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Abstract

Convolutional neural networks excel at extracting features from signals. These

features are able to be utilized for many downstream tasks. These tasks include

object recognition, object detection, depth estimation, pixel level semantic segmenta-

tion, and more. These tasks can be used for applications such as autonomous driving

where images captured by a camera can be used to give a detailed understanding

of the scene. While these models are impressive, they can fail to generalize to new

environments. This forces the cumbersome process of collecting images from multifar-

ious environments and annotating them by hand. Annotating thousands or millions

of images is both expensive and time consuming. One can use transfer learning to

transfer knowledge from a different dataset as an initial starting place for the weights

of the same model training on the target dataset. This method requires that another

dataset has already been annotated and salient information can be learned from the

dataset that can aid the model on the second dataset. Another method that does not

rely on human generated annotations is self-supervised learning in which annotations

can be computer generated using tasks that force learning image representations such

as predicting the rotation of an image. In this thesis, self-supervised methods are

evaluated specifically to improve semantic segmentation as the primary downstream

task. Data augmentation’s affect during pre-training is observed in context of its ef-

fect on downstream performance. Knowledge from multiple self-supervised tasks are

combined to create a starting point for training on a target dataset that outperforms

either method individually.
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Chapter 1

Introduction

1.1 Introduction

Breakthroughs with deep learning have enabled practical uses in many fields such

as recommendation engines, medical image analysis, language understanding, au-

tonomous vehicles, and much more. In recent times people are with increasing fre-

quency coming into contact with systems that use deep learning to solve difficult

tasks. In the past decade the field of computer vision has been aided by convolu-

tional neural networks (CNNs) that perform remarkably on difficult vision tasks such

as object classification, object detection, and semantic segmentation. With the help

of ever growing amounts of labeled and unlabeled data these networks can better

generalize and model their input space. Work done by Long et al. [8] show CNNs can

be adapted into fully convolutional networks (FCNs) by adding upsampling layers to

perform pixel-wise predictions. Paszke et al. [9] showed how an efficient architec-

ture that minimizes parameters and floating point operations can make inferences at

real-time speeds while maintaining performance similar to models with many more

parameters. Efficient architectures allow for semantic segmentation to be performed

by resource constrained platforms or in real-time applications such as autonomous

driving where the network can help give a more detailed understanding of the sur-

rounding environment.

2



CHAPTER 1. INTRODUCTION

With access to large amounts of unlabeled data many have developed methods to

train models to learn useful features without the need to annotate samples by hand.

Works by Le et al. [10] used a nine layer multilayer perceptron (MLP) autoencoder

trained on 10 million unlabeled images to recognize faces and objects without super-

vised data. Turchenko et al. [11] trained a FCN autoencoder to extract latent feature

representations that were used to classify handwritten digits. [12] and [13] trained a

FCN to fill in images with select regions removed. They then used the feature extrac-

tor to perform object recognition, detection, and semantic segmentation. [14] and

[15] used pretext tasks that created their own labels to train a CNN. Dosovitskiy et

al. [16] showed that data augmentation can be used to create pseudo-labels to train

a CNN using contrastive learning to extract features. Doersch et al. [17] showed how

multi-task learning can be used to train a network on multiple self-supervised tasks to

perform better on downstream tasks than an individual self-supervised task. Others

used multi-task learning to train using unsupervised, self-supervised, and supervised

loss together [18]. Goyal et al. [19] looked at the amount of data used, model capacity

and problem complexity when pre-training a network using different self-supervised

tasks. They observed downstream performance improved when increasing any of

these three areas and that performance further improved when increasing all three

together. By using these self-supervised pretext tasks a model is able to receive super-

visory signals from unlabeled data. The weights from these self-supervised tasks are

then able to provide a better initialization point for a downstream task than random

initialization.

1.2 Motivation

Supervised learning has made great achievements in recent time. Powerful models

that are extremely deep and wide are able to perform targeted tasks very well, and

sometimes even at super human performance levels. As model capacity grows larger

3



CHAPTER 1. INTRODUCTION

the need for labeled data to train these models grows as well. As datasets grow larger

the cost and time to have humans label these datasets grows too. With the size of

these large datasets, the noise of the ground truth annotations can make learning

more difficult and allow ambiguity in the task. By leveraging unsupervised and self-

supervised learning we can help mitigate and overcome the burden of creating labeled

data. These methods can leverage almost unlimited data and possibly allow models

to learn features from environments and objects that are not captured in supervised

datasets. This could help them generalize to new information. Platforms such as

autonomous driving would also be able to update their models with new scenarios

without the need to create labels. This can help quicken the response time to problems

and possibly prevent them from occurring.

While larger models that require large amounts of computational power, energy,

and time generally outperform optimized efficient architectures, this limits their use

in real world applications. Large models are great for tasks that do not need to be

performed in real-time such as medical image analysis. Efficient architectures are

needed for tasks that take place on consumer devices or embedded platforms. They

are needed for real-time applications such as autonomous driving were reaction time

is critical. Many methods and works are developed and tested with large models

in mind and experiments are run using only these architectures. This is because

these architectures perform better on benchmarks, but lessons learned do not always

directly transfer to other architectures. That is why for this work we will focus on

Efficient Residual Factorized Network (ERFNet) which is a state of the art efficient

real-time network for semantic segmentation.

Semantic segmentation is the target downstream task for this thesis work. It offers

a more detailed understanding of the scene than object recognition or object detection.

Inferences can be made just as quickly as object detection, and do not require region

proposals. Using camera intrinsics, infrared light, deep learning algorithms, or other
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CHAPTER 1. INTRODUCTION

techniques depth can be predicted on a per pixel basis. Depth can then be combined

with pixel-wise semantic labels to help autonomous agents in path planning and object

avoidance. By increasing semantic segmentation performance models will be better

at generalizing to new data, better at classifying objects, and better at predicting

object boundaries.

1.3 Contributions

The principal contributions of this thesis research are outlined as:

• Examine a robust offering of self-supervised learning methods and benchmark

their effects on downstream semantic segmentation.

• Provide a novel way of combining pre-training methods in encoder/decoder

architectures.

• Compare the affect of data augmentation during self-supervised learning and

its effect on downstream semantic segmentation.

• Benchmark the affect of using in-domain unlabeled data with out-of-domain

labeled data.

• Find sparse sub-networks using self-supervised pre-trained weights as a basis

for pruning weights before training the downstream task.

1.4 Document Structure

Chapter 2 discusses the background on supervised learning, unsupervised learning,

self-supervised learning, fully convolutional neural networks, semantic segmentation,

and sparse networks. Chapter 3 will discuss the deep learning architecture used

for experimentation and the loss function used for training. It will also discuss the

5



CHAPTER 1. INTRODUCTION

different self-supervised methods that are explored. Chapter 4 will outline the training

and benchmark datasets used, along with the implementation details. Chapter 5 will

analyse the results of pre-training using different self-supervised methods and the

ways used to initialize ERFNet. Chapter 6 will summarize the contributions made

and outline directions for future work.

