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Technical Abstract 

The primary objective of this work is to investigate the communication capabilities of 

short-range millimeter-wave (mm-wave) communication among Network-on-Chip (NoC) based 

multi-core processors integrated on a substrate board. To address the demand for high-performance 

multi-chip computing systems, the present work studies the transmission coefficients between the 

on-chip antennas system for both intra- and inter-chip communication. It addresses techniques for 

enhancing transmission by using antenna arrays for beamforming. It also explores new and 

creative solutions to minimize the adverse effects of silicon on electromagnetic wave propagation 

using artificial magnetic conductors (AMC). The following summarizes the work performed and 

future work.  

Intra- and inter-chip transmission between wireless interconnects implemented as antennas 

on-chip (AoC), in a wire-bonded chip package are studied 30GHz and 60 GHz. The simulations 

are performed in ANSYS HFSS, which is based on the finite element method (FEM), to study the 

transmission and to analyze the electric field distribution. Simulation results have been validated 

with fabricated antennas at 30 GHz arranged in different orientations on silicon dies that can 

communicate with inter-chip transmission coefficients ranging from -45dB to -60dB while 

sustaining bandwidths up to 7GHz. The fabricated antennas show a shift in the resonant frequency 

to 25GHz. This shift is attributed to the Ground-Signal-Ground (GSG) probes used for 

measurement and to the Short-Open-Load (SOLT) calibration which has anomalies at millimeter-

wave frequencies. Using measurements, a large-scale log-normal channel model is derived which 

can be used for system-level architecture design. Further, at 60 GHz densely packed multilayer 

copper wires in NoCs have been modeled to study their impact on the wireless transmission 
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between antennas for both intra- and inter-chip links and are shown to be equivalent to copper 

sheets. It is seen that the antenna radiation efficiency reduces in the presence of these densely 

packed wires placed close to the antenna elements. Using this model, the reduction of inter-chip 

transmission is seen to be about 20dB as compared to a system with no wires. Lastly, the 

transmission characteristics of the antennas resonating at 60GHz in a flip-chip packaging 

environment are also presented.  

The transmission coefficients observed in the previous cases can be further improved by 

using antenna arrays to perform beamforming which can increase the overall system gain. Three 

types of arrays are designed with different beam angles – broadside, phased and endfire, which are 

considered in two scenarios that are intra-chip and inter-chip. The antenna elements are fed with a 

delayed-line system to create the desired progressive phase for arrays. For broadside arrays 

working at 60GHz, the measured transmission when the beam max is directed towards the desired 

array pair for untrimmed-feed for intra-chip case vary from -43 to -55dB, and for the inter-chip 

case, it varies from -35dB to -40dB. For phased array in the intra-chip scenario, the measured 

transmission between the arrays with untrimmed-feed varies from -37dB to -42dB. Lastly, the 

endfire array for the intra-chip case shows a good consistency between the simulation and 

measured results. For inter-chip scenarios, despite best alignment between the arrays, the measured 

results are quite lower than the simulated results. This may be due to the fabrication variation. 

Simulated radiation patterns and electric field density are plotted to explain beamforming for all 

types of designed arrays located at various locations across the chip. These radiation patterns are 

compared with the free space patterns. The beam of the array is distorted by the losses in the silicon 

substrate and diffraction effects due to the chip structure. The measured transmission coefficients 

would be useful to find the link budget for the system-level design. 
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Moreover, innovative techniques like artificial magnetic conductors (AMC) are 

investigated to improve the transmission between wireless interconnects such as zigzag antennas. 

During the study of intra- and inter-chip transmission described above, it was seen that the antenna 

radiation efficiency reduces with a decrease in the resistivity of silicon. Preliminary work has been 

done to show the enhancement of intra-chip transmission between wireless interconnects, which 

are implemented as antenna-on-chip (AoC), using a Jerusalem-Cross Artificial Magnetic 

Conductor (JC-AMC). For each quadrant, a zigzag monopole AoC above a JC-AMC surface is 

simulated to resonate at 30GHz with a return loss of -13dB. The enhancement is almost 3dB for 

two out of three antenna pairs. This enhancement has almost doubled the received power at the 

antenna with JC-AMC which is beneficial when designing on-chip integrated transceivers. 

Experimental validation through the fabrication of the zigzag antennas on JC-AMC surfaces on 

silicon wafer will be pursued as future work. 
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Outreach Abstract 

Emerging technologies like the Internet of Things (IoT), artificial intelligence (AI), cloud 

computing requires unprecedented processing power. Generally, the customers of these 

technologies are using their small handheld devices for usage, but technically, all the processing 

occurs over the Internet at the backend servers which are located far-away in giant datacenters. 

Improving processing power of datacenters by decreasing the size of the transistor is not a feasible 

option because we have reached the atomic limits. Also, this means Moore’s law, which states that 

the number of transistors will double in about every two years, is dead so innovative ways are 

needed to improve the efficiency of existing computing systems. If the computing power in 

datacenters is improved, this will ultimately improve the user experience in the near future.  

In the industry, scientists and engineers are moving beyond their traditional approach to 

enhance the computing power of datacenters even further by incorporating wireless technologies 

inside computer chips. It is expected that the wireless will enhance the communication within and 

between multiple chips, and therefore improve the overall computing power of a server. Moreover, 

using wireless interconnects for intra-chip and inter-chip communication will decrease the power 

consumption involved in parallel processing.  

Since the beginning of wireless communication, it has touched the lives of everyone on our 

connected planet. Most of the communication systems of the world depend on wireless technology 

for optimal performance. Many wireless technologies like MIMO systems, beam steering, etc. are 

yet to be implemented on a silicon chip. This creates an opportunity for researchers to investigate 

the ways to connect silicon chips wirelessly. Due to the small size of the chip, innovative solutions 
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must be designed to implement a wireless system inside the chip. This work is performed to 

provide a basic framework for the implementation of wireless technologies on the chip.  
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1. Introduction 

Emerging technologies like the Internet of Things (IoT), artificial intelligence (AI), cloud 

computing requires unprecedented processing power. Generally, the customers of these 

technologies are using their small handheld devices for usage, but technically, all the processing 

occurs over the Internet at the backend servers which are located far-away in giant datacenters. 

These datacenters house an enormous network of multichip multicore (MCMC) processing 

systems to keep up with the demands of parallel processing.  

1.1 Multichip multicore systems 

Recently, Intel and AMD have released new processors Xeon 9200 and EPYC, respectively 

[1][2]. Intel Xeon 9200 is a 2-chip processor with 28 cores on each chip and AMD EPYC is a 4-

chip processor with 8 cores on each chip. Xeon is based on a 14nm technology node and AMD 

EPYC is based on 7nm technology node. The pictures of Intel and AMD multichip multicore 

(MCMC) systems are shown in Figure 1-1. As a modern trend to manufacture server-side 

processors, a monolithic giant chip is broken into a small scalable chip which has a better economic 

and cost structure. This also helps to improve the manufacturing yield which is important when 

profit margins are taken into account. Also, it helps with uniform heat dissipation leading to longer 

life of the processor. 

In the modern computing platform, a single chip multicore system is packaged as shown 

in Figure 1-2. This package design is used in Intel Xeon [3], which is generally used in high-

performance servers. The silicon die/chip is flipped on top of the package substrate, also known 

as flip-chip technology [4]. This is done to reduce the contact between the transistors and the 

printed circuit board (PCB). The connection between the chip and substrate is established by using 
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solder balls. As the connection points increase the solder balls are arranged in a grid array known 

as ball grid array (BGA).  Moreover, to uniformly spread the heat generated by the transistors on 

the chip, a heat spreader is placed at the top of the silicon chip. The chip and the heat spreader are 

attached using a thermal material to provide proper thermal connection without leaving any gaps 

at the surface contact. 

This packaged chip, or simply a package, is placed on the printed circuit board, here labeled 

as a ‘Motherboard’. The connection between the package and the motherboard is established using 

different interfaces depending on the flexibility, reusability, performance, and environment to be 

used. Various connections interfaces are BGA, land grid array (LGA), pin grid array (PGA). In 

Intel Xeon, LGA is used as shown in the picture. LGA provides the feature of reusability to the 

package as it can be detached from one motherboard, and then placed into another. A similar case 

can be stated for a PGA socket, however, the electrical performance is lower and they require thick 

sockets on the motherboard for the pillars to sit into the socket. BGA may provide reusability but 

at a higher cost of complexity and lower performance for large grid arrays. 

    
(a)              (b) 

Figure 1-1: (a) AMD EPYC Multichip system, (b) EPYC Monolithic vs MCMC system [2]. 

Chip

Chip Chip

Chip
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Now, field-effect transistors (FETs) are fabricated on a silicon wafer using a variety of 

standard CMOS processes. The process of fabrication of transistors is generally known as Front 

End of Line (FEOL). The front end layer is nothing but two-dimensional placements of FETs on 

a silicon wafer. The front end does not include connections between different FETs. A metal wire, 

technically known as a metal interconnect is fabricated on top of the transistors to support the 

transfer of power or signal. The metal used to fabricate interconnects may be copper or aluminum. 

  
(a) 

    
(b) 

Figure 1-2:  Modern Package design (a) side view of the package, (b) perspective view of the package[3]. 
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Fabrication of metal interconnect is known as Back End of Line (BEOL). The FEOL and BEOL 

are shown in Figure 1-3 (a). These Metal interconnect does not only provide connections between 

MOSFET in FEOL but also connects to the outer package pins using a solder bump. The lead 

solder bump can be seen in Figure 1-3 (a). 

The metal wires connecting the transistors are fabricated as a back-end-of-line (BEOL) 

process. It involves a complicated and slow process of deposition & etching of an inter-layer 

dielectric (ILD) layer, usually silicon dioxide (SiO2), and a metal layer (either copper or 

aluminum). There are various parameters taken into an account while depositing ILD since, the 

structure should be mechanically stable at the same time, the metal between ILD should form a 

good connection. Since, if the appropriate amount of metal is not deposited or etched, the metal 

wire would be unable to conduct current leading to lower yield. In modern processors, wires are 

    
(a)              (b) 

Figure 1-3: Wired interconnects. (a) View of cross-section of the chip [5]; (b) 3D view [6]. 

Interconnects
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fabricated using copper, however, copper doesn’t go well with SiO2, so a special process called 

damascene process is used which forms an additional barrier between copper and SiO2. 

Recently the number of transistors has increased to billions per chip, consequently, the 

metal interconnects connecting them have increased tremendously. It has become difficult to 

design these metal interconnects. Also, the interconnects take space and generate heat due to 

conductive losses of metal. Moreover, the scaling of interconnects with smaller technology nodes 

is problematic [7] due to increasing power consumption [8], delay, electro-mitigation, electrical 

noise, and clock synchronization [9]. New methods of transferring signals are required to 

efficiently transfer the signal/data from one location of the chip to another. As a result, the network-

on-chip (NoC) came into existence. 

Considering limitations of metal interconnects, a new interconnect system was proposed 

in 2002 which implemented networks of interconnects based on computer networking [9]. 

Switches, routers, hubs and other networking devices were designed on the chip to support the 

network-on-chips (NoC). Moreover, different networking algorithms like mesh, bus, et al. based 

on large computer networks were implemented to improve the interconnect performance. 

Commercial and research-oriented devices based on mesh networking topology is Mellanox 72 

core SoC processor [10] and a research-oriented ‘kilocore’ 1000 core processor [11]. 

As the chips like Tx72 from Mellanox are slowly getting into the mainstream since Intel 

and AMD are now looking to take the path to multichip many-core processors. In the future, the 

typical number of cores in a processor will increase to a hundred or more cores. Furthermore, 

recent research analyzing the system-level performance of wire-based NoC architectures has found 

that the network is bound to suffer congestion and packet latency or, even, loss when it comes to 



 

6 

the communication between farthest cores [12]. A new approach to solve the congestion and delay 

problems must be found to keep the improving computing power in high-performance servers. 

Near-term emerging solutions to this problem are using wireless interconnects or optical 

interconnects for long-distance communication between cores located in intra-chip or even inter-

chip. Although the interconnects based on optical waveguides have large bandwidth, the 

fabrication process, size, and requirement of additional heating elements for waveguides seriously 

limits the integration with the CMOS digital circuitry [13]. On the contrary, wireless interconnects 

are based on standard CMOS process technology. The metal antennas used as wireless 

interconnects can be designed using the standard processes. Therefore, research for wireless 

interconnects as AoCs is attractive. 

1.2 Intra- and Inter-chip wireless communication 

As the demand for processing power is driven by innovative technologies like artificial 

intelligence (AI), cloud computing, virtual reality (VR), and others, in near future, the high-

performance systems will be required to parallel processing enormous amount of data. Since the 

CMOS technology node is reaching its ceiling at 5-7nm, novel technology is needed to keep up 

with the upcoming computational demands. Recent research has shown that wireless interconnects 

can serve for intra-chip (wireless network-on-chip) or inter-chip communication to improve the 

performance of NoC and therefore enhancing the computational power of the processor [14]. 

As the number of cores increases in a chip, the NoC leads to poor performance due to the 

congestion and delays. When several cores are processing information, the injection rate of data 

packets increases which affects the NoC performance for the long-destined packets. Some data 

packets, destined for far away core, may get into a routing loop problem due to local congestion 
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nearby or between routers, this leads to tremendous delay or even loss of the packet. Using network 

packet simulation, it has been found that if a few wireless nodes are placed in proper places as 

shown in Figure 1-4 as an example scenario, higher performance can be achieved [15]. Since the 

wired NoC works well for near-destined packet and considering the overhead cost of fabricating a 

wireless node (wireless interconnect and transceiver circuits), few wireless nodes are sufficient to 

improve the network performance significantly and reduces the congestions at even higher 

injection rates. 

One more advantage of wireless is, obviously, it is wireless. No wired interconnect is 

required to transfer data from one chip to another. The fact that different data transfer protocols 

are used at different interfaces, so data is converted into specific blocks corresponding to interfaces 

which increase the delay and complexity. But with direct wireless links, complexity and delay will 

reduce. This will increase the performance, and save the chip space of CMOS devices. 

The wireless interconnects can also be extended further to transmit to the neighboring chips 

as inter-chip communications. There are many purposes and applications for inter-chip 

communication. This communication will require a large bandwidth to support high data rates. 

 
Figure 1-4.  Conceptual diagram of wireless multichip system [15]. 
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High-speed communications require a large bandwidth. Federal Communications 

Commission (FCC) has allocated an unlicensed 57-64GHz band [16] with greater than 100MHz 

band channels in the USA. This millimeter-wave (mmWave) frequency band is commonly known 

as 60 GHz frequency band, since it is centered around 60 GHz. This allocation made possible the 

realization of ultrahigh-speed communication systems. Moreover, the range of frequency helps 

design an antenna of very small size (of micrometer dimensions) which is feasible for fabricating 

antenna on the chip. In this way, small wireless interconnects for WiNoC can be implemented on 

semiconductor devices. 

Since the transmission of 60 GHz band is used for a short distance with a maximum of 10 

meters. Moreover, the 60 GHz band cannot even penetrate concrete walls. It has a high attenuation 

rate in the atmosphere. All the above-mentioned reasons are going to decrease the chances of 

spoofing (unauthorized access using wireless protocols), thereby increasing security. Another 

advantage is the fabrication process of AoC is compatible with existing CMOS technology. The 

antennas are easily fabricated using standard process technology used by the semiconductor 

industry today. 

Many wireless technologies like MIMO systems, beam steering, etc. can be implemented 

to further use advanced wireless technologies. This creates an opportunity for researchers to 

investigate the ways to connect chips wirelessly. 

1.3 Related work on antennas on a chip 

The research on the antenna on-chip (AoC) is going on for more than two decades now. 

One of the earliest implementations was the planar microstrip antenna array [17] in 1986. It was 

implemented with a 95GHz oscillator circuit on a very high resistivity substrate (ρ=10kΩ-cm). 
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Later in 2000, AoC was implemented to demonstrate the idea of wireless clock distribution in 

digital integrated circuits [18]. 

Recently published book chapter [19] and article [20] on AoC provide good references. 

There has been research on the topic of antenna-on-chip (AoC). Different types of antennas are 

analyzed like a dipole antenna, meander, zigzag, loop, patch, Yagi, and bow-tie antennas. Kenneth 

K.O and his students have studied planar dipole antennas on a silicon chip [21][22]. Their research 

has been limited to lower than 20GHz. They have shown the operation of the antenna at microwave 

regime lower than 10GHz.  

A form of zigzag dipole antenna shown in Figure 1-5 (b) is provided in [21]. Figure 1-6 

shows the design of the dipole antenna and substrate cross-section. This antenna showed promising 

results for being an omnidirectional antenna at 15 GHz. Above shown dipole antenna is modified 

into a monopole [22] with long sleeves for ground shown in Figure 1-7. This antenna was tested 

at a frequency centered around 6 GHz. Despite little change in the radiation pattern of the 

monopole, its performance is similar to the dipole. Moreover, the monopole antenna takes less 

space than the dipole antenna shown above. 

 
Figure 1-5.  Antenna on chip [21] (a) Dipole (b) Zigzag (c) Meander (d) Loop. Axial length=2mm. 
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All aforementioned antennas do not include feed but excited by GSG probes. A zigzag 

antenna with coplanar waveguide (CPW) feed was designed in [22]. It is shown in Figure 1-8. The 

reason for choosing CPW feed is its lower loss at high frequencies. Moreover, the CPW feed can 

be easily fabricated on a single layer without a bottom ground plane, unlike microstrip feed. The 

zigzag antenna is optimized and simulated to work at 60GHz. It was simulated in ANSYS HFSS. 

Modified zigzag antenna is designed to excite the zigzag antenna using a CPW feed. This antenna 

is a monopole antenna. 

 
Figure 1-7.  (a) Zigzag antenna on silicon wafer [22], (b) Cross-section of silicon wafer. 

      

Figure 1-6.  (a) Monopole antenna on chip with long sleeves [22], (b) S11 of antenna in part (a). 
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Figure 1-8: CPW-fed zigzag antenna [23]. 

