
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

5-2020

Neural Network Architectures and Ensembles for Packet Neural Network Architectures and Ensembles for Packet

Classification: Addressing Visibility, Security and Quality of Classification: Addressing Visibility, Security and Quality of

Service Challenges in Communication Networks Service Challenges in Communication Networks

Bruce Hartpence
bhhics@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Hartpence, Bruce, "Neural Network Architectures and Ensembles for Packet Classification: Addressing
Visibility, Security and Quality of Service Challenges in Communication Networks" (2020). Thesis.
Rochester Institute of Technology. Accessed from

This Dissertation is brought to you for free and open access by the RIT Libraries. For more information, please
contact repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10486&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10486?utm_source=repository.rit.edu%2Ftheses%2F10486&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Neural Network Architectures and Ensembles for Packet
Classification: Addressing Visibility, Security and Quality of

Service Challenges in Communication Networks

by

Bruce Hartpence

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

May 2020

Signature of the Author

Certified by
PhD Program Director Date

Ph.D. IN COMPUTING AND INFORMATION SCIENCES
ROCHESTER INSTITUTE OF TECHNOLOGY

ROCHESTER, NEW YORK

CERTIFICATE OF APPROVAL

Ph.D. DEGREE DISSERTATION

The Ph.D. degree dissertation of Bruce Hartpence
has been examined and approved by the

dissertation committee as satisfactory for the
dissertation required for the

Ph.D. degree in Computing and Information Sciences

Dr. Andres Kwasinski, Dissertation Advisor

Dr. Victor Perotti, External Chair

Dr. Minseok Kwon

Dr. Raymond Ptucha

Dr. Shanchieh Yang

Date

ii

DISSERTATION RELEASE PERMISSION

ROCHESTER INSTITUTE OF TECHNOLOGY

GCCIS Ph.D. PROGRAM IN COMPUTING AND INFORMAITON

SCIENCES

Title of Dissertation:

Neural Network Architectures and Ensembles for Packet

Classification: Addressing Visibility, Security and Quality of

Service Challenges in Communication Networks

I, Bruce Hartpence, hereby grant permission to Wallace Memorial

Library of R.I.T. to reproduce my thesis in whole or in part. Any repro-

duction will not be for commercial use or profit.

Signature
Date

iii

Neural Network Architectures and Ensembles for Packet
Classification: Addressing Visibility, Security and Quality of

Service Challenges in Communication Networks

by

Bruce Hartpence

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences

Ph.D. Program in Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

Increasingly researchers are turning to machine learning techniques such as
artificial neural networks (ANN) to address communication network research
challenges in the areas of enhanced security, quality of service, visibility and
control. Central to each is the need to classify packets. Determining an ef-
fective architecture for the artificial neural network is more difficult because
traditional techniques such as principal component analysis (PCA) show re-
duced effectiveness. Presented are the techniques for preprocessing datasets
and selecting input traffic features for the multi-layer perceptron (MLP) archi-
tecture. This methodology achieves classification accuracy above 99%.

An investigation into neural network architectures revealed the optimal struc-
ture and parameters for communication packet classification. This work also
studies optimization algorithms with completely balanced datasets and pro-
vides performance criteria for training time and accuracy.

The application of MLPs to security challenges is also investigated. Port scans
are a persistent problem on contemporary communication networks. Sequen-
tial MLPs are investigated to classify packets and determine TCP packet type.

iv

v

Following classification, analysis is performed in order to discover scan at-
tempts. Neural networks can be used to successfully classify general packet
traffic and more complex TCP classes at rates that are above 99%. The pro-
posed methodology achieves accurate scan detection without having to utilize
an intrusion detection system.

In order to harness the power of Convolutional Neural Networks (CNNs), the
conversion of packets to images is investigated. Additionally, a sequence of
packets are combined into larger images to gain insight into conversations, ex-
changes, losses and threats. The use of this technique to identify potential
latency problems is demonstrated. This approach of using contemporary net-
work traffic and convolutional neural networks has success rate for individual
packets exceeding 99%. Larger images achieve the same high level of accuracy.
Finally, neural network ensembles are researched that reach 100% accuracy for
packet classification.

Ensembles are also studied to accurately predict Mean Opinion Score for voice
traffic and explored for their use in combating adversarial attacks against the
source data.

Acknowledgments

I would like to express my gratitude to Dr. Andres Kwasinski for his knowledge,
guidance, insight and willingness to work with an odd duck. I would also like
to thank the members of my dissertation committee; Dr. Shanchieh Yang,
Dr. Minseok Kwon and Dr. Raymond Ptucha for adding their expertise and
perspective. Lastly, I deeply appreciate the patience and support from the
Ph.D. program faculty.

vi

The work that went into this thesis and the supporting course of study consumed
many years. For my family it became a way of life and something that they
simply accepted. I thank them for the support, the sacrifice of time as I struggled
my way through and the final cheer-leading as the finish line got close. For
my wife Christina, I would also add appreciation for the occasional gut-check
and grounding necessary for endeavors such as this. So, Christina, Brooke,
Nicholas and Sydney - this is dedicated to you. And if there are any other old
dogs that think it can’t be done - sure, its not easy, but you miss every shot you
don’t take. And what’s the worst that could happen?

vii

Contents

1 Introduction 1
1.1 Network Research and Machine Learning 1
1.2 Packet Classification Challenges 3
1.3 Optimization . 5
1.4 Security . 6
1.5 CNNs . 7
1.6 Real Time Applications and Data Protection 8
1.7 Contributions . 9

2 Related Work 10
2.1 Packet Classification . 10
2.2 Datasets . 11
2.3 Optimization . 12
2.4 Security and Port Scans . 15
2.5 CNNs and Packet Images . 17
2.6 Ensembles . 19

2.6.1 Mean Opinion Score . 19
2.6.2 Adversarial Security . 20

3 Datasets 21
3.1 Packet Traffic Data . 21
3.2 Available Datasets . 21
3.3 Dataset Creation . 23
3.4 Balanced vs. Unbalanced . 24
3.5 Why packet datasets are different 26
3.6 Significant Features . 27
3.7 Construction . 27
3.8 Minimum and Maximum size 29

viii

CONTENTS ix

4 Neural Networks 30
4.1 Neural Networks . 30
4.2 Multi-layer Perceptron Neural Network 30
4.3 Convolutional Neural Network 35
4.4 Ensembles . 38

5 Multi-layer Perceptron Classifier 40
5.1 Preprocessing . 40
5.2 Dimensionality Reduction . 45
5.3 Multi-layer Perceptron Models for Traffic and Flow Classification 47

5.3.1 Datasets . 49
5.4 Operation . 49
5.5 Results . 51

5.5.1 Multiple datasets . 55
5.5.2 Traffic Flows . 56

5.6 Chapter Conclusion and Contributions 57

6 Optimization and Balancing 58
6.1 Operational Background . 58
6.2 Datasets . 60
6.3 Optimization . 61
6.4 Methodology and Initial Results 63
6.5 Weight Decay and Momentum 66
6.6 Improving Training Time . 67
6.7 Balanced vs. Unbalanced . 69
6.8 Improving Accuracy . 70

6.8.1 Wider Networks . 71
6.8.2 Deeper Networks . 73

6.9 Discussion . 75
6.10 Chapter Conclusion and Contributions 77

7 Using Neural Networks to Address Port Scans 78
7.1 Structure for Detecting Port Scans 78
7.2 Classes . 81
7.3 Datasets . 81
7.4 Results . 82
7.5 Discussion . 84
7.6 Chapter Conclusion and Contributions 85

CONTENTS x

8 CNNs and Network Visibility 87
8.1 Packet Image CNN Processing 87

8.1.1 Larger Images . 89
8.1.2 CNN Operation . 89
8.1.3 Datasets and Classes . 92
8.1.4 Optimization and Features 92

8.2 Visual Representation of the Network 92
8.3 Results . 96
8.4 Discussion . 98
8.5 Chapter Conclusion and Contributions 98

9 Ensembles and the Mean Opinion Score 100
9.1 Approximator to non-Approximator 100
9.2 Accuracy . 101
9.3 Classes . 102
9.4 Datasets and Dataset Recursion 102
9.5 Feature Selection . 103
9.6 Operation . 103
9.7 Applications . 105

9.7.1 Voice over IP . 105
9.8 Mean Opinion Score Predictor 106
9.9 Results . 108
9.10 Discussion . 112
9.11 Conclusion . 112

10 Conclusion 113

List of Figures

1.1 MLP and Conv Neural Networks 2
1.2 Network Visibility Framework 5

2.1 Network Packet . 11
2.2 Network Packet . 15
2.3 Packet as an Image . 18

3.1 Testbed Topology . 23
3.2 Ethernet Frame . 28
3.3 TCP Encapsulation . 28

4.1 Multi-layer Perceptron Models 31
4.2 Activation Functions . 31
4.3 Batch Gradient Descent . 33
4.4 Stochastic Gradient Descent . 33
4.5 Mini-batch with Regularization 34
4.6 Convolution with max-pooling 36
4.7 Fully connected layers . 37
4.8 Model Architecture . 38
4.9 Larger Ensemble . 39

5.1 Packet Distribution . 43
5.2 Dataset Processing Time Comparison 44
5.3 No PCA to PCA comparisons 47
5.4 Multi-layer Perceptron Models 48
5.5 Wireshark Packet . 49
5.6 Packet Features . 50
5.7 Ground Truth Labels . 50
5.8 Actual Packet List . 51

xi

LIST OF FIGURES xii

5.9 Recognition Rates . 54

6.1 Neural Network . 59

7.1 Model Architecture . 79

8.1 ARP packet image . 88
8.2 Full packet . 89
8.3 Convolution with max-pooling 90
8.4 Fully connected layers . 91
8.5 ARP and ICMP exchange . 93
8.6 Missing packet . 95

9.1 Ensemble First Stage . 103
9.2 Ensemble First Stage . 104
9.3 MOS trainer and predictor . 108

List of Tables

3.1 "Original Classes" . 24
3.2 Dataset Classes . 25
3.3 Balanced Dataset Classes . 26

5.1 Current Classes . 43
5.2 PCA results . 46
5.3 Accuracy - Minibatch . 52
5.4 Recognition Rates - Minibatch, 28 hidden nodes 53
5.5 Recognition Rates per class . 53
5.6 Hidden Node Recognition Rates 55
5.7 Dataset Recognition Rates . 55

6.1 Experimentation . 64
6.2 Optimization Initial Results . 65
6.3 Weight Decay and Momentum Results 67
6.4 1e-5 Results no RMN . 68
6.5 1e-5 Results for RMN . 68
6.6 1e-3 Results for RMN . 69
6.7 Balanced vs. Unbalanced . 70
6.8 Test Matrix: Hidden Nodes vs. Layers 71
6.9 Improving Accuracy: Single Layer 72
6.10 Time Scale . 72
6.11 Improving Accuracy: Two Layers 73
6.12 Improving Accuracy: Deeper Layers 74
6.13 Time Scale - Deeper Networks 74
6.14 1e-3 Results no RMN . 76

7.1 Dataset Accuracies . 82

xiii

LIST OF TABLES xiv

7.2 Dataset 34 Class Accuracy . 83
7.3 TCP Class Accuracy . 83
7.4 Scan Results . 84

8.1 Filters vs. Accuracy . 96
8.2 Optimizer Comparison . 97
8.3 Class Accuracy . 97

9.1 General Classifier Stage . 109
9.2 Dataset Accuracies . 109
9.3 Datasets and Classes . 110
9.4 Dataset UDP Accuracies . 110
9.5 UDP classifier output . 111
9.6 MOS Accuracy . 112

Chapter 1

Introduction

1.1 Network Research and Machine Learning

Communication networks represent several important areas for study. These
include graph theory, connectivity, algorithm design, protocol engineering and
many others. The advent of the Internet of Things (IoT), 5G and the increased
use of virtualization have created new, or least magnified, problems for modern
communication networks. These problems include a very high number of de-
vices, nodes that come and go with increased frequency, demands on capacity,
quality of service/experience, security threats and visibility black holes. While
there are many aspects to each, of critical importance is an understanding of
data packets and packet flows. Today, the ability to apply more powerful algo-
rithms and greater processing power has facilitated the application of machine
learning to these network data streams. As a result, machine learning tech-
niques and architectures to address network visibility, quality of service and
security have become major focal points for both industry and academia.

However, applying machine learning techniques to network problems is not
without its own issues. Researchers experiment in the blind with structures or
hyper-parameters without reasoning behind the choices made. It is common
to see architectures utilized simply because it was successful for some other
application. Thus, available works do not document their rationale for choices
made or fail to experiment with varying parameters because they were not
part of the problem studied. The central difficulty with this approach is that
researchers lack a body of knowledge that can be used as a basis for the work.

1

CHAPTER 1. INTRODUCTION 2

As examples, and for the contributions discussed herein, both multi-layer per-
ceptron (MLP) and the Convolution Neural Network (CNN) models have been
used to address not only packet classification, but security and performance is-
sues as well. Both of these neural network types have a wide variety of choices
to be made with regard to their architecture and operation. These include
layers, learning rates, optimization techniques, filter sizes and so on. Very few
of the works available today discuss these values and even fewer document the
reasons for these values. This potentially opens the field to include exploration
that would discover these answers. Examples of MLP and Convolutional Neu-
ral Networks are shown in Figure 1.1.

Figure 1.1: MLP and Conv Neural Networks

The motivation for this work comes from the unacceptable performance found
in published models for packet classification. While often greater than 90%,
this simply will not be sufficient when it comes to building on this accuracy
to address greater challenges. Motivation can also be found in the need to
address continuing network problems with the greater power of machine learn-
ing. An important part of this work is to address the first in order to address
the second. The end goal is to investigate a problem such as quality of service
knowing that the packet classifier is true. Machine learning models must also
be investigated for their effectiveness in a particular application. A critical
point is missed when a model is simply accepted as valid. Less obvious sources
for motivation come from the lack of access to datasets and the techniques for
effectively utilizing these datasets to solve problems.

CHAPTER 1. INTRODUCTION 3

1.2 Packet Classification Challenges

Traffic classification is central to understanding network operation and con-
ditions. With the creation larger and larger volumes of traffic and data, the
problem of rapid and accurate classification becomes more difficult. In addi-
tion, packets are often bound together into flows and these flows, rather than
individual packets, are often how traffic is moved through a system. For ex-
ample, Cisco Express Forwarding [66] pre-calculates flow forwarding decisions
and Openvswitch [50] utilizes flow tables extensively. Protocols such as Net-
flow [12] are based on understanding or sending telemetry about these flows.
This research work begins with the goal of understanding individual packet
classes and then address particular types of port scanning and Voice over IP
flows.

An important observation is that if the packet classification problem can be
solved, the much larger and more complex issues such as security can be more
readily addressed.

Researchers attempting to attack these problems are faced with the need to
gain access to datasets but access to the data is often limited. For example, pri-
vacy concerns may prevent the release of actual packets, requiring researchers
to classify packets or flows from telemetry information alone. But this ap-
proach can create a loss of context and is only a window into communication.
Protocols such as Netflow are sampling overall traffic and the information pro-
vided is a 5-tuple of addressing and message type. This means that not only
is the information a subset of actual traffic, the fields provided are a subset as
well.

Even if granted access to data, resources typically require analysis and prepro-
cessing. For Internet research, traffic analyzers like tcpdump and Wireshark
both save traffic in pcap files but these require specialized software. For other
popular datasets [45], the information is stored for use by Weka [23] in tool-
specific arff files.

Data age is another consideration. Today the community uses a collection
of well-known repositories such as [45] [75] [35] but these are becoming out-
dated. This older data may no longer represent current network traffic or
threats [15]. Other datasets are highly specific so they do not fit into general

CHAPTER 1. INTRODUCTION 4

network research or they are not comprised of actual traffic at all.

To avoid these issues, a local testbed was constructed and contemporary traf-
fic datasets were created. The construction of the datasets is covered in a
later chapter. This work also addresses some of the challenges associated with
building balanced network datasets.

Several research fields that process complex or high-dimensional data have
successfully deployed neural networks. Neural networks provide additional
tools necessary to process large datasets in real time while also being able to
work on a variety of inputs. The contention here is that they can be leveraged
for communication systems. Many researchers believe that the combination
of machine learning and visibility are requirements for solving many network
problems [5]. Projects such as those described in [77] describe not only cir-
cumstances that might benefit but also the datasets that might be extracted
using neural networks. Neural networks and software defined networking are
combined in works such as [78] and [43]. In both cases, the combination of
neural network architectures and software defined networking are pillars of fu-
ture communication.

For the work described here, neural networks take streams of raw hexadec-
imal information to determine objective functions that make it possible to
identify traffic or flows without additional details. Normally, this hexadecimal
series would contain certain features or fields (ex. Ethertype) that a dissector
in a program like Wireshark or tcpdump would use to uniquely identify the
packet. However, a machine learning model can be trained to identify the same
packets without having to first decode field values. The packet analyzer is no
longer needed.

The multilayer perceptron models used in the first stages of this work achieve
accuracies exceeding 99%. This neural network approach does require a pre-
processing/parsing step before the data can be utilized. For this work, four
Python based parsers were written to process the variety of available resources.

For the contributions discussed herein, both multi-layer perceptron (MLP) and
the Convolution Neural Network (CNN) models have been used to address not
only packet classification, but security and performance issues as well. For
greater accuracy, neural network ensembles are created. These ensembles can

CHAPTER 1. INTRODUCTION 5

also combat adversarial attacks against the datasets themselves.

Thus, a central theme of this research is to apply neural networks to the data
obtained from an operating topology in order to improve packet recognition
and use this as a base to address other challenges. This work will be under the
umbrella of a framework that takes in network telemetry and provides insight
into network conditions and behavior.

Figure 1.2: Network Visibility Framework

1.3 Optimization

Neural networks can be trained to address a variety of problems and are com-
monly used in facial recognition, images identification and video stream anal-
ysis. Much less is known about their use in tasks specific to communication
packet traffic because the area has received less attention. While there are pa-
pers addressing neural network packet traffic classification [41] [29] [44], many
questions still remain. Researchers still seek the proper type of neural network,
structure, hyper-parameter values and most proficient optimization algorithms.
It is common to see the same techniques applied to different problems without
an understanding of why a choice is being made.

A comprehensive study for the packet classification task is needed because in-
complete or incorrect information can lead to excessive training time or model
instability. Optimization techniques can reduce this time but researchers have
little guidance as to what algorithm to choose and why. In addition, the opti-
mization algorithms (RMSprop, Adam, etc.) each come with their own set of

CHAPTER 1. INTRODUCTION 6

configurable parameters. Thus, an extension to highly accurate packet classifi-
cation using neural network is to determine the best neural network structure
and features to use when dealing with Internet traffic; one that is optimized
for accuracy and speed. The research herein explores the limits of algorithm
accuracy as a function of regularization, momentum and available helper algo-
rithms.

1.4 Security

Neural networks can be effective at addressing more complicated challenges
such as security threats. Attacks against communication networks often start
with some form of reconnaissance. One of the best known methods for accom-
plishing this is the transmission control protocol (TCP) port scans. Attackers
look for vulnerabilities of a particular type across a collection of targets or
attempt to determine all of the possible attack vectors on a single host. In a
TCP port scan, an attacker sends TCP datagrams with the SYN flag set can
be sent to each of the 65535 TCP ports on the target(s). The target host will
have one of two responses; if a port is "open", the target will respond with a
TCP datagram setting the SYN and ACK flags. If a port is "closed", the target
will respond with a datagram having the RESET or RESET and ACK flags set.

Unfortunately, readily available tools like NMAP allow even unskilled attack-
ers to perform a variety of scans. Analyzers such as Wireshark provide packet
decodes and statistics but leave it to the user to determine if a port scan oc-
curred. Detectors such as Snort are rule based making them static, complex
and prone to false positives if incorrectly configured. Proprietary tools can
provide greater detail but can be a black box, hiding the techniques and anal-
ysis details.

Though they have acknowledged weaknesses, statistical techniques for detect-
ing intrusions or scans have existed for decades [32]. Rule based systems such
as Snort are also commonly employed and while the rules start off simple, they
become more complex as exceptions arise or an increasing number of situa-
tions are addressed. Rules are also predictable and deterministic in that they
are matched (or not) which can result in false positives and false negatives.
Attackers can take advantage of this predictable behavior. Lastly rule based
systems cannot adapt to changes.

CHAPTER 1. INTRODUCTION 7

Trained machine learning techniques such as neural networks can speed the
processing of test datasets and can be very flexible in their ability to accept
a variety of inputs and changing network traffic patterns. A neural network
ensemble can not only address concerns like this, it may also be used to detect
injected data or attempts at poisoning the datasets.

In this work, an ensemble of sequential neural networks was deployed in order
to break the complex scan detection task down to its component parts and
learn from current conditions. Following neural network processing, a scan de-
tector works with the neural network output to make further determinations
about the traffic.

1.5 CNNs

The early research described in this work utilized multi-layer perceptron (MLP)
neural networks. However, for many applications (especially image and video
processing), MLPs have been superseded by Convolutional Neural Networks
(CNNs). Thus, the latter portion of this research utilized either CNNs or a
combination of CNNs and MLPs. When compared to MLPs, CNNs process
data in a completely different fashion so packets are re-imagined as images.
This also allows different and perhaps more contemporary architectures to be
investigated so that we can begin to apply techniques that have recently made
so many advances.

Using the CNN to classify packets is an important aspect of the work but
a separate goal is to apply a novel organization by placing packets into larger
images. These images represent a period of time determined by the number of
images combined. This larger view can be used to detect network performance
issues or attack profiles. Visualization techniques are used in an attempt to
more easily understand a system or set of conditions. A system is posited that
might use an images such as this to recognize patterns or events in the data and
potentially act on them. The trained CNN is now the engine that is applied
to each section of the image to determine the packets that are present. Once
trained, the CNN is very fast which allows the processing of static datasets or
live packet capture.

CHAPTER 1. INTRODUCTION 8

1.6 Real Time Applications and Data Protection

The classification and port scan ensemble ideas previously presented are highly
accurate with recognition rates exceeding 99%. However, even this level of ac-
curacy may be insufficient for tasks such as packet/flow forwarding through a
software switch or router. In addition, as the number of classes increases, the
error rate may also increase. Sequential neural networks or networks having
errors in the early stages, suffer from compounding of these errors. Lastly, the
current system is not protected from data poisoning or injection. For these
reasons a more powerful ensemble that breaks the identification down to first
recognize the various classes to an accuracy of 100% is constructed. The en-
semble chooses the best performing model and uses it as the trainer. This
approach provides greater confidence in the results at each stage and is the
mechanism by which erroneous or malicious data can still be correctly classi-
fied. Neural networks and other packet processing constructs such as access
control lists or firewalls can be fooled by packet injection or falsification at-
tacks. A neural network ensemble can be utilized to determine whether data
has been manipulated in this way.

In addition to the research questions already mentioned, communication net-
works have also come to depend upon specific real time applications such as
Voice Over IP (VoIP). These applications require close monitoring of latency,
packet loss and jitter because of their direct impact on performance. For
these reasons, machine learning techniques have recently been used to aid
in the detection of anomalous traffic and to help determine current condi-
tions [29] [20] [25] [70].

An application of the system can be found in the Mean Opinion Score (MOS)
for VoIP. One of the products of the ensemble is the collection of User Data-
gram Protocol (UDP) packets. These in turn are broken down into the UDP
processes including the voice traffic. The voice packets are then run against a
Mean Opinion Score (MOS) neural network that takes network conditions and
converts them into an MOS score. This achieves another goal of the work in
improving visibility into a segment and addressing application performance.

