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“There is no recipe, there is no one way to do things — there is only your

way. And if you can recognize that in yourself and accept and appreciate

that in others, you can make magic.”

Ara Katz



Abstract

Due to the rapid growth of new wireless communication services and appli-

cations, much attention has been directed to frequency spectrum resources

and the way they are regulated. Considering that the radio spectrum is a

natural limited resource, supporting the ever increasing demands for higher

capacity and higher data rates for diverse sets of users, services and appli-

cations is a challenging task which requires innovative technologies capable

of providing new ways of efficiently exploiting the available radio spectrum.

Consequently, dynamic spectrum access (DSA) has been proposed as a re-

placement for static spectrum allocation policies. The DSA is implemented

in three modes including interweave, overlay and underlay mode [1].

The key enabling technology for DSA is cognitive radio (CR), which is

among the core prominent technologies for the next generation of wireless

communication systems. Unlike conventional radio which is restricted to

only operate in designated spectrum bands, a CR has the capability to oper-

ate in different spectrum bands owing to its ability in sensing, understand-

ing its wireless environment, learning from past experiences and proactively

changing the transmission parameters as needed. These features for CR

are provided by an intelligent software package called the cognitive engine

(CE). In general, the CE manages radio resources to accomplish cognitive

functionalities and allocates and adapts the radio resources to optimize

the performance of the network. Cognitive functionality of the CE can

be achieved by leveraging machine learning techniques. Therefore, this

thesis explores the application of two machine learning techniques in en-

abling the cognition capability of CE. The two considered machine learning

techniques are neural network-based supervised learning and reinforcement

learning. Specifically, this thesis develops resource allocation algorithms

that leverage the use of machine learning techniques to find the solution to

the resource allocation problem for heterogeneous underlay cognitive radio

networks (CRNs). The proposed algorithms are evaluated under extensive

simulation runs.



The first resource allocation algorithm uses a neural network-based learn-

ing paradigm to present a fully autonomous and distributed underlay DSA

scheme where each CR operates based on predicting its transmission effect

on a primary network (PN). The scheme is based on a CE with an artificial

neural network that predicts the adaptive modulation and coding configura-

tion for the primary link nearest to a transmitting CR, without exchanging

information between primary and secondary networks. By managing the

effect of the secondary network (SN) on the primary network, the presented

technique maintains the relative average throughput change in the primary

network within a prescribed maximum value, while also finding transmit

settings for the CRs that result in throughput as large as allowed by the

primary network interference limit.

The second resource allocation algorithm uses reinforcement learning and

aims at distributively maximizing the average quality of experience (QoE)

across transmission of CRs with different types of traffic while satisfying a

primary network interference constraint. To best satisfy the QoE require-

ments of the delay-sensitive type of traffics, a cross-layer resource allocation

algorithm is derived and its performance is compared against a physical-

layer algorithm in terms of meeting end-to-end traffic delay constraints.

Moreover, to accelerate the learning performance of the presented algo-

rithms, the idea of transfer learning is integrated. The philosophy behind

transfer learning is to allow well-established and expert cognitive agents

(i.e. base stations or mobile stations in the context of wireless communi-

cations) to teach newly activated and naive agents. Exchange of learned

information is used to improve the learning performance of a distributed

CR network. This thesis further identifies the best practices to transfer

knowledge between CRs so as to reduce the communication overhead.

The investigations in this thesis propose a novel technique which is able

to accurately predict the modulation scheme and channel coding rate used

in a primary link without the need to exchange information between the

two networks (e.g. access to feedback channels), while succeeding in the

main goal of determining the transmit power of the CRs such that the

interference they create remains below the maximum threshold that the

primary network can sustain with minimal effect on the average through-

put. The investigations in this thesis also provide a physical-layer as well as



a cross-layer machine learning-based algorithms to address the challenge of

resource allocation in underlay cognitive radio networks, resulting in better

learning performance and reduced communication overhead.
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Chapter 1

Introduction

Radio spectrum is a limited natural source which is regulated around the

world by international and national regulators. The International Commu-

nication Union (ITU) and in particular, its Radio communication Sector

(ITU-R) have the core responsibility of the governance of the radio spec-

trum. At the international level of allocation which is done by ITU, the use

of radio spectrum is regulated for different type of services on a regional

basis. At the national level, in most countries the use of radio spectrum

is managed by the government. For example, the Federal Communications

Commissions (FCC) is responsible for radio spectrum regulation in the

United States, while in the United Kingdom it is regulated by the Office

of Communications (Ofcom). Radio spectrum allocation and management,

traditionally, can be divided into two categories: licensed and unlicensed

[5]. Over unlicensed bands, users can freely transmit without any licensing

requirements, while in licensed bands, the right of the use of a frequency

band is assigned through the sale of a license. This approach assigns fixed

spectrum allocation, operating frequencies and bandwidths with constrains

on power emission which limits their range. Hence, most communication

systems are designed so that to increase spectrum efficiency within the

assigned bandwidth using different modulation, coding, multiple antenna

configuration and other techniques [6].

Since demands on wireless applications are explosively increasing, the radio

spectrum is becoming more occupied. Because of this, the static spectrum

allocation policy will result in spectrum scarcity. Conflict between the

spectrum scarcity due to the traditional static spectrum allocation policy,

2
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and ever increasing service demands has motivated research groups to in-

vestigate innovative schemes, that can solve the problem of the spectrum

allocation. However, radio spectrum usage pattern shows that large por-

tion of the licensed bands are under-utilized. For instance, in [7] authors

reported a study, conducted by the US Defense Advance Research Project

Agency (DARPA), showing that only 2% of the licensed spectrum is utilized

in USA. Authors in [8] also showed that only 22% of allocated spectrum

is in use in urban areas, while this figure is less than 3% in rural areas.

These findings led researches toward the definition of spectrum hole which

is a band of frequencies already assigned to primary users (who are licensed

to transmit on assigned frequency band), but at a particular time and/or

specific geographical location, the band is not being utilized by the primary

user [5]. Based on the evidences, which briefly mentioned here, the current

fixed spectrum allocation policy is highly inefficient and results in under-

utilized frequency bands. Consequently, a new communication paradigm

is needed which leads to more efficient usage of the radio spectrum by ex-

ploiting the spectrum holes. In this new paradigm, unlicensed users or

secondary users (SUs) will ”opportunistically” operate in the unused li-

censed spectrum bands without interfering with licensed users or primary

users (PUs), hence it enhances the efficiency of spectrum utilization. This

model of spectrum sharing is called interweave dynamic spectrum access

(DSA). There are two more models naming overlay DSA and underlay DSA

which were later merged into the DSA spectrum sharing models.

1.1 DSA Models

As stated, there are three DSA models, including interweave, underlay,

and overlay [1]. In interweave DSA model the SUs can have access to

the spectrum only if the frequency band of interest is idle and PU is not

active on the band. In this model PU has the absolute priority on the

spectrum band and SU must vacant the band if PU wants to access the

band. Since the SUs opportunistically utilize the spectrum holes in time,

space and/or frequency domain, this model is also called opportunistic

spectrum access. With the interweave DSA model, SU uses the cognitive

radio to sense the surrounding spectrum environment, then selects one or
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more idle spectrum band(s), and switches to the selected band(s) to keep

a seamless transmission. Hence, for this model SUs need to be equipped

with a reliable spectrum sensing mechanism. In contrast to the interweave

model, underlay model allows coexistence of primary and secondary users

at the same time and over the same frequency band, provided that the

accumulated interference from all SUs is less than the tolerable interference

level of the PU. In this DSA model, power allocation for SUs is the first

task needs to be taken into account.

The overlay DSA model, as more recent development of DSA, is similar

to underlay DSA and allows concurrent coexistence of both users on the

same frequency band but with a different constraint. The overlay DSA

aims at maintaining the PU performance, as contrast to underlay DSA

which constraints the interference from SUs to PU via limiting the SU’s

transmit power. Specifically, SUs are allowed to continue their transmission

simultaneously with PUs over the same band as long as no performance

degradation is guaranteed for PUs. There are two approaches to overlay

DSA. The first approach is to use channel coding [1]. In this approach the

packet which is being transmitted by the PU is known to SU, thus the SU

transmitter can split its transmit power into two parts to transmit its own

(SU) packet along with the PU packet to enhance the total power received

at the PU receiver, such that the PU received signal to interference plus

noise ratio (SINR) does not degrade. To cancel the the interference to

the SU caused by transmitting the PU packet, SU transmitter can use the

dirty paper coding to precode the SU packet. Another approach for the

overlay DSA model is to use network coding [9]. In this approach, an SU

serves as a relay node between PU nodes. While relaying a PU packet,

the SU may encode its packet onto the PU packet through network coding.

Therefore, transmission of the SU packet does not need separate spectrum

access, while the PU performance does not degrade as well.

Regarding the network spectrum sharing control architectures, there are

two of them in CR networks which are networks with centralized control

and networks with distributed control. They can be further categorized

according to the spectrum allocation behavior as Cooperative and Non-

cooperative. In the following we briefly explain each paradigm.
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1.2 Centralized and Distributed CR networks

In the centralized network setting, resource allocation decisions are taken

by a secondary base station or a central spectrum server. In this architec-

ture, the base station gathers the information from the SUs or a dedicated

sensor network. Using this information it runs an assignment algorithm

and informs the SUs of the resources to be utilized. In this version of net-

work setting an assignment of predefined control channel is needed. Having

information on the global setting, the base station can provide a globally

optimal resource assignment. However, there are several problems regard-

ing to this architecture: requirement of a common control channel and high

processing complexity at the base station. In this type of networks common

control channel should be pre-assigned and all SUs should have interference

free access to it. Distributed networks are preferred to centralized when

there is no preexisting infrastructure available or when the centralized net-

works are not scalable. CRs use distributed algorithms while performing

resource assignment in the decentralized setting. Each user does its own

sensing equipments and coordinates with the nearby cognitive radios and

determines who gets which resource. These algorithms are iterative so the

neighborhood to which the CR sends data and from which it receives data

should be limited. Otherwise it can incur large delays and the network will

become unscalable. The distributed networks are also not completely im-

mune to the problem of common control channel because to communicate

with one another, transmitter and receiver should perform a handshake

and it should happen on a channel both transmitter and the receiver know

about.

1.3 Cooperative and Non-cooperative CR Net-

works

All the centralized CR networks are cooperative networks in principal and

some distributed networks can be cooperative as well. The choice of a utility

function plays a key part in defining a network as cooperative and non-

cooperative. Each user tries to maximize the individual gain it can achieve

without considering about the utility of others in non-cooperative networks.
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In contrast to that a user in a cooperative network tries to maximize its own

utility while satisfying the minimum utility required by other users in the

network. One advantage of non-cooperative networks over the cooperative

ones stems from the advantage of being able to function with minimum

communication with other CR users. Cooperative networks can improve

the overall network utilization with the burden of higher communication

overhead. In situations where the benefits of cooperation surpasses the cost

of communication one should choose a cooperative solution.

1.4 Motivation

Cognitive radio (CR) is the enabling technology for DSA, [10]. Unlike a

conventional radio which can only operate on a predefined spectrum band

based on regulatory restrictions, a cognitive radio is capable of operating in

different spectrum bands. In order to be able to operate in different bands,

CR must have the ability to sense and understand its wireless environment

and proactively change its mode of operation as needed in order not to

interfere with PU transmission. These set of fundamental activities, which

is called cognition cycle [11], is performed by a CR in order to satisfy

the end-user needs. The set of activities are as follows: observing the

environment and acquisition of information such as spectrum occupancy or

interference temperature, orienting itself, learning from past experiences,

decision making and finally performing actions.

A cognition cycle by which cognitive radio interacts with the environment

is illustrated in Fig. 1.1. According to this interpretation, the action phase

consists of (re)configuring the CR to provide enhanced communication qual-

ity with respect to end-user goals. Such configuration can be for example

the choice of the wireless radio interface to be used for communication,

or the tuning of the communication system’s parameters; the observation

phase collects statistics from the device which characterize the external en-

vironment, such as traffic load patterns, SNR measurements, packet error

rate, round trip time, etc.; the orientation phase consists of understanding

the impact on communication performance of the external environment and

of possible system configurations. This is achieved by identifying a func-

tional relation between measurements and configuration parameters and
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Figure 1.1: The cognitive radio’s cognition cycle.

different aspects of communication performance (e.g, throughput, delay,

reliability); the decision phase is the solution of the performance optimiza-

tion problem, i.e., it is a search in the space of possible configurations which

aims at finding the one that best satisfies user-defined goals, which are ex-

pressed in terms of high-level performance metrics such as application-layer

throughput, delay and reliability, as well as cost, power consumption, etc;

and finally, the learning phase consist of evaluating the outcome of the deci-

sions which have been made, thereby gathering knowledge to be exploited

in future orientation phases with the aim of being more effective in the

decision phase.

The brain of a CR where the set of activities associated with the cognitive

cycle is implemented is called Cognitive Engine (CE). Machine learning

(ML) can be widely used in implementing the learning, orientation and

decision phases of CRs (and specifically CEs). We explore in this thesis the

application of two machine learning techniques including neural-network

based supervised learning and reinforcement learning in this context. There

are various reinforcement learning techniques among which we consider the

most common form, widely considered to be Q-learning, in both standard

table-based and deep Q-learning, and deep Q-learning. We focus on under-

lay cognitive radio networks where we need to devise resource allocation

algorithm for the SUs such that it ensures the non-interfering co-existence

of primary and secondary networks. In particular, we use machine learning
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technique to allocate for the SUs radio resources (transmit power and rate

in this work) such that not only the PU interference constraint is met, but

also the network performance metric in SN is maximized.

1.5 Why ML is needed?

Recent advances in technology, the ever increasing computing power of ma-

chines and the instant connectivity provided by the Internet anywhere and

at anytime in the world, has enabled companies to capture trillions of bytes

of information everyday, in what is known as Big Data. Such information

comes from the billions of sensors connected to computers, automobiles,

mobile phones, home appliances and in general everyday objects with abil-

ity to sense, create and communicate data. As such, this massive amount of

data generated and collected every second motivated companies to explore

that data using data analytic methods, in order to create better solutions

that would benefit them while also please their customers [12].

Regarding the wireless communications, rapid development of intelligent

devices (such as smart phones, cars and home) and development of cloud

computing and network virtualization has led to exponential increase in

data traffic. On the other hand, the networks have become more com-

plex as they involve a multitude of devices, drive different protocols and

support diverse applications. In wireless networks, for instance, different

types of cells (each associated with a specific coverage such as macro-cells,

pico-cells and femto-cells) with different transmission power range, work-

ing mechanism and communication technologies (such as ZigBee, WiMAX,

Bluetooth and LTE) have been applied and have led to more challenges in

effectively managing and optimizing the network resources. Inserting more

intelligence into networks is one possible solution to these challenges. This

intelligence can be brought by deployment of ML and cognitive techniques

which always favor from the collected massive amount of data. In fact, ML

algorithms rely on collecting and analysing data in order to find patterns

and relationships between them and produce a model that can relate the

input to the output, instead of trying to develop a complex and complete

model of the system. As a result, these algorithms are able to learn, reason

and make decisions without human intervention [13].
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In addition, another clear advantage of ML is that these algorithms are

able to generalise. For example, considering the task of mobile network

optimization, if a model had to be developed for every possible situation of

the network, with users in all possible positions and all base stations with

different power, interference and load levels, it would be impossible. As

such, solutions that analyse data and are able to create a model based on

their observations are much more feasible. This occurs because ML solu-

tions are able to learn from data and make predictions if new unseen data

is fed into the model, being much more general than analytical approaches,

as they do not require the entire model to be trained again or rebuilt from

zero [13, 14].

Furthermore, another key advantage of ML algorithms is when dealing with

complex tasks. Similar to the case above, in which for some applications

it is impossible to create an analytical model for every possible solution,

in very complex domains, traditional approaches would also not work. For

example, considering the task of teaching a self-driving car how to drive.

The car has a large number of sensors, inputs, images from different cam-

eras and also lots of possible actions, such as accelerating, braking, turning

the wheel, changing gears, etc.. As it can be seen from this example, when

tasks are extremely complicated and have many variables and parameters,

traditional analytical approaches or controller design solutions are not very

suitable, as the solutions required to solve these problems would be too

complex and costly. As such, in those cases ML solutions also excel at, as

they are able to learn from the great amount of data gathered and gener-

ated from these complex applications and determine the best action [13, 15].

ML algorithms, and more recently deep learning, have shown comparable

human performance in certain tasks, such as image classification or playing

certain games like chess, Go, backgammon, and video games [16, 17]. As

such, with the constant development of more robust and powerful comput-

ers and algorithms, the possibilities of what these intelligent algorithms can

do are practically unimaginable.
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1.6 ML as an Enabler of CR

ML algorithms allow the system to learn the structural patterns and models

from training data. A ML approach usually includes two main phases: a

training phase and a decision making phase. During the training phase,

the system model is learnt using the training data set. Whereas, during

the decision making phase the trained model is used for each new input to

estimate the output of the system. As stated earlier, ML techniques bring

intelligence to cognitive radio networks by performing data analysis and

network optimization. Such intelligence derived from learning capability of

ML enables CRs to autonomously learn to make optimal decisions to adapt

to the network environment. Before addressing the existing learning effort

to address issues in CRNs, we briefly explore the main ML algorithms.

1.6.1 ML Algorithms

ML algorithms are basically divided into three categories, as follow:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

Below a brief description of each category is presented. For more insightful

discussion on ML theory and its concepts, the works [18, 19] can be referred.

1.6.1.1 Supervised Learning

Supervised learning, as the name implies, requires a supervisor (teacher)

to supervise (train) the system. For training, it requires a data set which

has information about both input and output data. For every input data,

the teacher knows the answers (output) by which the teacher can correct

the predictions as the algorithm iteratively makes them. More formally,

supervised learning is an algorithm that learns the underlying model in

data (the relation between input and output data) that best represents
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the data, and is able to make predictions for newly, unseen data points. In

addition, supervised learning algorithms are further split into two main cat-

egories, depending on type of their output variable. If the output variable

is discrete value, such as spectrum band being busy or idle, the supervised

learning problem is referred to as a classification problem. While, if the

output variable is a real or a continuous value, such as the throughput in

primary network, the supervised problem is considered as a regression prob-

lem. Supervised learning algorithms range from simple ones, such as linear

regression, logistic regression, k-Nearest Neighbors and decision trees, to

more complex ones, such as, support vector machines (SVM), neural net-

works, and its variant (such as convolutional neural networks (CNN) and

deep neural networks)[14].

Neural Network

Artificial neural network (ANN or simply NN) is a ML technique and in-

spired by the human brain functionality. In fact, artificial neural networks

are made up of artificial neurons (as emulation of biological neurons) in-

terconnected with each other to form a programming structure to mimic

organisation and learning procedure of biological neurons. Due to the spe-

cial ability of human brain in parallel data processing (in massive vol-

ume), it performs many tasks much faster than fastest computers. NNs are

meant to mimic such substantial performance, specially for the problems

with cognitive or associative tinge. To this end, NNs have been applied to

time-series prediction, pattern (image/speech) recognition, regression and

function approximation, classification and adaptive control.

NNs, as stated, consists of pools of simple processing units called neurons.

The neurons are categorized into three groups: input neurons (which orga-

nize the input layer) receive input from the outside; output neurons send

the data out of NN and form the output layer; and hidden neurons (which

comprise the hidden layer) receive data from within the NN and output the

data to another layer inside the NN. Fig. 1.2 illustrates the typical struc-

ture of NN. Each neurons sends its signal over large number of weighted

connections. Each connection is defined by a wjk associated with which

shows the effect that signal from neuron j has on neuron k. The output

of neuron k is first the summation over the weighted version of all neurons

in the prior layer as well as bias offset, and then activation the result of
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Figure 1.2: A Basic Neural Network.

summation using a activation function Fk, as follow [20]:

Fk(
∑
j=1

Bwjkyj + bk), (1.1)

where B denotes the number of neurons in the previous layer. The activa-

tion function is usually sort of threshold function, such as rectified linear

unit function, sigmoid function and hyperbolic tangent sigmoid.

NN is itself divided into two categories of feed-forward NN and recurrent

NN. In feed-forward NNs, the data enters at the inputs and is forwarded

through the network layer by layer, until it arrives at the outputs. While

recurrent NNs also contain feedback connections, which are connections

extending from outputs of neurons to inputs of neurons within the same

or previous layers. Examples of recurrent networks have been presented in

[21].

1.6.1.2 Unsupervised Learning

On the other hand, unsupervised learning algorithms are useful when the

data set only contains the input data and does not have any ground truth

labels [13, 22]. As such, these algorithms do not have a supervisor (i.e.

output data) to lead the training procedure. However, they search for sim-

ilarity in the data and form groups of similar examples (known as clusters
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Figure 1.3: The reinforcement learning cycle.

too). Since unsupervised learning tries to estimate a model without having

access to labeled output data, unsupervised learning algorithms are mainly

grouping algorithms (clustering), such as K-Means and mixture models

[13, 22].

1.6.1.3 Reinforcement Learning

As mentioned, in supervised learning the relational model between input

and output is developed using an external supervisor. But reinforcement

learning (RL) is quite different than supervised learning, as it deals with

interactive problem in which generating examples of desired behaviour are

quite hard or even impractical to achieve [23]. In fact, RL is adequate

for learning dynamic models, and specifically in interactive or unknown

situations where an agent has to learn from its own experience of interaction

with the environment, RL is the most appropriate solution [23]. RL is a

ML technique with an assigned goal meant to be achieve. In RL the agent

interacts with the surrounding environment by taking actions and receiving

rewards that show the effect of the action on the environment. After taking

an action the entire environment (system) transitions into a new situation
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(known as state) (as shown in Fig 1.3) [23, 24]. At the beginning of each

learning cycle, the agent receives a full or partial observation of the current

state, as well as the accrued reward. By using the state observation and

the reward value, the agent updates its policy (e.g. updating the Q-values)

during the learning stage. Finally, during the decision stage, the agent

selects a certain action according to the updated policy. The agent receives

a reward only if the taken action results in transition toward the optimal

state, otherwise it is penalized (meaning it receives a negative or small

reward). Basically, the agent and environment interact continuously at

certain time-steps. At each time-step, t, the agent receives a representation

of the environment’s state and selects an action according to a policy (π).

