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Abstract

Computational social studies using public social media data have become more and more popular

because of the large amount of user-generated data available. The richness of social media data,

coupled with noise and subjectivity, raise significant challenges for computationally studying social

issues in a feasible and scalable manner. Machine learning problems are, as a result, often subjective

or ambiguous when humans are involved. That is, humans solving the same problems might come

to legitimate but completely different conclusions, based on their personal experiences and beliefs.

When building supervised learning models, particularly when using crowdsourced training data,

multiple annotations per data item are usually reduced to a single label representing ground truth.

This inevitably hides a rich source of diversity and subjectivity of opinions about the labels.

Label distribution learning associates for each data item a probability distribution over the labels

for that item, thus it can preserve diversities of opinions, beliefs, etc. that conventional learning

hides or ignores. We propose a humans-in-the-loop learning framework to model and study large

volumes of unlabeled subjective social media data with less human effort. We study various an-

notation tasks given to crowdsourced annotators and methods for aggregating their contributions

in a manner that preserves subjectivity and disagreement. We introduce a strategy for learning

label distributions with only five-to-ten labels per item by aggregating human-annotated labels over

multiple, semantically related data items. We conduct experiments using our learning framework

on data related to two subjective social issues (work and employment, and suicide prevention) that

touch many people worldwide. Our methods can be applied to a broad variety of problems, par-

ticularly social problems. Our experimental results suggest that specific label aggregation methods

can help provide reliable representative semantics at the population level.
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Chapter 1

Introduction

Social media are, among other things, venues for the (semi-)public disclosure of personal information

that allow individuals to broadcast themselves, record events (significant or otherwise) in their lives,

and express opinions and emotions whenever and wherever possible. This mixture of detail and

scale in textual, temporal, and geo-spatial information that they provide is unprecedented and

contributes significantly to an emerging research area, computational social science [15].

Due to greater activity on social media now more than ever [16], any understanding of personal

or public behavioral patterns or health issues must take people’s online activities into account.

Personal narratives in social media can reflect an individual’s experiences, states of mind, and

behavioral patterns. Thus, social media is a prominent source of data on social behaviors at scales

ranging from international to personal. More importantly, social media is rife with subjective

domains, i.e., situations where the “best” answers to specific questions depend heavily on whom is

asked, and there is no gold standard or ground truth data. For instance, taste and pain are both

subjective in the sense that no authoritative or consensus-based scale exists to measure either.

Many real-world problems could have different reasonable and acceptable answers, depending on

whom is asked, even when the domain of answers is fixed (i.e., closed domain) or more than one

answer is allowed (i.e., a multilabel setting). For instance, events that are ordinary or unmemorable

to most people can trigger intense reactions from those who have post-traumatic stress disorder

(PTSD).

Subjective information is prevalent in social media: people discuss the same topic in different

ways, thus greatly increasing the difficulty of computational modeling and understanding. In the

1
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meantime, the benefits of data richness provided by social media motivate us to build computational

models that are capable of extracting salient information from semi-structured, noisy social media

data and generating fine-grained structured descriptions to overcome the problem of information

overload [17] and facilitate downstream applications in various settings.

A typical machine learning goal is to map each given data item to a single (or set of, but in any

case, deterministic) label(s) according to some standard of ground truth. However, in the cases

discussed above, a single (set of) label(s) cannot meaningfully solve the problem, or may hide

important dissenting beliefs or opinions. The impact of AI agents failing to recognize diversity in a

representative fashion ranges from banal to harmful on a societal level. We have read several failure

stories. For example, in 2016, contestants from over 100 countries from around the world submitted

images of themselves to Beauty.ai’s website, and their proprietary deep learning agent, trained on

publicly available facial images, chose winners in 44 different beauty pageant categories [18]. The

algorithm, perhaps due to biases in the trained data, showed strong signs of racial bias: 37 of

the winners had distinctly European facial features [18]. Microsoft built a Twitter bot called Tay

that was supposed to learn new language skills, but it had to be shut down soon after launch

because it learned to deny the holocaust and demonize feminism [19]. ProPublica reported that

Northpointe risk assessment software, used by judges in Florida to help determine incarceration

lengths, systematically assigned higher risk scores to black defendants than to white ones [20].

Label distribution learning (LDL) replaces the conventional goal of predicting, for each data item,

a single (set of) label(s) with the more challenging and complex task of predicting a probability

distribution (known as a label distribution) over the label choices [21]. A growing body of work has

used this approach, e.g., to predict beauty in images [20] and rate movies [22]. Until now, prior

work has focused broadly on the problems that distinguish LDL from other forms of probabilistic

learning. There is also evidence that, even in situations where ground truth exists but is difficult

to obtain, predicting label distributions is more informative and accurate than aggregating the

opinions of multiple labelers into a single (set of) discrete choice(s) [23]. We focus on population-

based LDL (PLDL), the special case of when the learning goal is to predict the distribution of

beliefs in a population of human annotators about the best label(s) to associate with each data

item.

A major resource bottleneck in PLDL is the number of human annotations needed to achieve a

reliable learning outcome. For any large population of labelers, any individual data item x, and any

multiple-choice question posed of x to the labelers, the number m of labels needed to estimate (i.e.,

taken as a sample of) the underlying population’s true distribution of beliefs about x is rather large,
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Figure 1.1: The main algorithmic idea this thesis work explores. The black dots represent data

items. (Left:) Five labelers annotate each data item, where the color of the person indicates the

label that person chose. If we view these five labels as a sample of the underlying population’s

beliefs, the sample size is probably too small for there to be much confidence in the population-level

result. (Right:) We cluster together (indicated by the circles) similar rater response items, and

then pool together all the labels in each cluster into a single, larger sample which, according to our

learning strategy, is a good representation of—and thus label distribution for—the population-level

beliefs about each item in the cluster.

depending on the size of the label space and desired confidence/significance level. Meanwhile, the

number of data items n needed for supervised learning usually runs into the thousands. Thus, taken

independently, the total number m×n of human labels required for training on label distributions

grows quadratically and can easily run into the millions.

In this thesis work, we contribute a new algorithmic framework for reducing the total number

of human labels needed per data item, by pooling together the labels of data items determined

by clustering in the space of label distributions to be similarly rated with similar semantics.

Figure 1.1 illustrates the main idea behind this approach.

1.1 Main Challenges

We face a series of social and technical challenges in developing our algorithmic solution to solve

the population-based label distribution learning problems based on social media data. They are

summarized as:
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1.1.1 Subjectivity

Social media records individual feelings, desires, perspectives, judgments, perceptions, understand-

ings, beliefs, and so on. All of these can be described as subjective, a word that is commonly used to

explain various factors that have influences, impacts, or biases on people’s reactions and opinions

about facts or realities [24]. People with diverse life experiences may describe the same event or

topic in entirely different and maybe contrary ways.

We have to deal with these subjective varieties when extracting and studying personal narratives on

specific topics from social media (compared to the tasks like news and public event extractions that

mainly focus on facts or truths). Subjectivity poses such a challenge to us because there is no best

or correct label in subjective domains. There might be more than one acceptable solution or answer

to this type of problem, or answers are judged by their acceptability rather than correctness [25].

Subjectivity comes from not only different user-generated messages themselves but also in how

different readers/annotators with diverse backgrounds, perspectives, and opinions interpret these

messages. To obtain high-quality annotations for further modeling and evaluation, we must deal

with annotators’ subjective judgments.

1.1.2 Problems without Ground Truth

When we seek to model and understand a specific social issue computationally, another obvious

challenge is the lack of unambiguous and accurate definitions of the topic, i.e., there is no ground

truth or gold standard available for modeling real-world problems concretely. We often have little

or no authoritative datasets with which to seed, boost, validate, or evaluate our machine learn-

ing process and outcome. It proves daunting to derive the ‘ground truth’ underlying subjective

assessments of problems such as similarities among artists’ styles [26].

1.1.3 Informal Language

The language used in public social media is more informal than that of newspapers, books, forums,

or blogs. Users of social media like Twitter frequently write short or incomplete phrases and use

creative spellings and non-standard grammar in their tweets. Such inherent linguistic noisiness

poses a significant challenge to modeling the narratives.
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1.1.4 Data Scarcity

Another challenge is that any particular topic of interest may represent only a tiny fraction of total

texts exchanged in any social media. Machine learning classifiers tend to perform poorly when

suffering from scarcity and class-imbalance of data.

Problem Statement

Different from uncertainty, subjectivity does not assume that a data point must have a true label,

even it may be just difficult or impossible to obtain. This distinction makes many probabilistic

machine learning strategies inappropriate because their assumptions and designs are typically based

on uncertainty measures. This distinction also has impacts on the choice of objective/loss function

and evaluation metric that would be used in these modeling problems.

Our work approaches the challenges summarized above with a humans-in-the-loop label distribu-

tion learning framework, in which we develop annotation schemes to select samples for manual

annotation, summarize and infer labels with probabilities from multiple annotators having various

knowledge levels and opinion diversities, and develop unsupervised and supervised models to pre-

dict population-level label distributions. We collected datasets and human annotations covering

different problem domains to evaluate the effectiveness and generalizability of this framework.

Figures 1.2—1.4 show the main differences between our approach and conventional supervised

learning scenarios. Figure 1.2 shows the simplified relationship between a learning agent and a

data item. Each item (such as a car) has observable features, and the agent’s goal is to learn to

predict the label of new unseen data items based on a set of labeled data. Sometimes (such as in

open domain settings [27]), there is uncertainty about the labels. Figure 1.3 shows a setting where

human annotators provide labels. Here, in addition to uncertainty, there may also be disagreement

among the annotators as to the correct label. Nonetheless, we assume that each item has a true,

gold-standard, ground-truth label. Figure 1.4 shows our setting, where there is no true hidden label

(though there may be other hidden states), and the annotators’ labels are a sample of the human

population’s interpretation of the data item. In this case, noise may be present, as before. However,

the labels themselves are additional variables whose distributions depend on whom is asked, and

the goal becomes to learn these underlying distributions.
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Figure 1.2: A conventional learning agent and data item. The shaded circle indicates that the

data item has an observable state. The rectangles represent multivariate containments, i.e., the

learning agent is dealing with multiple users, items, and predictions. Each user contributes labels

to numerous items.

1.2 Thesis Contributions

This thesis makes the following contributions to human-assisted machine learning and computa-

tional social science:

1. It introduces a human-in-the-loop active learning framework that integrates the human anno-

tations, label determinations, model training, updating and testing that progressively improve

the learning performance.

2. It provides an extensible solution to solve problems like extracting complex subjective topics

from massive noisy social media in a cost-effective manner. In application domains, we study

the work and employment in-depth in the context of Twitter and expand to other topics.

3. It establishes the premise for our probabilistic approach through a real-world example where

there is substantial disagreement over the annotators’ interpretations of 50 data items in a

common social domain, but where the label distributions appear visually in a histogram to



CHAPTER 1. INTRODUCTION 7

Figure 1.3: A standard learning problem. The item and label with shaded circles indicate observable

conditions. Each item is assumed to have a true label, which may be different from the annotation

labels.

cluster into a limited number of distinct classes.

4. It introduces an algorithmic framework for label distribution learning on as few as five-to-ten

labels per data item that involves an unsupervised learning phase to yield hidden classes of

semantically-related data items and assigns to each class an aggregated label distribution,

followed by a supervised learning phase based on the labels the unsupervised phase produces.

5. It shows that, for larger label spaces, predictions based on unsupervised learning models that

use our clustering strategy outperform those that do not, thus providing supervised learning

validation for our approach.

6. Our analysis is performed on natural language data. This is among the first explorations of

LDL on linguistic data from social media [28].

1.3 Thesis Outline

We organize the rest of this thesis as follows: Chapter 2 introduces the background and related

work about human computation with crowdsourcing, active learning with humans in the loop,
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Figure 1.4: Our problem model in which there is no true label for the item. The crowdsourced

labels from annotators are assumed to represent the interpretation of broad populations.

label distribution, and multilabel learning. Chapter 3 reviews our previous research about text

classification of social media data built with crowdsourcing techniques. And it contains our research

on comparing and combining non-expert and expert annotations in different experimental settings

and introduces a humans-in-the-loop active learning framework we developed to understand social

issues like work and employment. Chapter 4 introduces our label distribution learning approaches

for tackling subjectivity and presents a series of experiments for evaluating our proposed learning

framework. It introduces our annotation schemes for collecting labels from multiple annotators and

new metrics to monitor and measure learning performance. Chapter 5 continues to discuss future

work. Finally, Chapter 6 concludes our work and contributions.



Chapter 2

Background and Related Work

Figure 2.1: A diagram showing how different pieces of background and previous work are organized

and related.

9
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2.1 Crowdsourcing

According to Daren Brabham [29],

Crowdsourcing is a type of participative online activity in which an individual, an in-

stitution, a non-profit organization, or company proposes to a group of individuals of

varying knowledge, heterogeneity, and number, via a flexible open call, the voluntary

undertaking of a task. The undertaking of the task, of variable complexity and modular-

ity, and in which the crowd should participate bringing their work, money, knowledge,

and/or experience, always entails mutual benefit. The user will receive the satisfac-

tion of a given type of need, be it economic, social recognition, self-esteem, or the

development of individual skills, while the crowdsourcer will obtain and utilize to their

advantage what the user has brought to the venture, whose form will depend on the

type of activity undertaken.

Crowdsourcing is a common way for obtaining labels for supervised learning. Through a clever use

of online annotation games, von Ahn pioneered the idea of crowdsourcing to collect annotations

of images [30] and word relations [31]. The fast growth of crowdsourcing techniques has made

the collection of large numbers of human labels much easier than before: a global base of paid

workers (mostly non-experts) on various web crowdsourcing platforms can be employed to complete

annotation tasks in a significantly cheaper and faster way than having experts annotate at the same

scale.

Amazon Mechanical Turk (AMT), as representative of a global crowdsourcing platform, has been

widely used to collect annotations. AMT is an online labor market where workers get paid (usu-

ally a small amount of money) to complete given tasks from requesters. Requesters and workers

(some terms called as Turkers) must first create an Amazon account. Requesters publish tasks to

workers in the form of human intelligence tasks (HITs) that contain an arbitrary number of tasks.

Requesters can specify the number of submissions from unique workers (identified by IDs) per HIT

and set up payment and reward criteria. AMT allows requesters to choose particular workers that

satisfy pre-defined qualifications to work on their HITs, for example: living in a specific country

or having a minimum level of experience with sufficient accepted submissions in the past. Re-

questers decide to approve or reject submissions from workers, and Amazon handles the payment

transactions. In recent years, a variety of crowdsourcing platforms with advanced features and

user-friendly interfaces have launched [32].
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Snow et al. [33] investigated the effectiveness and reliability of Amazon Mechanical Turk on a variety

of natural language annotation tasks (affect recognition, word similarity, textual entailment recog-

nition, event temporal ordering, and word sense disambiguation). They collected ten independent

annotations for each item in the task and found that obtaining labels from multiple non-experts

could improve the data quality and reach high agreements with existing gold-standard labels pro-

vided by experts. They suggested that individual labelers (including experts) tend to have a bias

(which our research [5] confirmed). They also suggested that multiple annotators may contribute

to diversity, thus reducing annotation bias and noise and helping produce gold-standard quality

training sets (i.e, by taking for each data item the average of multiple non-experts converges on the

performance of a single expert). Callison-Burch [34] and Denkowski et al. [35] extended this series

of linguistic experiments to evaluate machine translation quality and confirmed the feasibility of

using AMT in complex tasks. In Callison-Burch’s work [34], crowdsourcing workers rank candidate

choices in order of preference (i.e., preference ranking) and then an overall ordering of labels is

computed [36]. AMT has also been widely used to obtain transcriptions of speech [37, 38], create

taxonomies [39], disambiguate word senses [40,41], and so on.

2.1.1 Quality Control and Evaluations

The annotations collected from multiple crowdworkers are inevitably noisy, because the workers

may not have specific expertise in, or may not pay full attention to, their given annotation tasks

due to distraction or exhaustion, or have a poor understanding of the task that they have been

asked to perform. Obtaining high-quality annotations is fundamentally important, as machine

learning algorithms rely on annotated data (and labels). We discuss previous research on assuring

the quality of crowdsourced annotations.

For consistency and readability purpose, Table 2.1 lists the notations used in Section 2.

Snow et al. [33] proposed methods for collecting reliable annotations from multiple annotators.

They recommended hiring more workers—if budget allows—to “average out” noise or bias, and to

utilize the crowdsourcing platform’s compensation mechanism to collect higher-quality contribu-

tions. Also, they suggested requesting annotations only from workers with high scores1 because

they are assumed to be more reliable than those with low scores.

Besides these suggestions, Snow et al. proposed to jointly model labels and workers in order to

correct for the biases of non-expert annotators [33]. Suppose the data item x has a true label

1Some crowdsourcing platforms provide approval rates or reliability scores of workers.
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Symbol Definition

xi data item (i ∈ N)

N number of data items

zi (hidden) true label for xi

yki label for xi provided by the annotator k

y set of multiple annotations

K number of annotators

πk quality of label provided by the annotator k

π overall annotators’ quality/reliability, π = {πk}Kk=1

ζ priors on zi

Table 2.1: The notation used in Section 2.

z ∈ {A,B} (we use a binary domain here for demonstration simplicity) and crowdsourced worker k

annotates x as yk (k ≤ K). Each worker’s judgment is modeled independently of the other workers,

given z as:

P (y1, y2, . . . , yK , z) =

(∏
k

P (yk|z)
)
p(z). (2.1)

Then, multiple annotations are integrated via Bayes rule to infer the posterior log-odds of z for x

as:

log
P (z = A|y1, y2, . . . , yK)

P (z = B|y1, y2, . . . , yK)

=
∑
k

log
P (yk|z = A)

P (yk|z = B)
+ log

P (z = A)

P (z = B)
.

(2.2)

According to a worker’s performance on a gold standard set, we can estimate their response likeli-

hoods P (yk|z = A) and P (yk|z = B). Thus, Equation 2.2 describes a weighted voting rule based

on the log likelihood ratios of workers’ responses and suggests an approach for examining accuracy

and reliability on annotation tasks.

2.1.2 True Label Determination

It is usually assumed that there exists a true (ground truth) label for each data point that can be

determined from multiple annotations using established methods.

One straightforward approach is to take only the unanimous vote among multiple annotators

as the single ground truth label for each data item. Setting restrictions to unanimous vote can
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guarantee the quality of the final label since it achieves the highest inter-annotator agreement,

especially when the number of annotators is large. However, it is not always easy for multiple

annotators to reach an agreement, as we observed in a multiple-choice questions setting [6], and

samples that have not been unanimously annotated became unusable.

An alternative strategy is to take the plurality vote of multiple annotations as ground truth.

However, this approach has the problem that it assumes all the annotators are equally reliable and

qualified in making judgments, which is not true in practice. Simply taking the majority vote could

neglect minority opinions and skew the true label due to annotators’ various knowledge levels and

skill sets.

