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Abstract
Self-Admitted Technical Debt (SATD) is a metaphorical concept which describes the

self-documented contribution of technical debt to a software project in the manner of

source-code comments. SATD can linger in projects and degrade source-code quality,

but its palpable visibility draws a peculiar sort of attention from developers. There is

a need to understand the significance of engineering SATD within a software project,

as these debts may have lurking repercussions.

While the oft-performed action of refactoring may work against a generalized

volume of source code degradation, there exists only slight evidence suggesting that

the act of refactoring has a distinct impact on SATD. In fact, refactoring is better

understood to convalesce the measurable quality of source code which may very well

remain unimpressed by the preponderance of SATD instances. In observation of the

cross-section of these two concepts, it would seem logical to presume some magnitude

of correlation between refactorings and SATD removals. In this thesis, we will address

the extent of such concurrence, while also seeking to develop a dependable tool to

promote the empirical studies of SATD. Using this tool, we mined data from 5 open

source Java projects, from which associations between SATD removals and refactoring

actions were drawn to show that developers tend to refactor SATD-containing code

differently than they do code elsewhere in their projects. We also concluded that

design-related SATD is more likely to entail a refactoring than non-design SATD.
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Chapter 1

Introduction

Technical Debt is a metaphorical concept which has been used since 1992 to describe

the trade-off between quality and schedule of software projects [8]. This metaphor is

used to describe the intention of developers to contribute a substandard or incomplete

implementation to a project with the intention of making later contributions to ”pay

back” the debt of quality [18]. Much like with monetary lenders, software project

owners need to effectively manage their technical debts to assure that they are not

left with low-quality projects that are expensive later on during project maintenance.

The tech debt metaphor is far reaching within most development teams, as it pro-

vides an easily conceivable problem to both technically- and non-technically minded

individuals.

As the idea of technical debt has grown, a need to break technical debt down

into categories has provided motivation for several studies [2, 16]. These studies

classify technical debt in how it impacts difference aspects of the project such as its

design, implementation, or requirements. The common finding among these studies

determines that technical debt can exist in all areas of a project and can be contributed

during any phase of development. This finding goes far to describe the far-reaching

implication that technical debt has on the overall quality of a project.

The modern importance of technical debt has assembled the need for a myriad of

measurement and management solutions for all project types. Measuring the amount

of technical debt in a project is a hefty task, with a plethora automated and manual

solutions having shown to be effective in the past [17, 21]. It is far beyond the scope
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of this thesis to identify and compare these methods, as this work instead seeks to

improve our understandings of ’why’ technical debt is contributed, and ’how’ it is

addressed.

Understanding how technical debt is addressed in practice can be accomplished

by observing refactorings. Refactoring is an important concept to align with the

idea of technical debt, as it metaphorically appears within a project as an attempt

to repay its technical debt. While refactoring may not be a perfect fit into the

metaphor, as the context of the refactoring determines whether or not it is effective

at reducing the overall balance of the technical debt, refactoring serves as the base-line

standard for identifying actions that can improve project quality without impacting

the functionality of the project.

This thesis will observe several large open-source projects to identify instances of

refactoring and a subsection of technical debt, Self-Admitted Technical Debt (SATD),

to determine what impacts refactoring may have on technical debt and visa versa.

This is done with a goal of achieving a better understanding of the effectiveness of

contributing SATD to a project, and to determine the qualities of the most effective

instances of SATD.

The paper is structured as follows. Chapter 2 will discuss the background knowl-

edge necessary to understand these studies. Chapter 3 will state the two objectives

of this research project and detail their motivations. Chapter 4 will discuss similar

studies and studies from which understandings will be utilized within this research.

Chapter 5 will lay out the methodology that will be used to draw conclusions. Chapter

6 will discuss the findings of the study as they relate to the three research questions.

Chapter 7 will identify any known threats to validity. Chapter 8 will conclude the

thesis, and identify any future work that can be done within this domain.
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Chapter 2

Background

This section will detail all necessary information on topics discussed in this thesis.

2.1 Self-Admitted Technical Debt (SATD)

Self-Admitted Technical Debt is a candid form of technical debt in which the contrib-

utor of the debt includes a self-admission in the form of additional documentation.

This admission is typically accompanied with a description of a known or potential

defect or a statement detailing what remaining work must be done. Well-known and

frequently used examples of SATD include comments beginning with TODO, FIXME,

BUG, XXX, or HACK [26]. SATD can also take other forms of more complex lan-

guage void of any of the previously mentioned keywords. Any comment detailing a

not-quite-right implementation present in the surrounding code can be classified as

SATD.

SATD was first classified as so by Potdar and Shihab in 2014 [26] as the intentional

documentation of the contribution of technical debt. Since then, SATD has gained

traction within technical-debt-studying community for serving as a quantifiable and

measurable way of identifying developer’s intentions when contributing technical debt

to a project. Prior to Potdar and Shihab, efforts to identify the motivations behind

technical debt had relied solely on commit messages and other commit metadata.

However, these data points were often too general to accurately extract any related

information on the tech debt instances contributed during the commit to the project.
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There are different types of technical debt as shown in an ontology proposed by

Alves et al. [2]. This ontology encompasses all areas of the software development

process and methodologies such as debt that impacts design, implementation, archi-

tecture, requirements, and process. Maldonado and Shihab translated to classifiers

for SATD in a 2015 study, where the classification were reduced to a more concrete

classification of design, requirement, defect, test, and documentation debt [9]. Impor-

tant for this thesis is the understanding of design-classified SATD, which are source

code comments that indicate a potential issue with the design of the surrounding

code. These SATD instances can detail misplaced code, a lack of abstraction, long

methods, poor implementation, workarounds, or temporary solutions [9]. A com-

mon theme among these instances is the portrayal of doubt or uncertainty which

offer some insight into the original motivations of contributing technical debt to the

overall design of the system.

Modern Integrated Development Environments (IDEs) have begun recognizing the

utility of SATD [29]. It is common for them to highlight comments containing the

aforementioned keywords, or for them to add SATD to a project when automatically

generating unimplemented stubbed functionality to be implemented manually at a

later time. Developers and IDEs both contribute SATD with the common assumption

that including a self-admission will make their technical debt easier to pay back, or

at least reduce the likelihood of it being forgotten. The effectiveness of this strategy

needs to be brought into question, as it may have significant impacts on development

practices. Understanding the implications of this assumption is vital to assure high-

quality performance in software development teams.

2.2 Detecting Removals With Edit Scripts

It has been shown that the primary dataset used by most SATD-related studies has

been plagued by issues of accurate comment removal detection [32]. However, the

issue of detecting accurate removals is not specific to the study of SATD. In Java,
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there are two primary ways of detecting source code changes: through differencing

abstract syntax trees (ASTs), or through mapping source code elements between two

versions of a file. GumTree is a well renowned tool for differencing ASTs, and is

shown to accomplish the task with high precision and accuracy [11]. Upon GumTree

exists a Java language specific implementation called IJM, which benefits from using

some Java-specific tokens when differencing ASTs [12]. However, some attempts to

increase differencing tool’s performance rely on a hybrid approach combining both

mapping and AST matching [20].