On the next time-step, t + 1, as a consequence of its action, the agent

receives a reward (rt+1) and transitions in a new state. The goal of an agent

is to maximize its total cumulative reward. Based on this, RL algorithm is

divided into four main components [23]:

• Policy: dictates the behaviour of the agent at each state s, basically

it determines which action a is chosen at state s.

• Reward (rt): a numerical value given by the environment to the agent

as the immediate return of taking an action, and that the agent tries

to maximize over time.

• Value function (Q function or action-value function): indicates the

expected value of visiting a state, Q(s, a), or the value of taking an

action in a specific state.

• Environment: includes everything outside the agent.

Regarding the RL algorithm, there is term know as exploration-exploitation

which determines how new action is selected. If the new action at state

s is selected based on the developed policy at that state, the agent ex-

ploit the best action. While if the new action is selected randomly, the

agent performs exploration, meaning that the agent explores new actions,

in order to determine if there are possible actions that lead to a better

cumulative reward. Furthermore, RL algorithms can be divided into three

main categories, as follow:
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• Dynamic programming (DP): in which the agent has a perfect model

of the environment, given by a Markov decision process (MDP), and

the goal is to learn the optimal policy (in order to choose the best

actions).

• Monte Carlo methods (MCM): in this case, it is not assumed that

there is complete knowledge about the environment. Thus, the agent

must learn either online, by experiencing the environment, or through

simulated experiences, in which the environment is represented by a

very simple model.

• Temporal-difference learning (TD learning): which can be defined as a

combination of MCM and DP. Just like MCM, TD learning agents can

learn directly from their experience with the environment, without the

need of the complete environment dynamics. Furthermore, similar to

DP, TD algorithms update their estimates (either a policy or a value

function) based on other learned estimates.

These algorithms can be further divided into On-Policy or Off-Policy, de-

pending on how learning is performed [23]:

• On-policy learning: the agent updates its value function and esti-

mates the return (the total discounted future reward) assuming that

the current policy continues to be followed. The performance of these

algorithms is evaluated via on-policy interactions with the environ-

ment. Specifically, it is an algorithm that, during training, chooses

actions using a policy that is derived from the current estimate of

the optimal policy, while the updates are also based on the current

estimate of the optimal policy.

• Off-policy learning: the agent updates its value function and esti-

mates the return assuming a different policy than the one that is

being followed. off-policy learning is good at predicting movement in

robotics. Off-policy learning can be very cost-effective when it comes

to deployment in real-world reinforcement learning scenarios. The

characteristic of the agent to explore and find new ways and cater

for the future rewards task makes it a suitable candidate for flexi-

ble operations. Imagine a robotic arm that has been tasked to paint
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something other than what it is trained on. Physical systems need

such flexibility to be smart and reliable.

With regard to RL there are also two famous terms, denoted as exploration

and exploitation. Given that the agent still does not know the optimal

policy, it often behaves sub-optimally. During training, the agent faces

a dilemma: the exploration or exploitation dilemma. Exploration is the

selection and execution (in the environment) of an action that is likely not

optimal (according to the knowledge of the agent) and exploitation is the

selection and execution of an action that is optimal according to the agent’s

knowledge (that is, according to the agent’s current best estimate of the

optimal policy). During the training phase, the agent needs to explore and

exploit: the exploration is required to discover more about the optimal

strategy, but the exploitation is also required to know even more about

the already visited and partially known states of the environment. During

the learning phase, the agent thus can’t just exploit the already visited

states, but it also needs to explore possibly unvisited states. To explore

possibly unvisited states, the agent often needs to perform a sub-optimal

action. With that being said we can discuss one of the most commonly

used methods in RL is the ε-greedy, which states that with a probability

p = (1 − ε) the action that results in the maximum value known by the

agent is chosen, whereas with probability p = ε an action is chosen at

random. Furthermore, when a decaying ε is chosen, this policy exhibits

a nice trade-off in terms of exploration and exploitation, in which in the

beginning, because the ε is quite larger, the agent will favour exploring

new actions, while later, due to the decaying ε rate, the agent favours the

exploitation of the best actions [23].

Q-Learning

One of the most popular algorithms in RL is Q-Learning. First proposed

by Watkins, in [25], Q-Learning is a TD Learning method that learns an

action-value function, Q(s; a), which represents the expected value of an

agent being in a certain state and taking a specific action. Q-Learning is a

method that, at each step at a state st, chooses an action that maximizes

its value function. This function, Q(st; at), indicates how good is taking an
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action at a specific state according to an immediate reward r. The agent

repeatedly makes decisions and finally obtains its optimal policy which

maximizes the expected sum of discounted reward:

Q(s, π) =
∑∞

t=0γ
t.E(rt|π, s0 =s), (1.2)

where π is the local strategy and s0 = s is the initial state. According to

Bellman’s principle of optimality [26], the solution to (1.2) can be obtained

by taking the optimal action if all the strategies thereafter are optimal:

Q∗(s, π∗) = max
a

[r(s, a) + γ
∑
s′

p(s′|s, a)Q(s′, π∗)]. (1.3)

Further, Q∗(s, π∗) in (1.3) can be approached by the Q-function, which is

updated as follows [23, 25]:

Qt+1(st, at)=(1−αt)Qt(st, at)+αt[rt(st, at)+γ.max
a
Qt(a, st+1)], (1.4)

where Q(st; at) is the current action-value function, α is the learning rate,

rt is the immediate reward, γ is the discount factor and maxaQt(a, st+1)

is an estimate of the optimal future action-value function at the next time

step, over all possible actions, a. In (1.4), the back-up, which is defined as

what the algorithm stores in memory, is represented by the right side of

the equation.

Deep Q-Learning

Equation (1.2) is a value iteration algorithm that converges to the optimal

action-value function if t → ∞. This approach is impractical. Conse-

quently, a function estimator is used to estimate the optimal action-value

function. In a Deep Q-Learning (DQL), a neural network has been pro-

posed as an efficient nonlinear approximator to estimate action-value func-

tion Qi(s, a; θ) ≈ Q∗(s, a), [16]. Deep Q-learning is suitable for the prob-

lems where the dimension of state-action space (possibly continuous) is

high. In this thesis we used a fully connected feed-forward Multilayer

Perceptronron (MLP) network to approximate the action-value function.
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DQL takes advantage of neural network as a powerful non-linear func-

tion approximator to estimate the action-value function. To improve the

learning performance, we include a technique known as ”experience re-

play” to the DQL algorithm. In experience replay, at each time step,

the experience of each agent with the environment is stored as a tuple

ei(t) = (ai(t), si(t), ri(t), si(t+ 1)) into a replay memory. The replay mem-

ory of the agent, denoted as D(t) = e(1), . . . , e(t), and its entries is used

to update the parameters of the action-value function. Basically, at each

time step random mini-batch of entries in memory is selected to train the

parameters θ of the action-value function. This approach has several advan-

tages over standard Q-learning. First, each step of experience is potentially

used in many weight updates, which allows for greater data efficiency. Sec-

ond, learning directly from consecutive samples is inefficient, due to the

strong correlations between the samples; randomizing the samples breaks

these correlations and therefore reduces the variance of the updates. Third,

when learning on-policy the current parameters determine the next data

sample which later are used to train the next parameters. This will lead

to see how unwanted feedback loops may arise and the parameters could

get stuck in a poor local minimum, or even diverge [23]. By using experi-

ence replay the behavior distribution is averaged over many of its previous

states, smoothing out learning and avoiding oscillations or divergence in

the parameters.

1.6.2 Learning Applications in CRNs

In the following, we review the existing learning applications to address

issues in CRNs. These efforts can be generally divided into five categories

of:

• Traffic Classification

• Routing Optimization

• Quality of Service (QoS)/ Quality of Experience (QoE) Prediction

• Resource Management

• Security



Chapter 1 19

Below a brief description of each category is presented.

Traffic Classification

Traffic classification is identification of different traffic flow types in the net-

work. Such information provides a network operator with a way to perform

a fine-grained network management. In fact, the network operators with

the help of traffic classification can more efficiently handle the various ser-

vices and allocate different resources. ML-based traffic classification can be

itself grouped into two approaches: application-aware traffic classification

and QoS-aware traffic classification. In application-aware traffic classifica-

tion the applications of traffic flow are identified [27–30]. Such classification

usually involves three major tasks. First, collecting flows of different type of

traffic, sorting them and extracting flow statistics and ground-truth train-

ing data from end devices and access devices; second deciding about which

classifier to use to identify the name of the application such as Facebook,

YouTube and etc., finally the flow type (such as video content, audio file,

file sharing and Instant Messaging (IM)) can be even classified in case if

a finer-grained traffic classifier is needed. However, due to the dramatic

growth of applications on the Internet, it is difficult and also impractical to

identify all applications. Since many different applications may belong to a

QoS class, the applications can be classified according to their QoS require-

ments into different QoS classes. The QoS requirements can be delay, jitter

or loss rate. This is what QoS-aware traffic classification approaches aim

to do: categorizing (putting) traffic flows into different QoS classes [31].

The performance of learning algorithms used to implement traffic classifi-

cation (which is mainly supervised learning algorithms) tightly depends on

training data set, its dimension and volume.

Routing Optimization

Routing is a fundamental network function as it controls the traffic flows of

the transmission links. Inefficient routing decisions may lead to over-loading

of network links and consequently end-to-end transmission delay increase.

Thus, traffic flows routing optimization is an significant research problem.
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The two widely used algorithms in this field include short path first (SPF)

algorithm and heuristic algorithms [32]. However, shortcomings associated

with these algorithms (such as high computational complexity and resultant

inefficient use of network resources) paved the way for development of ML-

based routing policies. Ml-based routing algorithms can quickly give near-

optimal solutions, of course after they were trained. Since the routing

optimization problem can be seen as a decision-making task, RL-based

algorithms have been applied significantly in this context. In particular,

the network has seen as the environment, composed of the traffic states

and the network have been usually considered as the state space and the

reward has been defined based on the metrics targeted to be optimized [33–

35]. Note that traffic prediction can enhance the performance of routing

optimization as it reduces the transmission delay by modifying the switches’

flow tables in advance [36]

QoS/QoE Prediction

ML-based QoS prediction approaches aim at discovering the quantitative

correlation between the network key performance indicators (KPI) (such

as packet size, transmission rate and the length of the queue) and QoS

parameters to improve the QoS management. For example, [37] studies the

problem of estimation of the network delay given the traffic load and the

overlay routing policy. Authors in [38] limited their study to the specific

application and performed application-aware QoS prediction for video on

demand (VoD) application. As the QoS parameters (e.g. delay, through-

put, jitter and loss rate) are often continuous variables (data), the QoS

prediction problem can be seen as a regression task; as a consequence the

supervised learning is an efficient learning paradigm to apply in this regard.

To have an end-user centric assessment of the quality of a received service,

QoE subjective metrics are often used. Mean opinion score (MOS) is the

most widely used QoE metric [39] which gives QoE values in five levels be-

ing as excellent, good, fair, poor and bad. Such values are obtained using

subjective methods which necessitate availability of number of users to rate

the quality of a specific service. Since the subjective methods are time con-

suming and expensive in cost, the QoS parameters are used to objectively
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model the QoE values. ML is an effective method which is used to learn

the relationship between QoS parameters and the QoE values. Since the

QoE values (MOS values) are discrete data, QoE prediction lie under the

realm of classification, and accordingly supervised learning algorithms are

the best fit for this task [40].

Resource Management

To improve the network performance an efficient network resource manage-

ment is the primary requirement needed to be met by network operators.

There are mainly three type of resources need to be managed efficiently

including catching, networking and computing resources. Networking re-

sources are used to deliver the data through the network and includes spec-

trum and transmit power, to name a few. Dynamic spectrum access (DSA)

has accounted large body of research under this resource management cate-

gory.Maximising (satisfying) the network QoS/QoE (requirements) is usu-

ally the background motivation for optimizing the management of these

type of resources. On the other hand, catching resources are used to store

the frequently requested data at devices to reduce the data transmission

delay, resulting in improvement of the network performance [41]. Develop-

ment of applications requiring more computational capability such as face

recognition and augmented reality as well as limited computing resources

and battery capacity motivated the researchers to consider more efficient

usage of computing resources. For example, to offload the computing tasks,

edge computing technologies are used to deploy the computing resources

closer to the end-users [42, 43]. The work in [44] focused on jointly allo-

cating the networking, caching and computing resources. In particular, it

formulated the resource allocation problem as a joint optimization prob-

lem by considering the gains of networking, caching and computing and

deployed deep Q-learning algorithm to obtain the best resource allocation

policy for the smart cities. [45] explores ML-based spectrum sharing so-

lution for a system where LTE and WiFi coexist together and share the

same unlicensed spectrum resources while each has its own separate con-

trollers. We explore more studies in next chapters that focused on resource

allocation management for the specific case of spectrum sharing problem.
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Security

Since the secure networks can be only accepted and used by users, security

has been always the vital aspect in development of any network which needs

to be considered by the network operators. Intrusion detection system

(IDS), as an important network security element, is responsible to monitor

the events in the network and identify the possible attacks. According to

how IDSs identify the network attacks, they are categorized into two types;

signature-based and anomaly-based IDS [46]. When traffic flows arrive,

signature-based IDS compare these traffics with known signature and if

they are not matched, the traffic flows are classified as malicious activities.

However, there are some shortcomings associated with signature-based IDS.

As in such IDSs humans are responsible for creating the signature of un-

known attacks, they can only identify attacks whose signature is available,

while the development of new attacks makes the signature update difficult.

The long time associated with comparing all signature is the next main

disadvantages of signature-based IDS.

Compared to the signature-based IDS, anomaly-based IDS performs sta-

tistical analysis on the collected data related to the behavior of legitimate

users to be later used to develop a model. The way it works is that each ar-

riving flow is compared with the model and if its behavior has a significant

deviation from the model, it is marked as anomaly. Thus, anomaly-based

are able to detect new type of attacks. ML methods have been widely used

in anomaly-based IDS. As stated anomaly-based IDS need training data

set to develop the model, thus, such intrusion detection can be considered

as a classification task (performed by supervised learning algorithms). As

a consequence, the high dimensional of input data set has impact on the

ML-based intrusion detection. to speed up the detection process while

maintain the accuracy, feature reduction is used to reduce the input data

dimensionality. Two well-known and effective methods in this regards are

feature extraction and feature selection. In feature extraction a set of exist-

ing features are used to extract one new feature, which results in reduction

in dimensionality. In feature selection a subset of appropriate features are

selected (instead of using all features). The works [47, 48] studied the

ML-based anomaly detection problem.
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1.7 Thesis Outline

This thesis consists of two core chapters where we present our machine

learning based resource allocation algorithms for underlay cognitive radio

networks. Chapter two discusses the supervised learning-based algorithm

where a recurrent neural network is used at each SU to predict the effect

of its transmission on the nearest primary link. Specifically, we present an

underlay DSA technique to infer, without tapping into feedback or control

channels from another network, the modulation order and the channel cod-

ing rate (and accordingly the effective bit rate) used in the transmission

of the primary network, and to leverage this inference in the realization of

a fully autonomous and distributed underlay DSA scheme. This ability to

estimate the effective throughput enables a finer control knob for a more

accurate power allocation with less harmful effect on PN transmissions.

In the third chapter, we explore the application of reinforcement learning

and its two main variant in allocating the resources for underlay DSA.

As opposed to the second chapter, where we consider a system with more

than one primary link, considered system in this chapter consisting of a

single primary link. This chapter itself consists of three sub-sections; in

first section we develop a physical-layer resource allocation algorithm while

in the second section a cross-layer algorithm is developed to incorporate

into our design the parameters from higher layers of protocol stack. This is

because in measuring the QoE for real-time video streaming SUs, not only

the PSNR of the received video traffic but also its experienced end-to-end

delivery delay play a key role. To guarantee the end-to-end delivery delay

for the video traffic we monitor the state of the queue at the data link

layer (where the video packets are buffered to be later transmitted) and

incorporate the result of this monitor into our machine learning model. In

the third section we explore the solution of transfer learning to address

the problem of long learning time associated with reinforcement learning.

This is because reinforcement learning devises the best resource allocation

decision (policy) only after performing a numerous trials and by rewarding

the successful decisions and penalising the failed ones. The philosophy be-

hind the transfer learning is to allow well-established and expert cognitive

agents (i.e. base stations or mobile stations in wireless communication con-

text) to teach newly activated and naive agents. This exchange of learning
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information is used to improve the performance of a distributed cognitive

radio network. With regard to transfer learning there are three main chal-

lenges: who to obtain the knowledge, the level of information exchange

and when to stop the information exchange. We, specifically, explore the

first two challenges regarding the transfer learning and their effect on the

learning performance of the RL algorithm. In the last chapter we conclude

the thesis.



Chapter 2

Fully Autonomous Supervised

Learning-Based Resource

Allocation Framework for

Underlay Cognitive Radio

Networks

In this chapter we develop a supervised learning-based CE for the SUs

operating under the underlay DSA scenario. The neural network is used

as the machine learning model to implement the supervised learning. As

stated in the first chapter, the data set is used as a teacher to supervise the

learning agent (and specifically the neural network) to detect the relation

between the inputs (coming from the environment) and output. The de-

ployed neural network in the work being presented in this chapter will be

trained using a data set collected from a network simulation with a set up

which will be described afterwards.

The motivation for developing this work is to answer the two key chal-

lenges in underlay DSA, which are how to establish an interference limit

from the primary network (PN) and how cognitive radios (CRs) in the

secondary network (SN) become aware of the interference they create on

the PN, especially when there is no exchange of information between the

two networks. These challenges are addressed in this chapter by present-

ing a fully autonomous and distributed underlay DSA scheme where each

25
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CR operates based on predicting its transmission effect on the PN. The

scheme is based on a cognitive engine with an artificial neural network that

predicts, without exchanging information between the networks, the adap-

tive modulation and coding configuration for the primary link nearest to

a transmitting CR. By managing the effect of the SN on the PN, the pre-

sented technique maintains the relative average throughput change in the

PN within a prescribed maximum value, while also finding transmit set-

tings for the CRs that result in throughput as large as allowed by the PN

interference limit. It is shown through simulation results that the ability

of the cognitive engine to estimate the effect of a CR transmission on the

full adaptive modulation and coding (AMC) mode that is used at a PN

link translates into a much more fine underlay transmit power control and

increase of the CR transmission opportunities, compared to a scheme that

can only estimate the modulation scheme used at the PN link.

2.1 Literature Review

Despite having been studied for almost two decades, the main challenges in

underlay DSA remain on how to establish the interference threshold for the

PN links and how the SUs autonomously become aware of the interference

they create on the PN, specially when following an ideal operating setup

where there is no exchange of information between primary and secondary

networks. In order for the SN to assess its effect on the PN and protect the

PN transmissions, researchers have proposed different techniques that usu-

ally assume that the secondary transmitter (SU-TX) knows the gain of the

primary channel (that between the primary transmitter, PU-TX, and the

primary receiver, PU-RX) and/or the cross-channel gain from the SU-TX

to the PU-RX, [49–56]. The common theme between these works is that

they make use of the information that is sent over a feedback channel from

the PU-RX. Since feedback channels are part of most wireless communica-

tion standards [57, 58], they have often been used, under the assumption

that SUs can access them, to not only estimate the primary channel gain,

but also assess the effect of the SN on PN transmissions. Examples of a CR

obtaining information about the primary link from a PN feedback channel

are found in [49–52, 56] for the case of the rate/power control feedback
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channel, in [53] and [54] for the ARQ feedback channel, and in [55] for

the feedback of the channel state information (CSI). In general, by relying

on listening to feedback channels from the PN all works mentioned above

share a setup where primary and secondary networks are not completely

separated and exchange information with each other. In fact, the access of

a control channel from another network calls into question as to whether

there are really two separate network or, as we would argue, a single net-

work with two different types of nodes.

With a different approach, the works in [59] and [60] proposed solutions to

obtain the cross-channel gain without listening to the PN feedback chan-

nels. The typical process in these works consists of the SU observing a

change in the primary’s waveform power and/or modulation order that re-

sults from the transmission of a probe message from the SU, [59], or the

SU acting as a relay by sending the amplified version of the signal received

from the PU, [60]. However, in these works a CR transmitter is not able

to estimate the cross-channel gain and later assess the effect of SN on PN,

unless it observes a change in primary signal power and/or modulation

order. Moreover, these work did not considered the combined effect from

scenarios with multiple links in the PN and the SN, as they focused on a

setup with one link in each network. In contrast to these works, the tech-

nique to be presented here is not limited by the need to observe a change

in transmit power or modulation order and is able to directly estimate the

effect of an SN transmission on the PN much more accurately by also es-

timating the channel coding rate in a PN link. Moreover, the work herein

is on scenarios consisting on multiple links in the PN and SN. In addition,

our presented technique meets a key requirement by not relying on any in-

formation exchange between the networks but, instead, takes advantage of

the use at the PN of adaptive modulation and coding (AMC), a technique

where the modulation scheme and channel coding rate, a pair of param-

eters known as the AMC mode, are adapted based on the quality of the

transmission link. The use of AMC has been part of all high performance

wireless communications standards developed over the past two decades

and, thus, expected to be used by a typical PN [61–63]. By estimating the

AMC mode used in a primary link, it becomes possible for a CR to learn

the signal-to-interference-plus-noise ratio (SINR) experienced at that link

because the AMC mode in use depends on the link’s SINR.
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Therefore, in this work we propose an underlay DSA technique that config-

ures the transmit power for a SU based on estimating the throughput at its

nearest PN link that corresponds to the AMC mode that would be chosen

based on the interference created by the SU’s transmission. The proposed

technique works in a distributed way and is not limited by the number of

links in the PN or the SN. The core of our technique is a non-linear au-

toregressive exogenous neural network (NARX-NN)-based cognitive engine

that estimates the throughput on a PN link (equivalently, the full AMC

mode), an indicator of the interference induced by the SU on the PN link,

using as input an estimate of the modulation scheme being used at the PN

link. As such, to the best of our knowledge, our presented cognitive engine

is the first to be capable of estimating the channel coding rate setting for

an AMC mode, a capability well beyond the estimation of the modulation

scheme that has been realized through multiple signal processing or ma-

chine learning techniques. While modulation classification, the technique

to estimate the modulation scheme used in a radio waveform, is applied

in our DSA technique to derive an input for the cognitive engine, it is not

the subject of this work. Instead, we leverage the already large volume of

existing research. In this regard, the work in [64] studied modulation clas-

sification based on second and higher order time variant periodic cumulant

function of the sensed signal for which it is required a prior knowledge of

the signal parameters. Authors in [65] used the same framework to perform

signal pre-processing, along with utilizing artificial neural networks to ad-

dress the issues associated with classification when the signal parameters

are unknown. The work in [66] proposed a fully automated modulation

classification scheme which employs two stages of signal processing to clas-

sify the modulation of an incoming signal. In this chapter we assume that

each SU applies the technique proposed in [66] on the nearest primary link

to infer its used modulation scheme.

