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ABSTRACT 
A model-free control algorithm based on the sliding mode control method for unmanned aircraft 

systems is proposed. The mathematical model of the dynamic system is not required to derive the 

sliding mode control law for this proposed method. The knowledge of the system’s order, state 

measurements and control input gain matrix shape and bounds are assumed to derive the control 

law to track the required trajectories. Lyapunov’s Stability criteria is used to ensure closed-loop 

asymptotic stability and the error estimate between previous control inputs is used to stabilize the 

system. A smoothing boundary layer is introduced into the system to eliminate the high 

frequency chattering of the control input and the higher order states. The [𝐵] matrix used in the 

model-free algorithm based on the sliding mode control is derived for a quadcopter system. A 

simulation of a quadcopter is built in Simulink and the model-free control algorithm based on 

sliding mode control is implemented and a PID control law is used to compare the performance 

of the model-free control algorithm based off of the RMS (Root-Mean-Square) of the difference 

between the actual state and the desired state as well as average power usage. The model-free 

algorithm outperformed the PID controller in all simulations with the quadcopter’s original 

parameters, double the mass, double the moments of inertia, and double both the mass and the 

moments of inertia while keep both controllers exactly the same for each simulation.  
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NOMENCLATURE 

UAS Unmanned Aerial System 

UAV Unmanned Aerial Vehicle 

SMC Sliding Mode Control 

MFSMC Model-Free Sliding Mode Control 

PID Proportional – Integral – Derivative 

NED North – East – Down 

[𝐵] Control Input Matrix 

𝑠 Sliding Surface 

𝜆 Slope of the Sliding Surface 

𝐾 Switching Gain 

Φ Boundary Layer 

ℎ Altitude 

𝜙 Roll Angle 

𝜃 Pitch Angle 

𝜓 Yaw/Heading Angle 

𝑢 Control Input 
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1.0 INTRODUCTION 

System automation is becoming more popular and versatile every day leading to a tremendous 

rise in the field of control systems. Traditional control methods such as Proportional-Integral-

Derivative (PID) control is considered the most popular algorithm used to drive system states by 

compensating the errors. However, PID control and other traditional control schemes require a 

known system model for tuning along with limitations in linearizing system models affecting 

overall performance. 

Due to its robustness the Sliding Mode Control (SMC) is used to compensate for systems with 

modelling uncertainties and is directly applicable for both linear and nonlinear systems. The 

SMC method theory transforms the control system into a set of 1st-order problems which is 

easier to control obtaining better overall tracking performance. The method has two phases, a 

reaching phase and a sliding phase. The reaching phase drives the system towards the “sliding 

phase” and the sliding phase slides the states towards equilibrium. Asymptotic tracking stability 

is ensured through Lyapunov’s Direct Method when the state trajectories are not on the sliding 

surface. A discontinuous term is added to the control law to compensate for system uncertainties 

and disturbances. However, the traditional SMC algorithm requires knowledge of the 

mathematical model of the system and hence it is unique to each system which restricts its use 

and time consuming to derive and implement. 

There is a clear need (and advantage) to develop a model-free sliding mode controller which is 

based on previous control inputs, system measurements, control input gains and the system’s 

order with no knowledge of the system model. Reis and Crassidis [1] had developed a model-

free sliding model controller for a Single-Input-Single-Output (SISO) linear and nonlinear 1st and 
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2nd-order system for a unitary and non-unitary control input gain. Simulations were performed 

indicating perfect tracking was achieved while the sliding condition was also satisfied. Similar 

investigation was conducted on squared and non-squared Multi-Input-Multi-Output (MIMO) 1st 

and 2nd-order systems by El Tin and Crassidis [2]. Simulation results showed perfect system 

tracking was achieved for squared MIMO 1st and 2nd-order type problems. In addition, for non–

squared MIMO systems the states which were weighted more exhibited better perfect tracking 

performance compared to the stated weighted less. The sliding condition was satisfied for both 

cases proving tracking stability was achieved throughout. 

Sreeraj and Crassidis [3] developed a model-free algorithm based on sliding mode control and 

implemented it successfully for controlling pitch and roll states on a quadrotor mounted to a 

gimbal. There is a need to implement this algorithm to an Unmanned Aircraft System (UAS) that 

is not mounted to a gimbal controlling altitude and is allowed to fly in free-flight which is the 

overall goal of this proposed work. 
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2.0 LITERATURE REVIEW 
Sliding mode control has become popular and has received attention in the last few years due to 

its robustness and its ability to handle system modeling uncertainties and disturbances. The SMC 

method has successfully been applied to robotic manipulators, power systems, Unmanned Aerial 

Vehicles (UAVs), and other sophisticated systems. Different approaches have been developed 

for the SMC method, but the main principle remains requiring a system model for its 

development. 

2.1 Generic Sliding Mode Control Schemes 

Laghrouche et al. [4] introduced a higher-order sliding mode controller on optimal linear 

quadratic control applied to a minimum-phase nonlinear SISO systems. The problem was 

divided into three steps. Firstly, a higher order sliding mode problem was created to eliminate the 

chattering effect, followed by characterizing the nonlinear uncertainties as bounded non-

structured parametric uncertainties considering the system as an uncertain linear system. Lastly 

am optimal sliding mode controller is derived by minimizing a quadratic cost function over finite 

amount of time. This SMC was tested on a kinematic model of an automobile to steer it from an 

initial position to a trajectory defined by the user. A sliding mode control of the fourth order was 

used with a time varying sliding surface. The system achieved perfect tracking with the error 

converging to zero with no chattering. 

Runcharoon and Srichatrapimuk [5] presented the altitude control of a quadrotor using a SMC 

system. The Euler angles was used to define the altitude (φ = roll, θ = pitch, ψ = yaw) and 

describe the orientation of the quadrotor. A PD controller was used to control the altitude (z) and 

the position (x,y) while the equations characterizing the position and altitude wee linearized to 

quantify the PD control gains. Euler angle assumptions φ ≈ ψ ≈ 0 on the x- axis, θ ≈ ψ ≈ 0 on the 
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y-axis and φ ≈ θ ≈ 0 were applied. A boundary layer was added to the dynamic equations 

eliminate the chattering about the sliding surface. The simulation was able to drive the quadrotor 

to the desired position and desired orientation and prove the stability of the system and the 

control inputs. 

Runcharoon and Srichatrapimuk [5] used a SMC and PD to achieve a stable system. It showed 

an improvement compared to a general PID control system, but it’s limited the full potential of a 

SMC which does not required linearization. The presence of under-actuated systems led to the 

use of two different control methods as it requires manipulation if used with the SMC process. 

Sen et al. [6] introduced an adaptive method SMC for quadrotor helicopters and dealt with the 

estimation of the system uncertainties and perturbation bounds. As these bounds are unknown, 

they are overestimated thus leading to excessive gain. This gain is directly proportional to the 

magnitude of chattering, and hence by estimating these bounds and updating the control law, this 

is magnitude is reduced. The method was tested on a quadrotor helicopter type application. A 

stable closed-loop system with perfect position tracking with no chattering was achieved. The 

uncertainties bounds were unknown, which were later estimated. 

Xu and Ozguner [7] presented a method to stabilize underactuated systems using SMC. The 

authors used the method proposed by Olfati – Saber [8] to transform the system into a cascade 

normal form. Xu and Ozguner [9] applied this method on two nonlinear underactuated MIMI 

systems: 1. Translational Oscillator with Rotational Actuator (TORA) and 2. a quadrotor UAV. 

The quadrotor system was similar to the one used by Runcharoon and Srichatrapimuk [5] while 

the TORA was controlled using a rate bounded PID controller and a sliding mode controller [9]. 

A simulation proved a stable system and convergence to the desired position. 
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Pai [10] demonstrated that the SMC showed robust tracking in discrete time systems by applying 

a discrete-time integral SMC on uncertain linear systems. An auxiliary control function was 

introduced to define the discrete-time sliding mode controller to stabilize the system. The 

switching surface was designed by extending the integral switching function from continuous to 

discrete time SMC ensuring that a quasi-sliding mode was reached [11, 12]. In practice only the 

switching surface is approached by discrete-time SMC systems and hence quasi-sliding mode is 

assured. The method was applied to a discrete-time system and it showed excellent tracking 

performance with the presence of uncertainties along with stability of the closed loop system. 

The integral switching surface in the design process eliminated the reaching phase and chattering 

was absent as due to the absence of a switching gain. 

Lee [13] also introduced a discrete-time SMC using a fast output sampling. In this paper the 

system’s closed loop eigenvalues were arbitrarily defined while designing the control system 

focusing on stability and transient response. A boundary layer was introduced in the control law 

to reduce the chattering effect. The approach was tested on a discrete-time controller for a 

continuous time plant model with a serial type lightly damped resonance. Outstanding step 

response tracking was achieved which eventually proved that the system’s closed loop 

eigenvalues can be arbitrarily assigned. 

Ferrara et al. [14] presented the problem of applying SMC in systems with saturating actuators. 

A sub-optimal sliding mode controller with modifications was used to avoid control input 

saturation. The problem was the uncertainty in convergence of the sliding variable to zero in a 

finite amount of time when saturation occurs during reaching phase. The proposed modification 

decreases the control input once it reaches the saturation value (reaching phase). The control 

input increases again if the switching value was not reached implying the control input remains 
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at the saturation value until a new switching value is reached. The work proved the system states 

converged to the origin in finite time and was verified with a simulation example while avoiding 

the saturation limits. 

2.2 Model-Free Sliding Mode Control Schemes 

As the dynamical systems become exceeding complex, a significant advantage is gained in 

developing a model-free approach in the design of a sliding mode control law both in 

development time and control law efficiency. 

Martinez-Guerra et al. [15] presented a Sliding Mode Observer (SMO) referred to as master-

slave synchronization to determine certain synchronization problem with chaotic behavior. The 

method required an accurate knowledge of the nonlinear system dynamics. Therefore, a model-

free SMO with a promotional correction of the sign function of the synchronization error was 

introduced. The method was successfully applied to the Lorenz system, a nonlinear system 

exhibiting chaotic behavior when tuned to certain gains. 

Salgado-Jimenez et al. [16] applied a model-free higher-order SMC on a one degree-of-freedom 

underwater vehicle for position control. The new method used only the exponential convergence 

of the desired trajectory, eliminating the need of knowledge of the system dynamics or 

parameters. Chattering was avoided to restrict damage to the actuators lifetime by using a higher-

order SMC. However, the controller is integrated to a PD control scheme whose desired gain 

values and performances are tuned. Two trajectories were tested: 1. Sine Wave and, 2. Triangular 

Wave. A smooth response was achieved in both cases while the vehicle followed the desired 

path. 
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Raygosa-Barahona et al. [17] introduced a model-free backstepping technique with integral SMC 

to develop a model-free SMC system for an underactuated underwater Remotely Operated 

Vehicle (ROV).A model-free controller was obtained by designing a regressor free 2nd-order 

sliding mode controller as the auxiliary input control at each iteration. The sliding mode is 

integrated with a PID control and is applied to a ROV to track a helix trajectory. However, the 

PID controller needs to be tuned in order to achieve the desired performance. The vehicle 

converged to the desired trajectory with no chattering. 