A bow-tie antenna is also developed as AoC for high resistive silicon to increase the 

operating bandwidth [24]. The simulated operating frequency of the antenna is from 51GHz to 

100GHz with a radiation efficiency of about 20%. Another version of a bow-tie antenna is designed 

for a BiCMOS process for RFID and other sensor application [25]. Moreover, Yagi antenna is 

analyzed for a directional radiation pattern. First, Zhang and his team have designed a planar quasi-

Yagi antenna with two directors and a truncated ground plane as the reflector with operating 

frequency around 60GHz [26]. The resistivity of silicon selected is 10Ω-cm, therefore the radiation 

efficiencies are 6%.  Later, Hsu, et al. have redesigned Yagi antenna in multi-BEOL layer form 

[27]. Antenna designed by is Hsu, et al is working around 60GHz. It can be excited by a CPW feed 

as shown in Figure 1-9 (a). Moreover, they have considered lossy silicon substrate, so the simulated 

radiation efficiency of the antenna is 10% with a front-to-back ratio of 9dB and max. gain of -8dB. 

A Yagi-Uda antenna [28] is also manufactured using the bond-wire connecting the PCB and the 



 

12 

high-resistivity SiGe CMOS chip as shown in Figure 1-9 (b). The antenna is resonating at 35GHz 

with S11 below -10dB. 

Various modification of the fabrication process has been implemented to improve the 

radiation efficiency of the on-chip antenna. Some of the modifications are: 

 Use of proton implantation [29],[30] to increase the resistivity of silicon, thereby 

improving the radiation efficiency of AoC. 

 
(a) 

 
(b) 

Figure 1-9.  Quasi-Yagi antenna with a CPW feed designed by Hsu, et al. [27], (b) Yagi-uda antenna 

made by the bond-wires for on-chip radio applications [28]. 
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 Substrate thinning: This process involves the trimming of the substrate to reduce the losses 

incurring in the substrate [31].  

 Using artificial magnetic conductor (AMC): Fabricating special structures which reduce 

the image current generated by the bottom ground plane. These special structures are 

artificial magnetic conductor (AMC) [32]. 

 Use of superstrate or dielectric resonator to improve antenna efficiency [33]. 

 Micromachining the antenna structures with precision [34].  

Some of the modifications like substrate thinning, superstrate are not compatible with the 

CMOS processes. In a later chapter, preliminary work has been performed to include AMC with a 

zigzag antenna to analyze the improvement in transmission between the antennas. 

1.4 Research objective and contribution 

The objective and contribution of this work are described as follows: 

A. Intra- and inter-chip transmission between wireless interconnects in a realistic 

chip package consisting of on-chip wires: The first objective is to find the 

transmission coefficients between on-chip antennas for intra-chip and inter-chip 

communication in old (wire-bonded) and modern (flip-chip) packages. This work is 

discussed in chapter 2. The wireless interconnects implemented using on-chip antennas 

are designed in HFSS and fabricated at Semiconductor and Microelectronics Fabrication 

Laboratory (SMFL), RIT. The intra- and inter-chip transmission between the wireless 

interconnects implemented as antennas on-chip are simulated and measured. Also, a 

channel model has been presented based on the measurements between wireless 

interconnects. The on-chip metallic wires in processors have been modeled and 
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simplified for simulation purposes. The transmission between wireless interconnect, 

which are implemented as on-chip antennas, in the presence of wires and other metallic 

structure is simulated. The transmission between wireless interconnects implemented 

in a flip-chip package has been simulated.  

B. Implementation of beamforming using antenna arrays on-chip: Another objective 

is to design antenna arrays for beamforming using the zigzag antennas. The antenna 

arrays are discussed in chapter 3. The antennas arrays are designed using zigzag 

antennas using ANSYS HFSS. Proper feed networks are designed to provide the 

antenna elements with the appropriate phase for beamforming. The antenna arrays are 

placed at the edge of the chip as discussed in chapter 3. Fabrication of antenna arrays 

is performed at the RIT SMFL cleanroom. The antenna arrays on the chip are measured 

using the Keysight network analyzer and probe station. The results like transmission 

coefficients between array pairs from simulation and measurement are shown and 

analyzed. Moreover, the radiation pattern and electric field density are also plotted to 

show the beamforming in desired directions. These results would be helpful to design 

the link budget for a transceiver system. 

C. Transmission enhancement using artificial magnetic conductors (AMC): The final 

contribution of the work is the implementation of on-chip metasurface like artificial 

magnetic conductors which is known in the research community to enhance antenna 

properties like efficiency. Artificial magnetic conductors (AMCs) are also designed 

and simulated to enhance the transmission between the antennas on the chip. The 

results are discussed in chapter 4. It is shown that the artificial magnetic conductors are 

enhancing the transmission coefficients between antenna pairs. Moreover, the 
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challenges of using the AMC for enhancing the transmission between antennas are also 

discussed. 

1.5 Societal and technological impacts 

Today the world is moving towards cloud computing, artificial intelligent systems, 

machine learning, and other technologies that require enormous data processing power. The data 

processing for these technologies occurs remotely at datacenters. These remote centers use 

computing technologies that are based on MCMC systems for parallel processing. This research 

is focused on increasing the data transfer between cores of the MCMC system using wireless node. 

Recent research has shown significant improvement in data throughput when using a few wireless 

nodes placed between cores in the MCMC system [15]. This on-chip wireless interconnect 

technology can be implemented as a near-term solution to improve the processing performance in 

parallel processing systems.  

This research would help implement wireless interconnects that are needed to cope with 

the challenges of processing power in datacenters. By improving the capabilities of datacenters, 

the cloud services that use those datacenters such as web applications, scientific simulations and 

computations, Internet of Things, virtual reality (VR) technologies, and others would become 

much better. Ultimately, the general public would experience an enhanced performance of 

technologies like virtual reality, augmented reality, and driverless vehicles. This improvement 

would in turn benefit the students in the field of education, scientists who are in research, the 

engineers who are designing new virtual models of various machines and megastructures, 

mechanics who may use the virtual technology to fix and understand problems, and much more. 

Furthermore, it would enhance the capabilities of artificial intelligence that has found new 

applications in social media (fact-checking), et al.   
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2 Intra- and Inter-chip Transmission in NoC based 

multichip systems 

2.1 Introduction 

Network-on-chip is the solution to the problem of complex wiring between different blocks 

and processing cores of a processor. However, when the number of blocks and cores increases, the 

network-on-chip starts to get congested and causes delays to transfer the data [12]. Recent research 

has shown that this problem can be solved by using a few wireless nodes which are scattered across 

the chip as shown in Figure 1-4 [15]. The latency of the data packet reduces significantly which 

improves the parallel processing. Moreover, these wireless nodes can also be used to communicate 

with other chips on the board. Here, the communication between wireless nodes located in a chip 

is labeled as intra-chip communication and when the communication is occurring between the 

nodes located in different chips, it is labeled as inter-chip communication. 

In this chapter, a study has been performed to establish transmission between wireless 

nodes located at each quadrant of a chip, moreover, a four chip system is used to analyze a 

multicore multichip system. Easy to design zigzag antennas, which have a small footprint and 

omnidirectional pattern, are used for simulation purposes. All simulations are performed in 

ANSYS HFSS. Furthermore, transmission analysis is performed to understand the behavior of on-

chip antennas in a complex, modern flip-chip package. 

2.1.1 Related work on transmission analysis and channel modeling 

The research to analyze the transmission between on-chip antennas is on-going since the 

last decade. Work is performed by Dr. Zhang and his students to analyze the performance of inter-
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chip transmission for 23GHz to 25GHz [35]. Later they have also performed work for intra-chip 

transmission channels [36][37]. They have shown that the dominant component for intra-chip 

transmission is surface waves.  Another work, performed by Redfield, et al. [38], has modeled the 

channel inside a computer chassis as shown in Figure 2-1. They have taken measurements with 

the standard components inside a computer chassis. 

Furthermore, Kikkawa [39] has provided the simulated and measured transmissions for on-

chip dipole antennas designed to work at 3.5GHz. A picture of the Kikkawa’s model along with 

the result is shown in Figure 2-2. In [40], A channel model at mmWave frequency band 57-64GHz 

has been generated using measurements between antennas inside a metal box. A work on channel 

model has also been performed inside a server chassis at the unlicensed mmWave band 57-64GHz 

[41]. In [42], Matolak et al. have theoretically discussed the challenges involved in channel 

 
Figure 2-1.  The communication scenario analyzed by Redfield, et al. [38]. 
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modeling for wireless network-on-chip which involves intra-chip communication. Moreover, they 

have further worked to design an antenna just above the passivation layer [43]. This is extra 

overhead, however, it may help to improve the transmission. 

Recently, work is performed by Gade, Ram, and Deb [44] on channel modeling using 

folded dipole antenna and log-periodic antenna, but this work is based on simulations which are 

performed in CST Microwave studio. Another recently published work has focused on WiNoC 

and intra-chip transmission [45]. This work is conducted with measurements at Ka-band (26-

40GHz) and V-band (40-75GHz) with different scenarios and placement of antennas as shown in 

Figure 2-3, however, the work is performed on high-resistive silicon. Though it involves the 

ground plane at the bottom, this work does not take into account the PCB board and, the metal 

wires which can also affect the propagation between the wireless interconnects. 

 
Figure 2-2.  Inter-chip transmission analysis between AoCs fabricated on silicon which is 

placed on an interposer materials [39]. 
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2.1.2 Design of antenna configurations for multi-chip systems 

The on-chip antenna has to provide the best power gain for the smallest area overhead. 

Several on-chip antenna designs in the mmWave bands such as, linear dipoles, patch antennas and 

log-periodic antennas have been investigated. Our choice of the zigzag antenna for this paper, is 

based on its small footprint and its omnidirectional pattern [46], which allows for easy placement 

and ability to communicate with other chips at various orientations. Moreover, a sufficiently 

omnidirectional antenna can also enable broadcast among the wireless nodes in the platform, 

which is greatly beneficial for handling broadcast or multicast messages to maintain memory or 

cache coherency protocols and status updates [47]. For this reason, we do not adopt beam-forming 

  
(a) 

 
(b) 

Figure 2-3:  (a) Scenarios and antennas considered by Masri, et al. [45]. (b) Reflections of the EM wave 

from different obstacles and ground plane. 
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antenna arrays, which are the common focus for mmWave systems in other application areas such 

as 5G communications [48]. In addition, such mmWave antennas, which are fabricated using top 

layer metals of CMOS processes, are suitable for near-term solutions to the wired interconnect 

problem compared to other alternatives like Graphene or Carbon Nanotube (CNT) based antennas, 

although they might operate at higher frequencies [49]. Due to these reasons, we have, here, 

designed mmWave zigzag on-chip antennas and their co-planar waveguide feed structure to 

resonate in the mmWave frequencies such as 30GHz and 60GHz. Next, we discuss the objective 

of our work. 

2.1.3 Objective of chapter 

The objective of this chapter is to study the transmission coefficients between on-chip 

antennas in a chip package. There are two types of chip packages which are considered in this 

chapter: first, a wire-bonded package, generally found in older processors, and secondly a flip-

chip package that is used in modern processors. It was used in Intel Pentium Pro 140 and others. 

As an example, a top view of the Intel Pentium Pro processor is shown in Figure 2-4. This package 

is not only an example of a wire-bonded package but also an early form of a multichip module 

(MCM). Moreover, a generic side view of a wire-bonded package is shown in Figure 2-4 (b). Later 

on this chapter, this environment is used for simulation of wireless interconnects because of its 

simplicity. 

Further in the chapter flip-chip package is also used for simulations. However, the flip-chip 

package is more complicated in design and simulations due to the use of C4 solder balls (or 

microbumps). Due to the limitations of readily-available equipment, first, the simulation and 

measurement are performed in a wire-bonded package with zigzag antennas around 30GHz. Using 
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(a) 

 

(b) 

Figure 2-4: Wire-bonded processor package: (a) Intel Pentium Pro chip package (front and back) along 

with inset view showing thin gold wire bonding [51][52], (b) generic view of cross-section of the chip[50] 

(Figure not to scale). 
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the measurement data, a channel model is created for use in the future. Further, simulation of 

antenna and analysis of transmission is performed in the wire-bonded package along with the metal 

wires in BEOL layers. The metal wires are explained in more detail later. In the next section, 

simulations of wireless interconnects as zigzag antennas are performed in a simple wire-bonded 

package. 

2.2 Simulation of on-chip zigzag antenna in multi-chip systems at 30GHz 

In this section, the design and simulation of on-chip antennas in the multi-chip system are 

discussed. The on-chip antennas are designed and optimized in ANSYS High Frequency Structure 

Simulator (HFSS). The simulation of silicon chips with on-chip antennas operating at 30 GHz is 

performed in a multi-chip system environment. The simulation setup consists of four silicon chips 

with typical dimensions of 20mm x 20mm placed on top of an organic substrate (FR4 - εr = 4.4, 

tan(δ) = 0.02) of thickness 1.575mm. Each chip is equally divided into four quadrants as seen in 

the layout shown in Figure 2-5 (a). A cross-sectional view is also shown in Figure 2-5 (b).  

The chips are made of silicon (εr = 11.7 & ρ = 55Ω-cm) with thickness 675µm. A 2µm 

thick silicon-dioxide SiO2 (εr = 3.4) layer is considered above the silicon. A Perfect Electric 

Conductor (PEC) boundary at the bottom of the organic substrate is considered for simulation 

purpose to emulate the effect of ground plane. Furthermore, the design of the on-chip antenna 

should be small compact and low-profile for implementing on or inside the silicon-dioxide layer. 

The design of on-chip antenna is shown in Figure 2-6(a). It is a single metal (aluminum) layer zig-

zag antenna so it can be fabricated on a silicon chip using conventional CMOS-based fabrication 

process.  Also, it should be noted that the epoxy resin is not used here as seen in the cross-section 

view, because the dielectric constant is low, and it will be easier to measure these antennas when 

fabricated. 
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(a) 

 
(b) 

Figure 2-5.  (a) Top view of the multi-chip system. (b) Cross section of multi-chip system setup. 

Note: Figures are not to scale. 
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(a)       (b) 

Figure 2-6.  On-chip antennas operating at 30 GHz. (a) Orientation 1 (O1), (b) Orientation 2 (O2). The 

width of the signal trace is 70µm. 
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The on-chip antenna is 883µm long for operations at 30GHz. The thickness of the 

aluminum layer is 1µm. The antennas are modified to include probe pads to use Ground-Signal-

Ground (GSG) probes for measurement. Cascade ACP40-A is used in the next subsection as the 

GSG probe. They have a pitch of 150µm and a minimum pad size requirement of 50µm. So, a 

probe pad of size 70µm x 70µm with a pitch of 150µm are designed and shown in Figure 2-6. The 

width of the signal trace is 70µm. For simulation purpose, HFSS lumped port is used for exciting 

the CPW feed of the on-chip antennas 

Moreover, another on-chip antenna configuration is designed which is rotated 45° as 

compared to the previous antenna and is shown in Figure 2-6 (b). The first one is orientation 1 

(O1) and the latter is orientation 2 (O2). The reason of the two different orientations is to study the 

effect of orientation on the transmission between on-chip antennas. For O2, the bend in the feed 

line shown in Figure 2-6 (b) is to accommodate the movement of GSG probes in the measurement 

system which is constrained to only linear three-dimensional motion. Next, the on-chip antennas 

are placed at the center of each quadrant in the silicon chips. Three configurations (Conf) of the 

silicon chips are designed using the two different orientations of on-chip antennas. The 

arrangements of on-chip antennas on a chip are shown in Figure 2-7, and labeled as Conf 1, Conf 

2, and Conf 3. Conf 1, which is shown in Figure 2-7 (a), has antennas parallel to each other. Conf 

2 and Conf 3 are shown in Figure 2-7 (b) and Figure 2-7 (c), respectively. Conf 2 and Conf 3 have 

antennas positioned similar to Conf 1 but are rotated 45° away from and towards the center of the 

chip, respectively. We use these three configurations to study the impact of antenna orientations, 

the ground plane, and FR4 substrate on transmission characteristics between the on-chip antennas. 

It should be noted that all the on-chip antennas are located in the far-field region of each 

other. The far-field boundary is considered to be at a distance of λ/2π from antenna [53], which, at 
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30GHz corresponds to 1.6mm in free space. In our layout, the minimum distance between antennas 

in the chip is 10 mm as shown in Figure 2-8, therefore, all on-chip antennas are placed in the far-

field region. For the simulation model, four chips of the same configuration are placed in a multi-

chip system on top of the FR4 board as shown in Figure 2-5 (a). For each such arrangement 

corresponding to the three configurations, simulation is performed using ANSYS HFSS. 

   
(a) 

     
(b)          (c) 

Figure 2-7.  Silicon chips with antennas (ANT) in MCMC system. (a) Configuration (Conf) 1, (b) 

Configuration 2, and (c) Configuration 3. Note: (i) Figures are not to scale. Antennas are enlarged to 

show the orientations. (ii) The antennas are placed at the center of the quadrant. 
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The on-chip antennas are optimized to have a reflection coefficient (S11) of below -15dB 

at 30GHz shown in Figure 2-9. For each configuration, the reflection coefficient (S11) is shown for 

only one antenna since all four are identical. The simulated radiation efficiency of zig-zag antenna 

is 15% for all configurations. For transmission coefficients, there are numerous combinations of 

antenna pairs. So, to make the discussion tractable, only five antennas are considered as shown in 

Figure 2-8. These antennas are selected because they include the expected worst cases that is, 

farthest antenna pairs for intra- and inter-chip pairs (A, B, C and D from O). All transmissions for 

30GHz frequency in this paper are measured relative to common ANT O. The simulated 

transmission coefficients for inter-chip communication are shown in Figure 2-10 (a), and intra-

chip communication are shown in Figure 2-10 (b).  

 

Figure 2-8. Top view of multi-chip system showing the placement of antennas under investigation. 