CHAPTER 1. INTRODUCTION 9

1.7 Contributions

The contributions of this work then include successful neural network archi-
tectures for the classification of a variety of contemporary packet types. This
investigation answered this question with both multi-layer perceptron and con-
volutional neural network models. Further, we have determined the proper
structures to use for packet classification and as a basis for tackling larger
challenges. These structures were determined through exhaustive experimen-
tation that covered the number and size of layers, optimization techniques that
work well for communication applications and the hyper-parameters that are
effective. In the case of convolutional neural networks, we also provide details
on the number of filters used, their stride and size. In several areas we make
use of neural network ensembles and sequential networks to solve more com-
plicated problems and ensure accuracy.

Several other contributions relate to the applications that can benefit from
the use of neural networks. This includes an investigation into addressing port
scanning attacks, visibility and quality of service through a model that predicts
Mean Opinion Score.

Behind all of this is the need to understand dataset management. Thus, an-
other important contribution is our investigation into balanced datasets, classes
to be classified in a modern communication network and performance aspects
of the neural network in terms of training time, accuracy and reliability.

Chapter 2

Related Work

2.1 Packet Classification

Examples of this need to understand traffic can be found in [62] and [69] in
which neural networks are used to detect anomalies. In both cases the systems
must first understand packets and/or flows prior to processing. Notably, some
of the datasets used date from 1999. A significant classification effort can be
found in [4] in which the authors use flow statistical properties for identifica-
tion. In a follow up work [44], they modify their approach, applying neural
networks to the same dataset after selecting the desired features. The dataset
used was created in 2003.

This 2003 dataset collection is described in [45]. The datasets were collected
from a particular site over time and are comprised of 249 detailed packet fea-
tures followed by a label for the class. The authors do not use all packet fields.
For example, in [4] the server port is not used for processing, though it is
included in the dataset. While the classification rate is high (approx 99%),
the authors note that the data is heavily weighted towards a WWW class and
so the classification rates for the other classes vary. The authors also limit
themselves to complete TCP connections.

An important point made in this paper is that network traffic may change
over time and in our work we have found this to be absolutely true. This
underscores our desire to work with updated traffic. As part of our work, we
emulate some of these results in order to understand the perspective of other
researchers. However, we depart significantly after this as our focus turns to

10

CHAPTER 2. RELATED WORK 11

the actual packets and flows seen on our testbed. An example of a network
packet is shown in Figure 2.1.

Figure 2.1: Network Packet

Another flow classification effort using the RedIRIS datasets can be found
in [41]. In this work the authors use complex recurrent and convolutional neu-
ral networks to classify with 108 different labels using only six features (source
port, destination port, payload bytes, TCP window size (set to 0 for UDP),
inter-arrival time, packet direction). The ground truth labels were not pro-
vided but had to be derived from analysis using nDPI. The authors report
that their best accuracy of 96.32% is achieved with the simplest model for ag-
gregated classes but they achieved high results in the top fifteen most frequent
labels using "one vs. rest" classification. For comparison, we regularly achieve
recognition rates of 98-99%.

But persistent problems exist in a majority of these works; older datasets
and even if the structure of the neural networks is documented, the reasons for
the structure or parameter choices are not.

2.2 Datasets

In the study of neural network classification of packet traffic, structure of the
datasets used during training, validation and testing must be determined. The

CHAPTER 2. RELATED WORK 12

typical workflow for machine learning research involves the use of packaged
libraries (e.g. pytorch and python, Kera, tensorflow) which includes the opti-
mizers and dataloaders. Researchers often begin with the MNIST and Fash-
ionMNIST datasets [17] [73]. These are balanced datasets of hand-written
characters and clothing items respectively. The term "balanced" means that
the dataset has exactly the same number of samples for each class. Obviously
these datasets cannot be used for the work described here, but we are informed
by their structure and usage, especially for CNNs.

The importance of balanced trainer and validation sets is researched in [10].
This paper investigates the impact of imbalance on classification tasks. The
conclusion is that balance is critical for accuracy and that for neural networks,
oversampling can be used to correct an imbalance problem. Further, oversam-
pling does not create a problem for neural networks. One of the reasons for
their investigation is that researchers often assume that the answer to many
problems is to simply acquire more data. Instability in some of our results
indicate that a balanced approach is superior. Where possible, the datasets
are created without oversampling but in cases where the traffic is harder to
come by, oversampling is the method deployed.

2.3 Optimization

When building neural networks, an optimization algorithm is also deployed.
Upon computation of the loss calculation for a given iteration, the gradient
descent weights are updated during back propagation via some methodology.
Optimization techniques vary in how this is accomplished but the point of an
optimization algorithm or technique is to arrive at a cost function minimum
quickly and accurately.

One of the contributions made with this work is an investigation of optimiza-
tion techniques. The motivation is quite straight-forward; it is common to
see researchers or practitioners stating that there is no reason to use anything
other than Adam because it has proven to be so effective. However, we have
found this to be a superficial approach to a problem. The best optimizer choice
often comes down to the application in question. In the case of packet classi-
fication with a variety of neural network types, experiments show that several
optimizers perform well.

CHAPTER 2. RELATED WORK 13

Typically there are several optimization techniques available in most machine
learning packages. The experiment results shown in this work were achieved us-
ing the pytorch optim package. Pytorch, available algorithms include Adadelta,
Adagrad, Adam (SparseAdam), Adamax, Averaged Stochastic Gradient De-
scent (ASGD), Limited Broyden Fletcher Goldfarb Shanno (L-BFGS), RM-
Sprop, Rprop and Stochastic Gradient Descent (SGD). Many of the ideas for
these techniques have been in practice for decades and some are improvements
or variations on a theme. Examples include the addition of adaptive changes
or momentum. What follows is a brief discussion of these along with several
of the base algorithms.

Stochastic Gradient Decent has certainly been described many times but [21]
[24] provide solid background. The pytorch Stochastic Gradient Descent (SGD)
has the momentum and Nesterov options. Momentum is a decades long tech-
nique for accelerating gradient descent. The idea is that a velocity vector
accumulates in "directions of persistent reduction in the objective across iter-
ations" [67]. The momentum updates for the objective function f(θ):

νt+1 = µvt − ε∇f(θt)

and
θt+1 = θt + νt+1

and results showing the efficacy of momentum and Nesterov can be found in
the same work [67].

Adagrad [18] or the adaptive gradient method represents a family of algo-
rithms. It is an optimization technique that examines the geometry of the
data features and in this way may be able to leverage important yet infre-
quently occurring details. The authors state that often "infrequently occurring
features are highly informative and discriminative" and go so far as to state
that it is "silly" to have a global learning rate rather than one for each feature.
In our case, one concern was that packet traffic offers many features that have
little impact but high variance.

Derived from Adagrad, Adadelta [76] is described as an adaptive gradient de-
scent method in that the per-dimension learning rates adjust. This work also
reminds us that selecting hyper-parameters such as learning rate can be a bit of
an art form. The authors consider the drawback of Adagrad (decay of learning

CHAPTER 2. RELATED WORK 14

rate, manual global learning rate) as they build in automatic adjustment. The
update rule for Adagrad is given as

~∆xt = − η√∑t
τ=1 g

2
τ

gt

where the denominator computes the L2 norm and η is the global learning rate.
Adadelta performs its update over a time window and addresses a parameter
mismatch giving:

~∆xt = −RMS[~∆x]t−1

RMS[g]t
gt

The work done with RMSprop is found in a lecture by Geoff Hinton [33].
It is suggested that the learning rates be adjusted at stages during training. In
this lecture, several "hints" are given for improving the performance of mini-
batch gradient descent. These hints include using momentum and RMSprop.
Momentum adjusts the calculations in the weight updates to "encourage" the
change in the direction of gentle but steady gradients. A Nesterov modifica-
tion [46] in which large jumps are made followed by adjustment to momentum
are made is also included in the pytorch implementation. RMSprop adjusts
the learning rate by dividing it by an average of the recent gradients.

Adam (also SparseAdam) [38] is an algorithm that leverages the benefits of
two other algorithms (Adagrad and RMSprop). This adaptive moment esti-
mation method updates exponential moving averages gradient and the rate of
decay is controlled by other hyper-parameters. Adam "updates exponential
moving averages of the gradient and the squared gradient ... the moving aver-
ages themselves are estimates of the 1st moment (the mean) and the 2nd raw
moment (the uncentered variance) of the gradient." The implemented weight
and learning rate update algorithms are:

~αt = ~α−
√

1− βt2
1− βt2

and
~θt = ~θt−1 − ~αt

mt√
vt + ε

Adamax is a variant of Adam that addresses instability problems in the up-
date rule for the weights in the presence of large parameter values. This occurs

CHAPTER 2. RELATED WORK 15

when the Lp norm is used to generalize the L2 norm.

Averaged Stochastic Gradient Descent (ASGD) [51] is one of the more ma-
ture ideas in the library and leverages matrix value estimation and averaging
to reach optimums. The authors of [51] shared that at the time of that work,
this might have been necessary because the optimal algorithm could not be
implemented.

An implementation of the Limited Broyden Fletcher Goldfarb Shanno (L-
BFGS) method can be found in [7]. The problem of inefficient gradient descent
and meta-optimization optimization (hyper-parameter tuning) is addressed by
measuring the energy of the descent step and automatically updating the di-
rection and step used.

The Rprop (resilient propagation) approach [56] examines the behavior of the
loss or error function. The concern then is not for the gradient itself but the
sign of the partial derivative. If the sign changes it is an indication that the
step was too large and the update is reduced using an internal factor. If the
sign remains the same, the update value is slightly increased. These last three
(ASGD, L-BFGS and Rprop) represent some of the older techniques and so
have been surpassed by the improvements noted earlier in the section. This
statement is supported by the results achieved in this work.

2.4 Security and Port Scans

The need to detect network attacks and anomalous behavior, has been a part
of the literature since application weaknesses could be exploited. Historically
researchers have long been aware that port scans were important to detect
and that detectors easy to evade as there are a variety of challenges associated
with detecting scans; both while the scan is in progress and after the fact. An
example of the TCP flag behavior during a port scan can be seen in Figure
2.2.

Figure 2.2: Network Packet

CHAPTER 2. RELATED WORK 16

In [64] we see the investigation into backbone scan detection using likelihood
variables to determine hypothesis correctness. The variety of hosts, IP diver-
sity and complex routing interferes with successful detection. In addition to
this sort of transit location, there are the practical problems associated with
even recognizing that a scan is or has happened [65]. Stealth or long term
scans require lengthy packet captures, strange flags combinations may get past
firewall rules and different types of scans may not be within the scan detector
capabilities. Over time a variety of techniques have been deployed though only
recently has the increase in processing power allowed a wider variety of ma-
chine learning algorithms to be used. Though there is improvement, problems
such as false positives still remain [16].

Within machine learning, neural networks with a single hidden layer have
proven to be very good universal approximators for a variety of functions [6]
and are frequently used to classify images and video components. However
works such as [29] and [44] show that neural networks can be effective as
packet classifiers. In [14] replicator neural networks and unsupervised learning
are used to detect anomalies. In [25] we see a case for the adaptability of neu-
ral networks applied to attack detection in mobile devices. [70] uses traditional
and convolutional neural networks to distinguish benign from malicious traffic.
They achieve a 94.5% true positive rate after training with 1% of available
data. Papers such as [61] [49] address port scans and introduce to other vari-
ables such as uncertainty and the popular testing tool Snort.

The use of unsupervised learning and sequential hypothesis testing can be
seen in [57] although this same work achieves better performance using su-
pervised classification techniques including decision trees and support vector
machines [58]. Another approach can be found in [16] in which the authors first
collect the desired features and then attempt to separate the observed IP ad-
dresses into normal, suspicious and scanner categories by examining behavior
in a small duration windows. Another work [2] detects information gathering
attempts using neural networks. Attacks are generated using NMAP and their
system, once trained, can detect a variety of attacks faster than rule based
systems. However, there are some limits to the window observed as it is based
on pre-configured number of packets. A similar work [1] builds an Intrusion
Detection System though with narrower attack types. In [48] the authors test
a number of machine learning algorithms to detect worms in select datasets
from CAIDA [13] with an accuracy of approximately 96%.

CHAPTER 2. RELATED WORK 17

Importantly, sequential networks that accomplish both the traffic classification
and, after separating TCP traffic, address port scans are not part of the litera-
ture. The idea of linked neural networks for handwritten character recognition
is explored and found to be superior to other methods [11]. Convolutional neu-
ral networks and support vector machines are linked to aid in the processing
of multi-modal data steams [52]. The ensemble approach can be seen in [74] as
researchers achieve high recognition rates with combined convolutional neural
networks. For this reason, we have chosen to deploy linked neural networks to
break up a very complex task.

2.5 CNNs and Packet Images

While in the past machine learning algorithms have been applied to various
networking challenges, only recently has processing power enabled dedicated
use of neural networks. Neural networks have been shown to be good approx-
imators for objective functions [6]. Some examples can be found in security
research. In [14] replicator neural networks and unsupervised learning are used
to detect anomalies and [25] makes the case for neural network adaptability
as they are applied to attack detection in mobile devices. [70] uses traditional
and convolutional neural networks to distinguish between benign and malicious
traffic.

Classification lies at the heart of many network research questions and works
such as [29] and [44] show that neural networks can be very effective. Many
of these use the artificial neural network or multi-layer perceptron models. An
attempt to determine patterns in network traffic by viewing data as images
is described in [37]. Using information from the packet headers, images are
created that depict address use. From there, anomalies can be detected as
the packet streams continue. Over a variety of tests they achieve recognition
ranging from 87-95%. Central to these techniques is the convolutional neural
network or CNN.

A network traffic classifier that uses convolutional and recurrent neural net-
works can be found in [41]. In this work the authors use traffic features to
process data for the Internet of Things and report accuracies above 96%. How-
ever, they do not use raw packet details and utilize unbalanced datasets. The
importance of balanced datasets is described in [10]. [20] uses a combination

CHAPTER 2. RELATED WORK 18

of self-organized maps and convolutional layers applied at various stages in
the data processing to detect "divergences in normal patterns". The archi-
tecture analyzes images generated from network data and uses netflow data
which rather than the actual packet flows. This Netflow sampling is only a
small window into actual behavior which means that events or flows can be
missed [19].

In [36] the authors attempt to classify encrypted ToR traffic using convolu-
tional neural networks. They process the first 54 bytes (Ethernet, IP and TCP
headers) of each packet as input to the model and achieve results ranging from
95-99% depending on the test and classes. A slightly different approach is seen
in [40]. In this work the authors work to classify packet types using packet
images and the packet payloads across eight applications. They compare a
CNN model with ResNet and achieve results exceeding 95%.

As can be seen, researchers are beginning to utilize convolutional neural net-
works and data presented as images to address networking research questions.
We differentiate ourselves by attacking the problems of traffic classification and
network visibility by applying convolutional neural networks to full packet im-
ages and conversation images created from a collection of packets. An example
of a packet converted to an image is shown in Figure 2.3.

Figure 2.3: Packet as an Image

In both case, raw data is collected from an operating network testbed. A con-
versation images are analogous to an image with many objects. For these, the

CHAPTER 2. RELATED WORK 19

YOLO algorithm [54] processes an image and assigns bonding boxes to objects
within. In [55] region based CNNs (R-CNN) are used to achieve near real time
object detection. While people staring at an image might not care about all of
the objects, a system processing the image might. In the same way, an image
made up of packets might be used by a security protocol or quality of service
policy. For example, the image might be used as a network based captcha
for access control. For problem areas, static images as a aid for visualizing
network conditions.

2.6 Ensembles

Machine learning models can be combined in a number of ways. The work
described herein uses both MLP and CNN neural networks to classify packets.
Once this has been successfully completed, further work uses MLP models
sequentially in order to narrow down the focus, and as described in a previous
section, address TCP port scans. The subsequent contributions are achieved
by combining models into ensembles. A machine learning ensemble is a a
collection of models put together in order to achieve more reliable and/or more
accurate results. Rather than using the ensemble to find the best hypothesis
for our targeted applications, we combine models that are known to perform
well in order. This is necessary because high accuracy in the early stages of
the described architecture are critical to the success of later stages.

2.6.1 Mean Opinion Score

The primary reason for the ensemble or neural network combinations in this
work is to ensure downstream accuracy. The ensemble majority votes on the
best classification for a particular sample. Each model is trained on the en-
tirety of the training set. It is not uncommon to achieve 100% recognition
rates in the first stage. Subsequently the various next stage group are formed
and the next ensemble is trained. For example, after general classes are estab-
lished, the User Datagram Protocol (UDP) classes are then determined. It is
straight-forward to see the relationship between first stage and second stage
accuracy.

One of the applications for the UDP stage is the develop a prediction for Mean
Opinion Score or MOS. Mean Opinion Score is a qualitative measurement
for voice systems and the calculation uses is established in ITU-T G.107 [8].

CHAPTER 2. RELATED WORK 20

Because the algorithm uses variables that can easily be derived from a commu-
nication packet stream, the MOS can be calculated for Voice over IP [63] [3].
The question we attempt to answer is whether or not a neural network model
can be build that can act as a predictor of MOS performance for a given VoIP
datastream. Our contribution is that in creating the ensemble for high accu-
racy packet classification, we can obtain the same high level accuracy for UDP
and subsequently leverage this for applications such as MOS prediction.

2.6.2 Adversarial Security

In general, machine learning techniques require access to curated datasets.
Otherwise they are prone to misclassification errors. Thus, data that is poi-
soned, whether by benign accident or through nefarious activity can create a
significant challenge to models like those deployed here. Poisoned data is often
categorized as adversarial samples. With the increasing use of machine learn-
ing models there is a corresponding increase in attacks whose goal is to disrupt
model operation. In addition, the adversarial examples need not be markedly
different from valid samples - even minor changes can cause multiple models
to misclassify the same adversarial samples [22] [68]. Ensembles can be used
to reduce model input noise and create diversity that resists misclassification
errors [71].

While not investigated directly in this work, this problem space and the suc-
cessful deployment of ensembles to combat adversarial samples shows another
potential application of this research.

Chapter 3

Datasets

3.1 Packet Traffic Data

Access to data is undeniably one of the most difficult challenges for any re-
searcher. An associated challenge is access to data that is both “good” and
appropriate for the work being done. In this case, the data in question is raw
packet data (actual packets flowing across a network) and "good" means that
the data is representative of current protocol use and balanced. Packets can
be acquired by either accessing available datasets or by collecting them as part
of the project. Both of these methods have weaknesses or barriers.

3.2 Available Datasets

There are many packet datasets available to researchers however, from the per-
spective of this work they suffer from a number of disqualifying characteristics.
The first of these is that many of them are old, dating from 1999-2003. The
issue is that over the last 20 years protocol use and operation has changed
and these datasets do not necessarily represent current traffic patterns. For
example, email is typically accessed via a browser rather than a separate email
client. In addition, the volume of traffic utilizing a particular protocol or path-
way made have changed. This can be seen in the switch to cloud services
which significantly altered the flow paths used. The lack of access to traffic
or infrastructure may be the reason that many projects continue to use these
datasets. Another reason for their continued use is as a comparison point to
previous research. However, at some point, a transition to more contemporary
data must be made.

21

CHAPTER 3. DATASETS 22

Many of these datasets are highly specific and while this is fine for an ob-
jective with the same specificity, it is not suitable for a more general case. For
example, a security dataset comprised of port scans cannot be applied to se-
curity research covering other vectors. In this case, the researchers would have
to compile multiple, and sometimes disparate, datasets. Combining them in
this way create meta-data problems with features such as timestamps.

Many of the available datasets are not the packets themselves but feature
sets describing the traffic. This is often done to prevent privacy issues but
this places the researcher one step away from the actual data. In one case,
248 features about the packet traffic were created and very few of the features
represented fields within the packets. In other cases, the traffic is represented
by sampling protocols like Netflow. On busy networks, collecting traffic on
high capacity links requires that the receiver be able to process 1M packets
per second (pps) or more. Even if this is possible, storing the data can also
be an issue. For example, a pcap file of 85k packets requires 25MB of storage
and a text based file of the same dataset requires 77MB. The Netflow pro-
tocol samples packet traffic at intervals and then reports on observed flows.
The obvious problem is that this not representative of all flows. Short-lived
flows can be missed entirely. The beginning or end of a flow can also be missed.

Some of the available datasets are unlabeled leaving it to the researcher to
determine the labeling methodology and classes. Unsupervised means can be
used to create clusters around to protocols or addresses but this increases over-
all error. In addition, there may be no context provided with the dataset so it
is difficult to determine the source or event that created the traffic.

It is also the case that the tools and file formats used are incompatible with
the current project. As mentioned earlier in this work, neural networks ap-
proximate the objective functions using only the raw hexadecimal data. While
the file sizes are larger, there is no need for additional software. Datasets not
provided in this format require additional conversion which is sometimes in-
compatible.

Lastly, it is often the case that the datasets are unbalanced meaning that
they are heavily weighted towards a subset of the available classes. This can
cause a model to overfit or be biased to a particular class. Projects may com-

CHAPTER 3. DATASETS 23

pensate for this by simply collecting more data. This can be effective but can
also result in unstable results, particularly if further imbalanced exists for the
other classes.

3.3 Dataset Creation

Given the problems associated with using available data, it was determined
that the packet datasets used for this research would be created locally. There
were two components to the task; building an infrastructure for the capture
and then determining the classes. Privacy concerns precluded raw capture on
the campus network. The testbed consists of routers, switches, bare metal
computers, hypervisor chassis and a collection of virtual machines. The nodes
are observed performing standard tasks and no user specific data is created.
Since the variety of packet types is vast, an observation of the most common
protocols in use determined the classes. Initially this resulted in twenty-eight
classes. The infrastructure is documented in [26] [27]. A portion of the testbed
can be seen in Figure 3.1.

Figure 3.1: Testbed Topology

When capturing traffic with Wireshark, tcpdump, etc., the default format for
saving data is often a pcap extension. This requires that the toolchain insert
one of these programs. One goal of the work was to allow for native processing
and so all datasets were stored in text formats. Each of the aforementioned
programs can be directed to save captures in this way however the text files
created are structured differently so a Python based parser was written for

CHAPTER 3. DATASETS 24

each one. Within the testbed, tcpdump was most commonly used with the
following command: sudo tcpdump -i eno1 -xx. In the end, the output of each
parser is exactly the same so that the raw, cleaned data can be input directly
into the neural networks.

3.4 Balanced vs. Unbalanced

Network traffic is inherently unbalanced in terms of protocol use. The reason
for this becomes clear when the applications are considered. Today, much of
end user activity occurs within a browser. This automatically directs traffic
to a smaller collection of protocols. This is true for web apps, storage, email,
and etcetera. Contrasted with the historical methods of accessing data and we
see not only a protocol shift but also a weighting towards a collection of these
protocols. In the example mentioned earlier in this chapter, port 25 traffic
moves to port 80.

At the beginning of this research a survey of protocols used led to the classes
or labels shown in Table 3.1. These are broken down by layers.

Table 3.1: "Original Classes"
Layer 2 and 3 Layer 4 UDP Layer 4 TCP
ARP UDP QUIC TCP SSL
802.3 STP UDP DNS TCP SIP
802.3 CDP UDP DHCP TCP DATA
LLDP UDP SNMP IPv6 TCP DATA
ICMP UDP HSRP TCP HTTP
IGMP UDP DATA
PIM UDP DHCPv6
ICMPv6 IPv6 UDP DATA
IPv6 MULT LIS UDP SSDP
802.3 data UDP SMB

UDP DROPBOX

The unbalanced nature of the protocols can be seen in Table 3.2. These
datasets are numbered 29-36 with 29 being used as the large training set and
the rest as test sets. This numbering scheme is modified in later chapters after
dataset corrections.