Munoz-Vazquez et al. [18] introduced a method to control the position of a quadrotor using 

passive Velocity Field (VF) navigation with unknown system dynamics. The controller has three 

subsystems: 1. model-free control subsystem – responsible for maintaining the sliding mode 

condition at all time, 2. VF subsystem – responsible for designing the velocity field to define the 

desired path, and 3. sliding surface subsystem – responsible for assembling invariant manifolds 

of position and orientating sliding surfaces. The controller was tested in a 3D environment 

without and with obstacles to prove the effectiveness of the VF to navigate around the obstacles 

in cluttered environments. The system displayed perfect tracking with no chattering however, the 

VF needed to be designed in order to derive the controller scheme. 

Crassidis and Mizov [19] [20] presented a model-free pure sliding mode control scheme to 

achieve perfect tracking for linear and nonlinear systems along with asymptotic stability. The 

controller is designed based on previous control inputs, state measurements and the knowledge 

of the system order. A boundary layer was introduced into the control law to remove the 

chattering effect. This reduced the tracking precision but gave a smooth control effort which is 

required. The method was tested on a 1st and 2nd-order linear and nonlinear system. All systems 

tested in a simulation effort showed perfect tracking and asymptotic stability was also observed. 
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Reis and Crassidis [1] extended the previous model-free SMC approach to SISO application 

systems with non-unitary input gains. The effect of noise on system on system inaccuracies was 

also investigated. Firstly, a nonlinear mass-spring-damper system with non-unitary control input 

gain without sensor noise was simulated followed by a state measurement noise using a Gaussian 

distribution of noise. The variance, mean and probability distribution were obtained from the 

sensor’s datasheet. Perfect tracking was obtained in both cases and chattering was eliminated by 

using a boundary layer. 

El Tin and Crassidis [2] further extended the model-free SMC method into MIMO systems and 

examined the effects of an actuator-induced time delay. The derivation and implementation for 

square MIMO system was similar to the approach proposed in Reis and Crassidis [1]. For an 

underactuated MIMO system a transformation matrix was introduced to square the control input 

gain matrix to derive the control law. Perfect tracking was achieved for squared MIMO systems 

while only certain outputs achieved perfect tracking in the underactuated cases. The 

transformation matrix allowed the control of the output for tracking. The method was further 

applied to a single input nonlinear two mass-spring-damper type system and quadrotor. The first 

system achieved perfect tracking on all states with the control effort maximized, but the latter 

observed perfect tracking on certain outputs while the control efforts and certain outputs 

displayed high frequency activity. This was due to the aggressiveness of the controller to track 

the required trajectory entirely. The presence of an actuator time delay had an adverse effect 

when it exceeded a certain value, hence the control law required to be modified to account for 

the presence of this time delay. 

Levant [21] also presented a unique method of model-free sliding mode control based on Higher 

Order Slide Mode [HOSM] theory. The controller form is based usually on an insignificant relay 
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controller where the sliding surface satisfies the higher order sliding modes. No information 

about the plant and only the relative order is required for the controller since the sliding surface 

and the sliding surface derivatives are based only on the states. The control effort is calculated by 

integration eliminating the chattering effect without the need for a smoothing step. The method 

eliminates chattering in the ideal scenario, but chattering might still occur due to the excitation of 

parasitic dynamics [22]. The parasitic dynamics (such as actuator or sensor delays) were 

assumed as unmodeled dynamics. The control law was used to steer a four-wheeled vehicle onto 

a desired trajectory. 

Precup [23] developed two distinct methods of model-free sliding mode control based on 

dynamic data-driven linear estimation of the system model. For a first-order system, the sliding 

surface is defined as: 

 𝑆 = �̃�(𝑡) + ∫ �̃�(𝜏)𝑑𝜏
𝑡

0
 (2.1) 

where 𝑆 is the sliding surface, �̃�(𝑡) is the difference between the actual state and the desired state 

as a function of time 𝑡, and ∫ �̃�(𝜏)𝑑𝜏
𝑡

0
 is the integral of the difference between the actual state 

and the desired state over a time 𝑡. The system model is assumed to be: 

 �̇� = 𝐹(𝑡) + 𝛼𝑢(𝑡) (2.2) 

where �̇� is the state derivative, 𝑢(𝑡) is the input, 𝛼 is the tunable parameter and is selected to 

keep the magnitude of �̇� and 𝑢(𝑡) the same, and 𝐹(𝑡) is the system matrix and is approximated 

to: 

 �̂�(𝑡) =  �̂�(𝑡) − 𝑢(𝑡) (2.3) 



18 

 

where �̂�(𝑡) is the state estimate and is determined from 𝑦 by a first order derivative and a low-

pass filter. Replacing the discontinuous sign function and adding a thickness boundary layer and 

a saturation function, the SMC control law is 

 𝑢 = 𝛼−1(−�̂�(𝑡) + �̇�𝑑(𝑡) − 𝜆−1�̃�(𝑡) − 𝑒𝑒𝑠𝑡 𝑚𝑎𝑥 − 𝜆−1𝑠𝑎𝑡 (
𝑆

φ
)) (2.4) 

where �̇�𝑑(𝑡) is the desired state, 𝜆 is the slope of the sliding surface, φ is the boundary layer 

thickness, and 𝑒𝑒𝑠𝑡 𝑚𝑎𝑥 is a maximum error estimate which satisfies the inequality 

 𝜑−1|𝑆(𝑡)|𝜂 > 2𝜆𝑒𝑒𝑠𝑡 𝑚𝑎𝑥 (2.5) 

where 𝜂 is a small positive constant. 

The method is similar to those used in [1, 2, 20] as it is the adaption of conventional SMC with 

the system model estimated from only the states and inputs. However, in this method the 

algebraic loops are avoided using a differentiator rather than a direct state measurement. 

3.3 Sliding Mode Control for Underactuated Systems 

Many practical applications require control of MIMO systems and in this work using the SMC 

method. Dehghani and Menhaj [24] developed a state-space model for a leader-follower system 

which omits the effects of flight dynamics. The control inputs are considered translational 

acceleration in three dimensions. This removed the problem of cross-coupling of the control 

effort and the underactuated nature of a conventional aircraft wing. However, resolving problems 

arising from developing control laws for underactuated MIMO systems is an important aspect. 

Qian, Yi and Zhan [25] developed a multi-surface SMC for a single-input-multi-output 

underactuated system. The method was based on nested sliding variables including all system 

states. The number of sliding surfaces depended on the number of states. It allows tracking of 
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multiple outputs with a single input. Tunable coefficients were weighted to the outputs to lower 

leveled sliding surface when constructing higher leveled sliding surfaces. The method was 

validated by simulation on a single and double inverted pendulum for stabilization. The effect for 

chattering was not mentioned in this work. 

Schkoda [26] developed a squaring transformation matrix using optimal control theory to 

converge on the weighting of different outputs in the transformation. The method is similar to the 

one developed by Raygosa in [16] where virtual control inputs were mapped to the actual control 

inputs through a transformation matrix. The transformation matrix in [26] leads to a square input 

matric which is inverted to derive the SMC control law for MIMO systems. 

One major area of application of underactuated systems is in unmanned aircraft systems. There 

are two main configurations of for UASs: fixed wing and quadrotor. Fixed wing UAS is similar 

to a conventional aircraft. The four control inputs are rudder (vertical tail), elevator (horizontal 

tail), ailerons and forward thrust. A quadrotor is a type of helicopter with four equal sized rotors 

distributed equally in horizontal plane around the center of mass. Typical rotors use rotors with 

fixed blade pitch. The next section reviews some methods used to develop SMC for UAS 

addressing the issue of under actuation. 

2.4 Sliding Mode Control for Unmanned Aircraft Systems 

Norton et al. [27] developed a fixed wing UAS system with 12 state outputs but only 4 inputs 

(rudder, elevator, aileron deflections and thrust). The under actuation is eliminated by applying a 

diffeomorphism to the differential equations of the systems. After coordinate transformations, 

the differential equations are given as four three dimensional equations zi, with four sliding 

variables Si defined as 
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 𝑆𝑖 = 𝑧𝑖 − 𝑧𝑖𝑑  𝑖 = 1, 2, 3, 4 (2.6) 

Here, 𝑆𝑖 is the difference between the actual state and the desired state, 𝑧𝑖 is the current trajectory 

in the transformed coordinates, and 𝑧𝑖𝑑  is the desired trajectory to be tracked in the transformed 

coordinates. Like classic SMC, the sliding variables are differentiated and substituted in the 

system model. The control laws are developed for thrust and surface deflections along with three 

virtual controllers to compensate modal uncertainties. 

Abulahamitbhai [28] also developed a six (Degree-of-Freedom) DOF state space model for a 

fixed wing UAS with 12 states. Unlike assigning a sliding surface to each state in [12], only four 

sliding surfaces are developed, one for each input (rudder, elevator, aileron deflections and 

thrust). The two-6-dimensional state variables (position and velocity) are transformed into a 4-

dimensional space with the sliding surface. Transformation matrix using weights for individual 

states like the one used in [27] is used. 

Duan, Mora-Camino and Miquel [29] compared the performance of a decoupled longitudinal 

fixed-wing UAS model using dynamic inversion and backstepping methods. A full 6 DOP 

aircraft model with actuator dynamics was simulated but only the longitudinal results were 

examined. The backstepping method gave smoother responses but the control law was very 

complex. 

Brezoescu, Lozano and Casillo [30] worked on the tracking control in the lateral direction of a 

fixed wing aircraft. The single input was the derivative of the yaw rate. The outputs were yaw 

(heading) angle and orthogonal distance from the required path. Even though the system 

expressed was underactuated, the control law derived able to regulate both outputs effectively. 
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Villanueva et al. [31] developed a 6 DOF state-space model for a quadrotor with 12 states. Four 

different control modes (manual, altitude hold, position hold and waypoint following) was 

derived using the super twisting method of SMC. The under actuation of the quadrotor was 

resolved by adding a pseudo-control inputs to roll and pitch that are dependent on positions in 

the horizontal plane, which was the same method used by Munoz-Vazquez et al. in [17] where 

pitch and roll were removed as the explicit outputs of the system and the remaining 4 states and 4 

inputs make a fully actuated system. The method is different to what was done in [2] where all 6 

DOF were retained and a transformation matrix was used for the underactuated system using 

tracking weights. 

Derafa, Benallegue and Fridman [32] also applied super twisting on a quadrotor and tested the 

system in the real world. The controller was developed for attitude tracking and stabilization. 

The desired values are given as functions of desired positions. The system modelled in this 

method becomes a fully actuated system. 

Sreeraj and Crassidis [3] applied a model-free algorithm based on sliding mode control on a 

hardware quadcopter mounted on a gimbal controlling pitch and roll, while thrust and yaw were 

controlled using tradition PID. It was concluded that the model-free algorithm provided better 

tracking while also consuming less power than the traditional PID. 
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3.0 MODEL-FREE SLIDING MODE CONTROL DERIVATION 

AND APPLICATION 
The Model-Free Sliding Mode Control (MFSMC) algorithm is derived in this section. The 

algorithm is then applied to a 2nd-order linear SISO system and a 2nd-order nonlinear square 

system. 