Unfortunately, all of the aforementioned techniques, which happen to exhaust the

list of well-regarded Java differencing tools, do not preserve source code comments in

their parsing process1. This is due to source code being removed as a pre-processing

step, which means there is no simple modification to any of these tools that would

allow them to be useful during this study. This explains why no accurate source

comment detection tools have been created to assist in the large-scale mining of

SATD instances. It also poses a serious threat to any potential tool’s accuracy that

hopes to detect and track SATD instances effectively within Java projects.

Since we will not be allowed the luxury of relying on a proven solution for de-

tecting removals, we must look elsewhere for a reliable means of detecting source

code changes. Software developers parse source code changes primarily using Edit

Scripts. An edit script details a algorithmic ”best guess” as to what a developer’s

intentions were when mutating a source file from one version to the other. These are

commonly displayed by green and red highlighted text as shown in Figure 2.1. Edit

scripts have inaccuracies [12], but always detail all changes between two versions of

a file exhaustively.

There are several algorithms that produce edit scripts. The Myers algorithm dates

back to 1986, and was widely regarded as the ”bread and butter” of differencing algo-

rithms [24]. The algorithm has been consistently used by Git as the default algorithm

1https://github.com/GumTreeDiff/gumtree/issues/39

https://github.com/GumTreeDiff/gumtree/issues/39
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Figure 2.1: Edit Script from the Apache Camel Project (Myers)

for displaying differences between source files [25]. The histogram differencing algo-

rithm serves as another important tool for differencing files as implicitly provided by

Git since Git 1.7.7 in 20112. The histogram algorithm is a modified version of Git’s

Patience algorithm, but offers increased speed3. When comparing the histogram algo-

rithm and the Myers algorithm, it was found that the histogram algorithm provided a

more accurate representation of developer’s intentions when manually classified [25].

2.3 Refactoring

Refactorings are widely regarded as being the blueprints for improving the quality

of source code, as refactoring operations are shown to yield direct improvements

to the projects when they are performed [27, 1, 13]. Refactorings have also been

shown to decrease the number of errors that result from the refactored code [30].

However, refactorings can have a negative impact on source code, as only proper

refactorings will have a positive impact on source quality [27]. Due to these important

2https://github.com/git/git/blob/77bd3ea9f54f1584147b594abc04c26ca516d987/
Documentation/RelNotes/1.7.7.txt#L68-L70

3https://marc.info/?l=git&m=133103975225142&w=2

https://github.com/git/git/blob/77bd3ea9f54f1584147b594abc04c26ca516d987/Documentation/RelNotes/1.7.7.txt#L68-L70
https://github.com/git/git/blob/77bd3ea9f54f1584147b594abc04c26ca516d987/Documentation/RelNotes/1.7.7.txt#L68-L70
https://marc.info/?l=git&m=133103975225142&w=2
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qualities, it makes sense that refactoring is an extremely important focus for the

software engineering community. As the practice of engineering software becomes

more and more efficient, so must the management of efficient and effective refactoring

methods.

Refactoring typically involves re-arranging source code elements such as attributes,

methods, or classes, or the renaming of source elements. Refactoring also commonly

includes the merging or splitting of code elements. Regardless of the operation, it is

done with the goal of making the source code more manageable for other developer

to understand. This understandability is shown to directly impact the rate in which

developers can make changes [22].

One of the most influential factors of a software project’s quality is its design. A

poorly designed software system is much more likely to have defects, and is also likely

to require more time to change [5, 3]. Software design quality has been effectively

represented by many easily obtainable quality metrics [6]; most of which refactorings

can have a positive impact upon [7].
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Chapter 3

Research Objectives

The objective of this thesis is twofold. The primary objective of this research is to

determine the extent of which the presence of SATD impacts software developers’

intent to refactor source code. This motivation stems from a need to understand

whether including a self-admission to tech debt impacts whether it is eventually paid

back.

The secondary objective of this thesis is to contribute a new tool for obtaining

larger-scale datasets of SATD instances.

3.1 Contributing a Mining Tool

It can be difficult to identify when source code elements disappear, as many ”disap-

pearances” can actually be instances where code elements move throughout a project.

This happens to be the case for the current primary dataset used to understand SATD

[32]. This thesis will seek to provide a means of automatically detecting these removals

correctly, as well as tracking removals to their associated additions. This tool will

provide large and rich datasets of SATD instances from throughout a project’s history

in the form of a large-scale empirical history for each project studied. This intends

to allow the study of SATD to progress much faster, and with more confident claims

than were previously attainable.
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3.2 Aligning SATD Removals & Refactorings

It would be a sensible hypothesis to determine that technical debt which includes

a self-documented explanation as to its existence would be more likely to receive a

refactoring than other areas of the project. This can be difficult to determine, as

there does not exist a perfect method of quantifying developer intent to perform a

legitimate removal of SATD instances. However, with better tracking of instances

that was previously available, a more reliable conclusion can be drawn about the

impact of refactorings on SATD removals.

This understanding can be achieved using two datasets: A dataset of SATD in-

stance removals, and a dataset of refactoring operations. By aligning the code el-

ements that are refactored with the areas in which SATD instances were removed,

an understanding of the frequency of these co-locations can be drawn. Then, any

abnormalities between this distribution refactoring distributions from other areas of

the software projects will determine if SATD instances entail any additional needs

for refactoring in practice.

There is also an opportunity to determine if design classified SATD may have

impacts on the refactor rates of SATD instances. As refactoring primarily addresses

design-quality concerns, it would make sense that design-classified SATD instances

would be more widely refactored than other SATD instances. This study will generate

a classification model based on a prior dataset of manually classified SATD instances

to use for classifying the SATD removal dataset.
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Chapter 4

Related Work

SATD is a subsection of technical debt that was only brought to term recently, in

2014 [26]. Since then, several important discoveries have been made. However, most,

if not all findings have stemmed from a very limited dataset of questionable com-

pleteness [32]. This section will discuss the works that have been done in relation to

data curation for SATD instances, as well as the studied impacts of refactorings on

technical debt (focusing mostly on SATD).

4.1 SATD Data Curation

The investigation of Self-Admitted Technical Debt began to gain traction in 2014 with

the study of Potdar and Shihab [26]. Initial approaches to classifying source comments

as SATD involved intensive manual efforts. Potdar and Shihab manually classified

101,762 Java code comments and generated a string matching heuristic based off of 62

commonly occurring comment patterns. This heuristic inspired Maldonado to apply

this classification to 10 projects in 2015[9], and then Bavota and Russo to expand

this classification to 159 projects in 2016[4].