Leveraging the use of adaptive modulation in the PN will allow us not only

to assess the effects of the SN on the PN, but will also allow us to establish

the PN interference threshold. As shown in [67], the use of adaptive modu-

lation allows for the background noise to increase up to a certain level before

the average throughput in a network starts to decrease. In the context of

underlay DSA where the PN does not exchange any information with the

SN, the interference imposed on the PN by an underlay-transmitting CR



Chapter 2 29

Figure 2.1: Considered network model composed of Np primary
transceivers and Ns cognitive radio users.

can be seen as a background noise for the PN, that can be increased up to

a level which does not affect the average throughput in the primary net-

work. Therefore, a CR can become aware about the interference that is

creating on the primary link and decide on its transmit power by inferring

the experienced throughput of the primary link (which is equivalent to the

full AMC mode used) and detecting any change in it.

The main contribution of this chapter resides in presenting an underlay

DSA technique to infer, without tapping into feedback or control channels

from another network, the modulation order and the channel coding rate

(and accordingly the effective bit rate) used in the transmission of the

other network (here primary network), and to leverage this inference in the

realization of a fully autonomous and distributed underlay DSA scheme.

This ability to estimate the effective throughput enables a finer control

knob for a more accurate power allocation with less harmful effect on PN

transmissions as compared to techniques that rely only on the estimation

of modulation order (from applying signal processing on the transmission

waveform).
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2.2 System Model

We consider a primary network with NP active primary links coexisting

with NS active secondary links, with both networks transmitting over the

same frequency band. The system model is shown in Fig.2.1, where G
(ps)
ij is

the path gain from jth. transmitting SU to the receiver in ith. primary link

(denoted as cross-channel gain), G
(ss)
ij is the path gain from the transmitter

in the jth. secondary link to the receiver in the ith. secondary link, G
(sp)
ij

is the path gain from the transmitter in jth. primary link to the receiver in

ith. SU link, G
(pp)
ii is the path gain from the ith. primary transmitter to its

corresponding receiver, and G
(ss)
ii is the path gain from the ith. secondary

transmitter to its corresponding receiver. While, G̃
(ps)
ij is the path gain from

the transmitter in jth. secondary link to the transmitter in ith. primary

link.

In this section we focus on describing the operation of the PN, which is

incumbent to the considered radio spectrum band. Section 2.4 will present

the underlay DSA scheme implemented in the SN. We assume that the PUs

receive service from NPBS transmitting base stations (BSs), and we call the

ratio NP/NPBS as the primary network load. Each PU is assigned to the

base station that presents the best channel gain. In addition, AMC is used

in all transmissions (primary and secondary networks). This means that a

transmitter has information about its link quality, in terms of SINR, and

based on this assessment chooses, from a set of options, the modulation

scheme and channel coding rate that results in highest throughput while

at the same time meeting a maximum bit error rate (BER) limit.

Let P
(p)
i denotes the transmit power in the ith. active primary link (i =

1, 2, . . . , NP ). Then, in the absence of the SN, the SINR in the ith. primary

link (which is used to decide on the AMC mode) can be written as,

γ
(p)
i =

G
(pp)
ii P

(p)
i∑

j 6=i

G
(pp)
ij P

(p)
j + σ2

p

, i = 1, 2, ..., NP , (2.1)

where σ2
p is the background noise power.

In addition to AMC, without loss of generality, we adopt for the primary
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network the variable transmit power allocation algorithm proposed in [67].

This is an iterative power control algorithm that converges to a global

optimum solution that maximizes the product of SINRs across all active

links. In the algorithm, the transmit power at the ith. primary link is

updated as,

P
(p)
i ←−

(∑
j 6=i

G
(pp)
ji∑

m 6=j G
(pp)
jm P

(p)
m + σ2

p

)−1
. (2.2)

2.2.1 SU Transmission Effect Assessment on the PU:

Analytical Framework

In this section, we develop an analytical framework to explore, under a fully

autonomous and distributed transmission scenario, the possibility of closed-

form analytical estimation of the interference created by a transmitting

CR to its nearest PU link. It is assumed that the PUs are oblivious to

the existence of the SUs and treat the interference from transmitting CRs

as additional noise at their receiver. As mentioned earlier, we consider a

practical scenario where there is no communication channel dedicated for

the PUs to send any side information (e.g., G
(ps)
ij ) to the CRs in order to

facilitate their interference control to the PN.

Similar to our proposed technique to be presented inhere, we assume two

stage of operations in the SN. During the first stage, every SU in the SN lis-

tens to the transmissions in the PN and observes the received signal power.

In the second stage, every SU broadcasts a probing signal with the same

power to interfere with transmissions in the PN. Since PUs deploy trans-

mit power and rate adaptation upon receiving an interference signal, every

PU’s receiver sends back a control signal to its corresponding transmitter

to adapt its transmit power and rate (in specific, AMC mode in this work)

accordingly. Finally, the PUs transmit adaptations are observed by the

SUs. We assume that SUs know the primary transmission protocol and are

able to synchronize their operation with the primary transmissions, and

that all the channel gains involved in Fig. 2.1 remain constant during this

process.
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Let P
(p)
i [0] denotes the initial transmit power in the ith. active primary

link (i = 1, 2, . . . , NP ) while SUs listen to the transmissions in the PN.

The received signal power at this stage (i.e. listening stage) at ith. SU

transmitter can be written as Si[0] =

NP∑
j=1

G̃
(ps)
ij P

(p)
j [0]. This equation further

can be separated into two parts: one for the power received from the nearest

PU transmitter and a second component for the received power from the

rest of active PUs in the system, as in,

Si[0] = G̃
(ps)
in P (p)

n [0] +

NP∑
j=1
j 6=n

G̃
(ps)
ij P

(p)
j [0], (2.3)

where G̃
(ps)
in P

(p)
n [0] shows the power received from the nearest PU active link

(the subscript n is used to highlight, among all active transmission links

in the PN, the nearest link to the ith. SU). Considering the same probing

signal power for all SUs to be as P (s), the observed power at the ith. SU

transmitter during the probing stage can be also written as:

Si[1] = G̃
(ps)
in P (p)

n [1] +

NP∑
j=1
j 6=n

G̃
(ps)
ij P

(p)
j [1] + Iss, (2.4)

where Iss =

NS∑
j=1,j 6=i

G
(ss)
ij P (s) denotes the total interference from the SN to

the ith. transmitting SU, and P
(p)
j [1] denotes, for the jth. PU transmit

link, the new adapted transmit power. Without loss of generality it can

be assumed that P
(p)
i [0] > 0, and thus Si[0] > 0, because if P

(p)
i [0] = 0,

the SU can simply transmits as the spectrum band is unoccupied; and the

estimation of the created interference becomes unnecessary. The received

signal powers during the listening and probing stage contain the informa-

tion about the cross-channel gain between ith. SU transmitter and its

corresponding nearest PU receiver G
(ps)
in . As mentioned earlier, the cross-

channel gain can be used at the SU to assess its effect of transmission on

the PU. Thus, in the following we explore whether each SU can determine

G
(ps)
in using its observations. By dividing the signal powers received at the

ith. SU transmitter across two listening and probing stages Si[0] and Si[1],

we have:
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Si[1]

Si[0]
=

G̃
(ps)
in P

(p)
n [1] +

NP∑
j 6=n

G̃
(ps)
ij P

(p)
j [1] + Iss

G̃
(ps)
in P

(p)
n [0] +

NP∑
j=1,j 6=n

G̃
(ps)
ij P

(p)
j [0]

(2.5)

On the other hand, based on the assumption we made in this chapter, each

SU is able to perfectly estimate the adapted modulation order (number

of bits per modulation symbols) of its nearest PU link. Due to the use

of AMC at every transmission link in the system, the relation between

modulation order and the experienced SINR at ith. primary link receiver

can be expressed as [67? ],

M
(p)
i = log2(1 + kγ

(p)
i ), (2.6)

where M
(p)
i is the ith. PU’s modulation order, k is the inverse SNR gap

constant k = 1.5
− ln(5BER)

which depends on a target maximum transmit bit

error rate (BER) requirement, and γ
(p)
i is the SINR at the receiver of this

link. During the listening stage, the γ
(p)
i can be expressed as,

γ
(p)
i [0] =

G
(pp)
ii P

(p)
i [0]

Ipp[0] + σ2
p

, (2.7)

where Ipp[0] =

NP∑
j=1,j 6=i

G
(pp)
ij P

(p)
j [0] denotes the interference from the PN to

the ith. primary link, and σ2
p is the background noise power. Using (2.6)

and (2.7), P
(p)
i [0] can be expressed as follows,

P
(p)
i [0] =

(2M
(p)
i [0] − 1)(Ipp[0] + σ2

p)

kG
(pp)
ii

, (2.8)

where M
(p)
i [0] denotes the PU’s modulation order. During the probing

stage, due to the additional interference created by the SN, γ
(p)
i [0] is changed
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Si[1]

Si[0]
=

G̃
(ps)
in

(2M
(p)
i

[1]−1)(Ipp[1]+Ips+σ2
p)

kG
(pp)
ii

+

NP∑
j=1
j 6=n

G̃
(ps)
ij P

(p)
j [1] + Iss

G̃
(ps)
in

(2M
(p)
i

[0]−1))(Ip[0]+σ2
p)

kG
(pp)
ii

+

NP∑
j=1
j 6=n

G̃
(ps)
ij P

(p)
j [0]

, (2.11)

to be:

γ
(p)
i [1] =

G
(pp)
ii P

(p)
i [1]

Ipp[1] +

NS∑
j=1

G
(ps)
ij P (s) + σ2

p

, (2.9)

where Ipp[1] =

NP∑
j=1,j 6=i

G
(pp)
ij P

(p)
j [1] denotes the interference from the PN to

the ith. primary link. Using (2.6) and (2.9), P
(p)
i [1] can be expressed as:

P
(p)
i [1] =

(2M
(p)
i [1] − 1)

(
Ipp[1] +

NS∑
j=1

G
(ps)
ij P (s) + σ2

p

)
kG

(pp)
ii

, (2.10)

where M
(p)
i [1] denotes the PU’s new adapted modulation order at the prob-

ing stage. By substituting P
(p)
n [0] with (2.8), and P

(p)
n [1] with (2.10), equa-

tion (2.5) can be rewritten as (2.12), where Ips = G
(ps)
in P (s)+

NS∑
j=1,j 6=n

G
(ps)
ij P (s)

displays the interference from the SN to the ith. SU’s nearest primary link

after probing (recall that cross-channel gain is denoted by G
(ps)
in ).

Si[1]

Si[0]
=

G̃
(ps)
in

(2M(γ
p
i
[1])−1)Ipp[1]+P (s)G

(ps)
in +Ips+σ2

p

kG
(pp)
ii

+

NP∑
j=1,j 6=n

G̃
(ps)
ij P

(p)
j [1] + Iss

G̃
(ps)
in

(2M(γ
p
i
[0])−1))Ip[0]+σ2

p

kG
(pp)
ii

+

NP∑
j=1,j 6=n

G̃
(ps)
ij P

(p)
j [0]

,(2.12)

where Ipp[1] =

NP∑
j=1,j 6=n

G
(pp)
ij P

(p)
j [1] denotes the interference from the PN



Chapter 2 35

to the ith transmitting SU’s nearest primary link after probing, Ipp[0] =
NP∑

j=1,j 6=n

G
(pp)
ij P

(p)
j [0] denotes the interference from the PN to the ith trans-

mitting SU’s nearest primary link before probing, Iss =

NS∑
j=1,j 6=i

G
(ss)
ij P (s)

denotes the interference from the SN to the ith transmitting SU, and

Ips =

NS∑
j=1,j 6=n

G
(ps)
ij P (s) displays the interference from the SN to the ith trans-

mitting SU’s nearest primary link after probing.

In the particular case when the PN and the SN have each only one link,

(2.12) can be simplified as:

Si[1]

Si[0]
=

(2M
(p)
i [1] − 1)(G

(ps)
in P (s) + σ2

p)

(2M
(p)
i [0] − 1)σ2

p

, (2.13)

Provided that the σ2
p is known by the SU, the ratio Si[1]

Si[0]
can be used to

estimate the cross-channel gain and subsequently the interference from the

SU to the PU (Note that M
(p)
i [1] and M

(p)
i [0] are known at the SU trans-

mitter). Yet, in the general case of having multiple transmission links in

both networks, (2.12) is the appropriate expression which requires from

the SUs knowledge of too many system variables (the gains, etc.). Under

the assumption of a fully autonomous network, it is almost impossible to

achieve all involved parameters and obtain a closed solution to this prob-

lem (and in specific estimate for the SUs their corresponding cross-channel

gains). Therefore we resort to the use of artificial neural network to solve

the problem of SUs assessing their effect on the PN. The rational for this

decision rests on the artificial neural network’s property of being known

as universal function approximator and their ability to implicitly extract,

during the learning (training) process, the interrelation between the system

variables. Leveraging these characteristics of artificial neural networks in

our proposed technique allows for the SUs to assess their transmission effect

on the PN without the need to calculate intermediate magnitudes (e.g. the

cross-channel gain(s)).
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2.3 Leveraging Adaptive Modulation and Cod-

ing in Underlay DSA

Before presenting our proposed underlay DSA technique, in this Section we

outline the main ideas on how AMC can be leveraged to address the two

main challenges associated with underlay DSA: How to establish the inter-

ference threshold in the PN and how SUs can autonomously become aware

of the interference they create on the PN. As previously noted, AMC (or,

as also called, link adaptation) has been used during the past two decades

in practically all high-performance wireless communications standards and,

as such, is assumed to be used in both the primary and secondary networks

in this work. In this section we summarize some main features of AMC

that are relevant to our fully autonomous and distributed underlay DSA

scheme.

Fig. 2.2, obtained using the Matlab LTE Link Level Simulator from TU-

Wien [68], shows the throughput versus signal-to-noise ratio (SNR) perfor-

mance for the LTE system that will serve without loss of generality as the

assumed AMC setup for the rest of this work (setup details for the simula-

tion results shown in Fig. 2.2 are discussed in Section ??). In LTE, AMC

consists of 15 different modes (each for a different “Channel Quality Indi-

cator” - CQI) based on three possible modulation schemes which will be

called “type 0 ” for QPSK (used for the smaller SNR regime), “type 1 ” for

16QAM (used at intermediate SNRs), and “type 2 ” for 64QAM (used for

the larger SNRs). In AMC, alongside the modulation order, channel coding

rate is also adapted [69, 70]. Fig. 2.2 shows the throughput of one LTE

resource block achieved for each AMC mode (each curve is labeled with the

corresponding CQI value and AMC mode settings, formed by the modu-

lation type and channel coding rate) and the overall performance curve of

the AMC scheme, where the modulation type and code rate are chosen to

maximize throughput but with a constraint on the block error rate (BLER)

not to exceed 10%. During transmission, the transmitter chooses the AMC

mode with maximum throughput at the estimated SNR of the link.

As was discussed in [67], the use of AMC in conjunction with transmit

power control allows the background noise to increase up to a maximum

value without significantly affecting the network average throughput. In
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Figure 2.2: Throughput of one resource block as a function of SNR
for the AMC scheme of an LTE system .

the context of underlay DSA, this maximum noise value can be interpreted

as the maximum value for the combined powers of background noise and

interference from the SN and the rest of the PN. To see this important

point in detail, consider Fig. 2.3, which is an expanded version of Fig. 5 in

[67], now for different network loads (NP/NPBS) when using the LTE AMC

setup just described and the power control algorithm from [67]. The figure

shows the average throughput achieved in the PN by itself (the presence

of an SN is not included in this result) as the background noise power in-

creases. On the top, the figure shows the property associated with the use

of adaptive modulation that for all network loads the average throughput

remains approximately constant until noise power becomes sufficiently sig-

nificant. This is not a trivial observation as networks with a higher load are

operating in a regime more influenced by the interference rather than the

noise, but it is clear from the results that adaptive modulation manages to

maintain a balance between interference and noise-dominated operation.

The bottom of Fig. 2.3 shows as a function of noise power, the change

in throughput relative to the throughput at the lowest noise power. The

result exposes the remarkable property that the interference that would be

imposed by the SN, which can be considered by a PN that is unaware of the

presence of another network as part of the background noise, will not sig-

nificantly affect the average throughput in the primary network as long as

the combined SN interference, the interference by other primary links and

actual background noise remains below a threshold approximately equal to

-85 dBm (although this number somewhat depends on the network load).
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Moreover, relative throughput change starts to decrease at approximately

the same value of noise power for all network loads (around -90 dBm). This

is a consequence of the link adaptation performed through AMC. Moreover,

throughput relatively decreases faster with smaller network loads. We be-

lieve that this is because at smaller network loads, interference across the

network is lower and a larger ratio of transmissions use the less resilient

higher rate modulation types.

Figure 2.3: Throughput vs. noise power in the primary network.

While AMC entails the adaptation of both modulation order and channel

coding rate, it can be seen in Fig. 2.2 that the modulation order pro-

vides a coarse adaptation and that the channel coding rate enables a finer

adaptation within each of the choices for modulation order. Moreover, an

important difference between modulation order and channel coding rate

adaptations is that while it is possible for a passive “listener” of the AMC

transmission to infer the modulation order through the use of modulation

classification signal processing, it is not possible to infer the channel coding

rate. Indeed, there exists a large body of research in the area of modulation

classification with some representative works briefly discussed in Sect. 1

(e.g. [64–66]). Consequently, the techniques that existed before our work

have been limited to use only the coarse information derived from the mod-

ulation order (e.g. [59, 60]) or to rely on the sharing of information between

the PN and the SN through the SUs accessing the control feedback channel

in the PN to learn the finer information associated with the channel coding
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rate used in a primary link (e.g. [54]). As will be seen, our proposed tech-

nique is able to overcome the limitation of inferring the channel coding rate

without exchange of information between the PN and the SN and, as such,

be able to use the fine-grained information provided by channel coding rate

without the SN tapping into any control channel of the PN.

We finally highlight that, as can be seen in Fig. 2.2, when the noise power

increases (or equivalently the SN interference increases) the effect of AMC

operation will be to change the AMC mode to one associated with a smaller

CQI. At the same time, the modulation scheme with the smallest order is

used for the smallest operating SINRs (because the transmission of less bits

per symbol is more resilient to interference and noise). As the interference

from secondary transmissions increases, primary links that are already us-

ing this modulation scheme in the absence of secondary transmissions will

not switch to other modulation schemes because there is no other modula-

tion scheme with fewer bits per symbols (with smallest associated CQI) to

switch to. This means that transmissions from an SU that otherwise would

generate a change in modulation scheme would not result in any change

when the nearest primary link is already transmitting with the modulation

scheme with smallest bits per symbol.

2.4 Autonomous and Distributed Underlay

DSA for Cognitive Radio Networks

We now present the main contribution of this chapter: a fully autonomous

and distributed underlay DSA technique for a secondary CR network. We

assume that the transmitting SUs are randomly located within the area cov-

ered by the primary network and that each of them has assigned a receiving

SU randomly located within a circular region around the transmitter. The

operation of the SN is fully autonomous and ad-hoc. This means that SUs

do not rely on any exchange of information with the PN and with other

SUs (other than between transmitter-receiver pairs) and that the transmis-

sion control algorithm in the SN needs to be distributed. While there is

no information exchange between primary and secondary networks, it is
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assumed that the SN has knowledge of the underlying timing operation in

the PN so as to allow CRs to sense at appropriate times.

Fully autonomous operation implies that the primary and secondary net-

works operate as being unaware of the other (except for the above mild

timing assumption), considering the other network transmissions as out-

of-network interference akin to background noise. Then, when adding an

underlay SN, the SINR at the receiver of the ith. PN link now becomes,

γpi =
G

(pp)
ii P

(p)
i

NP∑
j 6=i

G
(pp)
ij P

(p)
j +

NS∑
j=1

G
(ps)
ij P

(s)
j + σ2

, (2.14)

where P
(s)
j is the transmit power from the jth. transmitting SU and G

(ps)
ij

is the path gain from a transmitting SU j to a PU i. Likewise, it is assumed

that transmissions on the SN also make use of AMC, which is configured

based on the corresponding link SINR. For this, the SINR, γ
(s)
i , at the

receiver of the ith. SN link is

γ
(s)
i =

G
(ss)
ii P

(s)
i

NS∑
j 6=i

G
(ss)
ij P

(s)
j +

NP∑
j=1

G
(sp)
ij P

(p)
j + σ2

, (2.15)

where G
(ss)
ij is the path gain from the transmitter in the j-th secondary

link to the receiver in the i-th secondary link, and G
(sp)
ij is the path gain

from j-th BS to i-th SU. All transmissions are assumed to be over a flat

quasi-static fading channel that is considered constant during a sensing

and transmission period. This setup assumed for the SN is general, yet

practical, as it is applicable to numerous wireless cognitive ad-hoc networks

scenarios.

In the proposed underlay DSA technique, a cognitive engine at each SN

transmitter learns the functional model of the interaction between the sec-

ondary and primary networks. Often, analytical models have been used

to characterize the performance of the SN. For example, in [71] the BER

performance of different modulation orders have been characterized using

analytical models. However, we think that deriving an analytical model to

devise the throughput and specifically channel coding rate in primary link is
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very challenging issue, specially in nonideal scenario of real wireless network

deployments, and involves making several assumptions such as presence of

ideal channel gains between nodes in the system. Black-box modeling is

an alternative approach to analytical models which consider analyzing the

relation between input and output of a system and aims at building a pre-

dictor to estimate output values for unforeseen inputs and variations of the

system configurations. In this work we will follow a black-box modeling

approach.