3.1 Model-Free Sliding Mode Control Algorithm 

The system description of an nth-order MIMO autonomous system is given by: 

 �⃗�𝑝
𝑛 = 𝑓𝑝(�⃗�𝑝

𝑛) + [𝐵]𝑝×𝑚�⃗⃗�𝑚 (3.1) 

The system description can be rewritten as: 

 �⃗�𝑝
𝑛 = �⃗�𝑝

𝑛 + [𝐵]�⃗⃗�𝑚 − �⃗⃗�𝑚𝑘−1
− [𝐵]�⃗⃗�𝑚 + [𝐵]�⃗⃗�𝑚𝑘−1

 (3.2) 

where p and m are the number of inputs and output respectively, �⃗�𝑝
𝑛 is the system states, [𝐵] is 

the control input gains, and �⃗⃗�𝑚𝑘−1
 is the previous control input to the system. The error between 

the current and previous control input is defined as: 

 𝜀𝑚 = �⃗⃗�𝑚𝑘−1
− �⃗⃗�𝑚𝑘

 (3.3) 

Implementation of Eq. (3.3) would cause an algebraic loop in the algorithm. To remove the 

algebraic loop a control input error estimation is implemented and is defined as: 

 𝜀𝑚 = �⃗⃗�𝑚𝑘−2
− �⃗⃗�𝑚𝑘−1

 (3.4) 

where �⃗⃗�𝑚𝑘−2
 is the second previous control input. The control input error estimation is assumed 

to be within the bounds of: 

 (1 − 𝜎𝑙)𝜀𝑚 ≤ 𝜀𝑚 ≤ (1 + 𝜎𝑢)𝜀𝑚 (3.5) 
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where 𝜎𝑙 is the lower bound and 𝜎𝑢 is the upper bound of the control input estimation error. The 

control input gain [𝐵] is assumed to be: 

 𝑏𝑖𝑗𝑙𝑜𝑤𝑒𝑟
≤ 𝑏𝑖𝑗 ≤ 𝑏𝑖𝑗𝑢𝑝𝑝𝑒𝑟

 (3.6) 

were 𝑏𝑖𝑗𝑙𝑜𝑤𝑒𝑟
 is the lower bound of the ijth entry, 𝑏𝑖𝑗 is the true value of the ijth entry, and 𝑏𝑖𝑗𝑢𝑝𝑝𝑒𝑟

 

is the upper bound of the ijth entry. For systems that are 1st-order the sliding surface can be 

defined as: 

 𝑠 = �̃⃗� + 𝜆 ∫ �̃⃗�(𝜏) ∙ 𝑑𝜏
𝑡

0
 (3.7) 

where 𝑠 represents the sliding surface, �̃⃗� represents the difference between the actual state and 

the desired state, 𝜆 represents the slope of the sliding surface, and t represents time. For systems 

that are 2nd-order or higher can be defined as: 

 𝑠 = (
𝑑

𝑑𝑡
+ 𝜆)𝑛−1�̃⃗� (3.8) 

For a 2nd-order system eq. (3.8) becomes: 

 𝑠 = �̇̃⃗� + 𝜆�̃⃗� (3.9) 

where �̇̃⃗� represents the difference between the derivative of the actual state and the derivative of 

the desired state. To ensure the states remain on the sliding surface the derivative of the sliding 

surface is set to zero: 

 �̇� = �̈̃⃗� + 𝜆�̇̃⃗� = 0 (3.10) 
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where �̇� represents the derivative of the sliding surface, and �̈̃⃗� represents the difference between 

the second derivative of the actual state and the second derivative of the desired state. 

Substituting Eq. (3.4) into Eq. (3.2): 

 �⃗�𝑝
𝑛 = �⃗�𝑝

𝑛 + [𝐵]�⃗⃗�𝑚 − [𝐵]�⃗⃗�𝑚𝑘−1
+ [𝐵]𝜀 (3.11) 

substituting Eq. (3.11) into Eq. (3.10): 

 �̇� = �̈̃⃗� + 𝜆�̇̃⃗� + [𝐵]�⃗⃗� − [𝐵]�⃗⃗�𝑘−1 + [𝐵]𝜀 = 0 (3.12) 

solving for �⃗⃗� and adding a discontinuous term to handle model uncertainties results in: 

 �⃗⃗� = [𝐵]−1 [�̈̃⃗� + 𝜆�̇̃⃗� + 𝜂 ∙ 𝑠𝑔𝑛(𝑠)] + �⃗⃗�𝑘−1 − 𝜀 (3.13) 

3.2 Lyapunov’s Direct Method 

Lyapunov’s Direct Method is used to ensure asymptotic stability during the reaching phase. A 

candidate Lyapunov function is one that is positive definite and can be defined as: 

 �⃗⃗�(�⃗�) =
1

2
𝑠2 (3.14) 

where �⃗⃗�(�⃗�) is the Lyapunov function. Differentiating the Lyapunov function results in: 

 �̇⃗⃗�(�⃗�) = 𝑠�̇� (3.15) 

substituting Eq. (3.12) into Eq. (3.15) and setting it to be negative definite to ensure global 

asymptotic stability results in: 

 �̇⃗⃗�(�⃗�) = 𝑠 (�̈̃⃗� + 𝜆�̇̃⃗� + [𝐵]�⃗⃗� − [𝐵]�⃗⃗�𝑘−1 + [𝐵]𝜀) ≤ 0 (3.16) 

substituting Eq. (3.13) into Eq. (3.16) results in: 

 �̇⃗⃗�(�⃗�) = 𝑠 (�̈̃⃗� + 𝜆�̇̃⃗� + [𝐵] (−[𝐵]−1 [�̈̃⃗� + 𝜆�̇̃⃗� + 𝜂 ∙ 𝑠𝑔𝑛(𝑠)] + �⃗⃗�𝑘−1 − 𝜀) − [𝐵]�⃗⃗�𝑘−1 + [𝐵]𝜀) ≤ 0 
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  (3.17) 

which simplifies to: 

 �̇⃗⃗�(�⃗�) = 𝑠(−𝜂 ∙ 𝑠𝑔𝑛(𝑠)) = −𝜂|𝑠| ≤ 0 (3.18) 

introducing a switching gain �⃗⃗⃗� into Eq. (3.13) ensures that the state trajectories remain 

asymptotically stable during the reaching phase and results in: 

 �⃗⃗� = −[𝐵]−1 [�̈̃⃗� + 𝜆�̇̃⃗� + �⃗⃗⃗�𝑠𝑔𝑛(𝑠)] + �⃗⃗�𝑘−1 − 𝜀 (3.19) 

since [𝐵] and 𝜀 are not known exactly they’re substituted with [�̂�] and 𝜀, where these are 

estimated values, so Eq. (3.19) becomes: 

 �⃗⃗� = −[�̂�]−1 [�̈̃⃗� + 𝜆�̇̃⃗� + �⃗⃗⃗�𝑠𝑔𝑛(𝑠)] + �⃗⃗�𝑘−1 − 𝜀 (3.20) 

substituting Eq. (3.4) into Eq. (3.20) results in: 

 �⃗⃗� = −[�̂�]−1 [�̈̃⃗� + 𝜆�̇̃⃗� + �⃗⃗⃗�𝑠𝑔𝑛(𝑠)] + 2�⃗⃗�𝑘−1 − �⃗⃗�𝑘−2 (3.21) 

[�̂�] is determined by calculating the geometric mean of the upper and lower bounds: 

 [�̂�] = ([𝐵]𝑢𝑝𝑝𝑒𝑟[𝐵]𝑙𝑜𝑤𝑒𝑟)
1

2 (3.22) 

and the auxiliary variable [𝛽] is defined as: 

 [𝛽] = [𝐵]𝑢𝑝𝑝𝑒𝑟[�̂�]−1 (3.23) 

using the sliding condition shown in Eq. (3.21) asymptotic stability is ensured if: 
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 𝑠�̇� ≤ −𝜂|𝑠| (3.24) 

The upper bounds of the estimations made are assumed to be conservative. Solving for the most 

extreme case of the inequality in Eq. (3.24) results in the switching gain being: 

 �⃗⃗⃗� = |�̈̃⃗�| |[𝛽] − [𝐼]| + 𝜆 |�̇̃⃗�| |[𝛽] − [𝐼]| + |[�̂�]𝜎𝑢(�⃗⃗�𝑘−2 − �⃗⃗�𝑘−1)| + [𝛽]𝜂 (3.25) 

Implementing the current presented control law shown in Eq. (3.21) produces high frequency 

chattering on the output from the controller which can damage actuators on real-world systems. 

To alleviate the chattering, a boundary layer is introduced to act as a 1st-order filter with no phase 

loss: 

 �⃗⃗� = −[�̂�]−1 [�̈̃⃗� + 𝜆�̇̃⃗� + (�⃗⃗⃗� − Φ̇⃗⃗⃗⃗)𝑠𝑎𝑡 (
𝑠

Φ⃗⃗⃗⃗
)] + 2�⃗⃗�𝑘−1 − �⃗⃗�𝑘−2 (3.26) 

where Φ⃗⃗⃗⃗ represents the boundary layer and Φ̇⃗⃗⃗⃗ represents the derivative of the boundary layer and 

is described by: 

 Φ̇⃗⃗⃗⃗ + 𝜆Φ⃗⃗⃗⃗ = �⃗⃗⃗�(�⃗�𝑑) (3.27) 

where �⃗�𝑑 represents the desired state. The initial condition for Eq. (3.27) is: 

 Φ⃗⃗⃗⃗(0) =
𝜂

𝜆
 (3.28) 

3.3 Example on a 2nd-order Linear SISO System 



27 

 

The system shown above is a two-mass system connected by springs k and dampers c, and u 

represents a force input on a spring connected to m2. The system is represented by the following 

equations of motion: 

 𝑚1�̈�1 + 𝑐1�̇�1 + 𝑘1𝑥1 + 𝑐2(�̇�1 − �̇�2) + 𝑘2(𝑥1 − 𝑥2) = 0 (3.29) 

 𝑚2�̈�2 + 𝑐2(�̇�2 − �̇�1) + 𝑘2(𝑥2 − 𝑥1) + 𝑘3𝑥2 = 𝑘3𝑢 (3.30) 

where: 

 𝑚1 = 5 𝑘𝑔    𝑚2 = 20 𝑘𝑔    𝑐1 = 8
𝑁𝑠

𝑚
    𝑐2 = 20

𝑁𝑠

𝑚
    𝑘1 = 50

𝑁

𝑚
    𝑘2 = 80

𝑁

𝑚
    𝑘3 = 150

𝑁

𝑚
 

it is assumed that 𝑚2 is within the bounds of: 

 15 ≤ 𝑚2 ≤ 25 𝑘𝑔 

with a desired tracking signal of: 

 𝑥2𝑑
(𝑡) = sin (

𝜋

2
𝑡) (3.31) 

The controller parameters used are: 

σ 0.65 

η 0.2 

λ 20 
Table 1: Controller Parameters for the 2nd-order Linear SISO System 
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Using the control law derived in Eq. (3.26) results in the following performance: 