Maldonado would later expand the classification approach to use Natural Lan-

guage Processing in 2017[10]. Despite the increased performance of classification

models, little work has been done to develop an empirical understanding of SATD in

Java projects, as only one empirical study has been conducted (by Maldonado[19])

which addressed 5 large open source projects. The quality of this dataset has been
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brought into question by Zampetti, who manually filtered and improved the dataset

in an effort to improve its quality [32]. While this filtered dataset is regarded to be

high quality, the filtering process removed a significant number of entries. Addition-

ally, there does not exist a means to expand its size or to curate data from other

projects.

In 2018, Huang et al. developed a new SATD classification model which improves

the F-1 score of classification over Maldonado et al. by 27.95% [10, 14]. This model

is built using a composite classifier which selects SATD classifications based on a

majority voting selector off of the top 10% most effective features extracted from

the manual classifications of Maldonado in 2015 [9]. This implies that it will pro-

duce project-independent classifications, which satisfies a significant requirement for

a classifier used in a large-scale mining tool.

There is now an opportunity to take advantage of this improved detection tool to

enhance research efforts with a highly accurate, large scale empirical history of SATD

instances in Java projects previously unavailable. This can be accomplished alongside

of fixing some of the data quality issues noted with Maldonado’s empirical study[19].

This part of this thesis will aim to package these improvements and model in a tool will

allow further efforts to expand past these 7 previously available software projects in

terms of size and quality. In addition to publication of this tool, an empirical history

of SATD instances in 790 open source software projects will be made available as

produced by the tool, SATDBailiff.

4.2 Aligning Refactorings and SATD Removals

There is currently only a single study which has observed this exact cross-section of

topics. Iammarino et al. first observed the impacts of refactorings on SATD removals

using data from the RMINER tool juxtaposed with the dataset from Maldonado’s

2017 empirical study [19] [15]. This was done with an objective of determining the

extent of co-occurrences in a simple sense, as this was the first study to pay attention
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to such an idea. Iammarino also observed the impacts of different types of refac-

torings on SATD removals. To perform their study, Iammarino er al. aligned the

commit hashes of the two datasets to determine whether a commit that contained a

refactoring would also contain a removal of an SATD instance, and visa versa. The

study concluded that between 11.45% (Apache Camel) and 59.85% (Apache Tom-

cat) of SATD instance removals co-occurred with a refactoring action during the

same commit. This is a large range, especially considering the study only observed

4 projects. Iammarino concluded that only within the Apache Camel project was

there a statistically significant difference between the refactorings centered around

SATD removals and the refactoring taking place within the remainder of the project.

In regards to the impacts different refactoring operations have on SATD instance

removals, Iammarino et al. found that there was a large variance between projects,

however the most impactful operations were the moving of source code operations

and attributes and extracting source code operations.

This preliminary study leaves much room for improvement. Specifically, the grain

in which SATD instance removals are observed can be significantly improved, as to

get a better distinction between inter-commit impacts of refactorings versus the real

location of SATD instance removals. The study also admits to statistical insignif-

icance due to data sample size, which can be remedied by using a larger dataset

provided by SATDBailiff. As with any study, increasing the fidelity and size of the

observed sample is likely to produce more conclusive findings.
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Chapter 5

Methodology

This thesis is separated into two distinct parts, the second of which relies on the first.

The first objective is do create a mining tool to offer a more complete picture of all

SATD instances available in a project. The second objective is to build upon the data

provided by this tool to acquire a more accurate and confident conclusion about the

impact of SATD on refactoring actions and visa versa. Also within the second object,

we will address whether design-classified SATD instances have any significant impact

on refactoring operations.

5.1 Mining Tool

The mining tool is built with the intention of obtaining the highest accuracy possible

for detecting SATD instances. This accuracy is defined by the tool’s ability to not

only track when instances are added to and removed from a project, but also in the

tool’s ability to detect when an instance is modified. In order to make sense of these

modifications, the tool must also track instances from the time they are added until

the time they are removed. The tool will join any related operations on a single

”SATD Instance Id” to show this relation. Figure 5.1 shows the relationship between

entities in the proposed solution, SATDBailiff.

The Eclipse JGit library1 3 is used to collect Java source files from local or

remote Git repositories. This library is also used to collect any commit metadata

1https://github.com/eclipse/jgit

https://github.com/eclipse/jgit
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Figure 5.1: SATDBailiff Flow

available, which is output alongside any associated SATD operations found during

mining. JGit is also used to generate edit scripts between different versions of a

project’s source code. These edit scripts detail which lines contain removals and

additions, and can be used by logic elsewhere to determine to what extent source

code comments are modified between commits. SATDBailiff is configured to use

both the Myers and Histogram differencing algorithm to generate these edit scripts.

The JavaParser library2 4 is used to extract source code comments from the

Java source files obtained by JGit 3 . The library is also used to extract comment

metadata such as the containing method and class, and line numbers. This metadata

is output alongside any associated SATD operations found during mining.

The SATD_Analyzer tool presented by Huang et al. [14] 5 is used for the bi-

nary classification of source comments as SATD. This state-of-the-art tool achieved

an average F-score of 0.737 during the classification of comments from 5 major open

source projects. The classification model works in a high-performance environment,

2https://github.com/javaparser/javaparser

https://github.com/javaparser/javaparser
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and will have a minimal impact on the runtime of SATDBailiff. Within SATDBailiff,

this classification interface was designed with a level of abstraction, and any future

higher-performance models can be used with SATDBailiff as well given minimal mod-

ifications.

The logic that bridges all of these tools together is located within the SATDBailiff

client 2 . The client begins by generating parent-child pairs for every single parent

commit found under a given head of the git repository. For the sake of simplicity,

commits with multiple parents (i.e. merge commits) are ignored. Then, for each of

those pairs, all source code differences (edit scripts) are calculated for each Java file.

Before execution, the algorithm to be used for generating these edit scripts can be

configured between the Myers algorithm and the histogram algorithm. All SATD

instances are recorded from each file impacted by a source code modification in the

parent commit, as well as the child commit. This is achieved by first recording all

comments in only the files impacted by changes between the commits. The set of com-

ments are cleaned by removing all commented-out source code, JavaDoc comments,

and license comments, following the precedence of similar studies [19, 9].

A mapping approach is taken to identify which SATD instances may have been

impacted by these changes. An SATD instance will map between two commits if

both commits contain the same comment, under the same method signature (or lack

thereof), and the same containing class name (or lack thereof). SATD instances that

share all of those identification properties (ex. two identical SATD comments in the

same method), a number is assigned based on the order they occur. This step is

taken to avoid issues presented by multiple identical SATD comments located within

the same method. It is important to understand that SATDBailiff does not track the

line-number-location of SATD instances during commits in which the SATD instance

is not modified, as this would severely impact the runtime duration of the tool.

All SATD instances that were not mapped between the two commits are then

classified as removed or changed. This classification is determined by the edit scripts
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generated earlier, and the logic is further described in the subsection below, Sec-

tion 5.1.2. The result of this process is a complete empirical history of all operations

to SATD instances between a given point in a project’s lifetime and its origination.