Note: (i) Figures are not to scale. Antennas are enlarged to show the orientations. (ii) The antennas are 

placed at the center of the quadrant, (iii) Antenna O is considered as reference for the analysis of 

transmission coefficients. All distances are from center-to-center of the antennas. 
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Figure 2-9. S11 of the antennas in all configurations. 

 
(a) 

 
(b) 

Figure 2-10. Transmission coefficients. (a) Inter-chip scenario, (b) Intra-chip scenario. 
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It is seen that the intra-chip transmission at 30GHz, varies from -31dB to -38dB, and inter-

chip transmission varies from -46 to -60dB, which is expected since the distance between the 

antennas has increased in the latter case. Moreover, in Figure 2-10 (a) at 30GHz, the transmission 

between antennas A & O and antennas B & O in Conf 3 is -60.68dB and -46.5dB, even though the 

distance between antennas A & O is smaller than that between antennas B & O. This is due to the 

structure of the multi-chip system and the interference caused by the reflected multi-path 

propagations from the ground [54]. Also, Figure 2-11 shows the simulated magnitude of the 

electric field along the line connecting ANT O & ANT A and ANT O & ANT B. Since, the path 

between these antenna pairs passes through the metal trace of other antennas such as ANT C (at 

9mm on blue trace), ANT E (at 29mm on blue trace) and ANT A (at 38mm on blue trace), the 

discontinuities in the electric field are seen in the plot.  

We can further observe that the field distribution varies across the structure. To investigate 

this further, we study the magnitude of the electric field distribution, shown in Figure 2-12(a) to 

Figure 2-12(c) for all three configurations in the plane of antenna (surface of silicon-dioxide) and 

cross-section plane containing antennas O and A at 30GHz. The field distribution depends on - 

 

Figure 2-11.  Magnitude of electric field (V/m) along the line connecting ANT O and ANT A & ANT 

O and ANT B (only ANT O is excited) in Conf 1. Antenna Arrangement is shown in Figure 2-8. 
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(a)       (b) 

 

 

(c) 
 

Figure 2-12.  Magnitude of electric field (V/m) distribution on the surface of silicon and cross-

section view across ANT O and ANT A when ANT O is excited at 30GHz. (a) Configuration 1, (b) 

Configuration 2 and (c) Configuration 3 as shown in Figure 2-7. 
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structure, geometry, the material used, and the operating frequency. In Figure 2-12 (c), the low 

intensity of field distribution can be noticed at the position of antenna A. This is the reason for the 

fluctuations in the transmissions between antennas. The distribution of field in Conf 2 and Conf 3 

is different for ANT B, therefore the transmission between ANT B & O is better for Conf 3. 

Furthermore, as confirmed by [36], the dominant way of propagation in intra-chip 

propagation is surface waves. This can be seen in the cross-sectional view of the structure in Figure 

2-12 where high magnitudes of field distribution are on the surface of the chip where the on-chip 

antenna is excited. Another observation from the electric field plots in Figure 2-12 is the 

diffractions of waves at the edges, which can significantly increase the multi-path effect. If 

directional on-chip antennas or on-chip phased array for inter-chip communication are used, then 

these edge diffractions might cause the beam to distort which may reduce the gain. Moreover, as 

the field propagates to other chips, the low-intensity regions become significant, which can be 

observed in Figure 2-12. This shows that the expected omnidirectional radiation of the zigzag 

antenna is distorted due to structures, geometry, and materials of the setup. Therefore, the analysis 

of field distribution needs to be considered while placing on-chip antennas for data communication 

between chips in the multi-chip systems.  

Furthermore, a study is performed with changing the resistivity of silicon to analyze the 

change in S11 of the antennas in Conf 1. The previous simulations are performed for various 

resistivities of silicon 10Ω-cm, 20Ω-cm, and 1000Ω-cm. The S11 for one antenna for different 

resistivities is compared with the S11 of the antenna with 55 Ω-cm in Figure 2-13. It can be seen 

from the plot that the antenna is resonating at about the same frequency, however, the magnitude 

of S11 is increasing as the resistivity is decreasing. Further, analysis is performed in terms of the 

radiation efficiency of the antennas. Table 1 is shown where it can be noticed that the radiation 
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efficiency of the antenna significantly depends on the silicon resistivity. As the resistivity of silicon 

decreased the radiation efficiency reduced. At 10Ω-cm, the standard resistivity of silicon used in 

processor chip, the radiation efficiency dropped to about 0.2% despite S11 of about -10dB at 

30GHz. 

 

 

In the next section, the simulated antennas are fabricated on a 55Ω-cm silicon wafer. The 

fabrication process along with measurement procedure is discussed. 

2.3 Fabrication & measurements of on-chip antennas 

The discussion in this section is divided in two different subsections: (a) fabrication of 

antennas, and (b) measurement of antennas. 

 

Figure 2-13.  Magnitude of S11 of on-chip antenna for Conf 1 for different resistivity of silicon. 

Table 1:  Radiation Efficiency of on-chip antenna for Conf 1 for different resistivity 

of silicon. 

 

Silicon Bulk

Resistivity (Ω-cm) 10 20 55 1000

Simulated 

Radiation Efficiency 

at 30GHz (in %)

0.2 1 15 30
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2.3.1 Fabrication of on-chip antennas 

The fabrication of antennas is performed at Semiconductor and Microelectronics Fabrication 

Laboratory (SMFL), RIT. A 6-inch p-type (100) silicon wafer of thickness 675μm and resistivity 

of 55 Ω-cm was used. The resistivity of silicon is verified by a 4-point probe method. The steps of 

fabrication of the on-chip antenna are shown in a flowchart in Figure 2-14. The first step in the 

fabrication process involves wafer cleaning using the RCA cleaning method. Next, a 2μm layer of 

oxide is grown using a wet oxidation method in a Bruce Thermal Furnace. After growing the 

silicon-dioxide, the thickness of the oxide layer is confirmed using a Prometrix SM200 

SpectraMap reflectometer. The aluminum is then deposited via a sputter deposition process in a 

CVC 601 Sputter. After aluminum deposition, a layer of photoresist is applied on the wafer using 

an automated SSI Track, and the shape of the antenna is defined through a 1x contact-lithography 

  

Figure 2-14. CMOS fabrication steps [55]. 
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process with a Karl-Suss MA150 Aligner. After the photoresist development process, aluminum 

is etched using a chlorine-based dry etch process, in a Lam 490 Plasma Etch, to ensure the needed 

resolution and sharpness of the antenna features. A picture of wafer with aluminum antennas is 

shown in Figure 2-15. 

Lastly, the wafer is cut into 20mm x 20mm dies using a KS780 Dicing Saw. These silicon 

dies are used to make a multi-chip arrangement. Microscopic pictures of antennas are shown in 

Figure 2-16. In the next section, procedures of measurement & characterization of these antennas 

are discussed along with the measured results. 

 

Figure 2-15. Picture of silicon wafer with fabricated antennas. 

Antennas
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2.3.2 Measurement & characterization of on-chip mmWave antennas 

In this section, the measurement procedure and challenges in measurements are discussed. 

Cascade Summit 9000 probe station along with Agilent 8363B vector network analyzer (VNA) is 

used for testing of the fabricated antennas. The measurement setup is shown in Figure 2-17. The 

VNA is calibrated from 1GHz to 40GHz using Short-Open-Load-Thru (SOLT) method with 

Cascade impedance standard substrate (P/N: 106-682). The IF bandwidth is set to 5kHz to increase 

the dynamic range of VNA, and reduce the noise in measurements. Also, each measurement is 

further repeated 10 times to average out the noise. As mentioned in section IV, a Cascade ACP40-

A are used as GSG contact probes. They have a pitch of 150µm and minimum pad size requirement 

of 50µm. Also, the simulation design shown in Figure 2-5 has a ground plane. This ground plane 

is not fabricated on silicon wafer, rather the metal chuck of the probe station is emulating the effect 

of ground plane. 

Using the measurement setup, first the reflection coefficient (S11) of fabricated antennas in 

different configurations is measured. It should be noted that the reflection coefficient (S11) of all 

         

(a)                                                        (b) 

Figure 2-16.  Micrograph of fabricated antennas on silicon, (a) an antenna from a Conf 1 die, (b) an 

antenna from a Conf 2 die. 
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on-chip antennas in a configuration is same due to same design, therefore, only one trace of 

reflection coefficient (S11) from each of the three configurations is shown in Figure 2-18. The 

reflection coefficient (S11) shows that the fabricated antennas resonate at 25GHz with a S11 

magnitude of -10dB to -12dB. However, the simulated reflection coefficient (S11) of antennas in 

all configuration shows the resonant frequency to be around 30GHz as indicated in Figure 2-9. In 

order to investigate the reasons for this shift in resonant frequency between the simulated and 

fabricated antennas we modeled the probe structure to study its impact on the resonant frequency. 

The 3-dimensional probe model, shown in Figure 2-19, has been created from US Patent 

no. 5506515 by Cascade [56] in conjunction with many dimensional measurements and 

microscopic pictures of the probe from various perspectives. The probe is excited by a HFSS 

lumped port at the k-connector. The S11 of the antenna, when simulated in the presence of the 

probe, is seen in Figure 2-20 to reduce by about 1.5GHz. The SOLT calibration that we adopted 

in our measurements, is also seen to introduce additional measurement discrepancies between the 

 

Figure 2-17. Measurement setup. 
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probe tip and the antenna feed structure [57]. These discrepancies vary between specific probes 

and Device-Under Test (DUT). Some other challenges related to the measurement of mm-wave 

antennas are reviewed in [58]. Therefore, typically at mm-wave frequencies, a few fabrication 

iterations are necessary to match simulation with measured results. Furthermore, it can be also 

noticed that the slightly longer feed in Conf 2 and Conf 3 provides a better match as can be inferred 

from the simulated reflection coefficient in Fig.4, where it is about 2dB lower than Conf 1.  

 

Figure 2-18. S11 of the antenna in all three configuration. 

      

Figure 2-19.  Cascade GSG probe modeled in HFSS and close-up top view of one of the zigzag 

antennas of Conf 1 with GSG probe on its contact pads simulated in HFSS. 

Female     

k-connector

Probe body

Microwave 

absorber

Low-loss Coax 

cable coated 

with absorber

GSG Probe Tips

ANT

GSG Probe 

Tips

Low loss 

Coax 

cable



 

37 

Also, the -10dB bandwidth of the fabricated antennas in Conf 2 and Conf 3 are about 

6.5GHz. Here, fabricated antennas in Conf 1 have a reflection coefficient higher than -10dB, so in 

this case, 7dB bandwidth is considered which comes out to be about 10GHz. Furthermore, 

transmission coefficients (S21) between ANT O and other antennas ANT A, B, C & D in all 

configurations in the multi-chip system are measured between 20GHz to 30GHz and plotted in 

Figure 2-21 when the chip boundaries are 10mm apart. Transmission between ANT B and ANT 

O in Conf 1 cannot be measured due to constraints in the movement of probe arms. All the 

measurements show that there is sufficient transmission between antenna pairs which varies from 

-35dB to -60dB at resonant frequency 25GHz. For intra-chip transmission, ANT C & ANT O in 

Conf 1 as shown in Figure 2-21 (b) has a maximum transmission. As expected, the intra-chip 

transmissions are more than the inter-chip transmission by about 10dB. Similar to the simulations, 

antenna B in Conf 2 and 3 shows dips in transmissions from 20 to 30GHz frequency intervals due 

to low field distribution. 

 

Figure 2-20. Simulated S11 of on-chip antenna with and without probe. 
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The transmission measurements with respect to ANT O also show that some antennas like 

Conf 3:ANT D, Conf 2:ANT B, and Conf 3:ANT B have dips around the resonant frequency of 

25GHz. These dips in transmissions are the result of multi-paths involved in propagation. This 

shows that the reflection from the ground plane and the structure of chip changes the transmission 

due to reflections. 

 

(a) 

 

(b) 

Figure 2-21.  Transmission coefficients (S21) for ANT A & B (a), and ANT C & D (b) relative to 

ANT O in all configuration when the distance between chip is 10 mm. Note: ANT B in configuration 

1 is not measured due to constraint in movement of probe arms. 
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2.3.3 Challenges in fabrication and measurement of antennas 

The millimeter-wave antennas are challenging to fabricate and characterize accurately 

[58][59][60]. An illustration collecting the significance, challenges, and solution is shown in 

Figure 2-22. There are various parameters and materials involved in fabrication and measurements.  

 To design a millimeter-wave antenna, good modeling of material or substrate is required. 

The material characterization at millimeter-wave frequency is not readily available. Most 

of the companies provide accurate characterization till 10GHz. There are few publications 

able in the literature which have characterized some of the material properties at 

millimeter-wave frequencies. One of that publication is [62], however, it is difficult to 

cross-verify these measurements. 

 Simulation software also possesses another challenge when working with millimeter-wave 

frequencies. Knowledge of meshing is required to accurately simulate the small mmWave 

antenna on the thin multi-layer structure.  

 

Figure 2-22.  On-chip antenna measurement – significance, challenges and solutions. Graphical 

abstract of [59]. 
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 Accuracy of measuring instruments when dealing with the on-chip antenna. It is important 

to increase the input power levels and the IF bandwidth for the measurement. This 

improves the received signal strength.  

 Also, calibration methodologies cause errors [57]. Thru-Reflect-Line (TRL) is found to be 

better than the SOLT method. 

 GSG probes may affect the measurement. The probe is quite near to the antenna-under-test 

this affects the radiation and scattering properties of the antenna [60][59].  

 Above 100GHz, the probes themselves starts to radiate, therefore to match the simulations 

and measurement results, the simulations should include the measurement probes [61]. 

 Measurement in a flip-chip environment: In modern processors, the flip-chip environment 

is used as a package. Measuring on-chip antenna in such a complicated and small 

environment is difficult. Because the antennas need to be flipped on a substrate, this makes 

the placement of GSG probes complicated. 

 Another issue may be the effect of high temperatures on the on-chip metal antennas. 

Processor chips generally heat up quickly due to the heat generated by the thin high 

resistive metal wires. These high temperatures may expand the metal antenna thereby 

slightly decreasing the resonance frequency. Antenna measurements should be taken with 

silicon chip placed on a hot plate probe station to better understand the effects. 

2.4 Large-scale channel model for inter-chip communication in multi-chip 

systems 

In this section, we derive parameters of large-scale channel modeling for inter-chip 

wireless communication links, which can be used to evaluate path losses for inter-chip 

communication systems. Large-scale channel model is required to predict the required transmit 



 

41 

power for specific SNR of the received signal in a communication system. This will enable the 

development of design rules for transceiver circuits and overall interconnection architecture 

regarding antenna placement and orientation. Generally, the large-scale channel according to the 

log-normal model [63] is given by: 

𝑃𝐿(𝑑)|𝑑𝐵 = 𝑃𝐿(𝑑0)|𝑑𝐵  + 𝑛 × 10 log10 (
𝑑

𝑑0
) + 𝑋𝜎 (1) 

where PL(d)|dB is the average path loss at a distance d relative to path loss PL(d0)|dB at a 

close-in reference distance d0, n represents the path-loss exponent, and Xσ is a zero-mean Gaussian 

random variable with standard deviation σ denoting the attenuation (in dB) caused by shadowing. 

For channel modeling, we have chosen a frequency range from 20GHz to 30GHz based on the 

operating range of the antennas. The VNA is calibrated in this frequency range. This range is ultra-

wideband (UWB), so the channel characteristics are a function of frequency and distance between 

antennas. Therefore, the average transmission across the frequency range is used to find channel 

characteristics as a function of distance [64]. Furthermore, the reflection coefficients (S11 and S22) 

of antennas is about -10dB. So, to remove the losses due to the reflection from the antenna, the 

measured transmission coefficients, S21, are processed using the transmission coefficient, Ga: 

𝐺𝑎 =
|𝑆21|2

(1 − |𝑆11|2)(1 − |𝑆22|2)
(2) 

In our model, Ga is used as a path loss between the antennas. Moreover, the channel under 

investigation for the multi-chip system is considered as a time-invariant due to the absence of 

relative motion between the chips in a multi-chip system. 

Generally, for indoor and outdoor environments large-scale channel models indicate the 

path loss in the channel only, so, it should not depend on the antenna or the transmitted power 
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level. Unlike in free space, where the simplicity of Friis’ equation to evaluate a reference path loss 

can be used, inter-chip channel modeling depends on the on-chip antennas. The fabricated on-chip 

antennas are not in a free-space environment and the rigid structure of the fabricated on-chip 

antenna adds constraints to performing measurements. In this way, the channel model becomes 

dependent on antenna design and the structure of the chip. Therefore, for inter-chip channel 

modeling, we measure the transmission between antennas at a specific distance (or shortest 

distance possible) and use that as a reference in (1). In this paper, the reference distance (d0) 

between fabricated antennas ANT A and ANT O is considered to be 40mm by placing the chips 

10mm apart. For ANT B and ANT O, the reference distance is 42.42mm by placing chips adjacent 

to each other that is zero millimeter apart.  

As discussed in the previous section, the multi-chip systems use a substrate which, in our 

case, is an organic substrate, namely FR4. The fabricated silicon chips are mounted on top of the 

FR4 substrate. Here, FR4 substrate has no ground plane of its own so the metal chuck of probe 

station would work as the ground plane. The arrangement of chips on FR4 along with probes is 

shown in Figure 2-23. A pair of antennas are identified on two different chips. Keeping the distance 

between the two antennas constant, the chip pair is moved to different locations on the FR4 board 

and corresponding inter-chip transmission measurements are made. A sequence of measurements 

are made for different distances between the chips and hence the antennas. After these 

measurements are post-processed with (2), the measured average path loss as a function of distance 

between the antennas is plotted and shown in Figure 2-24(a). Inter-chip transmission 

measurements are restricted to a distance of 75mm between the antennas due to the size of metal 

chuck of the probe station. Curve-fitting is performed on the measured average path loss to extract 

parameters required for modeling by (1). The derived model parameters are shown in Table 2. The 
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measured path loss model shows that the path loss exponent in case of inter-chip transmissions is 

close to 2, which is the path loss exponent for free space. This suggests that dominant propagation 

path is free space in inter-chip communication.  