6



Chapter 2

Background

2.1 Supervised Learning

Supervised learning in the context of deep learning is the task of mapping an input

to an output label using pairwise sets of training examples. This process takes place

with a human in the loop when generating labels for a specific dataset. This type of

learning is very effective in training convolutional neural networks. While supervised

learning is a very accurate method for training models it is both costly and time

consuming to have humans label each individual sample in a dataset which can range

in size from hundreds to millions of samples. In machine learning supervised learning

has advanced considerably. Recent successes on impressive tasks such as The Ima-

geNet Large Scale Visual Recognition Challenge (ILSVRC) [20] have demonstrated

the abilities of deep convolutional neural networks. These networks are able to learn

what features to extract, and using those features classify images at super human

performance levels.

2.2 Unsupervised Learning

Unsupervised learning is an algorithm used to train neural networks without labels.

Unlike supervised learning each training sample does not have an associated label.

Instead networks use loss functions that do not rely on labels such as clustering
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CHAPTER 2. BACKGROUND

[21], mean squared error [22], or KL-divergence [23]. Unsupervised learning looks for

patterns in the data, grouping samples with similar features, or computes probability

densities based on the input space.

2.3 Self-Supervised Learning

Between unsupervised learning and supervised learning exists self-supervised learning.

Self-supervised learning does use training sample pairs, but unlike supervised learning

the label is generated by the computer. By using these automatically generated labels

deep learning models can learn supervisory signals that can be more beneficial than

classical unsupervised methods. Shown in Figure 2.1 is RotNet [1] a network that

learns to predict how much an image has been rotated by. The computer randomly

picks a multiple of 90 degrees to rotate the image by and uses that amount as the

label to be passed to the loss function along with the network’s prediction.

Figure 2.1: RotNet Architecture for predicting an image’s rotation. The model uses a
shared CNN feature extractor [1].

8
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After training, the weights used in the fully convolutional feature extractor can

then be used in other tasks such as classification, detection, or segmentation. These

weights typically perform better than random initialization. Other algorithms for

generating labels include generative methods such as trying to colorize a RGB image

converted to grayscale [24] or restoring a region of an image that has been removed

[12]. Other pretext tasks include trying to find the relative location of an image patch

[15], reordering frames from a sequential video [25, 26], clustering similar objects or

images together [18, 21, 27], detecting blurred regions [28], or using synthetic images

[29]. Kolesnikov et al. [30] has shown that specific pretext tasks perform well with

different model architectures, and that overall like the rest of the field, deeper and

wider models outperform shallower models.

2.4 Fully Convolution Neural Networks

FCNs are a type of neural network that are able to produce predictions that match

the spatial resolution of the input image. FCNs are comprised of convolutional layers,

transposed convolutional layers, pooling layers, normalization layers, and activation

functions. Unlike traditional neural networks that consist of multiple layers of per-

ceptron nodes that are fully connected to the previous and following layer, or CNNs

that start with convolutional layers that increasingly reduces the spatial resolution

of the features extracted as the input passes through the network before passing the

feature vector to any number of fully connected perceptron layers, a FCN typically

does not contain any fully connected layers of perceptrons. A FCN acts like a typ-

ical CNN with sequential convolutional and pooling layers that reduce the spatial

resolution and increase the depth of the representation, but before the feature vector

is completely flattened and passed to a fully connected layers like in the previously

described CNN the feature vector will be passed to any number of upsampling layers

that reduce depth and increase the spatial resolution before the final layer will make
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a prediction at the same spatial resolution as the input sample with a depth equal

to the number of classes. Each depth map will contain a probability at each pixel

location representing the likelihood the model thinks the pixel belongs to that class.

2.5 Pixel Level Semantic Segmentation

Pixel wise semantic segmentation is the task of giving each pixel location in an image

a semantic label. Long et al. [8] showed that a FCN could be pre-trained on image

classification, then fine-tuned end to end on semantic segmentation, resulting in state

of the art performance on predicting pixel level class labels at the time. Current

state of the art models such as deeplabv3+ [31] and ERFnet [3] utilize decoders

with transpose convolutions to upscale the predicted labels with finer detail. More

computationally intense models such as deeplabv3+ utilize a Spatial Pyramid Pooling

layer between the encoder/decoder which combines features from the encoder after

passing through different pooling and convolutional layers. Shown in Figure 2.2 is a

three channel RGB image passing through a fully convolutional neural network with

encoder and decoder. The network outputs a predicted pixel map of the same spatial

resolution as the input image.

10



CHAPTER 2. BACKGROUND

Figure 2.2: Forward pass through ERFNet.

2.6 Lottery Ticket Hypothesis

The lottery ticket hypothesis [32] is the idea that that inside dense feed-forward

networks contain sub-networks (winning tickets) that when trained can perform as

well as the full network. These sub-networks are found by first training a dense

11



CHAPTER 2. BACKGROUND

network on a target task then after training some percent of the weights are pruned

by setting them to zero, and a mask is created from each weight that was pruned.

The network is then reverted back to the original weight values that existed before

training. Using the mask the weights in the network are pruned again, and frozen at

zero. Frankle et al. [32] found that pruned networks with their initial weight values

could perform up to eight times better than the dense network without any training.

They also found that some sub-networks with around 80 percent of their weights

pruned could perform better than their dense parent network after training. Zhou

et al. [2] hypothesises that using masks to prune weights acts like a type of training

setting weights to zero that were initially moving there during the initial training

phase. Shown in Figure 2.3 is a common masking criteria used to find winning ticket

sub-networks. After the initial training phase weights are sorted from highest to

lowest magnitude, the weights with the lowest magnitude are pruned. Other masking

criteria may look at weights before and after training and only prune weights that

started with a large magnitude and moved to having a small magnitude after training.

Others might prune large magnitude weights but exclude weights that flipped sign

during training.

12
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Figure 2.3: Mask criteria for finding winning ticket sub-networks, wi is the initial weights
values and wf are the final weight values [2].
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Chapter 3

Methodology

In this section, we introduce the ERFNet architecture used to explore how semantic

segmentation is influenced by pre-trained weights. The goal is to increase perfor-

mance on semantic segmentation datasets by utilizing traditional transfer learning

from large datasets such as ImageNet along with self-supervision performed on in-

domain datasets associated with the downstream semantic segmentation datasets such

as Cityscapes [33]. Further we use weights from one or more self-supervised tasks to

initialize either the encoder or both the encoder and decoder of ERFNet.

3.1 Efficient Residual Factorize Network

ERFNet [3] is a FCN that offers a balance between speed and accuracy. It uses

asymmetric convolution blocks with residual connections that allow for real-time per-

formance while attempting to maximize accuracy. To maintain real-time speeds the

network forgoes techniques that other higher performing but non-real time networks

adopt. Methods such as conditional random fields [34], pyramid pooling [35], multi-

resolution blocks [36], or extremely deep and wide backbone feature extracting net-

works. ERFNet attempts to get the biggest bang for its buck using an unbalanced

encoder decoder architecture with larger 16 layer encoder and smaller 7 layer decoder.