5.1.1 Output

The implicit implementation of SATDBailiff outputs to a SQL database 6 , but the

tool supports a modular implementation allowing for an extension of other output

formats. A simplified data-point sample from the Apache Tomcat project is included

in Table 5.1. The data includes some important features:

• SATD Id and SATD Instance Id. Each entry has two identifying integers. The

SATD Id is a unique identifier for a single operation to an SATD Instance.

An SATD Instance ID is an overarching identifier used to group many SATD

operations to a single contiguous instance. In Table 5.1, the ”instance_id” field

represents the shared instance between the three different SATD operations.

Each entry in this sample would have a different and unique SATD Id.

• Resolution. Each SATD operation has a single resolution that impacts the

SATD between two commits. These operations include: SATD_ADDED,

SATD_REMOVED, SATD_CHANGED, SATD_MOVED_FILE,

FILE_REMOVED, FILE_PATH_CHANGED, and

CLASS_OR_METHOD_CHANGED. The definitions of these operations are

described in detail in Section 5.1.2.

• Comment Metadata. When each SATD operation is recorded, SATDBailiff also

records the comment’s metadata at the time of the operation. This includes data

such as the comment type (Line, Block, or JavaDoc as recorded by JavaParser),

start and end line, containing class and method, the file name, and the comment

itself.
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instance_id resolution commit comment
789 SATD_ADDED 09b640e TODO: 404
789 FILE_PATH_CHANGED decfe2a TODO: 404
789 FILE_REMOVED a457153 None

Table 5.1: Simplified Sample Data from the Apache Tomcat project

• Commit Metadata. When each SATD operation is recorded, SATDBailiff also

records the metadata of both the child and parent commit. This includes author

name and timestamp, committer name and timestamp, and SHA1 commit hash.

5.1.2 Operations

Previously, Maldonado [19] established an empirical history that recorded changes to

SATD instance incorrectly as removals and additions. In addition to mistaking file

renames, this would detect instances like the example in Figure 5.4 and Figure 5.5

as having both resolved the original SATD instance and added the new version to

the project. SATDBailiff resolves this issue by handling SATD comment and file

name changes as operations in-between additions and removals of SATD. In order

to observe a more fine-grained change in source code changes, the tool observes edit

scripts for changes to specific lines of code made between each commit.

The next subsections describe the process of identifying each of the operations

that SATDBailiff handles. The sections use the variables:

• Ca, Cb, the parent commit and the more recent commit, respectively.

• Sa, Sb, a specific SATD instance in the parent commit and the more recent

commit, respectively. It should be assumed that Sa and Sb are intentionally

related to each other if not identical.

• SAa, SAb, an arbitrary other SATD instance in the same file unrelated to Sa or

Sb in commits Ca and Cb respectively.
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• E1, E2, ...En, the edit scripts generated when differencing Ca and Cb that impact

the lines of SATD Comment S1. Multi-line SATD comments may have multiple

edit scripts that impact it where n is used to differentiate these line-based edit

scripts.

SATD_ADDED & SATD_REMOVED

The previous and naive algorithm determines SATD_ADDED instances would exist

in any Ca where Sa is not present and the associated Cb where Sb is present. This

satisfies a basic case in Figure 5.2.

body = exchange . getOut ( ) . getBody ( ) ;
+ // TODO: what if exchange.isFailed()?

i f ( body != nu l l ) {

Figure 5.2: A basic case SATD_ADDED instance

However, SATDBaillif needs to account for changes in SATD comments. In

Figure 5.4, these changes would be identified by separate SATD_REMOVED and

SATD_ADDED instances using the naive logic. Instead, it should be determined

that if a single edit script En exists such that En impacts Sb without impacting SAa,

then Sb was added by Cb.

The previous and naive algorithm also determines SATD_REMOVED instances

would exist in any Cb where Sb is not present and the associate Ca where Sa is present.

This satisfies the basic case in Figure 5.3.

However, in the case of Figure 5.4, it is seen that a more robust algorithm must

be used to detect SATD removals. SATDBailiff handles this case such that if a single

edit script En exists such that En impacts Sa without impacting SAb, then Sa was

removed by Cb.

It can also be the case that the previous logic used by SATDBailiff to classify
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p ro t e c t ed void c onne c t I fNe c e s s a r y ( ) {
- // can we avoid copy-pasting?

i f ( ! c l i e n t . i sConnected ( ) ) {

Figure 5.3: A basic case SATD_REMOVED instance

additions and removals to be false, and for the tool to still classify an operation as an

SATD_ADDED or SATD_REMOVED. This case is better identified by the logic in

the following SATD_CHANGED section. There also exists a case where the SATD

instance is removed in the currently observed file, but is added in another file. This

case is better identified by the logic in the follow SATD_MOVED_FILE section.

l o g g e r . l o g ( ” I n i t  s u c c e s s f u l ” ) ;
- // Moved this config to the bottom
+ // Moved this config
+ // to the bottom

super . i n i t ( ) ;

Figure 5.4: A case of a would-be false SATD_ADDED and SATD_REMOVED in-
stances

SATD_CHANGED

Changes in an SATD comment can be difficult to determine because changes can

possibly remove the SATD comment entirely, replacing it with a new non-SATD or

irrelevant comment. Only SATD comments which preserve the original intent of the

SATD comment should be recorded as an SATD_CHANGED operation. To identify

whether a change in a comment is possibly an SATD_CHANGED operation, the

edit scripts of the file are first observed. If a single edit script En exists such that

En impacts both Sa and SAb, then it can be determined that a change may have
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occurred. Figure 5.5 and Figure 5.6 detail two cases where this is the case.

t ry {
- // Maybe this already exitst
+ // Maybe this already exists

s u c c e s s = c l i e n t . changeDir ( dirName ) ;

Figure 5.5: A valid SATD_CHANGED instance

c = endpoint . c reateChanne l ( s e s s i o n ) ;
- // TODO: what if creation fails?
+ // Bug 1402

c . connect ( ) ;

Figure 5.6: A possibly valid but false SATD_CHANGED instance

To determine whether a change to an SATD instance preserves the original intent

of the instance, a normalized Levenshtein distance [31] is used to determine the extent

of the modifications. If this normalized distance is less than an arbitrarily chosen

threshold of 0.5, then we can determine the SATD instances are related after an

update.

This method works exceedingly well for many of the common cases of changes that

SATD comments face. These changes include additions of newlines (see Figure 5.4),

spelling corrections(Figure 5.5), and URL updates. Other common changes in which

this method may be less predictable include the addition of adjacent related and

unrelated comments, which the system will group with the SATD comment when

extracting comments from the source files.

SATDBailiff also checks the updated comments to determine if they still can be

classified as SATD instances. Figure 5.7 shows an example of an SATD instance
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which is recorded in Ca as ” lets  test  the receive  worked\nTODO” due to how the

tool groups adjacent comments. In Cb, the removal of the \nTODO substring of

the instance results in the instance no longer being classified as SATD, and thus

SATDBailiff reports this instance as SATD_REMOVED. If this additional check to

determine if the changed instance in Cb was not made, this SATD instance would be

incorrectly reported as having only been changed.