There exist a few sophisticated methods studied for inferring the true label from multiple annota-

tions for data. Dawid and Skene [1] developed a probabilistic model to learn the weight of each

annotation, as illustrated in Figure 2.2, where the (hidden) true label zi (i ∈ N) and the annota-

tion quality πk jointly determines the observed label yki provided by the annotator k (k ≤ K). The

quality of label πk can be learned using EM [1], and then applied to infer the “true” labels.

Figure 2.2: Plate notation of Dawid and Skene’s model [1].

Another model for learning from multiple annotators was introduced by Welinder and Perona [2]

(Figure 2.3). For a data item xi (i ∈ {1, . . . , N}), the observed label yki is determined by both the
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Figure 2.3: Plate notation of Welinder and Perona’s model [2].

(hidden) true label zi (parameterized by ζ) and the annotation quality πk. The joint probability

distribution of annotation process is calculated as:

p(y, z, π) =
N∏
i=1

p(zi|ζ)
K∏
k=1

p(πk|π)
∏
yki ∈y

p(yki |zi, πk). (2.3)

Welinder and Perona’s method can jointly estimate how reliable a particular label is and how

well annotators perform. Therefore, this model can be used to validate the feasibility of our

crowdsourcing annotation schemes and simultaneously evaluate the participants quantitatively.

2.1.3 Label Noise in Classification

Label noise is ubiquitous in real-world datasets and practical machine learning problems, especially

those powered by multiple non-expert annotators with crowdsourcing techniques. Previous studies

have various descriptions about noise: Hickey [42] defined noise as “anything which obscures the

relationship between description and class.” Quinlan [43] defined noise as non-systematic errors.

Considering the many potential negative consequences of label noise, much prior research has

focused on the study of label noise and solutions to eliminate it or reduce its impact.

There are two common types of noise: (1) feature (or attribute) noise, which affects the observed
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features of data items, and (2) class noise, which alters the observed labels [43,44]. It is important

to note that class noise (label noise) only affects the observed label of an instance, not its true

class. Class noise is empirically shown to be more harmful than feature noise [44, 45], which can

be explained by the fact that, for each instance, it is assumed there exists one observed label and

multiple features. If the label is incorrectly introduced with significant class noise, the learning

process would be distorted, even if the feature sets are perfectly without noise.

The observed label often corresponds to the instance’s true label, but it may be subjected to

noise [46, 47]. Label noise is commonly considered to be a stochastic and complex process, with

independent labeling errors from each labeler [47,48], but without a fully specified model.

Handling label noise is closely related to outlier detection [49, 50, 51, 52] and anomaly detection

[53,54,55,56,57] because each mislabeled instance usually has a low chance of occurrence, and this

looks anomalous to the assigned class. However, label noise does not necessarily equal the other

two, such as when the labels are about subjective topics [58] or the instances themselves are simply

rare events with confusing features [59].

Potential sources of label noise include: (1) the provided information being insufficient to make

reliable judgments [42,60,61]; (2) unreliable annotators making mistakes in the labeling process [42];

(3) the labeling task being subjective and leading to high inter-annotator variability [62,63,64,65,

66]; (4) data encoding errors and communication ambiguities leading to label noise [44, 47, 60].

Among these, the third most closely matches our problem of subjective domains.

There are three common strategies for managing label noise. The first is to employ label noise-

robust models, which are not sensitive to and less influenced by the presence of label noise during

the learning process [46]. However, this approach does not consider or handle label noise. The

second strategy is to improve the quality of training data by cleaning (filtering, relabeling or

removing) mislabeled instances in label noise-polluted datasets [46, 67]. The third approach, label

noise-tolerant learning algorithms, takes both the classification and the label noise models into

consideration simultaneously during learning [46]. Here, the third approach is relevant to our

subjectivity problem, though it cannot be directly applied because it assumes there exist single

true (best) labels for instances, while we do not hold such assumptions.

Under the third approach, Benôıt Frénay and Michel Verleysen summarized two families of methods:

probabilistic and model-based [46]. Probabilistic methods include Bayesian approaches [68, 69,

70], frequentist methods [51, 71, 72, 73, 74, 75], clustering-based methods [76, 77, 78, 79], and belief

functions [80, 81, 82, 83]. Apart from probabilistic methods, many previous studies proposed label
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noise-tolerant variants of popular machine learning models and algorithms, such as: SVMs with

robust loss functions [84,85,86,87,88], neural networks [89,90,91,92,93], decision trees [94], boosting

methods [95,96,97,98,99,100,101,102], and semisupervised learning approaches [103,104,105,106,

107,108].

A number of researchers have explored clustering among related data items to improve the quality

of inferring ground-truth labels. For instance, Zhang et al. [109] introduced a new approach, what

they call ground truth inference using clustering, to better integrate labels for multi-class labeling

tasks. They showed that clustering-based latent classes, compared to existing multi-class ground

truth inference algorithms (majority voting, Dawid & Skene’s, ZenCrowd and Spectral DS), better

estimate the semantics of the data items in their comparative experiments, thus providing empirical

support for a family of clustering approaches in the context of supervised learning, (which they

did not study in the same work). McCallum [110] studied clustering in a semi-supervised learning

context: they described a Bayesian approach to infer the distribution over mixture weights and the

word distributions for documents. In both studies, clustering is performed in feature space as part

of the learning process.

2.1.4 Learning without Ground Truth

Crowdsourcing facilitates the process of collecting labels from multiple annotators. Even after

applying quality control and label inference approaches and canceling out label noises, there is

still an underlying assumption that a (set of) correct answer(s) exists in solving these (supervised)

machine learning problems. However, it is infeasible to obtain (or get access to) objective ground

truth (gold standard) or indirect to confirm the ground truth for real-world problems in many

scenarios.

For example, in the medical domain of cancer diagnosis, multiple radiologists may visually exam-

ine medical images (from X-ray, CT scan or MRI) and provide their subjective judgments about

whether some regions are cancerous or not. One way to approach the ground truth is a biopsy

of the patient’s tissue, in which process it might not be cheap, safe or noninvasive. Under this

circumstance, Raykar et al. [111] introduced a probabilistic supervised learning approach for train-

ing computer-aided diagnosis (CAD) classifiers without objective gold standards. They presented

a solution that jointly learns a binary classifier, the annotator’s reliabilities, and the actual true

labels [111]. They measured annotator performance using sensitivity and specificity with respect to

an unknown gold standard [111]. They presented a two-coin model (with priors to capture different

skill levels) for the annotators to derive maximum-a-posterior (MAP) estimates of their reliabili-
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ties. They then presented a maximum likelihood learner using the expectation maximization (EM)

algorithm to iteratively estimate the posterior probabilities of ground truth labels, measure anno-

tator performance, and update estimates of ground truth labels. Raykar et al. [111] discussed the

extensibility of their algorithm to multi-class, ranking, and regression problems.

Aroyo and Welty show in a semantic parsing task that crowdworkers can perform at a level compa-

rable to domain experts when they agree with each other. When crowdworkers have disagreement,

it is often for good reason, and in fact usually more desirable than collapsing an item’s annotations

to a single label [112]. Schaekermann et al. [113] describe a framework for identifying unresolvable

annotator disagreement. Chen et al. [114] argue persuasively that to a wide spectrum of social

scientists the volume of unstructured data available for qualitative analysis generated by social

media is so great that automated methods like machine learning are needed to keep up. They also

argue that preserving annotator disagreement is essential to applying qualitative methodologies like

grounded theory at scale.

In active learning scenarios, there is an increasing volume of research in recent years on multiple

annotators (with varying expertise). Yan et al. [115] presented a probabilistic multi-labeler model

in active learning loops to query the most helpful samples and, simultaneously, annotators. They

modeled the observed labels for the data items by assuming two types (Gaussian and Bernoulli) of

distributions based on varying reliabilities for labelers. They used a (multinomial) logistic regression

model for true unknown labels in classification problems. Similar to the approach reported by

Raykar et al. [111], Yan et al. [115] employed EM algorithm to calculate estimations and solved

an opimization problem to achieve the joint learning goals. They applied the uncertainty sampling

query strategy to select data points that have 50% accuracy in a binary scenario and calculated

a template for the samples to be queried. They chose annotators whose labels had the highest

confidence ratings. In a similar setting, Krempl et al. [116] presented a probabilistic active learning

approach that models the true label and posterior for the query candidate. For each candidate,

the expected gain in classification performance from requesting its label is calculated. Its posterior

(of the positive class) is estimated based on its labeled neighborhood candidates. The candidate

is then queried if its expected gain falls under the overall expected performance gain. Krempl

et al. claim that their probabilistic active learning algorithm is statistically optimal in achieving

density-weighted probabilistic gain in both disjoint and continuous neighborhood settings. Using

their approach, querying candidates from the pool is a linear time (with respect to the size of the

data pool) operation [116].



CHAPTER 2. BACKGROUND AND RELATED WORK 18

2.2 Multi-label Scenarios

When we attempt to solve subjectivity problems using machine learning, we need to account for

multiple labels with probabilistic distributions for each data item. Thus, it is necessary to under-

stand recent research in multi-label learning.

2.2.1 Common Learning Methods

Multi-label learning usually refers to either multi-label classification or multi-label ranking depend-

ing on the learning goal [117]. Multi-label classification can be described as the learning task that

maps a data item x ∈ U (U represents the universe of data items) to more than one label (It is

assumed that there exists a predefined set of labels where these multiple labels belong). Compared

to the common multi-class classification problems that assume the ground truth label for each single

data item is mutually exclusive, multi-label classification holds the assumption that each data item

can belong to multiple classes, instead of one and only one class in multi-class classification [117].

Multi-label ranking introduces the learning task to predict the rankings of all labels, beyond the

multi-label classification task that distinguishes the relevant labels from irrelevant ones [118].

Multi-label data and learning problems have attracted significant attention from academic and

industrial communities and witnessed many approaches proposed and developed in recent years.

Madjarov et al. [117] presented a comprehensive overview of methods for multi-label learning.

They extended their previous summary [119] and summarized the methods for multi-label learning,

dividing them into three categories: algorithm adaptation, problem transformation and ensemble

methods [117].

The algorithm adaptation methods include adapting, extending or customizing existing machine

learning algorithms for multi-label learning tasks [117], including: boosting [120, 121], k-nearest

neighbors (k-NN) [122, 123, 124, 125], decision trees [126, 127], support vector machines [128], and

neural networks [129].

Problem transformation methods, as the name implies, transform multi-label learning problems

into single-label problems that can be solved using common machine learning algorithms [117].

Madjarov et al. grouped these problem transformation methods into three types: binary relevance,

label power-set, and pair-wise methods [117]. The simplest strategy—binary relevance—converts

a multi-label classification problem into a series of binary classification problems, based on the

one-against-all strategy [119]. An alternative binary relevance approach is the classifier chain
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method [130], which links a chain of binary classifiers. Godbole et al. [131] adapted SVM binary

classifiers to multi-label learning by extending the training set and improving the class margins

in forming the separating hyperplane. Label power-set methods (or label combination methods)

are the second problem transformation type [119, 132, 133]. They form a single-label problem by

combining the original possible label subsets into atomic (single) labels [132, 133, 134]. HOMER,

a variant of label power-set methods, can learn classifiers from a hierarchical set of labels [135].

The third problem transformation type are pair-wise methods: all labels are paired with binary

classifiers which can vote for the relevant labels for each data item in the multi-label learning

problem [136,137,138,139].

Based on the state of the art algorithm and problem transformation methods, researchers developed

ensemble methods for multi-label learning. Tsomakas et al. utilized the label power-set method with

a small random subset of labels to build classifiers [132]. Read et al. improved the computational

efficiency of label power-set methods using the ensembles of pruned sets [133]. They also developed

classifier chains methods to predict labels [130]. Kocev applied predictive clustering trees in the

form of ensembles to make multi-label predictions [140].

2.2.2 Label Distribution Learning

Each data item is associated with multiple labels in multilabel learning [141]. However, it does not

typically distinguish between multiplicity due to disagreement (where different annotators might

believe that only one label is correct, but disagree on which one), ambiguity (where an annotator

might believe multiple labels are valid), or uncertainty. Such distinctions may have significant so-

cial impacts, especially when disagreements fall along crucial demographic boundaries or indicate

important but opposing perspectives that should be preserved in machine learning predictive mod-

els. Moreover, there are settings where label distributions are important but multilabel approaches

do not naturally apply, such as when the prediction domain is ordinal (e.g., Likert-scaled) or real-

valued. We are interested in capturing the diversity of beliefs across a population, where each

member of the population may only associate a data item with one (set of) label(s), but different

people may disagree on which ones.

Learning over probability distributions has a long history [1,142,143,144]. While label distribution

learning (LDL) adopts many of the same algorithmic approaches from this body of work it differs

from conventional learning (a) in conventional probabilistic learning probability is used to model

uncertainty; in LDL probabilities model ground truth. Thus (b) while conventional probabilistic

learning evaluates performance in terms of accuracy, precision, and recall (even though probabilistic
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measures may be used as loss functions during training) etc., in LDL performance is measured in

terms of functions, such as Kullback-Leibler (KL) divergence, that operate directly on probabilities.

Geng pioneered the systematic study of label distribution learning [21], where the objects to be

predicted are probability distributions over labels/classes. He and colleagues studied applications

of LDL in many settings, some of which are related to predicting population-level distributions

[20, 22, 23] while others are not [145, 146]. Nearly contemporary work to ours has extended the

maximum entropy models in [21] to account for covariance in the label distribution space [147].

Several of these studies acknowledge the difficulty of obtaining valid label distributions that rep-

resent the underlying beliefs of human annotators; in fact, most of them are based on data and

labels that were originally collected for the purpose of conventional (i.e., non-probabilistic labels)

supervised learning problems. This line of research has thus far assumed that the label distributions

obtained are ground truth, i.e., without questioning the statistical validity of the data, even though

the sample size of the labels for each item is small.

2.2.3 Evaluation Measures

In contrast to the classical single-label learning problem, multi-label learning demands different

performance evaluation measures due to the additional degrees of freedom associated with the

multiple-label setting [117].

There are mainly two categories of measures for evaluating the performance of multi-label learning

systems: bipartition and rank-based measures [117,148].

For the bipartition-based measures, the differences between the predicted labels and the ground

truth labels are calculated, based on either examples or labels over the test set [117]. Common

example-based evaluation measures used in the multi-label experiments include hamming loss,

accuracy, precision, recall, F1 score, and subset accuracy. Micro/macro-precision, micro/macro-

recall and micro/macro-F1 score are common label-based evaluation measures [117].

The rank-based measures calculate the differences between the predicted ranking of multiple labels

and the ground truth ranking for each example in the test set, using measures such as one-error,

coverage, ranking loss, or average precision [117].
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2.3 Active Learning

Subjective domains are open, without definite answers or an easy way to obtain representative

labeled data. There are sometimes situations—supervised learning on social media data is one

such case—where unlabeled data are abundant, but obtaining manual labels is time-consuming,

expensive and difficult. In these cases, active learning algorithms can facilitate this process.

The key hypothesis behind active learning is that a machine learning algorithm can achieve better

results with lower training costs if the training data are intelligently selected throughout the learning

process. Active learning systems ask queries as an intermediate step to overcome the labeling

bottleneck, and aim to achieve good performance with a limited amount of labeled data. Queries

are usually in the form of unlabeled data instances that request labels from an oracle (such as a

human annotator or another computational model/agent) [149].

Let DU
0 denote a pool of unlabeled data items with size |DU

0 | = n, and let DL
0 = ∅ denote the

initial empty labeled set. Let DL
t and DU

t denote the labeled and unlabeled data respectively at

time step t. The class of x ∈ DU
0 is denoted y ∈ {1, · · · ,m}. Sometimes it is helpful to model the

data probabilistically. In this case, x (respectively, y) is a random variable representing a data item

(respectively, data label). Let Prθ(y = j|x) represent the probability of the sample x belonging to

category j under model θ.

In terms of Mitchell’s [150] definition of a well-formed machine learning problem, we define active

learning for a generic classification task as:

Task function: f : U → {1, · · · ,m} where U represents the universe of data items with the

corresponding true labels, and {1, · · · ,m} represents the classes.

Performance metric: Precision, recall, F1-score, etc.

(Active) learning experience: The active learner selects unlabeled samples Xt ⊆ DU
t at each

time step t, according to a query strategy Sq, and request labels for each item sampled from

the oracle. After the query and labeling at time step t, DL
t+1 = DL

t ∪Xt and DU
t+1 = DU

t −Xt.

2.3.1 Active Learning Scenarios

There are three common active learning scenarios.
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Stream-based selective sampling [151, 152] (a.k.a. stream-based/sequential active learning)

assumes that the active learner can make decisions about whether or not to request a label for

an unlabeled instance when scanning through the data sequentially in real time to get sample at

a very low cost. This approach reduces the memory size needed by the learning algorithm by

either querying or discarding the current single sample (query strategies will be introduced in the

next section), thus making this sampling method more appropriate for settings where memory or

computational power may be limited, for example in mobile and embedded devices [149]. Several

natural language processing applications have used and studied the stream-based scenario, for

example in part-of-speech tagging [153], word sense disambiguation [154], information retrieval [155]

and so on.

In pool-based sampling [156], instances to be labeled by the oracle are greedily and selectively

queried from a large pool of unlabeled data. Compared to stream-based selective sampling, which

samples the data sequentially and individually, pool-based sampling first ranks the entire unlabeled

collection according to some informativeness measure before making the selection of the instances

for the oracle [149].

Pool-based sampling appears to be the most popular approach and has been used in a wide range

of real-world learning settings. In [149], Settles had an overview of the domains and applications

where this approach has been used: text classification [156, 157, 158, 159], information extraction

[160, 161], image classification and retrieval [162, 163], video classification and retrieval [164, 165],

speech recognition [166], cancer diagnosis [167], etc.

There is another less common active learning scenario called membership query synthesis [168],

in which the active learner may request labels from the oracle after creating (or synthesizing) query

instances. This approach typically sends samples that are synthesized in the active learning process

to the oracle, instead of using the existing instances in the data pool. This setting is usually efficient

and tractable for finite problem domains [169], and can be extended to regression learning tasks

like predicting robot hand coordinates in a continuous process [170]. However, this approach may

in practice synthesize instances without natural meanings for the oracle, such as unidentifiable

synthetic symbols in handwritten characters, or meaningless synthetic text or speech in natural

language processing tasks. This makes the labeling process, especially when the oracle is a human

annotator, boring and unprofitable. Stream-based selective sampling or pool-based sampling can

address the above limitations.
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2.3.2 Query Strategies

Settles gave a comprehensive overview of the query strategies used to evaluate and select unlabeled

instances for labeling requests [149]. They are introduced below with related concepts, terms and

their pros/cons.

Uncertainty Sampling

Uncertainty sampling [156] may be the most straightforward and widely used query strategy, where

the active learner chooses to query the least certain samples based on some uncertainty measure.

Measures previously used include: (1) confidence about the predicted label of the instances [156,

171]; (2) margin sampling, which incorporates the posterior of the first and second most likely

labels [172]; (3) entropy, which considers the probability distributions over all possible class labels

[173]. Compared to confidence, margin sampling could correct for the drawback that only one

possible class is considered. However, margin sampling becomes a problem again when the label

sets are large. Entropy-based approaches can generalize to multi-class models with more complex

structured instances.