The network employs heavy downsampling of spatial resolution at the start of the

encoder to reduce the number of computations performed. It does this using two

14



CHAPTER 3. METHODOLOGY

Table 3.1: ERFNet architecture with input image of 512×1024

Layer Type out-F out-Res

ENC 1 Downsampling block 16 256x512
ENC 2 Downsampling block 64 128x256
ENC 3-7 non-bt-1D block 64 128x256
ENC 8 Downsampling block 128 64x128
ENC 9 non-bt-1D(dilated 2) 128 64x128
ENC 10 non-bt-1D(dilated 4) 128 64x128
ENC 11 non-bt-1D(dilated 8) 128 64x128
ENC 12 non-bt-1D(dilated 16) 128 64x128
ENC 13 non-bt-1D(dilated 2) 128 64x128
ENC 14 non-bt-1D(dilated 4) 128 64x128
ENC 15 non-bt-1D(dilated 8) 128 64x128
ENC 16 non-bt-1D(dilated 16) 128 64x128
DEC 17 Transposed Conv 64 126x256
DEC 18-19 non-bt-1D 64 126x256
DEC 20 Transposed Conv 16 256x512
DEC 21-22 non-bt-1D 16 256x512
DEC 23 Transposed Conv C 512x1024

sequential downsampling blocks that reduce spatial resolution by a factor of four.

It is then followed by five non-downsampling blocks, proceed by a final downsam-

pling block and 8 more non-downsampling blocks. The final eight non-downsampling

blocks use a pattern of dilated convolutions to increase the receptive field, the dilated

value follows the order of 2,4,8,16 then repeats. Next the decoder using transposed

convolutions with a stride of two upsamples the encoder features. The decoder uses

two layers of non-downsampling layers after each transposed convolutional layer and

ends with a final transposed convolution. ERFNet is able to make a prediction on an

RGB image of size 512×1024 in 16.9 ms on a NVIDIA 1080 Ti. Therefore it can make

predictions at up to 59 FPS on half resolution Cityscapes images and even faster at

lower resolutions enabling the network to run in real-time pipelines.
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3.1.1 ERFNet Blocks

ERFNet uses two different building blocks. Shown in Figure 3.1 are the two blocks

used. (a) is the non-bottleneck-1D block that maintains spacial resolution, and (b) is

the downsampler block that reduces spatial resolution by half. The non-bottleneck-

1D block uses a skip connection to learn a residual from the previous layer. The skip

connections helps combat the vanishing gradient problem, and it is hypothesized that

a residual function is easier to optimize for than an unreferenced mapping [37]. The

block uses a cascading of four asymmetric 1×3 and 3×1 convolutional layers separated

by activation maps using rectified linear units (ReLU) [38]. A 1 × 3 convolutional

layer and 3×1 convolutional layer are used to approximate a 3×3 convolutional layer

using six parameters, as opposed to nine parameters as a 3 × 3 convolutional layer.

The downsampler block concatenates a 3 × 3 convolutional layer with stride of two

with a max pooling layer also with a stride of two. These layers reduce the spatial

resolution by a factor of two. The max pool layer acts as a skip connection that can

reduce the spatial resolution. The model includes batch norm [39] at the output of

each set of asymmetric layers, the output of the downsampler block, and the output

of the transposed convolutional layer in the decoder. The model also uses dropout

[40] at the output of the asymmetric convolutional branch to prevent overfitting.
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Figure 3.1: Building blocks of ERFNet [3]. (a) is a non-bottleneck block used to maintain
spacial resolution. (b) is the downsampler block used to reduce spacial resolution by a
factor of two.

3.1.2 Classification Head

For tasks that do not require matching the spatial resolution of the input a classifi-

cation head replaces the decoder. The classification head takes the features from the

encoder at 128 × H/8 × W/8. The spatial dimensions are reduced using a 2D max

pooling layer to remove the spatial dimensions. The feature vector is then passed to

a 128 neuron linear layer followed by a ReLU activation, and finally to a prediction

linear layer with neurons equal to the number of classes, or for SimCLR the size of

the final feature representation.

17



CHAPTER 3. METHODOLOGY

3.1.3 Cross Entropy Loss

Equation (3.1) is the categorical cross entropy loss used to train ERFNet for semantic

segmentation. Loss is computed across all pixels, where x is the unnormalized C×H×

W predictions from ERFNet and class is the ground truth label. The unnormalized

score is normalized to a probability from 0 to 1 using a multi-class softmax operation.

The negative log is taken of this class prediction. No loss is accrued if a probability of

1 is predicted for the correct class and the loss exponentially increases as the correct

classes probability goes to 0. The loss function can be simplified to equation (3.2)

and a per class weighting can be added as in equation (3.3).

loss(x, class) = −log(
ex[class]�

j e
x[j]

) (3.1)

loss(x, class) = −x[class] + log(
�

j

ex[j]) (3.2)

loss(x, class) = weight[class](−x[class] + log(
�

j

ex[j]) (3.3)

3.2 Pre-training Tasks

3.2.1 Random Initialization

When initializing a neural network from scratch millions of parameters need to be set.

In FCNs each convolutional layer needs to have its weights initialized. Even efficient

networks like ERFNet contain millions of parameters. If we randomly initialize the

weights with no heuristic layer outputs can explode leading to instability [41]. One

common heuristic is to initialize weights by sampling from a [-1,1] uniform distribution

that is scaled by a factor 1/
√
n where n is the number of weights in the layer [42].
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This type of initialization can have its own problem. Glorot et al. [42] showed how

using this initialization in deeper networks can lead to a vanishing gradient problem

where deeper layers have activation values that converge towards zero. This causes

gradients in deeper networks to vanish as loss is backpropagated to earlier layers.

Glorot et al. proposed normalized initialization now termed Xavier initialization that

has weights randomly sampled from a uniform distribution described by (3.4). ni is

the number of incoming connections and ni+1 is the number of outgoing connections

of the layer being initialized. This initialization helped the network maintain variance

of activation values, and maintain the variance of weight gradients across all layers.

This helps the model converge quicker and reach a higher accuracy.

w ∼ U [−
√
6√

ni + ni+1

,

√
6√

ni + ni+1

] (3.4)

Recent advances in activation functions use ReLU activation [38] over previously

used activation functions such as tanh for deep CNNs. This activation undermines

Xavier initialization where outputs will no longer have a mean close to zero and a

standard deviation near one. He et al. [43] showed that CNNs using ReLU activations

that have more than 30 layers can fail to converge with Xavier initialization. They

noticed how the vanishing gradient problem reappears in very deep CNNs that use

ReLU activation and Xavier initialization. To train very deep networks He et al.

proposed a new initialization method with ReLU activation in mind. They proposed

sampling from a gaussian distribution with a standard deviation of
�
2/n where n is

the number of incoming connections. Using this initialization strategy the networks

outputs are much closer to having a mean of zero and standard deviation of one.

They used this method termed Kaiming initialization to train a 22 layer CNN faster

than Xavior initialization and to train a 30 layer CNN that Xavior initialization failed

to converge on.

When training a FCN (which uses ReLUs) from scratch Kaiming initialization
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is the most popular method to initialize the network for the first time. However,

this is not the best method to train a FCN for a targeted task. Transfer learning

from another out-of-domain dataset will allow the network to learn features before

training on the target dataset. Even better self-supervised learning can allow the

model to learn features from an in-domain dataset that is typically much larger than

the target dataset. By pre-training the network it can achieve higher performance on

the downstream task than using Kaiming or Xavior initialization.