// l e t s t e s t the r e c e i v e worked
- // TODO
- // assertMessageRec(”???@localhost”);
+ assertMessageRec(”copy@localhost”);

c . connect ( ) ;

Figure 5.7: SATD_REMOVED instance removing only part of a comment

SATD_MOVED_FILE

Detecting the movement of SATD instances within a single commit can be difficult

because movement will not always be a one-to-one operation. It is commonly a

case where an operation in a parent file is duplicated in multiple children files, thus

proliferating the SATD instance alongside the pushing down of the operation. In

this case, we need to establish a parent-child relationship. We also cannot rely on

edit scripts to make this detection, as edit scripts do not bind between files. This

means it is exceedingly difficult to accurately predict developer intent in making this

classification.

SATDBailiff accomplishes this detection using only mapping. Whenever a SATD_REMOVED

instance is identified, SATDBailiff compares the instance against every potential

SATD_ADDED instance in the new version of the project. If any instances have

matching comment bodies, then we can determine that the SATD instance was moved.

However, in the case where multiple identical-bodies SATD instances are moved as
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multiple methods containing a instances of each are moved between files, this map-

ping logic will not suffice. In this case, SATDBailiff identifies if there first exists

at least one SATD_ADDED instance in the new version of the project with both

an identical comment body and method signature. If there exists one (or more) of

these, then the parent-child mapping is made only to those methods. Otherwise, the

parent-child mapping is made to new SATD_ADDED instances.

This is by no means a perfect method of detection, however it achieves a goal of

limiting the number of SATD_REMOVED instances that should actually be classified

as SATD_MOVED_FILE instances. This is of utmost importance for this study as

many refactoring actions involve the movement of source code objects between files,

and we do not want these movements detected as removals as they would significantly

impact the number of removals that falsely co-occur with refactoring actions.

CLASS_OR_METHOD_CHANGED

The final edit script source code change detected by SATDBailiff is modification to

an SATD instance’s containing class or method. These cases are detected if any En

impacts the class or method containing Sa such that the method signature or the

class name are changed.

FILE_REMOVED & FILE_PATH_CHANGED

File removals are detected implicitly by Git, where a similarity between added and

removed files determines whether a file is removed or renamed when it is no longer

present in the repository when committed. This detection method was available

as part of the JGit library, and was utilized for identifying FILE_REMOVED and

FILE_PATH_CHANGED instances.
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Project # SATD Instances # SATD Removals
camel 2,098 1,090
gerrit 5,41 226
tomcat 2,205 994
hadoop 2,271 766
log4j 195 64
total 7310 3140

Table 5.2: Datapoints from SATDBailiff v1.1

5.2 SATD & Refactoring Co-occurrences

SATD instances were collected using SATDBailiff (version 1.1), an Open Source tool

for obtaining empirical data of SATD instances from Java projects. The data provided

by this tool includes the tracking of SATD instances from creation to removal from a

project, and accurately detects when SATD Instances are removed rather than mod-

ified slightly or moved between files. Table 5.2 shows the number of datapoints made

available from each project. For the sake of consistency with priorSATD-centric stud-

ies, this data was only collected from between each project’s initial commit, and the

latest commit recorded for each project contained in the dataset popularized by Zam-

petti’s manually filtered dataset [32]. However, this dataset contains approximately

twice the number of instances and removals as the filtered dataset, as SATDBailiff

offers a more complete set of data points than was previously available.

The RefactoringMiner tool (version 2.0) [28] was used to collect refactoring in-

stances from the same 5 projects in Figure?? between the same temporal bounds.

The tool’s output was modified slightly to include a different formatting of method

signatures needed to align with the dataset of SATD instances. These changes include

reconstruction of method signatures before and after refactorings, and was necessary

due to how the method signatures are obtained by the RefactoringMiner tool. The

script used to obtain this modified dataset can be found on GitHub3 as a fork of the

3https://github.com/bbchristians/RefactoringMiner

https://github.com/bbchristians/RefactoringMiner
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Project # Refactoring Instances
camel 44,262
gerrit 17,752
tomcat 23,702
hadoop 43,955
log4j 2,903
total 132,574

Table 5.3: Data points from RefactoringMiner

master branch of RefactoringMiner 2.0. The number of data points collected using

the modified version of RefactoringMiner can be seen in Table 5.3.

Alignment of the SATD and the Refactoring dataset is performed in 3 different

methods, where each method constitutes a more coupled level of relation to by clas-

sified as a co-occurrence. It is impossible to determine a developers entire intention

behind removing an SATD instance, and also in performing a refactoring action,

so we look to other metrics to determine how related two of these actions may be.

These three levels can be called ”Primary”, ”Secondary”, and ”Tertiary”, following

the conditions:

• Primary Co-occurrence: This is the highest level of confidence that a refactor-

ing action and SATD instance removal are related. In this case, the commit,

method, class, and file path of both the SATD which is removed, as well as

the refactoring action must be identical. In a primary co-occurrence, it can

be determined that the refactoring action taken is likely closely related to the

removal of the SATD instance.

• Secondary Co-occurrence: In this case, the commit, class and file path of both

the SATD instance which is removed, as well as the refactoring action, must

be identical. In a secondary co-occurrence, it can be determined that there is

possibly some relation between the refactoring action taken, and the removal of

the SATD instance. Some examples of secondary co-occurrences in the studied
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Figure 5.8: Example of a Secondary Co-occurrence retrieved from https:
//github.com/apache/camel/commit/c90f924412bbcba14678d3eed8b7c32a57e95c05?
diff=unified#diff-e50303cf1d6c780530c4d09428eb591dL87

projects include refacgoring to SATD instances without methods, large-scale file

re-writes that include many refactorings where none of which refactorings im-

pact the SATD instance’s method4, modification of another method’s signature

(Figure 5.8), modifications to dependent methods (Figure 5.9), etc.

• Tertiary Co-occurrence: In this case, only the commit of both the SATD in-

stance removal and the refactoring action must be identical. In a tertiary co-

occurrence, it can be determined that there is possibly some relation between

the refactoring action taken and the removal of the SATD instance. A tertiary

co-occurrence is identical to the classification made by Iammarino’s SATD and

refactoring co-occurrence study [15]. There exist very few examples of an precise

connection between a tertiary removal’s refactoring action and SATD removal

co-occurrence, and while there were no instances that were easily identifiable

through a brief manual verification, it is possible that some exist. For example,

the co-occurrence detailed in Figure 5.8 could very easily contain a refactoring

to a method in a separate file, as opposed to within the same file as it was

actually. However, it has been shown that refactorings often occur in batches

[23], which could also entail indirect relations between a presence of technical

debt and large-scale refactoring operations.