Uncertainty sampling strategies are useful for both probabilistic and non-probabilistic classification,

and can also apply to regression problems (optimal experimental design) [174].

Confidence [156, 171]. All the instances in DU are sorted according to their θ-predicted prob-

abilities of their target class j: Prθ(y = j|x). Then the instances with the lowest probabilities in

the sorted array are queried.

xLC = arg min
x

Prθ(y = j|x), (2.4)

This uncertainty measure can be interpreted as the expected 0/1-loss, i.e., the degree of lack of

confidence that the model θ classifies xi into the right class j.

Margin Sampling [172]. The confidence strategy only considers the most probable class, and

ignores all other information about the remaining class distribution. For this reason, another

multi-class uncertainty sampling strategy emerged [172].

xMS = arg min
x

(Prθ(y = j1|x)− Prθ(y = j2|x)), (2.5)
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where for the sample x, j1 and j2 are respectively the first and second most probable class labels

predicted by the model θ. This algorithm aims to find the instance in DU with the least margin

between the two most likely classes. In other words, the least margin is a representation of the most

uncertainty the model θ has towards the sample x: instances with small margins are intuitively

more ambiguous to judge and predict since it is challenging for the classifier to differentiate the top

two ranked classes.

Entropy [173]. Using entropy as an uncertainty measure is possibly the most general and popular

uncertainty sampling strategy.

xEN = arg min
x

m∑
j=1

Prθ(y = j|x) logPrθ(y = j|x), (2.6)

where y = j ranges over all m possible categories. In information theory, entropy measures the

expected value of the information encoded in a message. Here, it represents the amount of infor-

mation about the label distribution: higher entropy suggests more uncertainty in the classification

process. The entropy sampling approach generalizes well to probabilistic multi-class models built

with complex structured instances [161].

Query-By-Committee (QBC)

The query-by-committee strategy relies on a committee of models that are all trained on the

current labeled set with competing underlying hypotheses [175]. Each committee model votes

on the class labels of query candidates. Then this approach selects the instances about which

the committee models have the most disagreement. There are several approaches to measure the

level of disagreement: (1) vote entroy [153]; (2) average Kullback-Leibler (KL) divergence [157];

(3) Jensen-Shannon divergence [176]. The QBC framework fundamentally minimizes the version

space—a hierarchical representation of knowledge supplied by learning examples [150]—to precisely

search for an optimal model from labeled instances, even with a small committee size [157,161,175].

This framework can be employed in regression settings [177] too.

Expected Model Change—Expected Gradient Length (EGL)

The expected model change strategy uses a decision-theoretic approach when making the instance

selections. Assuming the instance label is given, we query those instances with the greatest potential
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change to the current model [161, 178]. The intuition behind this strategy is that instances that

could have the greatest impacts on the model’s parameters are preferred. This strategy can be

applied in any gradient-based learning setting. However, it is computationally expensive to apply

when both the feature space and labeling sets are very large, and becomes less accurate in practice

when features are not properly scaled.

Expected Error Reduction

Another approach is to measure how much the model’s generalization error is likely to be reduced

by the query instances [179]. After estimating the model’s expected future error (total number of

incorrect predictions) on the remaining unlabeled set, instances with minimal expected error are

queried. This strategy can theoretically be employed to minimize loss functions and maximize any

generic performance measures, such as precision, recall, F1-score, or area under the ROC curve.

Compared to other query strategies, this one is the most computationally expensive and impractical

in application.

Variance Reduction

This method chooses instances that minimize the model’s squared-loss with respect to the objective

function [180]. This strategy has advantages over approaches like error reduction in that there is

no need to retrain the model since an approximated output variance simulates retraining. It has

shortcomings in terms of computational complexity for larger numbers of parameters.

Density-Weighted Methods

The intuition behind the information density strategy is that the queried instances should not

only be the most uncertain, but also be “representative” of the underlying distribution/density

of the entire input space [161, 181]. Density-based approaches can outperform other methods

[154,157,161,182,183] and allow real-time interactive active learning when densities of instances in

the entire input space are pre-computed and cached for later use efficiently.
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2.3.3 Adding Humans to Active Learning Loops

Humans-in-the-loop is a machine learning setting where humans serve the role of oracle.

A common assumption behind active learning is that the labels from the oracle are reliable and

consistent. For example, that one can usually expect to collect labels from one single oracle, or that

the oracle is always reliable in humans-in-the-loop settings. Experts who have been well trained to

solve specific experience-oriented problems are often assumed to serve the roles of oracle in active

learning with their professional knowledge.

Assumptions like this do not always hold in practice. Even when domain experts are the oracles,

there is inevitably noise resulting in unreliable labels that can impair the performance of machine

learning. Sources of noise include: (1) instances to be labeled are naturally ambiguous and sub-

jective for people to annotate; (2) human annotators can get distracted during the annotation or

become fatigued over time, especially when working on repetitive tasks; (3) their annotation skills

may change (usually improve) with practice, making their submission qualities vary.

Expert annotation has other limitations: it is expensive to recruit experts to participate and the

efforts of each can only produce a limited amount of labeled data. So, for some tasks that do not rely

on professional knowledge, like labeling objects in images or determining the polarity of emotions

in texts, one popular alternative is to use of non-experts, online or offline. With Internet-based

crowdsourcing platforms, such as Amazon Mechanical Turk2, CrowdFlower3, non-expert annotators

can be more easily and cheaply recruited to participate in annotation tasks and provide multiple

labels that can be aggregated to train machine learning algorithms or evaluate machine learning

models [33,184,185].

When either expert annotators or non-expert contributors are integrated in the active learning

loops, their primary tasks, especially for subjective domains, are to provide human judgments to

the queried instances. There has been much research on integrating humans in the active learning

loop to study many classical problems.

Branson et al. [27] leveraged the power of both human and computer vision to recognize tightly

connected objects in one picture. They provide a hybrid human-computer interaction system

that progressively select and pose questions to users from a pool of predefined questions using

the maximum information gain (an example of the expected model change query strategy) as

2https://www.mturk.com/mturk/welcome
3https://www.crowdflower.com/
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the criterion, and produce a probabilistic output over classes for each input image. This approach

achieved sufficient accuracy for practical applications as well as a significant reduction in the amount

of human labor required.

Similarly, Deng et al. [186] designed a novel online game called “Bubbles” that requests users to

discriminate features in heavily blurred images and classify images into given categories. Images are

streamed into this process with reward mechanisms to improve performance. This feature selection

challenge facilitates image categorization at sub-ordinate levels: the BubbleBank algorithm uses

human-selected features to learn classifiers for fine-grained categories and yields large improvements

over the previous state-of-the-art machine recognition benchmarks.

Gurari et al. [187] presented resource allocation methods to automatically decide, for a given batch

of images and a fixed budget, when to use human annotation to create coarse segmentation samples

to initialize their trained segmentation tools, and when to replace humans with computers to create

high quality segmentations. This method uniquely leverages human effort at test time (instead of

training time) to reduce the expected error and recover from algorithmic failures. Their results

demonstrate the advantages of mixing human effort and computer algorithms in image segmentation

tasks.

Moreover, there are many well-known, promising practical applications in industry that feed human

judgment back into machine learning algorithms to make them perform better [188].

Google, Tesla, and major automobile companies have been developing and testing self-driving cars

for years (though laws have not yet been finalized to regulate the industry [189]) and achieved

state-of-the-art technologies that can drive a car safely in many situations. Such systems at this

stage require human drivers to keep their hands on the wheel so they can take control back from

the machine when needed to avert disasters, for example, if there is construction, a detour, snowy

weather, or something unexpected on the road. Human drivers actively improve these autonomous

systems by providing their driving experiences to “teach” such systems to behave more intelligently

and safely.

Other examples of real-world scenarios that use humans in the loop to build and improve machine

learning algorithms are photo tagging on Facebook and depositing checks in ATMs. Facebook

provides automatic photo-tagging suggestions when users upload photos. Human faces are identified

by face detection algorithms, and users are then prompted to confirm the predicted labels or provide

their own. All of these responses are fed into the Facebook system to make it more accurate [188].

Similarly, when people deposit checks using ATMs, optical character recognition (OCR) systems
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can generally understand the check amount and routing numbers to place the checks into specific

account. But there are cases when handwritten numbers or language are hard to recognize, and

the ATM will ask users to enter or confirm the amount using the keypad. As in the photo tagging

example, human inputs provide the algorithm with more data to learn from and make it better at

processing incoming tough-to-read checks [188].

Adding humans to active learning loops benefits machine learning, but also introduces noise, uncer-

tainty, and subjectivity, which makes humans-in-the-loop learning more complicated. Subjectivity

is inevitable by its nature, as people naturally have different opinions. Thus, human involvement

in the learning process can lead to complications, making it more difficult to control.

2.4 Natural Language Processing

2.4.1 Humans-in-the-Loop NLP

Humans-in-the-loop active learning has been used in an increasing number of natural language

processing tasks.

Ambati et al. [190] proposed a new paradigm for machine translation problems that utilizes both

active learning and crowdsourcing to automatically translate language pairs. They observed sig-

nificant improvements in active learning experiments when compared to existing baselines. Their

crowdsourcing experiments demonstrated the feasibility of creating parallel corpora using non-

expert annotators. Morgan reported a humans-in-the-loop translation process [191], where human

translators in Afghanistan incrementally improve Dari translations of English medical terminology,

and presented the benefits obtained from the human translators, even with small amounts of initial

training data. Zaidan and Callison-Burch [192] investigated the feasibility of integrating humans-

in-the-loop into a machine translation system (more specifically, minimum error rate training) and

proposed a new metric for evaluating human judgment of translation quality, which led to a reusable

database and reduced human feedback to the initial phase only.

2.4.2 Text Mining and Categorization

Researchers have made substantial progress in text classification tasks—which assign categories

to documents—using neural network models. Kim pioneered the use of a simple convolutional
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neural network model with pre-trained word vectors for sentence-level classification tasks [193].

He achieved remarkable performance in a series of experiments and proved that pre-trained word

vectors are beneficial for NLP tasks using deep learning. Zhou et al. propose a unified model that

combines a convolutional neural network with a long short-term memory neural network for text

classification [194]. Their results show that this joint model can outperform individual CNN and

RNN models by capturing both local and global features. Lee and Dernoncourt introduce a model—

a combination of recurrent and convolutional neural networks—that leverages preceding information

for sequential short-text classification [195]. Their model achieves state-of-the-art performance

on different datasets for dialog act prediction. Rao and Spasojevic use neural network models

with word embeddings and LSTM layers in different text classification experiments where the

classification criteria are context-dependent specifically (actionability and political leaning) [196].

Lai et al. introduce a recurrent convolutional neural network model for text classification. The

recurrent structure captures the contextual information when learning word representations and

the convolutional neural network constructs the text representations [197]. They state that their

method can outperform the state-of-the-art methods on different text classification datasets. Zhang

et al. introduce character-level neural networks (rather than word-level models) and empirically

test its effectiveness in text classification tasks by constructing a series of large scale datasets [198].

They show via comparative experiments that deep convolutional neural networks are effective and

have no dependency on syntactic or semantic knowledge.

2.4.3 Social Media

Computational modeling and understanding of narratives expressed through social media data are

continuously developing. The spread of infectious diseases, like flu, can be predicted through online

social media [199]. Syndromic surveillance systems for multiple ailments also can be established

with social media discourse [200]. Smoking and drinking abstinence, domestic abuse and other

behavioral problems can be characterized and predicted [201, 202, 203]. Mental health risks and

problems, such as depression and distress, and related psychological conditions have been studied

in depth using social media data [10, 204, 205, 206, 207]. For example, Homan et al. [5] investigate

the automatic detection of suicidal risk factors through social media, and studied different methods

to collect data and annotations with various levels of expertise. Their results not only confirmed

the feasibility to use social media to identify and understand suicidal risk factors and sources but

also suggested the importance to keep expertise in the computational modeling loop.

There is a rich body of work exists on modeling organization behaviors, workplace affects, career
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trajectories, communication and network analytics within large enterprises like HP, Microsoft,

IBM [208,209,210,211].

Life-changing events often precipitate physical and mental changes in health and well-being, such

as distress, depression, and even suicide. Career changes are generally agreed to be one type of

the most important life-changing events, as they touch most working-age adults worldwide. Our

earlier investigation into distress on Twitter [5] revealed that a large number of distressful posts are

related to unfavorable employment conditions and career changes. These job-related issues reflect

on the productivity, well-being, quality of life etc. of individual posters. They are also associated

with public health and economics at the community level. By doing so we hopefully gain insights

into understanding other types of life-changing events from public social media. There is a rich

body of literature focusing on major life events. Li et al. [17] demonstrated the practicability of

accurate extraction of major life events (weddings, admissions, death, etc.) from Twitter based

on congratulations and condolences speech acts. Choudhury et al. [204] examined patterns of

online activities, emotions and language for childbirth and postnatal discourse as a case study, and

observed the shifts new mothers have after child birth in their activities and emotional expressions.

Choudhury et al. [212] also developed a statistical method to investigate the transitions from

mental health discourse to suicidal ideation. Their approach inferred the likelihood of these shifts

and derived corresponding evident markers.

2.4.4 Neural Network Models

To model social discourse in a temporal scenario where contextual information may be present, we

propose to use a recurrent neural network model where connections between units can form a chain

structure, which allows information to persist and exhibit dynamic temporal behavior (see Figure

2.4). This chain-like architecture reveals that recurrent neural networks have natural advantages

in modeling sequential problems.

In practice, vanilla RNNs may suffer from the vanishing/exploding gradient problem in learning

long-term dependencies (e.g., dependencies between far-apart steps) [213]. Thus, a variant of

RNN—long short-term memory (LSTM)—was specifically designed to combat this problem [214],

as Figure 2.5 shows. An LSTM unit can decide whether to keep the existing memory via three gates

(input, forget, and output). When the LSTM unit detects an important feature from the input

sequence at an early state, it carries this information over a long distance along the sequence and

maintains such long-term dependencies, which vanilla RNNs fail to capture [4], while simultaneously

forgetting unimportant features.
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Figure 2.4: A recurrent neural network model (left) with its unfolding illustration in the process of

forward computation (right). Adapted according to LeCun et al. [3].

The standard LSTM architecture consists of a series of repeated modules (illustrated in Figure 2.5),

one for each time step t. At each t, three gates (the forget gate f , the input gate i, and the output

gate o) collectively operate on the previous hidden state ht−1 and the current input xt, and decide

the update and output values and the current hidden state ht of the current memory cell Ct, as

Figure 2.4 shows.

The transition functions in a single LSTM module are defined as follows.

ft = σ(Wf · [ht−1, xt] + bf ),

it = σ(Wi · [ht−1, xt] + bi),

ot = σ(Wo · [ht−1, xt] + bo),

C̃t = tanh(WC · [ht−1, xt] + bC),

Ct = ft � Ct−1 + it � C̃t,

ht = ot � tanh(Ct),

(2.7)

where xt is the input vector, ht is the output vector, C̃t is the new memory cell candidate vector,

and Ct is the new cell state. W and b are parameters of weights and bias. The symbol σ denotes
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Figure 2.5: An illustration of an LSTM module. i, f and o are the input, forget and output gates,

respectively. The variables c and c̃ demote the memory cell and the new memory cell content,

respectively. Adapted from Chung et al. [4].

a logistic sigmoid function that has an output in [0, 1]. The symbol tanh denotes the hyperbolic

tangent function that has an output in [-1, 1]. The symbol � denotes element-wise multiplication.

The symbols ft, it and ot denote forget gate vector, input gate vector and output gate vector,

respectively. The above equations describe the gating mechanisms (input, forget, and output gates)

to regulate information added or removed from the cell state: the forget gate vector ft controls the

extent the information from the old memory cell is discarded from the cell state. The input gate

vector it decides how much the new information is going to be stored in the current memory cell.

The output gate vector ot controls what information to output (to the next cell state) based on

the current memory cell. From a computational perspective, the activation function of the output
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gate ot does not depend on the memory cells state Ct, which allows us to perform part of the

computation more efficiently.

LSTMs have become very popular in the field of natural language processing. They have the

capability to learn to recognize context-sensitive languages with long-distance dependencies [215],

which fits well the modeling of our problems.



Chapter 3

Human-in-the-Loop Active Text

Mining

In this chapter, we discuss our progressive research on a humans-in-the-loop machine learning

framework to model, extract, and understand mental and behavioral issues using public social me-

dia. Our framework integrates human intelligence—crowdsourced annotations and expert domain

knowledge—with machine learning algorithms to gradually improve the performance of classifica-

tion models.

3.1 Initial Steps to Study Social Issues

Suicide is a leading cause of death all over the world and has grown to nearly epidemic proportions

in some communities [216,217]. Suicide prevention is such a challenging problem because, relative

to its social impacts, suicide is so rare and difficult to model and predict given its complexities.

There is also a paucity of labeled data available to train and test predictive models. When asking

people for their judgments about suicide, they have a diverse and subjective range of attitudes

and beliefs about this sensitive issue. Thus, we cannot rely on simple rules or heuristics to predict

suicide, or even suicidality (also known as suicide ideation). Another major challenge is that the

prediction results are hard to validate due to the lack of ground truth and other difficulties (for

example, ethical challenges to accessing the victims or their families). In Homan et al. [5], we took

an initial step toward the automated detection of suicidal risk factors (distress in our case study)

through social media activity with no reliance on self-reporting or interviewing. We focused on the

34
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problem of assigning tasks and collecting labels from annotators with various degrees of expertise

in suicide prevention and annotation. We compared the quality of their labels and trained multiple

text-based classification models to study the effectiveness of their annotations.

We summarize our process in Figure 3.1: (1) We filter a historical Twitter dataset, obtained from

Sadilek et al. [8], of approximately 2.5 million tweets from 6,237 unique users in the New York City

area that were posted during a 1-month period between May and June, 2010, into a set of 2,000

tweets that are likely to be about suicide risk factors. (2) One expert and two novice annotators

were instructed to label the level of distress for the selected tweets. (3) We then trained support

vector machines and topic models with different combinations of annotated data and assessed the

effectiveness of various annotations on the held-out set.

Figure 3.1: Summary of experiments in Homan et al. [5]. Twitter data are labeled by annotators

with different expertise and then used to build SVM classifiers.
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3.1.1 Data

Table 3.1 shows the statistics of Twitter data, and the filtered tweets using two methods as intro-

duced below.