Figure 1: Time History Plot of x2 and x2d 

Figure 2: Time History Plot of x1 



29 

 

Figure 3: Time History Plot of the Controller Effort 

Figure 4: Time History Plot of the Sliding Condition 

The RMS of the difference between the actual and desired state, from Figure 1, resulted in 

2.3844*10-8 meters. This RMS value shows that almost perfect tracking is achieved. The sliding 

condition, shown in Figure 4, is observed to be satisfied for the whole simulation which 

guarantees asymptotic stability and the controller effort, shown in Figure 3, is observed to be 

smooth without high frequency chattering. 
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3.4 Example on a 2nd-order Nonlinear Square MIMO System 

The system shown above is a two-mass system connected by nonlinear springs k and nonlinear 

dampers c, and u represents a force input on each mass. The system is represented by the 

following equations of motion: 

 𝑚1�̈�1 + 𝑐1�̇�1|�̇�1| + 𝑘1𝑥1
3 + 𝑐2(�̇�1 − �̇�2)|�̇�1 − �̇�2| + 𝑘2(𝑥1 − 𝑥2)

3 = 𝑢1 (3.32) 

 𝑚2�̈�2 + 𝑐2(�̇�2 − �̇�1)|�̇�2 − �̇�1| + 𝑘2(𝑥2 − 𝑥1)
3 = 𝑢2 (3.33) 

where: 

 𝑚1 = 10 𝑘𝑔    𝑚2 = 20 𝑘𝑔    𝑐1 = 20
𝑁𝑠2

𝑚2
    𝑐2 = 45

𝑁𝑠2

𝑚2
    𝑘1 = 120

𝑁

𝑚3
    𝑘2 = 80

𝑁

𝑚3
 

it is assumed that 𝑚1 and 𝑚2 are within the bounds of: 

 5 ≤ 𝑚1 ≤ 15 𝑘𝑔 

 15 ≤ 𝑚2 ≤ 25 𝑘𝑔 

with a desired tracking signal of: 
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 𝑥1𝑑
(𝑡) = sin (

𝜋

2
𝑡) (3.34) 

 𝑥2𝑑
(𝑡) = sin (

𝜋

2
𝑡) (3.35) 

The controller parameters used are: 

  m1 m2 

σu 0.65 0.65 

λ 20 20 

η 0.2 0.2 
Table 2: Controller Parameters for the 2nd-order Nonlinear Square MIMO System 

Using the control law derived in Eq. (3.26) results in the following performance: 

Figure 5: Time History Plot of x1 and x1d 
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Figure 6: Time History Plot of x2 and x2d 

Figure 7: Time History Plot of the Controller Effort 
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Figure 8: Time History Plot of the Sliding Condition for m1 

Figure 9: Time History Plot of the Sliding Condition for m2 

The RMS of the difference between the actual and desired state for 𝑚1 and 𝑚2, from Figures 5 

and 6, resulted in 8.6823*10-6 and 1.7000*10-6 meters, respectfully. This RMS value shows that 

almost perfect tracking is achieved for both masses. The sliding condition, shown in Figures 8 

and 9, is observed to be satisfied for the whole simulation which guarantees asymptotic stability 
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and the controller effort, shown in Figure 7, is observed to be smooth without high frequency 

chattering for both controllers. 
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4.0 METHODOLOGY 
The objective of this work is to compare the performance of MFSMC to an optimal PID 

controller by comparing tracking performance and average power utilization. First, a model of a 

quadcopter system is built in Simulink using equations that govern 6 DOF airborne systems. The 

[𝐵] matrix is derived next and then the MFSMC algorithm can be executed. Another simulation 

using PID controllers is executed; the PID controllers are to be tuned using MATLAB’s 

“fminsearch” function in the Optimization Toolbox while trying to minimize tracking error and 

control effort. 

Both controllers are simulated under the craft’s original parameters, doubling only the craft’s 

mass, doubling only the craft’s moments of inertia, and doubling both the craft’s mass and 

moments of inertia. For all simulations, the control algorithms are not altered to observe each 

controllers’ performance with significant uncertainty in model parameters. 

The controllers are compared by observing each controller’s ability to track altitude, roll, pitch, 

and yaw using RMS of the difference between the desired state and the actual state, as well as 

observing each controller’s average power usage. Lastly, the conclusions and future work are 

summarized. 
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5.0 QUADCOPTER SIMULATION 
A simulation of a quadcopter is built and controlled by a PID controller and the MFSMC 

algorithm. The equations of motion are derived for the system, then a derivation for the [𝐵] 

matrix is derived. The PID controllers are tuned using MATLAB’s fminsearch function from the 

Optimization Toolbox. For each controller design the RMS for altitude, roll, pitch, and yaw is 

determined and compared. The electrical power consumed and mechanical power output from 

the system are also compared for each controller. 

5.1 Quadcopter Plant Model 

Quadcopters are a 6 DOF system with four motors with propellers to generate thrust at each 

motor. The local frame of the system is described by 𝑋, 𝑌, and 𝑍 for translational displacement 

and 𝜙, 𝜃, and 𝜓 for angular displacement which are the rotations about 𝑋, 𝑌, and 𝑍, respectively, 

and is represented by Figure 10: 

Figure 10: 6 DOF Coordinate System 

The states of the quadcopter are described below in Table 3: 
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Symbol Description Units 

𝜃 Pitch Angle rad 

�̇� Pitch Angular Velocity rad/sec 

�̈� Pitch Angular Acceleration rad/sec2 

𝜙 Roll Angle rad 

�̇� Roll Angular Velocity rad/sec 

�̈� Roll Angular Acceleration rad/sec2 

𝜓 Yaw Angle rad 

�̇� Yaw Angular Velocity rad/sec 

�̈� Yaw Angular Acceleration rad/sec2 

𝑋 Position along X m 

�̇� Velocity along X m/sec 

�̈� Acceleration along X m/sec2 

𝑌 Position along Y m 

�̇� Velocity along Y m/sec 

�̈� Acceleration along Y m/sec2 

𝑍 Position along Z m 

�̇� Velocity along Z m/sec 

�̈� Acceleration along Z m/sec2 

Ω1 Motor 1 Angular Velocity rad/sec 

Ω2 Motor 2 Angular Velocity rad/sec 

Ω3 Motor 3 Angular Velocity rad/sec 

Ω4 Motor 4 Angular Velocity rad/sec 

Table 3: Quadcopter States 

5.1.1 Reference Frames and Orientations 

The two reference frames are assumed to be the local NED (North – East – Down) reference 

frame and the body-reference frame. The NED reference frame is an inertial frame of reference 

and the body-reference frame is non-inertial and is assumed to be fixed on the quadcopter as it 

moves through 3-D space. For the NED reference frame, the 𝑋-axis is pointed towards North, the 

𝑌-axis is point towards the East, and the 𝑍-axis is pointed down, as shown in Figure 11: 
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Figure 11: Local NED Reference Frame1 

The body-reference frame is dependent on the orientation of the quadcopter. The quadcopter is 

assumed to have an “x” orientation, shown in Figure 12: 

Figure 12: "x" Quadcopter Orientation2 

 
1https://www.google.com/search?q=local+NED&rlz=1C1RLNS_enUS783US783&sxsrf=ALeKk02C1YPuCchd8dq

EhMO6O9qryf9PNw:1595960235660&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiP-6-Xx_DqAhWym-

AKHWxnDgYQ_AUoA3oECA4QBQ&biw=1396&bih=657#imgrc=9hkvsjuyY8CA2M 
2 

https://www.google.com/search?q=quadcopter+x+configuration+coordinate+frame&tbm=isch&ved=2ahUKEwiAg

5bO0PDqAhVLON8KHfkkD3IQ2-

cCegQIABAA&oq=quadcopter+x+configuration+coordinate+frame&gs_lcp=CgNpbWcQA1Di9QdYmP8HYNn_B

2gAcAB4AIABSIgBjAOSAQE2mAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=jnUgX4CEHsvw_

Ab5ybyQBw&bih=596&biw=711&rlz=1C1RLNS_enUS783US783#imgrc=K7SjDHxYctCHMM&imgdii=ZmUcC

azlCuDdaM 

https://www.google.com/search?q=local+NED&rlz=1C1RLNS_enUS783US783&sxsrf=ALeKk02C1YPuCchd8dqEhMO6O9qryf9PNw:1595960235660&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiP-6-Xx_DqAhWym-AKHWxnDgYQ_AUoA3oECA4QBQ&biw=1396&bih=657#imgrc=9hkvsjuyY8CA2M
https://www.google.com/search?q=local+NED&rlz=1C1RLNS_enUS783US783&sxsrf=ALeKk02C1YPuCchd8dqEhMO6O9qryf9PNw:1595960235660&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiP-6-Xx_DqAhWym-AKHWxnDgYQ_AUoA3oECA4QBQ&biw=1396&bih=657#imgrc=9hkvsjuyY8CA2M
https://www.google.com/search?q=local+NED&rlz=1C1RLNS_enUS783US783&sxsrf=ALeKk02C1YPuCchd8dqEhMO6O9qryf9PNw:1595960235660&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiP-6-Xx_DqAhWym-AKHWxnDgYQ_AUoA3oECA4QBQ&biw=1396&bih=657#imgrc=9hkvsjuyY8CA2M
https://www.google.com/search?q=quadcopter+x+configuration+coordinate+frame&tbm=isch&ved=2ahUKEwiAg5bO0PDqAhVLON8KHfkkD3IQ2-cCegQIABAA&oq=quadcopter+x+configuration+coordinate+frame&gs_lcp=CgNpbWcQA1Di9QdYmP8HYNn_B2gAcAB4AIABSIgBjAOSAQE2mAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=jnUgX4CEHsvw_Ab5ybyQBw&bih=596&biw=711&rlz=1C1RLNS_enUS783US783#imgrc=K7SjDHxYctCHMM&imgdii=ZmUcCazlCuDdaM
https://www.google.com/search?q=quadcopter+x+configuration+coordinate+frame&tbm=isch&ved=2ahUKEwiAg5bO0PDqAhVLON8KHfkkD3IQ2-cCegQIABAA&oq=quadcopter+x+configuration+coordinate+frame&gs_lcp=CgNpbWcQA1Di9QdYmP8HYNn_B2gAcAB4AIABSIgBjAOSAQE2mAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=jnUgX4CEHsvw_Ab5ybyQBw&bih=596&biw=711&rlz=1C1RLNS_enUS783US783#imgrc=K7SjDHxYctCHMM&imgdii=ZmUcCazlCuDdaM
https://www.google.com/search?q=quadcopter+x+configuration+coordinate+frame&tbm=isch&ved=2ahUKEwiAg5bO0PDqAhVLON8KHfkkD3IQ2-cCegQIABAA&oq=quadcopter+x+configuration+coordinate+frame&gs_lcp=CgNpbWcQA1Di9QdYmP8HYNn_B2gAcAB4AIABSIgBjAOSAQE2mAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=jnUgX4CEHsvw_Ab5ybyQBw&bih=596&biw=711&rlz=1C1RLNS_enUS783US783#imgrc=K7SjDHxYctCHMM&imgdii=ZmUcCazlCuDdaM
https://www.google.com/search?q=quadcopter+x+configuration+coordinate+frame&tbm=isch&ved=2ahUKEwiAg5bO0PDqAhVLON8KHfkkD3IQ2-cCegQIABAA&oq=quadcopter+x+configuration+coordinate+frame&gs_lcp=CgNpbWcQA1Di9QdYmP8HYNn_B2gAcAB4AIABSIgBjAOSAQE2mAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=jnUgX4CEHsvw_Ab5ybyQBw&bih=596&biw=711&rlz=1C1RLNS_enUS783US783#imgrc=K7SjDHxYctCHMM&imgdii=ZmUcCazlCuDdaM
https://www.google.com/search?q=quadcopter+x+configuration+coordinate+frame&tbm=isch&ved=2ahUKEwiAg5bO0PDqAhVLON8KHfkkD3IQ2-cCegQIABAA&oq=quadcopter+x+configuration+coordinate+frame&gs_lcp=CgNpbWcQA1Di9QdYmP8HYNn_B2gAcAB4AIABSIgBjAOSAQE2mAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=jnUgX4CEHsvw_Ab5ybyQBw&bih=596&biw=711&rlz=1C1RLNS_enUS783US783#imgrc=K7SjDHxYctCHMM&imgdii=ZmUcCazlCuDdaM
https://www.google.com/search?q=quadcopter+x+configuration+coordinate+frame&tbm=isch&ved=2ahUKEwiAg5bO0PDqAhVLON8KHfkkD3IQ2-cCegQIABAA&oq=quadcopter+x+configuration+coordinate+frame&gs_lcp=CgNpbWcQA1Di9QdYmP8HYNn_B2gAcAB4AIABSIgBjAOSAQE2mAEAoAEBqgELZ3dzLXdpei1pbWfAAQE&sclient=img&ei=jnUgX4CEHsvw_Ab5ybyQBw&bih=596&biw=711&rlz=1C1RLNS_enUS783US783#imgrc=K7SjDHxYctCHMM&imgdii=ZmUcCazlCuDdaM