Neural Networks (NNs) applied to black-box modeling have become increas-

ingly popular as general purpose function approximators and, specifically,

for dynamic system modeling [72]. Neural networks have been successfully

applied to a number of modeling and time series prediction tasks. Due to

the inherent capability of neural networks in modeling nonlinear systems

and their higher robustness to noise, they frequently outperform standard

linear techniques when the time series is noisy and the dynamical system

that generated the time series is nonlinear [73]. There is a growing number

of works that have applied neural networks for various communication tasks

such as channel decoding, estimating the features of the user channels and

predicting the anomalies for wireless sensor networks [74–76]. For CRs, the

feed forward neural network has been used in predicting the spectrum oc-

cupancy status [77] and designing a medium access control (MAC) protocol

[78].

Due to the adaptation of SUs transmission to the PN interference thresh-

old, an underlay network can be seen as an example of a dynamic system,

and the throughput in the PU can be also seen as a time series with a tem-

poral dependency. As a result, we have considered a neural network-based

cognitive engine to in specific predict as a time series data the throughput

in PU and characterize the behavior of such dynamic system. In the case

of one-step-ahead time series prediction tasks, since only the estimation of

the next sample value of a time series is required, without feeding back the

output as a new input to the model, the input contains only actual sample

points of the time series. While considering multi-step-ahead or long-term

prediction, the neural network model’s output should be fed back to the

model as a new input for a finite number of time steps [79]. In this case, the
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components of this input to the model, previously composed of actual sam-

ple points of the time series, are gradually replaced by previously predicted

values. As a result, the multi-step-ahead prediction task is converted to a

dynamic modeling task. In this case, the neural network model behaves as

an autonomous system and tries to recursively emulate the dynamic behav-

ior of the system that generated the nonlinear time series [80]. Compared

to the one-step-ahead prediction, multi-step-ahead prediction and dynamic

modeling are much more complex to deal with. However, neural networks

models and in particular recurrent neural architectures play an important

role in dealing with these complex tasks [81]. Elman introduced in [82] a

class of recurrent neural models called simple recurrent networks (SRNs)

which are essentially feedforward in the signal-flow structure with a few

local and/or global feedback loops. A time delay neural network (TDNN),

which is an adapted version of a feedforward multilayer perceptron (MLP)-

like networks with an input tapped-delay line, can be used to process time

series [81]. In the case of long-term predictions, a feedforward TDNN model

will eventually behave similarly to the SRN architecture, since a global

loop is needed to feed back the current estimated value into the model’s

input. Temporal gradient-based variants of the backpropagation algorithm

are usually used to train the aforementioned recurrent neural networks [83].

However, training using gradient-based learning algorithms can be quite dif-

ficult in the case of systems with a long time temporal dependencies in their

input-output signals [84]. In [85], the authors claimed that such training is

more effective in a class of simple recurrent network model called Nonlin-

ear Autoregressive with eXogenous input (NARX) [86–88] than in simple

MLP-based recurrent models. This class of neural networks were proven

to be powerful in pattern recognition and classification applications as well

[89, 90]. In this chapter, the architectural approach proposed for modeling

underlay system was chosen based upon the NARX neural network struc-

ture. Specifically, we choose the NARX neural network to implement the

cognition task of cognitive engine in each SU.

With a topology as shown in Fig. 2.4 for the case of one hidden layer net-

work, the NARX neural network output can be mathematically represented
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Figure 2.4: NARX neural network with two delayed inputs and one
delayed output.

as [91],

y(n+ 1) = f
(
y(n), y(n− 1), . . . , y(n− dy);

u1(n), u1(n− 1), . . . , u1(n− du1);

u2(n), u2(n− 1), . . . , u2(n− du2)
)
, (2.16)

where u(n) and y(n) denote, respectively, the input and output of the

model at discrete time step n, and du1 ≥ 1, du2 ≥ 1 and dy ≥ 1, du1 ≥ dy

, du2 ≥ dy are the input and output discrete delays, respectively. The

nonlinear mapping f(·) in (2.16) can be approximated, for example, by a

standard feedforward multilayer neural network. If the non-linear mapping

can be learned accurately by a neural network of moderate size (measured

in terms of number of layers and number of artificial neurons in each layer),

the resource allocation based on the output of the NARX neural network

can be done in real time, since passing the input through the neural network

only requires a small number of simple operations.

In Fig. 2.4 each circle represents an “artificial neuron”, an elementary oper-

ation unit in the NARX neural network model which performs an operation
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Figure 2.5: Block diagram of an SU with a cognitive engine based on
the NARX neural network.

on its inputs given by,

z = φ

(∑
i

wixi + b

)
, (2.17)

where z is the output of the neuron, xi is the ith. input, which is multiplied

by the weighting factor wi, b is a bias applied to the neuron (not explicitly

shown in Fig. 2.4) and φ(·) is called the “activation function”. In our

implementation of the NARX neural netowrk, this activation function φ(·)
for the hidden layer is a sigmoid function while the activation function used

for the output layer is linear (the input layer is not truly formed by artificial

neurons but rather it is conventionally included as a representation of the

connections of inputs into the neural network).

Fig. 2.5 illustrates the block diagram of an SU with its cognitive engine

based on the NARX neural network, as well as other processing steps as-

sociated with the inputs and output of the neural network. The function

of this cognitive engine will be to aid in the setting of power control and

AMC parameters for a transmitting SU, by predicting for different trans-

mit settings the throughput T̂ (equivalently the CQI or AMC mode) of the

nearest PN link. Under our imposed practical condition of no exchange

of information between the primary and secondary networks, a CR can

only estimate the modulation order, after performing modulation classifi-

cation signal processing on the PN transmissions, and immediately has no

direct way to know the coding rate in use (this is, unless accessing the PN’s

feedback channel, which would violate our condition). Moreover, practical

limitations further dictate that the modulation classification can only be

performed on the one primary transmission that it is being received with

strongest power (usually this is the closest one), making the other transmis-

sions be interference. It is assumed that the estimation of modulation type
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does not rely on the SU accessing any information from the PN feedback

channel and is error free using any of the methods existing in the literature

(e.g. [65] or [66]). Since the modulation order setting of a primary link

provides a coarse indication of its SINR, this is, of the effect that an SU

transmission at some power level has on the primary link, we configure the

NARX neural network cognitive engine to have as inputs the most recent

values of assigned transmit power levels at the SU (u1(n)) and, correspond-

ing to these transmit power levels, the modulation order (u2(n)) being used

in the closest primary link that is inferred using a modulation classification

technique. The output of the NARX neural network cognitive engine is the

predicted throughput T̂ (n) at the primary link closest to the transmitting

CR. The predicted throughput on a primary link corresponds to a choice

of AMC mode.

The proposed NARX neural network undergoes a training process to de-

termine the values of its weights and biases. In this training process, the

weight and bias values are updated according to the Levenberg-Marquardt

optimization method. This method involves a back-propagation algorithm

to compute the gradients of the prediction error corresponding to the arti-

ficial neurons [92]. It is known that in the case of function approximation

problems, for the neural networks containing up to a few hundred weights,

the Levenberg-Marquardt algorithm will have the fastest convergence [93].

Mean square error (MSE) was chosen as the prediction error metric:

MSE =
1

N

N∑
i=1

(ei)
2 =

1

N

N∑
i=1

(Ti − T̂i)2, (2.18)

where N is the number of neurons in the hidden layer, Ti and T̂i are target

and predicted values, respectively. In order to find the number of hidden

nodes and depth of the tap-delay lines in the NARX neural network, we

perform a through set of experiments with different configurations. The

best performing structure was found to be with 50 hidden nodes and 7

time delay steps. Fig. 2.6 illustrates the performance of the NARX neural

network for a primary network load equal to 0.64. Further details regarding

the generation of the target prediction values Ti used during training are

provided in the next Section.

For the complete system operation, first the SUs avoid transmission while
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Figure 2.6: Throughput prediction performance of the NARX neural
network. Best validation performance is 0.10825 at epoch 2.

the PN initially adjusts its power and AMC parameters using the iterative

power control algorithm (2.2). During this stage, the SUs listen to the PN

transmission and infer the modulation order used by their closest primary

link. At this stage, the SUs obtain an estimate of the modulation order used

by their corresponding nearest primary link when the SN is not transmit-

ting. After this, each SU proceeds to send a series of short probe messages

configured with different transmit powers. Each SU performs modulation

classification for each probe message on its nearest primary link. The se-

quence of probe message transmit powers and ensuing modulation orders

are fed to the NARX neural network, which provides the sequence of corre-

sponding estimated throughput values at the nearest primary link, T̂ . Note

that this sequence of estimated throughput values includes the one with no

transmissions from the SN. Since estimating the throughput is equivalent

to estimating the CQI and the corresponding AMC mode, the NARX neu-

ral network is able to provide an estimate of the nearest primary link SINR

with a finer resolution than what could be derived from the modulation

classification alone that is present at its input.

Furthermore, the SU can use the sequence of estimated throughput values

to infer what would be the effect of its transmission on the nearest primary

link by comparing the change in throughput value against that without

the SN transmission. As seen in Fig. 2.5, the SU uses this information to

find its own transmission parameters. We will consider two approaches for

the SUs to choose transmit settings. In the first one, the SU chooses the

maximum transmit power value that is estimated to not lead to a change

in modulation order at its nearest primary link. In the second approach,
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the SU chooses the maximum transmit power value that keeps the relative

change in throughput of its nearest primary link below a predetermined

limit. Note that the second approach differs from the first one in that it

fully uses the advantage provided by the NARX neural network in providing

the finer resolution inference on the nearest primary link full AMC mode,

instead of the coarser inference on modulation order that the first scheme is

based on. Additionally, for both approaches, those SUs that estimate that

their closest primary link is transmitting in the lowest rate AMC mode

when the SN is not transmitting (because of already experiencing a very

low SINR, likely leaving no room for added interference from the SN) are

prevented from transmitting. This guarantees that the reduction in the

average rate of the primary link experiencing the poorest channel quality

(CQI equal to 1) is minimized.

Going back to Fig. 2.2 helps to gain an intuition into the NARX neural

network cognitive engine operation. The NARX neural network receives

as one input the possible SU’s transmit power levels organized in sequence

and, as another input, the corresponding modulation order sensed from the

nearest primary link. During training, the NARX neural network learns to

predict the throughput values at the nearest primary link that correspond

to the two input sequences. Considering (2.14), we can think that the

sequence of transmit power values that is input to the NARX neural net-

work will yield a range of interference values, which will correspond to a

“segment” of SINR values in the abscissa of Fig. 2.2. The position of

this segment within the range of SINR values depends on the many fac-

tors reflected in (2.14) (e.g. primary channel gain, interference from other

SUs, etc.) but the NARX neural network has a sense of where the seg-

ment is thanks to the reference provided by the sequence of modulation

orders at the input (e.g. if for the setup in Fig. 2.2, the sequence of mod-

ulation schemes are QPSK and 16QAM, the SINR segment is around 10

dB). During training, the NARX neural network is presented with multiple

different such segments from different wireless environment scenarios, even-

tually learning the throughput vs. SINR AMC performance curve. During

operation of the NARX neural network (the testing phase), sensing the se-

quence of modulation schemes that results from probing SU transmissions

with a sequence of possible power settings allows the NARX neural net-

work to localize the segment of SINR values for the nearest primary link
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(in effect, finding the network scenario presented during training that best

matches the existing wireless environment) and, consequently, predicts the

corresponding throughput from the AMC performance curve.

2.5 Results

The performance of the presented technique was evaluated through Monte

Carlo simulations (150 runs) based on a PN “playground” consisting of a

five-by-five BSs grid (NPBS = 25) with neighboring base stations separated

by a distance of 200 m. To avoid edge effects in the playground, the grid

wraps around all its edges. One channel was singled out in the experiment

and any of the base stations can have this channel active. In order to

reflect realistic AMC settings, we assumed that all transmissions are based

on an LTE 2x2 MIMO configuration and that the channel of interest is one

resource block with a bandwidth of 180 kHz.

As noted earlier, we assumed that there are NP active base stations that

are using the same channel to communicate with their respectively assigned

PU receivers. The location of the NP PU receivers is determined at random

using a uniform distribution with the limitation that no base station could

have more than one receiver assigned to it. Also, the receivers were con-

nected to the base station from which they received the strongest signal.

Transmit powers in the primary network were limited to the range between

-20 and 40 dBm. The transmit power assignment for the ith. active pri-

mary link (i = 1, 2, . . . , NP ) follows the same algorithm as in (2.2). Each

primary transmission considers the other network transmissions as out of

network interference akin to background noise.

In the simulation, the SN consisted of NS = 4 transmit-receive pairs of

CRs, with the transmitters placed at random (also with a uniform distribu-

tion) on the PN playground, around their respectively assigned transmitter

within a distance not exceeding 50 m. In the simulation setup we intended

to reflect a situation where the PN had somewhat more capabilities (achiev-

ing larger throughput and communication range) than the SN because of

being the incumbent to the spectrum band under consideration. Therefore,

we assumed that the SUs were smaller devices that communicated with a
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single omni-directional antenna with transmit power in the range of -30 to

20 dBm. Twenty equally spaced power levels in this range are considered

as the set of allowed settings for transmission. The operation of the SN,

as mentioned before, is fully autonomous and ad-hoc and the transmission

control algorithm is distributed. It is also assumed that the SN has knowl-

edge of the underlying timing operation in the primary network so as to

allow CRs to sense and transmit at appropriate times.

All links assumed a path loss model given by L = 128.1+37.6 log d+10+S

(in dBs), where d is the distance between transmitter and receiver in km, S

is the shadowing loss (modeled as a zero-mean Gaussian random variable

with 6 dB standard deviation) and the penetration loss is fixed at 10 dB,

[94]. Noise power level was set at -130 dBm. It should be noted that all

transmissions adopt AMC to adapt their transmission to the quality of

their respective link.

Each neural network was trained/validated with a data set of 10000 samples

collected from a network simulation with the setup just described. A subset

of the data set (7000 samples or 70% of the data set) was used to train the

neural network and to present the CRs with new environmental conditions,

the rest of data was used to compare the prediction performed by the

trained neural network with the actual expected performance in order to

encounter new environment conditions. In order to generate training data

for the neural network cognitive engine, a comparable SN was devised that

maintained the ability to use the estimated modulation order of the nearest

primary link but without the cognitive engine shown in Fig. 2.5. Instead,

this comparable system implemented a distributed power control algorithm

modified to incorporate the modulation order of the nearest primary link.

A number of algorithms had been proposed for distributed power control in

ad-hoc wireless network. One of the first ones, and the precursor to many

related variants, is the Foschini-Miljanic algorithm, [95], which implements

an iterative distributed power control process so as to meet a target SINR.

We adopted this iterative power allocation algorithm for the alternative SN

that generated the data set to train the NARX-NN cognitive engine at each

SU. Specifically, power is calculated for a secondary link i at each iteration
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m using the update formula,

P s
i [m+ 1] =

(
βi

γsi [m]

)
P s
i [m], (2.19)

where P s
i is the transmit power, βi is the target SINR and γsi [m] is the actual

SINR measured in the mth. iteration which can be calculated through

(2.15). The fact that this algorithm associates power control with a target

SINR is a useful feature in our case because the target SINR, when met,

also determines the modulation order to be used as follows[67],

T
(s)
i = log2(1 + k γ

(s)
i ), i = 1, 2, ..., NS. (2.20)

where T
(s)
i and M(βi) = (1 + kγi) are the ith SU’s transmit rate and

the number of bits per modulation symbol, respectively. The inverse SNR

gap constant k = 1.5
− ln(5BER)

depends on a target maximum transmit bit

error rate (BER) requirement. Consequently, we can think that instead

of having a set of possible [modulation, channel code] pairs, now we have

a set of target SINRs to choose from. Let B = {b1, b2, . . . , bK} be this

set, where target SINRs bi’s are assumed to be sorted in ascending order.

Of course, reducing the target SINR will result in decreasing the transmit

power. As a consequence, the algorithm provides the mechanisms to both

adapt transmit power and AMC settings in a distributed way. Moreover,

for fair comparison to the system with the proposed NARX neural network

cognitive engine, the transmit power from SUs also needs to be constrained

by the goal to not degrade the SINR of the closest primary network link to

the extent of reducing the modulation order (not having the NARX neural

network, this SN we are comparing against cannot operate based on the

use of throughput inferred for the nearest primary link and can only make

use of the modulation order estimated from the modulation classification

process). Modifying the Foschini-Miljanic algorithm by reducing the target

SINR allows to manage this constraint by resulting in a reduction in the SU

transmit power. As such, we adopted for the control of CR transmissions in

the alternative SN this modified version of the Foschini-Miljanic algorithm,

where the SU target SINR is progressively reduced until there is no change

in the modulation order of the nearest primary link. We note here that

while it is certainly possible to use one of the many existing enhancements
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to the Foschini-Miljanic algorithm, we chose to use the original version

without improvements because its provides a baseline performance measure

and because this power control algorithm or a variation of it are not the

contribution of our work. Of course, the PUs in this system maintained

the power allocation algorithm proposed in [67], as explained in Sect. 2.2.

We also note that this benchmark SN constitutes an implementation of the

central principles of [59] while also managing practical considerations not

addressed therein (e.g. multiple links in the SN and PN, distributed, ad-

hoc operation of the SN, etc.), and, as such, serves the purpose of providing

an indication of the performance improvements of our proposed technique

versus prior works.

Moreover, as briefly mentioned earlier, note that in AMC the modulation

order transmitting the smallest number of bits per symbol is used for the

smallest operating SINRs (because it is more resilient to interference and

noise). When the interference from the SN increases, the primary links

that were already using the smallest possible modulation orders when there

were no secondary transmissions will not switch to other modulation orders

because there is simply no other modulation order with fewer bits per

symbols to switch to. This means that transmissions from an SU that

otherwise would generate a change in modulation order would not result in

any change when the nearest primary link is already transmitting with the

modulation order with smallest bits per symbol. Moreover, primary links

using this modulation order, do so because their SINR is at the lower range

of the operating SINRs, which implies that they are at a link state that

likely may not leave much room for added interference from SUs. Because

of these reasons, and in the interest of prioritizing the protection of primary

links against excessive SN interference, we configured the alternative SN so

that a CR will not transmit if it senses that its nearest primary link is

using the lowest modulation order when the SN is not transmitting (as

explained in Sect. 2.4, our proposed technique implements a mechanisms

with the same spirit but based on checking for the smallest CQI at the

nearest primary link when the SN is not transmitting, instead of smallest

modulation order).

Figs. 2.7 through 2.9 study the throughput performance in the primary and

secondary networks for our presented technique and contrast them against
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other schemes. As indicated in Sect. 2.4, for the presented technique we

considered two approaches for the SUs to choose transmit settings. The first

approach, labeled in the figures as “PN+SN- NN Cog. Eng.- Modulation”,

features our proposed cognitive engine with the capability for full AMC

mode estimation at the nearest primary link, but it makes a limited use

of this capability by making the SU choose the maximum transmit power

value that is estimated to keep unchanged the modulation order (but not

necessarily the channel coding rate) at its nearest primary link. The second

approach makes full use of the cognitive engine’s throughput (full AMC

mode) estimation capabilities at the nearest primary link, by making the

SU choose the maximum transmit power value that is estimated to not

change the nearest primary link throughput beyond a maximum relative

change value. This second approach is itself divided into a case where

one probe message is sent for each possible power setting (for a total of

twenty probe messages) and a second case that explores a reduction in

the overhead from transmitting probe messages which transmits just seven

messages and uses interpolation to complete the information for the rest

of available transmit power settings. To show how our technique is able

to leverage the estimation of the full AMC mode and provide each SU

with a fine control over the interference it imposes to the nearest primary

transmission link, we obtained results for three different limits on relative

average throughput change in the PN: 2%, 5% and 10%. In the figures,

we labeled the results when sending all probe messages as “PN+SN- NN

Cog. Eng- 2%- All probe msgs.” for a limit on relative average throughput

change in the PN of 2%, “PN+SN- NN Cog. Eng- 5%- All probe msgs.”

for a limit on relative average throughput change in the PN of 5%, and

“PN+SN- NN Cog. Eng- 10%- All probe msgs.” for a limit on relative

average throughput change in the PN of 10%. Similarly, for the case when

sending seven probe messages, the labels for 2%, 5% and 10% limit on

relative average throughput change in the PN are “PN+SN- NN Cog. Eng-

2%- Seven probe msgs.”, “PN+SN-NN Cog. Eng- 5%- Seven probe msgs.”

and “PN+SN- NN Cog. Eng- 10%- Seven probe msgs.”, respectively.

The performance of these realizations of the proposed underlay DSA tech-

nique is compared in the figures against other schemes. The first such

contrasting scheme, labeled in the figures as “PN+SN- Adapted Foschini-

Miljanic”, is the same system used to collect training data and described
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earlier in this Section as the alternative SN. Recall that this scheme lacks

the NARX neural network cognitive engine’s capability to predict the full

AMC mode at the nearest primary link. In addition, we considered two

schemes that select transmit power for the SUs based on an exhaustive

search across all possible setting permutations. In contradiction with our

goal to avoid any exchange of information between the primary and sec-

ondary networks, these two schemes also incorporate the ability to perfectly

know the CQI on the primary links as if the SN had access to the control

feedback channels in the PN. The first exhaustive search scheme, labeled

“PN+SN- Exh. search-Max PU throughput”, finds across all possible SUs

transmit power permutations, the setting that results in no change in mod-

ulation order at any primary link and maximum average throughput in the

PN. The second exhaustive search scheme, labeled “PN+SN- Exh. search-

Min PU throughput”, favors the average throughput at the SN by finding

across all possible SUs transmit power permutations, the setting that re-

sults in no change in modulation order at any primary link and minimum

average throughput in the PN. Clearly, the two exhaustive search curves

present extreme performance results based on ideal setups. Finally, Fig. 2.7

includes a curve, “PN without SN ”, which shows the average throughput

achieved by the PN when the SN is not present.

Figure 2.7: Average throughput in primary network.