Source

tweets

Number of tweets 2,535,706

Unique geo-active users 6,237

“Follows” relationships 102,739

“Friends” relationships 31,874

Filtered

tweets

Number of tweets 2,000

Unique users 1,467

Unique tokens 1,714,167

Unique bigrams 9,246,715

Unique trigrams 13,061,142

Category

distribution

LIWC sad 1,370

Depressive feeling 283

Suicide ideation 123

Depression symptoms 72

Self harm 67

Family violence/discord 47

Bullying 10

Gun ownership 10

Drug abuse 6

Impulsivity 6

Prior suicide attempts 2

Suicide around individual 2

Psychological disorders 2

Table 3.1: Summary statistics and thematic category distributions of the collected dataset. The

Twitter data were collected from NYC, obtained from [8]. The categories are based on LIWC [9]

and Jashinsky et al. [10].
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3.1.2 Annotations

Filtering Tweets

We applied two methods to filter for tweets that are likely to center on suicide risk factors and

compared their effectiveness at collecting high-quality annotation data (see Table 3.1). The first

method—Linguistic Inquiry and Word Count (LIWC) [9]—sampled 1,370 tweets from tweets with

the 2,000th-highest LIWC sad scores. LIWC has been widely used to examine emotion in social net-

works, such as to understand mood on Twitter. The slight amount of randomness in filtering tweets

avoids too many false positives being selected, for example, tweets with “sad” appeared in users’

names (strings after @ symbols). Next, we adopted a collection of inclusive search terms/phrases

from Jashinsky et al. [10], which was designed specifically for capturing tweets related to suicide

risk factors, and applied them to our source corpus. These terms yielded 630 samples as shown in

Table 3.1.

Annotation Design

In the annotation process, each tweet was provided with a context, specifically, three tweets before

and after the tweet to be annotated, along with the timestamp of these tweets and thematic category

to which the tweet belonged (Figure 3.2).

978: Date: XXXX

-3: dat man on maury is overreacting

-2: @XXXX cedes!!! [-0:21:25]

-1: yesssss! da weatherman was wronq

>>> @XXXX awwww thanks trae-trae

1: rt @XXXX: abt 2 hop in a kab to

2: @XXXX yeaa [+0:03:59]

3: @XXXX wassup? [+0:05:28]

Msg_id: XXXX [Distress: ND, LIWC Sad: N

Figure 3.2: Example input for annotator. Each line is one tweet. The target tweet being annotated

is indicated by >>>.
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Collecting Annotations

We then divided the resulting 2,000 filtered tweets (1,370 from the LIWC sad dimension and 630

from suicide-specific search terms) equally into two sets (i.e., 1,000 tweets each). Both sets had

the same proportion of LIWC- and suicide-specific-filtered tweets. A novice (computer science fac-

ulty) annotated the first set, and a clinical psychologist with experience in suicide-related research

annotated the second. A second novice (linguistic faculty) annotated 250 tweets the first novice

annotated, to reveal the inter-annotator agreement between novices, for the reason that a novice

without training is expected to be less consistent. Each tweet in each set was rated on a four-point

scale (H, ND, LD, HD) according to the level of distress evident (Table 3.2).

Code Distress Level

H happy

ND no distress

LD low distress

HD high distress

Table 3.2: Distress-related categories used to annotate the tweets.

Analyzing Annotations

Figure 3.3 compares the annotation distributions in four categories between Novice 1 and the

Expert. Figure 3.4 shows the distribution of annotation labels for the subset of tweets that Novices

1 and 2 mutually annotated. Table 3.3 shows the Cohen kappa score between Novices 1 and 2,

when high and low distress (HD and LD) vs. no distress and happy (ND and H), are grouped into

a single category, respectively (as shown in Table 3.2).

Tweets filtered by Cohen Kappa

LIWC sad 0.4

Thematic suicide risk factors 0.6

Both 0.5

Table 3.3: Cohen’s kappa inter-annotator agreement between Novice 1 and 2.

Interestingly, both novices are relatively highly conservative in assigning distressed labels, whereas

the expert exhibits a higher sensitivity toward low distress (LD) than either of the novices. This

suggests that it is important in this domain to not rely too much on novice judgments, as novices

are not trained to pick up on subtle cues—in contrast to the clinically trained experts.
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Figure 3.3: Distribution of distress level annotations from Novice 1 and Expert. Note that these

two datasets are disjoint (N = 1000 tweets, respectively).

It is important to note that there are very few happy (H) tweets in Figure 3.3 and 3.4, which

confirms that our filtering rules are effective.

Confusion Matrices Figure 3.4, 3.5 and 3.6 record detail numbers about annotation disagree-

ment between Novice 1 and 2.

H ND LD HD

H 0 2 0 0

ND 1 85 2 1

LD 0 22 9 0

HD 0 1 0 2

Table 3.4: Confusion Matrix for LIWC for Novice 1 and 2.

Representative Examples

Due to their sensitive nature, we decided not to provide examples of high distress tweets. Here are

two examples of tweets labeled unanimously as low distress by two annotators.

• insomnia night #56325897521365!! sheesh can’t deal w/ this shit! i have class in the morning
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Figure 3.4: Distribution of distress level annotations on the tweets annotated by Novices 1 and 2

(N=250, identical set).

H ND LD HD

H 4 6 0 0

ND 0 55 12 1

LD 0 12 22 5

HD 0 1 3 4

Table 3.5: Confusion Matrix for Thematic Category for Novice 1 and 2.

got dammit....

• @XXXX i’m still sad thoo. i feel neglected! and i miss XXXX

And here are two examples of tweets labeled as no distress by two annotators.

• i did mad push-ups tryna get that cut up look, then look at myself after a shower ... #plan-

didntwork; thats #whyiaintgotomiami

• my son is gonna have blues eyes and nappy hair! yes yes yes

Beyond the targeted annotation categories of distress level, there were emerging themes of aggres-

sion, privilege and oppression, and daily struggles, among others. For instance, jobs were a popular
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H ND LD HD

H 4 8 0 0

ND 1 140 14 2

LD 0 34 31 5

HD 0 2 3 6

Table 3.6: Confusion Matrix for 250 tweets for Novice 1 and 2.

source of distress:

• i friggin hate these bastards @ my job grimey ass bastards knew i wanted the day off and tell

me some next shit

• as much as i hate my job some of the people i work with are amazing.

3.1.3 Modeling Experiments

Each tweet is represented in feature space as a collection of unigrams, bigrams, and trigrams. For

example, a tweet “I am so happy” is decomposed into {I, am, so, happy, I am, am so, so happy, I

am so, am so happy}. This bag-of-words method constructs prior probabilities on pairs and triples

of consecutive words and thus model the probability spaces of arbitrarily long utterances, in a way

that is natural and often effective in representing textual data with contextual information (given

data sparsity concerns for longer sequences) for classification, topic modeling, and so on.

We use support vector machines (SVM), a machine learning method that is used to train a clas-

sification model that can assign class labels to previously unseen tweets, to assess our collected

labeled data. A support-vector machine constructs a hyperplane (or set of hyperplanes) in a high-

dimensional space which can achieve the largest distance to the nearest training data points of any

class [218]. SVMs treat each tweet as a point in the feature space (one dimension per uni-, bi-, and

trigram in the training corpus) and act as a form of linear separator. They have proven to be an

extremely effective tool for classifying texts in numerous settings, for different types of problems

and with varying forms of social media data, including Twitter.

Because we are most interested in distinguishing distressed from non-distressed tweets, we combine

low distress and high distress into one class, and no distress and happy into another (as shown

in Table 3.2). Table 3.7 shows the performance of the support vector machines when trained and
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tested on five combinations of the Expert and Novice 1 annotated sets. In each case, the test set is

a held-out set of 100 randomly selected tweets and the remaining 900 tweets from that annotator

were used as training data. The last row shows results when N1 and E data are combined into a

training set of 1800 tweets and a test set of 200 tweets (with 50% of each set consisting of data

annotated by Novice 1 and the Expert, respectively). Four themes emerge from the table: (1)

the SVM classifier is much more accurate when the testing and training data come from one same

source (the training and test sets are disjoint); (2) when testing and training data are from different

sources, the SVM suffers less of an accuracy drop when the training set is from the expert than

from the novice; (3) when the training set is from Novice 1, the classifier suffers a loss in recall on

the distress class, and when the training set is from the Expert, there is a loss in precision instead.

If our goal is to identify distress tweets, the high-precision classifier trained on Expert annotations

is preferable; (4) integrating data and labels from mixed sources (i.e., novice and expert) cannot

improve performance.

Training Data Testing Data Precision Recall F1 Score

N1 N1 0.53 0.63 0.58

N1 E 0.58 0.27 0.37

E E 0.59 0.71 0.64

E N1 0.34 0.85 0.48

N1&E N1&E 0.33 0.41 0.37

Table 3.7: Performance of SVM-based classification when the training and testing sets are alter-

nately Novice 1 (N1) or the Expert (E). Because we are most interested in detecting distress, we

report precision and recall for the distress class, which combined LD and HD into a single D label

in the binary classification task.

As ground truth in the classification experiments, we rely on tweets hand-annotated by an expert

and a novice. However, the mental state of another individual, observed from a few lines of text often

written in an informal register is essentially hard to discern and, even under less noisy conditions,

extremely subjective. Also, the annotators’ understandings of such concepts as “distress” may differ

drastically. So a tweeter’s true mental state is not revealed in an objective fashion, which makes

human annotation a challenge. As we have mentioned earlier, self-reporting has its limitations, yet

it is often regarded as the gold standard or the ground truth about the personal emotional state.

Part of the problem in assessing the effectiveness of self-reporting is the rareness by which suicide

occurs and by the inherent subjectivity of the act, which makes any data on suicide fuzzy.
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3.2 Progressive Labeling in a Humans-in-the-Loop Setting

Following our initial work, we continued to focus on the topic of suicide in studying active learning

techniques with humans in the loop [6], as suicide is an important but poorly understood problem,

one that researchers are now seeking to better understand through social media. Due in large

part to the fuzzy nature of what constitutes suicidal behavior, most supervised approaches for

learning to detect suicide-related activity in social media require a great deal of human labor to

train. However, humans themselves have diverse or conflicting views on what constitutes suicidal

behavior. So how to obtain reliable gold standard labels is fundamentally challenging and, we

hypothesize, relies heavily on what is asked of the annotators and what slice of the data they

label. We conducted multiple rounds of data labeling experiments and collected annotations from

crowdsourcing workers and domain experts. We aggregated the resulting labels in various ways to

train a series of supervised models. Our experimental evaluations show that using unanimously

agreed labels from multiple annotators is helpful to achieve robust machine models [6].

Figure 3.5 summarizes our study of progressive labeling in humans-in-the-loop framework [6]. We

compared novice with expert annotators similarly to what we did previously [5]. We expand the

scale of annotations to multiple annotators by progressively requesting labels from non-experts on

a crowdsourcing platform and experts in suicide research field.

Figure 3.5: Summary of experiments in [6].
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3.2.1 Data

Twitter Sampled Data – Source 1

Inspired by [207], we searched for historical Twitter posts worldwide that were related to Robin

Williams’s suicide case and relevant information about suicide preventions using seven key words

and phrases suggested by suicide prevention experts and social workers: “Robin Williams”, “sui-

cide”, “depression”, “Parkinson’s disease”, “seek help”, “suicide lifeline”, and “crisis hotline”. We

downloaded via the DataSift API1 ten percent of the Twitter messages tweeted six months before

and after Robin Williams’ death (August 11th, 2014) and contained at least one of the above

terms. This random sampling yielded approximately 1.7 million unique tweets in English from

public accounts all over the world [6].

Twitter Regional Data – Source 2

We took, as a representative sample of typical Twitter use, historical Twitter data from three

metropolitan centers (Rochester, New York, and Detroit) in the United States that cover a range

of population densities. Most of the tweets in this set are written in English [6].

3.2.2 Annotation Task Design

Similar to the rule-based method that we used to generate annotation materials [5], we adopted a

series of pattern matching rules to obtain Twitter posts that are possibly related to suicide ideation

or suicidal thoughts [219]. This rule-based filter is our initial classification model (C0). We ran C0

on our unlabeled dataset and randomly selected 2,000 matched tweets—1,200 tweets from source 1

and 800 from source 2 —for manual annotations and validations. Particularly, we anonymized the

data to minimize the disclosure of personal information (@names) or URLs that may reveal clues

about users’ online identities to annotator.

C0 searches for a wide range of expressions which include: suicidal / depression / cutting / bad

/ sad / these ... thoughts / feelings, want / wanted / wanting to die, end / ending it all, end my

life, can’t take (it) anymore, can’t / don’t want to live any more, don’t want to be alive, can’t go on,

call / ask for help, offer of help, stop bullying, kill / killing / hate myself, fuck / fucking, boyfriend

1http://datasift.com/
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/ girlfriend, just ... like, talk / speak to someone / somebody, web / blog / health / advice, miss

/ missing you / her / him, took / taken (my / your / his / her) own life, hanged / hanging /

overdose, etc.

We conducted two rounds of annotations, Round 1 (crowdsourced annotations) and Round 2

(expert annotations), as noted in Figure 3.5. Annotators were instructed to finish a series of

multiple-choice questions as detailed below.

Round 1: Crowdsourced Annotations

We first published this combination of C0-generated 2,000 tweets on CrowdFlower2, five tweets per

page, to invite workers to finish the labeling tasks as instructed. For each tweet, five annotators

were paid $1.00 to choose only one label to best describe the category from four given choices (with

one sentence between the following parentheses to provide more descriptions) [6]:

• A. Suicidal thoughts (The author or the author’s friend is at risk of suicide/distress.)

• B. Supportive messages or helpful information (The author is providing supportive mes-

sages/helpful information related to suicide/distress.)

• C. Reaction to suicide news/movie/music (The author is spreading/reacting/commenting to

suicide news/movie/music.)

• D. Other (The author is using suicide/distress words to describe something else.)

The rationale behind the design of these multiple choice questions is: our data collection method

(source 1 especially) inevitably introduces tweets with topics covered in categories B and C among

four choices. These topics are not our focus on the personal suicidal disclosure detection and so

are not the primary target of our classification efforts. At the same time, this approach is useful

for manually reducing the complexity of classification: Annotators can intuitively differentiate the

contents of the data and establish clear boundaries between the target class (Suicidal thoughts) and

data with related but different topics before passing them into the supervised learning algorithms [6].

2https://www.crowdflower.com/: This is an Amazon Mechanical Turk type crowdsourcing platform. Its software

as a service platform allows requesters to access online workforce to clean, label and enrich data.
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System Aggregated Labels (R1S) R1S is the majority vote of the annotators. CrowdFlower

by default automatically aggregates five responses into a single result for each tweet based on the

most voted label among the trusted workers3.

Unanimous Voted Labels (R1U) R1U is the unanimous vote of the annotators. There are 415

tweets labeled unanimously by five workers. The remaining 1,585 tweets that were not unanimously

labeled had lower inter-annotator agreements.

Round 2: Expert Annotations

Two experts were introduced to inspect tweets that crowdsourcing workers have divergent opinions.

They were presented 1,585 tweets which have been labeled in Round1 and instructed to annotate

according to the guidelines. For the tweets that have been unanimously agreed by crowdsourcing

workers in Round1, experts do not annotate them again because crowdsourced unanimous votes

are hypothesized to be as reliable as expert annotated ones.

Determining the Labels (R2U and R2S) The identical label from the two experts R2U is

considered to be the ground truth label. We used R2U as the gold standard label for each tweet.

When the two experts disagree with each other on the label class, we adopted the system aggregated

label in the Round1 crowdsourced annotations as the ground truth label for the data item, denoted

as R2S.

3.2.3 Annotation Summary

Table 3.8 records the percentages of tweets labeled in each of the four categories (A, B, C, and D)

in five sets: they were collected respectively from non-experts and experts with distinct strategies

in Round 1 and 2 (R1S, R1U , R2U , R2S) to determine the final ground truth label for each tweet

and then prepared for building classification models in next phase.

We further compared the tweets in R2U to those in R1S and found that 871 tweets have the same

ground truth label assigned by different methods (summing the diagonal numbers of the matrix in

3We obtained 173 tweets annotated as “A. suicidal thoughts”, 265 tweets as “B. supportive messages or helpful

information”, 523 tweets as “C. reaction to suicide news/movie/music”, and the rest 1039 as “D. other”.
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Category (%) A. B. C. D. Total

R1S 8.65 13.25 26.15 51.95 2,000

R1U 2.89 8.67 17.11 71.33 415

R2U 5.37 19.48 31.29 43.86 1,042

R1U + R2U 4.67 16.40 27.25 51.68 1,457

R1U + R2U + R2S 7.85 16.00 26.55 49.60 2,000

Table 3.8: Statistics of labels obtained from different methods of annotations. R1: Crowdsourced

annotations. R2: Expert annotations. S: Each tweet label comes from the system aggregated

majority vote rules. U: Each tweet label is the unanimously voted choice among five annotators.

+: Union operation to combine elements in different sets. Total: The actual counts of tweets.

Figure 3.6), which is approximately 83.59% of the total tweets with unanimous agreement between

the two expert annotators.

In Figure 3.7, we compared the annotations between two experts in Round 2. Their inter-annotator

agreement was assessed using Cohen’s kappa [220] as κ = 0.523.

3.2.4 Modeling Experiments

Our target is to (1) identify tweets which express personal suicide ideation and suicidal thoughts

and (2) differentiate between these and other types of suicide-related messages. To simply this

modeling process, we grouped tweets with labels in categories B, C and D into one class and

grouped the data points into binary categories: suicidal (positive) vs. others (negative) [6].

We get five sets of data items and labels in Table 3.8 into our feature extraction and modeling

pipeline in order to study the influence of different labeling strategies on classification modeling

performances.

Model

To control the environment variables of this experimental study, we selected support vector ma-

chines (SVMs) as our supervised learning methods to build a series of classification models. An

SVM model takes in a set of training data, each labeled as belonging to one specific category, forms

an optimal separating hyperplane to maximize the margin of input training data that are repre-

sented as data points in feature space. This algorithm outputs a discriminative classifier that can
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Figure 3.6: Comparisons between R1S and R2U .

categorize new examples (i.e., provide a predicted class label) after mapping them into the same

feature space. We used the scikit-learn implementation [221] of SVMs in the experiments [6].

Feature Preparation

We used the textual representations (N-grams) to train and evaluate a series of SVM classifiers.

Due to the noisy nature of Twitter, where people frequently write short or ambiguous tweets using

informal spellings and grammars, we pre-processed tweets as following [6]. We: (1) replaced per-

sonal information (@names) with @SOMEONE, and recognizable URLs with HTTP : //LINK,

(2) utilized the Twokenizer system which was specially trained on Twitter texts [222] to tokenize

raw messages, and (3) completed stemming and lemmatization using WordNet Lemmatizer [223].

The statistics of N-grams (unigrams, bigrams, and trigrams) extracted from different sets of training

data with mixed labeling strategies are summarized in Table 3.9. We used the top 10,000 most
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Figure 3.7: Comparisons between two expert annotators in Round 2.

frequent unique N-grams as features in the modeling process of C1 to C5.

Parameter Selection

Considering the class imbalance present in each training set, we determined the optimal learning

parameters by grid-searching on a range of weights for the positive and negative classes, and

then chose the weights that optimized the area under the receiver operating characteristic curve

(AUC) [6]. We tested a variety of objective tuning functions during the grid-search process and

concluded that AUC achieved the best precision, recall, and F1-score on the targeted positive class.