There is also a need to make design classifications for each of our SATD instances,

as we want to observe the impacts of refactorings on SATD instance removals in

4https://github.com/apache/camel/commit/006e9bba7e2d2f80daaae1173484a647a9ac8843?
diff=split#diff-340b66e822537363a921c78e1c796bec

https://github.com/apache/camel/commit/c90f924412bbcba14678d3eed8b7c32a57e95c05?diff=unified#diff-e50303cf1d6c780530c4d09428eb591dL87
https://github.com/apache/camel/commit/c90f924412bbcba14678d3eed8b7c32a57e95c05?diff=unified#diff-e50303cf1d6c780530c4d09428eb591dL87
https://github.com/apache/camel/commit/c90f924412bbcba14678d3eed8b7c32a57e95c05?diff=unified#diff-e50303cf1d6c780530c4d09428eb591dL87
https://github.com/apache/camel/commit/006e9bba7e2d2f80daaae1173484a647a9ac8843?diff=split#diff-340b66e822537363a921c78e1c796bec
https://github.com/apache/camel/commit/006e9bba7e2d2f80daaae1173484a647a9ac8843?diff=split#diff-340b66e822537363a921c78e1c796bec
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Figure 5.9: Example of a Secondary Co-occurrence retrieved from https://
github.com/apache/camel/commit/9a9e8041610ec05e9a35987ed6b748c4de341901#
diff-4c7fdf27ca62f5ea6dcc801f4662608eL102

https://github.com/apache/camel/commit/9a9e8041610ec05e9a35987ed6b748c4de341901#diff-4c7fdf27ca62f5ea6dcc801f4662608eL102
https://github.com/apache/camel/commit/9a9e8041610ec05e9a35987ed6b748c4de341901#diff-4c7fdf27ca62f5ea6dcc801f4662608eL102
https://github.com/apache/camel/commit/9a9e8041610ec05e9a35987ed6b748c4de341901#diff-4c7fdf27ca62f5ea6dcc801f4662608eL102
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general, as well as on design-classified SATD instances. To achieve this, we utilize

a dataset provided by Maldonado & Shihab, which contains manual classifications

of SATD type (design, defect, documentation, requirement, and test) in association

with their source code comment [9]. This dataset is utilized to train a binary classifier

which we use to classify our SATD instances as either ’design’ or ’non-design’.

A model was created using a Random Forest algorithm and achieved a F-score of

0.72, a precision of 0.71 and recall of 0.74. This model was used to classify all 7310

mined SATD instances. Because it is possible for an instance to contain multiple

variations of an SATD comment in situations where the SATD comment is changed

without qualifying as a removal, the determination was made that if any of the com-

ments associated with an SATD instance were classified as a design instance, then

the entire instance was classified as a design instance.
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Chapter 6

Analysis & Discussion

In this chapter, we present answers to our research questions by analyzing both the

performance of the SATDBailiff tool, and the findings from aligning the refactoring

dataset with our newly acquired SATD instances. We also observe the impact of our

design classifications on this process.

6.1 RQ1: What level of accuracy can be attained by our
SATD instance mining tool, SATDBailiff?

To verify the accuracy of SATDBailiff, a manual analysis was performed on a stratified

random sample of 200 entries mined from 5 large open source Java projects, each as

their own strata. The number of samples taken from each project is determined by the

total number of SATD instances mined from the projects. Each of the 200 instances

selected for this random stratified sample includes all operations (additions, changes,

and removals) performed on a single instance of SATD. Each instance in the sample

will represent an entirely unique instance of SATD, of which a simplified example of

a single SATD instance can be seen in Table 5.1. The results of this analysis can be

seen in Table 6.1.

The 5 projects used for this validation are the same projects used by Maldonado

to establish a prior dataset of SATD[9, 32]. SATDBailiff was configured to only mine

SATD instances between the original commit to each project, and the most recent

commit reported by the Maldonado study.
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Project # Entries # Correct Accuracy
gerrit 14 14 1.000
camel 59 55 0.932
hadoop 61 56 0.918
log4j 5 4 0.800
tomcat 61 48 0.787
Total 200 177 0.885

Table 6.1: SATDBailiff Manual Analysis Results

When given this set of SATD instances, we located the exact location of each of the

SATD operations using the Github website’s difference browser to determine whether

the SATD instances mined by SATDBailiff were correctly identified, preserved, and

reported. A ”correct” entry was identified as an entry in which every operation

made to the SATD instance could be located using the Github interface. Any un-

necessary additional, missing, or inaccurate operations found using the Github client

would result in the entire entry being incorrect. For entries that were not removed

from the project, their existence in the terminal commit supplied to SATDBailiff

was confirmed. For transparency of this analysis, a Github link to the exact source

modification was recorded in each of the projects where available. These results are

available on the project’s website1. During validation, it was assumed that all binary

classifications of source code comments as SATD were correct. It should be noted

that this classification was performed on SATDBailiff v1.0, which did not include the

SATD_MOVED_FILE logic.

The results of the manual analysis (Table 6.1) find SATDBailiff to have an accu-

racy of 0.885. While a higher level of accuracy could have been achieved, it should

be noted that many of the incorrect instances were partially correct. For example,

instances frequently were found to be incorrect because they became dissociated with

one another, where a connection between an SATD instance’s addition to the project

and its deletion from the project was not made by the tool. In cases where only

1https://bbchristians.github.io/SATDBailiff-site/data

https://bbchristians.github.io/SATDBailiff-site/data
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Figure 6.1: A failed case from the Camel project: https://github.
com/apache/camel/commit/94133b952907b85faad2a6f3bab79a04be8ebc2a#
diff-c80de0a6c0d3e157f20ce8d34163c335L38

the additions or removals are observed from the dataset, the accuracy of the data

provided by the tool is much more reliable.

Difficulties in solving many of the tool’s issues came from the imperfect nature of

working with Edit Scripts produced by Git differencing tools. Edit scripts are used

to show an algorithm’s best guess of changes in files inside of a Git repository, and

do not always reflect the true intentions of the developer who made them [12]. An

example of an edit script can be seen in Figure 5.5 depicted as the red and green

highlight used to represent a source code change. For this analysis, the Myers algo-

rithm was used during the performed manual validation, which is shown to maintain

a manually validated accuracy of less than 0.9 [12]. While, in many cases, an invalid

edit script will not directly invalidate SATDBailiff’s ability to identify operations to

SATD instances, this inaccuracy still serves as a significant limitation in the upper

bound of accuracy achievable by this tool.

Other issues arose from the inaccuracy of the all-encompasing use of the normal-

ized Levenshtein distance algorithm used to determine whether an SATD instance

is changed or removed. Figure 6.1 shows a failure provided by use of this logic. In

any example where multiple adjacent SATD instances occur, we are likely to run into

issues with this model, as shown in this example. There is no perfect work-around for

this issue, however it is not a common occurrence. In a positive sense, some complex

changes are solved by this algorithm, as shown in Figure 6.2. There are many changes

to permute the first comment to the second, and the algorithm solves this very nicely.