3.2.2 Rotational Task

The self-supervised rotational task [1] is a pretext task in which an input image

undergoes a geometric rotational transformation. The amount the image is rotated is

used as ground truth label to train a CNN to predict the transformation performed

on the input image. Using lessons learned from Gidaris et al. [1] we turn this task

into a discrete classification problem with four classes to choose from. Those classes

correspond to a rotation of 0, 90, 180, or 270 degree rotation. They showed that

increasing the number of classes to eight using multiples of 45 degrees or less classes

using multiples of 180 degrees resulted in degraded downstream performance. Since

the task simply involves rotating a square RGB image, the task can be extended to

almost any image. Shown in Figure 3.2 is a cropped sample from the Cityscapes [33]

dataset. The image on the left undergoes a rotation of 0 degrees while the image

on the right was rotated by 90 degrees. The task supplies strong supervisory signals

that force the model to learn semantic features that transfer well to other visual

tasks. Data augmentation used for the rotation task includes random cropping, image

translation, color jitter, and normalization.
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Figure 3.2: Cityscapes sample showing the cropped input for the rotational task. Input
is rotated counterclockwise by a multiple of 90 degrees.

3.2.3 Jigsaw Task

The jigsaw task [44] is a pretext task that has a CNN solve nine piece jigsaw puzzles

to learn semantic visual features. A nine piece jigsaw puzzle has 362,880 permuta-

tions of pieces. Instead of predicting the correct location of each patch from one of

the nine possible locations, the task is framed to predict the permutation that was

used to shuffle the patches. Further the number of permutations is restricted to a

subset of all permutations. By controlling the size of the subset of permutations used

the difficulty of the task can be changed. When size of the subset is increased the

difficulty increases and downstream performance increases. Noroozi et al. [44] also

saw increased performance when the average hamming distance between permuta-

tions in the subset was maximized. This means that the number of different tile

locations between two permutations is maximized. This helps mitigate ambiguous

guesses between permutations by the model. For example when all the tile locations

are the same except for two and those tiles could be extremely similar such as patches

of pavement with no distinguishing features. Shown in Figure 3.3 is the process of

extracting the patches from the sample image. First a random region from the image
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is cropped, this region is then resized to 225×225 then from each 75×75 pixel region

in a 3 × 3 grid has a 64 × 64 random crop taken from it and becomes one of the

final nine patches. These patches shown in green do not touch each other making the

task harder to solve. Shown in Figure 3.4 is how the patches might be shuffled after

being permuted. The patches are sequentially fed to the ERFNet encoder for feature

extraction then each feature vector is concatenated and passed to a 4096 neuron fully

connected layer with ReLU activation. The output is then passed to a final fully con-

nected layer with neurons equal to the number of permutations being predicted. The

resolution of each patch is smaller, and has a different aspect ratio than downstream

tasks. Generally it is best practice to keep input sizes and aspect ratios the same

between tasks, but we do not do this due to the computational overhead of using

512 × 1024 patches. FCNs can handle different size images, but it is unclear how it

effects the features learned. Shown in Figure 3.5 is how a solved jigsaw puzzle will

look when constructed from randomly cropped patches. Data augmentation used in

this task involve random horizontal flipping and translation before cropping, along

with color jitter and normalization applied to each patch separately.

Figure 3.3: Cityscapes crop and patch extraction.
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Figure 3.4: Cityscapes patch reordering.
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Figure 3.5: Cityscapes puzzle solution.

3.2.4 Relative Patch Task

The relative patch task [15] is similar to the jigsaw puzzle task. In this task, patches

are extracted in the same way as the jigsaw task. Instead of seeing each patch in a

shuffled order and asked to predict the permutation the model will first see the center

patch then at random one of the eight adjacent patches will be fed to the model.

The location of the randomly chosen patch is treated as the ground truth and model

must try to predict where the second patch came from in relation to the center patch.

This task is considered more difficult to solve than the jigsaw task because it only

allows the model to see two of nine patches before prediction. This task also uses the

same data augmentation as the jigsaw task. That being random horizontal flipping

and translation before random cropping, and random color jitter and normalization
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to each extracted patch.

3.2.5 Colorize Task

The colorize task [24] is a task that has a FCN learn how to predict the color of a gray

scale image. By starting with a colored image we first convert to grayscale and then

are able to use the color of the image as ground truth to train the model. Following

work done by Zhang et al. [24] we first convert the image to the CIEL*A*B* color

space [4]. In this color space the L* channel is lightness from black to white in the

range [0:100]. The A* and B* channels represent the chromaticity from green to red

and from blue to yellow in the range[-128,128]. The color space is useful for this

task because the changes in the A* and B* channels have roughly the same perceived

change in color throughout the color space. To allow for easier transfer learning to

semantic segmentation as a downstream task we concatenate the L* channel three

times so it has the same number of dimensions as an RGB image. Then the grayscale

image passes through both the encoder and decoder of ERFNet to produce a predicted

pixel map of size 2 × H ×W where the first dimension is the predicted A* channel

values for each pixel location and the second is the predicted B* channel values. Loss

is computed by taking the mean squared error (MSE) between the predicted values

of each color channel and the ground truth values. MSE is the squared euclidean

distance between two points or the squared L2 norm. Shown in Figure 3.6 is a

visualization of a forward pass through the network during training. This task has

the advantage of generating trained weights for both the encoder and decoder. Data

augmentation for this task includes random horizontal flipping, random translation,

and random cropping. We also perform random color jittering before converting to

the CIEL*A*B* color space.
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Figure 3.6: Colorize task pipeline. RGB source images are converted to CIEL*A*B* color
space [4]. The lightness channel is passed the the ERFNet model and the model predicts
the A*B* color channels.

3.2.6 Otsu’s Method Clustering Task

The Otsu’s method clustering task has a CNN predict the classes derived by Otsu’s

method [45]. The simplest form of Otsu’s method is to pick a single threshold based

on pixel intensity of a grayscale image and separate the pixels into two classes. Class

one is every pixel at or below the threshold and class two is every pixel above the

threshold. The threshold is calculated by iterating through each number in the range

of all possible grayscale values and calculating the between-class variance when the

two classes are determined using that threshold. The optimal threshold is that which

maximizes the between-class variance and equivalently that minimizes the within-

class variance. This method is then extended to multiple classes by performing a

multilevel Otsu’s method thresholding algorithm to determine multiple thresholds to

calculate classes that maximizes the between-class variance. Due to an exploding time

complexity that increases with each class the number of classes is restricted to a max-

imum of four. Shown in Figure 3.7 is the algorithm applied to a Cityscapes training

image with four clusters being computed. The clusters generated by the algorithm is

then used as ground truth to train ERFNet to perform semantic segmentation. This

method is in some sense the closest to the downstream task except the classes are not

based on real world objects but cluster labels assigned by the algorithm. To make
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the task harder we use some of the same data augmentation as the other tasks, that

being random horizontal flipping, random translation, and random cropping.

Figure 3.7: Cityscapes RGB input image and associated otsu class labels.

3.2.7 SimCLR

A simple framework for contrastive learning of visual representations named SimCLR

[5] is a recent framework for contrastive learning. Contrastive learning is a unsuper-

vised learning method that learns representations by forcing similar samples to be in

agreement and dissimilar samples to be in disagreement. SimCLR is a visual frame-

work and learns visual representations by extracting feature representations computed

by CNN’s from RGB images. Similar samples or positive samples are generated from

the same RGB image and negative samples are ones generated from different images.