K-fold Cross-Validation Partitioning the available data into three sets—training, validation,

and test—would drastically reduce the amount of data available for learning. The test results could

depend on how the data was partitioned because of the potential over-fitting risks. We thus perform
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10-fold cross-validation to evaluate our models.

3.2.5 Results and Discussions

We trained five SVM classifiers (C1 to C5) on five different but overlapping sets of training data,

as summarized in Table 3.9.

Input

Data

Output

Model
Uni(%) Bi(%) Tri(%)

Total

N-gram

Count

R1S C1 10.48 39.55 49.98 45,582

R1U C2 15.89 40.75 43.36 10,493

R2U C3 12.37 40.14 47.49 25,620

R1U+R2U C4 11.55 40.01 48.44 33,678

R1U+R2U+R2S C5 10.48 39.55 49.98 45,582

Table 3.9: Statistics of features from different sources of annotations, to train models C1 to C5.

Uni, Bi, and Tri denote unigrams, bigrams and trigrams respectively.

We analyze the similarities and differences among the five models as below.

Learning Curve

A learning curve shows the cross-validation scores of an estimator for increasing sizes of training

samples, which can help us estimate how much benefit we can expect to gain by adding more

training data. It also helps us understand whether the estimator suffers more from a bias error or

a variance error during the modeling process4.

Figure 3.8 shows the learning curves for models C1 to C5 during the training process with training

data gradually added until all data are included.

We note several observations from Figure 3.8. For each model, (1) the training (dashed lines with

circles) and cross-validation (solid lines with squares) scores appear to converge to each other as the

size of the training set increases; and (2) at the maximum number of training samples (the ends of

4For an estimator, the bias error is its average error for different training sets. The variance reflects its sensitivity

to varying numbers of training data points.
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Figure 3.8: Learning curves for models C1 to C5 during the training process. Y axis represents area

under the ROC curve. Dashed lines with circle markers represent training scores for each model,

abbreviated as T in legend box. Solid lines with square markers represent cross-validation scores,

noted as CV. C1: blue; C2: green; C3: cyan; C4: red; and C5: yellow.

solid lines), the training score is much greater than the cross-validation score. These observations

suggest that we can benefit from adding more training samples to improve its generalization per-

formance as well as reduce its bias error for each model [6]. We also notice that the cross-validation

scores for the five models seem to reach different points on the Y axis when the entire training set

was used. Among them, C4 has the highest cross-validation score and the least variance (according

to our experiment statistics [6]), suggesting it is more stable than others. The cross-validation

scores for C2 increase and converge to the training score more quickly than the other models. How-

ever, the fluctuations of the cross-validation scores during the C2 training process are substantial,

showing its performance is not particularly stable [6].
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Figure 3.9: Comparisons of performance metrics for C1 to C5.

Performance Evaluations

Figure 3.9 compares C1 to C5 according to seven performance metrics. C4 has the best average

precision5, precision, F1 and ROC AUC scores. The performance of C3 is slightly lower than

that of C4 in most measures. C2 has score 0 in precision, recall and F1 score due to its bad

performance—the number of correctly classified positives is 0. It is because C2 is trained with the

least amount of training data among the five, with only 12 positive samples. Even though, C2 has

performance comparable to the others in some measures, and even surpasses C4 in accuracy and

F1 weighted score6. This is due to the greater disparity in percentages of data items between the

5This score corresponds to the area under the precision-recall curve.
6This measure accounts for class imbalance issue. It calculates metrics for each class and finds their average,

weighted by the number of true instances for each class.
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positive and negative classes in R1U (2.89% vs. 97.11%) than in the other sets of training data.

C1 and C5 achieved lower scores than others in all measures, suggesting some relationship between

the labels with lower inter-annotator agreement (R1S and R2S) and the robustness of predictive

models.

3.3 Building a Twitter Job/Employment Corpus using the Humans-

in-the-Loop Framework

In our first two suicide-related studies, jobs and employment stand out as common sources of suicide

risk.

Working adults spend about one third of their lives at work. Any attempt to understand a working

individual’s experiences, state of mind, or motivations must take into account their life at work.

Job-related social issues have been studied within enterprise-internal social platforms [208,210,211].

However, such internal services by their nature may discourage participants from fully disclosing

their feelings about work, especially when work is causing them distress or they are seeking job

changes.

We study Twitter as a source of job-related discourse. We constructed and developed a humans-

in-the-loop supervised active learning framework that integrates crowdsourced feedback and lo-

cal community knowledge to detect job-related messages from individual and business accounts.

Crowdsourced validation confirms that our model can accurately identify job-related tweets. We

further examined job-related discourse from an ethnographic perspective by fusing language-based

analysis with temporal, geospatial, and labor statistics information.

We introduce our methodology and a dataset resulting from these methods—Twitter Job/Employ-

ment Corpus—in this section.

3.3.1 Data

Using the DataSift7 Firehose, we collected historical tweets from public accounts with geographical

coordinates located in a 15-county region surrounding Rochester, NY from July 2013 to June 2014.

This one-year data set contains over 7 million geotagged tweets (approximately 90% written in

7http://datasift.com/
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English) from around 85,000 unique Twitter accounts. This particular locality has geographical

diversity, covering both urban and rural areas and providing mixed and balanced demographics.

3.3.2 Humans-in-the-Loop Framework

Our humans-in-the-loop supervised learning framework performs multiple iterations of learning,

which integrates crowdsourcing contributions and knowledge from the local community, to perform

job-related tweet identification tasks, as Figure 3.10 shows. We divided these extracted tweets into

two sources: personal and business accounts, based on linguistic features [7]. Specifically, human

annotators—crowdsourcing workers or community experts—actively provided feedback during the

learning process to improve the feature sets. This framework served to reduce the amount of human

effort needed to acquire large amounts of high-quality labeled data.

Figure 3.10: Summary of experiments in Liu et al. [7].

Our iterative process used two types of classifiers: rule-based classifiers (C0 and C4) and support

vector machines (C1, C2, C3 and C5). In between, there are four rounds of human annotations that

progressively grow our labeled dataset in order from R1 to R4 as illustrated in Figure 3.10. Among

them, R1, R2, and R4 are crowdsourced annotations, and R3 is contributed by experts in the local
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community. We used unanimous agreement to determine the ground truth label based on five

annotations per tweet, which was then used for training a series of SVM classifiers. This strategy

follows the same approach as in our earlier work [6].

Figure 3.11 introduces the workflow of our experiments. Specifically, our classification framework

started with a simple rule-based classifier (C0), followed by three rounds of annotations (two rounds

of crowdsourcing annotations R1 and R2, and one round of community annotations R3) and three

SVM classifiers (C1, C2 and C3) iteratively to continuously increase the precision measures. We

further improved the recall by conducting an additional round of human annotations (C4 → R4) and

achieved a more robust SVM classifier (C5) at the end of the pipeline in order to detect job-related

tweets from social media.

3.3.3 Experiment Details to Extract Job-Related Tweets

Annotation Summary

Table 3.10 summarizes the results of our crowdsourced annotation rounds (R1, R2, and R4). For

the tweets which had not been unanimously labeled in R1 and R2, local community members (of

Rochester, NY) were instructed to annotate them in R3.

Round

Number of agreements

among 5 crowdsourcing annotators

job-related not job-related

3 4 5 3 4 5

R1 104 389 1,027 82 116 270

R2 140 287 721 68 216 2,568

R4 214 192 338 317 414 524

Table 3.10: Summary of crowdsourced annotations (R1, R2 and R4).

To assess the labeling quality of multiple annotators in the crowdsourced annotation rounds (R1, R2

and R4), we calculated Fleiss’ kappa [224] and Krippendorff’s alpha [225] using an online calculator

Inter-Rater Agreement with multiple raters and variables [226] to assess inter-annotator reliability

among the five annotators of each HIT. And then we calculated the average and standard deviation

of inter-annotator scores for multiple HITs per round. Table 3.11 records the inter-annotator

agreement scores in three rounds of crowdsourced annotations.
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Figure 3.11: Our humans-in-the-loop framework collects labeled data by alternating between human

annotation and automatic prediction over multiple rounds. Each diamond represents an automatic

classifier (C), and each trapezoid represents human annotations (R). Each classifier filters and

provides machine-predicted labels to tweets that are published to human annotators in the following

annotation round. The human-labeled tweets are then used as training data for the next learning

round. We use two types of classifiers: rule-based classifiers (C0 and C4) and support vector

machines (C1, C2, C3 and C5). This framework serves to reduce the amount of human effort

needed to acquire large amounts of high-quality labeled data.

The inter-annotator agreement between the two expert annotators from the local community was

assessed using Cohen’s kappa [220] as κ = 0.803 which indicates strong agreement. Their joint
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Round Fleiss’ kappa Krippendorf’s alpha

R1 0.62 ± 0.14 0.62 ± 0.14

R2 0.81 ± 0.09 0.81 ± 0.08

R4 0.42 ± 0.27 0.42 ± 0.27

Table 3.11: Inter-annotator agreement performance for our three rounds of crowdsourced anno-

tations (R1, R2 and R4). Average ± stdev agreements are Good, Very Good and Moderate [11],

respectively.

efforts corrected more than 90% of the tweets on which crowdsourcing workers in R1 and R2

disagreed.

We observe in Table 3.11 that annotators in R2 achieved the highest average inter-annotator agree-

ment and the lowest standard deviation compared to the other two rounds, suggesting that tweets

in R2 have the highest level of confidence of being related to work/employment. As shown in Figure

3.11, the annotated tweets in R1 are the outputs from C0, the tweets in R2 are from C1, and the

tweets in R4 are from C4. C1 is a supervised SVM classifier, while both C0 and C4 are rule-based

classifiers. The higher agreement scores in R2 indicate that a trained SVM classifier can provide

more reliable and less noisy predictions than a rule-based model.

Annotators perform differently on tweets extracted by C1 and C4. Higher agreement scores in

R1 compared to R4 indicate that the rules in C4 are not as intuitive as those in C1, and may

even introduce ambiguities. For example, the tweets What a career from Vince young! (one of C1

tasks) and I hope Derrick Rose plays the best game of his career tonight (one of C4 tasks) both

use career, but convey different information: the first tweet was talking about this professional

athlete’s accomplishments while the second tweet was actually commenting on the game the user

was watching. Hence, the tweets that crowdsourcing workers worked on in C4 are more ambiguous

and difficult to annotate than those found in C1. Considering that, it is not surprising that the

inter-annotator agreement scores of R4 are the worst of all rounds.

Table 3.12 shows the tweets that two community annotators corrected in R3. We excluded tweets

on which community members disagreed.

Modeling Experiments Step by Step

We trained different SVM classifiers with training data indicated by Table 3.13. We detail our

modeling experiments step by step as below.
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From R1 + R2 job-related not job-related

Y Y Y Y N 644 5

Y Y Y N N 185 17

Y Y N N N 57 51

Y N N N N 11 301

Total 897 374

Table 3.12: Summary of R3 community-based reviewed-and-corrected annotations.

Input Annotated Data Output SVM Model

R1U C1

R1U + R2U C2

R1U + R2U + R3U C3

R1U + U2U + R3U + R4U C5

Table 3.13: Summary of combinations of annotated data to train different SVM classifiers. +:

Union operation to combine data items into an united set.

Initial Classifier C0

In order to identify probable job-related tweets while excluding noisy tweets (such as students

discussing homework or school-related activities, or people complimenting others), we defined a

simple term-matching classifier with inclusion and exclusion terms as our first step (see Table

3.14).

Before applying filtering rules, we pre-processed each tweet by (1) converting all words to lower

cases; (2) stripping out punctuation and special characters; and (3) normalizing the tweets by

mapping out-of-vocabulary phrases (such as abbreviations and acronyms) to standard phrases using

a dictionary of more than 5,400 slang terms in the Internet8.

Classifier C0 consists of two rules: each tweet must contain at least one word in the Include lexicon

and no words in the Exclude lexicon. This filtering yielded over 40,000 matched tweets having at

least five words. We call these tweets job-likely.

8http://www.noslang.com/
9Describe something awesome in a sense of utter dominance, magical superiority, or being ridiculously good.
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Include
job, jobless, manager, boss

my/your/his/her/their/at work

Exclude
school, class, homework, student, course

finals, good/nice/great job, boss ass9

Table 3.14: The lexicons used by C0 to extract the job-likely set.

Crowdsourced Annotation R1

Our conjecture about crowdsourced annotations, based on the experiments and conclusions from

[33], is that non-expert contributors could produce annotations of quality comparable to gold

standard annotations from experts. And it is similarly effective to use the labeled tweets with high

inter-annotator agreement among multiple non-expert annotators from crowdsourcing platforms to

build robust machine models as doing so on expert-labeled data.

We randomly chose 2,000 job-likely tweets and split them equally into 50 subsets of 40 tweets each.

In each subset, we additionally randomly duplicated five tweets in order to measure intra-annotator

agreement. We then constructed Amazon Mechanical Turk (AMT)10 Human Intelligence Tasks

(HITs) to collect reference annotations from crowdsourcing workers. We assigned 5 crowdworkers

to each HIT—this is an empirical scale for crowdsourced linguistic annotation tasks suggested by

previous studies [34, 227]. Crowdsourcing workers were required to live in the United States and

have approval ratings of 90% or better. They were instructed to read each tweet and answer the

following question “Is this tweet about job or employment?” Workers were allowed to work on as

many distinct HITs as they liked.

We paid each worker $1.00 per HIT and gave extra bonuses to those who completed multiple HITs.

We rejected workers who did not provide consistent answers to the duplicate tweets in each HIT.

Before publishing the HITs to crowdsourcing workers, we consulted with Turker Nation11 to ensure

that we treat and compensate workers fairly for their requested tasks.

Given the sensitive nature of this work, we anonymized all tweets to minimize any inadvertent

disclosure of personal information (@names) or cues about an individuals online identity (URLs)

before publishing tweets to crowdsourcing workers. We replaced @names with @SOMEONE, and

recognizable URLs with HTTP : //LINK. No attempt was ever made to contact or interact with

any user.

10https://www.mturk.com/mturk/welcome
11http://www.turkernation.com
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This labeling round yielded 1,297 tweets labeled with unanimous agreement among five workers,

i.e. five workers gave the same label to one tweet—1,027 of these were labeled job-related, and the

rest 270 were not job-related. They composed the first part of our human-annotated dataset, which

we named Part-1.

Training Classifier C1

Feature Preparation We relied on a feature space of n-grams (unigrams, bigrams and trigrams)

for training. Due to the noisy nature of Twitter, where users frequently write short, informal

spellings and grammars, we pre-processed input data as follows. We: (1) utilized a Twokenizer

specially trained on Twitter texts [222] to tokenize raw messages, (2) completed stemming and

lemmatization using WordNet Lemmatizer [223].

Parameter Selection Considering the class imbalance present in the training dataset, we se-

lected optimal learning parameters by grid-searching on a range of class weights for the positive

(job-related) and negative (not job-related) classes, and then chose the estimator that optimized

F1 score, using 10-fold cross validation.

Classifier C1 In the Part-1 set, there are 1,027 job-related and 270 not-job-related tweets. To

construct a balanced training set for C1, we randomly chose 757 tweets outside the job-likely set (i.e.,

which were classified as negative by C0). Admittedly, these additional samples do not necessarily

represent the true negative tweets (not job-related), as they have not been manually checked.

Crowdsourced Annotation R2

We conducted the second round of labeling on a subset of C1-predicted data to evaluate the effec-

tiveness of the aforementioned classifier C1 and collect more human labeled data to help build a

class-balanced labeled set (for training more robust models).

After separating positive- and negative-labeled (job-related vs. not-job-related) tweets, we sorted

each class in descending order of their confidence scores. We then spot-checked the tweets to

estimate the frequency of job-related tweets as the confidence score changes. We discovered that

among the top-ranked tweets in the positive class about half, and near the separating hyperplane

(i.e., where the confidence scores are near zero) almost none, are truly job-related.
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We randomly selected 2,400 tweets from those in the top 80th percentile of confidence scores in

positive class (Type-1 )12. The Type-1 tweets are automatically classified as positive, but some of

them may in truth not be job-related. Such tweets are the ones on which C1 fails, though C1 is very

confident about them. We also randomly selected 800 tweets from those having confidence scores

that are positive but close to zero, and another 800 tweets from the negative side (Type-2 ). These

1,600 tweets have very low confidence scores, representing those that C1 cannot clearly distinguish.

Thus, the C1 prediction results of the Type-2 tweets have a high chance being erroneous. Hence,

we considered both the clearer core and at the gray zone periphery of the confidence space.

Crowdworkers were again asked to annotate this combination of Type-1 and Type-2 tweets in the

same fashion as in R1. Table 3.15 records annotation details.

R2

Number of agreements

among 5 annotators

job-related not job-related

3 4 5 3 4 5

Type-1 129 280 713 50 149 1,079

Type-2 11 7 8 16 67 1,489

Table 3.15: Summary of annotations in R2 (showing when 3 / 4 / 5 of 5 annotators agreed).

By grouping the Type-1 and Type-2 tweets with unanimous labels in R2 (bold columns in Table

3.15), we had our second part of human-labeled dataset (Part-2).

Training Classifier C2

Combining Part-1 (from R1) and Part-2 (from R2) data into one training set—4,586 annotated

tweets with perfect inter-annotator agreement (1748 job-related and 2838 not-job-related tweets),

we trained the classifier C2.

Community Annotation R3

Having conducted two rounds of crowdsourced annotations, we noticed that crowdworkers could

not reach consensus on a number of tweets. This observation intuitively suggests that non-expert

12Note: it is different from the common terms Type I and type II errors in statistical hypothesis testing practice.
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annotators may have diverse interpretations about the topic. Table 3.16 provides examples (selected

from both R1 and R2) of tweets over six possible inter-annotator agreement combinations.

Crowdsourced

Annotations

Y/N

Sample Tweet

Y Y Y Y Y
Really bored....., no entertainment

at work today

Y Y Y Y N
two more days of work then

I finally get a day off.

Y Y Y N N

Leaving work at 430 and

driving in this snow is going

to be the death of me

Y Y N N N

Being a mommy is the hardest

but most rewarding job

a women can have

#babyBliss #babybliss

Y N N N N
These refs need to

DO THEIR FUCKING JOBS

N N N N N
One of the best Friday nights

I’ve had in a while

Table 3.16: Inter-annotator agreement combinations and sample tweets. Y represents job-related

and N represents job-related.

Two experts from the local community with prior experience in employment were introduced to

review tweets on which crowdworkers disagreed and provided their labels. The tweets with unani-

mous labels in two rounds of crowdsourced annotations were not re-annotated by experts because

their unanimous votes are hypothesized to be reliable as experts’ labels.

Thus, we have our third part of human-annotated data (Part-3): tweets reviewed and corrected

by the community annotators.

Training Classifier C3

Combining Part-3 with all unanimously labeled data from the previous rounds (Part-1 and Part-2 )

yielded 2,645 gold-standard-labeled job-related and 3,212 not job-related tweets. We trained C3 on
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this entire training set.