Moreover, the variation in path loss as the pair of chips are placed in different locations on 

the FR4 substrate is modeled by Xσ. The probability density function (PDF) for modeling Xσ based 

on experimental measurements is shown in Figure 2-24 (b). As can be seen, the path loss variation 

is restricted to -2dB to +2dB around the model estimate. However, the standard deviation is a 

maximum of 1.3dB while in most cases it is less than 1dB signifying low shadowing effects at the 

antenna locations. The case of maximum standard deviation is for ANT B and ANT O in Conf 2. 

With the parameters provided in Table 2, the path loss model from (1) can be used to measure the 

path loss at other distances between similar antennas in similar multi-chip systems. A similar 

methodology can be adopted for channel modeling at other mmWave frequencies such as 60GHz. 

This analysis will be useful in estimating path loss and establishing link budget for specific 

architectures depending on antenna orientations placement. 

 

Figure 2-23.  Measurement setup for path loss measurement. The silicon chips are placed on FR4 

board at different distances. d is the distance between antennas. 
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Figure 2-24.  (a) Measured path-loss for fabricated dies with ANT O as reference fitted to a Log-

Normal distribution. (b) Probability density function (PDF) of path loss variation. 

Table 2:   Modeled parameters for different configurations and orientations. 
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2.5 On-chip antennas in the 60GHz band with metallic wires 

Following our studies with 30GHz antennas, we investigate 60GHz antennas as they will 

occupy smaller footprints in dense processor chips. However, in real chips, particularly in large 

multi-core processors, millions of copper interconnects are present in the silicon dioxide layers. 

We know that the metal objects influence the propagation of electromagnetic waves and if the 

metal objects are placed near the antenna, the objects influence the antenna’s properties like 

resonant frequency, bandwidth and radiation pattern. In this section, we first model numerous 

metallic wires into structures that can be used for practical simulations and then evaluate and 

analyze 60GHz on-chip antennas in their presence. 

2.5.1 Modeling of on-chip metallic wires 

General process of fabricating the transistors, resistances and other devices except metal 

interconnects on silicon is referred to as front end of line (FEOL). The other part of fabrication 

which is depositing metal interconnect with insulating layers and bonding contacts is referred to 

as back end of line (BEOL). As an example of metal interconnects fabricated using BEOL, the 

side-view of a die with ten layers of metal interconnects (M1-M10) including the top layer used 

for the antenna is shown in Figure 2-25 (a). The dimensions of interconnects of different layers 

along with its use are shown in Table 3. Each layer is separated by an interlevel dielectric (ILD) 

layers such as silicon dioxide (SiO2) which acts as an insulating layer. Generally, the thickness of 

ILD of a layer is equal to its corresponding thickness of metal layer. Modern processes use copper 

as the choice  

In modern processor chip, there could be 8-12 layers of metal. Each metal layer has its own 

functionality and therefore, the size. Moreover, the copper interconnects are laid down according 

to Manhattan architecture [65] that is, wires in each consecutive layer are laid in an orthogonal 
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manner with respect to each other. The reason is to minimize the cross-talk between adjacent 

layers. Figure 2-25(a) shows the side view of various layers involves in a generic modern 

processor. A top view of the chip is also shown in Figure 2-25 (a). It can be seen that the lower 

metal layers from metal 1 or simply M1 layer to M4 layer, the width of the wire is same. The wires 

in this layers are also known as local interconnects as they connects the transistors to nearby 

transistors or one device block to nearby device block. Above local interconnects, M5 and M6 

layers are the NoC layers. In a mesh-based NoC topology, these layers consists of 32/64 wire bus 

which runs from core to core. M5 layer NoC bus runs top to bottom in the Figure 2-25 and M6 

layer runs left to right, maintaining the consistency with the Manhattan architecture. Moreover, 

M7 layer may run the H-tree clock for a specific cores. Although there are different types of 

architectures of clock signal distribution, we are only considering the H-tree due to its efficiency 

and zero clock span. At the top layers that is M8 and M9 are the power grid and ground grid for 

the chip. In this section and later, copper wires/interconnects and metal wires/interconnects are 

used interchangeably. 

In modern BEOL, the interconnects are divided into three tiers: local, semi-global and 

global as shown in Figure 2-25(a) depending on the length of interconnect and devices it connects. 

Global interconnects are used for power supply, clock signals or long-range communication. Due 

to their relatively long lengths, their cross section is wider than the other tiers to reduce resistance. 

In this work, we have considered metal layers (M5-M10) belonging to the global tier. The NoC 

metal interconnects which connect the processing cores in a multicore chip are designed using M5 

and M6. In our work, we model the NoC architecture as a 2-D Mesh topology [66] as it is relatively 

easy to design, verify and fabricate due to its repetitive nature and is hence, chosen in hybrid wired 

and wireless NoC based systems [15]. Usually, NoC wires will be multi-bit (or wire) bus which 
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(a) 

 

(b) 

Figure 2-25.  (a) Side view of the chip showing the copper interconnects in SiO2 layer, (b) Top view 

of the multi-core chip. 
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.are fabricated side by side, so to reduce the mesh size in HFSS the bus is considered as a single 

thick copper wire. We consider each multi-core chip to have 4 x 4 equal-sized cores (4.5mm x 

4.5mm each) in a 20mm x 20mm die with the mesh links connecting each core to its cardinal 

neighbors. M7 is used for an H-Tree based clock network as it is known to reduce clock skew [67]. 

M8 and M9 are used for the power and ground supply straps [68]. Second, the semi-global tier is 

used for inter-block communications within a processing core spanning shorter distances 

compared to the global wires. M3 and M4 are considered to belong to the semi-global tier and are 

used to connect adjacent circuitry within a block or core. Lastly, local tier of interconnects which 

connect the transistors within a unit or cell. Local interconnects are very short and narrow. Usually 

M1 and M2 layers, which are in the local tier, are employed for connecting neighboring transistors. 

The various wired interconnects in the metal layers are shown in Figure 2-25(b). The M1-M4 

layers are so dense that they are shown as a grey box in the figure. Further, we will show that the 

wires in the M3 and M4 layers which are of the form an unbounded grid like structure, can be 

replaced by a copper sheet at M4 layer for simulation purposes as we explain next. 

Typically, the wire interconnects in the M3 layer are orthogonal to the wires in M4 layer 

in order to reduce crosstalk among wires in adjacent layers by following what is known as 

Table 3:   Dimensions for wires in different metal layers. East, West, North and South are 

abbreviated as E, W, N, and S, respectively. 

 

Layer Width 

(µm) 

Thickness 

(µm) 

Layer 

Description 

M10 - 1 ANT 

M9 2 0.5 VCC/GND 

M8 2 0.5 VCC/GND 

M7 1 0.35 CLK 

M6 0.1 0.3 NoC (E-W) 

M5 0.1 0.3 NoC (N-S) 

M4 0.05 0.02 E-W 

M3 0.05 0.02 N-S 

M2 0.05 0.02 E-W 

M1 0.05 0.02 N-S 
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Manhattan architecture. In order to model these multiple layers of metallic interconnects, we can 

consider that they form a very large unbounded grid-like structure of the size of a processor core. 

This large grid-like structure is impossible to simulate in ANSYS HFSS due to colossal mesh size 

and computational cost especially, at carrier frequencies of 60GHz. Therefore, to simulate the 

effect of semi-global interconnects on the transmission between wireless interconnects in a multi-

chip system, a simplified model is required which can emulate its effects. The aim of the following 

simulations is to show that the loading effects of a copper grid and of a copper sheet, on the antenna 

are equivalent. Using this equivalent model, for simulation, the effects of copper wires in a 

multichip multicore system can be analyzed. Before using the model, we prove that the effect of a 

copper grid of interconnects on the antenna is equivalent to that of a copper sheet through the 

following simulation. 

A small square area partially including the wire grid area inside each of the four cores 

around an antenna is simulated with a zigzag antenna. It is a small 1.4mm x 1.4mm area around 

one of the antennas shown in Figure 2-25(b) along with the small portions of surrounding copper 

sheet. The copper sheet represents the copper grid formed by M3 and M4 layers. Generally, the 

pitch of these wires vary from about 0.15μm in modern technology nodes (smaller than 65nm 

technology) to about 0.5μm or more in older technology nodes (larger than 65nm nodes). However, 

such dense and fine-grained structures are beyond the simulation capabilities of our tools. Hence, 

the minimum pitch of the grid considered here is 70µm. 

In Figure 2-26 (a), a zigzag antenna with a length of 405μm is placed in antenna layer 

which is the M10 (layer as shown in Figure 2-25(a) and on top of a grid of interconnects with 

spacing of 70μm corresponding to the M3 and M4 layers of thickness 0.02µm. The wires in M4 

layer are orthogonal to the wires in M3 layer. The thickness of silicon and silicon dioxide is 675μm 
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and 7μm, respectively. The size of the simulated area is 1.4mm x 1.4mm. Structures such as ground 

plane at the bottom of silicon and other interconnects are removed for this analysis to model the 

effect of the wires only. In another simulation, the grid of wires is replaced with a copper sheet at 

M4 layer with same thickness of 0.02µm (figure not shown). Also, a simulation is performed with 

just the antenna on silicon and without the grid or sheet. The results from the third simulation are 

used as reference to compare the previous two simulation (of grid and sheet). The simulated S11 of 

the three cases are shown in Figure 2-26(b). It can be seen that the shift in resonance of antenna 

 

(a) 

 

(b) 

Figure 2-26. (a) Top view of copper grid (M3-M4) under an on-chip antenna, (b) plot of S11 with 

grid, with sheet, and without grid & sheet.  
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with grid and the sheet is the same, though there is a 3dB difference in magnitude of S11. It can be 

concluded that the grid and sheet have the similar loading effect in terms of resonant frequency. 

In Figure 2-27(a), the zigzag antenna is surrounded by four copper grids. Each of these 

grids is identical to the one in Figure 2-26(a) where it was placed directly below the antenna. This 

arrangement is representative of the structure described in Figure 2-25(b) with spacing between 

the cores, except the ground plane at the bottom of the chip. In Figure 2-27(b), the S11 is shown 

which indicates that there is very little to no effect on the resonant frequency of the antenna. The 

 

(a) 

 

(b) 

Figure 2-27. (a) Top view of copper grids (M3-M4) beside the on-chip antenna, (b) plot 

of S11 with grid, with sheet, and without grid & sheet. 
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difference of about 4dB in the magnitude of S11 can be noticed from Figure 2-27(b). Similarly 

another simulation is performed by replacing the grid structure with a sheet of copper, and the 

results are shown in Figure 2-27(b). The S11 plot with copper sheet overlaps with the S11 plot with 

copper grid. This shows that the effects of both the grid and sheet are equivalent for the case where 

antenna is surrounded by the grid with spacing between the individual sheets. As the pitch of the 

wires here are considered to be 70µm in this model, it can be concluded that a finer pitch 

resembling those in modern fabrication technologies will also behave similarly and can be modeled 

as a copper sheet. 

Having established the equivalence of copper grid with a copper sheet in terms of S11, the 

effect of the sheet in the M4 layer on the transmission characteristics in terms of S21 is analyzed. 

In Figure 2-28(a), a small chip with 2x4 cores is shown where the copper grids are replaced by 

copper sheets, and the ground plane at the bottom and other interconnects are removed. The 

antenna is the same as used in above cases. The magnitude of S11 and S22 are shown in Figure 

2-28(b). The S11 for all cases is below -20dB with the antenna resonating at 64GHz. In Figure 

2-28(c), the S21 plot is shown in a system with and without the interconnect model (as copper 

sheet). 

Unlike in the system without interconnect models, the transmission between the antennas 

with interconnect models have dips even as the antenna is resonating at 64GHz. This shows that 

the transmission between antennas is dependent on the existence of the metallic interconnect 

model. In Figure 2-29 (a) and (b), magnitude of electric field is plotted at 65GHz in HFSS. As 

shown in Figure 2-28 (b) the S11 and S22 at 64GHz have worsened by 3.5dB and 6.5dB in the 

presence of the metallic plane. In addition, as can be seen in Figure 2-28 (c), S21 reduces by about 

15dB at 64GHz. Further, radiation efficiency of the antenna with grid and without grid (Figure 
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2-29 (a) and (b)) is 8% and 19% respectively due to destructive interference with the antenna 

radiation.  

 
(a) 

 
(b) 

 
(c) 

Figure 2-28.  (a) Top view of the2x4 multicore chip with 8 copper sheets and two antennas, (b) plot 

of S11 and S22 of antennas, (c) plot of S21 between antennas. 
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The electric field plots show significant effects of the copper sheet on electric field 

propagation supporting our inference above. Based on the results in Figure 2-28 and Figure 2-29, 

we can infer that the S21 differs significantly in presence of metallic interconnect model compared 

to a scenario where they are not present. Moreover, orthogonal wires in adjacent metal layers on a 

chip, which require advanced and expensive fabrication processes, can be modeled as a continuous 

sheet due to similar impact on antenna characteristics. Therefore, in the next section, similar 

strategy is implemented for simulating an MCMC system. 

2.5.2 60GHz transmission analysis in presence of metal interconnects 

The interconnect model (as copper sheet) described above is used in the simulation 

performed here. In addition to the copper sheet modeling M1-M4 layers, other metal layers (M5-

M10) are also considered here. The dimensions of the length, width and thickness of copper wires 

is shown in Figure 2-25 and Table 3. As discussed earlier that NoC bus is usually multi-wire bus, 

but for simulation purposes to reduce the computational demand, the NoC bus is considered as a 

single thick wire. The chip along with copper interconnects is replicated into four chips and placed  

    

      

 

(a)    (b) 

Figure 2-29.  Magnitude of electric field (V/m) at the plane of antennas in two scenarios that is (a) 

with copper sheets and (b) without copper sheets. 
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on FR4 board (εr = 4.4 and tan(δ) = 0.02) of thickness 1.575mm. Figure 2-30(a) shows the 

arrangement of the multichip system. The spacing between the chips is 10mm. Moreover, the chips 

are coated with an epoxy resin layer of 1mm. Epoxy resin (εr = 2.9) is commonly used to cover 

the silicon chip for protection and robustness. The side view of the chip is shown in Figure 2-30(b). 

The antenna used for transmission analysis is shown in Figure 2-30(c) which is a zigzag antenna 

modeled at the M10 layer shown in Figure 2-25. Now, there are four antennas on each chip that is 

a total of 16 antennas in a four-chip system. 

To analyze the transmission between these many antennas will be complicated. Therefore, 

only five representative antennas are selected for analysis. The antennas under analysis are shown 

in Figure 2-30(a). These antennas are selected because they include the expected worst cases that 

is farthest antenna pairs for intra- and inter-chip pairs. A common antenna ANT O is chosen as a 

reference. Two antennas ANT A and ANT B are selected to form inter-chip pairs with ANT O. 

Here, ANT B and ANT O are the farthest apart. The Two other antennas ANT C and ANT D are 

selected to form intra-chip pairs with ANT O as they are on same chip. The distance between 

antennas are shown in the Figure 2-30(a). 

Simulations of the multichip system with interconnects (WI) and without interconnects 

(WOI) are performed in ANSYS HFSS. It should be noted that the WOI case still has FR4 board, 

bottom ground plane and epoxy resin. The reflection coefficient and transmission coefficients are 

plotted from frequency 50GHz to 70GHz. Figure 2-31(a) shows reflection coefficient (S11) in both 

cases. It should be noted that though the same antenna is used in previous analysis while showing 

equivalence between grid and sheet, the antenna in Figure 2-26 and Figure 2-27 has different S11  
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(a) 

 

(b) 

 

(c) 

Figure 2-30. (a) Top view of the multichip system (Note: Distances are measured from the center of 

the antenna), (b) Cross-sectional view of the multichip system, (c) Zigzag antenna used at 60GHz. 
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characteristic with no grid or sheet from the S11 - WOI case in Figure 2-31(a) due to the absence 

of FR4 board, bottom ground plane and epoxy resin. In presence of copper interconnects the 

antennas resonate at 60GHz as shown in Figure 2-31(a). However, when all copper interconnects 

and copper sheets are removed, the resonant frequency of antennas shifts to about 61GHz. 

Moreover, the magnitude of reflection coefficient drops showing an impedance mismatch. This 

shows that the design of mmWave on-chip antennas requires the knowledge of the layout of the 

copper interconnects.  

 

(a) 

 

 

(b) 

Figure 2-31. (a) Reflection coefficient (S11): WI=with interconnects, WOI=without interconnects, (b) 

Transmission coefficients. 
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Transmission between antennas are analyzed for inter-chip and intra-chip pairs and shown 

in Figure 2-31 (b). For the inter-chip antenna pairs the transmission coefficient can be seen to vary 

between -60 to -85dB with copper wires. This is lower than the transmission coefficient without 

copper wires by 20dB for antenna pair ANT A & O. Moreover, for intra-chip pairs, the 

transmission coefficients with copper wires varies from -40dB to -50dB. Significant difference can 

be seen for antenna pair ANT D & O in presence and absence of metal interconnects. The 

transmission between ANT D & O is about -50dB with copper wires and about -40dB without 

copper wires. This shows that the copper wires can significantly change the transmission between 

on-chip antennas.  

Furthermore, the radiation pattern of the antenna is shown in Figure 2-32 (a). The electric 

field distribution is also provided with and without the presence of copper wires in Figure 2-32 (b) 

and Figure 2-32 (c), respectively. It shows that the distribution is affected by the M3 and M4 layers, 

which are modelled as copper sheets, when compared with the field distribution without the copper 

wires. Overall, generally neglected copper interconnects are seen to affect the resonant frequency 

and transmission coefficients between on-chip antennas. Therefore, appropriate consideration 

must be given to the metal interconnects when designing on-chip antennas. 