27



CHAPTER 3. METHODOLOGY

Samples are generated in pairs by applying random stochastic data augmentations to

a base image. This means that in one minibatch each sample will have one positive

pair and the rest will be negative pairs. Each generated sample will then be passed

through the ERFNet’s encoder for feature extraction. The feature representation

then goes through a nonlinear projection head described in Section 3.1.2. The final

representation is then passed to the normalized temperature-scaled cross entropy loss

(NT-Xent) along with every other representation in the minibatch. Shown in Figure

3.8 is an example of how a positive sample is generated and used during training. The

data augmentation pipeline used to generate positive pairs is the sequential applica-

tion of random cropping with resizing to original size, random horizontal flipping,

random color jitter, random grayscale, and gaussian blurring. Due to the random

nature of all these transformations it is extremely unlike two samples will come out

exactly the same, but since they come from the same base image they will share visual

features.

Figure 3.8: The source image is randomly augmented twice. The modified images are
passed into a feature extractor f(.). The feature representation hj is then passed to the
projection head g(.). The final representation zj is then used for comparison with other
feature representations in the minibatch [5].
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3.2.7.1 Normalized temperature-scaled cross entropy loss

For a minibatch starting with N images 2N augmented samples will be generated.

Each sample will have one positive sample and 2(N − 1) negative samples. Shown in

Equation (3.5) is the NT-Xent loss used to compute loss for sample i with j being its

positive example. sim is defined as the cosine similarity between two vectors. zi is the

final feature representation for sample i and zj is the final feature representation for

sample j. τ is the temperature parameter used to scale the similarity measure. τ in

this thesis is set to 0.5. zk when k �= i and k �= j represents the feature representation

of the negative samples. � is an indicator function that is equal to one when k �= i.

loss(i, j) = − log
exp(sim(zi, zj)/τ)�2N

k=1 �[k �= i] exp(sim(zi, zk)/τ)
(3.5)
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Implementation

4.1 Datasets

4.1.1 Cityscapes

The Cityscapes dataset [33] is a European city centric dataset with images taken from

the hood of a sedan. The dataset is commonly used to report semantic segmentation

performance and contains 2975 training samples and 500 validation samples. The

dataset also contains coarse labels. Shown in Figure 4.1 is a sample image from the

dataset.
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Figure 4.1: Sample image and pixel level label from Cityscapes. Each image is taken from
the hood of the test car.

4.1.2 Camvid

The Cambridge-driving Labeled Video Database (Camvid) [46] is another driving

centric semantic segmentation dataset, captured in London. The images are extracted

from four different video segments taken at different times of day. The videos are

captured from a car’s perspective with a fixed camera. The version of the dataset
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used contains 12 classes including an unlabeled class. The datasets contains many

road variations like pavement and sidewalk, and temporal objects such as cars and

pedestrians. Figure 4.2 shows images sampled from the Camvid dataset showing the

urban environment. Below each image is its pixel level semantic segmentation mask.

Figure 4.2: Sample images and pixel level labels from Camvid. Each image is taken from
a car’s perspective.

4.1.3 Imagenet

ImageNet [6] is a large-scale object classification dataset with 1000 classes. Each class

has between 800-1300 examples resulting in the train set having over one million

training samples. The dataset also provides 50,000 samples for validation. This

dataset is commonly used to pre-train encoders for feature extraction. Shown in

Figure 4.3 is a subset of the images contained in ImageNet’s training set.
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Figure 4.3: Sample images from the ImageNet Dataset [6].

4.2 Implementation

The ERFNet architecture is trained on the Cityscapes and Camvid dataset to per-

form semantic segmentation. The model is either initialized with pre-trained weights

from another task or is randomly initialized. The pre-trained weights can include the

encoder and decoder of ERFNet when trained on tasks that utilize both. If the pre-

training task does not use the ERFNet decoder the model is initialized with another

pre-trained task’s decoder weights, or is randomly initialized. When transferring from

an encoder only task the projection head used to perform classification or produce

embeddings is discarded. When transfer learning from a task that utilizes the de-

coder the last convolution layer is discarded and replaced with a new convolutional

layer used to predict the class probabilities of the down stream task. The PyTorch

framework is used to perform all experiments using Nvidia GPUs. A batch size of 20

is used for semantic segmentation tasks with a Learning rate of 5e-4. A polynomial

learning rate scheduler is used to reduce the learning rate on a per epoch basis. The

popular Adam optimizer is used to perform backpropagation and update the weights
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of the network after each iteration. The loss backpropagated is calculated using cross

entropy loss with class weighting. The class weights are computed using the weighting

scheme outlined in the ENet paper [9], calculated by equation (4.1). Self-supervised

tasks uses a batch size of 128 for tasks that only use the encoder and 20 for tasks

the used both encoder and decoder. All tasks use a learning rate of 5e-4, the Adam

optimizer and a polynomial learning rate scheduler. Loss criterion is specific to the

task, but all classification tasks use cross entropy loss.

4.2.1 Class Weighting

The datasets used in this thesis work contain unbalance classes. Classes such as

road, building, and sidewalk dominate the city centric datasets. To remedy this we

introduce class weighting to help the model perform better on classes with low proba-

bility of showing up. Common class weighting strategies use inverse class probability

weighting to inflate the loss of low probability classes that helps the model learn to

predict these classes. The ENet weighting strategy [9] uses an additional hyper pa-

rameter c to add bounds to the weights calculated by equation (4.1). c is set to 1.02

which restricts the interval from [1.42,50.49].

wclass =
1

ln(c+ pclass)
(4.1)

4.2.2 Adam Optimizer

Adaptive moment estimation (named Adam) [47] is a optimization method to back-

propagate loss through a neural network to update the weights to obtain a more

optimal solution. Adam combines successful methods from AdaGrad [48] and RM-

SProp [49]. Adam adaptively estimates the first and second moments of the gradient,

and computes scaled learning rate for each parameter by multiplying the base learn-

ing rate by the first order moment divided by the square root of the second order
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moment. This optimizer is used in many computer vision tasks and was used by

both ENet and ERFNet. The optimizer helps speed up convergence, and performs

similarly if not better than stochastic gradient descent.

4.2.3 Polynomial Learning Rate Scheduler

Using a learning rate scheduler helps the model settle deeply into a local minima by

reducing the step size as the model plateaus. Some methods reduce the learning rate

by half or a factor of ten after a set number of epochs while others reduce the learning

rate after a set number of epochs without decrease in loss for the validation set. The

polynomial learning rate steadily reduces the learning rate each epoch according to

equation (4.2). When using a base learning rate of 5e-4 the learning rate will decrease

as seen in Figure 4.4. Polynomial learning rate has shown to converge faster than step

policy and with higher accuracy. It is used by the PyTorch ERFNet implementation

and others such as [50].

lr = baselr ∗ (1− epoch

maxepochs
)0.9 (4.2)
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Figure 4.4: Learning rate decay per epoch when using the polynomial learning rate sched-
uler.