CHAPTER 3. DATASETS 25

Table 3.2: Dataset Classes

- 29 30 31 32 33 34 35 36
STP 4068 1050 14 14 277 395 0 56
IPv4 101863 35612 20230 18853 21657 30869 19504 25500
TCP 80047 24001 19948 18436 19953 29491 14358 25051
HTTP 734 50264 74 371 165 192 82
HTTPS 14684 4782 1936 5545 2447 7613 3848 5727
UDP 17575 10467 275 386 1604 1269 4262 433
DNS 1854 738 274 374 607 682 899 268
DHCP 106 3 0 0 3 0 5 0
LLMNR 15 40 0 0 8 0 2 0
NBNS 108 20 0 0 0 0 0 0
SSDP 1170 330 0 12 163 190 618 15
IGMP 716 199 0 5 61 71 880 8
ICMP 3165 497 7 6 23 26 0 0
IPv6 1303 263 1 0 129 180 142 0
TCP6 60 0 0 0 0 0 0 0
UDP6 1039 225 1 0 119 174 142 0
ICMP6 204 38 0 0 10 6 0 0
ARP 1632 200 2 0 322 52 1851 447

Clearly, protocol usage is weighted towards a particular set of upper layer
protocols. In addition, IPv6 became a problem as the header construction is
different from IPv4 in terms of size (40 bytes vs. 20 for IPv4) and field use.
For this reason, IPv6 was removed from testing in much of the latter work.
It should be noted that classification of IPv6 using neural networks would be
handled in the same way as IPv4.

It may be that for some kinds of data, imbalance problems can be addressed
with simply adding more data until each class reaches a threshold number of
samples. Collecting more does improve results up to a point but the datasets
are still imbalanced. Thus, even though classifiers built in the early stages
worked very well, there were occasional aberrations in accuracy that could not
easily be explained. These aberrations were drops of more than 5%. A closer
examination of the datasets led to balancing of the classes within the training

CHAPTER 3. DATASETS 26

and validation datasets. Once this was accomplished, the aberrations of that
scale ceased.

The balanced datasets are numbered from 0-5 and include training, valida-
tion and test sets. The number of classes were reduced based on the previous
experimentation. Several of the class sample numbers are shown in Table 3.3.

Table 3.3: Balanced Dataset Classes
- 0 1 2 3 4 5

1-ARP 5000 500 1851 447 200 0
2-ICMP 5000 500 0 0 25 0
3-IGMP 5000 500 880 8 199 2356
4-Loop 5000 500 0 0 0 2907
5-STP 5000 500 0 56 1050 14534
6-CDP 5000 500 0 2 32 484
7-DNS 5000 500 899 268 738 868
8-DHCP 5000 500 5 0 3 67
9-SSDP 5000 500 618 15 330 3111
10-NBNS 5000 500 0 0 20 27
11-80 5000 500 659 618 11931 0
12-8080 5000 500 567 0 1154 0
13-443 5000 500 13131 24433 12463 0

Based on performance testing, the number of samples for each class was set
at 5000. Lower sample quantities did not resolve the instability problem and
larger sample quantities did not provide increased accuracy for the increased
training time. The validation set is 10% of the training set size and so each
class has 500 samples. The test datasets have random sizes for each class as
they are raw network captures.

3.5 Why packet datasets are different

In the search for balanced datasets there are a variety of techniques that can
be employed. In the example of image classification, a single image can be
manipulated in many ways in order to increase the number of samples. For
Images can be reversed, rotated, inverted, colorized or skewed. If the concern

CHAPTER 3. DATASETS 27

is only for packet classification, similar techniques can be applied to the traffic
datasets. That is, packets can be copied or manipulated so that they are still
valid in order to increase the number of samples of a particular traffic class.
Many of the other classes (such as TCP port 80) need not be manipulated in
this way because there are plenty of samples.

However, there is a limit to what can be done with packets manipulated in
this way. This is because packets do not operate in isolation from each other.
It is often the relationship between packets that must be used in order to un-
derstand what is happening in a particular flow. As models attempt to address
visibility or specific problems such as security or application performance, this
timestamp is used directly. In these cases, the timestamp is critical and packets
taken out of sequence or manipulated end up affecting the model operation,
labeling or downstream processes. This problem worsens when packets are
sorted by class due to dataset or capture assembly as was the case for the port
scan detection and Mean Opinion Score experimentation described later in
this work. The impact is to require the creation of additional custom datasets.
In the Mean Opinion Score prediction model, Real Time Transport Protocol
(RTP) streams were required. The model had to find sequential packets of the
same stream rather than simply classifying RTP packets.

3.6 Significant Features

It is also common to apply dimensionality reduction or compression techniques
to help speed the machine learning training process. Principal Component
Analysis (PCA) is widely used to determine the features containing the greatest
variance which can then be used to accurately classify the object of interest [72].
However, depending on the type of data, PCA may not achieve the desired
results due to the loss of potentially important features. More details regarding
the efficacy of employing PCA to the problem of network traffic classification
are discussed in Chapter 5.

3.7 Construction

Dataset size is a function of the number of packets and the features used by a
particular model. The sample features are the packet bytes from raw capture.
An Ethernet frame has a maximum size after capture of 1514 bytes (1526 be-
fore) which are organized into several fields. Of course, the machine learning

CHAPTER 3. DATASETS 28

model does not process the fields. An Ethernet frame is shown in Figure 3.2.

Figure 3.2: Ethernet Frame

It should be noted that there are actually two types of Ethernet frame; 802.3
and Ethernet Type II (shown). The two run at the same time and the neural
network model handles either type. The data field encapsulates the informa-
tion and upper layer protocols. When an Ethernet frame is transmitted, the
preamble field and the frame check sequence are not seen by the capture soft-
ware since they are removed after processing by the network interface card
(NIC). This means that for the features, the count begins with the destination
MAC address and ends with the data field. An example of a frame encapsu-
lating IPv4/TCP packet is shown in Figure 3.3. The grayed out areas are the
fields not present after processing by the NIC.

Figure 3.3: TCP Encapsulation

All of the packet analyzers used here save packet data in the form of hex-
adecimal characters with two characters being equal to one byte. The features
chosen refer to the number of hexadecimal characters desired. In the example
shown, choosing 108 features (54 bytes) would encompass the three headers
only. Over the course of testing with multi-layer perceptron models features
sizes of 125, 150, 175 and 200 were tested. In the latter portion of this work
with convolutional neural networks and a slightly increased number of classes,
196 features were used resulting in a training set matrix size of 196x85000.
The 85000 refers to the number of training samples/packets.

CHAPTER 3. DATASETS 29

3.8 Minimum and Maximum size

The data field of an Ethernet frame is a variable size ranging from 46-1500
bytes. Encapsulated Internet Protocol (IP) packets are also variable in size.
This means that upon feature selection, a short frame may not have enough
data to provide the necessary bytes and a long frame will have to be truncated.
In cases like this, the short frame is padded with zeros. Frame truncation
means that user or application data is sacrificed. This typically does not cre-
ate problems for packet classification. This is because the headers containing
identification fields remain. For example the Ethernet Type field describes
what is encapsulated in the data field. Within the IP header the protocol ID
field indicates the next level of encapsulation.

Decision trees and table lookups use protocol header field information to help
with identification. While the models do not "read" the fields, they do recog-
nize the patterns. These and other patterns that exist within the frame/packet
structure can be recognized. For example, an ARP request packet has a 6 bytes
pattern of zeros in the target hardware field. It is these patterns that are lever-
aged by a function approximator such as a neural network. For this reason, the
models described throughout this research do not truncate before the header
fields appear.

Chapter 4

Neural Networks

4.1 Neural Networks

The Multi-layer Perceptron (MLP) and Convolutional Neural Network (CNN)
models deployed in this research are described in this chapter. In addition to
single neural networks ensembles and sequential architectures of neural net-
works have also been created. Currently the ensembles are linked sequentially
although they could be run on different graphics processors simultaneously.
The weight matrices can also be saved however, the training sets have consis-
tently changed making this impractical for many of the investigations.

4.2 Multi-layer Perceptron Neural Network

Initially and as part of the ensembles, we have used Multi-layer Perceptron
Neural Networks (MLP NNs) because they have been shown to be good func-
tion approximators. MLP neural networks are generally categorized by the
number of layers they contain; an input layer, one or more hidden layers and
an output layer. Input layer size is dependent on the number of features used
in testing. After parsing the capture files, input feature selection is a matter of
selecting the desired number of hexadecimal characters (input bytes * 2) from
each packet. The number of input features has been extensively investigated
over the course of this work and details are provided in subsequent chapters.
The hidden layers vary in number and size (hidden nodes per layer) as the
optimal structure for any particular objective function is usually discovered
via experimentation [9]. Generally speaking, as problems become increasingly
complex or the number of classes increases, the structure of the network also

30

CHAPTER 4. NEURAL NETWORKS 31

becomes more complex. The output layer is dependent on the number of classes
or labels. Some of the architectures used here are shown in Figure 4.1.

Figure 4.1: Multi-layer Perceptron Models

Each layer is comprised of nodes. Moving through the layers, nodes represent
linear combinations of the previous layer and these are passed through an ac-
tivation function which is used to determine the output of a particular node.
Activation functions include the sigmoid, tanh and ReLU (rectified linear unit)
functions. The early models used the tanh function similar to the work done
by [44]. The output value of each node is between -1 and 1. Later experiments
adopted the ReLU function which forces the output between 0 and 1. Graphs
of the activation functions can be seen in Figure 4.2

Figure 4.2: Activation Functions

All of the calculations are on matrices where matrix X=[features, packets] and
W is the weight matrix with the same dimensions: X = [x0, x1, ..., xn],W =
[w0, w1, ..., wn]. Starting weights in W are random. After multiplying the ma-
trices, the values are passed through the activation function (g). The result

CHAPTER 4. NEURAL NETWORKS 32

is a matrix commonly denoted Z: Z = [z0, z1, ..., zn]. Thus the calculation for
each node becomes:

h0 = g(x0w0 + ...+ xnwn) =
n∑
i=0

xiwi

Each layer performs these calculations. At the last layer a probability for the
correct label is established, often via a Softmax function. Softmax takes the
resultant values (Z) from the previous layer and calculates the probability as
follows:

Softmax = exp(Zi)/

n∑
i=0

exp(Zi)

The probabilities are compared to the ground truth labels to produce an error
or loss.

At this point, forward propagation through the neural network is complete
and now the error is backward propagated through the network. Back prop-
agation updates the weights used in the forward calculations. This process is
called gradient descent (GD) which uses a learning rate and partial derivatives
to take a step in the direction of the loss function minimum. There are vari-
ations on this algorithm that range from using all of the training samples in
each step (batch GD), a single training sample in a step (stochastic GD) or a
subset of the training set in each step (mini-batch GD). The trade-off between
these is in the training time vs. smooth performance and accuracy. Generally
batch GD takes much longer while stochastic GD has a more erratic path to
the minimum. Figure 4.3 depicts batch gradient descent over 1000 iterations.
From this image we can see that batch gradient descent is monotonically de-
creasing.

Figure 4.4 shows the results of stochastic gradient descent and indicates
that stochastic is much less predictable meaning that the error can vary sig-
nificantly from iteration to iteration. For clarity the inset shows behavior for
stochastic gradient descent over the first 100 iterations.

A similar test was run with mini-batch GD. This is shown in Figure 4.5. With
the training time and accuracy improvements, a batch size is 128 was found
to be very effective. In addition to using mini-batch, an optimizer can be

CHAPTER 4. NEURAL NETWORKS 33

Figure 4.3: Batch Gradient Descent

Figure 4.4: Stochastic Gradient Descent

CHAPTER 4. NEURAL NETWORKS 34

deployed which improves the performance (training time, accuracy, stability)
of the neural network. Optimizers often include techniques to manipulate the
weights or learning rates. The example shown in figure 4.5 were achieved af-
ter adding a weight regularization term. Previous explorations reveal that the
use of mini-batch speeds training time (cutting the stochastic time by just un-
der 75%) and the addition of the regularization term increases accuracy by 1%.

Figure 4.5: Mini-batch with Regularization

Backpropagation works back through the neural network to update the weight
vectors (based on the error calculation) via mini-batch gradient descent. The
forward propagation is then run again changing all of the linear combinations
and the error or loss recalculated. This recalculates the probabilities associated
with an output label. The escape condition is either completing the desired
number of iterations (ex. 5,000) or reaching a particular loss value (ex. 1E-8).
As the process continues, one of the output classes develops a high probability
of being the correct label and in this way, the neural network learns the how
to correctly identify the incoming packets.

CHAPTER 4. NEURAL NETWORKS 35

In addition to structure, the success of any network is often tied to the hyper-
parameters (learning rate, batch size) and the quality of the training data.
Later chapters will detail the ranges investigated for each of these.

The initial neural network used for packet traffic classification varied quite
a bit from final models. The initial model had 116 input features, a single
fully connected hidden layer with 16 nodes, an output layer size of 28 and
used batch processing. Subsequent architectures added hidden layers, varied
the number of input features and used mini-batch. For example, extensive
testing with a variety of learning rates and hidden layer sizes of 20 and 36 in
order to determine the impact of such changes was completed. The initial and
final multi-layer perceptron models for early classification work are reflected
Figure 4.1. After extensive testing, the final size of the hidden layers was set
at 28 nodes, with input features of 125/150, 128 batch size and output classes
dependent upon the experiment (general classification, TCP, UDP) currently
being run.

4.3 Convolutional Neural Network

Convolutional neural networks differ in that the input object is typically an
image rather than a vector. One of the unique contributions of this work is
that packets are re-imagined as images and a packet stream can be thought of
as a video. One aspect of a convolutional neural network is that it reduces the
number of features between layers. For example, a pair of fully connected (FC)
layers is a linear combination of all nodes in one layer to all of the nodes in
the next layer. The convolutions and max-pooling used in CNNs significantly
reduce this number which can make the CNN faster than the MLP. During the
CNN forward pass, the packet matrix is run through a series of convolutional
and fully-connected layers. CNNs accomplish this through the use of filters
which pass over the image and apply a transform for each step of the pass.
The transform result is also a linear combination.

For example, the first convolutional stage of our network uses a 3x3 filter
and a step of one. The filter is made up of a grid of weights. The 3x3 filter (f)
starts in the upper left hand corner of the packet image covers a 3x3 portion of
the 14x14 image. The filter then steps to the right until it reaches the far edge.
The filter eventually returns to the left moving down as needed to eventually

CHAPTER 4. NEURAL NETWORKS 36

pass over the entire original image making calculations as it goes. The size of
the step is referred to as the stride (s). The result is a new 12x12 image. We
do not use any padding (p) for the images. The resultant image size can be
determined by the formula:

((n− f + p)/s+ 1)

For these packet images: ((14-3+0)/1 + 1) = 12. Following the convolutional
layer (conv1), a max-pooling layer further reduces the number of features. The
max-pooling layer performs the same passes, though the filter is smaller (2x2)
and the stride is doubled. The value obtained from each step is the maximum
(argmax) for the portion of the image covered by the filter. After the first con-
volutional and max-pooling layers have made their passes, the resultant image
is 6x6: ((12-2+0)/2)+1=6.

This process is repeated with a series of additional filters. Each filter does
the same thing though their weights are initialized separately. Filter calcu-
lations are combined later in the model. As an example, the first layers of
our model use six filters and the subsequent layer uses 16. Another smaller
example of a CNN with max-pooling and a series of filters is shown in Figure
4.6. For space, the image starts as a 10x10, is reduced to 8x8 ((10-3)/1+1=8)
and then after max-pooling with a 2x2 filter the image is 4x4. There are also
six different filters applied to each image.

Figure 4.6: Convolution with max-pooling

As the actual 14x14 packet images are small, the first stage is only followed
by a one other stage (conv2, max-pooling) which further reduces the images

CHAPTER 4. NEURAL NETWORKS 37

to 2x2. Because of the additional filters, there are a number of these results
for each packet. These results are then combined in a series of fully-connected
(FC) layers. Fully connected layers rearrange the data once again to a column
vector. The column vector size is the product of the image resolution and the
number of filters. For this configuration: 2*2*16 filters=64. A series of fully
connected layers reduces this value to the number of classes.

An example of this part of the network can be seen in Figure 4.7. Contin-
uing the smaller example, the 4x4x6 images would be combined into a 96x1
column vector which would be further reduced to 14x1 in our case where 14 is
the number of classes.

Figure 4.7: Fully connected layers

At the end of the forward pass, a Softmax function then calculates a class
probability. Once the error is calculated and back-propagated, the model is run
again until either the desired number of iterations has passed or the error rate
has declined below an acceptable threshold. The full model can be described
as conv1 (3x3x6), max-pooling (2x2, stride=2), conv2 (3x3x16), max-pooling
(2x2, stride=2), FC1(64:32), FC2(32:16), FC3(16:14). Training typically runs
1000 to 2000 iterations. While the training is off-line, the architecture itself

CHAPTER 4. NEURAL NETWORKS 38

can then be used on stored datasets or during real-time captures.

Details rationale regarding the choices made in the construction of the CNN
will be described in greater detail in subsequent chapters.

4.4 Ensembles

In this work, ensembles have been used for three different applications. The
first was to address the challenge of port scans. The networks are connected
together with the first being a general classifier and the second being used as
a TCP classifier. The architecture depicting the NN inter-connection is shown
in Figure 4.8. An input feature vector of the first 150 hexadecimal characters

Figure 4.8: Model Architecture

from each packet performs well for general classification. This value is used for
both stages. Currently the general classifier has 13 general classes or labels.
The TCP packets are separated and used as input into the TCP stage so that
the TCP flag combinations can be determined. This operation is more fully
described in Chapter 7.

Ensembles are more fully explored in 9 as a collection of models perform general
classification followed by additional TCP and UDP classifiers. Subsequently
the UDP packets are further separated for VoIP processing. For this appli-
cation, the RTP packets are input into another neural network that predicts
Mean Opinion Score for the RTP streams. A portion of this architecture is
shown in 4.9.

The third potential application for the neural network ensemble is to help com-
bat adversaries wishing to either poison the data or fool the network network

CHAPTER 4. NEURAL NETWORKS 39

Figure 4.9: Larger Ensemble

structure [71]. In these attempts, the training or test data can be manipulated
order to impact the machine learning algorithm output. The neural network
ensemble combats this by applying multiple models to the data in order to
more accurately determine the correct class.

Chapter 5

Multi-layer Perceptron
Classifier

5.1 Preprocessing

Like most machine learning systems, incoming packet data must be prepro-
cessed. Preprocessing is the "cleaning" of the data to remove unwanted ar-
tifacts. Programs such as Wireshark [47] and tcpdump [42] add a good deal
of extraneous information to the saved text files. If the capture files are not
available, additional processing or analysis is required. The flow datasets used
in [45] are derived from pcap files but do not provide the actual captures. This
dataset also has several meta-features such as arrival times. All of the features
are organized into .arff files that are input into the Weka toolset [34]. Pro-
cessing these files is straight-forward but the challenge is in determining which
fields are to be used. Given that [4] [44] focused on TCP, many of the features
are constant. In addition, fields will contain zeros if the feature was not ob-
served. While this may occasionally help in classification, excessive zeros may
make it more difficult.

Preprocessing is followed by feature selection and normalization. Both of these
are discussed later in this section. Another step in the processing is to extract
the ground truth label for the traffic. This label is used in the error calculation
as the neural network attempts to properly classify the training and test sets.
When initially developing a comparison to [4] [44], all of the 248 features are
used and then this number is reduced this number until similar results are
achieved - ending with a small (22) set features. A majority of the eliminated

40

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 41

features had been set to zero in the datasets.

Moving forward, this study departs from meta-data classification attempts be-
cause even though raw packet captures can be expensive in terms of space and
processing, they are far more accurate. An example of a misleading meta-data
feature can be found in packet size. Packet size is an common consideration
when attempting to recognize packet type. For example, ARP messages are
typically much smaller than those carrying user data. Though there is some
variation within the capture datasets, average packet size is 600-700 bytes.
While this can provide some insight into traffic categories during a particular
time frame, it does not reveal much with regard to individual packets.

Examining packet sizes in one sample of 100K packets, 50% were in the range
of 40-159 bytes and another 34% were greater than 1280. Even with this num-
ber of small packets, it is not reasonable to assume that they are remotely
similar. Other small packets are padded to change their size to the minimum
46 bytes required for Ethernet transmission. This analysis underscores the rea-
soning for retaining actual packet bytes. Thus, this approach requires a greater
number of meta-data features. However, each one has the same weakness. We
contend that meta-features are not sufficient for packet classification, especially
if the packet classifier is to be used in downstream applications such as security.

As a result, the large number values or fields captured in the meta-data are
simply not needed. The storage recovered compensates for the size of the
capture files. The timeliness of the packet captures can also provide greater
insight into actual transactions on the network. In our case, the data center
testbed traffic was captured using command line versions of the Wireshark [47]
and tcpdump [42] tools. This allows us to stay in the shell environment, gives
access to real time data and eliminates the need for a GUI based program.

Even with the actual packets, choosing the correct features can have a vast
impact on both the accuracy and time needed for operation. Unlike the Weka
data files, the choice is made to save all of the features (bytes) for packet classi-
fication, taking the raw bytes from the packet capture and then experimenting
with how many are necessary to properly classify individual packets. Our MLP
comparison was over input feature sizes of 125, 150, 175, 200, 1444 hex char-
acters. In this way, the effectiveness of adding more header fields and packet
content, eventually maxing out at nearly a full packet can be determined.

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 42

The minimum Ethernet frame size of 64 bytes corresponds to 128 hex charac-
ters. As correctly pointed out in [39] the trade-off is between a greater number
of features for accuracy against the need for timeliness and reduced process-
ing. It is important to note that when input feature size is selected, any packet
smaller than that will require some form of padding. In this case, small packets
are padded with additional zeros consistent with current RFCs.

For flow classification, the focus is on tuples normally used to identify flows [12].
These include source and destination addressing, ports and protocol IDs. In
some of the work cited here, authors have treated complete TCP flows only.
That is, flows that include the identifiable TCP setup and teardown hand-
shakes. However mid-flow packets may be just as important. In addition, it
may be that a flow is setup via a completely different conversation. For exam-
ple, real time protocol streams (RTP) are established via the Session Initiation
Protocol (SIP) conversation. Thus it is important to be able to detect partial
flows as they can have a significant impact on performance or current con-
ditions. Lastly, because packet captures show that so much of contemporary
network traffic is not TCP based 5.1, we also provide UDP, ICMP and IPv6
processing.

A determination of ground truth must also be established for each sample.
With image recognition humans are often employed to complete the very man-
ual task of classification. This is also the case with [45]. However, communica-
tion network traffic is deterministic with the fields and headers describing the
identification of each packet. Thus, during the preprocessing stage, the archi-
tecture able to parse the file and determine the ground truth in this way. This
is verified with the neural network recognizing 99.9% of the training packets
and a manual review of the packets via the original capture.

This classification effort is focused on experimenting with a representative set
of contemporary classes. To this end a variety of captures were analyzed to
determine the most common protocols in use. While captures vary, the classes
chosen cover the typical collection of layer 2, 3 and 4 traffic types. Figure 5.1
depicts a sample from a 400k packet protocol distribution.

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 43

Figure 5.1: Packet Distribution

Currently testing uses twenty eight classes though it is clear that the num-
ber of classes will grow depending on applications and services. Table 5.1
details these classes.

Table 5.1: Current Classes
Layer 2 and 3 Layer 3 UDP Layer 3 TCP
ARP UDP QUIC TCP SSL
802.3 STP UDP DNS TCP SIP
802.3 CDP UDP DHCP TCP DATA
LLDP UDP SNMP IPv6 TCP DATA
ICMP UDP HSRP TCP HTTP
IGMP UDP DATA
PIM UDP DHCPv6
ICMPv6 IPv6 UDP DATA
IPv6 MULT LIS UDP SSDP
802.3 data UDP SMB

UDP DROPBOX

As discussed earlier, these classes evolved as the system matured and so these
represent an early set of classes.