To assure that these errors are not able to silently pollute the dataset, the tool

https://github.com/apache/camel/commit/94133b952907b85faad2a6f3bab79a04be8ebc2a#diff-c80de0a6c0d3e157f20ce8d34163c335L38
https://github.com/apache/camel/commit/94133b952907b85faad2a6f3bab79a04be8ebc2a#diff-c80de0a6c0d3e157f20ce8d34163c335L38
https://github.com/apache/camel/commit/94133b952907b85faad2a6f3bab79a04be8ebc2a#diff-c80de0a6c0d3e157f20ce8d34163c335L38
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Figure 6.2: A successful case from the Tomcat project: https://github.
com/apache/tomcat/commit/82b8c6b9f75f2d82d5c42786483f9ea85d7672ef#
diff-3a2bc5e00ec0eccae6b7706734d70bdcL309

reports any known errors that are encountered during the mining process. This

workaround was taken as an optimistic precaution for an issue that may not have

a perfect alternative solution. For example, SATD that is added during a merge

commit which was not present in either of the merge branches is not detected with

an SATD_ADDED entry. If that SATD is modified or removed later, then the entry

would be added to the project before the SATD_ADDED entry was found. Because

the search occurs chronologically starting with the oldest commit in the project, the

system can detect this as an issue and will output an error to the terminal during

runtime.

6.2 RQ2: Are the refactorings that co-occur with SATD re-
movals different than refactorings that occur elsewhere in
the project?

In answering this question, we can hope to show there is different intentions behind

normal refactorings than the intentions behind refactoring SATD instances. In mak-

ing this distinction, we can hopefully determine whether it would be reasonable to

assume that other differences exist between how developers view source code with

a presence of SATD. To answer this question, we observe the data set containing

the number of refactoring actions present in the 5 studied project, compared to the

number of those instances which co-occur with an SATD removal, and to what extent

those co-occurrences exist. Table 6.2 shows these relations, sorted by the percent of

https://github.com/apache/tomcat/commit/82b8c6b9f75f2d82d5c42786483f9ea85d7672ef#diff-3a2bc5e00ec0eccae6b7706734d70bdcL309
https://github.com/apache/tomcat/commit/82b8c6b9f75f2d82d5c42786483f9ea85d7672ef#diff-3a2bc5e00ec0eccae6b7706734d70bdcL309
https://github.com/apache/tomcat/commit/82b8c6b9f75f2d82d5c42786483f9ea85d7672ef#diff-3a2bc5e00ec0eccae6b7706734d70bdcL309
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Figure 6.3: Mann-Whitney U Test Distributions

which the total of each action are made up of co-occurrant refactorings.

This table shows that there is obviously an uneven distribution of refactorings that

have any co-occurrence with an SATD removal, as an entirely arbitrary constraint

would produce a consistent value within the ‘percent co-occurred‘ column. However,

this evidence in itself does not prove without a doubt that refactorings around SATD

instance removals share a different intent.

To show this in a statistically significant manner, we can perform a Mann Whitney

U test. The two tails used for the test are the percent of each operation that co-occur

with a SATD instance removal in some degree, and the percentage of each operation

that make up the sum of all operations that also share some degree of co-occurrences

with an SATD instance removal. The result of the test determine that the normality

of the two distributions differ to a significant degree with values of 8.06e-3 and 1.08e-

8. The trendlines between the datasets as shown in Figure 6.3 show a negative

correlation between these distributions as well.
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Refactoring Action # occ primary secondary tertiary percent co-occurred
REMOVE_PARAMETER_ANNOTATION 165 0 0 73 44.24%
MOVE_AND_INLINE_OPERATION 553 3 35 158 35.44%
REMOVE_CLASS_ANNOTATION1 852 0 25 256 32.98%
REPLACE_ATTRIBUTE1 22 0 4 3 31.82%
MOVE_RENAME_CLASS1 353 0 11 77 24.93%
MOVE_AND_RENAME_OPERATION 411 5 37 59 24.57%
RENAME_PACKAGE1 42 0 1 9 23.81%
MERGE_ATTRIBUTE1 55 0 5 8 23.64%
MOVE_ATTRIBUTE1 2569 0 261 327 22.89%
MOVE_OPERATION 3137 20 348 339 22.54%
SPLIT_ATTRIBUTE1 19 0 0 4 21.05%
RENAME_CLASS1 1252 0 30 231 20.85%
REMOVE_PARAMETER 3017 18 123 487 20.82%
EXTRACT_CLASS1 500 0 33 68 20.20%
RENAME_METHOD 6156 39 216 987 20.18%
SPLIT_VARIABLE 10 0 2 0 20.00%
RENAME_VARIABLE 4079 45 190 569 19.71%
INLINE_OPERATION 940 8 54 122 19.57%
RENAME_ATTRIBUTE1 2709 0 104 400 18.60%
RENAME_PARAMETER 5011 16 221 685 18.40%
EXTRACT_SUBCLASS1 71 0 3 10 18.31%
CHANGE_RETURN_TYPE 7585 13 157 1213 18.23%
CHANGE_VARIABLE_TYPE 11951 49 226 1854 17.81%
REORDER_PARAMETER 62 0 0 11 17.74%
PULL_UP_OPERATION 3337 6 119 440 16.93%
EXTRACT_SUPERCLASS1 397 0 12 54 16.62%
INLINE_VARIABLE 618 4 24 73 16.34%
CHANGE_PARAMETER_TYPE 9899 8 235 1369 16.28%
MOVE_CLASS1 2340 0 15 362 16.11%
PUSH_DOWN_OPERATION 717 2 22 90 15.90%
MERGE_PARAMETER2 90 0 3 11 15.56%
ADD_PARAMETER 9210 3 268 1132 15.23%
REPLACE_VARIABLE_WITH_ATTRIBUTE 349 2 17 34 15.19%
CHANGE_ATTRIBUTE_TYPE1 6451 0 160 772 14.45%
EXTRACT_AND_MOVE_OPERATION 1862 14 48 204 14.29%
MOVE_RENAME_ATTRIBUTE1 28 0 0 4 14.29%
SPLIT_PARAMETER2 22 0 3 0 13.64%
REMOVE_METHOD_ANNOTATION 3517 46 44 389 13.62%
PULL_UP_ATTRIBUTE1 1822 0 44 199 13.34%
PARAMETERIZE_VARIABLE 571 3 28 43 12.96%
REMOVE_ATTRIBUTE_ANNOTATION1 420 0 4 50 12.86%
EXTRACT_ATTRIBUTE1 299 0 14 24 12.71%
EXTRACT_OPERATION 6240 3 273 508 12.56%
MERGE_VARIABLE 48 1 1 4 12.50%
EXTRACT_INTERFACE1 151 0 1 17 11.92%
EXTRACT_VARIABLE 3095 33 75 245 11.41%
ADD_CLASS_ANNOTATION1 3401 0 18 346 10.70%
PUSH_DOWN_ATTRIBUTE1 307 0 6 25 10.10%
ADD_METHOD_ANNOTATION 16573 30 157 1372 9.41%
MODIFY_PARAMETER_ANNOTATION 84 0 0 7 8.33%
ADD_ATTRIBUTE_ANNOTATION1 2853 0 10 142 5.33%
MODIFY_METHOD_ANNOTATION 1543 0 5 73 5.06%
MOVE_SOURCE_FOLDER1 207 0 4 4 3.86%
ADD_PARAMETER_ANNOTATION1 354 0 0 13 3.67%
MODIFY_CLASS_ANNOTATION1 1559 0 7 34 2.63%
MODIFY_ATTRIBUTE_ANNOTATION1 2691 0 24 35 2.19%