4.2.4 Metric

4.2.4.1 Intersection Over Union

To evaluate the performance of ERFNet on semantic segmentation the commonly

used intersection over union (IoU) is used. IoU is also used for object detection where

predicted bounding boxes are compared to their ground truth label. The calculation

for IoU for detection can be visualized in Figure 4.5. Here the intersection of the

predicted and ground truth bounding boxes are divided by the total union of the two

bounding boxes. This metric encourages models that predict bounding boxes that

cover the entire ground truth bounding box while minimizing the area that extends

outside the ground truth box. For semantic segmentation the metric is extended

from rectangles to pixel overlap. The IoU for a pixel prediction would take the
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total number of the correctly predicted pixels over the total number of the correctly

predicted pixels, incorrectly predicted pixels, and unclassified pixels.

Figure 4.5: Visualization of the IoU equation.

4.2.4.2 Classification Accuracy

Classification Accuracy is used as an evaluation metric for the ImageNet dataset. It

is also used for the self-supervised learning tasks rotation, jigsaw, and relative patch.

Other metrics for classification include top-5 predictions used by the ILSVRC [20]

that look at the five highest confident predictions in descending order. Accuracy for

this thesis can be seen as a top-1 prediction only taking into account the highest

confident prediction. The metric is calculated by simply taking the number of correct

predictions over the total number of predictions. A more complicated metric is not

used because the goal is to simply gauge how well the pre-training task is performing

so its knowledge can be transferred to the downstream task.
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Results and Analysis

5.1 Results

The ERFNet model is benchmarked on the Cityscapes validation set using class mean

intersection over union. Mean intersection over union (mIoU) is the average of the

class-wise IoUs computed for each sample in the validation set. The model is fine-

tuned on the 2975 fine-grain training labels. The number of training epochs, learning

rate, optimizer, data augmentation, loss function, and class weights are all fixed for

comparison. The weights used to initialize the network are varied using the learned

weights provided by self-supervised methods described in Section 3.2. Shown in Table

5.1 is the downstream performance of ERFNet on Cityscapes validation set using

different pre-training methods. All of the self-supervised methods are first initialized

with an encoder pretrained on ImageNet classification. The model is then trained on

the self-supervised task on either the ImageNet dataset or the Cityscapes extended

dataset. The Cityscapes extended dataset includes an extra ∼19k images with no

semantic labels. From Table 5.1 it can be seen that some self-supervised methods hurt

the downstream performance of the model when compared to ImageNet classification

pre-training alone, while the Rotation task increases performance by 0.9%. Kolesnikov

et al. [30] shows how wider and deeper models are able to learn more and perform

better at evaluation tasks when pre-trained via self-supervision. ERFNet compared

38



CHAPTER 5. RESULTS AND ANALYSIS

to non-real time models such as ResNet50 or even VGG19 has much more limited

learning capacity. This limited capacity to learn from self-supervised methods could

be why most self-supervised tasks even when initialized by ImageNet classification

weights perform worst. The model must adapt features it learned previously to solve

the new self-supervised task. These new features must be less helpful as a starting

point to fine-tune for semantic segmentation than the previous supervised task even

when performed on in-domain data. As for why the Rotational task performs better

than all the other tasks it could be that the features learned are more helpful than

ImageNet classification alone. It is hypothesised that the rotation task is able to best

adapt the ImageNet classification weights to the rotation task and tune them to the

Cityscapes extended training set. This is thought because the rotation task is the

quickest task to train to maximum validation accuracy, taking less than 10 epochs

even with full data augmentation. By comparison when we train the same task with

no ImageNet pre-training, the rotation task takes six times as long to converge. Based

on Table 5.3 the rotational task with no ImageNet classification initialization performs

worse than random initialization. It could be that the rotational task does not need

to learn much when initialized by ImageNet classification. It could also be that when

the task is trained from scratch the model finds a simpler way to achieve similar

validation accuracy on the rotational task. The task could be increasing performance

because it updates the batchnorm layers with in-domain data, but when we reset the

batchnorm parameters after pre-training the performance does not decrease. Inspired

by other self-supervised experiments that use earlier convolutional layers to perform

linear classification and archive slightly higher accuracy, we reset some of the layers

later in the encoder to simulate transferring from an earlier layer. When resetting

layer 8-16 the model performed worse, but when resetting only layer 13-16 a slight

performance increase is observed.

Shown in Table 5.2 is downstream performance on Cityscapes when also includ-
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Table 5.1: Comparison of single pre-training methods when ERFNet is fine-tuned on
Cityscapes. Results shown on the unseen validation set. mIoU is mean intersection over
union. mIoU averages the IoU of each sample in the validation set. Check marks indicate
if the dataset is used for pre-training. All pre-training methods can be used for encoder
initialization. Only Otsu’s method and colorize can be used for decoder weights. Rotation-
waug-layer12 randomly initializes all the layers of the encoder after layer 12.

Pre-train ImageNet Cityscapes mIoU
Kaiming initialization ✗ ✗ 68.32
Encoder: ImageNet Classification
Decoder: Kaiming initialization

✓ ✗ 70.5

Encoder: Cityscapes Otsu-noaug
Decoder: Cityscapes Otsu-noaug

✓ ✓ 69.51

Encoder: Cityscapes Colorize-noaug
Decoder: Cityscapes Colorize-noaug

✓ ✓ 69.74

Encoder: ImageNet SIMCLR
Decoder: Kaiming initialization

✓ ✗ 69.74

Encoder: Cityscapes Relpatch-waug
Decoder: Kaiming initialization

✓ ✓ 69.91

Encoder: Cityscapes Jigsaw-waug
Decoder: Kaiming initialization

✓ ✓ 70.29

Encoder: Cityscapes Rotation-waug
Decoder: Kaiming initialization

✓ ✓ 71.4

Encoder: Cityscapes Rotation-waug-layer12
Decoder: Kaiming initialization

✓ ✓ 71.56
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Table 5.2: Results for when ERFNet is fine-tuned on Cityscapes when combining a strong
performing encoder pre-training method with a decoder trained on another task. Results
shown on the unseen validation set. Check marks indicates if the dataset is used for pre-
training.

Pre-train ImageNet Cityscapes mIoU
Encoder: ImageNet Classification
Decoder: ImageNet Otsu-noaug

✓ ✗ 70.99

Encoder: Cityscapes Rotation-waug
Decoder: ImageNet Otsu-noaug

✓ ✓ 71.6

ing decoder weights to the previous well performing self-supervised methods. Decoder

initialization methods include Otsu’s method clustering and colorization. When using

self-supervised decoder weights in conjunction with ImageNet classification or rota-

tion encoder weights the downstream performance is increased by 0.49% and 0.2%

respectively. Compared to random initialization the use of self-supervised pretext

tasks should help both the encoder and decoder perform better. Random initializa-

tion helps prevent the network from experiencing an exploding or vanishing gradient

problem but does not provide any knowledge to the network. Pretext tasks are able

to teach the network what features to extract, and does so using in-domain data

making these features less difficult to transfer to the downstream task. Compar-

ing these pretext tasks to transfer learning from other semantic datasets, the latter

could perform better especially if the datasets are very similar, such as transfer learn-

ing from Cityscapes to Camvid. Both of these datasets are in urban environments

taken from a car’s perspective and many of the classes are the same between the two

datasets. However a self-supervised task might perform better than transfer learn-

ing from Camvid to Cityscapes due to the reduced size and difficulty of the Camvid

dataset. The self-supervised pretext tasks will be able to utilize over 50 times more

samples using unlabeled data from Cityscapes extended training set than using the

supervised Camvid training set.
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Table 5.3: Comparison of how the method for initializing pre-training tasks effect down-
stream performance. Results shown on the Cityscapes Validation set. Both rotation tasks
are trained using the Cityscapes extended dataset.