A fair question at this point is whether or not the neural network is needed if
Wireshark already provides the information. In addition, if the python based

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 44

parser can determine the information, why bother with the more complicated
neural network? The answer is twofold: first, neural networks are very fast
once trained and the weights established. A graph showing this comparison
can be seen in 5.2. The Wireshark timing measures simple file opening time
for the text files in use. It should be noted that additional time is taken for
any analysis (ex. protocol distribution) inside Wireshark. The CNN processes
datasets in slightly less time than Wireshark but the MLP is faster by more
than a factor of ten. Both of these performance improvements were achieved
without the need for a separate protocol analyzer. It should be noted that the

Figure 5.2: Dataset Processing Time Comparison

neural network datasets are cleaned versions of the original capture files and
so some time was expended in the preprocessing. However, this can be done
offline and does not impact the speed improvement shown here.

Secondly, the end goal is not necessarily to be able to identify packets (al-
though this may be desirable) but to be able to identify flows, network con-
ditions and develop applications for machine learning. Neural networks can
provide a much richer form of classification and learning than simply parsing

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 45

through a text file. Our goal is to eventually be able to use communication
traffic as one of several inputs into a system and this represents a first step
toward that end. As described in [78] and [43], these are aspects of a broader
picture representing a new paradigm for communication networks. As can be
seen in the later chapters, a number of applications have been developed that
all begin with the packet classification problem.

5.2 Dimensionality Reduction

As training a neural network can be time consuming, incoming data is analyzed
in order to determine the most effective features. This is because patterns in
the data can be found without using all possible features. Principal Compo-
nent Analysis (PCA) is a dimensionality reduction or compression tool that
can speed the training process by selecting the features with the most impact
for classification. It can also be used to select the best two or three principal
components so that a dataset can be visualized. Recently some practitioners
have suggested that achieving the performance goals of a particular model may
not require the extra step taken for PCA. Here Single Vector Decomposition
(SVD) and the subsequent Truncated SVD are used to reduce features used in
processing the datasets.

Most of the critical fields for traffic classification (source and destination IP
address, source and destination ports, protocol ID, type) occur within the first
66 bytes of a packet. This includes the entirety of the Ethernet, IP and TCP
headers. Some of the Ethernet fields (preamble - 8 bytes, frame check sequence
- 4 bytes) are dropped after processing by the network interface card. This
changes the TCP packet size to 54 bytes and UDP to 42 bytes. For TCP based
traffic this would mean 108 hexadecimal characters. However, there may be
occasions where other fields or packet content (ex. higher level application
headers) may assist the classification effort. For UDP, 84 hexadecimal charac-
ters would be used.

The concern when using PCA for packet traffic is two-fold; information loss
and behavior between datasets. While PCA does not always result in a loss
of important information, it can. This concern arose when PCA reduced the
number of dimensions well below what was thought was critical for accurate
classification. For example, with 200 input features, PCA reduced this down
to 92 (46 bytes) which was fewer than the header fields. In addition, larger fea-

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 46

ture size selection were a concern because the excessive amount of padding on
smaller packets might increase the variation and over-emphasizing field impor-
tance. In the different datasets, packet content can vary wildly and so change
the emphasis of various features. Lastly, there are a collection of fields that
have a great deal of variability but have little effect on the classification. The
header checksum and identification fields in the IP header are perfect examples.

The PCA performance in the early experimentation was perhaps the most
surprising result in that it performed so poorly. Based on the early feature
reduction percentages seen, several values were chosen that would provide the
necessary number of features while allowing the compression from PCA. The
neural network was allowed to run using the highest performing parameters
including batch sizes of 64 and 128, a learning rate of .01 and a hidden layer
of 28 nodes. Like the other tests, the network completed 5000 iterations. The
tests varied the input features over the values of 256, 384, 512, 1024 and 2048.
For space, only the top four recognition rates are shown. The k value is the
number of features left after the transform is complete. Like the earlier tests,
the reduction can exceed 50%. The recognition rates for the test set are ex-

Table 5.2: PCA results
Features Batch Size k Recog Rate Time (min)
256 64 126 .253 269
256 128 126 .254 259
2048 64 1289 .427 530
2048 128 1289 .379 640

tremely low. With a larger number of input features, there is a near doubling
of this value but this comes with an alarming increase in the training time,
negating the reason for using PCA. When PCA does not accomplish the de-
sired improvement in training time it may be that the training data is not well
formed for the purpose. In this case, it is likely that there are fields included
that may not be necessary and that actually skew the results. In addition,
smaller packets are often padded which may create the illusion of variance
where there is none, also skewing the results.

Over the course of the work, datasets were improved and the classes modified
to suite newer models. Dimensionality reduction was revisited using Trun-

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 47

catedSVD from scikit-learn.org. In Figure 5.3 some of the results both with
and without PCA are shown. These graphs depicts the results after applying

Figure 5.3: No PCA to PCA comparisons

TruncatedSVD to the datasets at 99, 95, 90 and 85% of the 108 features (54
bytes) available. The results without dimension reduction are shown for com-
parison. The left-side graph contains the raw results. On the right, one of the
worst performing datasets was removed. In addition, since IP and MAC ad-
dressing are some of the fields that can vary without providing much detail for
classification, these fields were zeroed. As can be seen in both, dimensionality
reduction did not help with model performance. In addition, training time
was only improved by an average of 17 seconds with the addressing fields and
3 seconds without. These results lead to the conclusion that dimensionality
reduction techniques are not effective with packet datasets. The cause for this
is likely in the variability of fields that can sway the results of an algorithm
calculating significance based in part on this variation.

5.3 Multi-layer Perceptron Models for Traffic and
Flow Classification

The structure and operation of the MLP neural networks used in this and the
following chapters are explored in Chapter 4. As a reminder regarding this
early stage of the work, the tanh activation function is used while and later
work used ReLU. The neural network input layer receives selected features and
the output layer size is the number of possible classes.

The original 28 classes (see Table 5.1) include layer 2 specific protocols such as

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 48

Link Layer Discovery Protocol (LLDP) and the Spanning Tree (STP) and layer
3 protocols such as IPv4 and IPv6. Classes have also been allocated for pro-
tocols such as the Internet Control Message Protocol (ICMP), Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP). Common
applications have also been identified.

The initial neural network used for network traffic classification varied quite a
bit from our final model as it had 116 input features, a single fully connected
hidden layer with 16 nodes, an output layer size of 28 and used batch pro-
cessing. Subsequent architectures added hidden layers, varied the number of
input features and used mini-batch. Our initial and final multi-layer percep-
tron models are shown in Figure 5.4.

Figure 5.4: Multi-layer Perceptron Models

Minibatch sizes were 64, 128, 256 and 512. These results are found in Table 5.3.
With these layers, there are two weight calculations in a forward propagation
phase and both are updated during backpropagation. After extensive testing,
the final structure added nodes to the hidden layers to a total of 28, with the
same values used for input features, batch sizes and output classes. However,
extensive testing with a variety of learning rates and hidden layer sizes of 20
and 36 was performed in order to determine the impact of such changes. The
following sections present our method for preprocessing data and obtaining
features, class determination and results based on the structure of the neural
network.

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 49

5.3.1 Datasets

Much of the previous work cited used datasets that might be considered out
of date. Datasets must also have enough data to ensure that the neural net-
work can be trained without overfitting. Another major concern was privacy.
Recall that to address these general problems, a testbed was constructed that
contained desktop computers, virtual machines and containers. The testbed
and some earlier work are documented in [27]. The challenges associated with
datasets are fully explored in Chapter 3.

5.4 Operation

The procedures described in this section apply to both MLP and CNN models.
To begin, a single sample entry is examined. Shown in Figure 5.5, it is from a
text file written with a program like Wireshark.

Figure 5.5: Wireshark Packet

This example depicts an ARP message which can be determined by some of
the labeling fields (0x0806) noted in the previous sections. The second set
of bold face indicates the padding used here to create the minimum frame
size necessary. This same type of padding is employed when extending the
standardized packet size for the neural network. A processed version of this
entry is shown in Figure 5.6. Due to length constraints, only a portion is shown.

For this neural network, the number of X input features can be set to 125,
150, 175, 200 and 1444. These values, while not exhaustive, were chosen to
test intervals containing the major label fields. The effect of these values is
to vary the size of each packet and therefore the number of features for input.
For example, at 125 features, the layer 2 header (14 bytes), layer 3 header (20

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 50

Figure 5.6: Packet Features

bytes) and the layer 4 header (8 or 20 bytes) are included along with either
user data or zero padding. An example of the Y labels is shown in Figure 5.7.
The labels are passed to the neural network for the error calculation.

Figure 5.7: Ground Truth Labels

Based on this list, the first six packets would have been ARP, ARP, IPv4
UDP HSRP, ARP, ARP and 802.3 STP. This can be verified from the Wire-
shark capture as shown in Figure 5.8.

The features are input to the neural network which then completes its for-
ward pass. At the output, the calculated values are passed to a Softmax
function which provides calculated class (probability) associated with the cur-
rent packet. This probability is returned and used to determine the difference
(error) to the labeled class. At this point the backpropagation begins and, us-
ing gradient descent and an update function, modifies the weights used in the

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 51

Figure 5.8: Actual Packet List

linear combination calculations. With these updates, the forward propagation
phase can run again. Over time, the loss function approaches a minimum or an
escape value. In our case, the first network classifier had a collection of trials
run for 1000, 5000, 10000, etc. iterations rather than an escape cost. Once the
network is trained, it is run again against the test set and these recognition
rates are reported below.

Initially, the network classifier batch processed the entire dataset making train-
ing of the neural network slow, often taking more than 20 hours. Mini-batch
decreases this time significantly. For example, using batch processing and 116
input features, the network would have to run for more than 30K iterations
and nearly 24 hours to achieve recognition rates of 93-94%. The current struc-
ture using mini-batch accomplishes similar rates with 5000 iterations in about
4 hours. As noted earlier, a variety of mini-batch sizes (64, 128, 256 and 512)
were tested. It should be noted that many of these earlier experiments were
run on a CPU. Later work was moved to GPUs.

Learning rate can drastically affect the performance of the neural network.
Learning rates that are too small (very small steps in gradient descent) lead
to slow training. Large steps can cause the calculations to pass over the loss
function minimum. For testing a variety of learning rate values ranging from
.01 to .4 were used. For most of the tests in this chapter, .01 and .0001 were
used almost exclusively.

5.5 Results

In order to familiarize ourselves with the work of other research groups, we first
attempt the same classification tasks with the datasets from [45]. After reduc-

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 52

ing the number of features to 22 (IP addresses, header sizes, etc.) recognition
rates very close to those in [44] are achieved. The concern that the heavily
weighted dataset may skew results is shared and this is another reason for not
only moving to actual packet captures but newer datasets. What follows are
results from the previously described preprocessing plan and the neural net-
work configuration for the successful classification of both packets and flows.

The training set has 101106 packets and the test set has 10725. The Table
5.3 results are received after 5000 and 10000 iterations. During testing there
were additional batch sizes utilized however the best experimental results were
achieved using batches of 64 and 128 packets and so these are included here.
The results include different preprocessing sizes. The learning rate is fixed
at .01. For verification, the recognition rate for the training set was greater
than 99.9%. This simply indicates that the operation and labeling, etc. are
functioning as intended. The test set recognition rate varies based on the size
(features) of the input. RR is an abbreviation for Recognition Rate.

Table 5.3: Accuracy - Minibatch
Features Batch Size 5k Cost 5k RR 10k Cost 10k RR
125 64 .000134 .978 .000092 .977
150 64 .000057 .961 .000066 .96
175 64 .000054 .959 .000069 .959
200 64 .000057 .951 .0001 .9513
1444 64 .000053 .89 .000045 .895
125 128 .000252 .98 .000016 .991
150 128 .000019 .972 .000029 .981
175 128 .000049 .951 .000014 .964
200 128 .000024 .956 .000017 .969
1444 128 .000018 .894 .000007 .921

Even at this number of training iterations there are some interesting trends
to note. The first is that as the number of input features increases, and espe-
cially once it increases to 1444 bytes, the recognition rate of the test set goes
down. As noted earlier, packets of this size may have a considerable amount
of zero padding which may have a negative impact. Perhaps a bigger obstacle
is the training time with the larger packets (1444 bytes) doubling the training

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 53

time of the smaller sizes. There is a smaller training time difference for 125,
150, 175 and 200 features. For example, at 125 features, the training time for
1000 iterations 58, 52, 54 and 45 minutes for 64, 128, 256 and 512 batch sizes
respectively. In all cases, once the network is trained it takes approximately 3
seconds to apply the weights and effectively label the test data set - one of the
advantages of the neural network.

When the number of hidden nodes was changed to reflect the number of classes,
the recognition rate in the best case test set (125 features, batch size of 128
and 10k iterations) improves to 99.87% after just 5000 iterations. Table 5.4
presents a selection taken from the most significant of these results.

Table 5.4: Recognition Rates - Minibatch, 28 hidden nodes
Features Batch Size 5k Cost 5k RR 10k Cost 10k RR
125 64 .000074 .987878 .000058 .983124
125 128 .00023 .998788 .00023 .998788
125 256 .000054 .9986 .000019 .99963
125 512 .000074 .9845 .000017 .99804

Clearly the model does well with overall packet classification rates (greater
than 99%) but an important question is whether the model handles individual
class. For the same dataset, a few of the main categories are more closely
examined. For space, Table 5.5 only depicts the categories for UDP, TCP,
ICMP, ARP and 802.3. Clearly it shows good performance with individual
classes though a few packets are misclassified.

Table 5.5: Recognition Rates per class
Category Parsed Report NN report Percent
UDP 1651 1628 .986
TCP 9004 9008 1.0004
ICMP 0 0 0
ARP 49 49 1
802.3 17 17 1

The results from Table 5.3 can be interpreted another way. Reorganizing the
data by input features and comparing the performance of the various batch

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 54

sizes, parameters that work well at a certain number of iterations can be de-
termined. This can be seen in Figure 5.9. For clarity the results from 5000
iterations are shown. The 1444 feature set has been removed for scaling.

Figure 5.9: Recognition Rates

While batch size does not appear to have a large impact at this point, there is a
slight improvement with a batch size of 128. These batch sizes were chosen as
part of best practices but there is some indication that the best batch size may
have some connection to the hardware of the machine completing the process-
ing. While the analysis was not part of this work, the machine specifications
are included for completeness. For these results, two separate Windows 10
machines were used. The laptop had 12GB of RAM and a 2.6GHz Intel Core
i7-3720QM processor. The desktop had 16GB RAM and a 3.6GHz Intel Core
i7-3820 processor.

As mentioned previously, tests were run against an internal structure of 20, 28
and 36 hidden nodes. This affects the number of calculations and changes the
impact of a node. Table 5.6 shows these results. Like the 28 node structure,
at 2000 iterations the best performance for the 20 and 36 node structures was
found when the batch size was either 64 or 128. The best recognition rates
at 2000 iterations for 20, 28 and 36 nodes were .989, .993 and .989 respec-
tively. The 64 and 128 batch sizes were run again at 5000 iterations in order
to compare them with the previous results. The columns indicate the number

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 55

of hidden nodes and the batch size.

Table 5.6: Hidden Node Recognition Rates
Features 20-64 20-128 28-64 28-128 36-64 36-128
125 .985 .989 .978 .992 .983 .987
150 .978 .983 .978 .995 .987 .994
175 .949 .975 .971 .988 0.974 .986
200 .94 .959 .958 .964 .962 .969

One interesting, though perhaps expected, outcome is that while the training
time for larger batch sizes goes down, so does the recognition rate. In addition,
as the number of hidden nodes increases, so does the training time though it
is not drastic. This increase is probably due to the increase in the number of
calculations done for each linear combination and the propagation time.

5.5.1 Multiple datasets

Once the structure testing was complete, the best model for classifying other
datasets is selected. The best results were achieved using an input feature size
of 150 (75 bytes), 28 hidden nodes and a batch size of 128. The additional test
datasets were chosen from a variety of packet distributions and capture sizes.
Some of the results are provided in Table 5.7.

Table 5.7: Dataset Recognition Rates
Dataset Size Recog Rate
0 21497 .846
1-5 20-26k .997
6 128100 .997
7 191186 .993
8 6414 .138

The recognition rates for most of the datasets exceed 99% with many exceed-
ing 99.5%. However, included are some datasets with different accuracies.
Dataset 0 was heavily weighted towards some of the lesser utilized protocols
and so this recognition rate is likely due to insufficient training for these cat-
egories. Dataset 8 is a much smaller set of packets and comprised mostly of

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 56

Real Time Transport traffic which is not a classification category. It appears
that the port numbers used varied and so the traffic may have been misclas-
sified. These outcomes demonstrate that a neural network structured in this
way and provided correctly preprocessed files can successfully classify a wide
variety of contemporary traffic types but a strategy should be developed to
handle unidentified classes.

5.5.2 Traffic Flows

When processing flows, the data is limited to a select set of bytes. Flows
are uni-directional and defined by source and destination addresses, ports and
protocol identification fields. Specifically the source and destination MAC ad-
dresses, source and destination IP addresses, layer 2 type field, layer 3 protocol
ID field and the source and destination ports are used. If a particular field is
not present (ex. ICMP and port numbers) it is set to 0. This collection of
fields also makes the number of features input to the neural network fixed at
27 bytes or 54 hex characters. The downside is that some of the detail that
makes packet classification so successful is lost. There are number of other
factors that make flow classification based on these fields challenging. Appli-
cations using the same port numbers (ex. port 80 or 443) or traffic that does
not use the port number at all can make identification difficult.

For tests using a similar structure, the recognition rate for flows quickly reaches
88.1% regardless of changes to input features or the neural network structure.
However, several tests resulted in recognition rates reaching 99.8% A review of
the datasets reveals that overfitting skewed the test. It may also be that with
this number of features, the model may not generalize as well as the previous
cases or that the missing data (at least 71 hexadecimal characters) is critically
important.

An example can be found in the length field. In some cases, packet length
can be very telling as in a file transfer that uses full size frames. However, tel-
net or SSH streams do not. In addition, flow classification can be challenging
when the number of packets in the flow is small. This question becomes im-
portant when messaging such as DNS or ARP is considered. Clearly there is a
conversation, but are these really flows? Discounting all of these conversations
cannot be done without considering the percentage of traffic that might be lost
as discarded micro-flows can provide insight into the other traffic.

CHAPTER 5. MULTI-LAYER PERCEPTRON CLASSIFIER 57

5.6 Chapter Conclusion and Contributions

Traffic classification is an increasingly important component for communica-
tion network visibility. It is our belief that raw network traffic should be used
where possible because it is more representative of actual conditions. The chap-
ter demonstrates that machine learning techniques such as neural networks are
not only able to process this data in a timely and accurate manner but at very
high accuracy rates. This chapter presents the preprocessing techniques and
feature selection for network traffic and the neural network structure used clas-
sify both packets and flows, including the hyper-parameters used. Also shown
were the results of principal component analysis which does not provide an
automatic improvement in training time or classification rates, at least with
the datasets used here.

After thorough study, the best results were achieved using an input of 150
features (75 bytes), batch size of 128 and a hidden nodes equaling the num-
ber of output classes. The model can successfully classify network traffic in
the aggregate above 99% and individual classes above 98.6%. By changing the
neural network structure the model achieves greater than 99% over a variety of
datasets. In our more recent work network flows are classified with an accuracy
range from 88% to 99%. This work is ongoing. Network traffic classification is
a task that is part of a larger whole. Next steps will include improvement to
flow recognition rates, applications such as security, and combining this work
with software defined networking and inference architectures.

Chapter 6

Optimization and Balancing

6.1 Operational Background

This chapter provides some detail regarding the structure of the neural net-
work used in this work and the order of operation including the optimizers.
Much of the architecture is based on the authors previous work in this space
and has been included in chapters 4 and 5.

Building a multi-layer perceptron (MLP) classifier requires that close atten-
tion is paid to the data at all stages of processing. This includes preprocess-
ing/parsing, normalization, structuring of the network layers, organization of
the input, loss calculation and techniques used in the backpropagation phase.
During these steps choices are made regarding a collection of available algo-
rithms and structures in order to determine what works best for a particular
task. This chapter seeks, among other things, to help make these decisions a
little more straight-forward.

Normalization is the first step process of scaling all the vectors to similar,
small dimensions around the origin. Processes such as Principal Component
Analysis work best when the data is "mean normalized" which subtracts the
mean from each value and divides by the variance: (x - µ)/σ2. Normalized
data is then processed by the artificial neural network structure. In this case
the datasets are comprised of packet samples and a desired number of bytes
(features) from each. Thus input features are part of the raw packets flowing
across the routed infrastructure. The resulting m x n matrix is the number of
packets x the number of selected features. It was found that collecting the first

58

CHAPTER 6. OPTIMIZATION AND BALANCING 59

160 hexadecimal characters or 80 bytes of each packet maximizes accuracy.
For this work the physical and protocol addresses of each packet are zeroed.

The base neural network structure with an input layer, two hidden layers and
the output layer is shown in Figure 6.1. The layers are comprised of nodes.

Figure 6.1: Neural Network

The hidden layers vary in size based on the experiment but the input size
of 160 and the output size of 14 classes are fixed. Moving through the lay-
ers, nodes represent linear combinations of the previous layer and these are
passed through an activation function. Each node is directly connected to ev-
ery other node in the preceding and subsequent layers. These are also called
fully connected layers. Thus, each node has a calculated value and each con-
nection has a weight. These values (X) and weights (W) are stored in ma-
trices; X = [x0, x1, ..., xn],W = [w0, w1, ..., wn] and the dot product result is
Z = [z0, z1, ..., zn]. This result is passed through an activation function. Ac-
tivations include the sigmoid, tanh and ReLU (rectified linear unit) functions.
Thus the hypothesis calculation becomes:

h0 = g(x0w0 + ...+ xnwn) =

n∑
i=0

xiwi

where g is the activation function, X is the input vector and W is the weight
vector. Each layer performs these calculations until the last layer where an

CHAPTER 6. OPTIMIZATION AND BALANCING 60

error for the correct label is established via a loss function. In the last layer
these values are passed to a function called Softmax. The Softmax function
determines the probability for each label. This is compared to the ground
truth for the loss calculation. Once the loss drops to an acceptable level or the
specified number of iterations has run, the label is assigned.

At this point, forward propagation through the neural network is complete and
now the error is backward propagated through the network and the weights
used in the forward calculations are updated. This process is called gradient
descent (GD) which uses a learning rate and partial derivatives to take a step
in the direction of the loss function minimum. Additional details regarding
this operation can be found in Chapter 4.

Neural networks differ in many ways (hyper-parameters, structure, choice of
features, etc.) even if they are working on the same problem. Models are often
evaluated based on their accuracy, stability and especially training time. A key
component is the behavior of the neural network during the backpropagation
phase. To address these an optimizer is inserted into this process after the
layered model runs. Techniques such as momentum (exponentially weighted
averages) and the associated bias correction have been developed that further
reduce training time and increase accuracy. The discussion of these techniques
can be found in chapter 2.

6.2 Datasets

As shared previously, this work is concerned with the classification of pack-
ets from a standard communication network. This traffic is obtained from a
locally constructed testbed. Live capture from a collection of Windows hosts
and Linux VMs gathered the packets as they flowed across the interconnected
routers and switches. The testbed structure and some previous results can be
found in [29] and [27]. In these works, campus and testbed network traffic was
monitored in order to determine the most likely set of protocols that would be
seen on a general network. This resulted in an initial set of classes and large
training sets of varying sizes.

For this work, the use of completely balanced training datasets was a goal.
This type of dataset is more difficult and time consuming to construct and
so the number of classes was reduced to thirteen. In order to achieve sat-

CHAPTER 6. OPTIMIZATION AND BALANCING 61

isfactory accuracy rates, each class in the balanced trainer had to have 5K
samples. The final classes types (loopback, CDP, STP, ARP, ICMP, IGMP,
UDP SSDP, UDP DNS, UDP DHCP, UDP NBNS, TCP port 80, TCP port
8080 and TCP port 443) were included to represent different communication
layers. The resulting training dataset had 65K samples. A balanced validation
set was also created that contains five hundred samples from each class for a
total of 6500 samples. Lastly, four unbalanced datasets from additional live
captures are included. The only limitation for the datasets is that the packet
classes included must be from the protocol list.