Crowdsourced Validation of C0, C1, C2 and C3

To evaluate uniformly the models in different stages—including the initial rule-based classifier C0—

we adopted a post-hoc evaluation procedure: We sampled 400 distinct tweets that have not been

used before from the data pool labeled by C0, C1, C2 and C3 respectively (there is no intersection

between any two sets of samples). We used these four classifiers to label this combined test set of

1600 tweets. We then asked crowdsourced workers to validate this set, in a manner identical to the

previous rounds of crowdsourced annotations (R1 and R2). We took the majority label (where at

least 3 out of 5 crowdsourced workers agreed) as the reference label for each tweet.

Table 3.17 displays the classification results of each model against the reference labels provided by

crowdsourcing workers. It shows that C3 outperforms C0, C1, and C2.

Model Class P R F1

C0

job 0.72 0.33 0.45

notjob 0.68 0.92 0.78

avg / total 0.70 0.69 0.65

C1

job 0.79 0.82 0.80

notjob 0.88 0.86 0.87

avg / total 0.85 0.84 0.84

C2

job 0.82 0.95 0.88

notjob 0.97 0.86 0.91

avg / total 0.91 0.90 0.90

C3

job 0.83 0.96 0.89

notjob 0.97 0.87 0.92

avg / total 0.92 0.91 0.91

Table 3.17: Crowdsourced validations of samples identified by models C0, C1, C2 and C3.

Crowdsourced Annotation R4

Even though C3 achieves the highest performance among the four classifiers we test, it has room

for improvement. We manually checked the tweets in the test set that were incorrectly classified

as not-job-related and focused on the language features we ignored in preparation for the model
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training. After performing some pre-processing on the tweets in the false negative and true positive

groups from the above tests, we ranked and compared their distributions of word frequencies. These

two rankings reveal the differences between the two categories (false negative vs. true positive) and

help us discover some signal words that were prominent in false negative group but not in true

positive—if our trained models are able to recognize these features when forming the separating

boundaries, the false negative rates would decrease and overall performance would further improve.

Our fourth classifier C4 is rule-based again, in order to select more potentially job-related tweets,

especially those would have been misclassified by our trained models. The lexicons in C4 include

the following signal words: career, hustle, wrk, employed, training, payday, company, coworker and

agent.

We ran C4 on our data pool and randomly selected 2,000 tweets that were labeled as positive by

C4 and never used previously (i.e., not annotated, trained or tested in C0, C1, C2, or C3). We

published these tweets to crowdsouring workers using the same settings of R1 and R2. The tweets

with unanimously agreed labels in R4 form the last part of our human-labeled dataset (Part-4).

Training Classifier C5

Aggregating separate parts of human-labeled data (Part-1 to Part-4 ), we obtained an integrated

training set with 2,983 job-related tweets and 3,736 not-job-related tweets and trained C5 upon it.

We tested C5 using the same data from the crowdsourced validation phase (1,600 tested tweets)

and discovered that C5 beat the performances of the other models (Table 3.18).

Model Class P R F1

C5

job 0.83 0.97 0.89

notjob 0.98 0.87 0.92

avg / total 0.92 0.91 0.91

Table 3.18: Performances of C5.

Table 3.19 lists the top 15 features for both classes in C5 with their corresponding weights. Pos-

itive features (job-related) unearth expressions about personal job satisfaction (lovemyjob) and

announcements of working schedules (day off, break) beyond our rules defined in C0 and C4. Neg-

ative features (not job-related) identify phrases to comment on others’ work (your work, amazing

job, awesome job, nut job) though they contain “work” or “job,” and show that school- or game-

themed messages (college career, play) are not classified into the job class, which meets our original
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intention.

job-related weights not job-related weights

job 1.77 your work -0.61

manager 1.71 like it -0.60

work 1.69 amazing job -0.59

wrk 1.44 did -0.55

payday 1.23 nut -0.45

my bos 1.06 nut job -0.45

jobs 0.83 bos as -0.43

lovemyjob 0.81 play -0.41

at work 0.81 awesome job -0.38

working 0.75 college career -0.37

my career 0.74 high -0.36

day off 0.73 doing -0.35

boss 0.73 hustle -0.35

service 0.71 you guy -0.33

break 0.70 love your -0.33

Table 3.19: Top 15 features for both classes of C5.

Table 3.20 combines the performance results in Table 3.17 and 3.18, covering different models (C0,

C1, C2, C3 and C5)13 on a 1600-tweets ad-hoc test set.

End-to-End Evaluation

The class distribution in the machine-labeled test data is roughly balanced, which is not the case in

real-world scenarios, where not-job-related tweets are much more common than job-related ones.

We proposed an end-to-end evaluation: to what degree can our trained automatic classifiers (C1,

C2, C3 and C5) identify job-related tweets in the real world? We introduced the estimated effective

recall under the assumption that for each model, the error rates in our test samples (1,600 tweets)

are proportional to the actual error rates found in the entire one-year data set which resembles the

real world. We labeled the entire data set using each classifier and defined the estimated effective

13C4 is not in the table because we did not test it in our experiments.
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Model Class P R F1

C0

job 0.72 0.33 0.45

notjob 0.68 0.92 0.78

avg / total 0.70 0.69 0.65

C1

job 0.79 0.82 0.80

notjob 0.88 0.86 0.87

avg / total 0.85 0.84 0.84

C2

job 0.82 0.95 0.88

notjob 0.97 0.86 0.91

avg / total 0.91 0.90 0.90

C3

job 0.83 0.96 0.89

notjob 0.97 0.87 0.92

avg / total 0.92 0.91 0.91

C5

job 0.83 0.97 0.89

notjob 0.98 0.87 0.92

avg / total 0.92 0.91 0.91

Table 3.20: Crowdsourced validations of samples identified by models C0, C1, C2, C3 and C5, with

the best model highlighted in red.

recall R̂ for each classifier as

R̂ =
Y ·Nt ·R

Y ·Nt ·R+N · Yt · (1−R)

where Y is the total number of the classifier-labeled job-related tweets in the entire one-year data

set, N is the total of not-job-related tweets in the entire one-year data set, Yt is the number of

classifier-labeled job-related tweets in our 1,600-sample test set, Nt = 1, 600 − Yt, and R is the

recall of the job class in our test set, as reported in Tables 3.17 and 3.18.

Table 3.21 shows that C5 had the best effective recall score, though here there is still room for

improvement.

3.3.4 Determining Sources of Job-Related Tweets

Through observation we noticed some patterns like:

“Panera Bread: Baker - Night (#Rochester, NY) HTTP://URL #Hospitality #Veter-
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Models C1 C2 C3 C5

Y 115,696 195,442 190,471 233,187

N 6,990,633 6,910,887 6,915,858 6,873,142

Yt 512 691 707 729

Nt 1,088 909 893 871

R 0.82 0.95 0.96 0.97

R̂ 0.14 0.41 0.46 0.57

Table 3.21: Estimated effective recalls for different trained models (C1, C2, C3 and C5) to identify

job-related tweets in real world settings.

anJob #Job #Jobs #TweetMyJobs”

in the job-related tweets. Nearly every job-related tweet that contained at least one of the following

hashtags: #veteranjob, #job, #jobs, #tweetmyjobs, #hiring, #retail, #realestate, #hr also had a

URL embedded. We counted the tweets containing only the listed hashtags, and the tweets hav-

ing both the queried hashtags and embedded URL, and summarized the statistics in Table 3.22.

By spot checking we found such tweets always led to recruitment websites. This observation sug-

gests that these tweets with similar “hashtags + URL” patterns originated from business agencies

or companies instead of personal accounts, because individuals are unlikely to post recruitment

advertising.

hashtag only hashtag + URL %

#veteranjob 18,066 18,066 100.00

#job 79,359 79,326 99.96

#jobs 59,882 59,864 99.97

#tweetmyjobs 39,007 39,007 100.00

#hiring 622 619 99.52

#retail 17,107 17,105 99.99

#realestate 113 112 99.12

#hr 406 405 99.75

Table 3.22: Counts of tweets containing the queried hashtags only, and their subsets of tweets with

URL embedded.

This motivated a simple heuristic that appeared surprisingly effective at determining which kind

of accounts each job-related tweet was posted from: if an account had more job-related tweets

matching the “hashtags + URL” patterns than tweets in other topics, we labeled it a business
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account; otherwise it is a personal account. We validated its effectiveness using the job-related

tweets sampled by the models in crowdsourced evaluations phase. It is essential to note that when

crowdsourcing annotators made judgment about the type of accounts as personal or business, they

were shown only one target tweet—without any contexts or posts history which our heuristics rely

on.

Table 3.23 records the performance metrics and confirms that our heuristics to determine the sources

of job-related tweets (personal vs. business accounts) are consistently accurate and effective.

From Class P R F1

C1

personal 1.00 0.98 0.99

business 0.98 1.00 0.99

avg/total 0.99 0.99 0.99

C2

personal 1.00 0.99 0.99

business 0.99 1.00 0.99

avg/total 0.99 0.99 0.99

C3

personal 1.00 0.99 0.99

business 0.99 1.00 0.99

avg/total 0.99 0.99 0.99

C5

personal 1.00 0.99 0.99

business 0.99 1.00 0.99

avg/total 0.99 0.99 0.99

Table 3.23: Evaluation of heuristics to determine the type of accounts (personal vs. business),

job-related tweets sampled by different models in Table 3.17.

Count of Labels Human Machine

job 2,978 233,187

Topic notjob 3,736 6,873,142

NA 842 –

personal 1,357 7,025,203

Source business 232 81,126

NA 5,966 –

Table 3.24: Statistics of our Twitter Job/Employment Corpus.
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3.3.5 Twitter Job/Employment Corpus

Our humans-in-the-loop active learning framework produced a series of classification models. Among

all models, C5 performed the best (highlighted in red in Table 3.20) in detecting (non) job-related

tweets. Further, we applied heuristics to separate accounts posting job-related tweets into personal

and business groups automatically based on linguistic features of each Twitter account’s tweets.

Table 3.24 shows the main statistics of our Twitter Job/Employment Corpus w.r.t the topic and

source labels provided by human and machine (C5) respectively.

Additionally, though our classification models are support vector machines built for work and

employment domain, this framework can integrate human inputs with different machine learning

algorithms and models to solve other similar open-domain problems that lack high-quality labeled

ground truth data.



Chapter 4

Population Label Distribution

Learning

As machine learning (ML) plays an ever increasing role in commerce, government, and daily life,

reports of bias in ML systems against groups traditionally underrepresented in computing technolo-

gies have also increased. The problem appears to be extensive, yet it remains challenging even to

fully assess the scope, let alone fix it. A fundamental reason is that ML systems are typically trained

to predict one correct answer or set of answers; disagreements between the annotators who provide

the training labels are resolved by either discarding minority opinions (which may correspond to

demographic minorities or not) or presenting all opinions flatly, with no attempt to quantify how

different answers might be distributed in society. Label distribution learning associates for each

data item a probability distribution over the labels for that item. While such distributions may be

representative of minority beliefs or not, they at least preserve diversities of opinion that conven-

tional learning hides or ignores and represent a fundamental first step toward ML systems that can

model diversity. We introduce a strategy for learning label distributions with only five-to-ten labels

per item—a range that is typical of supervised learning datasets—by aggregating human-annotated

labels over multiple, similarly rated data items. Our results suggest that specific label aggregation

methods can help provide reliable, representative predictions at the population level.

70
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4.1 Problem Statement

The population label distribution learning problem is to learn to predict the distribution of labels y

among a population of annotators for each test set data item x, given a collection of training data

items (xi)i∈{1,...,n} and a corresponding collection of label distribution raw estimates (ŷi)i∈{1,...,n},

based on the normalized empirical label distributions, i.e., the distributions of the annotations

received for each data item. Note that, here, we assume these distributions are multinomial samples

of the underlying population of annotator’s true label distribution (yi)i∈{1,...,n}, and that the each

raw estimate was obtained by randomly choosing an annotator and then asking that annotator

to choose a label, then repeating this process m times, where m is a parameter of the sampling

process.

One example of a label set that supports this problem definition came from an effort to model

Twitter discourse on life trajectories. When inspecting annotators’ answers to a question that

identifies employment transition events, we observed that when there was disagreement, it was

often for good reason.

Figure 4.1 shows the label distributions over the the jobQ3MT+ label set (see more details below

in Section 4.3). These histograms of labels (one histogram per data item) appear to cluster into

approximately eight categories, where the tweets in each seemed to be similarly rated. Group 1

(red) distributions have most of their mass on Getting hired/job seeking and None of the above, but

job-related, with tweets talking about plans to get a job (e.g., really want a job, dont put that on ur

resume for a minimum wage job) or the process of getting a job. Group 2 (cyan) has almost all the

mass exclusively on Getting hired/job seeking (e.g., got the job). Group 3 (brown) clusters around

Complaining about work and Going to work, suggesting a topic about complaining about having to

go to work. Group 4 (green) are a set of tweets complaining about work while at work. Groups 5

and 6 (blue and orange) have their peaks on None of the above, but job-related and Not job-related.

Group 6 (where Not job-related was more frequent than None of the above) were mostly about road

work. Group 7 seemed to contain cases where work was mentioned, but not central (e.g., Today

at work I learned about...) or used “work” or “job” metaphorically, though there exist some clear

None of the above, but job-related tweets, like Perks of working overnight: donuts fresh out of the

fryer.

As to why such clustering happens, Zhang et al. [109], on a different dataset, noticed similar

clustering patterns. We note that any k-choice annotation task effectively reduces the full breadth

of interpretations encoded in each data item x to one of only k choices; We theorize that the act
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Figure 4.1: Each histogram above represents the label distribution of a lone data item in the

jobQ3MT+ data set. The X-axis ranges from 1 to 12, matching the Q3 choices in Example 4.3.1.

The Y-axis denotes the label counts. Similar distributions are grouped by color: 1-8 red, 9-11 cyan,

12-18 brown, 19-21 green, 22-32 blue, 33-41 orange, and 42-50 purple.

.

of annotation reduces not only the interpretive domain of the each data item, but also the social,

experiential, and cognitive factors, such as disparities in experience and knowledge, that drive

annotator disagreement. Thus, the number p of distinct ground truth label distributions resulting

from any annotation task are also limited, and the set of all annotations for any given data item

is (assuming annotators are selected i.i.d. from the population of annotators) a sample from one

of the p distinct ground truth distributions. For the sake of brevity we subsequently refer to this

tentative explanation as the clustering theory.

4.1.1 Label Probability Distribution

Instead of inputting a single label associated with a data item, we introduce a probabilistic method

which inputs to machine learning models a label distribution—class labels with corresponding

probabilities—collected from multiple annotators. This approach has the advantage that subjec-
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tivity for multiple choices among multiple annotators is taken into consideration and represented for

learning purpose. The intuition behind this idea is straightforward: we assume that crowdsourcing

workers who get access to and take participation into the annotation tasks are independent and

identically distributed in the global crowdsourcing community. These unspecified annotators can

represent the natural distribution of overall population and their understandings toward subjective

topics and themes.

4.2 LDL Algorithms

Our approach to label distribution learning on populations consists of two stages. First, we use

unsupervised learning to convert the raw label distribution estimates (ŷi)i∈{1,...,n}, into refined esti-

mates (ŷ′i)i∈{1,...,n}, by aggregating over similarly related data items. Next, we perform supervised

learning on the refined label distributions with unstructured text features and conduct comparative

experiments. We discuss each stage below.

4.2.1 Clustering Algorithms for Estimating Ground Truth

The unsupervised learning algorithms we consider here are consistent, to varying degrees, with the

clustering theory.

The (finite) multinomial mixture model F most directly simulates the sampling process of collecting

annotations from crowdsourcing community according to the cluster theory. It assumes that the

empirical label distributions are generated by: (1) drawing a multinomial distribution π according

to a Dirichlet prior over p elements which correspond to the hypothesized number of true label dis-

tributions, denoted as π ∼ Dir(p, γ = 75), where γ is the prior’s (symmetric) hyperparameter (and

higher numbers tend to produce lower entropy multinomials); (2) drawing multinomial distributions

φ1, . . . φp ∼ Dir(d, γ = 0.1), where d is the number of label choices; (3) for each data item, we (3a)

choose i ∼ π and (3b) m label classes according to φi. Thus, according to the clustering theory,

the most likely cluster distribution φj for each data item should be a good estimate of the ground

truth label distribution: φj ≈ yi. We learn the model F via a variational Bayes algorithm [228],

adapted from https://github.com/bnpy/bnpy.

Next come two variants of F. The Dirichlet process multinomial mixture model (abbreviated as DP)

is a non-parametric version of model F. Instead of choosing p multinomial models from a Dirichlet
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prior before generating the data, DP starts with two multinomial models φ1, φ2 ∼ Dir(d, 0.1).

Then, for each new data item, it draws from the current set of multinomial models in approximate

proportion to the number of times each has been previously drawn OR draws a new multinomial

model (with weight proportional to γ = 50). We use a variational Bayes algorithm to learn this

model too. The main purpose for including DP here is to test whether in this setting nonparametric

methods outperform parametric ones using standard model-selection criteria.

M is a multinomial mixture model without any Dirichlet priors. This rather simple model can

be learned using EM [229], however it lacks the regularization and adaptability that the Dirichlet

priors can provide. We expect this model to underperform the others as a result.

In contrast to the previous models, we chose the Gaussian mixture model G as a weak alternate

hypothesis of sorts. Rather than simulate the sampling process of crowdsourced annotations as the

multinomial distributions do, these distributions capture the variance in a population of samples.

Additionally, it captures covariance between the labels; these should be close to zero in single label

settings (or settings where the vast majority of annotators provide only one label per item). We

use EM to learn this model1 .

Finally, L is latent Dirichlet allocation (LDA) [230], adapted from https://radimrehurek.com/

gensim/. LDA is a generative topic model which is widely used in natural language processing

area [230]. A collection of documents can be described as a mixture of various latent topics with a

sparse Dirichlet prior distribution, where each topic, associated with a small set of descriptive words,

could be assigned to the document via LDA probabilistically2. Though LDA is not designated for

clustering tasks, we can obtain cluster-like latent classes in the modeling process. In contrast to

F, which chooses a single class distribution π for all data items, L chooses a new distribution πi

for each item i and then for each label chooses a new distribution in {φ1, . . . , φp} according to πi.

Thus, for each data item, each instance of the labels from LDA represents a true mixture of all the

generating distributions. We can thus “assign” to i the most likely φj according to πi.

1http://scikit-learn.org/stable/modules/mixture.html
2We treat each document as a string concatenation of labels collected from multiple annotators in our study, for

example, one data point would be “AABCCD” when aggregating six human labels into a concatenated string. We

denote this strategy as LDAlabel.
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4.2.2 Supervised Learning for Predicting Label Distributions

We train supervised-learning-based classifiers using refined label distributions obtained from the

various unsupervised learning algorithms described in Section 4.2.1. As a pre-processing step, we

retain the most common 20,000 words in the training set, pad the sentence with up to 1,000 tokens,

and then embed each word into a 100-dimension real-valued vector using the GloVe pre-trained

word embeddings trained on a Twitter corpus with 2B tweets [231].