39 

 

5.1.2 Plant Model Equations 

A mathematical model to represent the quadcopter is shown in this section. The assumptions for 

the model are: 

• The quadcopter is a rigid body 

• The geometry is symmetrical 

• The quadcopter has uniform mass distribution 

• Thrust is proportional to the square of the propeller speed 

• Drag is proportional to the square of the vehicle speed 

• There are no external disturbances to the system 

The thrust at each motor is: 

 𝐹1 = 𝑏Ω1
2 (5.1) 

 𝐹2 = 𝑏Ω2
2 (5.2) 

 𝐹3 = 𝑏Ω3
2 (5.3) 

 𝐹4 = 𝑏Ω4
2 (5.4) 

where 𝐹𝑖 is the force at the 𝑖𝑡ℎ motor, Ω𝑖 is the motor speed of the 𝑖𝑡ℎ motor, and 𝑏 is the thrust 

factor. The moments about the x-axis (roll) from each motor is: 

 𝑀1,𝑥 = (𝑙 sin (
𝜋

4
)) 𝑏Ω1

2 (5.5) 

 𝑀2,𝑥 = −(𝑙 sin (
𝜋

4
)) 𝑏Ω2

2 (5.6) 

 𝑀3,𝑥 = −(𝑙 sin (
𝜋

4
)) 𝑏Ω3

2 (5.7) 
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 𝑀4,𝑥 = (𝑙 sin (
𝜋

4
)) 𝑏Ω4

2 (5.8) 

where 𝑀𝑖,𝑥 is the rolling moment due to the 𝑖𝑡ℎ motor, and 𝑙 is the length of the center of gravity 

to the motor. The moments about y-axis (pitch) from each motor are: 

 𝑀1,𝑦 = (𝑙 sin (
𝜋

4
)) 𝑏Ω1

2 (5.9) 

 𝑀2,𝑦 = (𝑙 sin (
𝜋

4
)) 𝑏Ω2

2 (5.10) 

 𝑀3,𝑦 = −(𝑙 sin (
𝜋

4
)) 𝑏Ω3

2 (5.11) 

 𝑀4,𝑦 = −(𝑙 sin (
𝜋

4
)) 𝑏Ω4

2 (5.12) 

where 𝑀𝑖,𝑦 is the pitching moment due to the 𝑖𝑡ℎ motor. The torques from each motor are: 

 𝑇1 = 𝑑Ω1
2 (5.13) 

 𝑇2 = −𝑑Ω2
2 (5.14) 

 𝑇3 = 𝑑Ω3
2 (5.15) 

 𝑇4 = −𝑑Ω4
2 (5.16) 

where 𝑇𝑖 is the torque produced by the 𝑖𝑡ℎ motor. Summing all the forces and moments yields the 

equations: 

 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = 𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 (5.17) 

 𝑀𝑟𝑜𝑙𝑙 = 𝑀1,𝑥 + 𝑀2,𝑥 + 𝑀3,𝑥 + 𝑀4,𝑥 (5.18) 

 𝑀𝑝𝑖𝑡𝑐ℎ = 𝑀1,𝑦 + 𝑀2,𝑦 + 𝑀3,𝑦 + 𝑀4,𝑦 (5.19) 
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 𝑀𝑦𝑎𝑤 = 𝑇1 + 𝑇2 + 𝑇3 + 𝑇4 (5.20) 

sub Eqs. (5.1 – 5.16) into Eqs. (5.17 – 5.20): 

 𝐹𝑡ℎ𝑟𝑢𝑠𝑡 = 𝑏(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2) (5.21) 

 𝑀𝑟𝑜𝑙𝑙 = 𝑙𝑏 sin (
𝜋

4
) (Ω1

2 − Ω2
2 − Ω3

2 + Ω4
2) (5.22) 

 𝑀𝑝𝑖𝑡𝑐ℎ = 𝑙𝑏 sin (
𝜋

4
) (Ω1

2 + Ω2
2 − Ω3

2 − Ω4
2) (5.23) 

 𝑀𝑦𝑎𝑤 = 𝑑(Ω1
2 − Ω2

2 + Ω3
2 − Ω4

2) (5.24) 

The equations of motion for a quadcopter system is given by: 

 �̇� = −𝑔 sin(𝜃) + 𝑣𝑟 − 𝑤𝑞 −
𝐶𝑑𝜌𝐴𝑢

2𝑚
𝑢2 (5.25) 

 �̇� = 𝑔 sin(𝜙) cos(𝜃) − 𝑢𝑟 + 𝑤𝑝 −
𝐶𝑑𝜌𝐴𝑣

2𝑚
𝑣2 (5.27) 

 �̇� = 𝑔 cos(𝜙) cos(𝜃) + 𝑢𝑞 − 𝑣𝑝 +
𝐶𝑑𝜌𝐴𝑤

2𝑚
𝑤2 −

𝐹𝑡ℎ𝑟𝑢𝑠𝑡

𝑚
 (5.28) 

 [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] [
�̇�
�̇�
�̇�

] = [

𝑞𝑟(𝐼𝑦𝑦 − 𝐼𝑧𝑧) + (𝑞2 − 𝑟2)𝐼𝑦𝑧 − 𝑝𝑟𝐼𝑥𝑦 + 𝑝𝑞𝐼𝑥𝑧 + 𝑀𝑥

𝑝𝑟(𝐼𝑧𝑧 − 𝐼𝑥𝑥) + (𝑟2 − 𝑝2)𝐼𝑥𝑧 − 𝑝𝑞𝐼𝑦𝑧 + 𝑞𝑟𝐼𝑥𝑦 + 𝑀𝑦

𝑝𝑞(𝐼𝑥𝑥 − 𝐼𝑦𝑦) + (𝑝2 − 𝑞2)𝐼𝑥𝑦 − 𝑞𝑟𝐼𝑥𝑧 + 𝑝𝑟𝐼𝑦𝑧 + 𝑀𝑧

] (5.29) 

where 𝑢, 𝑣, 𝑤 are the velocity of the craft along the x, y, z-body axes, respectively, 𝑔 is the 

acceleration due to gravity near the Earth’s surface, 𝑝, 𝑞, 𝑟 are the roll rate, pitch rate, yaw rate, 

respectively, 𝐶𝑑 is the drag coefficient, 𝜌 is the density of atmosphere, 𝑚 is the mass of the craft, 

𝐴𝑢, 𝐴𝑣, 𝐴𝑤 are the cross-sectional areas normal to the x, y, z-body axes, respectively, and 𝐼𝑖𝑗 is 

the moment of inertia about the 𝑖, 𝑗-axes. The moments are given by: 
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 𝑀𝑥 = 𝑀𝑟𝑜𝑙𝑙 + 𝐽𝑚𝑞Ω𝑟 (5.30) 

 𝑀𝑦 = 𝑀𝑝𝑖𝑡𝑐ℎ + 𝐽𝑚𝑝Ω𝑟 (5.31) 

 𝑀𝑧 = 𝑀𝑦𝑎𝑤 (5.32) 

where: 

 Ω𝑟 = Ω1 − Ω2 + Ω3 − Ω4 (5.33) 

and from the assumptions it is known that: 

 𝐼𝑥𝑦 = 0 (5.34) 

 𝐼𝑥𝑧 = 0 (5.35) 

 𝐼𝑦𝑧 = 0 (5.36) 

sub Eqs. (5.30 – 5.36) into Eq. (5.37): 

 �̇� =
𝑞𝑟(𝐼𝑦𝑦−𝐼𝑧𝑧)

𝐼𝑥𝑥
+

𝑀𝑟𝑜𝑙𝑙+𝐽𝑚𝑞Ω𝑟

𝐼𝑥𝑥
 (5.37) 

 �̇� =
𝑝𝑟(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
+

𝑀𝑝𝑖𝑡𝑐ℎ+𝐽𝑚𝑝Ω𝑟

𝐼𝑦𝑦
 (5.38) 

 �̇� =
𝑝𝑞(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
+

𝑀𝑦𝑎𝑤

𝐼𝑧𝑧
 (5.39) 

sub Eqs. (5.22 – 5.24) into Eqs. (5.37 – 5.39): 

 �̇� =
𝑞𝑟(𝐼𝑦𝑦−𝐼𝑧𝑧)

𝐼𝑥𝑥
+

𝑙𝑏 sin(
𝜋

4
)(Ω1

2−Ω2
2−Ω3

2+Ω4
2)+𝐽𝑚𝑞Ω𝑟

𝐼𝑥𝑥
 (5.37) 
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 �̇� =
𝑝𝑟(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
+

𝑙𝑏 sin(
𝜋

4
)(Ω1

2+Ω2
2−Ω3

2−Ω4
2)+𝐽𝑚𝑝Ω𝑟

𝐼𝑦𝑦
 (5.38) 

 �̇� =
𝑝𝑞(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
+

𝑑(Ω1
2−Ω2

2+Ω3
2−Ω4

2)

𝐼𝑧𝑧
 (5.39) 

sub Eq. (5.21) into Eq. (5.28): 

