling

of the angular moment of inertia about the pelvis of the robot helps in using

modern control techniques with ease. The LDIP model can use ankle and

hip recovery strategies while taking full advantage of the advances in optimal

controls theory research.

To support this, an LQR based control architecture is also presented to

verify the model performance. A comparison between LDIP and two other

models show that the presented control architecture achieves the task at hand

with minimal effort and force requirements. This enables the robot to recover

from a wider range of disturbance without the need for taking a step.
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The model is ideal for biped robots with a torso that have a significant

mass. This model will not be a good fit for robots with small and light torso

like Cassie. Another drawback of this model is that it would be difficult to

model take into account the angular momentum generated by rotating the

arms of the robot rapidly. But on the other hand, this model does a very good

job of taking into account the angular momentum generated by lunging the

torso. This is why, it would be an ideal fit a humanoid robot like TigerBot-VII.



Chapter 8

Future Work

8.1 Future Research

The current implementation of LDIP model majorly addresses push recovery

with ankle and hip strategies. For future work, we must conduct a study

on how to come up with an empirical formulation of orbital energy for LDIP

model that will allow us to use concepts like capture point and capture regions

for LDIP model as well. This would further allow us to identify when the

controller will fail to recover from the push and the robot will need to take

a step to avoid falling. Further studies on LDIP model can be conducted to

analyse its effectiveness for walking gait generation methodologies as well.

It would be interesting to see the algorithm performance when the state

variable x = 0 point is considered as the CoP in the Gazebo simulation using

the force/torque sensor added in the simulation model. This should theoret-

ically increase the recovery capabilities of the robot according to theory of

ZMP and robot dynamics [2].
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8.2 Issues and suggestions for TigerBot-VII

The proposed Linearized Double Inverted Pendulum model has currently been

tested in simulation environment. The model needs to be tested on the real

robot, but there were a couple of issues identified in the robot which need

to be addressed, before this or any other research can be conducted using

the existing hardware. Following are the issues identified in the robot and

recommended modifications to tackle these issues.

1. Since TigerBot-VII is built out of separate machined parts bolted to-

gether, the body parts at some places are under stress due to machining

inaccuracies. This is especially noticeable at the knee joints and has an

adverse effect on harmonic drive-pulley-bearing mechanism in the knee

joints, shown in Figure 8.1. Due to the stress, the axis of rotation of

Figure 8.1: Harmonic drive-pulley-bearing mechanism in knee joint.
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the bearing and the harmonic drive do not coincide which gives a jerky

motion in the knee joint. Adding a beam coupler in the shaft should

fix this issue by relieving the stress from the shaft and gaining some

tolerance for misalignment of the bearing and the harmonic drive.

2. The actuators used in the robot are not suited for this application. The

SDSK series motors by Teknic used in the robot is a stepper motor and

cannot be used in torque controlled mode like its MCxx series variants,

which is a pre-requisite for this application. Furthermore, even though

these motors have a position encoder and output torque measurements

computed internally, the user cannot access this information during op-

eration. The user must use an external current measurement circuitry

or external absolute encoders to get this information.

3. The inaccurate placement of external encoders can result in a slippage

in the encoder disc which is very dangerous. Not knowing if the leg is

moving or not while giving it a move command can result in the robot

colliding into itself and damaging itself. An issue of similar nature was

observed in the knee joint encoder which has been temporarily fixed but

needs a better and a more permanent solution, shown in Figure 8.2.

Such issues also warrant for usage of hard limit switches to stop the

robot before it collides with itself rather than relying on the software

limits.

4. The current firmware implementation for each Teensy node that controls

the joint motors and encoders is not optimal, shown in Figure 8.3. Each

Teensy acts as a separate ROS node and is responsible for controlling
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Figure 8.2: Temporary fix for the slippage in the external encoder of the knee
joint.

position of motors, reading the encoders and reporting back joint states

for up to 3 joints. This works fine as long as the rate of message transfer

is low. To optimise communication rate and reduce ROS message over-

head, making separate Teensy ROS nodes should be avoided. Instead, a

script in the Odroid should command the motors and read the encoder

information through serial communication and not use rosserial. The

separate script in the Odroid can then act as a single ROS node.

5. There is a lot of discrepancy between the URDF of TigerBot-VII and the

real robot. Specifically, the URDF and the mesh models of each link does

not include the actuators as part of the link. Therefore, their masses and

inertia do not contribute to the dynamics of the simulation model which

makes it different from the real robot. Tables 6.1 and 5.1 shows that the

total mass in the URDF excluding feet mass is 24.291475 kg, whereas
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Figure 8.3: Current ROS implementation for TigerBot-VII Hardware commu-
nication.

the total mass of the real robot is 51.5101 kg. The actuator models is

also missing visually in the simulation model as shown in Figure 5.7.

These need to added in the CAD model and generate the meshes and

URDF again from Solidworks.

6. The ankle joint of TigerBot-VII is designed to provide 2 DOF motion at

the ankle, shown in Figure 8.4. The design intends to put most of the

weight of the robot at the ankle joint and uses the Fibula for stability

and ankle joint motion. The design is intended to put minimal weight

on the Fibula, but it was discovered that although the fibula itself is

capable of handling that weight, the tibiofibular joint is too weak and

we may run into a problem where that joint can break and pop out of its

housing. This issue needs to be addressed by reinforcing the tibiofibular

joint which is the weakest point in the joint.



CHAPTER 8. FUTURE WORK 62

Figure 8.4: Tibiofibular joint in the ankle.

7. TigerBot-VII has a Six-Axis Force/Torque sensor in each foot under the

ankle joint for precise force/torque feedback, shown in Figure 8.5. The

sensor housing block contains strain gauges, Wheatstone half-bridges

to amplify the readings, and analog-to-digital converters for translating

the readings. Load cells built into the foot are also connected to the

AD converters. The sensor also houses a Teensy 3.2 that is used to

take sensor readings and can be made into a separate ROS node and

connected to Odroid which acts as the ROS master in the system. The

sensor is missing a code base for Teensy. To make the sensor functioning,

the electrical schematics and sensor formulation must be understood

first. This is a challenge due to the fact that clear instructions and

formulations are not available in the sensor documentation.
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Figure 8.5: Modular Six-Axis Force/Torque sensor in the ankle.
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Appendix

Figure 9.1: MATLAB implementation of LDIP Model.
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