Balancing packet traffic datasets is difficult because even variations in protocol
versions or message type can cause misclassification errors. For example, the
spanning tree protocol uses a collection of messages between network switches
to ensure loop free connectivity. However, spanning tree variations (802.1D,
802.1Q Rapid, PVST) are different enough that when mixing versions 100% of
the packets in the test dataset were classified as a different protocol entirely.
Another example can be found in ICMP information vs. ICMP error messages
as the latter contain 64 bits of the original message. Thus future work will in-
clude a much more specific set of classes. Chapter 3 contains a full description
of the challenges and solutions associated with packet traffic datasets.

6.3 Optimization

There are several optimization techniques available in most machine learning
packages. Investigations here included Adadelta, Adagrad, Adam (SparseAdam),
Adamax, Averaged Stochastic Gradient Descent (ASGD), Limited Broyden
Fletcher Goldfarb Shanno (L-BFGS), RMSprop, Rprop and Stochastic Gradi-
ent Descent (SGD). While many of these have been in existence for some time,
several have emerged more recently. The experimental results shown here were
achieved using the pytorch optim package but apply across a broad range of
environments. This brief explanation is arranged alphabetically and is a syn-
opsis of the descriptions from Chapter2.

Adagrad [18] is an optimization technique that examines the geometry of the
data features and in this way may be able to leverage important yet infre-
quently occurring details. The authors go so far as to state that it is "silly" to
have a global learning rate rather than one for each feature. In our case, one
concern was that packet traffic offers many features that have little impact but

CHAPTER 6. OPTIMIZATION AND BALANCING 62

high variance.

Derived from Adagrad, Adadelta [76] is described as an adaptive gradient de-
scent method in that the per-dimension learning rates adjust. This work also
reminds us that selecting hyper-parameters such as learning rate can be a bit of
an art form. The authors consider the drawback of Adagrad (decay of learning
rate, manual global learning rate) as they build in automatic adjustment.

Adam (also SparseAdam) [38] is an algorithm that leverages the benefits of
two other algorithms (Adagrad and RMSprop). This adaptive moment esti-
mation method updates exponential moving averages gradient and the rate of
decay is controlled by other hyper-parameters. Adam is arguably one of the
more popular and perhaps "default" optimizers used today.

Adamax is a variant of Adam that addresses instability problems in the up-
date rule for the weights in the presence of large parameter values. This occurs
when the Lp norm is used to generalize the L2 norm.

Averaged Stochastic Gradient Descent (ASGD) [51] is one of the more ma-
ture ideas in the library and leverages matrix value estimation and averaging
to reach optimums. The authors of [51] shared that at the time of that work,
this might have been necessary because the optimal algorithm could not be
implemented.

An implementation of the Limited Broyden Fletcher Goldfarb Shanno (L-
BFGS) method can be found in [7]. The problem of inefficient gradient descent
and meta-optimization optimization (hyper parameter tuning) is addressed by
measuring the energy of the descent step and automatically updating the di-
rection and step used.

The work done with RMSprop is found in a lecture by Geoff Hinton [33].
It is suggested that the learning rates be adjusted at stages during training in
order to improve mini-batch gradient descent performance. RMSprop adjusts
the learning rate by dividing it by an average of the recent gradients. Other
improvements include the use of momentum. The efficacy of momentum can
be found in [67]. A Nesterov modification [46] to momentum is also included
in the pytorch implementation.

CHAPTER 6. OPTIMIZATION AND BALANCING 63

The Rprop (resilient propagation) approach [56] examines the behavior of the
loss or error function. The concern then is not for the gradient itself but the
sign of the partial derivative as a change indicates a step too far in the descent.

Stochastic Gradient Descent (SGD) (4.4) has the momentum and Nesterov
options.

6.4 Methodology and Initial Results

Optimization techniques modify the behavior of the neural network, particu-
larly the weight updates. However, not all optimization algorithms generalize
well. In this case, packet traffic classification presents a unique problem in
that features that may have very little to do with the classification task often
have the highest variance. For example, MAC or physical addresses are large
six byte fields that are different for every single node. For unicast traffic, this
expands to twelve bytes because both the source and destination address must
be considered. However, the addresses may help identify some traffic it may
be broadcast or multi-cast. This same discussion can be extended to Internet
Protocol (IP) addresses.

One of the motivations for this work is that techniques such as principal com-
ponent analysis (PCA) [72] do not seem to offer the same results as seen in
other classification tasks [29]. For this reason, all of these investigations are
done on datasets with the layer 2 and layer 3 addressing set to zero. Another
concern is that important features and the location of these features in each
sample can vary even if the packet headers are somewhat fixed in their content.

To determine the best methods for this problem and to understand the pytorch
implementation, we deploy a multi-layer perceptron neural network containing
two hidden layers. The input layer takes packets that are divided into thirteen
classes and selects 160 features (80 bytes) from each sample to ensure that
header fields are included. For the initial tests, default settings (no weight
decay, no momentum, no helper algorithms) are used. The only deviation is
when a learning rate does not allow the model to converge. In those instances
the learning rate was typically set to 1e-3. Many of the optional settings
(ex. momentum) are considered important improvements to some algorithms
and so it is somewhat surprising to run these initial experiments without them.

CHAPTER 6. OPTIMIZATION AND BALANCING 64

All of the datasets are run through the neural network three times and the
average accuracies are recorded here. The initial tests are set to run for either
2000 iterations or stop when reaching the initial escape loss of 1E-20. The low
loss rate value allows the operation of each technique to be observed as it is
rarely reached. Subsequent tests will be modified based on these results and
some other available options. This primary goal at this point is to experiment
with the base technique and then, where appropriate, add momentum, weight-
decay and any add on algorithms. There are four identical physical machines
used for the trials and all of them use an Nvidia Quadro P1000 GPU.

For clarity, Table 6.1 provides a description for all of the tables that follow.
The abbreviations R (regularization/weight decay), M (momentum) and N
(Nesterov) are used throughout. To start, all of the algorithms are deployed
with the default settings and a loss of 1e-20, which provides an idea of the
training time and accuracy. This also reveals what loss rates can be expected
from each.

Table 6.1: Experimentation
Table Algorithms Escape Loss
2-Initial All 1e-20
3-Momentum etc RMN Capable 1e-8
4-Initial Best 5, 97% Acc 1e-5
5-Momentum etc. Best 8 1e-5
6-Momentum etc. Best 8 1e-3
7 Bal vs Unbal Best from all 1e-5, 1e-3

In Table 6.3, momentum, regularization, etc. are activated but against the
experimentally determined loss rate of 1e-8. Subsequent experimentation had
the primary objectives of improving accuracy or reducing training time for the
best performing optimization techniques. Tables 6.11 and beyond target im-
proving accuracy via neural network structure changes and examine the impact
on training time.

Thus the contributions of this chapter include not only the investigation into
optimization techniques and network parameters, but an investigation into
wider and deeper networks for this application.

CHAPTER 6. OPTIMIZATION AND BALANCING 65

For SGD, results with an N indicate the Nesterov algorithm. [33] states that
Nesterov is superior choice when possible and so it is added to this round. The
network configuration is fixed at two hidden layers and 28 hidden nodes per
layer. The first result does not have an optimizer and uses a learning rate of
1e-6 which based on our previous work. Optimizers often have a recommended
value for learning rate. When convergence is not achieved with the default set-
tings, the learning rate is set to 1e-3 or 1e-2. These are noted in the affected
tables.

Table 6.2: Optimization Initial Results
Method Training (min) Ave Acc % Std Dev
None 1 88.2 .087
AdaDelta 46 98.4 .013
AdaGrad 43 98.2 .013
Adam 46 98.0 .025
Adamax 50 98.7 .010
ASGD 43 97.9 .014
L-BFGS 53 45.1 .291
RMSprop 47 89.2 .194
Rprop 64 10.98 .171
SGD w/o N 43 86.0 .193
SGD w/ N 43 66.7 .383

As can be seen, the results vary widely. All of the algorithms took in excess
of 40 minutes to complete 2000 iterations though this was with an escape loss
of 1e-20. Running without an optimizer results in accuracies lower than 90%.
For average accuracy, AdaDelta, AdaGrad, Adam and ASGD performed above
or near 98%. Both RMSprop and SGD had acceptable performance until some
results came back below 50%. Because this happened more than once during
testing, they are not considered outliers and are included in the average. This
is reflected in the test dataset accuracy standard deviation for both in that the
values are much higher than the other algorithms. SparseAdam was also tested
but the tensor/gradient was too dense for the algorithm. Rprop and L-BFGS
had the worst performance with widely varying trials and low accuracy rates.
They also claim the longest average training times.

It must be remembered that all of these results come from the default set-

CHAPTER 6. OPTIMIZATION AND BALANCING 66

tings for each method though AdaGrad, ASGD, RMSprop and Rprop had
their learning rates adjusted to 1e-3 from a base of 1e-2. This change was
made after initial tests failed to converge.

6.5 Weight Decay and Momentum

The large array of options for all of the optimization techniques makes compar-
ing them difficult and so this section will be limited to the exploration of mo-
mentum, weight decay, centering (variance) and where appropriate, "helper"
algorithms such as Nesterov and AMSgrad. For example, Stochastic gradient
descent (SGD) has momentum in use by default but the Nesterov algorithm
and weight decay are not. It should be understood that several of the op-
timization techniques have additional options that are not examined in this
paper.

Because the optimization methods differ in their useful learning rates and
additional parameters, the goal of this section was to improve on the default
settings using weight decay and/or momentum for each rather than declare
a "best" - though in many cases this was the eventual outcome. It may also
be the case that including weight decay, momentum, etc. slows training or
increases loss. Table 6.3 records the results from activating these. Common
values for weight decay (regularization) and momentum are 1e-2 and .9 re-
spectively and so these values were used throughout these tests. LBFGS and
Rprop do not use either and so are not included here.

One other aspect that is modified for this section is the escape loss value.
In our previous work we have found that results at or near 99% accuracy can
be reached with a loss or error of 1e-5. The algorithms studied here reach error
rates ranging from 1.8e-5 to 8.1e-15. The mean and median values are 6.2e-4
and 4.9e-8 respectively. For this set of tests, the model is allowed to termi-
nate if a loss of 1e-8 is reached. This value helps to determine if an algorithm
achieves an improvement in speed and accuracy.

The Adam algorithm also has the option of using an AMSGrad variant [53] so
this trial is included. The RMSGrad version includes knowledge of past gradi-
ents to help ensure convergence. Table 6.3 also makes room for a few other op-
tions. For example RMSprop utilizes momentum (M), weight-decay/regularization
(R) and centering based on the variance (V).

CHAPTER 6. OPTIMIZATION AND BALANCING 67

Table 6.3: Weight Decay and Momentum Results
Method Training (min) Ave Acc % Change Std Dev

AdaDelta R 37 98.25 -.15% .01
AdaGrad R 53 97.83 -.37% .018
Adam R 49 98.3 +.3% .01

Adam AMS 49 98.23 +.23% .01
Adamax R 49 98.72 +.02% .1
ASGD R 49 97.85 -.05% .026

RMSprop RM 50 75.66 -22.24% .223
RMSprop RMV 48 72.06 -25.84% .273

SGD RM 43 98.85 +12.85% .009
SGD RMN 43 98.8 +32.1% .011

Even with weight decay (regularization) and/or momentum, all of the algo-
rithms completed 2000 iterations without hitting the escape value. In fact,
the lowest observed loss was 4.5e-6. The training time changes little though
exceptions can be found in AdaDelta and AdaGrad. For accuracy there is a
massive improvement for SGD of 12.85% without Nesterov and 32.1% with
Nesterov. RMSprop suffers a 20% decline in accuracy. Like the previous re-
sults, the algorithms that do not perform well also have the largest standard
deviations for accuracy. It should be noted that Adamax did have a single
outlier which was removed for these calculations and improves its accuracy.

6.6 Improving Training Time

With many of the algorithms returning prediction accuracy better than 98%,
a reasonable question to ask is whether the training times can be reduced.
Training time is a function of training set size, model architecture and hyper-
parameters such as the learning rate. Changing all of these factors would make
it difficult to compare results with the previous test outcomes. So, for this set
of trials the best configurations from both sets were selected and the escape
value is changed to 1e-5. In this way we hope to determine what algorithm
might still provide acceptable accuracy while cutting training time.

Tables 6.4 and 6.5 depict the results for each category. A value of 97% ac-
curacy was chosen as a cutoff to include as many of the good performers as

CHAPTER 6. OPTIMIZATION AND BALANCING 68

possible. In Table 6.4 AdaDelta, AdaGrad, Adam, Adamax and ASGD were all
run again using the default values (no weight decay, momentum, etc.) against
the escape loss of 1e-5. All five had a significant reduction in training time

Table 6.4: 1e-5 Results no RMN
Method Train Time Ave Acc % Change Std Dev
AdaDelta 3s 88.92 -9.48% .193
AdaGrad 7min 97.87 -.33% .012
Adam 24s 98.59 +.59% .009
Adamax 26s 98.44 -.28% .009
ASGD 5min 98.18 +.28% .01

with three of them finishing in less than one minute. Even with this remarkable
decline in average training time, all except AdaDelta approached or exceeded
98% prediction accuracy with Adam topping the list at 98.59%. AdaDelta
shows a distinct loss in performance however there were a pair of outliers dur-
ing testing. Without these, the AdaDelta accuracy would be 96.4%. In Table
6.5, AdaDelta, AdaGrad, Adam, Adamax, ASGD and SGD were also run again
using combinations of momentum, weight decay or Nesterov against the 1e-5
escape loss value.

Table 6.5: 1e-5 Results for RMN
Method Train Time Ave Acc % Std Dev
AdaDelta R 58 98.28 .013
AdaGrad R 44 93.57 .145
Adam R 45 98.77 .01
Adam R+AMS 55 98.64 .012
Adamax R 62 98.49 .013
ASGD R 54 98.7 .011
SGD RM 55 98.57 .013
SGD RMN 54 98.82 .009

An important note on these results is that if an algorithm did not reach the
escape loss value of 1e-5, the model completed 2000 iterations. Thus, the trial
becomes a repeat of the results shown in 6.3. It turns out that all of the al-
gorithms selected to run again did not reach the loss value of 1e-5. This is a

CHAPTER 6. OPTIMIZATION AND BALANCING 69

little surprising given the goals of momentum and weight decay. It is possible
that if the trials were allowed to run until the loss value was reached, predic-
tion accuracy might be improved however many of the algorithms simply did
not show signs of reducing the loss to that level. It may also be related to
the challenges in working with packet traffic datasets. While these results are
included for completeness, it was decided that another series using an escape
loss value of 1e-3 should be run. These results are shown in Table 6.6.

Table 6.6: 1e-3 Results for RMN
Method Train Time Iterations Ave Acc % Std Dev
AdaDelta R 35min 1419 98.5 .012
AdaGrad R 21s 15 98.07 .012
Adam R 2min 88 98.79 .01
Adam R+AMS 27min 1161 98.54 .013
Adamax R 49min 2000 98.49 .013
ASGD R 21s 15 97.91 .017
SGD RM 14min 668 87.55 .194
SGD RMN 2s 1 90.98 .149

Once the escape loss value was adjusted the training time scale for several of the
techniques shifted from minutes to seconds with AdaGrad, Adam with Weight
Decay, ASGD and SGD with Nesterov finishing under 120s on average. More
importantly, AdaGrad, Adam and ASGD also maintained predication accura-
cies at or near 98%. They also have very low accuracy standard deviations.
Thus, it would appear that these and some of the algorithm configurations
seen in 6.4 would be good choices for neural networks targeted at packet traffic
or similar datasets.

6.7 Balanced vs. Unbalanced

A big part of the work done for this chapter was in building balanced datasets
as described in [10]. This was in part due to what the authors describe but
also because some of our own work, while highly successful, would result in
occasional drops in prediction accuracy between test sets. In this section we
explore what happens if the training set has the exact same classes included
but the number of samples in each is not balanced. These results are shown
side by side in Table 6.7.

CHAPTER 6. OPTIMIZATION AND BALANCING 70

Table 6.7: Balanced vs. Unbalanced
Balanced Unbalanced

Method Time Accuracy Time Accuracy
AdaGrad 7min 97.87 3min 94.84
Adam 24s 98.59 18s 97.33
Adamax 26s 98.44 27s 93.39
ASGD 5min 98.18 88s 95.9
AdaDelta R 35min 98.5 8s 97.77
AdaGrad R 21s 98.07 14s 92.93
Adam R 2min 98.79 8s 96.46
Adam R+AMS 27min 98.54 12s 94.49
Adamax R 49min 98.49 10s 94.37
ASGD R 21s 97.91 12s 94.07

What is revealed in these results is that almost without exception, the unbal-
anced datasets reduce training time by some small amount. However, there
is a significant cost to prediction accuracy. Every single optimization tech-
nique loses at least .73% with most losing much more. For example Adamax
and AdaGrad lose more than 5%. Clearly, datasets, especially those dealing
with packetized traffic or similar datasets must be balanced. AdaDelta with-
out weight decay (default), SGD (with weight decay) and SGD (with weight
decay and Nesterov) were dropped due to having more than 1 outlier or poor
previous performance.

6.8 Improving Accuracy

After experimentation with the optimization algorithms, a reasonable ques-
tion is whether, given the constraints of the previous testing, the accuracy can
be improved. The goal is to move the average accuracy closer to the near
Bayesian accuracy seen in the trainer. The included optimization algorithms
are chosen based on the best previous results from Tables 6.4 and 6.6. Based
on the last set of results for the best performers, the overall accuracy average
is about 98.34%. Thus, the margin for improvement is between 1.6% and 1.7%.

As the performance of the model is already quite good, it appears that the
task is to adjust for the variance or perhaps noise in the data. This is typically

CHAPTER 6. OPTIMIZATION AND BALANCING 71

done using more data, model architecture changes or regularization. However,
the datasets will not be modified and so the investigation is limited to archi-
tecture modifications and regularization options noted earlier.

In an effort to identify possible trends or opportunities, an experimentation
matrix was constructed and this is shown in Table 6.8. Both the hidden nodes
and layers are doubled for several steps. Additional tests using 84 hidden
nodes were added due to good performance discovered in a random test. The
"X" indicates tests completed. After careful consideration of the training time
constraints, certain experiments were strategically chosen to explore all cases
of interest while avoiding configurations known to under-perform or add little
value.

Table 6.8: Test Matrix: Hidden Nodes vs. Layers
Hidden Nodes 1 2 4 8
14 X X
28 X X X X
56 X X
84 X X
112 X X
224 X X

6.8.1 Wider Networks

The approach of using hidden nodes ranging from the number of classes (14) to
wider networks (up to 224 hidden nodes) and increasing the number of layers
is informed by the recent work [59]. The baseline results shown in Table 6.9
are from a single layer network that varies the number of hidden nodes.
From Table 6.9 it can be determined that the best hidden node configuration
is either 28, 56 or 112 as these all approach 98% accuracy on average. The
best performers in terms of algorithm are Adam +R+AMS and default Adam.
AdaGrad, Adamax, ASGD and Adamax +R all approach 98% as well. If the
performance at 14 hidden nodes is ignored as an outlier, then all but AdaDelta,
AdaDelta +R and Adam +R exceed 98%.

CHAPTER 6. OPTIMIZATION AND BALANCING 72

Table 6.9: Improving Accuracy: Single Layer
Method 14 28 56 84 112 224
AdaGrad .9329 .985 .9865 .9867 .9862 .9871
Adam .938 .9854 .9874 .9883 .9878 .9873
Adamax .936 .9858 .988 .9881 .9878 .9876
AdaDelta .9356 .986 .9384 .8922 .983 .8828
ASGD .9785 .9841 .9858 .9392 .9863 .9867
AdaDelta +R .8921 .9872 .9385 .9751 .89 .9339
AdaGrad +R .9324 .976 .9846 .9846 .9836 .9838
Adam +R .9352 .938 .9369 .8881 .9356 .8934
Adam +R+AMS .9848 .9862 .9875 .9876 .9877 .9879
Adamax +R .9345 .9854 .986 .9848 .9864 .9866
ASGD +R .8732 .9808 .9837 .985 .9834 .9857
AVE .9339 .9799 .9729 .9636 .9725 .9639

As one might expect, training time reveals that as the number of hidden nodes
increases, training time trends up though not significantly. The more impor-
tant detail is the time scale for the various techniques. Table 6.10 provides
this extra information.

Table 6.10: Time Scale
Method below 1 min 1-30 min above 30 min
AdaGrad X
Adam X
Adamax X
AdaDelta X
ASGD X
AdaDelta +R X
AdaGrad +R X
Adam +R X
Adam +R+AMS X
Adamax +R X
ASGD +R X

After analyzing the information contained in Tables 6.9 and 6.10, it can be

CHAPTER 6. OPTIMIZATION AND BALANCING 73

concluded that in terms of time and accuracy, default Adam, default Adamax
and Adagrad +R would be good choices. Recall that the default configurations
do not utilize regularization or weight decay.

6.8.2 Deeper Networks

Similar tests are performed after adding a second layer with a focus on the con-
figurations that performed well in terms of training time and accuracy. Table
6.11 provides the result of having this second layer with 28, 56 or 112 hidden
nodes in each of the hidden layers.

Table 6.11: Improving Accuracy: Two Layers
Method 28 56 112
Adam .9864 .9846 .9857
Adamax .9828 .9853 .987
AdaDelta .9814 .9765 .8765
AdaDelta +R .9867 .986 .9364
AdaGrad +R .9759 .9815 .9823
Adam +R .9843 .877 .9685
Average .9843 .877 .9685

In this configuration the performance for default Adam and default Adamax
exceeds 98.5% with AdaGrad +R achieving 97.99%. The training time for
AdaDelta +R jumps to nearly an hour while the rest remain under a minute
to reach their assigned escape loss values.

Continuing the exploration of deeper networks, the high performing config-
uration of 28 hidden nodes is used. The results for the same algorithms over
1, 2, 4 and 8 layers is shown in Table 6.12.
From this data it is clear that moving to deeper networks does not provide any
benefit for these datasets. Depending on the algorithm, one or two layers is
best. At eight layers the performance is abysmal regardless of the optimization
used. In addition, at eight layers default Adam, Adamax, AdaDelta often do
not converge. With regularization, all of them were able to converge on the
escape loss value though the training time for AdaDelta +R was over an hour
in both four and eight layer models.

CHAPTER 6. OPTIMIZATION AND BALANCING 74

Table 6.12: Improving Accuracy: Deeper Layers
Method 1 2 4 8
Adam .9854 .9864 .9393 .8624
Adamax .9858 .9828 .9661 .8736
AdaDelta .986 .9814 .9678 .8101
AdaDelta +R .9872 .9867 .9828 .9048
AdaGrad +R .976 .9759 .8995 .9226
Adam +R .938 .9843 .9819 .9185
Average .9764 .9832 .9646 .882

Applying the same time scale analysis to the deeper networks, it can be seen in
Table 6.13 that many of the optimizers stay below a minute in training time.
For Adamax, AdaDelta, AdaDelta +R and Adam +R, the models resulted in
significantly longer training times, often exceeding an hour. However, these
only occurred in the deeper network architectures of 4 or 8 layers. For archi-
tectures of 1 or 2 layers, the training time was still less than one minute.

Table 6.13: Time Scale - Deeper Networks
Method below 1 min 1-30 min above 30 min
Adam X
Adamax X
AdaDelta X
AdaDelta +R X
AdaGrad +R X
Adam +R X

It is reasonable to conclude that for models consisting of two layers and a
hidden node configurations having number of nodes = 2 * (number of output
classes), all of the algorithms listed in Table 6.12 would be acceptable choices
with default Adam and AdaDelta +R achieving the highest overall accuracy.