Self-Supervised Task Rotation Task Init ImageNet Cityscapes mIoU
Encoder: Rotation-waug
Decoder: Kaiming initialization

Kaiming init ✗ ✓ 67.52

Encoder: Rotation-waug
Decoder: Kaiming initialization

ImageNet Class ✓ ✓ 71.4

Table 5.4: Comparison of training procedures for transfer learning to semantic segmen-
tation. Fine-tuned on Cityscapes, results on Cityscapes Validation set. First the model is
loaded with encoder weights from the rotation task. Then the intermediary stage freezes
all the weights of the encoder and trains the decoder for 40 epochs. Finally the encoder is
unfrozen and the entire model is trained for 150 epochs.

Self-Supervised Task Intermediary Stage mIoU
Encoder: Cityscapes Rotation-waug
Decoder: Kaiming initialization

✓ 70.66

Encoder: Cityscapes Rotation-waug
Decoder: Kaiming initialization

✗ 71.40
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Table 5.5: Cityscapes results with training data reduced by half. Check mark indicates
the dataset used for pre-training.

Pre-train Imagenet Cityscapes mIoU
Kaiming initialization ✗ ✗ 60.0
Encoder: ImageNet Classification
Decoder: Kaiming initialization

✓ ✗ 64.5

Encoder: ImageNet Otsu-noaug
Decoder: ImageNet Otsu-noaug

✓ ✗ 64.0

Encoder: Cityscapes Rotation-waug
Decoder: Kaiming initialization

✓ ✓ 65.93

Shown in Table 5.5 are different methods effects on the Cityscapes downstream

performance when the fine Cityscapes labels are reduced by 50%. Here we can see how

the rotation task pre-training gives almost a 6% increase over random initialization.

This gives a 2× greater difference when compared to using all the training labels.

Pre-training methods help the model perform even better when less downstream

supervised data is present. The margin between the rotation task and ImageNet clas-

sification also increases showing that the inclusion of the self-supervised task trained

on in-domain unlabeled data is increasingly helpful when labeled data is scarce.

Data augmentation’s effect on downstream performance has been observed by

many who have contributed to self-supervision [5, 15, 30]. The same is true for

self-supervised learning for semantic segmentation, Table 5.6 shows the rotation task

train on both the Cityscapes and ImageNet dataset. The table contains downstream

performance on the Cityscape validation set for the rotation task trained with and

without data augmentation. In both cases the rotation task performs better with the

inclusion of data augmentation. The features learned with heavy data augmentation

are able to better generalize to new tasks. The heavy data augmentation allows the

model to receive supervisory signals from a larger variety of samples. Data augmen-

tation in the rotation task includes random translation, cropping, and color jittering,

along with normalization. This forces the model to look at different parts of the im-
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Table 5.6: Effects of data augmentation on the downstream task when added during
the pre-training stage. Results shown on the Cityscapes validation set. Without data
augmentation the image is just resized and randomly rotated. When data augmentation
is introduced the pipeline includes random translation, random cropping, random color
jittering, and normalization.

Self-Supervised Task Data Augmentation mIoU
Encoder: ImageNet Rotation
Decoder: Kaiming initialization

✗ 62.11

Encoder: ImageNet Rotation
Decoder: Kaiming initialization

✓ 64.11

Encoder: Cityscapes Rotation
Decoder: Kaiming initialization

✗ 70.26

Encoder: Cityscapes Rotation
Decoder: Kaiming initialization

✓ 71.40

age for features to determine rotation, along with different objects that move slightly

due to translation and objects that look differently due to color jittering effecting the

inputs brightness, contrast, saturation, and hue.

Shown in Table 5.7 is numerous experiments that attempt to modify a pre-trained

ERFNet encoder at the individual layer level. 0.75-Cityscapes-Rotation-0.25-Kaiming

starts with an encoder pre-trained on the rotation task using the Cityscapes extended

dataset. Then we calculate the energy of each layer’s feature maps by summing the

magnitude of each weight in the feature map. We sort the feature maps by their

energy levels and replace 25 percent of the lowest energy feature maps with new ones

using Kaiming initialization. We do this using the hypothesis that the self-supervised

pretraining tasks are not saturating the capacity of ERFNet, resulting in redundant or

unused feature maps. By reinitializing the low energy maps they can be used to learn

new features for the downstream task. This was not beneficial, so we increased the

percent of feature maps retained and replaced them instead with high energy feature

maps from other pre-training tasks. This also did not help, so using the finding that

only using layers 1-12 from the rotation task performed better than using all the layers
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in the encoder, we initialize layers 13-16 from the Otsu’s method task to see if it will

increase downstream performance. We use the Otsu’s method task because it can

be viewed as a pseudo-semantic segmentation task and features learned in the later

layers of the encoder could be more beneficial to the downstream task than Kaiming

initialization. This also hurts the downstream learning, so we try one final weight

manipulation strategy. Using lessons from Frankle et al. [32] we prune individual

weights of each layer, instead of entire feature maps. We create a sparse network by

setting 50 percent of the lowest magnitude weights obtained by pre-training ERFNet

on the rotation task to zero. We then create a mask of these pruned weights and

keep them set to zero while fine-tuning on the Cityscapes semantic segmentation

task. While this also fails to increase performance over using all the weights from

the rotation task, we do achieve a mIoU of 70 percent on the Cityscapes validation

set using only 50 percent of the weights in the encoder. A loss of one or two percent

mIoU for a sparse network with significantly less parameters could be worth while for

faster inference times, and less memory usage.

Shown in Table 5.8 is a comparison between ERFNet and other State-of-the-

art (SOTA) models. Most models in the line up contain over 20 times the number of

parameters than ERFNet’s full model. BiSeNetV2 [51] contains 1.8 times the number

of parameters than ERFNet but is able to achieve faster inference times than ERFNet.

BiSeNetV2 is a very recent architecture that achieves higher mIoU on Cityscapes

and has faster inference times than ERFNet due to its dual branch architecture and

booster training strategy. This architecture is much different from ERFNet using a

bilateral segmentation backbone instead of a encoder-decoder design. ERFNet does

have the advantage of using less memory than BiSeNetV2 and the memory efficiency

increases further with ERFNet’s pruned model. Compared to the top performing

model Hierarchical multi-scale Attention (HMSA) [7], HMSA has a mIoU that is

14.7 percentage points higher than ERFNet. HMSA uses a high resolution large
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Table 5.7: Results of modifying weights of the pre-trained encoder at the individual layer
level. 0.75-Cityscapes-Rotation-0.25-Kaiming means that at each layer we keep 75 percent
of the highest energy feature maps, and reinitialize the other 25 percent using Kaiming
initialization. 0.9-Cityscapes-Rotation-0.1-ImageNet-class keeps 90 percent of the highest
energy feature maps and replaces 10 percent with the highest energy feature maps from the
encoder pre-trained on ImageNet classification. Cityscapes-Rotation-layer1-12-Cityscapes-
otsu-layer13-16 uses weights from the rotation task for layers 1-12, and uses weights from
the Otsu’s method task for layers 13-16. Cityscapes-Rotation-lotto-0.5 sets 50 percent of the
smallest magnitude weights to zero, and keeps them at zero while fine-tuning on Cityscapes.
Cityscapes-Rotation-lotto-0.75 prunes only 25 percent of the weights. All entries are trained
on Cityscapes with results on the Cityscapes validation set.