 �̇� = 𝑔 cos(𝜙) cos(𝜃) + 𝑢𝑞 − 𝑣𝑝 +
𝐶𝑑𝜌𝐴𝑤

2𝑚
𝑤2 −

𝑏(Ω1
2+Ω2

2+Ω3
2+Ω4

2)

𝑚
 (5.40) 

The Euler equations are given by: 

 �̇� = 𝑝 + 𝑞 sin(𝜙) tan(𝜃) + 𝑟 cos(𝜙) tan(𝜃) (5.41) 

 �̇� = 𝑞 cos(𝜙) − 𝑟 sin(𝜙) (5.42) 

 �̇� = (𝑞 sin(𝜙) + 𝑟 cos(𝜙)) sec(𝜃) (5.43) 

Accounting for motor dynamics gives the following equations: 

 𝐿
𝑑𝑖𝑖

𝑑𝑡
= 𝑉𝑖𝑐𝑚𝑑

− 𝑅𝑖𝑖 − 𝐾𝑒𝑚𝑓Ω𝑖 (5.44) 

 𝐽𝑚
𝑑Ω𝑖

𝑑𝑡
= 𝐾𝑡𝑖𝑖 − 𝑏𝑚Ω𝑖 (5.45) 

where 𝐿 is the inductance, 𝑖𝑖 is the current through the 𝑖𝑡ℎ motor, 𝑉𝑖𝑐𝑚𝑑
 is the voltage command 

to the 𝑖𝑡ℎ motor, 𝑅 is the electrical resistance of the motor, 𝐾𝑒𝑚𝑓 is the back emf voltage 

generated per the angular velocity of the motor, 𝐽𝑚 is the moment of inertia of the motor, 𝐾𝑡 is 

the moment generated per amount of current, and 𝑏𝑚 is the moment generated from friction per 

the angular velocity of the motor. Lastly, to obtain the local NED coordinates the following 

matrix operation is utilized: 
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[

�̈�𝑁𝐸𝐷

�̈�𝑁𝐸𝐷

�̈�𝑁𝐸𝐷

] = [

cos(𝜓) cos(𝜃) −sin(𝜓) cos(𝜙) + cos(𝜓) sin(𝜃) sin(𝜙) sin(𝜓) sin(𝜙) − cos(𝜓) sin(𝜃) cos(𝜙)

sin(𝜓) cos(𝜃) cos(𝜓) cos(𝜙) + sin(𝜓) sin(𝜃) sin(𝜙) −cos(𝜓) sin(𝜙) + sin(𝜓) sin(𝜃) cos(𝜙)

− sin(𝜃) cos(𝜃) sin(𝜙) cos(𝜃) cos(𝜙)
] [

�̇�
�̇�
�̇�

] (5.46) 

 

5.2 Deriving the [𝑩] Matrix 

In this section the [𝐵] matrix used in the MFSMC algorithm is derived. Restating Eqs. (5.41 – 

5.43): 

 �̇� = 𝑝 + 𝑞 sin(𝜙) tan(𝜃) + 𝑟 cos(𝜙) tan(𝜃) (5.41) 

 �̇� = 𝑞 cos(𝜙) − 𝑟 sin(𝜙) (5.42) 

 �̇� = (𝑞 sin(𝜙) + 𝑟 cos(𝜙)) sec(𝜃) (5.43) 

differentiating Eqs. (5.41 – 5.43) gives: 

 �̈� = �̇� + �̇� sec2 𝜃 (𝑞 sin𝜙 + 𝑟 cos𝜙) + �̇� tan 𝜃 (𝑞 cos𝜙 − 𝑟 sin 𝜙) + tan𝜃 (�̇� sin𝜙 + �̇� cos𝜙)

  (5.47) 

 �̈� = �̇� cos𝜙 − �̇� sin𝜙 − �̇�(𝑞 sin𝜙 + 𝑟 cos𝜙) (5.48) 

�̈� = sec 𝜃 [�̇� tan 𝜃 (𝑞 sin𝜙 + 𝑟 cos𝜙) + �̇�(𝑞 cos𝜙 − 𝑟 sin 𝜙) + �̇� sin 𝜙 + �̇� cos𝜙] (5.49) 

sub Eqs. (5.37 – 5.39) into Eqs. (5.47 – 5.49): 

�̈� = 𝑞𝑟
(𝐼𝑦𝑦−𝐼𝑧𝑧)

𝐼𝑥𝑥
+

1

𝐼𝑥𝑥
𝑀𝑥 + tan(𝜃) sin(𝜙) (𝑝𝑟

(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
+

1

𝐼𝑦𝑦
𝑀𝑦) +

tan(𝜃) cos(𝜙) (𝑝𝑞
(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
+

1

𝐼𝑧𝑧
𝑀𝑧) + �̇� sec(𝜃)2 (𝑞 sin(𝜙) + 𝑟cos(𝜙)) +

�̇� tan(𝜃) (𝑞 cos(𝜙) − 𝑟 sin(𝜙))  (5.50) 
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 �̈� = cos(𝜙) (𝑝𝑟
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
+

1

𝐼𝑦𝑦
𝑀𝑦) − sin(𝜙) (sec(θ)sin(ϕ)) − �̇�(𝑞 sin(𝜙) + 𝑟 cos(𝜙))  

  (5.51) 

�̈� =

sec(θ)sin(ϕ) (𝑝𝑟
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
+

1

𝐼𝑦𝑦
𝑀𝑦) + sec(θ)cos(ϕ) (𝑝𝑞

(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
+

1

𝐼𝑧𝑧
𝑀𝑧) + sec (𝜃) [�̇� tan 𝜃 (𝑞 sin𝜙 +

𝑟 cos𝜙) + �̇�(𝑞 cos𝜙 − 𝑟 sin𝜙)]  (5.52) 

rearranging Eqs. (5.41 – 5.43) gives: 

 𝑝 = �̇� − �̇� sin 𝜃 (5.53) 

 𝑞 = �̇� sin𝜙 cos 𝜃 + �̇� cos𝜙 (5.54) 

 𝑟 = �̇� cos𝜙 cos 𝜃 − �̇� sin 𝜙 (5.55) 

so that: 

 𝑝𝑞 = �̇� (�̇� sin(𝜙) cos(𝜃) − sin(𝜃) (�̇� sin(𝜙) cos(𝜃) + �̇� cos(𝜙))) + �̇��̇�cos (𝜙) (5.56) 

 𝑝𝑟 = �̇�(�̇� cos(𝜙) cos(𝜃) − sin(𝜃) (�̇� cos(𝜙) cos(𝜃) + �̇� sin(𝜙))) − �̇��̇�sin (𝜙) (5.57) 

 𝑞𝑟 = �̇� (�̇� sin(𝜙) cos(𝜙) cos (𝜃)2 − sin(𝜃) (�̇� cos(𝜙) cos(𝜃) + �̇� sin(𝜙))) − �̇�
2
sin (𝜙)cos (𝜙)  

  (5.58) 

sub Eqs. (5.53 – 5.58) into Eqs. (5.50 – 5.52): 

�̈� =
(𝐼𝑦𝑦−𝐼𝑧𝑧)

𝐼𝑥𝑥
[�̇�(�̇� sin(𝜙) cos(𝜙) cos(𝜃)2 − �̇� cos(𝜃) cos(2𝜃)) − �̇�2 sin(𝜙) cos(𝜙)] +

tan(𝜃) sin(𝜙)
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
[�̇� (�̇� cos(𝜙) cos(𝜃) − sin(𝜃) (�̇� cos(𝜙) cos(𝜃) − �̇� sin(𝜙))) −



46 

 

�̇��̇� sin(𝜙)] + tan(𝜃) cos(𝜙)
(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
[�̇� (�̇� sin(𝜙) cos(𝜃) − sin(𝜃) (�̇� sin(𝜙) cos(𝜃) −

�̇� cos(𝜙))) + �̇��̇� cos(𝜙)] + 2�̇��̇�sin (𝜙)2 sec(𝜃) + �̇��̇� tan(𝜃) +
1

𝐼𝑥𝑥
𝑀𝑥 +

tan(𝜃)sin (𝜙)

𝐼𝑦𝑦
𝑀𝑦 +

tan(𝜃)cos (𝜙)

𝐼𝑧𝑧
𝑀𝑧  (5.59) 

 

�̈� = cos(𝜙)
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
[�̇� (�̇� cos(𝜙) cos(𝜃) − sin(𝜃) (�̇� cos(𝜙) cos(𝜃) − �̇� sin(𝜙))) −

�̇��̇� sin(𝜙)] − sin(𝜙)
(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
[�̇� (�̇� sin(𝜙) cos(𝜃) − sin(𝜃) (�̇� sin(𝜙) cos(𝜃) + �̇� cos(𝜙))) +

�̇��̇� cos(𝜙)] − �̇��̇� cos(𝜃) +
cos (𝜙)

𝐼𝑦𝑦
𝑀𝑦 +

sin (𝜙)

𝐼𝑧𝑧
𝑀𝑧 (5.60) 

 

�̈� = sec(𝜃) sin(𝜙)
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
[�̇� (�̇� cos(𝜙) cos(𝜃) − sin(𝜃) (�̇� cos(𝜙) cos(𝜃) − �̇� sin(𝜙))) −

�̇��̇� sin(𝜙)] − sec(𝜃) cos(𝜙)
(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
[�̇� (�̇� sin(𝜙) cos(𝜃) − sin(𝜃) (�̇� sin(𝜙) cos(𝜃) +

�̇� cos(𝜙))) + �̇��̇� cos(𝜙)] + �̇�(�̇� tan(𝜃) + �̇� sec(𝜃)) +
sec (θ)sin (𝜙)

𝐼𝑦𝑦
𝑀𝑦 +

sec (θ)cos (𝜙)

𝐼𝑧𝑧
𝑀𝑧  

  (5.61) 

To reduce the size of Eqs. (5.59 – 5.61) placeholder variables are defined: 

Γ1 =
(𝐼𝑦𝑦−𝐼𝑧𝑧)

𝐼𝑥𝑥
[�̇�(�̇� sin(𝜙) cos(𝜙) cos(𝜃)2 − �̇� cos(𝜃) cos(2𝜃)) − �̇�2 sin(𝜙) cos(𝜙)] +

tan(𝜃) sin(𝜙)
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
[�̇� (�̇� cos(𝜙) cos(𝜃) − sin(𝜃) (�̇� cos(𝜙) cos(𝜃) − �̇� sin(𝜙))) −

�̇��̇� sin(𝜙)] + tan(𝜃) cos(𝜙)
(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
[�̇� (�̇� sin(𝜙) cos(𝜃) − sin(𝜃) (�̇� sin(𝜙) cos(𝜃) −
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�̇� cos(𝜙))) + �̇��̇� cos(𝜙)] + 2�̇��̇�sin (𝜙)2 sec(𝜃) + �̇��̇� tan(𝜃) +
tan(𝜃)sin (𝜙)

𝐼𝑦𝑦
𝑀𝑦 +

tan(𝜃)cos (𝜙)

𝐼𝑧𝑧
𝑀𝑧  (5.62) 

Γ2 = cos(𝜙)
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
[�̇� (�̇� cos(𝜙) cos(𝜃) − sin(𝜃) (�̇� cos(𝜙) cos(𝜃) − �̇� sin(𝜙))) −