One last question regarding the width and depth of the networks used for
packet traffic datasets is the performance with both wide and deep configu-
rations. For example, does a network of eight layers and 224 hidden nodes
provide any benefit? The simple answer is no. The behavior for the best per-

CHAPTER 6. OPTIMIZATION AND BALANCING 75

formers in terms of training time and accuracy mirrors seen in Tables 6.9 and
6.12 shows that accuracy trends down as the layers extend beyond 56 hidden
nodes and as the hidden layers go beyond two. In many cases, a configuration
of 224 hidden nodes and eight layers has the same lack of convergence problem
or very long training times.

6.9 Discussion

Packet traffic is sometimes challenging to work with because fields with the
greatest variation may have the least impact for differentiation between classes.
Thus, the main motivation for this work was to address some of the questions
that exist when attempting to apply neural networks to packet traffic classifi-
cation. Some understanding of the base structures and hyper-parameters are
part of the literature but much less is known about the proper optimization al-
gorithms and a systematic examination regarding the impact of using wider or
deeper networks has not been done. It is common to see researchers state that
a particular algorithm was used but little reasoning as to why it was chosen.
Importantly, very little had been done regarding the importance of balanced
datasets of this type.

There are myriad configurations that might be deployed and each of the opti-
mization algorithms has a collection of options. For this reason, our exploration
was limited to neural network width and depth structure changes and the
deployment of regularization, momentum and any "helper" algorithms such
as Nesterov and AMSgrad. Learning rates were fixed at either 1e-3 or 2e-3
(Adamax). Initial tests used very small escape loss values (1e-20) in order
to observe algorithm behavior. It was found that several of optimizers work
well with the default settings (within the pytorch optim package) though the
training times can be long. Other optimizers work well when weight decay and
momentum are enabled. But again, training times can be long even when we
raise the initial desired loss to 1e-8.

Most of the algorithms tested were able to reach prediction accuracy at or
near 98%. However, one goal was to watch performance as the training time
was reduced. At this point the desired loss was 1e-5 followed by 1e-3. The data
reveals that a collection of algorithms can maintain high prediction accuracy
even with these changes. Subsequent tests fixed the escape loss value at 1e-5
for default configurations and 1e-3 for those adding regularization, etc. This

CHAPTER 6. OPTIMIZATION AND BALANCING 76

was done for the simple goal of reducing error but with the understanding
that several of the optimizers could not converge on very low values with these
datasets.

A good question at this point is whether all of the experiments could be run
using an escape loss value 1e-3. This is reasonable because an optimizer with
a default configuration might be eliminated if the training time is too long.
Thus, for completeness the results for the high performing default optimizers
with an escape loss value of 1e-3 are include in Table 6.14.

Table 6.14: 1e-3 Results no RMN
1e-5 1e-3

Method Time Acc Std Dev Time Acc Std Dev
AdaDelta 3s 88.92 .193 2s .9672 .033
AdaGrad 7min 97.87 .012 28s .9669 .033
Adam 24s 98.59 .009 3s 9797 .014
Adamax 26s 98.44 .009 15s .9811 .011
ASGD 5min 98.18 .01 12s .9292 .143

As might be expected, with an escape loss value of 1e-3, training times de-
creased for all. However, with the exception of AdaDelta (which had a number
of outliers previously), all of the optimizers suffer in terms of accuracy and
the standard deviation seen in test set accuracy. Thus, using a loss of 1e-5 is
superior.

Another very important point was the type of data and whether or not the
datasets were balanced. The data consists of packetized network traffic that
includes, among other things, wide variations in payload and addressing fields.
This makes classification tasks challenging. A majority of the evaluation was
done using the newly constructed balanced datasets consisting of thirteen
classes with 5K samples for each class. Upon successful completion of the
optimizer evaluation, the balanced training dataset is switched to an unbal-
anced set that contained the same classes. Using the unbalanced trainer results
in a reduction in training time but also a substantial decrease in prediction ac-
curacy.

Lastly, an investigation into whether changing the network structure can have

CHAPTER 6. OPTIMIZATION AND BALANCING 77

an impact on packetized traffic datasets is completed. The width of the net-
work is varied from 14 to 224 hidden nodes and the depth changes from one to
eight hidden layers. It is discovered that most of the optimizers work best with
only a few additional layers and a width that is double the number of output
classes. With these configurations, several of the optimizers perform well with
training times remaining less than 1 minute and accuracy rates exceeding 98%.

6.10 Chapter Conclusion and Contributions

This work aims at addressing some currently open questions for the application
of neural networks to packet traffic classification. A comprehensive collection
of optimizers were explored with completely balanced datasets of packet traffic
samples. Also examined were structures suitable for research such as this, es-
pecially wide vs. deep networks that maintain high accuracies and low training
times.

It is demonstrated that balanced datasets are essential for maximizing clas-
sification accuracy and that several optimization algorithms are a good fit for
the task. Most notably, Adam, Adamax, AdaGrad and AdaDelta perform well
and often do so without requiring weight decay. It is also clear that for this
task, deep or wide networks (or their combination) are more of a hindrance
than help, resulting in longer training times and reduced accuracy.

This research shows that using small networks of two hidden layers and hid-
den nodes equal to twice the number of output classes, training times can
be reduced to less than one minute and still maintain accuracies above 98.5%.
Researchers working within the communication traffic space can now build suc-
cessful neural network architectures and have an excellent basis for choosing
effective optimizers and hyper-parameters.

Chapter 7

Using Neural Networks to
Address Port Scans

7.1 Structure for Detecting Port Scans

Using a single neural network to handle all the necessary packet classes and
the associated training set is cumbersome. This chapter concerns itself with
expanding the use of neural networks for applications such as security. The
focus of will be on the constant problem of TCP port scans. Like all com-
munication issues, TCP port scans are a subset of overall packet traffic. The
approach investigated separates traffic into broad types and then targets the
specific protocol in question. Thus two sequential Multi-layer Perceptron Neu-
ral Networks (MLP NNs) were deployed; the first classifies network packets
into general packet categories such as IPv6, IPv4, ICMP, TCP, UDP, etc. and
the second NN takes the discovered TCP packets, classifies them, determines
flag combinations and the traffic source.

An input feature vector of the first 150 hexadecimal characters from each
packet performs well for general classification. This value is used for both
stages. Currently the general classifier has 13 general classes or labels. To
take advantage of wider hidden layers, the number of hidden nodes is 64. This
based on an early attempt to utilize a binary labeling scheme. The first stage
NN layers can be described as having 150:64:64:64 nodes. Each layer is fully
connected or meshed to the next layer.

Details regarding structure and operation of the MLP NNs can be found in

78

CHAPTER 7. USING NEURAL NETWORKS TO ADDRESS PORT SCANS79

Chapter 4. In addition to structure, the success of any neural network is often
tied to the hyper-parameters (learning rate, batch size) and the quality of the
training data. A variety of these values were tested with a learning rate of
5E-6 and batch sizes of 128-512 providing the best results. Lastly, the opti-
mizer used is Adam [38]. It should be noted that if reading this document
from cover to cover, this would appear to be a backward step. However, the
investigation documented in this chapter occurred before the optimization and
balanced dataset investigation.

Each of the sequential neural networks has its own training dataset. In the first
stage, the general classifier is trained and then given a series of test datasets to
build the predictions. The ground truth is established by a parsing program
that is capable of handling a variety of input capture files including Wireshark,
tcpdump and Omnipeek. This is verified manually.

In order to classify the various TCP message types, a second neural network is
deployed. The first multilayer perceptron (MLP) NN only feeds TCP packets
into the second. Subsequently these TCP packets are run through the TCP
classifier model. The most significant difference between the two networks is
that the TCP neural network has 23 classes and 23 hidden nodes in the hidden
layers and so might be described as 150:23:23:23. The architecture depicting
the NN inter-connection is shown in Figure 7.1.

Figure 7.1: Model Architecture

As the first classifies network packets into general packet categories, the in-
dex value of each sample is recorded. After each test dataset is processed,
the TCP packets are pulled out. Since the TCP classification depends on
this stage, it is vitally important that the general classification is correct. We
evaluate input features of 132-150 hex characters (66-75 bytes). Larger input

CHAPTER 7. USING NEURAL NETWORKS TO ADDRESS PORT SCANS80

vectors would include a TCP header with options. The learning rate is varied
over .000001-.000005 based on previous work [29] and experimentation with
the added datasets. A typical escape loss value after 2000 iterations would be
1E-10.

The TCP MLP uses a specialized TCP training set as the difference between
packet types is often the twelve bit TCP flags field and the direction (internal
and external) of traffic. Once this has completed, the TCP test datasets are
now run through the TCP MLP NN. These TCP test datasets are modified
versions of the original datasets and contain only TCP packets. For example,
a general dataset starting with 10,000 packets is left with 9000 TCP packets
after processing. The 132-150 input features are retained but the hidden and
output layers are changed to 23 based on the number of classes. Learning rates
of .0001-.000005 and batch sizes of 128-512 are used in experimentation. The
classes are completely different as they are based on TCP messages only. Each
TCP dataset is tested for accuracy and then run through a scan detector set
of functions.

Both models are trained on an NVIDIA Quadpro P1000 GPU. Training time
for the general classifier is approximately 4 min/1000 iterations. The TCP
classifier training time is longer (7min/1000 iterations) as TCP training set is
larger containing 102k packets. Once trained, processing of the test datasets
takes 3 seconds each which shows one of the major benefits of a trained neural
network model compared to rule based approaches.

Beginning with the handshake messaging, the scan detector looks for a sev-
eral patterns in attempting to determine whether or not a scan is in progress.
TCP connections complete the SYN, SYN-ACK, ACK sequence prior to the
exchange of data. Scan attempts are difficult to detect as they do not complete
the handshake. Another important part of a scan is the behavior of a closed
port. When sent a TCP datagram with the SYN flag set, any response offered
by a closed port will set the RESET flag. Typically both the RESET (RST)
and ACK flags are set. Since valid clients do not connect to a wide variety of
ports, several messages with the RST flag set may also indicate a scan. Lastly
scanners sometimes send messages probing the target behavior and so unusual
flag combinations (ex. SYN, FIN, PSH, URG) may also be seen.

CHAPTER 7. USING NEURAL NETWORKS TO ADDRESS PORT SCANS81

7.2 Classes

The general classifier labels were assigned based on the most common com-
munication protocols layer 2, 3 and 4 encapsulation. For example; 802.3 or
Ethernet II, IPv4 or IPv6, ARP or Management, upper layer protocol (TCP
or ICMP or UDP, etc.) These classes are established based on observation of
contemporary traffic captures.

The TCP classes are established based on flag patterns seen in contempo-
rary datasets and scans created for the work. Assigned labels based on the
TCP flag hexadecimal patterns include; SYN, SYN ACK, ACK, FIN ACK,
ACK PSH, ACK RST, RST, SYN ECN CWR, SYN FIN PSH URG, FIN PSH
URG and ACK PSH FIN. Internal and external traffic patterns both have a
set of these labels.

7.3 Datasets

The test datasets have few restrictions though the training datasets must be
comprehensive. For example, the general classifier should have a mix of the
traffic types likely to be seen on a modern communication network. In addi-
tion, some are dedicated TCP port scan datasets. The TCP training dataset is
a capture of TCP packets only and these are generated using a web, mail, game
traffic and scans. With this approach, neither of the MLP neural networks are
at risk of overfitting or excessive misclassification problems.

There are a few other concerns when attempting to detect scan attempts.
Since scanners may scan over time to hide the activity, the datasets tested
should be sequential or very large. For sequential datasets, establishing con-
nections between the datasets may be desirable. Lastly, experiments have a
priori knowledge regarding the addressing used in the target network. It is
assumed that the attacker is from the outside (external to the router) and so
we distinguish between inside and outside addressing in the classifiers. This
means that within the scan parser, we optimize by eliminating packets that do
not fit the attack profile. For example, inside scans are not the focus and so
TCP SYN messages from inside sources are ignored. However, this is the only
"rule" in use.

CHAPTER 7. USING NEURAL NETWORKS TO ADDRESS PORT SCANS82

7.4 Results

In a performance review the following are measured; overall classification ac-
curacy, individual label accuracy, false positives and misclassification. The
accuracy percentages for the datasets are shown in Table 7.1. These values
result from the general classifier running for 1500 iterations with a learning
rate of .000005. The training set size was 31,642 packets. Dataset 30 values
are a simple check since it is the trainer. Once the general classification has
run and the TCP packets have been selected from the above named datasets,
the TCP classifier runs. The results of the TCP classifier are also summarized
in Table 7.1. The TCP Accuracy values are from a trial with a learning rate
of .0001 and 1000 iterations.

Table 7.1: Dataset Accuracies
Dataset General Accuracy TCP Accuracy

30 99.99 99.31
31 99.99 97.9
32 99.92 99.8
33 98.81 95.55
34 99.69 95.67
35 99.9 96.35
36 99.79 99.67
37 99.98 99.94

As can be seen the accuracy is very good with the lowest at 98.8%. This helps
ensure that the next stage will not be hindered by early misclassification.

In addition to overall accuracy, it is important to test the individual class
accuracy. Examples from Dataset 34 are shown in Table 7.2. As can be seen,
the per class accuracy is high. The Wireshark packet values are directly from
the capture program itself and the model packet numbers are the predictions
from the neural network. Performance for the other datasets is very similar.
Table 7.3 depicts a similar check with the TCP classes (based on flag combi-
nations) from an individual dataset. For space, only some of the categories
are shown. In addition, some categories are summarized because some flags
exist in more than one class. For example, the SYN flag appears in both SYN,

CHAPTER 7. USING NEURAL NETWORKS TO ADDRESS PORT SCANS83

Table 7.2: Dataset 34 Class Accuracy
Class Wireshark Prediction
ARP 363 363
IPv4 6611 6611
ICMP 2 2
IGMP 289 289
UDP 1753 1776
TCP 4543 4544
IPv6 472 476
LLC 2198 2198

SYN-ACK and scan specific messages.

Table 7.3: TCP Class Accuracy
Label Wireshark Model
SYN 5286 5287
SYN ACK 50 50
ACK 18292 18098
FIN ACK 17 17
RST 5042 5044
SYN ECN CWR 2 2
SYN FIN PSH URG 2 2
FIN PSH URG 2 2

Lastly the model is run on several scan datasets as shown in Table 7.4. The ex-
amples (Datasets 36 and 37) come from a pair of scans generated from NMAP,
one targeting a small number of ports and the other 5000.

In the first scan, NMAP performs a stealth scan and OS detection against
the target along with a test of 1000 ports. NMAP sends 1112 packets and
receives 1113 from the target. Over the course of the scan, a few unrelated
TCP packets are created by the target. NMAP discovers that ports 135, 139
and 445 are open. Given this information, it is expected that a capture file
would have at least 2225 packets (2413 actual) and that half would be TCP
SYNs and the other would be a combination of SYN-ACK and RESET-ACK

CHAPTER 7. USING NEURAL NETWORKS TO ADDRESS PORT SCANS84

Table 7.4: Scan Results
Label Wireshark Model
Dataset 36 SYN 1091 1087
Dataset 36 SYN ACK 77 77
Dataset 36 RST ACK 1041 1044
Dataset 37 SYN 5234 5233
Dataset 37 SYN ACK 50 50
Dataset 37 RST ACK 5029 5030

messages. Similar analysis can be applied to Dataset 37 in which the scan sent
5239 packets and received 5049 with an actual total of 10486. The scan was
against the same target and so the same ports are open.

The success rate from the scan detector is extremely high. In both cases, the
correct open ports were identified from the classification effort. The prediction
accuracy for these two scan datasets exceeds 99% with dataset 37 actually
achieving 99.9%. This also allows the detection of scans that are not common
such as those setting the FIN-SYN-PSH-URG or the SYN-ECN-CWR-RES
flags at the same time. In an entire scan there were typically only two of
these unusual packets captured. The resulting numbers indicate few misclassi-
fication errors and even fewer false positives. The identification of completed
handshakes has similar accuracy though is not as important to scan detection.

7.5 Discussion

This two stage classifier is extremely effective at predicting a wide variety of
labels even though the TCP labels are much more challenging. To arrive at
a model that achieves low loss rates, a wide variety of tests that varied NN
structure, hyper-parameters and output classes were completed. Output class
labels selection is challenging because they can be based on packet headers,
packets carrying data, TCP options and source IP addresses. In addition,
packet behavior or characteristics can change for a particular class. For exam-
ple, when the ACK flag is set, the packet may or may not have data which
varies the length field value. The same can be said of TCP options. In ad-
dition, the variation between packets is what allows for the classification, but
when isolating all of the TCP traffic, this variation is effectively reduced.

CHAPTER 7. USING NEURAL NETWORKS TO ADDRESS PORT SCANS85

In the end, simpler was better. Tables 7.3 and 7.4 demonstrate that the tech-
nique of splitting the classification effort and the choices made for labels are
very effective at detecting the TCP packets and differentiating between TCP
message types. Sorting through all of the flag combinations can be demanding
as several of the packets might be counted in more than one place. For exam-
ple, when assembling those having the ACK flags set (needed to determine is
a complete handshake was finished) these packets may be placed in the wrong
bin because of the SYN-ACK or RESET-ACK combinations. The scan detec-
tor part of the model handles the simple task of processing a collection of lists
created by the classifier.

Snort is arguably the most common tool used today to provide a function
similar to that of this neural network-based technique. A powerful and flexible
tool, Snort has a built in port scanning module (sfPortscan) which works with
the Stream filter and scan.rules file. While Snort is fast and accurate, it suffers
from the problems of rule based systems. Most notably a lack of adaptability
and that human expertise to create complex rules is required. Programs like
Snort cannot learn from the environment, can be complex to configure and
require dozens or even hundreds of correct rules. The Snort documentation
also states that increased "sense level" may result in more false positives. A
neural network does not use rules, only input and output. Decisions are made
based on a probability calculation from a function like Softmax. Once trained,
neural networks are as fast or faster than rule based systems. They can also
respond to dynamic conditions by retraining without reconfiguration.

7.6 Chapter Conclusion and Contributions

Neural networks have proven to be good function approximators in a variety
of fields. Recently they have been deployed successfully to classify network
traffic. In this paper we have shown that sequential neural networks can learn
the environment and then break up complex tasks. This separation facilitates
finer control for protocol classification and achieves accuracy rates above 99%.
This is true for overall dataset classification as well as individual classes. We
have shown that they can be highly effective in TCP classification and detect-
ing TCP port scan attacks with a level of prediction accuracy matching the
general classifier. A review of the results reveals that the incidence of false
positives or misclassification is also very low. This success also means that

CHAPTER 7. USING NEURAL NETWORKS TO ADDRESS PORT SCANS86

neural networks can be deployed to aid in a variety of security challenges fac-
ing communications today.

This was also the first attempt at combining neural networks so that they
might work together in a particular application. The success of this particu-
lar project led to some of the successes achieved in later investigations. Most
notably, the ensemble used in the beginning stags of the Mean Opinion Score
Predictor was built with this project in mind.

Chapter 8

CNNs and Network Visibility

8.1 Packet Image CNN Processing

The structure and operation of Convolutional Neural Networks (CNNs) is more
fully described in Chapter 4. This chapter discusses the use of CNNs for packet
classification and their potential for use in more complex communication ap-
plications. This is a departure from the experimentation with MLPs which
formed the basis of the previous work.

The preliminary data parsing process is similar for CNNs and is typically
completed in approximately 3 sec depending on the dataset sizes. However,
since the CNN acts on input different data (typically images), the preprocess-
ing stage does add the step of converting packets to images which adds a few
seconds. Recall that incoming packets vary in size and purpose. In a network
comprised of an Ethernet substrate, the frames are limited to payload sizes
between 46 and 1500 bytes. The IP datagrams are encapsulated in this frame.
The neural network selects a frame size and truncates all the incoming traffic
data based on this value.

The work described in Chapter 5 achieved exceptional results with packet
sizes ranging from 125-200 hexadecimal features. This corresponds to the first
64.5-100 bytes of the packet. For this CNN portion of the work, 196 features
were chosen as a size that encompasses a majority of the significant header
fields and can be used to create a square image whose first line is the entire
Ethernet header visible after capture. With the exception of IPv6, the fixed
selection of 98 bytes encompasses all of the data necessary to classify traffic.

87

CHAPTER 8. CNNS AND NETWORK VISIBILITY 88

Though the dataset packets are still organized into a matrix. At the time
of the investigation, the training dataset had 70000 packets. The resulting
matrix was [70000,196]) and processed as described previously. The packets
are converted into 14x14 images and the matrix restructured to [70000,1,14,14].
The square images make the preprocessing straight-forward and the 14x14 size
performed better than 15x15, 13x13 12x12 images. An example of a single
Ethernet encapsulated ARP request packet image can be seen in Figure 8.1.

Figure 8.1: ARP packet image

This image is organized along the size of the Ethernet header with each row
equal to 14 bytes (28 features). Note that the preamble and frame check se-
quence are not seen by packet analyzers. This places the entire Ethernet II
header on the first line. The gray scale shades are based on the hexadecimal
value. ARP requests use broadcast addressing and in an image such as this,
it becomes clear that the destination MAC address is FF:FF:FF:FF:FF:FF.
The next six bytes are the source MAC address which is followed by the layer
two type or 802.3 length. This image also provides some insight into how a
CNN might be able to distinguish between packet types as the images are so
distinctive. In the case where the packet is smaller than 98 bytes (196 features)
it is padded with 0’s.

Figure 8.2 depicts an image of a larger packet which comes closer to filling
the 14x14 matrix. The start of the IP and TCP headers are indicated. The
white space below the packet is the additional padding used for packets < 98
bytes in size.

CHAPTER 8. CNNS AND NETWORK VISIBILITY 89

Figure 8.2: Full packet

8.1.1 Larger Images

While the [70000,1,14,14] matrix can be used to accurately classify traffic, an-
other contribution of this work was to address network visibility using CNNs.
Thus the preprocessor take an additional step with the data and organizes it
into larger images measuring 140x140 hexadecimal characters by taking 100
of the 14x14 images and rearranges them. This is done to provide a tempo-
ral snapshot of network traffic over a slice of time. The rationale for this is
explained later in this chapter.

8.1.2 CNN Operation

During the CNN forward pass, the packet matrix is run through a series of
convolutional and fully-connected layers. One aspect of a convolutional neural
network is that it reduces the number of features between layers. For example,
a pair of fully connected (FC) layers is a linear combination of all nodes in one
layer to all of the nodes in the next layer. The convolutions and max-pooling
used in CNNs significantly reduce this number.

CNNs accomplish this through the use of filters which pass over the image
and apply a transform for each step of the pass. The transform result is a
linear combination. For example, the first convolutional stage of our network
uses a 3x3 filter and a step of one. The 3x3 filter (f) starts in the upper left

CHAPTER 8. CNNS AND NETWORK VISIBILITY 90

hand corner of the packet image covers a portion of the 14x14 image. The
filter then steps to the right and eventually returns to the left moving down as
needed to eventually pass over the entire original image making calculations
as it goes. The size of the step is referred to as the stride (s). The result is a
new 12x12 image. No padding (p) is used for the images. The resultant size
can be determined by the formula:

((n− f + p)/s+ 1)

For these images: ((14-3+0)/1 + 1) = 12. Following the convolutional layer
(conv1), a max-pooling layer further reduces the number of features. The
max-pooling layer performs the same passes, though in this case, the filter is
smaller (2x2) and the stride is doubled. The value obtained from each step
is the maximum (argmax) for the portion of the image covered by the filter.
After the first convolutional and max-pooling layers have made their passes,
the resultant image is 6x6: ((12-2+0)/2)+1 = 6.

This process is repeated with a series of additional filters. Each filter does
the same thing though they are initialized separately. Filter calculations are
combined later in the model. As an example, the first layers of our model
use six filters and the subsequent layer uses 16. Another smaller example of a
CNN with max-pooling and a series of filters is shown in Figure 8.3. For space,
the image starts as a 10x10, is reduced to 8x8 ((10-3)/1+1=8) and then after
max-pooling with a 2x2 filter the image is 4x4. There are also six different
filters applied to each image.