Fig. 2.7 shows the average throughput achieved for the PN as a function of
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the PN load, NP/NPBS, while Fig. 2.8 shows the change in this throughput

relative to the “PN without SN” case. It can be seen in both figures that

the use of the proposed NARX neural network cognitive engine results in

SUs transmit settings that reduces the average throughput in the PN much

less than the case when the modified Foschini-Miljanic algorithm is used

in the SU. Moreover, in the figures, the “PN+SN- Exh. search-Min PU

throughput” curve illustrates the extent to which the average throughput

in the PN can be affected without changing the modulation order at the

nearest primary links (as much as 17%). This indicates that considering

only the modulation order provides an initial means for implementing a

fully autonomous underlay DSA but with the limitations associated with

the coarse indication of the primary links SINR given only by the modula-

tion order. The “PN+SN- Adapted Foschini-Miljanic” and the “PN+SN-

NN Cog. Eng.- Modulation” schemes, which both rely on considering mod-

ulation order only, show better performance because SU transmit power is

chosen in a more conservative way in terms of reducing effects to the pri-

mary network, instead of conducting an exhaustive search for the setting

that results in minimum average throughput in the PU. Nevertheless, be-

cause of relying on modulation order inference only, the “PN+SN- Adapted

Foschini-Miljanic” and the “PN+SN- NN Cog. Eng.- Modulation” schemes

result in relative reduction in the PN average throughput by as much as

13.5% and 9.5%, respectively. The best performance in terms of control-

ling the effect of SN transmissions on the PN is achieved with our proposed

scheme using the inference of the primary links’ full AMC mode (in ac-

tuality, the throughput) provided by the NARX neural network cognitive

engine. This is seen through the results obtained for the two cases (trans-

mitting either all or seven probe messages) designed on the premise of

limiting the maximum relative change in average throughput at the near-

est primary link, for which we show results for 2%, 5% and 10% relative

change limit. Moreover, these schemes include the means to control as de-

sired the level of SN effect on the PN (by setting the limit maximum relative

change). In fact, the “PN+SN- NN Cog. Eng- 2%- All probe messages”

along with “PN+SN- NN Cog. Eng- 2%- Seven probe messages” curves

exemplify the very fine level of control that is possible to achieve with the

proposed approach. Fig. 2.8 shows that this very fine level of control is

achieved at all primary network loads, except at the lowest value of 0.16,
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Figure 2.8: Relative throughput change in primary network.

when the relative change in average PN throughput exceeds the 2% limit

in only 1% when sending all probe messages and in 1.5% when sending

seven probe messages. For the rest of cases, only in the case of 5% limit,

sending seven probe messages, and at the lowest primary network load,

the relative change in PN average throughput is exceeded by just 0.5%.

These differences are attributed to errors in estimating the throughput at

the PN, which are discussed more in detail later in this Section. Also, the

differences are only seen at the smallest PN network load of 0.16 because

of the larger sensitivity of the relative change in PN average throughput

with lower PN load as was previously highlighted for Fig. 2.3. Fig. 2.8 also

shows that the scheme where a fraction of probe messages is used yields sig-

nificant reduction in the transmission overhead of probe messages (roughly

a threefold reduction) without much sacrifice in performance (maximum

3.5% instead of 2% actual achieved relative change in PN throughput com-

pared to 3% maximum change with all the probe messages, and maximum

5.5% instead of 5% actual achieved relative change in PN throughput com-

pared to 5% maximum change with all the probe messages). Finally, the

curve “PN+SN- Exh. search-Max PU throughput” coincides with the “PN

without SN” curve as the exhaustive search solution that maximizes aver-

age PN throughput is essentially the one with no transmissions in the SN

(with one caveat to be discussed in Fig. 2.9).

Considering Fig. 2.8 in the context of the bottom plot of Fig. 2.3, we can

see that the relative throughput change in the PN when using our proposed
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technique corresponds to points at equivalent background noise power be-

tween -96 and -85 dBm (depending on the target maximum PN relative

throughput change setting) just to the left of the “elbow” of the curves

in Fig. 2.3. This result confirms that our proposed technique succeeds in

its main goal of autonomously and distributively determining the transmit

power of the SUs such that the interference they create remains below the

maximum threshold value associated with the background noise power lev-

els that a PN with adaptive modulation can sustain. At the same time,

the proximity to the “elbow” of the curves in Fig. 2.3 of the equivalent

background noise levels generated by the SN indicates that our proposed

algorithm is able to find transmit settings for the SUs that will result in as

large SN throughput as could be allowed by the PN interference limit.

Figure 2.9: Average throughput in secondary network.

Fig. 2.9 shows the average throughput achieved in the SN as a function of

the PN load. Naturally, the more a scheme affects the PN throughput, the

larger the SN throughput it could achieve. As such, it can be seen that our

approach based on a limit maximum PN relative throughout change not

only provides the means to control how much the PN is affected by the SN,

but also it allows to control how large the average throughput at the SN is

desired to be (at the expense of the PN). Even so, the realization with the

more restrictive setting for the SN (the one with a maximum PN relative

throughput change of 2%) still achieves useful average throughput values



Chapter 2 57

Figure 2.10: Cumulative distribution function (CDF) of the through-
put in the secondary network.

between 180 and 50 kbps for a channel with 180 kHz bandwidth (in case

of transmitting seven probe messages the average throughput at the SN is

slightly larger which is consistent with the results in Fig. 2.8). Also, note

that at low PN loads, the “PN+SN- Exh. search-Max PU throughput”

system shows throughput values that imply transmission in the SN. This

does not contradict our earlier statement that this result essentially coin-

cides with the “PN without SN” case. Instead, the transmissions in the SN

that are seen in this case correspond to infrequent setups where the SUs

are located so far away from the few active primary links (consider that

this effect occurs only at very low PN loads) that they can transmit with

very low power with no practical effect on the PN.

Fig. 2.10 depicts the cumulative distribution function (CDF) of the through-

put in the SN for different primary network loads. This figure presents a

perspective that explains an added advantage of the NARX neural network

solution compared to the modified Foschini-Miljanic algorithm-based solu-

tion. The figure shows that in the case of the SN that uses the modified

Foschini-Miljanic algorithm, around 15% of the time SUs will be unable

to transmit (throughput is zero) when the PN load equals 0.16 and this

number increases to around 30% as the PN load increases. This is because

the SN that uses the Foschini-Miljanic algorithm is only able to infer the

modulation scheme used in the primary link and not the channel coding
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rate, which leads to SUs not being able to have a finer assessment of their

effect on the PN when the nearest primary link is using a modulation “type

0 ”. As a result, and as discussed earlier, in order to protect the PN, those

SUs using the modified Foschini-Miljanic scheme for which the nearest pri-

mary link use modulation “type 0 ” are blocked from transmitting. In con-

trast, the proposed technique using NARX neural network, “PN+SN-NN

Cog.Eng.- Modulation”, is able to estimate the finer AMC configuration of

coding rate setting, making this protection and the blocking of SU unnec-

essary (except when the nearest link is using the AMC mode for a lowest

rate, which corresponds to CQI=1). Consequently, as seen in Fig. 2.10, the

proposed technique increases the transmission opportunities in the SN by

the same percentage of time that the SUs are blocked in the case of using

the modified Foschini-Miljanic algorithm-based solution.

As just seen, a key advantage of the proposed technique follows from the

remarkable ability to estimate the channel coding rate used in a primary

link. Therefore, we evaluated the performance of the NARX neural network

in estimating the CQI in a primary link (which is equivalent to the full AMC

mode consisting of modulation order and channel coding rate). Fig. 2.11

shows as a function of the primary network load the relative frequency of

the absolute error when predicting the CQI for the case of transmitting

all probe messages. This Figure shows that as the network load increases,

the probability of an accurate estimation (prediction absolute error equal

to zero) increases and reaches more than 80% for a load equal to 0.48.

The Figure shows that, overall, the probability of significant errors when

predicting CQI is quite small but, nevertheless, we speculate this to be

a factor in the (still small) reduction in PN average throughput and in

the small difference at low PN loads between the target maximum relative

change in average PN throughput and the actual achieved relative change

in PN throughput for our schemes based on target maximum PN relative

throughput change.

2.6 Summary

In this chapter we have presented a fully autonomous and distributed un-

derlay DSA technique that is based on a NARX neural network cognitive
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Figure 2.11: CQI estimation performance of the NARX neural net-
work.

engine. The NARX neural network of a transmitting secondary network

node learns to use the sensed modulation used in the nearest primary link

to predict the effect of its transmission on the nearest primary network link.

It does this by predicting the throughput or, equivalently, both the modu-

lation scheme and the channel coding rate resulting from the configuration

of adaptive modulation and coding at the nearest primary link. Based on

this NARX neural network capability, we presented two variants for the

proposed underlay DSA mechanism: one inspired in the current state of

the art, where the SUs choose the maximum transmit power value that is

estimated to not lead to a change in modulation order at their respective

nearest primary link, and a second, more capable mechanism, where the

SUs choose the maximum transmit power value that is estimated to not

change their respective nearest primary link throughput beyond a chosen

maximum relative change value. The performance of the latter proposed

underlay DSA mechanism was examined for the cases of sending all or a

third of all probe messages.

Simulation results show that the proposed technique is able to accurately

predict the modulation scheme and channel coding rate used in a primary

link without the need to exchange information between the PN and the

SN (e.g. access to feedback channels), while succeeding in its main goal of

determining the transmit power of the SUs such that the interference they

create remains below the maximum threshold that the primary network can
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sustain with minimal effect on the average throughput, along with reducing

the transmission overhead when sending a fraction of probe messages. At

the same time, it was seen that our proposed algorithm is able to find

transmit settings for the SUs that will result in as large throughput in

the SN as could be allowed by the primary network interference limit.

Specifically, for a target PN maximum relative average throughput change

of 2% the proposed scheme is able to maintain the PN relative throughput

change less than 3% when sending all probe messages, and also less than

3.5% when reducing three times the number of transmitted probe messages,

while at the same time achieving useful average throughput values in the

secondary network between 180 and 50 kbps for a channel with 180 kHz

bandwidth. We also discussed how the ability of our proposed technique to

predict the full AMC mode (not just the modulation scheme) results in a

significant increase in the transmission opportunities in the SN compared

to schemes that only use the modulation classification information.
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Reinforcement Learning-Based

Resource Allocation

Framework for Heterogeneous

Underlay Cognitive Radio

Networks

As stated in previous chapters, in underlay DSA both primary and sec-

ondary networks simultaneously communicate over the same frequency

band. Since in cognitive radio networks the PUs are the incumbent to

the spectrum band being used, the SUs must avoid creating more inter-

ference than the PU’s tolerable threshold. Thus, in these networks trans-

mission power allocation for SUs is the main task needed to be taken into

account. The next prioritized task is to maximize the SN performance met-

ric, especially in a heterogeneous scenario where SUs carry different types

of traffics, each with differentiated QoS requirements. To represent such a

heterogeneous network, we assume that the SU transmission links carry ei-

ther real-time/streaming video traffic or regular data with markedly differ-

ent characteristics and requirements. Moreover, QoS is not an appropriate

metric to assess the network performance in a heterogeneous network, as

it is differentiated across different types of traffic. As a result, we need a

uniform metric across different traffic.

61
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In the search for a uniform metric across different traffics, we realized that

the quality of experience (QoE) is gaining significant attention as the rep-

resentative of end-user-centric quality assessment. Consequently, we opted

for QoE as the network performance metric and assessing the quality of

the delivered traffics in the network. There are a variety of metrics to

model subjective QoE. For different types of traffic QoE depends on pa-

rameters from different layers of the protocol stack. For this reason, we

need to select a metric that models the QoE differently for each type of

traffic. Specifically, as we implement an integrated resource allocation, the

selected metric not only should incorporate the different parameters of dif-

ferent traffic types, but more importantly should provide a single common

measuring scale for dissimilar types of traffic. To address this issue, we

choose mean opinion score (MOS) as the metric to model the QoE. The

MOS, as the most popular descriptor of human perceived media quality

[96]. It has five level quality characterization, as being excellent, good, fair,

poor and bad. Importantly, it provides a single common assessment metric

across different traffic types and accordingly allows for seamless integrated

traffic management and resource allocation across dissimilar types of traffic.

Using this metric, this chapter evaluates the use of reinforcement learn-

ing to perform distributed resource allocation in underlay cognitive radio

networks. There are different reinforcement learning techniques, with Q-

learning being one of the most popular. Q-learning learns an action-value

(also known as Q-value) function through the immediate reward feedback

obtained from interacting with the environment. Because Q-learning is a

type of gradual optimization process, it often suffers from the drawback of a

slow convergence in finding the solution to the problem being studied. As a

result, neural networks can be used to compensate for these Q-learning lim-

itations in terms of generalization and function approximation capability.

Deep Q-learning (DQL) is an emerging class of deep reinforcement learn-

ing algorithms which is capable of combining the process of reinforcement

learning with a class of neural networks known as deep neural networks to

approximate the Q action-value function. We deploy Q-learning and DQL

as the learning methods to solve the optimization problems which will be set

out in this chapter. This chapter consists of six sections; the first section

reviews specific studies focused on resource allocation for heterogeneous

underlay cognitive radio networks, in which not only the underlay DSA
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constraint but also the traffic-centric QoS/QoE constraint(s) are targeted

to be met. In sections 3.4 and 3.5 we propose a single-layer and a cross-layer

approach, respectively, where the physical layer transmission parameter(s)

are learnt to be assigned such that not only the interference threshold of

underlay DSA is satisfied but also the SN performance metric (i.e. MOS

in this work) is maximized.

3.1 Literature Review

As stated in chapter 1, researches focused on resource allocation for un-

derlay cognitive radio networks can be categorized into two groups of cen-

tralized and distributed approach. The algorithms in each groups are dif-

ferentiated based on the problem objective and criteria meant to be opti-

mized. The considered objectives may generally include: QoS/QoE such

as throughput (sum rate) and delay, fairness and interference. The un-

derlay spectrum sharing necessitates low power transmissions in SN such

that the transmissions in SN appear as noise below the noise threshold

(in fact, noise plus interference threshold) to the PU. Although appearing

simple, the power allocation for SU should be carefully done since creating

the noise floor for the PU above a particular level will immerse the PU

signal in noise and make it undetectable to the PU receiver. The next

most important consideration for underlay cognitive radio network, where

users subscribe for different type of traffics, is to meet differentiated QoS

requirements of different types of traffic.

With regard to the interference criteria, different interference mitigation

techniques have been proposed in literature to manage the interference

to the PU in underlay CRNs. They basically proposed techniques which

make use of orthogonal transmission in time, frequency, space to coordi-

nate access among users. Multiple access techniques of TDMA, FDMA,

SDMA, CDMA are among the earliest techniques used to maintain orthog-

onal transmissions [97]. In particular, interference mitigation in frequency

can be implemented by allocating different frequency bands to different

users. Similarly, by assigning different time slots to different users, different

codes to different users and different spaces to different users orthogonality

in time, code, and space is achieved, respectively.
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Performance of CDMA-based underlay cognitive radios has been studied

in many works (such as [98] and references therein). Among these works,

we review the ones which focus on QoS/QoE provision for SUs in a het-

erogeneous network. The work in [99] investigates the resource allocation

for video streaming over underlay cognitive radio networks. The transmis-

sion rate and power along with the source rate at each secondary video

session transmission are jointly optimized to provide QoS guarantee to the

video streams. The authors assume that the encoded and compresses live

video packets are stored in a M/M/1 queue, and scheduled on a First-

In-First-Out (FIFO) order. The optimization problem is formulated into

Geometric Programming and then is converted to a convex optimization

problem such that, subject to the underlay DSA, queuing delay and packet

loss rate (caused by transmission error and queue overflow) constraints, the

sum of the reciprocals of the source rates of all secondary sessions are min-

imized. In [100] a cross-layer approach is utilized to address the problem of

resource allocation to stream multimedia content by maximizing the sum

peak-signal-to-noise ratio (PSNR) of video sessions. In [101] optimization

problem was formulated as a capacity maximization problem to implement

power allocation for SUs under QoS and peak power constraints for SUs.

In addition to CDMA, as stated, FDMA and TDMA can be also used as

potential radio access technologies in underlay cognitive radio networks. In

[102] authors considered a system with number of transmission links more

than the available orthogonal time or frequency slots, and studied for such

system the problem of scheduling and power control with SINR constraints.

They used mixed-integer programming to solve the proposed optimization

problem. The considered transmission links are divided into two sets of

primary and secondary users where PUs are guaranteed to receive service,

while SUs compete for the right to access to the time and/or frequency

slots. The work in [103] studied quality-aware cross-layer resource alloca-

tion in CR networks to meet the QoS requirements for both real-time and

non-real-time video applications. [104] proposed a resource allocation for

OFDM-based CR networks with per-subcarrier power limit. The proposed

scheme in [105] considered SUs subscribing video traffic over OFDM-based

network and attempts to jointly optimize the bit rate, subcarrier and power
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allocation for each SU such that the total network rate increases, which con-

sequently results in improved video quality. The authors in [106] have pro-

posed cross-layer resource allocation for scalable multi-user video stream

which maximizes SUs’s overall PSNR while guarantees PU’s interference

limit under imperfect cross-channel gain information.

Moreover, power control and adaptive beamforming can be also used to

mitigate the interference [107] in underlay CRNs. As stated the first prior-

ity in underlay CRNs is that the spectrum sharing process should guaran-

tee protecting the primary network transmission. Therefore an interference

threshold (called interference temperature as well) is usually set at primary

receiver and should not be violated by SN. This can be done through robust

power control techniques to protect the PU transmission while don’t sig-

nificantly degrade the SINR of the SUs. With regard to the multi-antenna

or MIMO secondary system, however, this is not the only scheme which is

used to mitigate interference. For instance, transmit beamforming can be

used to protect primary transmission [108–110]. Some works also assumed

a small secondary network deployed far away from the primary transmitter,

such that the interference caused by SN to the primary transmission could

be neglected. (e.g., [111, 112]).

To do power allocation, the works mentioned above only considered QoS

performance of SUs, and don’t account for end-user perceived quality as-

sessment metrics. In contrast to QoS, as stated, QoE has become increas-

ingly highlighted for data transmission, especially for media delivery. The

most common method to measure QoE is the MOS, which Originally was

adopted to assess human voice quality and then extended as an end user-

centric quality assessment to other transmission services, such as file down-

loading and video streaming [113]. MOS is a metric which can unify all

different classes of service in the optimization. [114] proposed A QoE-

based channel allocation scheme for video transmission, but the authors

only considered the scenario in which all SUs subscribe for video trans-

mission service. Authors in [115] proposed a QoE-based admission control

algorithm for video transmission over underlay DSA. However, they just

considered one SU transmission link and the problem of resource allocation

among multiple SUs transmitting concurrently different type of traffics has

not been addressed. [116] considered the resource allocation problem for
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SUs subscribing for different types of applications in the underlay CR net-

work. This work’s optimization problem is developed based on maximiza-

tion of overall user satisfaction in SN. All schemes mentioned above are

not applicable unless the SN has (perfect or imperfect) knowledge about

the cross-channel gains between the secondary transmitter and the primary

receiver (channel gains from the devices in the secondary network (SN) to

the devices in the primary network).

In the literature, resource allocation algorithms are also classified according

to the technique used for solving the problem which can be an optimiza-

tion technique, heuristic, game theory or graph theory dependent. In this

chapter, we develop our resource allocation problem as an optimization

problem. In this context, reinforcement learning has been seen as an ef-

fective algorithm to solve optimization problems of the same type as the

one at hand. In [117] Q-learning has been used to solve resource allo-

cation problem which developed as a non-convex non-linear optimization

problem. It maximizes the capacity of energy-harvesting OFDMA-based

underlay CRNs by proposing an intelligent power allocation algorithm and

under multiple constraints (i.e. PU interference threshold, minimum trans-

mission rate, power and energy constraints). The authors showed the out-

performance of their proposed algorithm over traditional water filling power

allocation algorithm. The authors in [118] presented a cross-layer underlay

CDMA-based cognitive radio scheme that uses Q-learning to jointly adapts

transmit rate, source and channel coding rate for secondary users. They

compared their results against a single (physical) layer approach based on

the average end-to-end distortion. They integrated to their proposed al-

gorithm the idea of transfer-learning to decrease the number of iterations

needed for the q-learning algorithm to converge. The work in [119] pro-

posed a deep reinforcement learning-based technique to jointly perform

channel selection and power allocation for OFDMA-base underlay cogni-

tive radio networks such that the spectrum efficiency was maximized. For

the fixed number of PUs and SUs in the network, Q-learning was used as

an alternative algorithm to justify the effectiveness of utilization of deep re-

inforcement learning to solve this work’s considered optimization problem.

But the scalability of the proposed approach when the size of the network

is increased has not been studied. In [120], the authors presented a cross-

layer routing algorithm for underlay DSA to improve the overall QoE for
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video traffic via learning the parameters from the physical and the network

layer. The work in [121] adopted a variant of deep Q-learning to reduce

the communication overhead for ad-hoc networks while guaranteeing the

energy efficiency for the SUs.

We, in this chapter, formulate the resource allocation problem for heteroge-

neous underlay cognitive radio network as an optimization problem. First,

we jointly optimize transmit rate and power of SUs in the network under

SINR constraint of PU transmission. We adopt Q-learning and deep rein-

forcement learning to solve our developed optimization problem. Second,

we develop a cross layer approach to not only satisfy the PU SINR con-

straint but the end-to-end video frame delivery delay constraint. In both

scenarios our target is to maximize the average QoE in SN while meeting

the considered constraints. The main difference between our work and all

reviewed works in this section is that we consider multiple non-orthogonally

transmitting SUs accessing the same spectrum band with PU. We don’t use

orthogonal code, space, frequency or time to give the users access to the

common medium at the same time. We demonstrate that our proposed

technique can achieve a lower queuing delay for the SUs subscribing for the

video traffic, without violating the PU interference constraint. We then

integrate transfer learning into our proposed technique to accelerate the

performance of adopted reinforcement learning and identify the best prac-

tices to transfer learning between cognitive radios so as to reduce commu-

nication overhead and to identify the node from which to transfer knowl-

edge. As mentioned earlier in this chapter, we consider a heterogeneous

network consisting of SUs carrying either data or video type of traffic, and

for this network we develop resource allocation solutions subject to some

constraints. Before presenting the resource allocation solutions, we dis-

cuss the leveraged MOS models for considered types of traffic along with

characteristics of assumed traffics.

3.2 MOS models

As stated, the QoE which represents the end-user centric quality assessment

is gaining significant attention as we are moving toward 5G era. Conse-

quently, we opted QoE as the network performance metric and specifically
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the MOS to model the QoE. In this chapter, the network is optimized based

on average MOS across all data and video traffic sessions transmitted by

SUs. In the following, we present the MOS formulas which are utilized in

this chapter to quantify quality for delivered data and video traffic.