Table 6.2:
1 Operation does not include method signature – cannot be primary
2 Operation method signature could not be preserved – cannot be primary
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Design
Sample Total Instances Primary Secondary Tertiary
All 1,924 5.83% 22.34% 34.13%
Removed Instances 723 12.47% 47.78% 72.99%
Removed Instances With Methods 652 13.82% - -

Table 6.3: Design SATD Instance Occurrences

Non-Design
Sample Total Instances Primary Secondary Tertiary
All 5,386 3.97% 18.08% 31.10%
Removed Instances 2,415 6.78% 30.87% 53.09%
Removed Instances With Methods 2,189 9.78% - -

Table 6.4: Non-Design SATD Instance Occurrences

6.3 RQ3: Are design-classified SATD instances more likely
to entail a refactoring co-located with their removal than
non-design SATD instances?

To answer this question, we must observe the differences in how design-classified

SATD (DC-SATD) and Non-design-classified SATD (nDC-SATD) are removed. Ta-

ble 6.3 and Table 6.4 show the number of DC-SATD and nDC-SATD instances (re-

spectively), alongside their co-occurrences with refactoring operations. The signifi-

cance of these co-occurrences varies from a primary co-occurrence to a tertiary co-

occurrence, referring to the highest potential of relation to the lowest, respectively,

The most important data points from these tables are the number of primary co-

occurrences from all removed instances with methods. The DC-SATD instances under

this criteria primarily co-occur 13.82% of the time with a refactoring action, while

nDC-SATD instances only primarily co-occur 9.78% of the time with a refactoring

action. This finding shows that DC-SATD is 42.2% more likely to share a primary

co-occurrence refactoring than nDC-SATD. This number also holds for the number

of secondary and tertiary co-occurrences maintaining a 54.8% and 37.5% difference
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between DC-SATD and nDC-SATD respectively.

This distinction clearly shows that Design-classified SATD instances are much

more likely to see a refactoring than non-Design-Classified SATD instances. In fol-

lowing this conclusion, it can be determined that contributing SATD with attempts to

detail flaws in a system’s design is a more effective way to produce a future refactoring

than by contributing more general SATD.
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Chapter 7

Threats to Validity

In this section, we identify potential threats to the validity of our approach and our

experiments.

7.1 SATDBailiff

Threats to the validity of this tool include the limited manual evaluation and general

lack of testing.

Since the manual verification of samples is a human intensive task and it is subject

to personal bias, it can be addressed as the most important threat. Manual validation

was performed by a single author, so for the sake of transparency, all decisions that

were made were documented as transparently as possible. Direct links to the locations

in the source code through the GitHub commit browser were included so that any

future validation efforts can merely confirm whether those classifications were made

correctly without duplicating a majority of the classification effort.

Only 200 samples of SATD were recorded and addressed to determine the accuracy

of SATDBailiff, which would ideally be much higher. There was limited time available

for other formal and repeatable forms of programmatic testing, as a majority of the

validation effort was allocated to the manual validation and validation done during

development.

There exists more threats that relate to the SATD instances that are extracted

only from open source Java projects. Our results may not generalize to commercially
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developed projects, or to other projects using different programming languages. The

classification model of SATD is implemented using a composite voting system in an

attempt to remain as project-independent as possible [14]. However, it is still possible

that SATDBailiff will have widely different performance metrics on other projects.

7.2 Co-occurrence Study

This study was performed with the intention of remaining within the same system

scope as previous popular studies stemming from the primary previously available

dataset [32]. This was done with the intention of directly confirming or denying prior

conclusions which may have been drawn with potentially skewed data from the same

projects. While this is a benefit to offer the field of SATD, it does have the negative

impact of limiting the size and age of our datasets. Ideally, these studies would have

been performed on additional system scopes to gain more complete and thorough

conclusions, however time constraints prevented this from happening. The run-time

of the two tools used to generate the datasets is exceedingly long, taking upwards of

a few days each to obtain data from another sample of 800 projects.

Some refactoring actions could not be accurately modified to work in our study

as detailed by 2 in Table 6.2. Because of this, the number of primary co-occurrences

may actually be higher for each project, which could also impact the number of DC-

and nDC-SATD instances we recorded with co-occurrences.

The data provided by SATDBailiff is not currently accepted by a recognized soft-

ware engineering authority. The manual validation of the dataset has provided rea-

sonable confidence as to the conclusions in which it can draw, however there is a

potential for the data to be skewed or incorrect.
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Chapter 8

Conclusion & Future Work

In this thesis we concluded that SATD solicits a different kind of developer attention

in regards to encouraging refactoring. We also found that design-classified SATD

instances are more likely to be refactored than non-design classified SATD. This

concludes that SATD is potentially effective at begging further need to refactor,

especially in regards to quality-related refactoring changes. Using this conclusions,

we can deduce that developers may be interested in including more self-admissions

to areas of their code which may be lacking quality design. Developers may be

concerned with these findings as they have the potential to encourage a smarter and

more efficient management of their project’s technical debts.

However, if it weren’t obvious, the conclusions drawn by this paper are not con-

crete. There exists a large remainder of work to determine the extend in which the

effectiveness of SATD, especially as it related to design-classified SATD, can be used

to improve the progressing quality of software projects. In addition, there are many

improvements that can be made to this study’s methodology to achieve more confi-

dent results. Perhaps a more extensive manual analysis of the specifics ways in which

primary, secondary, and tertiary co-occurrences occur will bring forth a new under-

standing from which further research may resolve. Such a qualitative conclusions

would surely provide applicable findings if not just motivation. It is a significant

surrender as part of this study to not include these findings, however time is always

an unforgiving opponent of completion.

In general, many potential paths were not taken which may have been made
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newly available with a differently-formatted dataset. Future studies can address more

directly the difference between projects which use and resolve SATD and those that

don’t. Future studies can also track the difference between primary co-occurrences

and source code quality metrics to determine the consistency of appropriate design

SATD.

While new opportunities are made available by SATDBailiff, the quality of its out-

put is also something that can be improved greatly. Pitfalls relating to the accuracy

of edit scripts can surely be addressed using potentially unreleased methodologies.

Tracking in a general sense, is always prone to error, as an all-encompassing solution

is far from the reaches of the meager time provided to this study.
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