Figure 8.3: Convolution with max-pooling

CHAPTER 8. CNNS AND NETWORK VISIBILITY 91

As the actual 14x14 packet images are small, the first stage is only followed
by a one other stage (conv2, max-pooling) which further reduces the images
to 2x2. Because of the additional filters, there are a number of these results
for each packet. These results are then combined in a series of fully-connected
(FC) layers. Fully connected layers rearrange the data once again to a column
vector. The column vector size is the product of the image resolution and the
number of filters. For this configuration: 2*2*16 filters=64. A series of fully
connected layers reduces this value to the number of classes.

An example of this part of the network can be seen in Figure 8.4. Fully
connected layers eventually reduce the column vector to a size equal to the
number of classes.

Figure 8.4: Fully connected layers

At the end of the forward pass, a Softmax function then calculates a class
probability. Once the error is calculated and back-propagated, the model is run
again until either the desired number of iterations has passed or the error rate
has declined below an acceptable threshold. The full model can be described
as conv1 (3x3x6), max-pooling (2x2, stride=2), conv2 (3x3x16), max-pooling
(2x2, stride=2), FC1(64:32), FC2(32:16), FC3(16:14). During training 1000 to

CHAPTER 8. CNNS AND NETWORK VISIBILITY 92

2000 iterations are typically run. While the training is off-line, the architecture
itself can then be used on stored datasets or during real-time capture.

8.1.3 Datasets and Classes

As previously stated, the training set contains 70000 packets obtained from an
operational network testbed. This is a balanced dataset of fourteen classes,
each having 5000 packets. The classes are chosen to include a variety of traffic
from layers 2, 3 and 4; TCP port 80/ 8080/443, UDP DNS/DHCP/SSDP/NBNS,
CDP, ICMP, IGMP, STP, loopback and ARP. An empty or missing class is
also included. A smaller (7000 packets) balanced validation set is also used.

The validation set is followed by four test datasets of varying size and com-
position. Once the model is trained, the datasets are run through the CNN
model. The analysis is run on each section of the larger (140x140) images and
the class accuracies and the overall accuracy for each section are recorded. A
packet map is also created so that packet location assignments and timestamps
can be retrieved and reported.

8.1.4 Optimization and Features

A variety of optimization techniques (with and without weight decay) were
evaluated in this CNN model. While several including Adam, Adamax and
Adagrad, performed well, the highest and most stable performer for this par-
ticular configuration was Adadelta with weight decay. The feature size of 196
is based on two factors; the number of packet bytes necessary for acceptable
classification accuracy and the desire to use a square image for filter traversal.
It was also found that images smaller than 14x14 resulted in an accuracy drop.
Larger sizes did not improve performance beyond that experienced at 14x14.

8.2 Visual Representation of the Network

There are several benefits to using neural networks for applications such as
data network traffic processing. Neural networks are flexible in that they can
process a variety of sources and can be modified for new conditions. Once
trained they are very fast, out-performing attempts at parsing through the
same amount of traffic. In addition, for the classification work, specialized
software is not required. The benefit of deploying convolutional neural net-
works is that the power of video and image processing can now be used to

CHAPTER 8. CNNS AND NETWORK VISIBILITY 93

interpret packets and patterns seen in communication topologies. Thus, the
next phase of this work was to combine individual packet images into a larger
picture that could depict network behavior at a point or points in the topology,
providing an avenue to infer network conditions.

The larger image is run through the same model but rather than testing a
single image, the CNN is run against each section of the combined image.
Since the CNN is already trained, it quickly determines the content of each
section of the larger image.

A typical network conversation, performance problem or attack typically oc-
curs within a certain period of time. A larger image would be able to depict
the packets and derive the relationship between them because it is a slice of
time for the network. For example, the PING command issues ICMP echo
requests and waits for ICMP echo replies. If the ARP tables are missing the
requisite entries, an ARP exchange is triggered prior to the ICMP messages.
An 2x2 grid image with these packets is shown in Figure 8.5.

Figure 8.5: ARP and ICMP exchange

CHAPTER 8. CNNS AND NETWORK VISIBILITY 94

A close examination of these packets reveals the differences in the source and
destination MAC addresses and in other parts of the message such as the al-
phabetical content of an ICMP request. Even in this small grid, the entire
exchange is captured. This image represents standard behavior and this ap-
proach may be able to recognize anomalous patterns. Currently the CNN can
recognize packet classes and excessive delay between packets (indicated by a
missing packet), all while completely unaware of field meanings, headers or
content. A system would thus be able to classify all of the packets and pat-
terns or latency issues could be recognized.

A larger image of a packet series provides a snapshot of network activity over
a larger slice of time than a single packet would. The average delay between
the packets seen in Figure 8.5 is 3 msec. If packets were processed together in
a larger image, the span of time covered by the image would be the number of
packets x 3 msec. giving a broader view into the packet flows in both direc-
tions. Further, a series of these larger images could be thought of as a series of
video frames, each covering that time span and conveying much more informa-
tion. Even in this small image the information contained is 4x a single packet.
In our larger tests, one hundred 14x14 images are combined sequentially into
a 10x10 grid (140x140 features). This 10x10 grid now represents a snapshot
in time of .3 seconds. This can be repeated at several interfaces on the same
network element or at different locations within the topology.

Another example can be found in the identification of potential bottlenecks
or sources of latency. Latency (along with jitter and packet loss) is a primary
cause of poor application performance. Given the number of network connec-
tions that run over wireless networks, upcoming 5G deployments and remote
cloud services, this is going to continue to be a significant challenge. To help
address this, the CNN is capable of identifying spacing or missing packets.
Next steps might include recognizing patterns in this collection.

If the packet stream is coupled to the time stamps, a delay might cause the
traffic image to look like the one shown in Figure 8.6. This example actually
comes from common router behavior at the beginning of a flow. The first ICMP
echo reply was lost because the router was busy populating its ARP tables.
In this case, once a latency threshold is exceeded the packet is not drawn in
the next time slot. The latency threshold is a configuration parameter of the
system.

CHAPTER 8. CNNS AND NETWORK VISIBILITY 95

Figure 8.6: Missing packet

The size of the larger image of sequential packets is also a configurable param-
eter in the model. The larger the image, the greater the potential to expose
other patterns to gain visibility into network behavior at a given point. De-
pending on threshold values, problems with excessive latency or packet loss
might present as a collection of white spaces. Excessive jitter or intermittent
problems might be more easily diagnosed by observing the surrounding packets
and white-space. Since the CNN model can identify both the packet types in
the conversation and the latency locations in the traffic images, causality and
direction might also be established.

Again, the model used here would be able to provide highly accurate clas-

CHAPTER 8. CNNS AND NETWORK VISIBILITY 96

sification of individual packet classes and potentially events. In an incident
response scenario, a person reviewing static examples from the stream might
be able to spot problems in much the same way graphs are currently used for
visualizing latency, capacity and busy hours on the network. The difference is
that this technique provides a view that is multi-dimensional in that it shows
packets and the relationships between them.

A common approach to address security concerns is to build attack profiles.
A similar template could be developed and this identification could result in
recommendations for security or quality of service actions to be taken. A col-
lection of these large image streams could provide insight into behavior across
an entire set of network interfaces.

8.3 Results
A CNN model has a number of configuration options that include optimization
techniques, number/size/stride of filters, learning rate, etcetera and many of
the related works do not provide these details. Table 8.1 depicts results from
model filter variations. The columns represent the number, size (Sz) and stride
(St) of the filters. All of these results are from tests against 14x14 packet im-
ages and using the AdaDelta optimizer. Due to stability, the first configuration
was chosen for subsequent tests. While these configurations all show results

Table 8.1: Filters vs. Accuracy
Conv1 Max P Conv2 Max P

No Sz St Sz St No Sz St Sz St Acc
6 3 1 2 2 16 3 1 2 2 .987
6 3 1 2 2 16 3 1 2 1 .9945
6 3 1 2 2 16 2 1 2 1 .962
6 2 1 2 1 16 2 1 2 2 .951

exceeding 95%, it can be seen that the first two achieved 98.7 and 99.45%
respectively. The choice of optimizer can be task specific and so a compari-
son between the several of them was also completed. Optimizer performance
varies with configuration. For example, AdaDelta performed well for the fil-
ter configurations shown in Table 8.1 however performance dropped in other
formulations. The results shown in Table 8.2 were achieved after reducing the

CHAPTER 8. CNNS AND NETWORK VISIBILITY 97

learning rate to 1e-6 with the filter configuration indicated in line 1 of Table
8.1.

Table 8.2: Optimizer Comparison
Method Train Time Iterations Ave Acc
AdaDelta R 4hr 33min 1000 .993
Adam 1 hr 32min 1000 .916
Adam R 1hr 4min 1000 .893
Adamax 1hr 7min 1000 .751
ASGD 1hr 2min 1000 .939
AdaGrad 59min 1000 .864

The "R" after an optimizer indicates that it used regularization or weight
decay. In the end, consistency in accuracy were the determining factors in
choosing an optimizer. It should be noted that changes to classes or structure
can require a review of all parameters. Additional tests were run for various
learning rates (1e-3, 1e-5) and for longer periods of time but stopping at 2000
iterations. Again, due to stability, the first configuration shown for AdaDelta
in Table 8.1 was chosen. The model also proved its effectiveness when the

Table 8.3: Class Accuracy
Class Wireshark 3 Pred 3 Wireshark 4 Pred 4
ARP 447 439 200 199
IGMP 8 6 199 199
STP 56 56 1050 1050
DNS 268 290 738 732
SSDP 15 15 330 332
TCP 80 618 594 11931 12163
TCP 443 24433 24415 12463 12208

results of the various classes returned. For space, Table 8.3 provides a sample
of the values for test Datasets 3 and 4. The paired columns depict the actual
packets seen in a Wireshark capture vs. the number of packets predicted by
the model for each class. For example, Dataset 3 had 447 ARP packets com-
pared to a prediction of 439. Dataset 4 had 200 observed packets compared
to 199 predicted. The overall accuracy for these datasets were 99.7 and 99.1%
respectively. The average for all datasets was 99.2% as the other datasets had

CHAPTER 8. CNNS AND NETWORK VISIBILITY 98

similar results.

8.4 Discussion

The contribution of this CNN approach to challenges associated with modern
communication networks is not necessarily the structure of the CNN but rather
in the application of CNN to the problem of accurate individual packet clas-
sification. Researchers have used various machine learning models to address
specific areas but few have tackled this core need directly. Even fewer research
projects have gone to this level of accuracy. The architecture and data organi-
zation used here has proven successful in this task and when CNNs are used,
the training time is often reduced.

Over the course of testing occasional aberrations occur with the packets. For
example, errors in the classification of spanning tree led to the discovery that
there were two different versions within the datasets. ARP was also misclassi-
fied as a management protocol due to the inherent padding used in the mes-
sages. These were addressed by clarifying class definitions using operational
codes or balancing the datasets.

Once the CNN is established as the successful central component, larger prob-
lems such as latency detection or mean opinion scores associated with real-time
traffic such as VoIP can be addressed. By re-imagining packets and packet
flows as images as shown in Figure 8.6 contemporary image and video process-
ing techniques based on the CNN structure can be applied. The larger images
provide an temporal slice of network time offering a perspective for viewing
network traffic or missing elements. An approach like this can aid in visual-
izing network conditions making easier to understand the current scenario or
events during network transients.

8.5 Chapter Conclusion and Contributions

Many of the challenges addressed in network research today have at their core
a need to classify communication packets. The central contribution of this
work a CNN architecture that can be used to not only classify traffic with
a high degree of accuracy but aid in improving network visibility to address
application performance problems through visualization has been presented.

CHAPTER 8. CNNS AND NETWORK VISIBILITY 99

Attempting to utilize CNNs by converting packets to images is not trivial
because the information format (and they way we think of the data) is funda-
mentally different. It was by no means a foregone conclusion that the approach
would work and several formatting attempts were made before arriving at the
current configuration. Once this was successful, by treating packets as images,
contemporary image processing techniques can be applied. These individual
packets can also be combined into larger images that can provide insight into
a activity during a time span. This increased visibility can help detect perfor-
mance problems and potential security threats.

Using this model, individual class identification accuracy exceeds 99% and
images combined into a grid to improve visibility can be identified with the
same high accuracy levels.

Chapter 9

Ensembles and the Mean
Opinion Score

9.1 Approximator to non-Approximator

Many of the challenges addressed by communication network research rely
on the ability to identify packets and determine relationships between them.
This is also true for the operation of many devices such as firewalls. Even
the standard processes such as routing require that the traffic is processed to
some level prior to handling. Additional processing must be accomplished if
other decisions are to be made. For example, routers can be used to enforce
a variety of policies that examine packet header fields. These fields can only
accessed through some form of parsing or table lookup. With the advent of
greater compute power and advances in machine learning, it may be possible
to address a wide variety of challenges with what was previously called an
approximator. With the appropriate supporting architecture it may even be
possible to achieve near perfect recognition rates so that downstream, highly
effective applications can be developed.

The near perfect accuracy is a requirement because the subsequent decisions
depend on the answers from earlier stages. For example, a variety of security
challenges such as port scanning, data ex-filtration and anomalous traffic still
plague networks today. A packet permitted or denied based on a bad deci-
sion made by an algorithm could lead to either malicious traffic entering the
system or valid traffic being dropped. In the case of quality of service, traffic
might be unnecessarily delayed or elevated above higher priority traffic due

100

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 101

to a misclassification error. Traditional approaches are not immune to errors
when used for these applications. Misconfiguration or incomplete rule sets can
create additional problems as well. In this work, ensembles are used to achieve
high accuracy. Toward the end of the chapter the targeted application is a
Mean Opinion Score (MOS) predictor.

9.2 Accuracy

Deterministic structures such as decision trees or table lookup can be used
but often at the cost of speed. In addition, these may require specialized soft-
ware. However, a trained machine learning model such as a neural network
may be able to achieve the level of accuracy desired and at a speed that does
not degrade performance or cause an excessive lag in a monitoring system. In
Chapter 5 a multi-layer perceptron neural network was used to successfully
classify packets with an accuracy that exceeded 99%. Further, several of the
experimental MLP models were found to have this high accuracy rate.

Chapter 8 presents convolutional neural networks that were deployed for the
same task. Using CNNs to classify packets results uses fewer parameters during
the forward pass which can make the memory use and training more efficient.
The CNNs were also able to exceed 99% accuracy. Like the MLP models, sev-
eral CNNs reached this high level of performance. Through experimentation
with the optimizers, tuning hyper-parameters and trials with model depth and
width, an MLP or CNN model will occasionally achieve 100%, though not
consistently.

Both the MLP and CNN models were then inserted into application system
that addressed a particular challenge. The MLP networks were deployed in a
sequential architecture that, when combined with a parser could detect port
scans by examining TCP flags. The CNN model was part of a system that
examined a collection of packets that represented a particular temporal space.
The CNN might then be used to recognize patterns in network behavior or
problem areas using techniques borrowed from image processing.

Based on these successes, the following base architecture is proposed: an en-
semble of two CNN and two MLP models that together will determine the
correct classification. Each model makes a determination as to the correct
label for each packet. The results of the ensemble are compared and a ma-

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 102

jority vote selects the final class label. Should any model reach 100% without
rounding, that model is chosen as a class selector. Testing reveals that after
the tuning, it is common for at least one model to reach 100% accuracy.

9.3 Classes

Part of the reason for the success is that the neural network stages are deployed
sequentially. The base structure is performing general classification in that it
handles broad categories such as TCP, UDP, ICMP, etcetera. Once this is
accomplished, the architecture moves on to the specifics of each category. For
example, the UDP classifier moves on to DNS, DHCP, SSDP, etc.

Another aspect of the tuning for the model is that observations are made
on actual network traffic in order to determine the types commonly seen. For
example, there are many ICMP messages defined by RFC 792 yet only a subset
of these are actually seen on a contemporary network.

9.4 Datasets and Dataset Recursion

Current datasets have been either captured or constructed of traffic seen on
the local test-bed. The available traffic has been divided into training, valida-
tion and test sets for each of the general categories. Much work has gone into
ensuring that the datasets are also balanced. That is, having the same num-
ber of samples per class. The various models can be pre-trained or trained at
run-time using the combined training dataset which currently contains 85000
samples. These samples are also used to train the TCP and UDP models. A
complete discussion on the approach used with the data and datasets can be
found in Chapter 3.

Once the base classification is made, the packet numbers are recovered and
the test datasets are restructured into general category datasets. This empha-
sizes the need for highly accurate classification early in the process. Thus, a
general dataset made up of a variety of traffic types would then be split into
smaller TCP, UDP, ICMP, etc. datasets. Subsequently these would be run
against the associated trained models. Each time this occurs, the sample with
its packet number and timestamp are paired.

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 103

9.5 Feature Selection

This neural network ensemble processes raw packets. The models take in
complete packet headers (Ethernet, IP, ICMP, TCP, UDP, etc.) plus some
portion of the packet payload depending on the number of features desired.
For this work, 196 features or hexadecimal characters (98 bytes) are used in the
CNNs. The MLPs vary in the number of features used as input. This number is
used to satisfy the operational network structure and accuracy goals. Packets
smaller than the desired features are padded. The timestamps and packet
numbers are also stored for use in particular applications.

9.6 Operation

Other than the restructuring of datasets based on class, the operation of the
NN models is exactly as described in Chapter 4. The first stage of the system
architecture is depicted in Figure 9.1.

Figure 9.1: Ensemble First Stage

Packets are preprocessed in the general wireshark parser and then each of the
models is trained using their own tuned parameters. Currently the training
occurs sequentially but this can be done in parallel using multiple GPUs. After

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 104

each is trained, the results are stored and then these results are reviewed by
the recommender function. As mentioned earlier, should a model score 100%
accuracy, it is immediately used for general training. If this is not the case,
majority voting is completed on each packet for the final determination. Be-
cause of the reduced number of classes (10) now used in general classification,
majority voting is not usually necessary.

The structure of each MLP neural network is similar though they vary hid-
den nodes and batch size. CNNs operate in a slightly different fashion and so
their current difference is simply the optimizer in use with CNN model 1 using
Adam and CNN model 2 using Adamax.

Once the recommender function is complete, the general classes of packet can
now be run against the specific types of packet for that class. The TCP clas-
sifier will further divide the packets into port 80, 8080 and 443 traffic. In ad-
dition, the UDP classifier will label (DNS, DHCP, etc.) the associated classes.
The architecture also attempts to reuse much of the code and so each of these
sections runs the particular datasets through the same set of neural networks.
This portion of the architecture is shown in Figure 9.2.

Figure 9.2: Ensemble First Stage

As can be seen, the architecture is modular and can be expanded to include

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 105

the other general categories of traffic.

9.7 Applications

Neural networks have been shown to be accurate classifiers of communication
traffic. In addition, they are fast when trained and can take a variety of data
sources as input without the need for additional software. Another advantage
of the system as constructed is that it does not require controlling either of
the end points - the traffic is from a bi-directional capture source. However,
packet classification, while a valuable contribution, is not the only goal of this
work. A important facet was to determine the applications of the architecture
beyond accurate labeling of individual packets.

In Chapter 7 a similar idea was explored to help combat a real and preset threat
for all communication networks. In Chapter 8, packets are converted to images
with the goal of not only improving performance of the system but identifying
patterns within the data stream. In the next section another application will
be explored: Mean Opinion Score prediction for Real Time Transport Protocol
(RTP) traffic used in voice connections. This is subclass within UDP and the
system has been expanded to address Voice over IP behavior.

9.7.1 Voice over IP

Voice over IP (VoIP) is a critical part of the infrastructure for many organiza-
tions. Voice over IP packetizes voice traffic into Real Time Transport Protocol
(RTP) streams. A signaling protocol such as the Session Initiation Protocol
(SIP) determines the connection properties and the port numbers to be used
by RTP.

Close attention is paid to the performance of the VoIP system. Most no-
tably the latency, packet loss and jitter are measured as these directly impact
user experience. User experience is measured using the Mean Opinion Score
or MOS.

Within the proposed system, RTP is one of the classes identified. Since RTP
is encapsulated in UDP, when the UDP packets are removed from the general
test datasets, RTP further split off for processing. The RTP timestamps can
be used to describe the relationships between packets and provide a measure

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 106

of performance.

9.8 Mean Opinion Score Predictor

Mean Opinion Score (MOS) is a quality evaluation given to voice circuits. The
values range from 1-5 with higher numbers indicating better quality. As the
name suggests, MOS is often a reflection of perceived call quality from the user
perspective. With the advent of Voice over IP (VoIP), voice is packetized and
these each packets have their own latency and jitter values. These values can
be used to provide a calculated MOS rather than rely on feedback from the
user. This MOS can then be used to inform the network operator of possible
problem areas so that manual or automatic action can be taken.

The traditional telephony E-model calculation for MOS can be found in [8]
and is actually derived from the calculation of the transmission rating factor
R. This calculation is shown here.

EffectiveLatency = (AverageLatency + Jitter * 2 + 10)

if EffectiveLatency < 160 then:
R = 93.2 - (EffectiveLatency / 40)

else
R = 93.2 - (EffectiveLatency - 120) / 10

R = R - (PacketLoss * 2.5)

if R <= 0:
MOS=1

if R > 0 and R <= 100:
MOS = 1 + (0.035) * R + (.000007) * R * (R-60) * (100-R)

if R > 100:
MOS=4.5

Since Ethernet transmission does not have as many of the traditional im-
pairments seen on telephone lines (example: poor signal to noise ratio), the
calculation of R is typically based on latency, packet loss and jitter values.
Average latency and jitter are based an understanding of arrival time and the
associated delays. This means that the calculation must have knowledge of the

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 107

source and destination transmission times.

The determination of packet loss is typically based on TCP timers at one
of the endpoints. Should TCP segments arrive out of order or delayed be-
yond the timer threshold, the packet is assumed lost. Latency is a measure
of delay but again, typically measured at an endpoint. Jitter is variation in
expected arrival times and can result in unpredictable performance. Jitter is
typically calculated based on the formulas presented in RFC 3550 RTP: A
Transport Protocol for Real-Time Applications [60] which takes into account
the differences in packet arrival time and the RTP timestamps:

jitter += (1./16.) * (d - jitter)

Where d is the combined time differences and the new jitter value is based in
part on the previous jitter value. Typical target latency, packet loss and jitter
values for a VoIP system are 150ms one way, 1% and 5ms respectively.

In this system, the determination of latency, packet loss and jitter values is
challenging because it does not have access to the endpoints. Nor does the
architecture inject measurement packets. Recall that the packet datasets are
captures of bi-directional traffic flowing past a particular point. The goal at
this point was to determine whether MOS might be predicted even with these
limitations. Thus, the calculations are modified. Once the RTP packets have
been separated from the UDP class, the time deltas between packets in the
same stream can be calculated in order to get an understanding transmission
performance and delay. In the same way a simple moving average of the delays
can be calculated.

The ground truth is established using a jitter calculation based on RFC 3550
and an evaluation of the inter-packet delays for a particular RTP data stream.
Currently packet loss is not included although increased packet delays that
may result from packet loss are.

Since MOS is an outcome or calculation, it can be thought of as another ob-
jective function to be approximated by a neural network. Thus, a new model
can be created that is a predictor of MOS. A training set of packet traffic with
varying levels of delay was created. Once an MOS model is trained, the RTP
streams can be run through the MOS predictor. This portion of the architec-
ture is shown in Figure 9.3.

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 108

Figure 9.3: MOS trainer and predictor

The MOS model is a MLP neural network that takes as input the packet
transmission delta times, jitter and a simple moving average. The output of
the MOS MLP model are 4 possible MOS values ranging from 1.0 - 4.0.