Self-Supervised Task mIoU
Encoder: 0.75-Cityscapes-Rotation-0.25-Kaiming
Decoder: Kaiming initialization

70.43

Encoder: 0.9-Cityscapes-Rotation-0.1-ImageNet-class
Decoder: Kaiming initialization

69.23

Encoder: 0.9-Cityscapes-Rotation-0.1-Cityscapes-Otsu
Decoder: Kaiming initialization

68.56

Encoder: 0.9-Cityscapes-Rotation-0.1-Cityscapes-jigsaw
Decoder: Kaiming initialization

66.79

Encoder: Cityscapes-Rotation-layer1-12-Cityscapes-otsu-layer13-16
Decoder: Kaiming initialization

69.92

Encoder: Cityscapes-Rotation-lotto-0.5
Decoder: Kaiming initialization

70.00

Encoder: Cityscapes-Rotation-lotto-0.75
Decoder: Kaiming initialization

70.67

Encoder: Cityscapes-Rotation-lotto-0.2
Decoder: ImageNet-Otsu-lotto-0.2

66.58
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Table 5.8: Comparison with state-of-the-art on Cityscapes validation set. Both ERFNet
models are fine-tuned on Cityscapes after being initialized with the rotation task (encoder)
and the Otsu method task (decoder). The pruned version has 80 percent of the weights set
to zero before and during training. Hierarchical multi-scale Attention [7] does not report
the number of parameters but their backbone network contains 65.8M parameters so their
full network must contain more than that.

Model Number of Parameters Inference Speed (ms) mIoU
ERFNet-pruned 0.42M 16.9 66.58
ERFNet-full-best 2.06M 16.9 71.6
BiSeNetV2 [51] 3.65M 6.7 73.4
WASPnet [52] 47.482M - 74.0
DeepLabV3+ [31] 43.48M 200 79.55
Auto-DeepLab-L [53] 44.42M - 80.33
Hierarchical-MSA [7] 65.8M+ 1170 86.3

capacity backbone network that extracts features at multiple resolutions and uses

multiple segmentation heads that make predictions at multiple scales then combines

those predictions in a hierarchical fashion. These heads also use attention layers and

training uses auto-labelling to boost the size of the training set. Due to the multiple

scales and size of the backbone network this network takes over a second to make

an inference preventing it from being used in real time applications. Other methods

performs better than ERFNet but contain many more parameters and have much

slower inference times.
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Chapter 6

Conclusions

6.1 Conclusions

In this thesis we have examined a number of self-supervised methods that have made

a wide impact on the field of self-supervised learning. We used these self-supervised

methods as a way to initialize the weights of a real-time fully convolutional neural

network to perform pixel level semantic segmentation on various city centric datasets.

We compared the affects of data augmentation during pre-training with its influenced

on the downstream semantic segmentation performance. We demonstrated how in-

domain unlabeled data can be utilized along side out-domain label data to help models

on their target datasets. Finally we explored ways of combining self-supervised tasks,

and different ways to transfer learn to maximize the performance of ERFNet.

6.2 Summary of Work

To summarize the results and lessons of this thesis,

• All self-supervised methods used in this thesis can increase performance on

semantic segmentation over random initialization, when the self-supervised task

is initialized with ImageNet classification weights.

• Only the rotation task trained on in-domain data offers benefit over ImageNet
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classification alone when used to initialize the ERFNet encoder before fine-

tuning on the target dataset.

• The Otsu’s method clustering task can be used to initialize the weights of the

ERFNet decoder to increase performance over random initialized weights. This

can be used in conjunction with a ERFNet encoder pre-trained on the rotation

task to achieve the best results.

• We found that allowing ERFNet to update all weights after transfer learning

resulted in better performance, compared to the common best practice of freez-

ing pre-trained layers and only updating new layers added for the target task

for a number of epochs, before allowing the optimizer to update all weights.

• To further increase downstream performance by pre-training with the rotation

task using in-domain data we only transfer the weights before layer 13 of the

ERFNet encoder and randomly initialized the other layers before fine-tuning.

• Heavy data augmentation is useful for self-supervised learning tasks to generate

better weights for transfer learning to downstream tasks.

• Sparse networks were found using weights from a self-supervised task. The

resulting network was trained on the target downstream task using less than

half the weights of the full network with minimal drop in performance.

6.3 Future Work

This thesis research was focused on only a small subset of all self-supervised learn-

ing methods. It also only used a few of the available semantic segmentation dataset

those being ones that having a wide use in the literature. They are gathered from a

vehicles perspective, and can be used to simulate how a vehicle could use semantic
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segmentation to understand its surroundings. Other larger datasets such as Mapil-

lary contain a magnitude more samples and could result in different findings. Some

possible directions for future work based on this thesis are:

• Analyze more self-supervised methods. Some methods could include generative

tasks by a generative adversarial network (GAN). A GAN could also be used

in the colorize task as an alternative to MSE loss.

• Increase or decrease in-domain unlabeled data to see how it effects downstream

performance, and see if using magnitudes more unlabeled data helps other tasks

perform better than ImageNet classification, or remove the need to initialize self-

supervised methods with ImageNet classification weights to perform well on the

downstream task.

• Explore other semantic segmentation datasets such as PASCAL VOC2012 [54]

or MSCOCO [55]. These datasets can be used for unlabeled data for self-

supervised learning, or for transfer learning from their supervised labels.

• Additional tasks can also be looked into such as segmentation and boundary

detection with datasets such as BSDS500 [56] as a supervised task to transfer

learn from. This task is easier to create labels for than pixel level semantic seg-

mentation and could help the network predict better object boundaries. Other

methods for segmetation could also be used for self-supervised learning such as

handcrafted feature descriptors [57] or texture based methods [58].

• Test how individual data augmentation transforms during self-supervised pre-

training influences the downstream task performance.

• Test how knowledge transfer [59] could help pass better visual representations

onto ERFNet by training a much larger and wider model on the self-supervised

learning tasks before transferring the knowledge onto the smaller network.
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ERFNet would then learn these visual representations by model distillation [60]

using the probability distributions predicted by the larger network as ground

truth labels. ERFNet can also be trained using the cluster centers extracted

from the larger network to assign pseudo-labels to each unlabeled image in the

dataset as in [59].

• Explore new masking criteria described by Zhou et al. [2] to set individual

weights in each layer of a network to zero. They set the percent of pruned

weights on a per layer basis, and train the model by updating the mask of each

layer instead of the layers weights.
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