The MOS for data traffic is calculated based on the transmit rate, T
(s)
i ,

experienced by the end user, as follow [122]:

MOSD = a log10(b T
(s)
i ), (3.1)

where QD is the data traffic MOS, while a and b are parameters calculated

using the maximum and minimum data quality perceived by the end-user.

If the transmit rate of a user is R and the receive rate is also R, then the

packet loss is zero, and the quality perceived rate of end-user in terms of

MOS should be maximum, that is 5. While MOS value of 1 is assigned to

a minimum transmission rate.

Figure 3.1: MOS versus PSNR.

As video quality assessment metric, peak signal-to-noise ratio (PSNR) is

commonly accepted to objectively measure the coding performance of video.

However, it is known that PSNR does not accurately reflect subjective

human perception of video quality [123]. A wide variety of techniques

have been proposed to estimate user satisfaction for video applications (a

survey of video quality assessments can be found in [39]), among which [113]

proposed a simple linear mapping between PSNR and MOS, as shown in

Fig 3.1, which assigns MOS value of 4.5 for PSNR of 40 dB and MOS value

of 1 for PSNR of 20 dB. The limits arise from the fact that received video
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sequences experiencing PSNR equal to 40 dB are almost indistinguishable

from the transmitted one and those below 20 dB exhibit very severe quality

degradation.

PSNR[dB] MOS

>37 5 (Excellent)
31-37 4 (Good)
25-31 3 (Fair)
20-25 2 (Poor)
<20 1 (Bad)

Table 3.1: Possible PSNR to MOS Conversion [2]

The work in [2] presented a heuristic mapping from PSNR to MOS as shown

in Table 3.1, while, according to the recommendation ITU-R BT.500-13

[124], the relationship between MOS and an objective measure of picture

distortion have a sigmoid shape. Consequently, [125] claimed that if the

picture distortion is measured with an objective metric, e.g., PSNR (dB),

then a logistic function can be used to characterize the relation between

MOS and PSNR, as follows:

MOSV =
a

1 + exp(b (PSNR− c))
, (3.2)

where MOSV denotes the MOS for video, and a, b and c are the parameters

of the logistic function. In this chapter the logistic function was selected

to model the quality of video traffic. To compute the parameters of the

logistic function (3.2), an array of PSNR and corresponding MOS values is

needed. Since the PSNR of reconstructed video changes as a function of bit

rate with the characteristics of the video sequence itself, we averaged over

the PSNR-bit rate functions for multiple MPEG-4 coded video sequences

at different resolutions, 240p, 360p and 480p and obtained one average

PSNR-bit rate curve. The video sequences were combined in the respective

proportions 39%, 32% and 28% , same as the proportions used in [126]. The

video sequences used were “Flowervase” and “Race Horses”, at 30 frames

per second (fps) and resolution 480p, while for resolution 360p “Tennis”

and “Park Scene” at 24 fps were selected. As a result, it was observed that

a function of the form PSNR = k log T
(s)
i + p can be used to very closely

approximate the average PSNR-bit rate curve, where qV is the video quality

measured in PSNR, T
(s)
i is the video transmission bit rate and k and p are
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constants. To get the parameters of the logistic function formula as in (3.2)

an array of PSNR values and its corresponding MOS values is needed. In

this report, we first computed PSNR values for an array of video bit rate

(which itself computed through equation (??) for all candidate actions)

using combined PSNR-bit rate curve. To get MOS values corresponding to

the computed PSNR values, we used the linear mapping to map PSNR to

MOS. We also used table-based conversion to obtain another array of MOS

values for the same PSNR values. Then we averaged the two MOS arrays

to obtain final MOS array. After obtaining the MOS value corresponding

to the PSNR values, the parameters for the logistic function were found to

be c = 6.6431, d = 0.1344 and f = 30.4264.

3.3 Traffic Models

In this chapter it is assumed that an active data session user runs best effort

services. For best effort users the network does not guarantee any certain

QoS level. However, for the video traffic an end-to-end delay constraint

needs to be satisfied (in this section we don’t take into account the delay

constraint, this constraint will be integrated in the technique through a

cross-layer approach which is focus of the next section). Detailed descrip-

tion of the traffic models is presented as follow:

3.3.1 Best Effort Traffic Model

As the model of best effort traffic we consider FTP (File Transfer Proto-

col) with the model from [3]. The parameters of the model are the size

of the transferred files and their separating reading times which follow the

truncated Lognormal distribution and the Exponential distribution, respec-

tively.

3.3.2 Video Streaming Traffic Model

Our video streaming traffic model follows [4] where each video frame has

a fixed number of packets (P packets). Each packet arrives at a random
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Table 3.2: Parameters of FTP traffic model [3]

Parameters Statistical characteristic

File size Truncated Lognormal distribution
µ = 2 Mbytes, σ = 0.722 Mbytes,
maximum file size = 5 Mbytes,
PDF:

fx =
1√
2σx

e(
−(lnx− µ)2

2σ2
), x > 0 (3.3)

Reading time Exponential distribution
mean = 180 seconds,
PDF:

fx = λe−λx, x > 0 (3.4)

time interval while the inter-arrival time for each frame is deterministic. To

model the size and the inter arrival time of packets in a frame, the truncated

Pareto distribution is used. Parameters of video streaming traffic are given

in table 3.3.

3.4 Single Layer Resource Allocation Lever-

aging Reinforcement Learning

In this section we explain our resource allocation algorithm for underlay

CRN in which a CE embedded in each CR only has two inputs; one being

as the learned information from the effect of the previous actions on the

wireless environment. Under the assumption of link adaptation, this input

helps the SUs to infer the state of the primary link and then be able to

maintain the interference to the PN below the preset tolerable threshold.

This information can be achieved through the technique presented in chap-

ter 2, [127]. The second input to the CE is the information achieved from

its own feedback channel. We assume that all transmissions in the network

adopt adaptive modulation and coding (AMC) at the physical layer. Thus,

each CE’s second input is its own transmission link AMC feedback channel

which represents the attainable bit rates (and later we will see that it is
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Table 3.3: Parameters of video streaming traffic model [4]

Parameters Statistical characteristic

Inter-arrival
time between
beginning of suc-
cessive frames

Deterministic(100 ms for 10 fps, 50 ms for 20 fps)

Number of pack-
ets in a frame

Deterministic (8 packets)

Packet size Truncated Pareto distribution
mean = 100 bytes, maximum = 250 bytes, minimum =
53 bytes, k = 50 bytes, a=1.2
PDF:

fx =
aka

xa+1
, x > 0 (3.5)

Inter-arrival
time between
packets in a
frame

Truncated Pareto distribution
mean= 6ms, maximum = 12.5 ms, minimum= 2.5 ms,
k= 2.5 ms, a=1.5
PDF:

fx =
aka

xa+1
, x > 0 (3.6)

used to compute the reward for the RL algorithm). The reason of naming

the upcoming technique as a single layer resource allocation technique is

that it incorporates the input only from the physical layer while in the next

section the presented algorithm incorporates the input from the data link

layer as well.

3.4.1 System Model

We study an underlay DSA where a PN with a single primary link coexists

with a SN consisting of N SU transmission links. Each SU communicates

simultaneously with its respective secondary base station (SBS) in a fre-

quency band shared with the PN under underlay DSA paradigm. The

PN is incumbent to the spectrum band being used, so SUs need to meet

the interference constraint associated with underlay DSA by adapting their
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transmit power accordingly. We assume that all transmissions in the net-

work adopt adaptive modulation and coding (AMC) at the physical layer.

To incorporate the underlay DSA constraint into the algorithm, a preset

SINR threshold β0 is considered to be met at the primary base station

(PBS) as:

SINR(p) =
G

(p)
0 P0

σ2 +
∑N

j=1G
(p)
j Pj

≥β0, (3.7)

where P0 is the PU transmit power, Pj is SUj’s transmit power, G
(p)
0 and

G
(p)
j are the PU to PBS channel gain and the jth SU’s channel gain to the

PBS, respectively. Background noise power is denoted by σ2. In order to

also consider the QoE of the received traffic in the SN, we define the SINR

for the ith SU at its corresponding SBS as:

SINR
(s)
i =

G
(s)
i Pi

σ2+G
(s)
0 P0+

∑
j 6=iG

(s)
j Pj

, (3.8)

where G
(s)
0 is the channel gain between the PU and SBS, Pi is the ith

SU’s transmit power, and G
(s)
i is the ith SU’s channel gain. In order to

incorporate into the algorithm the QoE of the received traffic in the SN, we

impose an additional SINR requirement βi needed to be met at ith SBS.

The two SINR requirements, for the PN and the SN, can be expressed as, SINR(p)≥β0

SINR
(s)
i ≥βi, i = 1, · · · , N.

(3.9)

In this work we assume that the use of AMC on all links can be leveraged

to perfectly estimate all needed channel gains through an active learning-

based techniques [128]. If the SINR constraints for both secondary and

primary networks in (3.9) are met with equality, the solution to the power

allocation for each SU can be achieved as,

Pi =
Ψi(σ

2 +G
(s)
0 P0)

G
(s)
i (1−

∑N
j=1 Ψj)

, i = 1, 2, ..., N, (3.10)

where Ψi = (1 + 1
βi

)−1. The condition 1−
∑N

i=1 Ψi>0 needs to be satisfied

to ensure that the power allocation is valid. After replacing the SU powers
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obtained from (3.10) in (3.7) and (3.8) , (3.9) can be rewritten as,

∑N
j=1αjΨj ≤ 1, (3.11)

where

αj =
G

(p)
j (σ2+G

(s)
0 P0)

G
(s)
j (G

(p)
0 P0/β0−σ2)

+ 1, (3.12)

Following the use of AMC on all links, the relation between transmit bit

rate and the SU threshold SINR (βi) follows (2.20) [129]. Referring to (3.9)

and (3.10) we can see that βi needs to be adjusted at each SU such that

the underlay DSA interference requirement is met and SUs QoE is also

guaranteed. According to (3.10) and (2.20) this adjustment is applied by

adapting transmit power and rate. On the other hand, the performance

metric in the SN and its increase needs to be also taken into account. We

Incorporated this into our algorithm by defining the optimization problem

based on maximizing the SN’s performance metric. Specifically, we defined

our goal to be maximizing the network performance metric while satisfying

a total interference constraint to the PU. Based on the mentioned property

of MOS which provides a common and uniform measurement scale for all

type of traffics including video and data, to compute the average MOS for

a network with an heterogeneous traffic we are allowed to add MOS for all

video and data sessions, as follow: 1
N

(
∑U

i=1MOSD+
∑N

i=U+1MOSV ), where

U is the number of SUs transmitting data while the remaining N −U users

transmit streaming video. As such, the optimization problem for our single

layer underlay DSA scheme is to maximize the network average MOS while

satisfying the underlay DSA interference constraint:

{(β̂i)} = arg max
βi

1
N

∑N
i=1MOS

(i)
(DorV )(βi),

s.t.
∑N

i=1 Ψi(βi)≤1,∑N
j=1 αjΨj(βj)≤1,

(3.13)

This optimization (resource allocation) problem is solved through discrete-

time Markov decision process (DTMDP) modeling and the use of a re-

inforcement learning (RL). The RL learning [23] has been shown as an

effective solution for the resource allocation in communication networks.

The RL agent can generate near optimal solutions through an immediate
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reward achieved from interactions with the environment. Through opti-

mizing the current reward, the RL agent achieves a long-term optimizing

goal, which is important for dynamic systems such as wireless networks.

We consider two variations of RL including the Q-learning (as the most

popular RL algorithm) and the deep Q-network (DQL) (as an emerging

class of RL algorithms which combines RL with neural networks). In the

next sections we explain how we deploy mentioned RL algorithms to solve

the optimization problem in (3.13).

3.4.2 Q Learning-Based Cognitive Engine

The Q-learning algorithm (also called table-based standard Q-learning al-

gorithm) deployment [25] requires the definition of a set of states S, a set

of actions A and a reward function. The reward function represents the

effect of a selected action on the environment from which each of the learn-

ing agents (CRs/SUs) will be guide to choose the next action from set of

actions. The same set of actions as well as states are assumed for all SUs.

Each SU conducts a search into the finite discrete space of candidate target

SINR, denoted by A(i) = {β(i)
1 ,· · · ,β(i)

n } to find the optimal solution which

not only meet the constraints in (3.9) but results in the better average

MOS for SN. The Q-Learning algorithm considers the environment as a

finite-state, discrete-time stochastic dynamical system. The learning agent

observes its current state s∈S and accordingly take an action π(s)∈A, un-

der a certain policy π, which involves scalar immediate reward R
(i)
t . The

problem then is to find a policy which maximizes the received discounted

reward V with a discount factor γ (0<γ<1), [25]. At the same time with

choosing one strategy fromA(i), each SU adapts its transmit power and rate

through (3.10) and (2.20), then observes the changes in the system and its

own transmission as well. Each SUs will seek to find an optimal policy to

maximize its own MOS while the SINR constraints (3.9) are satisfied.
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3.4.2.1 State Space

The states, St = (It, Lt), are defined to reflect the interference caused by

the SUs where,

It =

{
0, if

∑N
i=1 Ψi(β

(i)
t )<1

1, otherwise,
(3.14)

Lt =

{
0, if

∑N
i=1 αiΨi(β

(i)
t )≤1

1, otherwise.
(3.15)

3.4.2.2 Reward

The reward function is also defined as a function of the state and the local

action,

r
(i)
t (at, st)=

{
M, if It+1+Lt+1>0

MOS
(i)
(DorV ), otherwise,

(3.16)

with the assumption of M being a constant smaller than the reward of any

other strategies in exchange of taken an unsuccessful action resulting in

interference constraints violation (3.9). While in the case of satisfying the

interference constraints, MOS of the received traffic which is either video

(MOSV ) or data (MOSD) is considered as the immediate reward.

We also assume that the SUs do not know the other’s action or the effect

of joint actions on states and considers the others as part of the environ-

ment. Then the SUs repeatedly make their decisions and finally obtain

their optimal policies to maximize the expected sum of discounted reward

as expressed in equation (1.2).

According to Bellman’s principle of optimality [26], the solution to (1.2)

can be obtained by taking the optimal action if all the strategies thereafter

are optimal. The optimal action can be approached by the Q-function,

which is updated as in (1.4). Consequently, according to (3.16) and (1.3)

each SU repeatedly take actions to maximize its individual experienced

MOS, which results in maximization of the average SN’s MOS and leads

to finding a solution for (3.13).
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Algorithm 1 summarizes the steps needs to be taken by each SU in or-

der to implement the individual learning mechanism. It should be noted

that because of the initialization for all the SUs Qi
0 = 0, the algorithm

will first perform an initial exploration phase, where each Q-table entry is

visited once, then will through an exploitation phase. By adjusting βi, and

consequently corresponding T
(s)
i , the SU tries to obtain an optimal power

assignment in order to not only satisfies the interference threshold in (3.9)

but maximize the network performance metric (i.e. average MOS in SN).

Algorithm 1 Multi-agent Q learning-based learning framework

Initialization: Q0 = 0 for all the SUs

for time t<tmax do
for all SUi, i = 1, · · · , N do

Select the action a
(i)
t =arg max

a
(i)
t
Q(s

(i)
t , a

(i)
t )

Update the state s
(i)
t+1 (3.19), (3.20) and the reward r

(i)
t , (1.3).

Update Q-value Q
(i)
t (st, at), (1.4).

end for
end for

3.4.3 DQL Learning-Based Cognitive Engine

Equation (1.2) is a value iteration algorithm that converges to the optimal

action-value function if t → ∞. This approach is impractical. Conse-

quently, a function estimator is used to estimate the optimal action-value

function. In a DQL, a neural network has been proposed as an efficient

nonlinear approximator to estimate action-value function Qi(s, a; θi) ≈
Q∗i (s, a), [16]. In this paper we used a fully connected feed-forward Mul-

tilayer Perceptron (MLP) network to approximate the action-value func-

tion. DQL takes advantage of neural network as a powerful non-linear

function approximator to estimate the action-value function. To improve

the learning performance, we include a technique known as ”experience

replay” to the DQL algorithm. In experience replay, at each time step,

the experience of each agent with the environment is stored as a tuple

ei(t) = (ai(t), si(t), Ti(t), si(t+ 1)) into a replay memory. The replay mem-

ory of ith. agent is denoted as Di(t) = ei(1), . . . , ei(t). Moreover, each

agent utilizes two separate MLP networks as Q-network approximators:
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one as action-value function approximator Qi(s, a; θi) and another as tar-

get action-value function approximator Q̂i(s, a; θ−i ), where θi and θ−i denote

the current and old parameters respectively. At each time step, the current

parameters θi of each agent’s action-value function are updated through a

mini-batch of random samples of transitions (ai, si, Ti, ŝi) from the display

memory Di. The old parameters θ−i of the target action-value function are

replaced by the updated parameters θi of action-value function at every

C iterations. The parameters of θi action-value function are updated by

utilizing a gradient descent algorithm based on the following cost function:

L(θi) = E[(riT (s, a) + γmax
â∈A

(Q̂i(ŝ, â; θ−i ))−Qi(s, a; θi))
2] (3.17)

algorithm 1 summarizes the steps that each SU needs to take in order

to implement the DQL mechanism. It should be noted that the action

selection procedure follows the ε-greedy policy which means that an action

is randomly chosen from the action set A with probability ε, otherwise an

action with the highest output to the action-value function is chosen.
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Algorithm 2 Multi-agent DQL-based learning framework [16]

for all SUi, i = 1, · · · , N do
Initialize replay memory
Initialization of the neural network for action-value function Qi with
random weights θi
Initialization of the neural network target action-value function Q̂i

with θ−i = θi
end for

for t<T do
for all SUi, i = 1, · · · , N do

Select a random action with probability ε.
Otherwise select the action
a
(i)
t =arg max

a
(i)
t
Qi(s

(i)
t , a

(i)
t ; θi).

Update the state s
(i)
t+1 ((3.19), (3.20), and the reward r

(i)
t , (3.16).

Store ei(t) = (a
(i)
t , s

(i)
t , r

(i)
t , s

(i)
(t+1)) in experience replay memory of

SUi, Di.
Update parameters (θ) of action-value function Q(s

(i)
t , a

(i)
t ; θi), by

sampling random mini-batch of transitions from Di.
every C step update parameters of target action-value function
θ−i = θi

end for
end for

3.5 Cross Layer Resource Allocation Lever-

aging DQL

Being an end-to-end performance metric, the QoE depends on transmission

parameters from multiple layers of the protocol stack. In the case of video

streaming, the end-user QoE is primarily determined by the QoS parame-

ters such as the connection effective bit rate, delay and delay jitter. Nev-

ertheless, meeting video QoE goals is difficult due to the limited transmit

bandwidth, dynamic channel characteristics and of the video content itself.

On the other hand, authors in [130] presented a situation where PSNR is

not a reliable video quality metric to be used to model the subjective QoE

scores. They provide evidence that PSNR is inaccurate in measuring video

quality of a video content encoded at different frame rates. Therefore, we

decided to incorporate video frame rate and accordingly video frame delay

constraint in our resource allocation algorithm and to later examine the

adaptability of our proposed algorithm to the changes in video frame rate.

Therefor, regarding the resource allocation algorithm being presented in
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this section, to meet QoE goals it is necessary to also consider the delay

from the data link layer scheduler’s queue. Since in practice, the scheduler’s

queue length (buffer size) is finite, when the buffer is full and overflow oc-

curs, excess packets have to be dropped that results in packet loss and

reduction in the QoE. Moreover, packet loss is not only caused by queuing

overflow at the link layer scheduler but also by the transmission errors at

the physical layer. To mitigate packet transmission errors, hybrid auto-

matic repeat request (HARQ) coupled with AMC is widely used, but it

introduces higher queuing delay. The increased delay is caused because

the packets are required to be kept in the buffer until successful delivery or

till a maximum number of unsuccessful re-transmission attempts have been

reached. At the same time, the link bit rate affects the QoE directly by

influencing the queuing delay. Thus, to achieve the best QoE, it is impor-

tant to follow a cross-layer approach that jointly considers delivery delay

(inherently involving queuing delay) and bit rate. Our goal in this section

is to develop a cross-layer resource allocation algorithm for underlay DSA

that aims at maximizing the overall QoE (which involve minimizing the

video frame delivery delay) across transmission of all video or data traffics

while satisfying the underlay DSA interference constraint.

3.5.1 System Model

Since we implement underlay DSA, all equations from (3.7) to (3.12) are

applied in this section as well. Moreover, all transmissions deploy AMC

technique to adapt the transmit rate to the state of the channel (as a

result, (2.20) is applicable here as well). Each SU data link scheduler

(which queues arriving packets) is equipped with a first-in-first-out (FIFO)

finite length buffer, followed by a CE which includes AMC and transmit

power controller (as depicted in Fig. 3.2).

The AMC controller devises the state of the link (in terms of SINR) through

the information conveyed on the feedback channel from which the attainable

bit rate and accordingly the quality of delivered traffic can be estimated.

We also assume that the implemented HARQ operates based on packet

combining and ACK/NACK feedback before proceeding to the next trans-

mission. Therefore, while HARQ improves transmit error performance, it
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Figure 3.2: System model overview.

also increases the average packet delivery delay. In our system setup we

assume that each packet can be re-transmitted at most three times.

In our proposed scheme in this section the resources, which need to be allo-

cated for each SU, are transmit power and rate and are determined by the

CE. These decisions are made based on the information obtained from the

three inputs to the CE. The first two inputs contain the information about

the interference created to the PN (which can be inferred through the tech-

nigue presented in chapter 2 [127]) and the scheduler’s buffer status (which

affects the experienced QoE). The AMC feedback channel information in-

put to the CE also represents attainable bit rates and used to compute the

part of total reward for RL algorithm.

With regard to the video traffic, as mentioned, the transmit parameter

setting concerns with not only meeting the underlay DSA constraint but

also satisfying the end-to-end video frame delay requirement. In order to

meet the real-time/streaming video traffic’s delay constraint, video packets

in the queue may need to be served at a larger rate. As such, the transmit

rate needs to be adapted to the the state of the queue and specifically to

the video frame experienced delay. Therefore, the optimization problem for

our underlay DSA scheme is to maximize the network average QoE while



Chapter 3 82

satisfying the delay and interference constraints, as follow:

{(β̂i)} = arg max
βi

1
N

∑N
i=1Q

(i)
(DorV )(βi),

s.t.
∑N

i=1 Ψi(βi)≤1,∑N
j=1 αjΨj(βj)≤1,

Di ≤D̆i (i = 1, . . . , N).