2.6 Simulation of on-chip zigzag antennas in a flip-chip multi-chip packaging 

Modern processors use Flip-chip Ball Grid Array (FCBGA) and Flip-chip Land Grid Array 

(FCLGA) [3]. In Flip-chip technology, the chip is flipped on top of a substrate which can be an 

organic, ceramic and Polytetrafluoroethylene (PTFE). In such processors the heat sink is separated 

from the chip by a heat spreader which provides a larger surface area for heat extraction [3]. In 

this section, we present the transmission characteristics of the antennas discussed in this paper in 

processor environments with flip-chip packaging and heat spreader. The four antennas are placed 
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in the center of four equally divided quadrants on a 20mm x 20mm silicon chip [69]. The cross 

section of package adopted from Intel Xeon [3] is shown in Figure 2-33 (a). The top-view is 

presented in Figure 2-33 (b). The optimized antenna is shown in Figure 2-33 (c). Two PEC 

 

(c) 

  

 

(d)        (e) 

Figure 2-32. (a) Radiation pattern of ANT O in XY plane. Magnitude of E-field (V/m) at M10 layer 

height when ANT O is excited at 60GHz (b) with and (c) without interconnects. 
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boundaries are considered here – one for heat spreader cover and another is for lands/solder 

balls/metallic processor loading mechanism as shown in [3]. Dielectric constant and loss tangent 

for the structure has been acquired from [62]. The diameter and pitch of solder balls is 0.6mm and 

1mm, respectively. The number of solder balls in grid array is 364. 

 

 

(a) 

 
(b) 

 

(c) 

Figure 2-33.  (a) Cross-sectional view of the multichip system [69], (b) Top view of the multichip 

system (not to scale), and (c) Zigzag antenna. 
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Due to the complexity of the system discrete frequency sweep at intervals of 0.5GHz is 

simulated. The S11 for all eight antennas in the system are shown in Figure 2-34 (a). The 

transmissions between ANT1_1 in chip 1 and all other antennas covering intra-chip and inter-chip 

pairs are shown in Figure 2-34 (b). It can be observed from Figure 2-34 (b) that at 60GHz the intra-

chip transmission coefficients between the antenna pairs are around -30dB. On the other hand, the 

 

 

(a) 

 

 
(b) 

Figure 2-34. (a) S11 responses for all antennas, (b) Intra- and inter-chip transmission coefficients 

between antenna pairs in the system. 
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inter-chip transmission at 60GHz between the different pairs of antennas ranges from -50dB to -

55dB. This trend is similar to the packaging configuration studied in the previous subsection where 

the transmission (between ANT A and ANT O) without considering the wires (WOI case in 

previous subsection) in Figure 2-31(b) is also around -50dB at the resonant frequency. 

2.7 Conclusion 

This chapter has presented transmission characteristics of on-chip antennas for intra-chip 

and inter-chip communication in multi-chip systems. Through simulation at 30GHz, we have 

characterized the inter-chip transmission, and studied the electric field distribution to explain the 

transmission characteristics. The simulation results have been validated with fabricated antennas 

in different orientations on silicon dies, that can communicate with inter-chip transmission 

coefficients ranging from -45dB to -60dB while sustaining bandwidths up to 7GHz. Our fabricated 

antennas show a shift in resonance to 25GHz. In order to investigate the reasons for this shift we 

modeled the probe structure to study its impact. On including the probe in our simulation model 

the resonant frequency was found to shift by 1.5GHz.  

The SOLT calibration that we adopted in our measurements, is also seen to introduce 

additional measurement discrepancies between the probe tip and the antenna feed structure. It is 

shown that the antenna radiation efficiency reduces with decrease in the resistivity of silicon that 

results in increased losses. Using the experimental measurements, a large-scale, log-normal 

channel model is derived, which can be used for system level architecture design. In most cases, 

the shadowing effect remains below 1dB. We have designed on-chip antennas and studied them at 

60GHz in the presence of densely packed multilayer copper wires typical of NoC based multicore 

processors. Dense wires have been shown to be equivalent to copper sheets and modeled as such, 

to reduce the complexity of simulations. Using this interconnect model, reduction in inter-chip 
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transmission is obtained as much as 20dB. In presence of densely packed metallic wires in close 

proximity to the antenna is shown to reduce its radiation efficiency by about 11%. Furthermore, 

we found the intra- and inter-chip transmission characteristics of these antennas to be similar in a 

flip-chip packaging environment, indicating their suitability for such a technology as well.  
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3 Beamforming with mmWave interconnects in multi-chip 

systems: Present and Future Work 

3.1 Introduction 

Beamforming has always been an attractive topic for researchers working at mmWave 

frequencies. Since the propagation loss or path loss is higher for mmWave frequencies as the 

distance between transmitter and receiver increases, so beamforming can be useful to counter the 

effects of path loss. The array can increase the gain of the antenna system towards a particular 

adjustable direction. Moreover, at mmWave frequencies, the dimensions of antenna and array are 

small enough to fabricate them on a silicon chip. 

In this chapter, beamforming with mmWave antenna is discussed. The objective here is to 

design and develop linear antenna array which can be used for beamforming for intra-chip and 

inter-chip communications in modern processors under the constraint of size, fabrication 

restrictions, and performance of the whole antenna system. A conceptual scheme of beamforming 

between wireless interconnect is shown in Figure 3-1. It is a four-chip MCMC system. For 

example, three wireless interconnects (WIs) are shown: two WIs on one chip and one WI on other 

chip. The idea is to use one antenna array system to communicate intra-chip using beam 2, if there 

is a need to communicate inter-chip then the beam of the array should change to beam pattern 1, 

just by changing the phase between the feed of the network. 

In this scenario, a four-chip MCMC system with three WIs is shown, but depending on the 

network architecture like small-world [69] used by the system the positions of the WIs may change 

so beam-steering using phased arrays will be helpful to direct the radiation towards desired WI. It 
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can also be helpful to determine the direction of maximum signal strength, in other words, auto-

calibration of the beam towards other WIs if the locations of them are not known or defined. Here, 

in the current scenario, since the required beam directions are fixed, multiple directional antennas 

can be used, but it may increase the area overhead on the chip. However, a phased array uses the 

same antenna elements to steer the beam in different directions, but a compact feed system is 

required. To demonstrate the concept, a simple linear array is implemented. 

In the next section, a literature survey about the beamforming is presented focused on the 

on-chip antenna array. However, due to the recent advancement in 5G technology [71], there have 

been relatively more work in an antenna array in a package than antenna array on the chip, so few 

works on beamforming in 5G technologies are also included because the design concepts are 

similar. 

 
Figure 3-1. Conceptual plan of beam pattern between three wireless interconnects. WI = wireless 

interconnect. 
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3.2 Related work on antenna array on a chip 

Although there have been many works on antenna-on-chip (AoC), there is relatively fewer 

work on antenna array on a chip. Most of the work on antenna array and beamforming system is 

focused on 5G and WiGig systems. These work have antennas in package (AiP) or antenna on 

display (AoD) [72]. Those works are discussed in this section.  

One of the early 77GHz mmWave phased array was made by Babakhani, et al. at Caltech 

[73]. This phased array was made on a CMOS chip with different components of communications 

systems like modulators, oscillators, amplifiers, et al as seen in Figure 3-2. Moreover, this array 

system utilizes a silicon lens to improve the gain of the system as the system is designed to 

communicate with an external off-chip system. 

Sengupta and Hajimiri have designed a two-dimensional 4x4 radiating array implemented 

in 45nm SOI CMOS at 280GHz [74]. The chip is 2.7mm x 2.7mm. The phased antenna array is 

 

(a)       (b) 

Figure 3-2. (a) 77GHz phased array chip [73] showing both TX array (top side) and RX array 

(bottom side), (b) Silicon lens used to improve the gain. 
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shown in Figure 3-3. It consists of loop antennas. It consists of a distributed source which generates 

THz signal using DC power. Moreover, this antenna array is further used in THz imaging [75].  

Baniya, et al. have shown a chip to chip switched beam at 60GHz using circular patch 

antennas which are placed in the package and not a chip [76]. As shown in Figure 3-4 (a), a chip 

will have multiple cores and one antenna array system, which the chip will use to connect with 

other chips on a PCB board. Furthermore, this array can be used with a butler matrix system [77] 

for beamforming feed as shown in Figure 3-4 (b). 

Another work has been performed for BGA flip-chip packages by Rashidian, et al [78], not 

on a silicon chip, but on low-temperature co-fired ceramic (LTCC) substrate. This work 

  
Figure 3-3. Array of Loop antennas operating at 280GHz by Sengupta, et al. [74]. 
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incorporates 60GHz phased array antennas in LTCC which is placed on top of a flip-chip BGA as 

shown in Figure 3-5. There is some more work at 60GHz phased array antennas which are referred 

here [79][80]. 

A collection of work performed on phased antenna arrays for 5G is published by Hong 

[72]. Nearly all of the work performed for 5G-related applications are done in LTCC or thin 

substrates like RO3003/5880, or other lossless substrates. Therefore, those works are not discussed 

in many details, however, this work shares the mmWave frequencies design consideration as the 

 
      (c) 

Figure 3-5. An example of antenna array in package by Rashidian, et al. [78]: (a) side view of proposed 

system, (b) perpective view of implemented system where phased array is placed on the white substrate. 

on chip, (c) a view of electromagnetically-coupled patch antennas used for phased array. 

  
 (a)       (b) 

Figure 3-4. (a) 3×3 MCMC architecture with HyNoC interconnection  using pattern switchable  mmWave 

antenna  arrays [76]. (b) Side, Top view and radiation pattern of circular patch antenna array [77] with 

phase Port 1 (φ0=+135◦), Port 2 (φ0=−135◦), Port 3 (φ0=+45◦), and Port 4 (φ0=−45◦). 
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5G beamforming work also requires careful consideration of metal casing like a mobile handset. 

Therefore, some recent and important work is referred to here and discussed. Another review 

article published by Cao, et al. on 5G beamforming is [81]. 

Some work has been done by Xu, et al. demonstrating a 28GHz antenna array integrated 

with a mobile set housing which is covered with metal [82]. They perform radiation performance 

testing along with simulations to find the surface current on the metal housing the mobile set. 

Another paper has shown work on a hybrid antenna design with an antenna in package and an 

antenna on display for a 5G mobile handsets [83]. Furthermore, the antenna elements placed in the 

array couples power into each other, phenomenon also known as mutual coupling. Few ingenious 

ideas to reduce mutual coupling are mentioned in [84] and [85]. 

3.3 Theoretical design – antenna array 

In this section, the theory about the beamforming using antenna array is discussed. The 

theoretical formulas are taken from [86]. Considering N element linear array arranged on X-axis 

having a progressive phase difference of β as shown in Figure 3-6, the array factor (AF) is: 

𝐴𝐹 = |
𝑠𝑖𝑛 (

𝑁𝜓
2 )

sin (
𝜓
2)

| (3) 

where N is the number of antenna elements in the array 

𝜓 = 𝑘 × 𝑑 × sin(𝜃) × cos (𝜙) + 𝛽 (4) 

𝑘 =
2𝜋

𝜆
; 𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠, 𝛽 = 𝑝ℎ𝑎𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (5) 

For a maximum beam towards a direction with 𝜙 = 𝜙𝑚 and 𝜃 = 𝜃𝑚, AF=1. Therefore from 

the above equations, we get: 
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𝐴𝐹 = 1 = |
𝑠𝑖𝑛 (

𝑁𝜓
2 )

sin (
𝜓
2)

| (6) 

∴
𝜓

2
= 0  

𝜓 = 0 = 𝑘𝑑 × sin(𝜃𝑚) × cos(𝜙𝑚) + 𝛽 (7) 

𝛽 = −𝑘𝑑 × sin(𝜃𝑚) × cos(𝜙𝑚) (8) 

For the MCMC system, the wireless interconnects are all supposed to be in the same plane 

parallel to the XY plane spread across the PCB as shown in Figure 3-1, therefore the θm should be 

90°. On the other hand, the φm is going to change depending on the antenna array locations. 

Calculated values for phase (β) for different d is shown in Table 4. 

In this work for d=3λ/8, the progressive phase difference (𝛽) is considered, first, as zero 

for broadside beam, then 𝛽 = ±135° for endfire beam in φ= ± 180° and lastly, an arbitrary phased 

beam angle of 135° is selected. The arbitrary beam angle is achieved of φ=135° from X-axis in 

XY plane using 𝛽 = 96°.   

 
Figure 3-6. An antenna array showing arrangement of antenna (blue dots) in X axis.  
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Table 4:  Calculated phase (β) for a max beam angle and elemental spacing (d). 𝜃𝑚 = 90°. From Eq. 8. 

Elemental 

Spacing d 

Broadside  

(𝜙𝑚 = 90°) 

Endfire 

(𝜙𝑚 = 180°) 

Phased 

(𝜙𝑚 = 135°) 

3λ/8 0° 135° 96° 
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3.4 Simulation results of arrays – Broadside, Phased and Endfire 

Before starting with the design of the arrays, first, the setup of MCMC system is discussed. 

In Figure 3-7, a simplified arrangement of a four-chip MCMC system is shown with its side view, 

which is influenced by the arrangement shown in section 2.6. Each corner of the chip has a wireless 

interconnect (WI), which is shown in red color in figure. This WI requires wireless links in fixed 

directions. Link A, B and C connect wireless interconnects between different chips – inter-chip 

links, and link D, E and F connect wireless interconnects within the same chip – intra-chip links. 

So, the radiation from the antenna can be directed towards the desired direction, this might help to 

improve the transmission coefficients. Further, it will provide flexibility in designing the link 

budget for the transceiver system.  

Since the required beam directions are fixed, multiple directional antennas may be used, 

but it may increase the area overhead on the chip. However, a phased array uses the same antenna 

elements to steer the beam in different directions, but a compact feed system is required. 

        
(a)                                                          (b) 

Figure 3-7. (a) Top view of a multichip multicore system showing various communication 

links between wireless nodes influenced from previous section 2.6. (b) Side view of the 

multichip-multicore system. (Not-to-scale) 
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The angle between link A, B and C is 45°, and same between links D, E and F. So, link B 

and E can be designed as broadside array, and others can be designed as a phased array with beam 

max in direction of 45° from the direction of link B and E. As the antenna element in consideration 

is a zigzag antenna, which is a compressed monopole antenna, shown in Figure 3-8(a). The 

radiation pattern is expected to be a donut-shaped pattern which has nulls in its axial directions. 

Therefore, to cover all the link directions, the elements are arranged 45° to the sides of the chip. 

Moreover, when the elements are arranged and oriented towards the axis of the array as shown in 

Figure 3-8(b), the total radiation of array in its axial direction is expected to have a null. Therefore, 

an additional orientation of the antenna is selected where the elements are placed orthogonal to the 

array axis as shown in Figure 3-8(c). This will help to analyze the endfire array type which has the 

beam max directed towards the axis of the array. Hence, two different antenna orientation is 

considered – Axial (A) and Orthogonal (O). 

Various techniques to implement phase shift for beamforming are noted in the survey [87] 

like analog local oscillator (LO) active phase shifter. Even switched delay-line technique which is 

based on digital phase-shifting using switches either RF MEMS [88] or active CMOS switches 

[89] may be used. Since, these technologies require the latest CMOS technology nodes, which 

were not available so passive feed systems are used for demonstration purposes. 

     
(a) 

Figure 3-8. (a) Zigzag antenna element, (b) Axial array (A1-A4 are antenna elements), (c) Orthogonal 

array (O1-O4 are antenna elements). 
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3.4.1 Design constraints 

It is important that before designing arrays, some design constraints should be discussed. 

The constraints are divided into two parts: fabrication and measurement. Since the process for 

fabrication of designed arrays is going to be standard CMOS process which is based on 

lithography. Another constraint for the on-chip arrays is the measurement constraints which is 

related to the restricted movement of probes. 

3.4.1.1 Fabrication constraints 

Since the feed system for on-chip arrays to be designed is co-planar waveguide (CPW), it 

should be noted that it requires a proper connection between the two ground planes. This 

connection is provided using a bridge that ensures the propagation of CPW mode, without it the 

transmission between the output ports and input ports of the feed can be severely affected. 

Moreover, the feed is expected to have bends and curves so the bridge will be helpful. The bridge 

should be made in another metal layer above the array’s metal layer. Figure 3-7 (b) shows the side 

view of the chip to be designed. Figure 3-9 shows the design of the bridge. Apart from the 

requirement of the bridge, the fabrication tolerance and multi-layer alignment techniques are 

important for lithography-based fabrication processes.  

It can be seen from the side view picture that the bridge is placed 1 µm above the array 

layer. Then the connection to the bridge is made using Al metal vias. To allow the fabrication 

 
Figure 3-9. Top view of Bridge. 
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tolerances and multi-layer alignment on multi-layer structures, the bridge is designed with bigger 

metal contact to the contact cuts as shown in Figure 3-9. The contact cuts (via) are 5µm x 5µm 

with a height of 1µm. The bridge has large contacts 22µm x 22µm to avoid misalignment between 

different layers in the fabrication process. The actual bridge between two ground planes is 4µm 

wide and 55µm long. This bridge contact is used throughout this work. This bridge is not 

suspended in air but fabricated on the silicon dioxide layer as shown in Figure 3-7 (b). 

3.4.1.2 Measurement constraints 

The constraints on the design are not only because of the CPW feed and fabrication 

processes but also because of the measurement setup. A probe station along with a network 

analyzer is used as the measurement setup. The movement of the GSG probes, which would act as 

input to the antenna arrays on the chip, is linear motion in 3 dimensions (X, Y, and Z). So this 

constraint should be taken into account before designing the feed. A picture of the position of 3 

probes on the probe station is shown in Figure 3-10. 

 

Figure 3-10. Probe position on the probe station.  
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In Figure 3-11, one of the scenarios is shown which can occur when measuring the 

transmission between two chips – inter-chip scenario. The GSG probe will land on the GSG pads 

of the array. However, the orientation of the GSG pads, shown in Figure 3-11 (a), restrict the two 

 
(a) 

 
(b) 

Figure 3-11. Picture showing constraint in measurement for inter-chip scenario. (a) location of probe pads 

and approach of GSG probes not possible. (b) possible solution with flipped probe pads on array. 
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probes to land on the other GSG pads for measurement. This constraint can be avoided if the design 

of the array is flipped so that the GSG pads now located on the other side as shown in Figure 3-11 

(b). This constraint will affect the inter-chip measurement, therefore, arrays are flipped for the 

inter-chip scenario. This resolves the measurement constraints.  