For accuracy, the output from the MOS calculation is compared with the re-
sult from the model. In this way, the MOS behavior of voice traffic can be
predicted from packet streams heading in either direction. This result might
be input into a software switch or router in order to modify a throughput or
queuing configuration.

9.9 Results

As discussed earlier in this chapter, the stages of the architecture are sequen-
tial with the general classification running first. It is critical to downstream
stages that this first step is accurate. The recommender compares the results
from the four models and either selects a model with 100% accuracy or votes
on each sample based on the classification from the models. Typically one or

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 109

more of the models will have a perfect result. An example of the general clas-
sifier output after 1000 iterations is shown in Table 9.1. Once this is complete,

Table 9.1: General Classifier Stage
Model Accuracy Count Correct
CNN 1 .99934 90000 89941
CNN 2 .99953 90000 89958
MLP 1 1.0 90000 90000
MLP 2 .99994 90000 89995
Average .99971 90000 89973.5

the datasets are run through the trained model starting with the validation
set. During the run shown in Table 9.1, the validation set accuracy was .99689.

Currently there are eight datasets used int the evaluation of this particular
model. Dataset 0 is the trainer, 1 is the validation set and the rest are test
datasets. Datasets 7 and 8 are comprised of RTP traffic only. As an example
of the MOS model operation, the processing of these datasets will be followed
through the architecture stages. Table 9.2 lists the accuracy for each dataset
after the general recommender has run. An examination of the class break-

Table 9.2: Dataset Accuracies
Datset Accuracy Count Correct
0 1.0 90000 90000
1 .99689 9000 8972
2 .99426 100000 99426
3 .99246 25847 25652
4 .99602 28145 28033
5 .98666 24354 24029
6 .98995 18610 18423
7 1.0 3349 3349
8 1.0 9459 9459

down also aids in following through to the next stage. A breakdown of the
initial classes along with the behavior of several datasets is shown in Table 3.2.
This set of examples includes the training set (0), general test sets (4 & 5) and

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 110

datasets 7 & 8 are UDP/RTP only.

Table 9.3: Datasets and Classes

Class Dataset 0 Dataset 4 Dataset5 Dataset 7 Dataset 8
ARP 5000 200 0 0 0
ICMP Echo Req 5000 15 0 0 0
ICMP Echo Reply 5000 15 0 0 0
Loopback 5000 0 2907 0 0
Spanning Tree 5000 1050 14534 0 0
Cisco Discovery 5000 32 484 0 0
IGMP 5000 199 2356 0 0
TCP 15000 25542 0 0 0
UDP 40000 1091 0 3349 9459
Total 90000 28145 24354 3349 9459

The important objectives at this point are the separation of the UDP pack-
ets, successful identification of the RTP packets from the new UDP datasets,
separation of the RTP packets into individual streams and finally the MOS
analysis and prediction. The UDP MLP models are now trained on a UDP
specific dataset pulled from the original general trainer. The UDP accuracies
for the same 1000 iterations are shown in Table 9.4.
As can be seen, the behavior of the datasets can vary. Newer datasets were

Table 9.4: Dataset UDP Accuracies
Dataset Accuracy Count After first stage Correct
0 1.0 40000 40000 40000
1 .98717 4000 3974 3923
2 .83096 3169 2597 2158
3 .88075 283 478 421
4 .9002 1091 1012 911
5 .99653 4073 3748 3735
6 .94606 1522 1483 1403
7 1.0 3349 3349 3349
8 1.0 9459 9459 9459

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 111

added without a complete update to the working code. The current work is to
apply the combined models to all of the datasets which will improve accuracy
and stability of the system. However, for the purposes of this chapter, the high
RTP recognition rates are sufficient to demonstrate architecture operation.

As processing continues, the UDP classes are identified. This includes the
RTP streams. An example of the output is shown in Table 9.5. The RTP

Table 9.5: UDP classifier output
Class Dataset 0 Dataset 4 Dataset5 Dataset 7 Dataset 8
DNS 5000 733 868 0 0
DHCP 5000 3 67 0 0
SSDP 5000 330 3111 0 0
NBNS 5000 26 27 0 0
RTP 1 5000 0 0 0 4741
RTP 2 5000 0 0 0 4718
RTP 3 5000 0 0 1676 0
RTP 4 5000 0 0 1673 0

classes identify the voice traffic streams. While there is some variation in UDP
class accuracy, the RTP streams are readily recognized. The MOS model is
trained on another training set build from simple timestamps that vary over a
range to provide the different classes. This introduces variation in the times-
tamps and time deltas for traffic in the dataset.

The ground truth for the MOS model is established via the calculation shown
earlier in this chapter. The model is trained on the values used as input to the
algorithm. After the test datasets (RTP pulled from UDP) are run, they are
compared to the ground truth calculations for accuracy. Table 9.6 depicts the
values from the datasets that contained the four RTP classes. This includes
the training and validation sets as a check.

These results show that the model can be trained to recognize MOS score from
data patterns based primarily on the timestamps from the RTP packets. The
difference in this part of the architecture is that there is a single MLP model
that is trained. This is because an image cannot be created from the low umber
of features used for MOS prediction which eliminates the use of CNNs.

CHAPTER 9. ENSEMBLES AND THE MEAN OPINION SCORE 112

Table 9.6: MOS Accuracy
Class Dataset 0 Dataset 1 Dataset 7 Dataset 8
RTP 1 .998 .98 - .9979
RTP 2 .998 .98 - .9978
RTP 3 .998 .98 .994 -
RTP 4 .998 .98 .994 -

9.10 Discussion

An important point through this work is that access to contemporary data
that includes raw packets is important to the success of these models. How-
ever, the MOS predictor is one of the few places where our current datasets
are limited. This is true for the number of classes and streams having a variety
of MOS profiles. Currently, only one of the RTP streams has a lower MOS
score which raises the concern of over-fitting and an inability to generalize well.

Thus there are three facets which will improve this section further and are
part of the future work plan: access to a greater amount of data, further
tuning of the models and the application of the ensemble to all datasets.

9.11 Conclusion

This chapter had two main objectives; to create an ensemble that might be
used to increase accuracy and to utilize that increase in accuracy for a particu-
lar application. To this end an ensemble of two MLP NNs and two CNNs was
built that used majority voting in order to determine the proper packet classi-
fication. This resulted in an increase in accuracy with some datasets reaching
100%.

Since packetized voice is a part of most major networks, and quality of service
paramount, the application targeted was an MOS predictor. This required
high recognition rates in the early architecture stages so that the RTP streams
could be identified from the UDP traffic. Additionally, the timestamps were
retained so that a ground truth could be calculated for each stream. The
trained MOS model utilized the timestamps as features and subsequently was
able to successfully predict the MOS behavior of the captured streams.

Chapter 10

Conclusion

The projects, methodologies and experiments described in this thesis have fo-
cused on the application of neural networks to contemporary communication
problems. Previously the lack of processing power and memory made this
combination difficult. Upgraded GPUs allowed us to deploy neural networks
in both off-line and real time modes.

At the center of each communication traffic challenge is the need to accu-
rately process and classify network packets. The first paper resulting from
this work [29] demonstrated that multi-layer perceptron neural networks (MLP
NN) could successfully classify (above 99% accuracy) a variety of contemporary
traffic types. This paper also sought to provide a structure and methodology
that could be used by other researchers. Greater detail regarding this work
and general neural networks can be found in Chapters 4 and 5.

Utilizing neural networks in this way is not without its own challenges. Incon-
sistent behavior and misclassification are regularly appearing issues and there
is the constant goal of reducing training time while increasing accuracy. It
is common to hear the design of neural networks being called an "art form"
because little is published regarding the principles behind their construction.
These ideas led to the paper [28] which examined a variety of optimization
techniques that might be used to improve performance. An investigation into
wider and deeper networks was also completed which showed extremely effec-
tive architectures that might be utilized.

Another extremely important idea was also pursued: that of balanced datasets.

113

CHAPTER 10. CONCLUSION 114

It is not usual to see researchers seeking more data over good data. Variations
in our accuracy led to the discovery that unbalanced datasets were the culprit.
It is far more important to ensure that the datasets are properly constructed
and curated. Each class must have the same number of samples in the training
and validation sets in order to achieve greater recognition rates and consis-
tency. The Chapter 6 provides the full explanation and experimental results.

Successful packet traffic classification is a very important goal but a fair as-
sessment would wonder about actual applications. Security problems plaque
communication networks and so the MLPs were applied to port scans. In [30]
the methodology used in addressing port scans is fully described but in this
work the neural networks are deployed sequentially. In the first stage, a general
classification is completed and this is followed by TCP segment identification.
This second stage has a TCP specific training dataset and is followed by a port
scan detector. Like the previous work, this structure was able to successfully
detect a variety of port scans with an accuracy above 99%. Chapter 7 describes
the process and operation of these sequential neural networks.

Neural networks are beginning to receive greater attention but most of the
contemporary work utilizes variations in Convolutional Neural Networks or
CNNs. Thus, a novel approach to classifying packets was considered: con-
verting packets to images in order to leverage recent advancements in image
processing. Further, the idea of collecting images into a larger mosaic that
might reveal network patterns is explored. It was found that like the MLPs,
CNNs could achieve that high level of recognition and that more comprehen-
sive patterns might be identified as well. The paper [31] and Chapter 8 discuss
and define this novel approach.

Ensembles have a variety of uses for packet traffic. Chapter 9 is an investiga-
tion into MLP and CNN ensembles that can further increase accuracy, reduce
complexity at various stages of the architecture and tackle another problem of
communication networks: quality of service prediction. This chapter borrows
heavily from the port scan detector but then expands it to provide a general
architecture that can be used for almost any application. This is because each
general class of traffic (ICMP, TCP, UDP, etc.) can be given its own ensem-
ble. The chapter follows Real Time Transport Protocol (RTP) traffic from
the general classifier, through the UDP specific stage until finally we arrive
at the RTP packets themselves. The timestamps are recovered and a highly

CHAPTER 10. CONCLUSION 115

accurate prediction of the Mean Opinion Score (MOS) is first calculated and
the predicted. This approach shows much promise and will form the basis of
almost all future work.

Bibliography

[1] Norbert Ádám, Branislav Madoš, Anton Baláž, and Tomáš Pavlik. Ar-
tificial neural network based ids. In 2017 IEEE 15th International Sym-
posium on Applied Machine Intelligence and Informatics (SAMI), pages
000159–000164. IEEE, 2017.

[2] Omar Al-Jarrah and Ahmad Arafat. Network intrusion detection system
using neural network classification of attack behavior. Journal of Advances
in Information Technology Vol, 6(1), 2015.

[3] Leopoldo Angrisani, Domenico Capriglione, Luigi Ferrigno, and Gian-
franco Miele. Measurement of the ip packet delay variation for a reli-
able estimation of the mean opinion score in voip services. In 2016 IEEE
International Instrumentation and Measurement Technology Conference
Proceedings, pages 1–6. IEEE, 2016.

[4] Tom Auld, Andrew W Moore, and Stephen F Gull. Bayesian neural
networks for internet traffic classification. IEEE Transactions on neural
networks, 18(1):223–239, 2007.

[5] Hitesh Ballani, Paolo Costa, Christos Gkantsidis, Matthew P Grosvenor,
Thomas Karagiannis, Lazaros Koromilas, and Greg O’Shea. Enabling end-
host network functions. In ACM SIGCOMM Computer Communication
Review, volume 45, pages 493–507. ACM, 2015.

[6] Andrew R Barron. Approximation and estimation bounds for artificial
neural networks. Machine learning, 14(1):115–133, 1994.

[7] Roberto Battiti and Francesco Masulli. Bfgs optimization for faster and
automated supervised learning. In International neural network confer-
ence, pages 757–760. Springer, 1990.

116

BIBLIOGRAPHY 117

[8] Jan A Bergstra and CA Middelburg. Itu-t recommendation g. 107: The
e-model, a computational model for use in transmission planning. 2003.

[9] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods
for large-scale machine learning. SIAM Review, 60(2):223–311, 2018.

[10] Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic
study of the class imbalance problem in convolutional neural networks.
Neural Networks, 106:249–259, 2018.

[11] Sung-Bae Cho and Jin H Kim. Combining multiple neural networks by
fuzzy integral for robust classification. IEEE Transactions on Systems,
Man, and Cybernetics, 25(2):380–384, 1995.

[12] Benoit Claise. Cisco systems netflow services export version 9. 2004.

[13] David D. Clark and Mike Wittie. Caida/ucsd.

[14] Carlos García Cordero, Sascha Hauke, Max Mühlhäuser, and Mathias Fis-
cher. Analyzing flow-based anomaly intrusion detection using replicator
neural networks. In 2016 14th Annual Conference on Privacy, Security
and Trust (PST), pages 317–324. IEEE, 2016.

[15] Gideon Creech and Jiankun Hu. Generation of a new ids test dataset:
Time to retire the kdd collection. In Wireless Communications and Net-
working Conference (WCNC), 2013 IEEE, pages 4487–4492. IEEE, 2013.

[16] Mehiar Dabbagh, Ali J Ghandour, Kassem Fawaz, Wassim El Hajj, and
Hazem Hajj. Slow port scanning detection. In 2011 7th International
Conference on Information Assurance and Security (IAS), pages 228–233.
IEEE, 2011.

[17] Li Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine,
29(6):141–142, 2012.

[18] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011.

[19] Cristian Estan, Ken Keys, David Moore, and George Varghese. Building
a better netflow. ACM SIGCOMM Computer Communication Review,
34(4):245–256, 2004.

BIBLIOGRAPHY 118

[20] Kieran Flanagan, Enda Fallon, Paul Jacob, Abir Awad, and Paul Con-
nolly. 2d2n: A dynamic degenerative neural network for classification of
images of live network data. In 2019 16th IEEE Annual Consumer Com-
munications & Networking Conference (CCNC), pages 1–7. IEEE, 2019.

[21] William A Gardner. Learning characteristics of stochastic-gradient-
descent algorithms: A general study, analysis, and critique. Signal pro-
cessing, 6(2):113–133, 1984.

[22] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[23] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H Witten. The weka data mining software: an up-
date. ACM SIGKDD explorations newsletter, 11(1):10–18, 2009.

[24] Stephen José Hanson. A stochastic version of the delta rule. Physica D:
Nonlinear Phenomena, 42(1-3):265–272, 1990.

[25] Md Enamul Haque and Talal M Alkharobi. Adaptive hybrid model for
network intrusion detection and comparison among machine learning al-
gorithms. International Journal of Machine Learning and Computing,
5(1):17, 2015.

[26] Bruce Hartpence. The rit sdn testbed and geni. RIT Technical Report,
2015.

[27] Bruce Hartpence and Andres Kwasinski. Performance evaluation of net-
works with physical and virtual links. In Global Information Infrastructure
and Networking Symposium (GIIS), 2015, pages 1–6. IEEE, 2015.

[28] Bruce Hartpence and Andres Kwasinski. Considering the blackbox: An in-
vestigation of optimization techniques with completely balanced datasets
of packet traffic. In 2019 IEEE International Conference on Big Data (Big
Data), pages 4987–4996. IEEE, 2019.

[29] Bruce Hartpence and Andres Kwasinski. Fast internet packet and flow
classification based on artificial neural networks. IEEE Trans. Southeast-
con, 2019.

BIBLIOGRAPHY 119

[30] Bruce Hartpence and Andres Kwasinski. Combating tcp port scan at-
tacks using sequential neural networks. In 2020 International Conference
on Computing, Networking and Communications (ICNC), pages 256–260.
IEEE, 2020.

[31] Bruce Hartpence and Andres Kwasinski. A convolutional neural network
approach to improving network visibility. In 2020 29th Wireless and Op-
tical Communications Conference (WOCC), pages 1–6. IEEE, 2020.

[32] L Todd Heberlein, Gihan V Dias, Karl N Levitt, Biswanath Mukherjee,
JeffWood, and David Wolber. A network security monitor. In Proceedings.
1990 IEEE Computer Society Symposium on Research in Security and
Privacy, pages 296–304. IEEE, 1990.

[33] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks
for machine learning lecture 6a overview of mini-batch gradient descent.
Cited on, 14, 2012.

[34] Geoffrey Holmes, Andrew Donkin, and Ian H Witten. Weka: A machine
learning workbench. In Intelligent Information Systems, 1994. Proceedings
of the 1994 Second Australian and New Zealand Conference on, pages 357–
361. IEEE, 1994.

[35] H Günes Kayacik, A Nur Zincir-Heywood, and Malcolm I Heywood. Se-
lecting features for intrusion detection: A feature relevance analysis on
kdd 99 intrusion detection datasets. In Proceedings of the third annual
conference on privacy, security and trust, 2005.

[36] Minsu Kim and Alagan Anpalagan. Tor traffic classification from raw
packet header using convolutional neural network. In 2018 1st IEEE In-
ternational Conference on Knowledge Innovation and Invention (ICKII),
pages 187–190. IEEE, 2018.

[37] Seong Soo Kim and AL Narasimha Reddy. A study of analyzing network
traffic as images in real-time. In Proceedings IEEE 24th Annual Joint Con-
ference of the IEEE Computer and Communications Societies., volume 3,
pages 2056–2067. IEEE, 2005.

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

BIBLIOGRAPHY 120

[39] Wei Li, Kaysar Abdin, Robert Dann, and Andrew Moore. Approaching
real-time network traffic classification. Technical report, 2013.

[40] Hyun-Kyo Lim, Ju-Bong Kim, Joo-Seong Heo, Kwihoon Kim, Yong-Geun
Hong, and Youn-Hee Han. Packet-based network traffic classification
using deep learning. In 2019 International Conference on Artificial In-
telligence in Information and Communication (ICAIIC), pages 046–051.
IEEE, 2019.

[41] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and
Jaime Lloret. Network traffic classifier with convolutional and recurrent
neural networks for internet of things. IEEE Access, 5:18042–18050, 2017.

[42] Steve McCann. Tcpdump. 2001.

[43] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros,
Eduard Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer, Sharon
Barkai, Mike J Hibbett, et al. Knowledge-defined networking. ACM SIG-
COMM Computer Communication Review, 47(3):2–10, 2017.

[44] Ang Kun Joo Michael, Emma Valla, Natinael Solomon Neggatu, and An-
drew W Moore. Network traffic classification via neural networks. Tech-
nical report, University of Cambridge, Computer Laboratory, 2017.

[45] Andrew Moore, Denis Zuev, and Michael Crogan. Discriminators for use
in flow-based classification. Technical report, 2013.

[46] Alexander I Nesterov. On angular momentum of gravitational radiation.
Physics Letters A, 250(1-3):55–61, 1998.

[47] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark & Ethereal
network protocol analyzer toolkit. Elsevier, 2006.

[48] Joseph Orero, Nelson Ochieng, Mwangi Waweru, and Ateya Ismail. De-
tecting scanning computer worms using machine learning and darkspace
network traffic. 2017.

[49] Satyendra Kumar Patel and Abhilash Sonker. Rule-based network intru-
sion detection system for port scanning with efficient port scan detection
rules using snort. International Journal of Future Generation Communi-
cation and Networking, 9(6):339–350, 2016.

BIBLIOGRAPHY 121

[50] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. The design and implementation of open vswitch. In NSDI, vol-
ume 15, pages 117–130, 2015.

[51] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic ap-
proximation by averaging. SIAM Journal on Control and Optimization,
30(4):838–855, 1992.

[52] Soujanya Poria, Haiyun Peng, Amir Hussain, Newton Howard, and Erik
Cambria. Ensemble application of convolutional neural networks and mul-
tiple kernel learning for multimodal sentiment analysis. Neurocomputing,
261:217–230, 2017.

[53] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of
adam and beyond. arXiv preprint arXiv:1904.09237, 2019.

[54] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016.

[55] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
Advances in neural information processing systems, pages 91–99, 2015.

[56] Martin Riedmiller and Heinrich Braun. A direct adaptive method for
faster backpropagation learning: The rprop algorithm. In Proceedings of
the IEEE international conference on neural networks, volume 1993, pages
586–591. San Francisco, 1993.

[57] Markus Ring, Dieter Landes, and Andreas Hotho. Detection of slow port
scans in flow-based network traffic. PloS one, 13(9):e0204507, 2018.

[58] Markus Ring, Sarah Wunderlich, Dominik Grüdl, Dieter Landes, and An-
dreas Hotho. Flow-based benchmark data sets for intrusion detection.
In Proceedings of the 16th European Conference on Cyber Warfare and
Security (ECCWS), pages 361–369. ACPI, 2017.

[59] David Rolnick and Max Tegmark. The power of deeper networks for
expressing natural functions. arXiv preprint arXiv:1705.05502, 2017.

BIBLIOGRAPHY 122

[60] Henning Schulzrinne, Steven Casner, R Frederick, and Van Jacobson.
Rfc3550: Rtp: A transport protocol for real-time applications, 2003.

[61] Guo-lin Shao, Xing-shu Chen, Xue-yuan Yin, and Xiao-ming Ye. A fuzzy
detection approach toward different speed port scan attacks based on
dempster–shafer evidence theory. Security and Communication Networks,
9(15):2627–2640, 2016.

[62] Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi Shi. A deep
learning approach to network intrusion detection. IEEE Transactions on
Emerging Topics in Computational Intelligence, 2(1):41–50, 2018.

[63] Edgard Silva, Leandro Galvão, Edjair Mota, and Yuzo Iano. Mean opinion
score measurements based on e-model during a voip call. In The Eleventh
Advanced International Conference on Telecommunications, 2015.

[64] Avinash Sridharan, Tao Ye, and Supratik Bhattacharyya. Connectionless
port scan detection on the backbone. In 2006 IEEE International Perfor-
mance Computing and Communications Conference, pages 10–pp. IEEE,
2006.

[65] Stuart Staniford, James A Hoagland, and Joseph M McAlerney. Practical
automated detection of stealthy portscans. Journal of Computer Security,
10(1-2):105–136, 2002.

[66] Nakia Stringfield, Russ White, and Stacia McKee. Cisco Express For-
warding. Pearson Education, 2007.

[67] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On
the importance of initialization and momentum in deep learning. In In-
ternational conference on machine learning, pages 1139–1147, 2013.

[68] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

[69] T Tang, Syed Ali Raza Zaidi, Des McLernon, Lotfi Mhamdi, and Mounir
Ghogho. Deep recurrent neural network for intrusion detection in sdn-
based networks. In 2018 IEEE International Conference on Network Soft-
warization (NetSoft 2018). IEEE, 2018.

BIBLIOGRAPHY 123

[70] Gavin Watson. A comparison of header and deep packet features when
detecting network intrusions. Technical report, 2018.

[71] Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Emre Gursoy, Stacey
Truex, and Yanzhao Wu. Cross-layer strategic ensemble defense against
adversarial examples. In 2020 International Conference on Computing,
Networking and Communications (ICNC), pages 456–460. IEEE, 2020.

[72] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component anal-
ysis. Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[73] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[74] Zhiding Yu and Cha Zhang. Image based static facial expression recog-
nition with multiple deep network learning. In Proceedings of the 2015
ACM on International Conference on Multimodal Interaction, pages 435–
442. ACM, 2015.

[75] Shahrzad Zargari and Dave Voorhis. Feature selection in the corrected
kdd-dataset. In Emerging Intelligent Data and Web Technologies (EI-
DWT), 2012 Third International Conference on, pages 174–180. IEEE,
2012.

[76] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[77] Yu Zheng et al. Methodologies for cross-domain data fusion: An overview.
IEEE Trans. Big Data, 1(1):16–34, 2015.

[78] Michele Zorzi, Andrea Zanella, Alberto Testolin, Michele De Filippo
De Grazia, and Marco Zorzi. Cognition-based networks: A new perspec-
tive on network optimization using learning and distributed intelligence.
IEEE Access, 3:1512–1530, 2015.

	Neural Network Architectures and Ensembles for Packet Classification: Addressing Visibility, Security and Quality of Service Challenges in Communication Networks
	Recommended Citation

	tmp.1596640233.pdf.XDtsL