�̇��̇� sin(𝜙)] − sin(𝜙)
(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
[�̇� (�̇� sin(𝜙) cos(𝜃) − sin(𝜃) (�̇� sin(𝜙) cos(𝜃) + �̇� cos(𝜙))) +

�̇��̇� cos(𝜙)] − �̇��̇� cos(𝜃) +
sin (𝜙)

𝐼𝑧𝑧
𝑀𝑧  (5.63) 

Γ3 = sec(𝜃) sin(𝜙)
(𝐼𝑧𝑧−𝐼𝑥𝑥)

𝐼𝑦𝑦
[�̇� (�̇� cos(𝜙) cos(𝜃) − sin(𝜃) (�̇� cos(𝜙) cos(𝜃) − �̇� sin(𝜙))) −

�̇��̇� sin(𝜙)] − sec(𝜃) cos(𝜙)
(𝐼𝑥𝑥−𝐼𝑦𝑦)

𝐼𝑧𝑧
[�̇� (�̇� sin(𝜙) cos(𝜃) − sin(𝜃) (�̇� sin(𝜙) cos(𝜃) +

�̇� cos(𝜙))) + �̇��̇� cos(𝜙)] + �̇�(�̇� tan(𝜃) + �̇� sec(𝜃)) +
sec (θ)sin (𝜙)

𝐼𝑦𝑦
𝑀𝑦 (5.64) 

then sub Eqs. (5.62 – 5.64) into Eqs. (5.59 – 5.61): 

 �̈� = Γ1 +
1

𝐼𝑥𝑥
𝑀𝑥 (5.65) 

 �̈� = Γ2 +
cos (𝜙)

𝐼𝑦𝑦
𝑀𝑦 (5.66) 

 �̈� = Γ3 +
sec (θ)cos (𝜙)

𝐼𝑧𝑧
𝑀𝑧 (5.67) 

sub Eqs. (5.30 – 5.32) into Eqs. (5.65 -5.67): 

 �̈� = Γ1 +
1

𝐼𝑥𝑥
(𝑀𝑟𝑜𝑙𝑙 + 𝐽𝑚𝑞Ω𝑟) (5.68) 

 �̈� = Γ2 +
cos(𝜙)

𝐼𝑦𝑦
(𝑀𝑝𝑖𝑡𝑐ℎ + 𝐽𝑚𝑞Ω𝑟) (5.69) 
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 �̈� = Γ3 +
sec (θ)cos (𝜙)

𝐼𝑧𝑧
𝑀𝑦𝑎𝑤 (5.70) 

sub Eqs. (5.22 – 5.24) into Eqs. (5.68 – 5.70): 

 �̈� = Γ1 +
𝐽𝑚𝑞Ω𝑟

𝐼𝑥𝑥
+

𝑙𝑏 sin(
𝜋

4
)(Ω1

2−Ω2
2−Ω3

2+Ω4
2)

𝐼𝑥𝑥
 (5.71) 

 �̈� = Γ2 + cos(𝜙)
𝐽𝑚𝑞Ω𝑟

𝐼𝑦𝑦
+ cos(𝜙)

𝑙𝑏 sin(
𝜋

4
)(Ω1

2+Ω2
2−Ω3

2−Ω4
2)

𝐼𝑦𝑦
 (5.72) 

 �̈� = Γ3 + sec(θ) cos(𝜙)
𝑑(Ω1

2−Ω2
2+Ω3

2−Ω4
2)

𝐼𝑧𝑧
 (5.73) 

Using the motor dynamics, a relationship is built between the motor speed and voltage 

command. Recall Eqs. (5.44 – 5.45): 

 𝐿
𝑑𝑖𝑖

𝑑𝑡
= 𝑉𝑖𝑐𝑚𝑑

− 𝑅𝑖𝑖 − 𝐾𝑒𝑚𝑓Ω𝑖 (5.44) 

 𝐽𝑚
𝑑Ω𝑖

𝑑𝑡
= 𝐾𝑡𝑖𝑖 − 𝑏𝑚Ω𝑖 (5.45) 

assuming steady-state of the motors Eqs. (5.44 – 5.45) reduce to: 

 0 = 𝑉𝑖𝑐𝑚𝑑
− 𝑅𝑖𝑖 − 𝐾𝑒𝑚𝑓Ω𝑖 (5.74) 

 0 = 𝐾𝑡𝑖𝑖 − 𝑏𝑚Ω𝑖 (5.75) 

combining Eqs. (5.74 – 5.75) and solving for Ω𝑖 yields: 

 Ω𝑖 =
𝐾𝑡

𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚
𝑉𝑖𝑐𝑚𝑑

 (5.76) 

sub Eq. (5.76) into Eq. (5.40) and Eqs. (5.71 – 5.73): 
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 �̇� = 𝑔 cos(𝜙) cos(𝜃) + 𝑢𝑞 − 𝑣𝑝 +
𝐶𝑑𝜌𝐴𝑤

2𝑚
𝑤2 −

𝑏(
𝐾𝑡

𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚
)2(V1

2+V2
2+V3

2+V4
2)

𝑚
 (5.71) 

 �̈� = Γ1 +
𝐽𝑚𝑞Ω𝑟

𝐼𝑥𝑥
+

𝑙𝑏 sin(
𝜋

4
)(

𝐾𝑡
𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚

)2(𝑉1
2−V2

2−V3
2+V4

2)

𝐼𝑥𝑥
 (5.72) 

 �̈� = Γ2 + cos(𝜙)
𝐽𝑚𝑞Ω𝑟

𝐼𝑦𝑦
+ cos(𝜙)

𝑙𝑏 sin(
𝜋

4
)(

𝐾𝑡
𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚

)2(𝑉1
2+𝑉2

2−𝑉3
2−𝑉4

2)

𝐼𝑦𝑦
 (5.73) 

 �̈� = Γ3 + sec(θ) cos(𝜙)
𝑑(

𝐾𝑡
𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚

)2(V1
2−𝑉2

2+𝑉3
2−𝑉4

2)

𝐼𝑧𝑧
 (5.74) 

since altitude is being tracked, a coordinate transformation from �̇� to ℎ̈ is needed, where ℎ̈ is the 

acceleration of the craft’s altitude: 

 ℎ̈ = cos(𝜙) cos(𝜃) (−𝑔 − 𝑢𝑞 + 𝑣𝑝 −
𝐶𝑑𝜌𝐴𝑤

2𝑚
𝑤2) + cos(𝜙) cos(𝜃)

𝑏(
𝐾𝑡

𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚
)

2

(V1
2+V2

2+V3
2+V4

2)

𝑚

  (5.75) 

Next the following control inputs are defined based off Eqs. (5.72 – 5.75): 

 𝑢ℎ = 𝑉1
2 + 𝑉2

2 + 𝑉3
2 + 𝑉4

2 (5.76) 

 𝑢𝜙 = 𝑉1
2 − 𝑉2

2 − 𝑉3
2 + 𝑉4

2 (5.77) 

 𝑢𝜃 = 𝑉1
2 + 𝑉2

2 − 𝑉3
2 − 𝑉4

2 (5.78) 

 𝑢𝜓 = 𝑉1
2 − 𝑉2

2 + 𝑉3
2 − 𝑉4

2 (5.79) 

where 𝑢ℎ, 𝑢𝜙, 𝑢𝜃, and 𝑢𝜓 are the controller outputs for altitude, roll, pitch, and yaw, 

respectively. Sub Eqs. (5.76 – 5.79) into Eqs. (5.72 – 5.75): 
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 ℎ̈ = cos(𝜙) cos(𝜃) (−𝑔 − 𝑢𝑞 + 𝑣𝑝 −
𝐶𝑑𝜌𝐴𝑤

2𝑚
𝑤2) + cos(𝜙) cos(𝜃)

𝑏(
𝐾𝑡

𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚
)

2

𝑚
𝑢ℎ 

  (5.80) 

 �̈� = Γ1 +
𝐽𝑚𝑞Ω𝑟

𝐼𝑥𝑥
+

𝑙𝑏 sin(
𝜋

4
)(

𝐾𝑡
𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚

)2

𝐼𝑥𝑥
𝑢𝜙 (5.81) 

 �̈� = Γ2 + cos(𝜙)
𝐽𝑚𝑞Ω𝑟

𝐼𝑦𝑦
+ cos(𝜙)

𝑙𝑏 sin(
𝜋

4
)(

𝐾𝑡
𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚

)2

𝐼𝑦𝑦
𝑢𝜃 (5.82) 

 �̈� = Γ3 + sec(θ) cos(𝜙)
𝑑(

𝐾𝑡
𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚

)2

𝐼𝑧𝑧
𝑢𝜓 (5.83) 

from Eqs. (5.80 – 5.83) the [𝐵] matrix can be derived to be: 

 [𝐵] =

[
 
 
 
 
 
 
 
 

𝑏𝐾𝑡
2

𝑚(𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚)2
0 0 0

0
𝑙𝑏sin (

𝜋

4
)𝐾𝑡

2

𝐼𝑥𝑥(𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚)2
0 0

0 0
𝑙𝑏 sin(

𝜋

4
)𝐾𝑡

2

𝐼𝑦𝑦(𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚)2
0

0 0 0
𝑑𝐾𝑡

2

𝐼𝑧𝑧(𝐾𝑡𝐾𝑒𝑚𝑓+𝑅𝑏𝑚)2]
 
 
 
 
 
 
 
 

 (5.84) 

solving Eqs. (5.76 – 5.79) gives: 

 𝑉1 =
1

2
√𝑢ℎ + 𝑢𝜙 + 𝑢𝜃 + 𝑢𝜓 (5.85) 

 𝑉2 =
1

2
√𝑢ℎ − 𝑢𝜙 + 𝑢𝜃 − 𝑢𝜓 (5.86) 

 𝑉3 =
1

2
√𝑢ℎ − 𝑢𝜙 − 𝑢𝜃 + 𝑢𝜓 (5.87) 

 𝑉4 =
1

2
√𝑢ℎ + 𝑢𝜙 − 𝑢𝜃 − 𝑢𝜓 (5.88) 



51 

 

5.3 Simulation Study 
In this section a simulation of a quadcopter is performed by tracking various signals, which were 

determined by Sreeraj [3], that were strategized to not saturate the controller output but also to 

adequately test the performance of the system using the MFSMC algorithm, using the equations 

in sections 5.1 – 5.2, and a PID controller which is optimized using MATLAB’s “fminsearch” 

function from the Optimization Toolbox. The parameters of the craft are altered in some 

simulations without altering the either control algorithms to observe performance with 

significant uncertainty in the model parameters. The RMS of the difference between actual state 

and the desired state as well as the average power consumed are used to compare each controller. 