To avoid the restriction of the movement of probes, two different designs of each designed 

arrays are created for intra- and inter-chip scenario. 

3.4.2 Axial Broadside Array 

The Broadside array is formed using 4 zigzag antennas oriented along an array axis as 

shown in Figure 3-12 (a) and (c). This orientation of antennas will direct the radiation in the 

broadside direction when the phase difference to each element is zero. The antenna elements are 

kept 0.75mm (center to center) apart which is 3λ/8 distance. A picture of the side view is shown 

in Figure 3-7. 

The feed system is designed to provide a zero phase difference between ports connected to 

the antenna elements. The feed system consists of three equal power dividers and GSG pads as 

input. Moreover, the bridges (which are in dark blue in the figure) have met with the fabrication 

tolerances. These bridges help to maintain CPW mode throughout the feed path. Two different 

feed structures are created for analysis. One feed structure has an untrimmed ground plane and 

another has trimmed ground plane. This is to analyze the effect of the change in dimensions of the 

ground plane. 

The arrays are optimized in HFSS. The S11 for the array at the edge of the silicon chip is 

shown in Figure 3-12 (b) and (d) for untrimmed-feed and trimmed-feed array, respectively. 

Although the S11 is below -10dB at 60GHz, the array seems to resonate at around 54GHz. 
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(a) 

   
(b) 

 
(c) 

   
(d) 

Figure 3-12. Axial Broadside array with untrimmed ground plane (a) top view, (b) S11 plot.           

Array with trimmed ground plane (c) top view, (d) S11 plot.
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Now, the transmission coefficients between the arrays are discussed. The aforementioned 

arrays are arranged at each corner of the chip as shown in Figure 3-13 (a) and (c) for untrimmed-

feed and trimmed-feed. Due to the phase variation in the feed structure, arrays 1 & 3 are expected 

to have a high magnitude of transmission coefficient. The structures are simulated in ANSYS 

HFSS to find the S-parameters. The intra-chip transmission coefficients between the arrays are 

shown in Figure 3-13 (b) and (d). The transmission comes out to be as expected with simulated S 

(3,1) as -35dB at 60GHz for the untrimmed-feed case and -43dB for the trimmed-feed case. It 

seems like trimming the ground plane is affecting the transmission results. It might be possible 

that more optimization is required in the trimmed-feed case, but the dimensions are kept constant 

to compare it with the untrimmed-feed case. 

   
(a)                                                                            (c) 

  
(b)                                                           (d) 

Figure 3-13. Intra-chip scenario: For untrimmed-feed array (a) Top view of the array arrangement,      

(b) simulated transmission plot. For trimmed-feed array (c) Top view, (d) simulated transmission. 
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Furthermore, the transmission analysis for the inter-chip case is also shown in Figure 3-14. 

The simulation scenario has chips placed 10mm apart. There are arrays placed at the edge of the 

   
(a) (b) 

   
(c) 

  
(d) 

Figure 3-14. Inter-chip scenario: Top view of arrangement for arrays w/ (a) untrimmed-feed,                   

(b) trimmed-feed. Transmission coefficients between arrays w/ (c) untrimmed-feed, (d) trimmed-feed. 
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chip. These arrangements are simulated in the ANSYS HFSS. The results show that the best 

transmission occurs as expected between arrays 1 and 3 in both the cases of the untrimmed and 

trimmed ground plane. The magnitude of simulated transmission coefficient S31 is around -35dB.  

To study the beamforming in detail, the arrays are simulated without the feed system, 

where power is provided to the elements through individual HFSS lumped ports. These arrays of 

antennas are placed in three different environments which are free space, the center of the chip, 

and the edge of the chip for studying the axial broadside array on the chip. Although the antennas 

are re-optimized for the free space environment to resonant at the desired frequency, the purpose 

of this study is to analyze the change in radiation pattern depending on the location of the array on 

the chip. 

First, the antenna array is analyzed in free space. The length of each antenna is optimized 

to 1050µm for resonance at 60GHz as shown in Figure 3-15 (a). The array is fed using 4 separate 

       
              (a)                                                                                   (b) 

Figure 3-15. (a) Zigzag antenna axial arrangement in free space, (b) Reflection coefficients. 
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HFSS lumped ports with in-phase signals. The simulated reflection coefficients of the antenna 

array are shown in Figure 3-15 (b). It can be seen from the radiation pattern in the plane of the 

array that is XY plane that the beam is towards the Y-axis, which is the broadside direction. 

Now, the antenna array is placed on the chip at different locations and orientations – at the 

center of the chip and the edge of the chip. Figure 3-16 shows various locations of the array that 

are  (a) is the axial antenna array at the center without feed, (b) is the axial antenna array at the 

edge without feed, (c) axial array at the center with untrimmed feed system, (d) array at the center 

              
                                          (a)                                                                         (b) 

  
                                         (c)                                                                         (d) 

Figure 3-16. (a) Axial zigzag array on the chip in the center, (b) antenna array on-chip at the edge,   

(c) at the center w/ untrimmed feed, (d) at the center w/ trimmed feed.  
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with trimmed feed system, and in Figure 3-17 (a) axial array at the edge with untrimmed feed 

system, (b) array at the edge with trimmed feed system, (c) axial array at the edge (flipped 

orientation) with untrimmed feed system, (d) array at the edge (flipped orientation) with trimmed 

feed system. The radiation pattern and distribution of the electric field are discussed next. 

The radiation patterns in the XY plane, corresponding to different environments and 

locations of the array discussed previously are shown in Figure 3-18. First, the radiation pattern of 

the array in free space is shown in Figure 3-18 (a) for comparison purposes. Figure 3-18 (b) shows 

 
                                         (a)                                                                         (b) 

 
                                         (c)                                                                         (d) 

Figure 3-17. Broadside array on chip: (a) at the edge w/ untrimmed feed, (b) at the edge w/ trimmed 

feed, (c) at the edge flipped w/ feed, (d) at the edge flipped w/ trimmed feed. 
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the radiation pattern of the array on the chip without a feed at the center. The array without a feed 

at the center of the chip, shown in Figure 3-16 (a), has a symmetrical environment that is the 

dimension of the chip around it, therefore the radiation pattern is symmetrical in shape with the 

radiation pattern in free space, but the gain is lower due to the losses in the silicon substrate. When 

  

                          (a)                                                  (b)                                                 (c) 

  

                           (d)                                                (e)                                                 (f) 

 

                           (g)                                                (h)                                                 (i) 

Figure 3-18. Radiation pattern of zigzag antenna broadside array in relevant XY plane (a) in free space, 

(b) on chip at the center, (c) on chip at the edge, (d) on chip at the center w/ feed, (e) on chip at the 

center w/ trimmed feed, (f) on chip at the edge w/ feed, (g) on chip at the edge w/ trimmed feed, (h) on 

chip at the edge flipped w/ feed, (i) on chip at the edge flipped w/ trimmed feed. 
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the array is moved to the edge of the chip as shown in Figure 3-16 (b), the radiation pattern has 

lost its symmetry shown in Figure 3-18 (c). Higher gain can be observed towards the side closer 

to the air that is – Y-axis direction, and lower gain towards Y-axis direction. There is large lossy 

silicon towards +Y-axis which is reducing the gain. 

Figure 3-16 (c) shows an array with an untrimmed-feed located at the center of the chip. 

The radiation pattern that is shown in Figure 3-18 (d) is little distorted compared to the radiation 

pattern of the array w/o feed as plotted in Figure 3-18 (b). When the array w/ untrimmed feed is 

moved to the edge shown in Figure 3-17 (a), a better beam can be observed in the corresponding 

radiation pattern shown in Figure 3-18 (f). This is due to the air environment which is on the –Y-

axis of the array. Moreover, the loss in the silicon substrate reduces the beam in the Y-axis 

direction, so the gain in that direction is reduced compared to the –Y-axis direction. Similarly, 

other radiation patterns for other locations of the array is shown in Figure 3-18. There is little 

variation of the gain with a similar shape of radiation pattern when arrays with untrimmed and 

trimmed feed are compared.  

In Figure 3-19, the distribution of the electric field is shown corresponding to various 

locations of the array on the chip with both types of feed structures. Higher distribution of electric 

field shows that the radiation towards the beam max.   
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                                         (a)                                                                         (b) 

 
                                         (c)                                                                         (d) 

   
                                         (e)                                                                         (f) 

Figure 3-19. Electrical Field distributions (a) at the center w/ feed, (b) at the center w/ trimmed feed, 

(c) at the edge w/ feed, (d) at the edge w/ trimmed feed, (e) at the edge flipped w/ feed, (f) at the edge 

flipped w/ trimmed feed. 
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3.4.3 Axial Phased array 

For phased array, the beam direction is required to be 45° from the broadside beam. This 

is achieved by using a phase difference of approximately 96° according to the theoretical formula 

in Eq. (8). 

The antennas implemented here is the same as the broadside case, however, the feed system 

has changed because of the phase progression of 96°. The length of the CPW line is changed to 

different lengths as shown in Figure 3-20. The longer CPW lines are meandered to compress its 

length. Similar to the broadside feed system, the two ground of the CPW line is shorted at regular 

intervals, mostly after bends, to have the feed lines propagate the CPW mode. The connection is 

made using a bridge as per the discussion in the previous section. Moreover, the extra ground plane 

is trimmed off to analyze two different cases of – trimmed and untrimmed feed structures. The 

arrays are simulated in HFSS. The plots of the reflection coefficient are shown in Figure 3-20. The 

reflection coefficients of the array are around -15dB at 60GHz, which is satisfactory for 

demonstrating the operation of arrays.  

Similar to the previous case, the transmission analysis for an intra-chip case is performed 

by arranging four antenna arrays at all corner locations of a chip. The simulated transmission 

coefficients for intra-chip scenario are plotted in Figure 3-21. Due to the phase variation in the 

feed, the beam max of arrays 2 and 3 are directed towards each other, so the highest transmission 

coefficients are expected between them. The highest simulated transmission is -40dB at 60GHz 

for untrimmed-feed case. Other transmission for untrimmed-feed case is below -50dB at 60GHz. 

For trimmed-feed case, the transmission between array 2 and 3, S32, is reduced to -45dB. It might 

be the trimmed ground is affecting the transmission. 
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(a) 

  
(b) 

 
(c) 

  
(d) 

Figure 3-20. (a) Axial phased array with untrimmed feed, (b) magnitude of S11, (c) axial phased array 

with trimmed feed, (d) magnitude of S11.  
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Also, the transmission is analyzed for inter-chip scenario. The pictures of scenarios and 

plots of transmission coefficients are shown in Figure 3-22. The phase variation in the feed is 

provided so that the highest transmission is between arrays 1 and 2. The transmission in the case 

of inter-chip between untrimmed-feed array 1 and 2, S21, which is -40dB at 60GHz. This is higher 

  
(a)                                                                            (c) 

  
(b) 

  
(d) 

Figure 3-21. Intra-chip scenario: For untrimmed-feed array (a) Top view of the array arrangement,      

(b) simulated transmission plot. For trimmed-feed array (c) Top view, (d) simulated transmission. 
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than the other transmissions shown in the transmission plot Figure 3-22 (c). For trimmed-feed case, 

the highest transmission coefficient, S21, is -37dB shown in Figure 3-22 (d). It can be observed 

from the plot that transmission coefficients between other pairs like S43 are lower by 10dB or more. 

This shows that the arrays are working as expected. 

  
 (a)                                                               (b) 

 
(c) 

 
(d) 

Figure 3-22. Inter-chip scenario: Top view of arrangement for arrays w/ (a) untrimmed-feed,                   

(b) trimmed-feed. Transmission coefficients between arrays w/ (c) untrimmed-feed, (d) trimmed-feed. 

Array 2 Array 1

Array 4Array 3

12mm

10mm

Chip 1 Chip 2

FR4 board

Array 2 Array 1

Array 4Array 3

12mm

10mm

Chip 1 Chip 2

FR4 board



 

90 

To study the beamforming in a phased array, the radiation pattern and electric field are 

plotted for arrays at different locations, similar to broadside array case. The locations of the array 

on the chip are shown in Figure 3-23 and Figure 3-24. The radiation patterns of the array 

corresponding to the locations are shown in Figure 3-25. For the free-space radiation pattern, the 

array shown in Figure 3-15 for the broadside array is used. The phases at individual lumped ports 

are changed progressively to 96°. The radiation pattern is shown in Figure 3-25 (a), a beam is 

towards 45° from the X-axis can be observed. The other beam at -45° can also be seen and is 

unavoidable due to the nature of the linear array. 

    
                          (a)                                                                     (b) 

    
                          (c)                                                                      (d) 

Figure 3-23. Antenna array on chip: (a) at the center w/o feed, (b) at the edge w/o feed, (c) at the 

center w/ feed, (d) at the center w/ trimmed feed. 
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When the array with the individual lumped port is kept on the silicon chip at the center as 

shown in Figure 3-23 (a), then the radiation pattern has drastically changed as shown in Figure 

3-25 (b). However, when the array is moved to the edge like in Figure 3-23 (b), then a beam is 

seen towards -45° and another beam towards +45° seems distorted. This is happening because 

+45° direction has a significantly more lossy silicon substrate, which is reducing the gain of that 

beam. When the array with the feed is placed in the center of the chip in Figure 3-23 (c) and (d), 

which generates radiation pattern shown in Figure 3-25 (d) and (e), respectively, significant 

distortion to the beam can be observed. When the array with feed is placed at the edge of the chip 

    
                           (a)                                                          (b) 

    
                                         (c)                                                                   (d) 

Figure 3-24. Antenna array on chip: (a) at the edge w/ feed, (b) at the edge w/ trimmed feed, (c) at the 

edge flipped w/ feed, (d) at the edge flipped w/ trimmed feed. 
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as shown in Figure 3-24, a bigger beam towards the air that is -45° direction from X-axis can be 

observed and a smaller beam towards -45° from X-axis can be seen in Figure 3-25. The reason is 

significant lossy silicon substrate on one side of the array. Furthermore, the electric field is also 

shown in Figure 3-26 which provides further details on the radiation. 

   

                           (a)                                                (b)                                                 (c) 

 

                           (d)                                                (e)                                                 (f) 

 

                           (g)                                                (h)                                                 (i) 

Figure 3-25. Radiation pattern of zigzag antenna broadside array in relevant XY plane (a) in free space, 

(b) on chip at the center, (c) on chip at the edge, (d) on chip at the center w/ untrimmed feed, (e) on 

chip at the center w/ trimmed feed, (f) on chip at the edge w/ feed, (g) on chip at the edge w/ trimmed 

feed, (h) on chip at the edge flipped w/ feed, (i) on chip at the edge flipped w/ trimmed feed. 
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                                 (a)                                                                    (b) 

 
                                  (c)                                                                     (d) 

   
                                   (e)                                                                     (f) 

Figure 3-26. Simulated electrical field distributions (a) at the center w/ feed, (b) at the center w/ 

trimmed feed, (c) at the edge w/ feed, (d) at the edge w/ trimmed feed, (e) at the edge flipped w/ feed, 

(f) at the edge flipped w/ trimmed feed. 
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3.4.4 Orthogonal Endfire 

Lastly, the design of orthogonally-oriented endfire array is discussed. This design uses the 

zigzag antennas that are oriented towards the Y-axis, or the direction which is orthogonal to the 

axis of the array, so it is called “orthogonal endfire”. Using theoretical equations in section 3.3, 

the progression phase difference for an endfire beam is found to be 135°. 

The feed system for the four-antenna array is designed in HFSS. The array with untrimmed-

feed is shown in Figure 3-27 (a). Another design with excessive ground plane trimmed off is shown 

in Figure 3-27 (c). The simulated reflection coefficient for both the cases is shown in Figure 3-27 

(b) and (d). The antenna arrays are optimized as much as possible. The S11 for the untrimmed-feed 

case is -20dB at 60GHz, and S11 for the trimmed-feed case is -25dB at 60GHz. 

Now, the transmission analysis has been performed for endfire design. First, for the intra-

chip scenario, the simulation is performed with four antenna arrays located at each corner on a 

single chip. The transmission results are shown in Figure 3-28. Due to the phase distribution of 

feed, the arrays 3 and 4 are expected to have the highest transmission, which is -37dB at 60GHz 

in case of untrimmed ground feed. For arrays with trimmed ground feed, the transmission S43 

comes out to be -38dB at 60GHz. The transmission between other array pairs is less than -45dB at 

60GHz. The difference between the highest transmission and second to the best is more than 6dB. 
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(a) 

   
(b) 

 
(c) 

   
(d) 

Figure 3-27. Orthogonal endfire array: (a) Top view with untrimmed feed, (b) S11plot, (c) Top view of 

array with trimmed feed, (d) S11 plot for array with trimmed-feed.  
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Furthermore, the transmission analysis is performed for the inter-chip case. The simulation 

is performed to find the transmission coefficients between arrays of two different chip. The 

simulation scenarios along with the results are shown in Figure 3-29. Due to the phase variation 

of feed, array 1 and 2 is expected to have the highest transmission. From Figure 3-29 (c) and (d), 

  
(a)                                                                            (b) 

   
(c) 

   
(d) 

Figure 3-28. Intra-chip scenario: For untrimmed-feed array (a) Top view of the array arrangement,      

(b) simulated transmission plot. For trimmed-feed array (c) Top view, (d) simulated transmission. 
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it can be seen that the transmission between array 1 and 2 which is -34dB and -33dB at 60GHz for 

untrimmed and trimmed feed cases, respectively. Transmissions between other array combinations 

are 10dB below the highest transmission.  