We consider two neural network models. One is built on a 1D convolutional neural network (denoted

as CNN) which was designed for sentence or tweet classification [193]. There are three max

pool/convolution layers, followed by a dropout layer and a softmax layer. We use the Adam

optimizer to minimize the loss function [232], with a batch size as 32 and 25 epochs. Another model

type used to address prediction problems is the encoder-decoder sequence-to-sequence model which

uses recurrent neural networks (LSTM). The encoder outputs a fixed-length encoding of the input

text, and the decoder, followed by a Dense output layer, predicts the output sequence. We applied

the same optimizer, batch size and epoch number as in the CNN models.

In the process of training both types of models, we use softmax function: exp(zi)
Σtexp(zt)

, to transform

the output of the penultimate layer z into a probability distribution. We use Kullback-Leibler (KL)

divergence, a standard measure of the difference between the “true” (in our case the refined estimate)

probability distribution ŷ′ and a predicted estimator ỹ: DKL(ŷ′, ỹ) =
∑

i P (ŷ′ = i) logP (ŷ′=i)
logP (ỹ=i) , as

the loss function for backpropagation, as it is a principled choice for approximating the probability

distributions [233].

4.3 Data and Labels

There are several publicly available human-labeled datasets, most of which only contain the crowd-

sourced labels without complete textual contents and contexts (for building language based models),

thus are not suitable to our population label distribution learning task.

We consider two corpora in our experiments, each consisting of 2,000 Twitter posts (tweets) with

crowdsourced labels, one related to work (mentioned in Section 4.1), the other to suicide. Before

this, we performed preliminary research on a broader variety of human-labeled data (including

[234, 235, 236, 237]) and decided that these two corpora adequately represent the others and were

similar in media source (both are collected from Twitter), but different in the domain of discourse.
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Thus, they provide an informative basis for comparison. Our institutional review board determined

that our work did not fall under federal or institutional guidelines as human subjects research.

To privatize the data, we replaced all mentions of usernames with “@SOMEONE” and URLs

with “http://URL,” and adhered to Twitter’s developer policy [238]. Table 4.1 summarizes basic

properties of the labels we collected for these two corpora.

#Choices

ID Label Set #Items /item #Workers #Labels Density MVTD RMSD

1 jobQ1FE 2,000 5 171 10,000 5.00 0.37 0.21

2 jobQ1MT 2,000 5 1,014 12,202 6.10 0.17 0.10

3 jobQ1BOTH 2,000 5 1,185 22,202 11.10 0.29 0.16

4 jobQ1MT+ 50 5 249 2,969 59.38 0.43 0.22

5 jobQ2FE 2,000 5 171 10,000 5.00 0.28 0.16

6 jobQ2MT 2,000 5 1,014 12,202 6.10 0.15 0.09

7 jobQ2BOTH 2,000 5 1,185 22,202 11.10 0.23 0.13

8 jobQ2MT+ 50 5 249 2,969 59.38 0.34 0.19

9 jobQ3FE 2,000 12 171 10,967 5.48 0.45 0.16

10 jobQ3MT 2,000 12 1,014 12,900 6.45 0.28 0.10

11 jobQ3BOTH 2,000 12 1,185 23,867 11.93 0.40 0.14

12 jobQ3MT+ 50 12 249 3,196 63.92 0.41 0.14

13 Suicide 2,000 4 124 13,175 6.59 0.27 0.17

Table 4.1: Basic properties of our crowdsourced label sets. For the job-related data set with three

questions jobQ1/2/3, FE and MT represent the labels from the platforms Figure Eight and Amazon

Mechanical Turk, respectively. jobQ1/2/3BOTH integrates labels from both FE and MT sources

into one set. jobQ1/2/3MT+ denote the additional MT labels used in one experiment setting (deep

split). Density is the average number of labels per data item. MVTD (majority-voted-true-class

deviation) and RMSD (root-mean-square deviation) describe inter-rater reliability across all the

tasks and estimate the variety and divergence of human labels in different label sets, motivated

by the literature on scale and outlier description [12, 13, 14]. MVTD is the average deviation of

the majority-voted label over all data items: MVTD = 1 −
∑n

i=1 maxj{ŷij}/n. RMSD is the L2

deviation from the average label distribution: RMSD =
∑n

i=1

√
(ŷi − y)T (ŷi − y)/n, where y is

the average label distribution over all data.

We now discuss annotation tasks in detail to get a better sense of how subjectivity presents itself

in labeling tasks and how we operationalize our crowdsourced annotations to prepare for the next

modeling phases.
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4.3.1 Job-related Annotation

Background

We extend our previous study of job and employment issues in public social media [7], to conduct

experiments about subjective employment stage categorization. It is expected that our humans-in-

the-loop learning framework largely helps reduce human efforts to annotate data, handles subjectiv-

ity among multiple annotators, and provides fine-grained information for downstream applications.

Working-age adults spend more than one-third of their daily time on job-related activities [239]—

more than on anything else. Their work conditions and degrees of satisfaction may pose serious

health risks and even lead to suicide in the tragic extreme [240, 241]. Extracting job-related dis-

course is useful for building systems for targeted social networking and recruiting (e.g., recruiters

reach out to those who recently lost jobs or intend to move to new positions), job/company/commu-

nity recommendations (e.g., job search websites recommend job openings or communities based on

the user’s specific employment status, current or previous employer, or occupation), mental health

monitoring system for working people’s moods and stress levels (e.g., clinical psychologists under-

stand if people suffer from any mental issues and provide professional intervention and support if

necessary), and so on.

This kind of analysis can further monitor job satisfaction/dissatisfaction, and help people strive for

positive changes at work and in life [211]. We would like to understand better what people reveal

about their work and employment lives in their online messages and how they are interpreted

differently by readers and others. For instance, people can get happy if they get job offers and they

might feel sad if getting fired. Such career transitions can have huge impacts on mental health for

the tweet author him or her self and the broader public.

One challenge in modeling the dynamics of employment is to cover as many distinct situations as

possible, but not be so complicated and impractical as to be infeasible for machine learning. Based

on manual inspection of a large number of job-related tweets and on models of the relationship

between work and wellness found in behavioral studies [242, 243], we drafted a model of the Job

Status Cycle for job-related discourse from individual accounts (Figure 4.2). Each state in the

model has three dimensions: the point of view, the affect, and the job-related activity, in terms

of basic level of employment, expressed in the tweet. In general, an individual’s job status cycles

between employed and jobless/unemployed, with two transitional states in between. There is also

a dimension representing under- or over- employment, which is loosely coupled with the employed
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status. Note that it is possible to skip the jobless state and go directly to a new job from the

current job. Also, it is possible for people to hold multiple jobs at once.

Figure 4.2: The job status cycle, plus example tweets.

Annotation Scheme

We utilize our Twitter Job/Employment Corpus [7] which was previously mentioned in Section 4.1.

It contains 2,000 tweets about work and employment that were extracted by the classifier described

in the previous section [7].

For each tweet, we asked five crowdworkers from Figure Eight (FE, [244]) and Amazon Mechanical

Turk (MT, [245]) to answer three multiple-choice questions. Example 4.3.1 shows the three ques-

tions we asked and their corresponding selections of labels. We denote these label sets jobQ1/2/3.

To provide some insight into how performance might change with more labels from a more diverse

population of labelers and labeling platforms, we first consider FE and MT as two separate label

sets, then combine them into a single label set (denoted BOTH).

For each question, our experiments are conducted on two different train/dev/test splits. We first

consider a 1000/500/500 split on each of the label sets: Q1, Q2, and Q3 (we call it the Broad

split). Next, to get a more accurate ground-truth estimate for testing, we randomly selected 50

tweets from our dataset and asked 50 additional MT crowdworkers to label them as instructed.

We denote these dense label sets jobQ1/2/3MT+ and then create 1500/450/50 splits (called the

Deep split), where the training and development sets are from the BOTH label sets (minus the

jobQ1/Q2/Q3MT+ label set items) and the test sets are from jobQ1/Q2/Q3MT+, respectively.
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It is important to note that, when we publish the job-related tweets to annotators, we provide some

contextual information in addition to the target tweet. We present these contexts in the form of the

three tweets preceding and the three succeeding the target tweet from the tweeter’s timeline, along

with the relative time difference between each context and target tweet. The contextual tweets

are not necessarily job-related because people use Twitter to express a wide range of facts and

opinions. The contextual information is supposed to reduce the difficulty of the judgment-making

process for annotators. We have used such similar design in Homan et al. [5] to annotate distress

level and proved its usefulness.

We created multiple-choice questions to categorize the employment stage(s) for the subject in

the target tweet and instructed annotators to understand their tasks. We present an example

annotation interface below for the tweet I need a new job. Preferably one that actually pays money.,

with concept definition and annotation instruction.

An Example

The following definitions describe three employment statuses. Please read them care-

fully, make your judgments to finish three multiple-choice questions.

Employed is defined as:

• Working for pay (salary workers), or profit (self-employed) during the census survey

reference week.

• Working in a family-operate business or farm (at least 15 hours per week without

pay).

• Being temporarily absent from their regular jobs (no matter they were paid or not

during the time off) because of vocation, illness, maternity/paternity leave, fami-

ly/personal obligations, labor dispute, bad weather or other short-term reasons.

Unemployed is defined as:

• Not having a job at all during the survey reference week.

• People made specific efforts to look for a job in the prior 4 weeks, such as: contact-

ing an employer or employment agency, submitting resumes or job applications,

placing or answering job advertisements, etc.

• People were available for work, such as expecting to be recalled from temporary

layoff (unless temporarily ill).
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Not in labor force is defined as:

• Neither having a job nor looking for one.

Now, using the above concepts you just learned, please read the following target tweet

(highlighted in bold and marked with >>>and <<<) to answer multiple-choice ques-

tions Q1 through Q3. You can use the three tweets immediately before (marked as -3,

-2 and -1) and the three after (+1, +2, +3) the target tweet made by the same user

to help make your judgments, where “[day, hour-minute-second]” indicates the time

difference between each context tweet and the target tweet you need to label.

Message ID: 1234567890 Date: XXXX-YY-ZZ

-3: message 1 [-02, 00-40-35]

-2: message 2 [-01, 14-28-06]

-1: message 3 [-00, 05-17-23]

>>> I need a new job. Preferably one that actually pays money. <<<

+1: message 4 [+00, 02-00-59]

+2: message 5 [+00, 17-21-00]

+3: message 6 [+01, 01-05-16]

Q1: Which of the following items best describes the point of view of job/employment-

related information in the target tweet?

A. 1st person

B. 2nd person

C. 3rd person

D. Unclear

E. Not job-related

Q2: Which of the following items could best describe the employment status of the

subject in the tweet?

A. Employed

B. Unemployed

C. Not in labor force

D. Unclear

E. Not job-related
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Q3: Does the subject specifically mention any job/employment transition event in the

tweet? (Choose all that apply)

1. Getting hired/job seeking

2. Getting Fired

3. Quitting a job

4. Losing job some other way

5. Getting promoted/raised

6. Getting cut in hours

7. Complaining about work

8. Offering support

9. Going to work

10. Coming home from work

11. None of the above, but job-related

12. Not job-related

Manual Annotations We utilize crowdsourcing to hire multiple annotators (who are usually

non-experts) to obtain representative samples of the underlying population distribution, in order

to reduce cost and effort, as in Liu et al. [7]. Moreover, crowdsourcing platforms provide us access to

annotators with various backgrounds and skill levels, thus facilitating our study about subjectivity

issues over a broader population than a study using just one platform would have.

4.3.2 Suicide-related

The Suicide tweet set was obtained directly from [6] (introduced earlier in Section 3.2), which con-

tains 2000 tweets about suicide-related discourse. For each data item, five crowdworkers each chose

one label that best describes its content, from four possible choices: A© Suicidal thoughts, B© Sup-

portive messages or helpful information, C© Reaction to suicide news/movie/music and D© Others.

Experts were invited to the second annotation stage to work on the tweets without unanimous labels

provided by five crowdworkers. Thus each tweet can have up to 7 labels, from crowdworkers and

experts. We use a 1000/500/500 train/dev/test split (denoted as Broad split) in our experiments.



CHAPTER 4. POPULATION LABEL DISTRIBUTION LEARNING 82

4.4 Experiments

Different labeling strategies lead to different estimated label distributions that are used in the

model training stage through the humans-in-the-loop pipeline. We investigate several quantitative

methods to aggregate multiple annotations and transmit the aggregated label into downstream

supervised classification models.

Figure 4.3 summarizes our experiment framework, which includes data and label collection, unsu-

pervised and supervised modeling phrases, and performance evaluations.

Unlabeled data Label 
collections

Unsupervised 
learning

Prediction
test 

Figure Eight
Mechanical Turk

Majority
Repeated
Probability
Clustering- 
assigned

M
G
F
DP
L

KLCNN
LSTM
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KL

job-related
suicide-related

Supervised 
learning

Cluster
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Deep

Figure 4.3: Our experiment workflow involves obtaining crowdsourced labels for raw data (yield-

ing empirical label distributions for each data item), trying various unsupervised strategies for

aggregating those labels, and finally testing how each approach affects the efficiency of supervised

learning prediction. Note there are two testing phases: one for how well each aggregation strategy

fits the data and one for supervised learning performance. We also list key terms, keywords, and

abbreviations associated with each phase of the workflow.
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4.4.1 Clustering Experiments for Ground Truth Estimation

Model Selection

For those clustering models requiring p as a hyperparameter, we test values for p ∈ [d/2, 2d], where

d is the number of label choices. As the estimators for these models are stochastic and/or sensitive

to initial conditions and parameters, for every model and every set of hyperparameters we ran 100

trials on the training/dev set and picked the model with the highest estimated likelihood.

We adopt the native likelihood function as our model selection criterion because it is the native

optimization goal of each unsupervised clustering algorithm, and provides a consistent strategy for

evaluating different unsupervised learning algorithms.

Table 4.2 shows the number of clusters selected on each of the two training splits on each label set

and for DP the number of clusters the algorithm generated automatically.

Broad split Deep split

Dataset M G L F DP M G L F DP

jobQ1FE 10 4 9 3 4 11 11 9 3 4

jobQ1MT 11 4 11 8 10 2 2 11 9 11

jobQ1BOTH 11 2 2 6 8 2 2 11 7 8

jobQ2FE 11 3 10 3 4 11 2 10 3 4

jobQ2MT 2 4 11 7 9 2 2 11 7 10

jobQ2BOTH 2 2 11 5 7 2 2 8 5 7

jobQ3FE 19 5 18 6 7 19 10 19 7 7

jobQ3MT 5 5 14 17 20 5 19 15 17 26

jobQ3BOTH 5 15 18 13 16 5 17 11 17 17

Suicide 8 2 7 4 5 - - - - -

Table 4.2: The optimal label aggregation models on each label set using two splits (Broad and

Deep) are achieved with the presented number of clusters (p).

Evaluation

Label-based For the model M produced by each unsupervised learning algorithm and each data

item i in the test set, we determine the most likely cluster j for i’s empirical label distribution
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φj : arg maxj P (ŷi ∼ φj | M). We then compute the KL divergence between the empirical label

distribution ŷi and the cluster distribution φj .

Table 4.3 shows that the multinomial mixture models (M/F/DP) generally outperformed G, as

we expected. The crowdsourced sample sizes of 5–10 labels we used for each training item are

typical of crowdsourced supervised learning label sets, and the differences between G and the other

cluster models appear to be substantial at this scale. The success of L on a number of label sets

surprised us, considering that we only use the mostly likely cluster for each data item which was

trained on a mixture of clusters. Finally, F outperforms the other models on all of the sets having

at least ten annotations per item, and shows the most improvement from the FE/MT (which had

five annotations per item) to the BOTH (with ten annotations per item) label sets.

Broad split Deep split

KL M G L F DP M G L F DP

jobQ1FE 0.35 0.53 0.23 0.39 0.39 0.30 0.57 0.24 0.37 0.39

jobQ1MT 0.19 0.68 0.18 0.13 0.15 0.20 0.39 0.07 0.09 0.10

jobQ1BOTH 0.20 0.46 0.40 0.19 0.19 0.21 0.38 0.06 0.06 0.07

jobQ2FE 0.26 0.54 0.19 0.32 0.32 0.24 0.65 0.20 0.28 0.28

jobQ2MT 0.36 0.74 0.15 0.10 0.10 0.26 0.50 0.09 0.11 0.13

jobQ2BOTH 0.28 0.51 0.17 0.16 0.16 0.25 0.48 0.09 0.08 0.08

jobQ3FE 0.51 1.00 0.52 0.59 0.64 0.29 0.97 0.27 0.41 0.41

jobQ3MT 0.50 1.15 0.33 0.26 0.29 0.20 0.51 0.17 0.28 0.21

jobQ3BOTH 0.45 0.82 0.35 0.32 0.33 0.18 0.64 0.18 0.12 0.13

Suicide 0.22 0.57 0.20 0.22 0.22 - - - - -

Average 0.29 0.59 0.28 0.22 0.23 0.21 0.50 0.11 0.09 0.09

Std dev 0.10 0.14 0.10 0.06 0.06 0.03 0.11 0.05 0.02 0.03

Table 4.3: KL divergence based on the chosen label clustering models in Table 4.2. Aver-

age and standard deviation are based on the KL divergence scores of the gray-highlighted rows

(jobQ1BOTH, jobQ2BOTH, jobQ3BOTH and Suicide). The lowest KL is highlighted in yellow for

each split.

Table 4.3 also shows the average and standard deviation of the KL divergence scores on the four in-

dependent label sets (i.e., BOTH comprises FE and MT) jobQ1BOTH, jobQ2BOTH, jobQ3BOTH

and Suicide (highlighted in gray). These statistics indicate that F outperforms the other models

across different thematic label sets in its capability and stability, DP is second, and, G comes last

as we expected.
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Q3 differs from Q1 and Q2 in allowing annotators to choose more than one label for each tweet.

Ideally, the ideal representation for the annotations (where each annotation is the set of labels

provided by one annotator for one data item) of Q3 would be over the power set of possible choices

of labels. However, Table 4.4 shows that fewer than 10% of the annotations we received had

selected more than one label. To simplify our analysis, we thus treat multiple labels from the same

annotator as if each came from its own, independent annotator (for example, an annotation with

three labels provided is treated independently as three separate annotations.).

#labels/worker/item

Label Set 1 2 3 4 5+

jobQ3FE 10,000 722 176 53 16

jobQ3MT 12,202 628 58 11 1

jobQ3MT+ 2,969 193 32 2 0

Table 4.4: Counts of worker-item pairs, grouped by #labels per worker per data item.

Text-based In addition to the experiments using the unsupervised learning algorithms intro-

duced in Section 4.2.1 to cluster over empirical labels, we additionally clustered on bag-of-word

representations of each data item’s text and evaluate our label clustering and aggregation models.

We have proposed a new metric to measure probability distributions (in addition to Kullback-

Leibler divergence): entropy gap (EG), calculated as H(yi)/ log d−H(zi)/ log p, can apply to any

label aggregation model or clustering approach that has likelihoods associated with each (data

point, cluster) pair and where each point can be interpreted as a probability distribution. The

danger with this score is that it is easy to “cheat” to get a good score, say, by assigning all data

items to the same cluster.