(3.18)

where Di represents the experienced end-to-end frame delay for SUi’s traf-

fic and D̆i denotes its corresponding end-to-end frame delay requirement.

Thus each SU selects its target SINR βi and adjust its transmit parame-

ters T
(s)
i and Pi, with the goal of maximizing its own delivered traffic QoE,

which leads to the maximization of average experienced QoE in the SN.

3.5.2 DQL-Based Learning Framework

In solving the problem (3.18), we want the CE to be able to learn the un-

derlying characteristics for the traffic and also for the wireless environment.

We decided to use a RL algorithm to run the cognition part of the CE, as

it is able to gradually learn the effect of selected actions on the wireless

environment in general and on the conveyed traffic in particular through

the immediate reward, and results in the best action to be taken using the

expected reward. Furthermore, due to its state-of-the-art learning perfor-

mance we choose to implement RL using the DQL framework. As such,

each SU in the network will be equipped with a single RL agent which at

time t takes an action a(t) ∈ A = {a1, a2, . . . , a|A|} while the environment

is in state s(t) ∈ S = {s1, s2 . . . , s|S|}. During this interaction, the agent

achieves an immediate reward r(s, a) and the system transitions into a new

state s(t + 1) ∈ S. The immediate reward represents the effect of the se-

lected action on the environment and guides each of the learning agents to

choose the next action from A.

3.5.2.1 State Space

Let the state of the SUi’s queue at time t be Oi
t and the measured waiting

time for the last transmitted P packets in the queue beM i
t . Since the QoE is
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affected by variables from the multiple layers of the network protocol stack,

the environment seen by the CE also needs to encompass these multiple

layers. This concept is incorporated in the following definition of the states

St=(It, Lt, O
i
t):

It =

{
0, if

∑N
i=1 Ψi(β

(i)
t )<1

1, otherwise,
(3.19)

Lt =

{
0, if

∑N
i=1 αiΨi(β

(i)
t )≤1

1, otherwise.
(3.20)

Oi
t =

{
0, if M i

t≤D̆i

1, otherwise.
(3.21)

This definition reflects that the state of the SUi’s queue Oi
t at time t will

be 0 if M i
t meets the end-to-end frame delay requirement of the traffic (we

recognize that channel and decoding delays are comparably negligible).

Note that there is no end-to-end delay requirement corresponding to the

best-effort traffic that means for the data traffic Oi
t is 0.

3.5.2.2 Reward

We defined a total reward function as the weighted sum of two rewards, r1

and r2. The reward r1 represents the contribution from the queuing delay

and takes a positive value when the last P transmitted packets are serviced

within their delay requirements. Fig. 3.3 shows the reward r1 function for

a 10 fps video source with a 150 ms end-to-end frame delay requirements.

This function is updated according to the change in the video source frame

rate and its delay requirement. For data traffic, r1 takes a constant positive

value.

The second component in the total reward function r2, incorporates the

effect of transmit rate on the QoE and is defined as,

r
(i)
2 (at, st) = MOS

(i)
(DorV ), (3.22)
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Figure 3.3: Reward function for video frame delay.

where QV and QD are the delivered video and data MOS, respectively.

Finally, the total reward function is defined as,

riT =

{
J, if It+1+Lt+1+Oi

t+1 >0

w1r
i
1(at, st) + w2r

i
2(at, st), otherwise,

with the assumption of J being a negative constant, in exchange of taken an

unsuccessful action resulting in interference and delay constraint violation

(3.21). For simplicity we consider w1 and w2 equal to 1 [131].

3.6 Integration of Transfer Learning into Re-

inforcement Learning

As mentioned the cognition capability of CE can be achieved by RL, a tech-

nique that has been widely used in this context. This technique presents the

appeal that allows the CR to learn without prior knowledge of the system

model, the best set of action (policy) at each environment state. This is

achieved by following an iterative process of performing trial actions and ob-

serving their effect to reward the successful decisions and penalize the failed

ones. However, the long learning time involved in the RL iterative process

motivated researchers to explore the concept of transfer learning, originally

proposed as a single-agent technique to transfer experience from one task

to another similar task [132]. However, the idea of transfer learning can be

extended to multiple agents, specially in the case of a wireless communica-

tion networks where agents have inherent capabilities to share information.
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The philosophy behind transfer learning is to allow well-established and ex-

pert cognitive agents (i.e. base stations or mobile stations in the context of

wireless communications) to teach newly activated and naive agents. This

exchange of learned information is used to improve the performance of a

distributed CR network. With regard to the DQL algorithm a Q action-

value function is estimated (learnt) iteratively based on the reward for each

action. Each cognitive SU first learns about its surrounding environment by

running the DQL learning algorithm and updating the parameters of its Q

action-value function based on the received immediate reward. Therefore,

the Q action-value function and specifically its parameters will reflect the

effects of the actions on the wireless environment. Because part of the wire-

less environment involves the interference created by each SU to the rest

of the system, the parameters will reflect both the individual local wireless

environment for each SU and the collective interrelation between the sys-

tem components. With regard to the standard table-based Q-learning the

entries of the Q-table will carry the information regarding the effect of ac-

tions on the environment. When a SU joins the already learnt system, the

environment shows limited changes, therefore it is inefficient to re-run the

cognitive cycle and disregard the awareness of the environment captured

by other SUs already in system. Hence, this awareness of the environment

which is reflected in Q action-value function parameters (or Q-table entries

for table-based Q-learning) can be taught to the new joined SU in order to

decrease the learning time and also improve the learning performance.

Nevertheless, the application of transfer learning introduces new research

questions, namely whom to obtain the knowledge from, how much informa-

tion to exchange and when to stop the exchange of information. We in this

work explore the first two questions. To answer the first question of whom

to obtain the knowledge from we have run an extensive simulations and

explored the similarity between the Q action-value function parameters of

the SUs in the system. Fig. 3.4 shows a comparison between parameters

(θ) of the action-value function of SUs in terms of their mean square error

(MSE). Results are presented in the form of frequency values for different

distances among SUs. We selected one user as a reference user, and showed

different distances by the first nearest SU to the reference one, the second

nearest user to the reference one and the farthest one. The comparison was

done over 4000 runs of the DQL learning algorithm for a network with 4
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SUs, each run corresponding to a different random location of SUs. Further

setup details are described in Section 3.7. It can be seen that the proba-

bility of having MSE equal to 0.5 between the reference SU and the first

nearest SU is more than 70% while it is less than 40% for the farthest.
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Figure 3.4: Distribution of the MSE of the action-value function pa-
rameters (θ) between a first SU and other SUs in a secondary network

of 4 users.

Fig. 3.4 also shows that as the distance between SUs increases, the rate

of similarity (MSE = 0.5) between the parameters decreases and reaches

to less than 40% for the farthest user to the reference user. As a result,

this figure shows the somewhat expected result that parameters of the

Q action-value function become more similar as SUs become closer. The

reason for this behavior is that the parameters of Q function not only

incorporate information about each SU’s local environment achieved by

immediate reward, but also about the interaction of all system components.

As a result, we implement transfer learning where SUs already operating

in the network initialize their cognitive cycle with their own action-value

function already learnt through algorithm 2 and the newcomer SU initializes

parameters of its action-value function with the parameters of the nearest

node. In the next section we examine the effect of transfer learning on

the learning performance. The mentioned transfer learning mechanism is
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Algorithm 3 Integration of Transfer Learning into RL

(Run as a new SU joins the network)
Add one new SU as SUN+1

Assign the nearest node n(i) to the new SU
Initialize Q(N+1) with parameters of the action-value function of its
nearest neighbor θ(N+1) = θ(n(i)) (Q(N+1) = Qn(i) regarding the table-
based Q-learning).
for all SUi, i = 1, · · · , N + 1 do

Restart individual learning algorithm 2 (algorithm 1 regarding table-
based Q-learning) with the existing N+1 action-value function.

end for

shown in algorithm 3. Moreover, a low bit rate control channel is assumed

as an indication if a newcomer (less experienced node) joins the network.

To reduce the communication overhead and find the answer to the question

of how much information to exchange, it is worth exploring the effect of

partial transfer of the nearest SU’s action-value function parameters. To

explore this option, we considered to take a closer look at the parameters

on a layer by layer basis. Based on 2000 Monte Carlo simulation runs for

a SN with 3 SUs, Fig. 3.5 shows for the same mean distance the distri-

bution of the mean cross-correlation coefficients between the parameters of

different layers of the action-value function of a video reference SU and its

nearest user, at convergence point of the DQL algorithm. Fig 3.5 on top

shows the distribution of cross correlation coefficients between two users’s

first layer parameters (i.e. the weights between the input and first hidden

layer). It can be seen that for around 80% of the time the cross-correlation

coefficients are between −0.1 and 0.1 , while for the second layer param-

eters (weights between first and second hidden layer) the span for more

frequent cross-correlation coefficients increases and becomes between −0.1

and 0.3. With regard to the third layer (the weights between the second

hidden layer and the output layer), Fig. 3.5 on the bottom shows that for

around 80% of the time the cross-correlation coefficients between the last

layer parameters of two users lie between 0.2 and 0.8. This figure clearly

shows that the higher correlations belong to the last layer parameters and

suggest an strategy that will be adopted next to significantly reduce the

communication overhead when implementing transfer learning. Moreover,

by illustrating a shift from symmetric distribution of negative and positive

cross-correlation coefficients (seen for the first layer parameters) and a shift



Chapter 3 88

Figure 3.5: Distribution of the cross correlation between the action-
value function parameters of the video reference SU and its nearest

neighboring SU.

from negative cross-correlations to positive, this figure shows that the last

layer parameters of two users tend to have stronger linear relation. There-

fore, by exchanging only the third layer parameters (which are 3 compared

to the entire 33 parameters) the communication overhead can be decreased

by 90%. Moreover, this figure shows an additional interesting fact that the

traffic type of the nearest SU does not significantly affect the distribution.

Specifically, the traffic type of the nearest SU does not play an important

role in better transferring the learnt information. Leveraging the observa-

tions in the previous paragraph, in this paper we consider the scenario in

which new joined SU learns from the nearest SU and initializes its last layer

action-value function parameters using the last layer action-value function

parameters of the nearest SU, while randomly initializes the remaining two

layers. Note that a control channel is assumed to exchange the parameters.

3.7 Results

In this section we evaluate the performance of our proposed single-layer and

cross-layer resource allocation technique based on Monte-Carlo simulations.

First, we consider our proposed single layer approach and show the results of

its implementation on solving the optimization problem discussed in (3.13).
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We adopt Q-learning along with DQL to not only find the solution to this

problem, but through extensive simulation runs compare the performance

of these two RL-based algorithms. We assume a primary network which

consists of one primary link accessing a single channel. The target SINR

for the PU is set at 1dB. The Gaussian noise power and the transmit power

of PU are set to be -90 dB and 23dBm, respectively. All SUs and PUs are

distributed randomly around their respective base stations within a circle of

radius 300m. The secondary base stations are also distributed randomly at

a distance from the primary base station chosen with a uniform distribution

between 10m and 700m. Channel gains follow a log-distance path loss

model with path loss exponent equal to 3. For a single SU, its SINR could

be chosen from the finite discrete set {−9,−5,−1, 3} dB. Regarding to the

learning algorithm, the same learning rate α=0.01 and discounting factor

γ = 0.9 are assumed for all SUs. In the ε-greedy exploration, ε is initially

set to be 0.8, as the number of iteration increases it converges to 0.

As action-value function and target action-value function approximators we

used two separate feed forward neural networks for each SU. Each neural

network equipped with two fully connected hidden layers with 3 and 2

neurons. The capacity of replay memory and mini-patch was set to 100

and 10, respectively. The number of Monte-Carlo simulations was set to

K = 500, and the results are obtained by averaging over this number of

simulation runs. The input layer consists of 3 nodes representing the state

and the selected action to be taken. The output layer has one node. For

each Monte-Carlo simulation run, the locations of secondary links (i.e.,

transmitting and receiving nodes) are generated randomly.

Performance is evaluated based on measuring, as a function of the number

of SUs available in the network, the change in average MOS of the SUs

achieved at the convergence point, and in average total number of iterations

needed for algorithms 1, 2 and 3 to be converged. Note that the acceptable

MOS level in terms of end-user quality perception is 3.

The performance of four different systems was compared during simula-

tions while all system performing a physical-layer CR adaptation: a system

called “Q-Learning-Individual Learning” where all SUs implement stan-

dard Q-learning (perform algorithm 1) and new joined SU initializes its
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Table 3.4: Simulation parameters

Video model Parameters [58]

Frame inter-arrival time Deterministic (100, 50 ms)
Frame rate 10, 20 fps
End-to-end delay constraint 150, 75 ms
Packets per frame 8
Packet size Truncated Pareto distribu-

tion (a = 1.2, k = 2.5 ms)
Packet inter-arrival time Truncated Pareto distribu-

tion (a = 1.2, k = 53 bytes)

FTP model Parameters [3]

File size Truncated Log-normal dis-
tribution (µ = 2 and σ =
0.722 Mbytes)

File inter-reading time Exponential distribution
(λ = 180 seconds)

algorithm. 2 Parameters

Learning rate (α) 0.01
Discounting factor (γ) 0.8
Mini-batch size 10
Replay memory size 100
Buffer size L 100
P 8

Neural Network Parameters

Input layer nodes 4 (representing present
state and selected action)

Number of Hidden layers 2 layers with 4 and 2 nodes
each

Output layer node 1
Network Parameters

PN target SINR 1 dB
PU transmit power 23 dBm
Noise power -90 dB

Q-table from zero, the second system, called “Q-Learning-Transfer learn-

ing”, where all SUs implement standard Q-learning (algorithm 1) and new

joined SU exploits the transfer learning (algorithm 3) and initializes its Q-

table using the Q-table entries of its nearest SU, the third system, called

“DQL-Individual Learning”, implements DQL (algorithm 2) for all SUs and

initiates action-value function parameters of the joined SU randomly, and

the last one called “DQL-Transfer learning” implements DQL for all SUs

(algorithm 2) and initiates action-value function parameters of the joined
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SU using the parameters of the nearest SU, which can be either video or

data traffic user. While the first and the third systems perform individual

learning for the joined SU, disregarding the intelligence acquired by SUs

already in the network, the second and the last one adopt transfer learning

approach implemented in algorithm 3.

Fig. 3.6 shows the average MOS of secondary network at convergence point,

as a function of total number of SUs in the SN. It can be seen how the av-

erage network MOS decreases for all considered systems as the number of

SUs increases. The reason for this is that to meet the interference con-

straints as the number of users increases, each SU tends to converge to a

smaller SINR value and corresponding smaller MOS. It can be also seen

that the average MOS is almost the same for all considered systems (with

little negligible difference stemming from different random replacement of

users in the network for each considered system). In particular, the figure

shows that transfer learning enables accurate transferring of the represen-

tation of the environment to the new joined user, such that it achieves the

same performance as the individual learning. Moreover, this figure shows

that Q-learning and DQL converge to almost the same solution for the op-

timization problem developed in (3.13). The real difference between these

two reinforcement algorithms is represented by the next figure, i.e. Fig 3.7.

Figure 3.6: Average MOS.
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Fig. 3.7 shows the efficiency of not only DQL but transfer learning com-

pared to the Q-learning in accurately transforming the awareness of the

surrounding environment to the new comer by experienced peers and re-

ducing the number of iterations needed to achieve convergence. It can be

seen that the number of iterations needed for Q-learning to achieve conver-

gence utilizing transfer learning for the joined SU is reduced by as much as

75% compared to the individual learning. On the other hand, this figure

shows the out-performance of DQL over Q-learning in converging faster

to the optimal policy. In particular, the average number of iterations for

the convergence increases for the Q-learning from 800 to 1600 while DQL

needs iteration number in the range from 100 to around 1000. On the

other hand, compared to the Q-learning, DQL leads to at most around

87% less iteration numbers to converge. According to this observations, for

the cross-layer resource allocation design we just leverage the use of DQL

and don’t compare its performance with Q-learning. Instead, the results of

cross-layer scenario are compared with single layer design to highlight the

effect of cross-layer design in meeting the QoS constraint.

In the following, we consider our proposed cross-layer resource allocation

technique designed for underlay cognitive radio networks and show its per-

formance in terms of achieved average MOS for SN, its effect on the PN and

specifically on the experienced QoS (i.e. end-to-end frame delay) for the

Figure 3.7: Average number of iteration for convergence.
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video users. The secondary and primary network set up, distances between

users, and their positioning policy is the same as the set up described for

the single-layer technique. The main difference is that we model the video

and data traffic to simulate a practical scenario, where we consider a buffer

in our system design to queue the traffic packets and therefore be able to

incorporate HARQ into our algorithm. Specifically, we examine the per-

formance of DQL in solving the optimization problem developed in (3.18).

The action set for each SU is A = {−11,−7,−3, 1, 3, 5} dB.

With regard to the learning algorithm the value of the learning rate α and

discounting factor γ as in table 3.4 remain the same for all the SUs. In

the ε-greedy exploration, as the number of iteration increases, ε converges

to 0 from its initial value. The RL based resource allocation uses the

feed forward neural network approach. Each SU uses two separate neural

networks as action-value function and target action-value function approx-

imators. Each of the feed forward network consists of two fully connected

hidden layers that have 4 and 2 neurons each, input layer with 4 nodes

and one node output layer. The four nodes in the input layer represent the

present state and selected action.

The size of the replay memory and mini-batch has been listed in the table

3.4. For the simulation, it is assumed that each SU link carries only one

type of traffic, based on the same percentage of random assignment of

video streaming or FTP traffic type. The parameters of the FTP model

[3] are the size of the transferred files and their inter-reading times which

follow a truncated Log-normal distribution (with µ = 2 Mbytes, σ = 0.722

Mbytes and maximum size of 5 Mbytes) and an exponential distribution

(with λ = 180 seconds), respectively. The video streaming traffic model

is from [58] where each video frame has a fixed number of packets. Each

packet arrives at a random time interval while the inter-arrival time for

each frame is deterministic. To model the size and the inter arrival time

of packets in a frame, we use the truncated Pareto distribution. For the

packet size, the truncated Pareto distribution parameters are set to a = 1.2

and k = 53 bytes while the mean, maximum and minimum packet size are

100, 250 and 53 bytes, respectively. The truncated Pareto distribution

parameters for packet inter arrival time are set to a = 1.2 and k = 2.5

ms and the mean, maximum and minimum packet inter arrival time are
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Figure 3.8: Experienced SINR at the PN after adding SN.

6, 12.5 and 2.5 ms, respectively. We consider two different video frame

rates to investigate the adaptability of the resource allocation algorithm

to the changes in delay requirements. The video frame rates are 10 (with

100 ms frame inter-arrival time) and 20 fps (with 50 ms frame inter-arrival

time) and each with a delay constraint set to be one and half video frame

inter-arrival time (75 ms and 150 ms for 20 and 10 fps, respectively). The

size of the finite buffer (queue) L is set at 100 packets for all SUs, and P

is assumed identical to the number of packets in a video frame (P = 8).

To assess the error rate of the received transport block, and create the

ACK/NACK feedback messages at SBSs to feed back to the SUs, a set of

AWGN LTE link-level performance curves generated with [133] are used.

In order to investigate the effect of cross-layer design on the QoE (and

particularly the delay) the performance of two different schemes is com-

pared during simulations: the first scheme is the “Cross-Layer RL” where

all the SUs perform the proposed cross-layer adaptation learning technique

and the second scheme is the “RL” where all the SUs implement only

physical-layer adaptation learning using DQL (without taking into account

the frame delay as the additional element affecting the learning algorithm,

i.e. w1 always equal to 0 for all type of traffics).

Fig. 3.8 shows the CDF for the mean experienced SINR for the PN at the

convergence point after the introduction of the SN. The QoE requirement

for the SU should be met but not at the cost of disturbing PU transmission.

It can be seen that both schemes meet the constraint on SINR for the PN
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(no less than 1 dB) but that the PN tends to achieve lower SINR as the

number of SUs and consequently the interference to the PN increases. For

instance, the probability of experiencing SINR at the PU less than 15 dB is

82% for SN with 2 SU links, while it is around 98% for SN with 4 SU links.

It can be also seen that for the SN with 2 SU links the maximum achieved

SINR at PU receiver is around 32 dB for cross-layer approach while it is

around 28 dB for single-layer resource allocation. The case is vise versa

for more congested SN, as for SN with 4 SU links single-layer approach

achieves higher SINR up to 24 dB while it is around 18 dB for cross-layer

approach. In general, both schemes meet the SINR constraint from PU

link.
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Figure 3.9: Frame delay for 10 fps video source.

Figs. 3.9 and 3.10 show the delay experienced delay at a randomly picked

SU video over a period of eight preceding transmitted packets (denoted as

frame delay in all figures) as a function of time slot, with each time slot

being 1ms long. The results are depicted for one Monte-Carlo simulation

run across different SN with 1, 2 and 4 SUs links. Fig. 3.9 shows that

for 10 FPS video source (demanding an end-to-end frame delay less than

150 ms) the frame delay is always preserved less than 115 ms for all SNs.

This figure’s top part shows that as the number of SUs in SN increases

the time needed for the algorithm to converge increases. In particular, the

convergence time for SN with 1 SU is around 200 ms while it is around

1200 ms for SN with 4 SU links. This is because for higher number of SUs,

the search space becomes bigger and it takes longer time for the RL agent
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Figure 3.10: Frame delay for 20 FPS video source.

to find the best policy. Our condition for the algorithm to converge is that

for three consecutive time slots not only the state remains the same and

equal to (0,0,0) but the selected action remains unchanged. The bottom

part of this figure shows the cumulative distribution function (CDF) for

the frame delay. It can be clearly seen that for all SNs the frame delay is

always less than 115 ms. Fig. 3.10 shows frame delay for 20 FPS video

source ( demanding an end-to-end frame delay less than 75 ms). The top

part shows the variations in the frame delay as the network gets trained.

The bottom part shows that for SN with 4 SU links the frame delay is less

than 60 ms around 95% of the time. In general these two figures clearly

show the effectiveness of our cross-layer algorithm in satisfying video traffic

delay requirements.