 
(a)                                                            (b) 

   
(c) 

    
(d) 

Figure 3-29. Inter-chip scenario: Top view of arrangement for arrays w/ (a) untrimmed-feed,                   

(b) trimmed-feed. Transmission coefficients between arrays w/ (c) untrimmed-feed, (d) trimmed-feed. 
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Similar to the above cases, the radiation pattern and electric field in arrangement with the 

array in various locations are discussed. First, the antenna array is simulated in free space as shown 

in Figure 3-30 (a). The antennas are re-optimized for free space with a length of 1050μm and a 

spacing of 1.875mm. The reflection coefficients in Figure 3-30 (b) shows that the antennas are 

resonating at frequency 60GHz. It can be seen in Figure 3-33 (a) that the radiation pattern in the 

free space has a beam in the direction of the array axis that is towards –X-axis direction. 

Next, the array without a feed system is placed on the center of the chip as shown in Figure 

3-31 (a). In Figure 3-33 (b), the radiation pattern shows that there is a beam towards -X-axis. 

Similar to previous cases when the array is placed at the center of the chip, the radiation pattern 

gets distorted by the lossy chip and diffraction at the chip edges. Now, the array with feed system 

is placed at the center shown in Figure 3-31 (c) and (d), the radiation pattern is shown in Figure 

3-33 (d) and (e), respectively. The pattern is distorted. Furthermore, the array with feed is moved 

to the edge of the chip as shown in Figure 3-32 (a) and (b), due to the phase variation the beam is 

        
                      (a)                                                                         (b) 

Figure 3-30. (a) Orthogonal arrangement of antenna elements, (b) reflection coefficients of the 

antenna elements excited by individual lumped ports. 
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directed towards the –X-axis, which can be observed from the radiation pattern shown in Figure 

3-33 (f) and (g). When this array is flipped at the edge of the chip as shown in Figure 3-32 (c) and 

(d), the endfire beam is also flipped, now directed towards +X axis. Because of the large lossy chip 

in the direction of the beam, the beam gets distorted. The distribution of the electric field is shown 

in Figure 3-34. The beamforming can be seen in the field plots as the areas of high electric field 

density. 

  

         
                                         (a)                                                                         (b) 

         

                                         (c)                                                                         (d) 

Figure 3-31. Antenna array on chip (a) at the center w/ feed, (b) at the center w/ trimmed feed, (c) at 

the edge w/ feed, (d) at the edge w/ trimmed feed, (e) at the edge flipped w/ feed, (f) at the edge 

flipped w/ trimmed feed. 
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                                         (a)                                                                         (b) 

     
                                         (c)                                                                         (d) 

Figure 3-32. Antenna array on chip: (a) at the edge w/ feed, (b) at the edge w/ trimmed feed, (c) at the 

edge flipped w/ feed, (d) at the edge flipped w/ trimmed feed. 
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                          (a)                                                 (b)                                                 (c) 

 

                           (d)                                                (e)                                                 (f) 

 

                           (g)                                                (h)                                                 (i) 

Figure 3-33. Radiation pattern of zigzag antenna broadside array in relevant XY plane (a) in free space, 

(b) on chip at the center, (c) on chip at the edge, (d) on chip at the center w/ feed, (e) on chip at the 

center w/ trimmed feed, (f) on chip at the edge w/ feed, (g) on chip at the edge w/ trimmed feed, (h) on 

chip at the edge flipped w/ feed, (i) on chip at the edge flipped w/ trimmed feed. 
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                                         (a)                                                                       (b) 

          
                                         (c)                                                                         (d) 

          
                                         (e)                                                                         (f) 

Figure 3-34. Electrical Field distributions (a) at the center w/ feed, (b) at the center w/ trimmed feed, 

(c) at the edge w/ feed, (d) at the edge w/ trimmed feed, (e) at the edge flipped w/ feed, (f) at the edge 

flipped w/ trimmed feed. 
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3.5 Fabrication of chips  

All the aforementioned designs are combined in one GDS file and sent for mask 

development. The picture of mask design is shown in Figure 3-35. Additionally, pictures showing 

various designs of the chip with untrimmed feed is shown in Figure 3-36. A zoomed-in picture of 

design with and without sheets is shown in Figure 3-37. There are 3 layers – 2 metal layers M1 

and M2 and 1 contact cut (CC) (negative-mask) layer. Three silicon wafers are used for the 

fabrication. These wafers use the same mask which produces three sets of designs. 

 
Figure 3-35. Picture of the wafer design for mask making. 
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(a)                                                                       (b) 

  
(c)                                                                       (d) 

  
(e)                                                                       (f) 

Figure 3-36. Final designs of the arrays with untrimmed feed on chip: (a),(c),(e) intra-chip; (b),(d),(f) 

inter-chip. 
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Moreover, as shown in the previous chapter that a core in a multi-core processor chip can 

be replaced with a metal square sheet at a lower level because of dense orthogonal wiring. 

Therefore, designs with square sheets representing different cores are also fabricated for a chip. 

These are later tested to find a reduction in transmission between antenna arrays. 

Alignment marks are used to align multi-layer design. Alignment marks are shown in 

Figure 3-38. These marks are used to align the second metal layer and the contact cuts while 

performing lithography. The structure is fabricated in multiple layers as shown by the color code. 

Additional structures shown in Figure 3-39 are also fabricated on the chip. 

 

 

 

 

    
Figure 3-37. Comparison between the array designs without and with grids. 
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Figure 3-38. Alignment markers used to align multi-layer structures. 

 
Figure 3-39. Additional transmission lines, reflect and shorts. 
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The fabrication of the chips is being performed at the RIT Cleanroom. The fabrication 

steps, as shown in Figure 3-40, involves various processes which are discussed as follows: 

1) Resistivity measurement & RCA clean – First, the silicon wafers are measured for the 

resistivity using the instrument ResMap which uses four-point probes to measure the 

resistivity. Afterwards the wafers are cleaned using RCA clean method which involves 

use of hydrochloric acid, ammonium hydroxide and hydrofluoric acid. This process 

removes the organic and inorganic dust and particles on the surface of silicon wafer. 

2)  Oxide growth – Different methods are used to deposit silicon dioxide. One method is 

using a wet oxide growth method and another is CVD deposition (TEOS). The former 

uses Bruce furnace along with combination of several gases such as oxygen, Hydrogen 

Chloride (HCl), Chlorine, and water vapors to grow oxide at the surface of silicon. This 

process gets difficult as the number of layers increases. Therefore this wet oxide 

process is used only for the first 1µm layer of the oxide. Rest of the oxide layers are 

deposited using CVD (TEOS) deposition. Process of CVD deposition is quick once the 

machine is warmed up to required temperature. 

3) Al deposition & lithography – It is performed using CVC 601 sputter to deposit Al 

metal layers. The deposited metal covers the whole silicon surface so it is required to 

pattern the desired structures using photoresist which is deposited over metal layer. The 

photoresist is exposed with i-line light using Suss MA150 Aligner. Mask have been 

generated for the process. Minimum feature constraint is 2µm. Also, the required 

exposure time is calculated, further optimized using experiments. After exposure, the 

photoresist is developed and the Al is ready to be etched. 
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4) Al Metal Etch and Photoresist strip: The metal is etched using wet chemical process. 

Using Fuji Al etch chemical mixture, the Al is etched off from undesired spaces. Later, 

the photoresist is stripped off from wafer using PRS-2000 solution. 

Some of the steps are repeated again to deposit multiple Al and oxide layers. Microscopic 

pictures of the top view of arrays, pads and antenna and bridges are shown in Figure 3-41. 

 

 

 
 

Figure 3-40. Steps involved in cleanroom fabrication process. 

Silicon
RCA 

clean
675µm

Silicon
Wet-oxide 

growth675µm

1µm

Silicon
Metal 

deposition675µm

1µm
1µm

Silicon

Photoresist 

coating and 

bake
675µm

1µm
1µm

Silicon675µm

1µm
1µm Exposure and 

Resist 

development

Silicon675µm

1µm
1µm

Metal etch

Silicon

1µm
1µm Remove resist 

and deposit 

more oxide
675µm

Silicon

1µm
1µm Resist coating, 

exposure and 

litho exposure, 

develop675µm

Silicon

1µm
1µm

Oxide etch and 

resist removed
675µm

1µm

2µm Contact cut

Silicon

1µm
1µm Remove resist 

and deposit 

more oxide
675µm

1µm
1µm

Silicon675µm

1µm
1µm

Remove resist 

& Deposit 

2µm oxide 

using TEOS 

CVD

Silicon675µm

1µm
1µm

Metal 

Deposition &

Photoresist 

coating and 

bake

Silicon

1µm
1µm

Exposure and 

Resist 

development 

& Etch
675µm

Silicon

1µm
1µm Remove resist 

and deposit 

more oxide
675µm

1µm

1µm
1µm

Metal Deposit

Silicon

1µm
1µm

675µm

Resist coating, 

exposure and 

litho exposure, 

developSilicon

1µm
1µm

675µm

Final metal 

etch
Silicon

1µm
1µm

675µm

1µm



 

109 

 

 
(a) 

 
(b) 

  
(c)         (d) 

    
(e)         (f) 

Figure 3-41. Pictures of the fabricated antennas array and individual elements: (a) axial broadside 

array design with trimmed ground plane, (b) orthogonal endfire array design with trimmed ground 

plane, (c) one of GSG pads, (d) antenna element, (e) & (f) bridge structures to connect grounds. 
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3.6 Measurement results 

This section shows the results from the measurement of the various fabricated antenna 

arrays and compares them to the simulated results. To measure the s-parameters, the probe station 

requires certain modifications because it has metal chuck. It can affect the measurement of the 

array by creating an image current due to the current on the antenna. This would alter the 

parameters of the antenna and in turn measured results. The simulations does not have a ground 

plane. The modified probe station is shown in Figure 3-42. The metal chuck is moved out and a 

glass plate is inserted. Moreover, EM absorbing material is placed at the bottom of the low-loss 

substrate to absorb radiation which might, otherwise, be reflected by the metal of the probe station. 

The measurement setup involves Cascade probe station along with Cascade GSG probes and 

Keysight N5247B PNA-X. The PNAX is calibrated using SOLT (short-open-load-thru) method 

with Cascade impedance standards substrate. This calibration process calibrate the system till the 

probe tips. As noted in the previous section that the antenna arrays have probe pads which feeds 

the antennas, these pads acts as parasitics. In order to remove its effect, the calibration reference 

plane is adjusted in post-processing steps. 

  
(a)         (b) 

Figure 3-42. (a) Modification to the probe station, (b) picture of measurement of inter-chip 

transmission between broadside arrays.
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3.6.1 Axial broadside array 

The axial arrangement of antenna with broadside feed system is discussed first. The designed 

antenna array is shown in Figure 3-43. One is with untrimmed feed and another array has trimmed 

feed. Extra ground plane is trimmed off the untrimmed feed structure. Their corresponding S11 plot 

is also shown. From the S11 plots, it can be seen that the arrays have magnitude of S11 below 10dB 

at 60GHz frequency.  

                                       
(a)                                                                     (c) 

 
(b)                                                                     (d) 

Figure 3-43. Axial Broadside array: (a) Array designed with untrimmed ground plane, and (b) its S11 

plot, (c) Array designed with trimmed ground plane, and (d) its S11 plot.
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Also, the transmission coefficients between arrays in case of intra-chip and inter-chip 

communication are measured and shown in Figure 3-44 and Figure 3-45. Although the measured 

   
(a) (c) 

  
(b)                                                                            (d) 

  
(e)        (f) 

Figure 3-44. Intra-chip scenario for broadside arrays. For untrimmed-feed array arrangement, (a) Top 

view (close-up), (b) comparison between simulated and measured transmission coefficients,                    

(c) measured transmission coefficients w/ and w/o metal sheets. For trimmed-feed array arrangement 

(d) Top view (close up), (e) comparison between simulated and measured transmission coefficients. 

(f) measured transmission coefficients w/ and w/o metal sheets. 
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transmission shows more loss than the simulated transmission, the pattern of transmission over the 

desired frequency range is comparable. Higher loss in the transmission may be due to the 

difference in the parameters like material properties and dimensions. These parameters are not 

   
(a)                                                                        (d) 

     
(b)      (e) 

 
(c) 

Figure 3-45. Inter-chip scenario for broadside arrays. For untrimmed-feed array arrangement, (a) Top 

view (close up), (b) comparison of simulated and measured transmission coefficients, (c) measured 

transmission coefficients w/ and w/o metal sheets. For trimmed-feed array arrangement (d) Top view 

(close up), (e) comparison of simulated and measured transmission coefficients. 
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properly investigated in the literature for 60GHz bands, only few review articles are available in 

the literature [62]. The transmission values for intra-chip and inter-chip communication for various 

frequency is recorded and tabulated in Table 5. The simulated intra-chip transmission in the case 

of the untrimmed-feed array is -41dB at 60GHz, and the measured transmission for same case is -

43dB. For trimmed-feed array, simulated and measured intra-chip transmission coefficient is -

50dB and -65dB, respectively, at 60GHz. These values are quite lower than the untrimmed-feed 

case. It might be possible that the trimmed-feed arrays required more optimization, however, the 

dimensions of the structure kept constant for the comparison purposes. It can also been seen from 

the comparison of measured transmission coefficients w/ and w/o metal sheets that they are 

affecting the communication between the antenna arrays. At 60GHz, the reduction of transmission 

is up to 10 dB in the intra-chip scenario. 

For inter-chip scenario, in the untrimmed-feed case the simulated transmission is -36dB 

and measured is -46dB at 60GHz. For trimmed-feed case, the simulated inter-chip transmission is 

-34dB, and measured inter-chip transmission is -42dB. Some of the measurements like the S21 for 

inter-chip w/o metal sheets, and S31 for inter-chip w/ metal sheet could not be performed due to 

the loss of the chips while fabrication. The comparison of S31 with and without the metal sheets 

shows that the inter-chip transmission for these untrimmed-feed arrays are not affected by metal 

sheets as intra-chip transmission. The plot in Figure 3-45(c) shows less than 3dB of reduction.   

Table 5:   Values of S31 transmission coefficients. 

 Intra-chip Inter-chip 

Transmission in dB Untrimmed Trimmed Untrimmed Trimmed 

Simulated (at 60GHz) -41 -50 -36 -34 

Measured (at 60GHz) -43 -65 -46 -42 
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3.6.2 Axial phased array 

In this section, the axial array arrangement with phased feed system is measured and 

compared with simulations. The simulated radiation beam max is at 45° from the broadside 

direction due to phase variation in elements. The top view of the antenna array is shown in Figure 

3-46 (a) with untrimmed feed and (c) with trimmed feed. The reflection coefficients of the antenna 

arrays are shown in Figure 3-46 (b) for untrimmed-feed and (d) for trimmed-feed at 60GHz is 

below -10dB. Transmission coefficients are also plotted for intra-chip and inter-chip cases in 

Figure 3-47 and Figure 3-48.  

                           
(a)                                                                    (c) 

 
(b)                                                                   (d) 

Figure 3-46. For untrimmed-feed array arrangement: (a) Top view of the array with untrimmed feed, (b) 

reflection coefficients – measured & simulated. For trimmed-feed arrangement: (c) Top view of the 

phased array with trimmed feed; (d) reflection coefficient – measured & simulated.  
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In case of intra-chip communication, the transmission coefficients are shown in Figure 

3-47 (b) for untrimmed-feed array, and in Figure 3-47 (e) for trimmed-feed array. The simulated 

and measured transmission S32 for untrimmed-feed array is -37dB and -47dB at 60GHz, 

  
(a)                                                                            (d) 

            
(b)      (e) 

                
(c)      (f) 

Figure 3-47. Intra-chip scenario for phased arrays. For untrimmed-feed array arrangement, (a) Top 

view (close-up), (b) comparison between simulated and measured transmission coefficients,                    

(c) measured transmission coefficients w/ and w/o metal sheets. For trimmed-feed array arrangement 

(d) Top view (close up), (e) comparison between simulated and measured transmission coefficients, 

(f) measured transmission coefficients w/ and w/o metal sheets. 
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respectively. It may be due to the loss in substrate and difference in parameters like material 

properties, etc. between simulation and measurement. The simulated and measured transmission 

S32 for trimmed-feed is -47dB and -51dB at 60GHz. Moreover, the effect of the metal sheets on 

transmission S32 for untrimmed-feed and trimmed-feed arrays are also plotted in Figure 3-47 (c) 

  
(a)      (d) 

      
(b)        (e) 

 
(c) 

Figure 3-48. Inter-chip scenario for phased arrays. For untrimmed-feed array arrangement, (a) Top 

view (close up), (b) comparison between simulated and measured transmission coefficients, (c) 

measured transmission coefficients w/ and w/o metal sheets. For trimmed-feed array arrangement (d) 

Top view (close up), (e) comparison between simulated and measured transmission coefficients.  
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and (d). The transmission S32 between array 3 and array 2 is reduced by about 5dB at 60GHz. 

Next, the inter-chip transmission is discussed and results are shown in Figure 3-48. 

For inter-chip transmission the maximum transmission is expected between the array 1 and 

2 since the beams of the arrays are directed towards each other due to the designed phase variation 

of the antenna elements. As seen from the plots in Figure 3-48 (b) and (e) that the simulated 

transmission S21 is indeed higher than other S31. The simulated transmission coefficient S21 is -

39dB and measured transmission coefficient is -48dB, which is higher than the S31 by more than 

10dB. Although the measured transmission is lower than the simulation, the difference between 

measured S21 is quite higher than the measured S31. Furthermore the measured S21 is little affected 

by the metal sheets as shown in Figure 3-48 (c). 

  

Table 6:  Measured transmission coefficients between phased arrays at 60GHz. 

 Intra-chip (S32) Inter-chip (S21) 

Transmission in dB Untrimmed Trimmed Untrimmed Trimmed 

Simulated (at 60GHz) -37 -47 -39 -37 

Measured (at 60GHz) -41 -51 -48 -53 
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3.6.3 Orthogonal endfire array 

The orthogonal arrangement of the antenna elements with endfire feed system are 

measured. Due to the phase variation in the feed, the radiation beam is endfire – in the axis of the 

array. Figure 3-49 (a) shows the top view of the untrimmed-feed array. Simulated and measured 

reflection coefficients is shown in Figure 3-49 (b), the array is resonating at 60GHz with S11 below 

-20dB at 60GHz.  Similarly, reflection coefficients for trimmed-feed array is shown in Figure 

3-49(d). 