For the MFSMC algorithm, the following parameters were used: 

  lambda (λ) eta (η) 

𝑢ℎ 30 0.75 

𝑢𝜙 30 0.35 

𝑢𝜃 30 0.7 

𝑢𝜓 30 0.3 
Table 4: MFSMC Controller Parameters 

For the PID controller, the following coefficients were used: 

  𝑢ℎ 𝑢𝜙 𝑢𝜃 𝑢𝜓 

KP 5.74384E+04 -6.50040E+00 1.70906E+02 2.49697E+02 

KI 2.04123E+03 -1.96484E-02 1.33983E+01 2.95907E+01 

KD 3.03855E+03 4.87282E+02 2.07731E+03 2.48264E+03 

Table 5: PID Controller Parameters 

 

5.3.1 Original Craft Parameters 

In this simulation, all the craft’s parameters are not altered. The performance of the PID 

controller is presented first: 
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Figure 13: PID, Original; Altitude Tracking 

Figure 14: PID, Original; Roll Tracking 
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Figure 15: PID, Original; Pitch Tracking 

Figure 16: PID, Original; Yaw Tracking 
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Figure 17: PID, Original; Electrical Power 

Figure 18: PID, Original; Mechanical Power 
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Now the performance of the MFSMC algorithm is presented: 

Figure 19: MFSMC, Original; Altitude Tracking 

Figure 20: MFSMC, Original; Roll Tracking 
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Figure 21: MFSMC, Original; Pitch Tracking 

Figure 22: MFSMC, Original; Yaw Tracking 
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Figure 23: MFSMC, Original; Altitude Sliding Condition 

Figure 24: MFSMC, Original; Roll Sliding Condition 
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Figure 25: MFSMC, Original; Pitch Sliding Condition 

Figure 26: MFSMC, Original; Yaw Sliding Condition 
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Figure 27: MFSMC, Original; Electrical Power 

Figure 28: MFSMC, Original; Mechanical Power 
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  PID MFSMC 

Altitude RMS (deg) 4.13906E-04 2.12795E-04 

Roll RMS (deg) 1.44825E-02 1.28304E-02 

Pitch RMS (deg) 8.89239E-03 7.81558E-03 

Yaw RMS (deg) 3.92335E-02 1.49953E-02 

Electrical Power Average (W) 196.4 194.6 

Mechanical Power Average (W) 146.6 146.4 

Efficiency 74.64% 75.23% 
Table 6: Results with Original Parameters 

It can be concluded from Table 6 that the MFSMC has better tracking for altitude, roll, pitch, and 

yaw, and it used less average power than that of the PID controller, using the craft’s original 

parameters. The MFSMC sliding condition was satisfied for altitude, roll, pitch, and yaw control. 
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5.3.2 Double the Craft’s Mass 

In this section, the craft of only the mass is doubled while using the exact same controllers in the 

previous simulation. The PID is presented first: 

Figure 29: PID, Double Mass; Altitude Tracking 

Figure 30: PID, Double Mass; Roll Tracking 
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Figure 31: PID, Double Mass; Pitch Tracking 

Figure 32: PID, Double Mass; Yaw Tracking 
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Figure 33: PID, Double Mass; Electrical Power 

Figure 34: PID, Double Mass; Mechanical Power 
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Now the performance of the MFSMC algorithm is presented: 

Figure 35: MFSMC, Double Mass; Altitude Tracking 

Figure 36: MFSMC, Double Mass; Roll Tracking 
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Figure 37: MFSMC, Double Mass; Pitch Tracking 

Figure 38: MFSMC, Double Mass; Yaw Tracking 
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Figure 39: MFSMC, Double Mass; Altitude Sliding Condition 

Figure 40: MFSMC, Double Mass; Roll Sliding Condition 
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Figure 41: MFSMC, Double Mass; Pitch Sliding Condition 

Figure 42: MFSMC, Double Mass; Yaw Sliding Condition 
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Figure 43: MFSMC, Double Mass; Electrical Power 

Figure 44: MFSMC, Double Mass; Mechanical Power 
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  PID MFSMC 

Altitude RMS (deg) 8.29678E-04 3.14351E-04 

Roll RMS (deg) 1.83692E-02 1.27950E-02 

Pitch RMS (deg) 8.91206E-03 7.86103E-03 

Yaw RMS (deg) 3.90046E-02 1.46493E-02 

Electrical Power Average (W) 391.7 391.1 

Mechanical Power Average (W) 293.2 293.0 

Efficiency 74.85% 74.92% 
Table 7: Results using Double Mass 

It can be concluded from Table 7 that the MFSMC has better tracking for altitude, roll, pitch, and 

yaw, and it used less average power than that of the PID controller, using double the craft’s 

original mass. The MFSMC sliding condition was satisfied for altitude, roll, pitch, and yaw 

control. 

5.3.3 Double the Craft’s Moments of Inertia 

In this section, the craft of only the moments of inertia are doubled while using the exact same 

controllers in the previous simulations. The performance of the PID controller is presented first: 

Figure 45: PID, Double Moments; Altitude Tracking 
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Figure 46: PID, Double Moments; Roll Tracking 

Figure 47: PID, Double Moments; Pitch Tracking 
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Figure 48: PID, Double Moments; Yaw Tracking 

Figure 49: PID, Double Moments; Electrical Power 
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Figure 50: PID, Double Moments; Mechanical Power 

Now the performance of the MFSMC algorithm is presented: 

Figure 51: MFSMC, Double Moments; Altitude Tracking 
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Figure 52: MFSMC, Double Moments; Roll Tracking 

Figure 53: MFSMC, Double Moments; Pitch Tracking 
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Figure 54: MFSMC, Double Moments; Yaw Tracking 

Figure 55: MFSMC, Double Moments; Altitude Sliding Condition 
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Figure 56: MFSMC, Double Moments; Roll Sliding Condition 

Figure 57: MFSMC, Double Moments; Pitch Sliding Condition 
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Figure 58: MFSMC, Double Moments; Yaw Sliding Condition 

Figure 59: MFSMC, Double Moments; Electrical Power 
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Figure 60: MFSMC, Double Moments; Mechanical Power 

  PID MFSMC 

Altitude RMS (deg) 3.34188E+02 2.13310E-04 

Roll RMS (deg) 3.26864E+03 2.56982E-02 

Pitch RMS (deg) 2.82051E+01 1.45714E-02 

Yaw RMS (deg) 8.02103E+03 2.08651E-02 

Electrical Power Average (W) 1293.0 195.0 

Mechanical Power Average (W) 966.6 146.4 

Efficiency 74.76% 75.08% 
Table 8: Results using Double Moments 

It can be concluded from Table 8 that the MFSMC has better tracking for altitude, roll, pitch, and 

yaw, and it used less average power than that of the PID controller, using double the craft’s 

original moments of inertia. The MFSMC sliding condition was satisfied for altitude, roll, pitch, 

and yaw control. It can also be noted from Figures 45 – 48 and Table 8 that the PID controller 

went unstable while the MFSMC algorithm performed similarly to the previous simulations. 
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5.3.4 Double the Craft’s Mass and Moments of Inertia 

In this section, the craft of both the mass and moments of inertia are doubled while using the 

exact same controllers in the previous simulations. The performance of the PID controller is 

presented first: 

Figure 61: PID, Double Both; Altitude Tracking 

Figure 62: PID, Double Both; Roll Tracking 
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Figure 63: PID, Double Both; Pitch Tracking 

Figure 64: PID, Double Both; Yaw Tracking 
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Figure 65: PID, Double Both; Electrical Power 

Figure 66: PID, Double Both; Mechanical Power 
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Now the performance of the MFSMC algorithm is presented: 

Figure 67: MFSMC, Double Both; Altitude Tracking 

Figure 68: MFSMC, Double Both; Roll Tracking 
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Figure 69: MFSMC, Double Both; Pitch Tracking 

Figure 70: MFSMC, Double Both; Yaw Tracking 
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Figure 71: MFSMC, Double Both; Altitude Sliding Condition 

Figure 72: MFSMC, Double Both; Roll Sliding Condition 

  



84 

 

Figure 73: MFSMC, Double Both; Pitch Sliding Condition 

Figure 74: MFSMC, Double Both; Yaw Sliding Condition 
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Figure 75: MFSMC, Double Both; Electrical Power 

Figure 76: MFSMC, Double Both; Mechanical Power 
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  PID MFSMC 

Altitude RMS (deg) 8.30805E-04 3.14957E-04 

Roll RMS (deg) 3.47131E-02 2.25154E-02 

Pitch RMS (deg) 1.71014E-02 1.25008E-02 

Yaw RMS (deg) 8.15854E-02 1.97198E-02 

Electrical Power Average (W) 391.8 391.2 

Mechanical Power Average (W) 293.2 293.0 

Efficiency 74.83% 74.90% 

Table 9: Results using Double Mass and Moments of Inertia 

It can be concluded from Table 9 that the MFSMC has better tracking for altitude, roll, pitch, and 

yaw, and it used less average power than that of the PID controller, using double the craft’s 

original mass and moments of inertia. The MFSMC sliding condition was satisfied for altitude, 

roll, pitch, and yaw control. It is suspected that the PID controller went unstable for doubling 

only the craft’s moments of inertia and not for doubling both the mass and the moments of 

inertia because doubling the mass stabilized the system due to slower dynamics. 
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6.0 CONCLUSIONS 
After deriving the [𝐵] matrix, the MFSMC algorithm and PID controllers are simulated and the 

performance is compared. In all four cases, the MFSMC algorithm outperformed the PID 

controller for altitude, roll, pitch, and yaw tracking since the RMS values for MFSMC are less 

than that of PID, as well as using less energy as shown in Tables 6 – 9. In the case where only 

the craft’s moments of inertia were doubled the PID controller went unstable while the MFSMC 

algorithm performed adequately proving that the MFSMC algorithm can handle model 

uncertainties better than that of PID controllers. Based on Tables 6 – 9, it can be seen that the 

MFSMC algorithm not only uses less average power but also was, on average, more efficient in 

electrical power to mechanical power efficiency in all four cases for altitude, roll, pitch, and yaw 

control. It can be concluded that the MFSMC algorithm outperforms traditional PID controllers 

that are commonly used in applications for both tracking performance and power usage. 

Implementing this algorithm on a commercial aircraft would result in saving a significant portion 

fuel per flight while also slightly improving tracking performance. Also, due to different seating 

arrangements and different weight’s of the passengers the MFSMC algorithm can better handle 

this uncertainty and further contribute to fuel savings and better tracking performance compared 

to that of a tradition PID controller. 
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7.0 FUTURE WORK 
The MFSMC needs to be tested on a real-world quadcopter. Using accelerometers, gyroscopes, 

and a vision system the quadcopter’s states can be determined. Given sample rate, noise, and 

uncertainty in the measurement the MFSMC algorithm needs to be monitored to assure that the 

performance is adequate, otherwise a study on sensors and senor fusion to maximize sample rate 

and/or minimize noise and uncertainty will be required. 

The control algorithm needs to be updated to be able to handle X, Y desired positional 

coordinates rather than only altitude, roll, pitch, and yaw. This then needs to be implemented on 

a real-world quadcopter system and compare the performance of the MFSMC algorithm to an 

optimal PID controller. 

The MFSMC algorithm requires researching optimal 𝜆 and 𝜂 values such that deriving of the [𝐵] 

matrix isn’t required, and the identity matrix can be assumed for the value of [𝐵]. Successful 

completion in this will completely remove model derivation from the control algorithm and will 

reduce to strictly an optimization of 𝜆 and 𝜂. 
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