Based on results averaged over 2000 Monte-Carlo simulation runs, Figs.

3.11 and 3.12 show the cumulative distribution function (CDF) for the

average experienced frame delay over the video SUs. The simulation has

a SN setup with 2 and 4 SU links. Fig. 3.11 depicts the mean frame

delay for a 10 fps video source. For the first case, graph on top shows that

for the SN with 2 SU links, both the learning techniques have the same

performance and keep the frame delay less than 140 ms for more than

95% of the time. Thus in the case of a sparse SU distribution, which is

hardly the case, both the techniques fare well. However, considering the

practical scenario, where there will be a moderate to high number of SUs,
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the cross layer approach is the clear winner. The bottom graph indicates

that as the network congestion increases and the number of SUs increases,

the cross-layer approach performs better than the physical-layer technique.

It can be seen that for the SN with 4 SUs, the cross-layer technique results

in an experienced mean frame delay always less than the assigned 10 fps

video source delay constraint (i.e. 150 ms). On the other hand, the mean

frame delay increases up to around 550 ms for the physical-layer learning

approach. The main reason for this is that the physical-layer learning

technique does not take into account the experienced frame delay over the

time in selecting the actions and updating the policy.
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Figure 3.11: Mean frame delay for 10 fps video source.

For a 20 fps video source demanding a frame delay less than 75 ms, Fig 3.12

shows that a SN setup with 2 SU links with a cross-layer scheme, has an

average frame delay maintained at less than 75 ms for around 98% of the

time while it is 75% of the time for the physical-layer scheme. Thus, for a

higher fps video source, but a fewer number of SU links in the network, the

two techniques no longer perform at par, as in the first case of a 10 fps video

source. As the number of SUs increases, Fig 3.12 at the bottom shows that

the cross-layer learning technique acts even more aggressively and keeps

the mean frame delay always less than the demanded delay constraint,

while for the physical-layer technique the mean frame delay is less than 75

ms for only 20% of the time. In general these two figures clearly show the

effectiveness of our proposed cross-layer learning technique in satisfying the

video traffic delay requirements. In other words the figure demonstrates the
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Figure 3.12: Mean frame delay for 20 fps video source.

effectiveness of our proposed technique in adaptation to the changes in the

video source delay constraints and subsequently the QoE requirements.
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Figure 3.13: Average MOS and number of time slots at the conver-
gence point in secondary network.

Fig. 3.13 depicts the performance of the algorithm in terms of the average

MOS at the top, and of the average total number of iterations (time slots)

needed for the convergence at the bottom, as a function of the number

of SU links in the SN. It can be seen that for both learning techniques,

the average network MOS decreases as the number of SUs increases. This

is because each SU needs to operate at a smaller SINR value in order to

meet the interference constraints with increasing network density, which

results in a smaller MOS. It can be thereby deduced from the figure that
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the average MOS is maintained even for increased SUs in the network but

with a slight deterioration. The figure at the bottom shows the number of

iterations needed for the convergence of both schemes. It can be clearly

deduced from the graph that the number of time slots required for the

convergence point in the SN for a physical layer approach is way more than

the cross-layer technique.

For a total of 4 SUs in the network, the RL approach takes around 1300 time

slots in comparison to around 200 time slots for the cross-layer approach

which is close to 6 times more. In other words, compared to the physical-

layer approach, the cross-layer approach results in 80% reduction in the

number of iterations for convergence, without affecting the average MOS

performance. Due to the higher number of constraints for the cross-layer

approach to satisfy, the exploration phase for this technique results in higher

number of actions violating the constraints (i.e. It+1+Lt+1+O
i
t+1 >0 ) and

consequently achieving negative total rewards riT <0. Since negative total

reward for each action results in the lower action value function output,

these actions will then be dropped in the exploitation phase of the learning

process (according to the action selection strategy in algorithm 2 where the

action with maximum action-value function output is selected). The cross-

layer learning approach leads to lesser number of iterations compared to

the physical-layer technique to find the global maximum. This is because of

the fact that the cross-layer approach explores lesser number of remaining

actions after the exploration phase.

In the following, we examine the effect of transfer learning on the perfor-

mance of cross-layer underlay resource allocation. We evaluate the perfor-

mance from the results of over 2000 Monte-Carlo simulation runs based

on measuring, as a function of the number of SN links, the average MOS

achieved at the convergence point, and the average total number of itera-

tions needed for convergence of the adopted learning algorithm (i.e. DQL).

The performance of three different systems was compared during simula-

tions with all performing the cross-layer queue-aware transmit parameter

adaptation technique. All systems depict a scenario in which a new SU,

that we call a “newcomer”, becomes actives and adds a link to the SN

where there are already other links active with SUs that have already gone

through a converged learning process. We consider those SUs that were
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Figure 3.14: Average MOS in the secondary network.

already present as “experienced” and the newcomer as a naive one that

needs to learn the resource allocation policy. The three systems that are

considered investigate the effects of both partial and full transfer of knowl-

edge, as compared to the no transfer of knowledge. The first system called

“Individual Learning” represents the case where a newcomer SU initiates

the weights of its action-value function neural networks randomly and dis-

regards the experience acquired by the SUs already active in the network.

The second system, called “Full Transfer Learning”, corresponds to the

case when the newcomer SU initializes the weights of its action-value func-

tion neural network using the entire parameters of the first nearest SU

(ignoring the type of traffic that is carrying). The third and last system,

called “Partial Transfer Learning”, represents the case when the newcomer

initializes the weights of the first two layers of its action-value function

neural network with random values, while the last layer is initialized with

the weights of the nearest SU’s action-value function neural network.

While the first system performs individual learning for the joined SU and

re-run algorithm 2, disregarding the intelligence acquired by SUs already in

the network, the other two systems initializes the parameters of the action-

value function of the newcomer SU through the transfer learning approach

(i.e. algorithm 3).

Fig. 3.14 shows the average MOS of the SN after convergence of the learning

algorithm, as a function of the number of SU links in SN. The results show
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Figure 3.15: Average number of iterations needed for algorithm con-
vergence.

that there is practically no negative effect on the achieved QoE when using

transfer learning, as the MOS of the transfer learning system is within

a difference of 0.1 MOS from the system with individual learning (and

not transfer learning). Moreover, this result shows no difference in MOS

between full and partial transfer learning.

Fig. 3.15 shows, as the function of the number of active links in the SN,

the number of iterations needed for the DQL algorithm to converge. It

clearly shows that compared to the individual learning the transfer learning

needs a much smaller number of iterations to converge. It can be also seen

that as the number of SUs increases the relative reduction in the number

of iterations for transfer learning with respect to the individual learning

case increases. For example for the SN with 4 active links, the number of

iterations needed to achieve convergence is reduced by as much as 80% when

deploying transfer learning (partial as well as full) compared to the case

where the newcomer SU performs individual learning. More importantly, as

noted in Fig. 3.14, a partial transfer learning has essentially the same MOS

performance as the full transfer learning scheme. Consequently, the scheme

with partial transfer learning which exchanges only the weights of the third

layer of the expert SU’s action-value function neural network reduces the

communication overhead by around 90%.

Together, Figs. 3.14 and 3.15 show the effectiveness of the partial trans-

fer learning scheme in accurately carrying the awareness of the surrounding
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environment from an expert peer SU to the newcomer CR, leading to signif-

icantly fewer number of iterations needed to achieve convergence, while also

reducing the communication overhead by a large magnitude. More impor-

tantly, the significant communication overhead savings that is achieved by

exchanging the parameters of only the third layer of the action-value func-

tion neural network, not only exhibits the same average MOS performance

as the full transfer learning scheme, but it also shows no practical difference

in MOS performance with respect to the case of individual learning by the

newcomer SU (no exchange of knowledge).
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Figure 3.16: Average MOS and average number of iterations needed
for algorithm convergence.

Moreover, we explored a practical scenario where the noisy version of the

weights are transferred to the new joined SU (which it can be also seen as

imperfect transferring of the weights). Such noisy weights can be created

through the wireless channel during transferring to the new SU, and/or

during quantization process at the transmitter of the node from which

the weights are transferred. We only considered the scenario where the

quentization noise is added to the weights. To implement this scenario,

we considered a simple approach where the weights greater than zero are

mapped to 0.5 and the remaining are mapped to −0.5. Specifically, only

one bit is used to transfer each weight, and consequently binary modulation

scheme (such as BPSK) can be used to modulate the sequence of weights.

To explore the effect of imperfect transferring of the weights and compare
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its performance with perfect weight transferring, performance of three dif-

ferent systems was compared during simulations, with all performing the

cross-layer resource allocation technique discussed in this chapter. The

three systems that are considered investigate the effects of both noisy (im-

perfect) and perfect transfer of knowledge, as compared to the no transfer

of knowledge. The first system called “Individual Learning” represents the

case where a newcomer SU initiates the weights of its action-value function

neural networks randomly and disregards the experience acquired by the

SUs already active in the network. The second system, called “Full Trans-

fer Learning”, corresponds to the case when the newcomer SU initializes

the weights of its action-value function neural network using the noiseless

parameters of the first nearest SU. The third system, called “Noisy Trans-

fer learning”, represents the case when the newcomer SU initializes the

weights of its action-value function neural network using the noisy (quan-

tized) version of its first nearest SU’s parameters. In fact, the first system

disregards the intelligence achieved by other users already in the system

and rerun the cognition cycle from the scratch, while the two other sys-

tems take advantage of transfer learning and initialize the parameters of

the action-value function of the newcomer SU through the (full and noisy)

transfer learning approach.

Fig. 3.16 depicts as the function of the number of SU links the performance

of the three considered algorithm in terms of the average MOS at the top,

and of the average total number of iterations (time slots) needed for the

convergence at the bottom. It can be seen that for all systems, the average

network MOS is almost the same. On the other hand, neither full transfer

learning nor noisy transfer learning compromise the MOS and result in

the same MOS as individual learning. It can be also seen that the noisy

transferring of the weights results in the same number of iterations for

the convergence as the full transfer learning. To make sure about the

observed results regarding the number of iterations for the convergence, we

monitored the changes in Q-values at each state across every action, and

we noticed that the slop of the change in Q-values is the same between

full transfer and noisy transfer learning schemes, which results in the same

speed in convergence to the optimal policy at each state for both schemes.

Fig. 3.17 shows for one randomly selected SU the changes in the weight
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Figure 3.17: Average MOS and average number of iterations needed
for algorithm convergence.

value for all 33 weights in action-value neural network estimating action-

value function, during the training process. For each weight in this figure,

the blue circle and red circle show the initial random weight value and

convergence point weight value (value for each weight at the convergence

point), respectively. In particular, this figure depicts for one Monte-Carlo

simulation run the value to which each weight is changed, at each 10 train-

ing rounds. The figure shows the disparity of the weight values between a

span of 1 to -1. To implement the full transfer learning (i.e. transferring

the exact amount for weight values) for just this snapshot of the network,

at least 6 bits are needed. While with adoption of noisy transfer learning,

only one bit is needed for each weight to be transferred across every snap-

shot of the network. In general, noisy transferring of the weights results

in not only preserving the average QoE the same as the full transferring

scenario, but major reduction in communication overhead.

3.8 Summary

In accordance with the evolution of resource management techniques for 5G

networks, in this chapter we presented two underlay DSA techniques that
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allow to adapt transmit power, modulation scheme and accordingly trans-

mit rate of all SUs to maximize average QoE across all traffics of dissimilar

characteristics (real-time video and regular data traffic) in the secondary

network while satisfying the interference constraint to the PU transmission.

The first proposed resource allocation technique maps the QoS parameters

of the data traffic (which is transmit rate) and video traffic (which is PSNR)

to the QoE parameters and is designed to maximize the average experienced

QoE in the SN while meeting the underlay DSA constraint. The second

technique takes into account an additional QoS parameter for the video

traffic which is end-to-end video frame delay. Specifically, in addition to

underlay DSA constraint, the second proposed technique applies a new con-

straint on the experienced end-to-end video frame delay and manages to

satisfy both constraints through a cross-layer approach, while maximizing

the average QoE across all video and data transmissions in the SN. MOS is

exploited as an metric to model the subjective QoE as it not only meets the

end-user centric quality assessment requirements, but enables the seamless

integration of dissimilar traffic by providing a single common measuring

scale for different types of traffic.

a reinforcement learning algorithm is selected to find the solution to the

developed optimization problems in this chapter. In particular, Q-learning

and DQL are adopted to learn the underlying dynamics model of the con-

sidered systems in this chapter. Simulation results show that DQL out-

performs Q-learning in terms of the convergence speed. Specifically, sim-

ulation results demonstrated that the DQL needs around 87% less itera-

tions to converge to the optimal solution, without any compromise in MOS.

This observation led to explore only the deployment of DQL-based learning

framework for the next proposed cross-layer algorithm. The cross-layer al-

gorithm adapted transmission power and rate of the SUs to their end-to-end

traffic delay requirements and to the underlay DSA interference constraint.

In doing so, the algorithm was designed to maximize the overall MOS in the

SN across all data and video transmissions. To validate the effectiveness

of the proposed cross-layer resource allocation algorithm, we deployed a

single-layer resource allocation as well and conducted extensive simulations

to monitor the frame delay and QoE in SN.

Simulation results show that under practical constraints of finite buffer
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size and variable packet length the proposed cross-layer technique satisfies

the interference constraints for the PN which is the main consideration

in the underlay DSA. Moreover, the proposed technique effectively adapts

to the dynamics of the video traffic delay with significantly (around 80%)

fewer number of iterations required for the convergence in comparison to

the single-layer technique. Having achieved convergence with fewer itera-

tions, it is of notable significance that the average MOS performance is not

affected in the process.

In addition, to improve the convergence time of the DQL algorithm we ap-

plied the idea of transfer learning which allows newcomer SUs learn from

their more expert peers to improve the learning process. The philosophy

behind transfer learning is to allow well-established and expert cognitive

agents (i.e. base stations or mobile stations in context of wireless com-

munications) to teach newly activated and naive agents. In the proposed

transfer learning schemes, when a newcomer SU node joins the SN, it initial-

izes its DQN-based cognitive engine from the representation of the wireless

environment (in the form of transferring the weights of its action-value

function neural network) that has already been learned by the node that

was already active in the network. This exchange of learned information is

used to improve the performance of a distributed cognitive radio networks.

We further identified the best practices to transfer learning between cog-

nitive radios so as to reduce communication overhead and to identify the

node from which to transfer knowledge. To decide about the node from

which to transfer knowledge from, we examined the similarity (in terms of

mean square error) between the action-value function parameters of SUs in

an already trained SN implementing the resource allocation. We observed

that as the distance between SUs increases, the similarity between the pa-

rameters decreases. Therefore, for the joined SU the nearest SU (the one

which is received with strongest signal and might be either video or data

user) is the best expert user to learn from. In order to reduce communica-

tion overhead, we explored the effect of partial transfer of the nearest SU’s

action-value function parameters to the new joined one.

Simulation results show that both full and partial transfer learning reduces

the number of iterations for convergence by approximately 80% without a

sacrifice in average QoE performance. Importantly, the results demonstrate
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the fact that partial transfer learning, in which parameters of only the third

layer of the expert user’s action-value function is exchanged with the new-

comer SU, leads to a significant reduction (around 90%) in communication

overhead, without compromising the average MOS in the SN.

We also studied the effect of transferring the imperfect (noisy) version of the

weights to the joined SU, through defining one quantization level and quan-

tizing the weights and then transferring them through 1 bit of information.

The simulation results demonstrated that this process not only preserved

the average QoE the same as the perfect transferring of the weights, but

also reduced at a great extend the communication overhead.
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Conclusion

Cognitive radio (CR) has been used to refer to wireless communication de-

vices that are capable of autonomously learning, reasoning and adapting

to their environment. These capabilities are embedded in a cognitive en-

gine which has been identified as the core of a CR. The cognitive engine

adapts the actions (parameters) of the CR. This task become significantly

challenging when several parameters and policies need to be adjusted simul-

taneously (e.g. transmit power, transmit rate, coding scheme, modulation

scheme, sensing algorithm, sensing policy, etc.) and no simple formula

may be able to simultaneously determine these setup parameters. This is

due to the complex interactions among these factors and their impact on

the wireless environment. Thus, learning methods can be applied to allow

efficient adaption of the CRs to their environment, without the complete

knowledge of the dependence among these parameters by leveraging the

use of machine learning algorithms.

Ever increasing wireless application demands with different QoE require-

ments along with limited available spectrum led to the shift from static

radio spectrum access to DSA and later to CR as DSA enabling tech-

nology. Among DSA techniques, the underlay DSA enables simultaneous

coexistence of the cognitive radios / secondary users with the primary users

on the same frequency band, subject to the limitation of the interference

caused by the SUs to the primary links. Due to this limitation, effective

resource allocation becomes more challenging for underlay cognitive radio

networks, especially when the bandwidth greedy multimedia services that

need provision of higher QoE are transmitted in the network. This problem
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of meeting two contradicting goals of maximizing the QoE and satisfying

the interference constraint to the primary user can be modeled through dis-

crete time Markov decision process (DTMDP). In case of unknown wireless

environment (i.e. the transition probabilities of the Markov model are

unknown), by applying special learning algorithms such as reinforcement

learning, it is possible to arrive at the optimal solution to the MDP [23].

In this thesis, we have proposed machine learning-enabled resource allo-

cation techniques for underlay cognitive radio networks. Specifically, we

leveraged the use of supervised learning and reinforcement learning to learn

underlying model of the underlay wireless communication systems.

In chapter 1, we reviewed application of machine learning to the cognitive

radio network. Next, we explained the three distinguished categories of

the machine learning algorithms and highlighted the ones utilized in our

proposed resource allocation algorithms. Lastly, we reviewed the existing

learning efforts made to address issues in cognitive radio networks.

In chapter 2, we presented a fully autonomous and distributed underlay

DSA technique that was based on a NARX neural network cognitive engine.

The NARX neural network engine leveraged the use of adaptive modulation

and coding in the primary network to infer the effect that different settings

in a secondary network transmission would have on the primary network.

In effect, the NARX neural network learned to use the sensed modulation

used in the nearest primary link to predict the throughput (equivalently

the chosen modulation scheme and the channel coding rate) resulting from

a secondary link transmission setting in the same primary link. Based

on this NARX neural network capability, we presented two variants for the

proposed underlay dynamic spectrum access mechanism: one where the sec-

ondary users choose the maximum transmit power value that is estimated

to not lead to a change in modulation order at their respective nearest

primary link, and another where the secondary users choose the maximum

transmit power value that is estimated to not change their respective near-

est primary link throughput beyond a chosen maximum relative change

value. The performance of the latter proposed underlay dynamic spectrum

access mechanism was examined for the cases of sending all or a third of all

probe messages to infer the effect of SU transmission on the transmission of

the nearest PU. Simulation results showed that the proposed technique is
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able to accurately predict the modulation scheme and channel coding rate

used in a primary link without the need to exchange information between

the primary network and the secondary (e.g. access to feedback channels),

resulting in the proposed technique succeeding in its main goal of deter-

mining the transmit power of the secondary users such that their created

interference remained below the maximum threshold that the primary net-

work could sustain with minimal effect on the average throughput, along

with reducing the transmission overhead in case of sending fraction of probe

messages. Through simulation results, it was shown how the proposed un-

derlay DSA is able to control its effect on the primary network with a very

fine level of granularity. At the same time, it was seen that our proposed

algorithm was able to find transmit settings for the secondary users that

will result in as large throughput in the secondary network as could be

allowed by the primary network interference limit. Specifically, for a tar-

get PN maximum relative average throughput change of 2% the proposed

scheme is able to maintain the PN relative throughput change less than 3%

when sending all probe messages, and also less than 3.5% when reducing

three times the number of transmitted probe messages, while at the same

time achieving useful average throughput values in the secondary network

between 180 and 50 kbps for a channel with 180 kHz bandwidth. We also

discussed how the ability of our proposed technique to predict the full AMC

mode (not just the modulation scheme) results in a significant increase in

the transmission opportunities in the SN compared to schemes that only

use the modulation classification information. Moreover, it was discussed

how our proposed scheme based on a target primary network maximum

relative average throughput change allows to manage the tradeoff between

effect of the secondary network on the primary network and achievable

throughput at the secondary network. Finally, we also discussed how the

ability of our proposed technique to predict the full AMC mode (not just

the modulation scheme) results in a significant increase in the transmission

opportunities in the secondary network compared to schemes that only use

the modulation classification information.

In chapter 3, we first presented a single-layer resource allocation technique

for SN in heterogeneous underlay cognitive radio networks in order to max-

imize the average QoE for SN while meeting the PU SINR threshold. We

leveraged the use of Q-learning as well as DQL to solve our optimization
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problem. Simulation results showed outperformance of DQL in compari-

son with Q-learning in terms of the iteration needed for the algorithm to

converge. Next, we proposed a cross-layer resource allocation algorithm

for underlay DSA network, where we only utilized the DQN-based learning

framework to adapt transmission power and rate of the SUs to not only

the underlay DSA interference constraint, but also end-to-end traffic delay

requirements. The optimization problem was designed to maximize the

overall QoE in the SN across all data and video transmissions. To validate

the effectiveness of the proposed cross-layer resource allocation algorithm

we deployed a single-layer resource allocation as well and conducted exten-

sive simulations to monitor the frame delay and QoE in SN. We exploited

the MOS to model the subjective QoE. The MoS model enables the seam-

less integration of dissimilar traffic assumed in this paper by providing a

single common measuring scale for different types of traffic. We showed

the outperformance of our proposed algorithm over the single-layer one.

Moreover, we incorporated in our algorithm transfer learning to improve

the convergence time, which allows a SU joining the network to initialize

its action-value function parameters from their more experienced neighbors

to accelerate the learning process. After completion of an initial learning

exploration, the nearest node to the joined SU, which is already in the net-

work, transfers its learned representation of the environment by transferring

its action-value function parameters to the joined SU. Simulation results

showed that under practical constraints of finite buffer size and variable

packet length the proposed cross-layer technique satisfied the interference

constraints for the PN which is the main consideration in the underlay

DSA. Moreover, the proposed technique effectively adapted to the dynam-

ics of the video traffic delay with significantly (around 80%) fewer number

of iterations required for the convergence in comparison to the single-layer

technique. Having achieved convergence with fewer iterations, the average

MOS performanace was not affected in the process.
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