                             
(a)                                                                  (c) 

  
(b)                                                                         (d) 

Figure 3-49. Untrimmed-feed array arrangement for orthogonal endfire: (a) Top view of the array,      

(b) reflection coefficients – measured & simulated. For trimmed-feed arrangement: (c) Top view of the 

phased array; (d) reflection coefficient – measured & simulated.
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Similar to previous cases, the transmission coefficients are plotted in Figure 3-50 and 

Figure 3-51 for intra-chip and inter-chip cases. The transmission coefficients for intra-chip 

transmission is expected to be better for the array 4 and 3 due to the phase variation. As per the 

measured and simulated data, the transmission between 4 and 3 is better in case of untrimmed and 

   
(a)                                                                            (d) 

    
(b)       (e) 

    
(c)             (f) 

Figure 3-50. Intra-chip scenario for orthogonal endfire arrays. For untrimmed-feed array arrangement, 

(a) Top view (close up), (b) comparison between simulated and measured transmission coefficients, 

(c) measured transmission coefficients w/ and w/o metal sheets. For trimmed-feed array arrangement 

(d) Top view (close up), (e) comparison between simulated and measured transmission coefficients, 

(f) measured transmission coefficients w/ and w/o metal sheets. 
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trimmed feed system. The simulated and measured S43 are -37dB and -35dB, respectively at 

60GHz for untrimmed-feed array. On the other end, the simulated and measured S43 are -38dB and 

-36dB at 60GHz for trimmed-feed array. Simulation and measurement results show good match 

for intra-chip case. Next, the results from inter-chip measurements are shown in Figure 3-51. 

 
(a)                                                                  (b) 

    
(c)       (d) 

 
(e) 

Figure 3-51. Inter-chip scenario for endfire arrays. For untrimmed-feed array arrangement, (a) Top 

view (close up), (b) comparison between simulated and measured transmission coefficients,                    

(c) measured transmission coefficients w/ and w/o metal sheets. For trimmed-feed array arrangement: 

(d) Top view (close up), (e) comparison between simulated and measured transmission coefficients.  
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In inter-chip scenario, despite proper physical alignment of the chips, the results from 

simulation and measurement don’t coincide as in the case of intra-chip transmission. This may be 

due to fabrication uncertainty, since there was only one pair of chip for these measurements (some 

of the chips from wafer 1 and 2 are lost while dicing process), so it is hard to verify. For untrimmed-

feed array, the simulations show high transmission magnitude for S21 that is -34dB, while the 

results from measurement are more than 15dB lower that is -51dB. For trimmed-feed array, the 

simulated S21 is -33dB and measured S21 is -47dB at 60GHz.  

In intra-chip scenario, the measured results S43 w/ and w/o metal sheets is shown in Figure 

3-50 (c) & (f). The results for untrimmed-feed array shows difference of more than 10dB. On the 

other hand, for trimmed-feed array the difference is negligible. In inter-chip scenario shown in 

Figure 3-51, the results for trimmed-feed array is not available. For untrimmed-feed array, the 

results, in Figure 3-51 (e), shows that the measured S21 w/ sheets has increased significantly 

compared to the S21 w/o sheets. It might be possible that the arrays on chip with metal sheets are 

working properly, therefore we are seeing high transmission. Since, there are only one pair of chip 

for measuring S21 w/o metal sheet, so this cannot be verified now. 

  

Table 7: Transmission coefficients between endfire arrays in case of inter-chip scenario. 

 Intra-chip Inter-chip 

Transmission in dB Untrimmed Trimmed Untrimmed Trimmed 

Simulated (at 60GHz) -37 -38 -34 -33 

Measured (at 60GHz) -35 -36 -51 -47 
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3.7 Conclusion 

In this chapter, the design, simulation and measurement of on-chip phased arrays for multi-

chip multi-core systems is performed. Three types of arrays are designed with different beam 

angles – broadside, phased, and endfire. Also, two different scenarios are considered, that are, 

intra-chip and inter-chip communications. For now, the antenna elements are fed with the delayed-

line system to create the desired progressive phase for arrays. The antenna arrays are simulated in 

ANSYS HFSS. Furthermore, the steps involved in the fabrication of chips are discussed here.  

For broadside array, the arrays are working at the 60GHz band. The beamforming at 

60GHz is shown using a radiation pattern. The measured transmission when the beam max are 

directed in between the array pair for untrimmed-feed for intra-chip case vary from -43 to -55dB, 

and for the inter-chip case, it varies from -35dB to -40dB. For phased array, the beamforming at 

60GHz is shown using simulated radiation pattern plots. For the intra-chip scenario, the measured 

transmission between the arrays with untrimmed-feed varies from -37dB to -42dB when the beam 

max are directed in between the array pair. Lastly, the endfire array for the intra-chip case shows 

a good consistency between the simulation and measured results. For inter-chip scenarios, despite 

best alignment between the arrays, the measured results are quite lower than the simulated results. 

This may be due to the fabrication variation. 

The arrays are intended for beam steering in all directions with electronic phase shifters. 

Typically they would not have the feed systems of the type considered in the thesis. The feed 

system with path lengths delays was only for experimental validation of the concept of beam 

steering. Therefore, fixed angles were selected together with different antenna orientations. A 

variety of configurations have been illustrated that cover various scenarios as the beam is being 

steered electronically. 



 

124 

The measured and simulated results are satisfactory. Though there are more losses in 

measured transmission, overall the results show the feasibility of arrays on the silicon chip. The 

losses in measurements can happen due to the difference in various parameters in simulation like 

losses in the silicon substrate, variation in dimensions of the chip and arrays, variation in 

fabrication processes, etc.   
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4 Techniques for enhancement of Intra- and Inter-chip 

transmission using AMC 

Artificial Magnetic Conductor (AMC) is a special arrangement of planar structures that 

can be used to manipulate the properties of electromagnetic waves like reflection, et al. AMC, 

when placed at a certain distance from the antenna, can help to increase the gain and therefore 

transmission between the antennas. Also, it can help reduce the mutual coupling between antenna 

elements in an array. AMC is also used in cases where the ground plane is very close to an antenna 

to improve its radiation efficiency.  

A planar electric monopole or dipole in silicon dioxide has electrical current flowing on it which 

radiates the electromagnetic waves. When the ground plane or electrical conducting plane is close 

(< λ/4) to the antenna, the ground plane generates a reverse image current as shown in Figure 4-1 

(a). The current on the antenna and its reverse current cancel out each other hence the overall 

radiation efficiency of the antenna is reduced. To improve the efficiency an AMC layer is placed 

under the antenna, this layer generates an image current in the same direction as the original current 

in the antenna shown in Figure 4-1 (b). As shown in Figure 4-1 (c), the AMC layers can be 

fabricated on lower metal layers using the CMOS process.  

4.1 Work-related to the artificial magnetic conductor 

Khan, et al. has developed a W-band double rhomboid bow tie-slot on-chip antenna with 

EBG at the bottom [94]. The overall size of the chip is 1mm x 1mm and operating frequency is 

from 75-100 dB with S11 of -6dB and below. The peak measured gain is -0.58dBi at 84GHz. 
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Other than AMC structures that require a large area to form a good performance structure, 

partially reflective surfaces are also used to enhance the radiation pattern of the on-chip antenna 

[96]. Bao, et al. have developed a novel AMC with a wideband loop antenna. The antenna has 

achieved gain enhancement at 60GHz band [97]. It is shown in Figure 4-2. In [98], Nafe, et al have 

proposed a new structure is proposed using a ground plane above the silicon and then AMC layer 

in between antenna and ground plane in silicon dioxide as shown in Figure 4-3. Also, it has been 

found that as the number of unit cells increases the gain of the antenna increases. They have used 

 

 
(c) 

Figure 4-1. Image current formation due to (a) ground plane (PEC) and (b) AMC layer (PMC), (c) 

structure of AMC layer with antenna on top [95]. 
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square loop structures as an AMC unit cell. Moreover, another work has shown a wideband AMC 

and multi-band AMCs [99].  

 

 

 

Figure 4-2.(a) Loop antenna with a modified AMC plane [97]. 

 
Figure 4-3. Antenna on an AMC layers [98]. 
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4.2 Design of JC-AMC unit 

In this preliminary work, a Jerusalem cross (JC) shape is used as an AMC. The cross-

section of the setup of the chip is shown in Figure 4-5 (a). The AMC is designed keeping in mind 

the silicon with dielectric constant of 11.7 and resistivity of 55Ω-cm. Then the AMC is placed in 

the silicon dioxide layer 1µm above the silicon. The antenna is proposed to be designed at 8µm on 

the top of AMC layer. In Figure 4-5 (b), the shape of JC-AMC is shown along with its optimized 

dimensions. The shape of the AMC is optimized using the ANSYS HFSS. The setup of the model 

in HFSS is shown in Figure 4-5 (c) with Floquet port and master-slave boundaries. A plane wave 

 

(a)                                                         (b) 

 

(c) 

Figure 4-4 (a) Cross-section of the multicore chip, (b) Top view of JC-AMC, (c) Simulation 

setup for designing AMC unit cell. 
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is directed towards the AMC from the Floquet port at the top of the setup. The power and phase 

of the reflected wave are simulated by the HFSS. The reflection coefficients at the Floquet port for 

different resistivities of silicon are shown in Figure 4-5. The results show that the AMC is 

reflecting power with a zero phase difference with respect to the incident wave. 

4.3 Transmission enhancement 

In this section, a multicore silicon chip of size 10mm x 10mm having a thickness of 675µm, 

and resistivity of 55Ω-cm is considered. This chip is equally divided into four quadrants each with 

potentially many cores. A zigzag monopole antenna, shown in Figure 4-6 (a), is used as wireless 

interconnect in each quadrant. The zigzag antenna is placed in the top metal layer. A 5x6 grid of 

above designed JC-AMC is put under the zigzag antennas in AMC layer shown in Figure 4-6 (b). 

The thickness of metal layers is 1µm. The length of the zigzag antenna (L) with and without JC-

AMC is 860 µm and 930 µm, respectively. The antennas are re-optimized to resonance at 30GHz. 

The top view of the chip is shown in Figure 4-6 (b). The far-field boundary for the antenna is given 

by λ/2π which is 1.6mm at 30GHz in free-space. The antennas are located at 5mm apart beyond 

their far-field boundaries.  

 

Figure 4-5 Reflection coefficients (magnitude in dB and phase in degrees) of JC-AMC. 
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(a)                                                  (b) 

 

(c) 

 

(d) 

Figure 4-6 (a) Zigzag antenna. (b) Top view of JC-AMC. (c) Reflection coefficient of antennas 

with and without AMCs. (d) Transmission coefficients between antennas w/ and w/o AMC. 
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After the simulation in ANSYS HFSS, the reflection coefficients of antennas is shown in 

Figure 4-6 (c). Since, all antennas are placed in the same arrangements so reflection coefficient of 

antennas is the same, therefore, return loss of one antenna with and without JC-AMC is shown. 

Figure 4-6 (c) shows that the zigzag antennas are resonating at 30GHz with a reflection coefficient 

of about -13dB. The return loss is optimized to be the same in case of with and without JC-AMC 

to show any comparison. The radiation efficiency of antennas is enhanced from 35% to 40%. The 

transmission coefficients of antennas 2, 3 and 4 with respect to antenna 1 in case of with and 

without JC-AMC is shown in Figure 4-6 (d). The enhancement of transmission for antenna 2 and 

4 with respect to antenna 1 are about 3.3dB and 2.3dB, respectively. Using JC-AMC, the received 

power at the antenna is almost doubled. This enhancement is beneficial when designing on-chip 

integrated transceivers which are often restricted to constrain of the signal-to-noise ratio in link-

budget. This increases the flexibility of designing integrated communication systems. This 

enhancement can still be improved by further optimization. 

4.4 Challenges when using AMCs the transmission between the antennas and 

Future work 

The idea of using the AMC is very intriguing, however, implementing AMC in a practical 

situation is not without trade-offs and challenges. In this section, some of the challenges are 

discussed. 

One challenge with AMC layers is for its effective performance, the AMC layer should 

have many unit cells [98]. Designing and simulating these AMC cells would require a significant 

amount of computing resources. Second, the design will require more area overhead on-chip. The 

space available is quite limited to us. Another problem is the antenna in the silicon-dioxide (SiO2) 



 

132 

layer is very close to the AMC layer just a few micrometers. This affects the performance of the 

AMC layer.  

Moreover, the aim of the work which uses AMCs in literature is mostly to enhance the 

radiation orthogonal to the AMC layer, however, in this work, the intra-chip and inter-chip wireless 

transmission occur in the plane of AMC layer. One more problem which occurs when using the 

AMC layers is the antenna aperture becomes smaller as more elements are added to the antenna. 

In this way, the antenna with AMC may become a better transmitter, but there is still a question 

about its receiving capacity since the antenna aperture is quite small. Researchers are overcoming 

these issues at mmWave frequencies by using novel and innovative AMC designs. Such methods 

will be explored as future work. 
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5 Final Discussion and Conclusions 

In this work, the transmission between wireless interconnects, implemented as antennas 

on-chip (AoC), in a wire-bonded chip package are studied using simulation and measurements at 

30GHz. The simulations were performed in ANSYS HFSS. The simulated results presented the 

reflection coefficients along with the transmission coefficients between the on-chip antennas. The 

results showed that the transmission coefficients between wireless interconnects for inter-chip 

scenarios range from -45dB to -60dB at 30GHz while sustaining bandwidths up to 7GHz. The 

results also discussed the simulated electric field distribution across the chip package. After 

measurements, fabricated antennas showed a shift of resonance to 25GHz. Further simulations 

were performed where the GSG probe is feeding the zigzag antenna. It was seen that the probes 

do influence the measurement by shifting the resonance to 1.5GHz. Also, the SOLT calibration is 

known to show discrepancies at mmWave frequencies. Furthermore, a large-scale channel model 

for the inter-chip communication scenario between wireless interconnects is presented using the 

measured results in a wire-bonded package. Moreover, simulation results were provided for the 

wireless interconnects operating at 60GHz frequencies band in a flip-chip package. It was found 

that the inter-chip transmission at 60GHz between the different pairs of antennas ranges from -

50dB to -55dB.which is satisfactory in such an environment. Due to the complicated flip-chip 

package, fabrication and measurements of on-chip antennas will be considered as future work. 

The transmission coefficients observed in the previous cases can be further improved by 

using antenna arrays to perform beamforming which can increase the overall system gain. Three 

types of arrays are designed with different beam angles – broadside, phased and endfire, which are 

considered in two scenarios that are intra-chip and inter-chip. The antenna elements were fed using 

delayed-line system to create the desired progressive phase difference for corresponding arrays. 
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For broadside arrays working at 60GHz, the measured transmission when the beam max was 

directed in between the array pair for untrimmed-feed for intra-chip scenario varied from -43 to -

55dB, and for inter-chip scenario, it varied from -35dB to -40dB. For phased array in the intra-

chip scenario, the measured transmission between the arrays with untrimmed-feed varies from -

37dB to -42dB at 60GHz. Lastly, the endfire arrays for the intra-chip scenario are also discussed 

which showed good consistency between the simulation and measured results. For inter-chip 

scenarios, despite best alignment between the arrays, the measured results are quite lower than the 

simulated results. This might be due to the fabrication variation. Simulated radiation patterns and 

electric field density are plotted to show beamforming for all types of designed arrays located at 

various locations across the chip. These radiation patterns are compared with the radiation patterns 

in free-space. The simulated beam of the array is distorted by the losses in the silicon substrate and 

diffraction effects due to the chip structure. The measured transmission coefficients would be 

useful to find the link budget for the system-level design. 

Moreover, innovative techniques like artificial magnetic conductors (AMC) are 

investigated to improve the transmission between wireless interconnects which are implemented 

as zigzag antennas on the chip. The simulations are performed to design the Jerusalem-cross (JC) 

AMC. The results show that the reflection phase is zero at 60GHz. This JC-AMC unit cell is then 

simulated under the zigzag antenna with a 5x6 planar JC elements. The intra-chip transmission 

shows an improvement of about 3dB for two of the three intra-chip antenna pairs. This is lower 

than expected, because of the lower antenna aperture. Further study should be performed to find 

the optimal number of JC-AMC elements which can provide better transmission between antennas. 

In the future, more work is required to further analyze and fabricate AMC layers under antennas 

and arrays. 
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The proposed antennas and arrays would be operating in 60GHz unlicensed bands because 

of the availability of large bandwidth. But these bands are also used by other external WiGig 

devices. Although the transmitted power from the antenna of the on-chip system would be 

relatively low compared to the external devices which would communicate to devices much farther 

away. So, the power from on-chip antennas might not affect the external mmWave communication 

systems. But, the external mmWave communication systems working at 60GHz like WiGig with 

high transmission power may affect the on-chip wireless system. A comprehensive study is also 

needed to understand the effects of external 60GHz devices on the antennas and arrays in the 

MCMC systems. One way to isolate the on-chip system is to use a metal covering around the chip 

which is commonly known as Faraday cage, however, this metal covering can create problems like 

multipath interference because the metal covering would reflect antenna radiation. Proper 

experiments are required when encasing such wireless systems in a Faraday Cage like structure. 

Another way is to use shared medium access (MAC) mechanisms the same as the external WiGig 

system to reduce interference. This might require implementation of low-power implementation 

of the WiGig MAC mechanism on the processor chip. A study is required to evaluate the area 

overhead required and the power requirement to support such a shared MAC mechanism. 

There is also a need to characterize substrate material at 60GHz band mmWave frequencies 

since there are only a few works available in the literature. A brief overview of the challenges 

involve in fabrication and measurement is provided in section 2.3.3. Further work is required to 

understand the difference between simulations and measurements. In this work, the differences 

between simulations and measurements are observed, to increase the understanding multiple 

fabrications must be performed to clear the discrepancies between simulation and measurement. 
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