Tables 4.5 and 4.6 report the EG and KL results, respectively, when we compared the label dis-

tributions obtained from the optimal label aggregation models (reported in Table 4.2) against the

ones clustered by texts.

4.4.2 Supervised Learning Experiments

We then trained the two supervised learning algorithms described in Section 4.2.2 on our training

datasets’ texts, using in turn each of the unsupervised learning methods described previously to pro-

vide refined label distribution estimates (ŷ′i) as the learning goal. We compared their performances



CHAPTER 4. POPULATION LABEL DISTRIBUTION LEARNING 86

Broad split Deep split

EG M L G F DP M L G F DP

jobQ1FE -0.13 -0.05 0.26 0.03 0.04 -0.08 0.06 0.37 -0.08 0.14

jobQ1MT 0.13 -0.03 0.30 0.03 0.07 0.36 -0.08 0.39 0.36 0.37

jobQ1BOTH 0.13 -0.04 0.23 0.11 0.16 0.32 0.02 0.37 0.34 0.36

jobQ2FE -0.03 -0.02 0.30 0.04 0.09 0.03 0.06 0.38 0.04 0.12

jobQ2MT 0.26 -0.02 0.30 0.07 0.10 0.39 -0.04 0.39 0.38 0.37

jobQ2BOTH 0.24 0.05 0.29 0.08 0.14 0.39 0.12 0.39 0.33 0.36

jobQ3FE -0.10 -0.10 0.28 -0.06 0.05 0.01 0.00 0.39 0.03 0.09

jobQ3MT 0.22 -0.05 0.30 0.11 0.14 0.37 0.04 0.38 0.36 0.38

jobQ3BOTH 0.21 -0.01 0.29 0.13 0.16 0.38 0.11 0.39 0.37 0.36

RWsuicide 0.11 0.03 0.33 0.15 0.16 - - - - -

Average 0.17 0.01 0.29 0.12 0.16 0.36 0.03 0.38 0.35 0.36

Std dev 0.06 0.04 0.04 0.03 0.01 0.04 0.08 0.01 0.02 0.00

Table 4.5: Entropy gap obtained between the optimal label aggregation model and text-based

clustering on each dataset using two splits. “EG”: Normalized entropy gap (i.e., the average

entropy gap per data item). Average and standard deviation are based on the EG scores of the

gray-highlighted rows (jobQ1BOTH, jobQ2BOTH, jobQ3BOTH and Suicide). The lowest EG is

highlighted in yellow for each split.

to those of three common baseline strategies for resolving (or not) label disagreement.

• Majority (Maj) takes the final label to be ŷ′i = arg max
j∈{1,...,d}

{ŷij}.

• Repeated (Rept) duplicates each data instance once for every annotation it receives and pairs

the replicated instance with that label.

• Probability (Prob) is the raw label distribution estimates (ŷ′i) = (ŷi). (This is the baseline

LDL approach.)

Evaluation

We measure the KL divergence between the classifier (ỹi) and cluster-or-baseline-method (ŷ′i)

-based label distributions. (Note that Maj and Rept both associate each data item, by eliminating
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Broad split Deep split

KL M L G F DP M L G F DP

jobQ1FE 4.72 4.46 4.60 4.84 4.83 2.89 2.39 2.11 3.05 3.10

jobQ1MT 4.50 4.60 4.59 4.50 4.52 3.12 2.70 3.36 2.81 2.83

jobQ1BOTH 4.57 4.78 4.76 4.65 4.65 3.11 2.51 3.12 2.56 2.57

jobQ2FE 4.60 4.40 4.74 4.77 4.77 2.80 2.38 3.20 2.99 2.99

jobQ2MT 4.75 4.60 4.56 4.48 4.48 3.10 2.72 3.33 2.59 2.44

jobQ2BOTH 4.76 4.51 4.83 4.60 4.61 3.10 2.70 3.23 2.49 2.57

jobQ3FE 4.30 4.23 4.54 4.51 4.58 2.50 2.33 2.61 2.65 2.70

jobQ3MT 4.46 4.31 4.49 4.13 4.19 2.62 2.56 2.21 2.26 2.20

jobQ3BOTH 4.44 4.28 4.29 4.18 4.26 2.61 2.64 2.16 2.21 2.22

RWsuicide 4.45 4.42 5.00 4.60 4.61 - - - - -

Average 4.56 4.50 4.72 4.51 4.53 2.94 2.62 2.84 2.42 2.45

Std dev 0.15 0.21 0.30 0.22 0.18 0.29 0.10 0.59 0.19 0.20

Table 4.6: KL divergence obtained between the optimal label aggregation model and text-based

clustering on each dataset using two splits. Average and standard deviation are based on the EG

scores of the gray-highlighted rows (jobQ1BOTH, jobQ2BOTH, jobQ3BOTH and Suicide). The

lowest KL is highlighted in yellow for each split.

labels or creating copies of the data items with exactly one label. For the purpose of computing

KL divergence we regard this as a distribution where the entire probability mass is on one label.)

We also measure Accuracy, i.e., the percentage of times arg maxj ỹij matches arg maxj ŷ
′
ij in the

test set. Accuracy is often used in nondistributional classification problems. We use it here to

shed further light into the differences between distributional and nondistributional problems. In

particular, we might expect that nondistributional models might outperform label distribution

models with respect to accuracy, even as they underperform with respect to KL divergence.

Results

Tables 4.7 and 4.8 show the KL divergence and accuracy metrics for CNN/LSTM text classifiers

built with different label aggregation strategies in two split modes (Broad and Deep).

Starting with the KL divergence results, on the Broad split tests, CNNs trained and tested on

L outperform other clustering and non-clustering approaches most of the time for both job and
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suicide discourse themes. For LSTMs, we can also observe that clustering approaches achieved

better results more often on different label sets than non-clustering methods. Almost none of

CNNs or LSTMs trained on any baseline label reduction strategy can compete.

By contrast, the results of the Deep split KL divergence tests (Table 4.8) are not as conclusive, and

this could be due to there being fewer data items in the Deep split test set. But even so, clustering

strategies again perform better in more cases than the baselines.

Tables 4.7 and 4.8 show that, for both the CNN and LSTM classifiers and both split modes,

the highest accuracies often come from the clustering methods. They outperform non-clustering

methods by more than 10% on average, which appears substantial. For those label sets whose

accuracy based on clustering strategies do not rank 1st, non-clustering methods win only by a slim

or zero margins.

Together, the results for different label sets and split modes reveal several interesting patterns. First,

the cluster-based models tend to outperform the baseline methods in terms of either KL divergence

or accuracy. This supports the feasibility of our clustering strategy for label distribution learning

on subjective problems with annotator disagreement. On the other hand, for conventional (i.e.,

non-distributional) classification problems, baseline methods can be sufficient. The advantages of

clustering, in terms of KL divergence, is less stark in the Deep compared to the Broad splits, but

clustering still seems to outperform baselines on the jobQ3 label set, which has the largest label

space and is where pooling and other label conservation methods are most needed.

4.5 Discussion

Our results provides evidence—both for and against—that clustering is a feasible strategy to im-

prove performance of label distribution learning in certain settings, such as when each label distri-

bution represents a population-level estimate based on a (micro) sample, and the data fall into a

small number of semantically-equivalent and similarly-rated classes (relative to the complexity of

learning task). Our results shed a little light on the validity of the clustering theory.

They also raise methodological issues. We expect that the methods introduced for testing perfor-

mance will provide helpful baselines for the development of newer quantitative methods tailored

specifically toward settings where ground truth is generated from a small number of sample labels

per data item.
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In retrospect, when we selected the best label aggregation (clustering) models tested on each

dataset, we should have experimented with other alternative criteria. These alternative meth-

ods for model selection could be the Akaike information criterion (AIC) [246] and the Bayesian

information criterion (BIC) [247], both of which are maximum likelihood estimation driven and

can deal with the risks of overfitting and underfitting at the same time.

Another methodological issue we grappled with was whether to measure the performances of the

supervised classification models against the empirical (ŷ) or refined (ŷ′) label distributions. Com-

mon practice is to test supervised learning on the patterns they are fed (i.e., the refined labels in

our case). But in our case the conventional machine learning algorithms are only the second half

of a longer pipeline that has essentially an unsupervised front end, and which takes the empirical

label distributions as input. We tried both approaches, but because we found our results more

interesting in this direction, we report on the predictions against ŷ′. The biggest worry in doing so

is that, because pooling labels via a small number of clusters greatly reduces diversity in the label

distributions, there is less likelihood of error, which would seem to make predictions artificially

easier against ŷ′ than the empirical distributions ŷ. On the other hand, since these clusters are

based on raw labels, the larger the clusters the greater the likelihood that items with inconsistent

features are assigned to the same cluster, and this would lead to less accurate predictions from the

supervised models.

One may be curious about some generic, distance-based clustering methods and metrics other than

those we applied in the unsupervised learning stage. We have not considered those models yet

(the Gaussian model was chosen because though generative it did not support our hypothesis that

related labels are all multinomial samples of a latent distribution), mainly because they did not

directly relate to our hypothetical framework, and we wanted to take a principled approach, given

the vast number of alternative models to consider in the field.

We have been deliberately vague about the meaning of “a population of labelers.” This study was

motivated by our previous work with microtask crowdsourcing platforms like Amazon Mechanical

Turk and Figure Eight, in which case our collected labels can be considered as a collection of (micro)

samples of the population of workers on whichever sites are used for whatever interval of time the

requested labeling task is posted. Studies exist on the demographics of these sites. Some websites

(like Figure Eight) provide some demographic information on the responders to each microtask

request.

We have not yet modeled user behavior comprehensively, though this is a well-established approach

for aggregating labels from multiple annotators. In fact, we did run experiments using Dawid and
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Skene’s class annotator-based model [1], which is based mainly on user behavior. However, as it is

designed for conventional, non-distributional supervised learning and did not perform well for our

experimental settings, we did not report those results. Another complication is that most of our

annotators labeled only ten data items each, so we would be tempted to cluster users in much the

same way we used clustering here to group data items.

Another limitation was that we did not investigate in-depth the causes of inter-annotator disagree-

ments, such as data encoding errors and communication ambiguities [44, 47, 60], lack of sufficient

information [42, 60, 61], and unreliable annotators and their bias [42], nor did we attempt to re-

solve the disagreement through follow-up discussions with the annotators, as is common in many

grounded theory studies.

We suspect in our experiment label sets that there are some statistical correlations between the

subjectivity and ambiguity and the degree of inter-rater disagreement across different questions.

We hope to explore these directions in the future.

Another potential future direction could be to explore more highly structured label spaces, such as

ordinal ones, or ones based on Bernoulli distributions or “single-peaked-ness” that are common in

practice and sometimes yield to high-performance algorithms.

4.6 Summary

We study the important problem of predicting the distributions of population beliefs by integrating

unsupervised and supervised learning methods. We test different strategies for clustering data

items to obtain aggregated label distributions. We then build supervised CNN/LSTM classifiers

using the predicted distributions from the clustering models and compared their performance with

common baseline label reduction strategies. Our results from both unsupervised and supervised

experiments show that it is feasible to predict probability distributions over labels at the population

level. Clustering labels, in general, boost the label distribution learning by aggregating data items

with similar semantics and population beliefs. We believe our study is a pioneering exploration

of disagreement on linguistic data from social media and further helps future intelligent agents

understand the diversity of opinions in society and the real world.



Chapter 5

Future Work

When we combine label distribution learning (Chapter 4) with our existing active learning frame-

work (Chapter 3.3.2), it is logical to further explore the feasibility and performance of iteratively

learning label distributions for more complicated problems with subjective annotations. We first

introduce our proposed work in general, and follow up with more technical details in the process

of collecting annotations and building models.

5.1 Active Learning with Humans in the Loop

We propose our advanced humans-in-the-loop active learning framework with query strategies in

Algorithm 1. In Figure 5.1, we illustrate our framework for iteratively learning the accurate prob-

abilistic label distributions.

In our proposed framework, we update the classification model progressively with humans in the

loop to annotate queried informative instances with subjectivity through multiple iterations, to

improve class prediction performance.

93
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Figure 5.1: Illustration of our humans-in-the-loop active learning framework to progressively learn

the accurate distribution of label probabilities. DU on the top row denotes the unlabeled data

pool, which is consumed gradually (t, t + 1, t + 2, t + 3, . . . ) (represented as from dark blue to

light blue along the time line). The probabilistic distribution of labels of the tweets (bars on the

bottom row) in the validation set are updated after each round of model training—bars with darker

shade indicates more accurate class probability estimation. At each time step t, we aim to exploit

the current model (θt) predictions to intelligently query the estimated most informative samples

from DU
t and then train a new model at t + 1 with new labels collected from human annotators

(represented as trapezoids).

Input: A set of initial labeled samples DL
0 , a set of initial unlabeled samples DU

0 , number of new

samples to query each time u, number of label queries per sample h, maximum iteration

number m

Output: Model θt

t→ 1

while t ≤ m do

Add u× h human-annotated samples with labels into DL
t based on Equation 5.4 and 5.5,

respectively;

Construct θt from DL
t ;

t← t+ 1

end

Algorithm 1: Humans-in-the-loop learning framework
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5.2 Proposed Details

In this section, we briefly introduce some experiment design with specific parameters and settings

which would be considered in our proposed work.

5.2.1 Loss Function

Besides KL divergence (as used in Section 4.2.2), we want to study other alternative performance

metrics in our proposed work.

Following the same notation as Section 2.3.2, let pθ(y|x) denote the probability that a data item

x ∈ U is labeled as y ∈ {1, · · · ,m} according to model θ, where for the data item x, y is a

random variable, and pθ represents the probability distribution according to model θ. There exists

a hidden true label distribution P(x). The best we can do is to collect labeling samples from multiple

annotators to estimate P(x). Let f̂(x,DL) denote such an estimate for x based on a labeled dataset

DL.

Jensen-Shannon divergence (JSD) can be deployed to measure the symmetric similarity among two

or more probability distributions—it quantifies how “distinguishable” a set of probability distribu-

tions are from another. For every sample x ∈ U , we measure, at every time step t, the similarity

between the model predicted probability distribution pθt(y|x) and the estimated probability distri-

bution f̂(x,DL
t ). In contrast, in most conventional classification problems involving neural models,

the loss is measured by computing the cross-entropy error between the softmax of the output and

the target (true) label distribution. We do not use cross-entropy here because it penalizes for higher

entropy output while our active learning cycles should ideally be invariant to the entropy of the

input samples.

Similarly, we formulate our learning task in subjective domains using JSD as the problem of max-

imizing the following objective function:

arg min
θt

|U|
∑
x∈U

JSD(pθt(y|x), f̂(x,DL
t )) (5.1)

Equation 5.1 represents a general optimization object and should be applied to any base learner

which is denoted as θ.
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5.2.2 Query Strategies

Common active learning query strategies do not apply in subjective domains with probabilistic

distributions because they are based on the assumption that the only legitimate distribution of

labels is that where exactly one class label is non-zero or, equivalently, with zero entropy.

On the contrary, we are as interested in data with high- as with as low- entropy label distributions.

Further, we would like to study the modeling of those probabilistic distributions in all phases of

the learning cycle.

Our clustering theory basically hypothesizes that in many settings the causes of subjectivity are

limited, and this, in turn, limits the potential number of distinct label distributions present over

all elements in the data. We would thus expect good estimates of the true label distributions to

cluster around a relatively small number of points in label space.

We will empirically test whether we can improve the classification performance of an active learning

algorithm via query strategies that account for this hypothesis in their design. We will, for instance,

compare the performance of the traditional least confidence sampling to the following proposed

query strategy, which can be seen as a nonparametric strategy.

Nonparametric Choose at time t the item to be manually labeled as

arg max
x∈DU

t

{min
v∈DU

t

{|pθt(y|x)− pθt(y|v)|}}, (5.2)

where |pθt(y|x) − pθt(y|v)| is the cosine similarity between pθt(y|x) and pθt(y|v). The idea here

is straightforward: the item whose label distribution is estimated to be furthest away from all

the others in the training set should be theoretically the furthest away from any potential cluster

centers, and thus its current estimate is in the most need of updating next at t+ 1.

Beyond cosine similarity, we may explore clustering algorithms that we have not experimented with

(such as k-means clustering) to group labels into a small number of classes and then query the item

x that is the least likely to be in any of the classes C ∈ C.

arg min
x∈DU

t

{max
C∈C
{L(x ∈ C)}}, (5.3)

where the likelihood function L depends on the specific clustering algorithm.
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Large JSD Sampling This idea can be seen as a variant of uncertainty sampling, which is a

commonly-used query strategy in traditional active learning problems. We will similarly select

some samples that could be the most informative and representative according to the uncertainty

measures (which are confidence, margin sampling and entropy as introduced in Section 2.3.2). Such

uncertainty-like sampling methods can provide a good coverage of outliers of model predictions.

With this kind of measure in place, one simple heuristic—similar to choosing the most uncertain

samples in normal active learning problems—is to query the data item xi from DU
t under the model

θ whose estimated probability distribution pθi is the furthest from the average estimate of the rest

samples (the data item xi excluded) p̄θi :

arg max
i

(JSD(pθi , p̄
θ
i )). (5.4)

The above idea (Equation 5.4) may apply to cosine similarity—another measure of distance between

distributions—instead of JSD.

Small JSD Sampling Besides querying outlier samples, we further propose a model-based query

strategy to sample data with small JSD which covers a majority of certain unlabeled samples. This

query strategy is useful for models to consistently learn good feature representations and beneficial

to improve the accuracy and stability of models over multiple iterations in active learning settings.

The samples’ pseudo label distributions are assigned by the current model θ and we raise queries

as the following representations:

arg min
i

(JSD(pθi , p̄
θ
i )). (5.5)

5.2.3 Training Convergence

In our active learning framework, we repeat the above query steps to update the labeling and

training process, until we reach the stopping criteria, such as the maximum rounds of iterations m

or acceptable performance output for the model (e.g., the machine predicted label distributions of

test set are approximate to human label distributions).

One learning measure is to calculate the average JSD over multiple rounds of training to determine
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the stopping criteria and investigate the model learning convergence. When a classifier (θ) provides

a distribution of class probabilities (pθ) for a given example (x), JSD can be applied to compute

a measure of similarities between the distributions produced by a series of such classifiers (θt,

t ∈ {1, · · · , T}) as:

JSD(pθ1 , · · · , pθT |f(x)) = H(
T∑
t=1

pθt)−
T∑
t=1

H(pθt), (5.6)

where H(p) is the Shannon entropy for the probability distribution p, defined as:

H(pθ) = −
m∑
j=1

Prθj log Prθj (5.7)

where Prθj represents the probability that the model θ assigns any single class label j ∈ {1, · · · ,m}
(to the example x).



Chapter 6

Conclusion

In this thesis, we focused on learning population label distributions from crowdsourced annotations

with humans in the loop to understand social media data. The biggest motivation comes from the

subjectivity issues embedded in social media data and classification problems where no authoritative

or gold standard data exist.

In Chapter 2, we reviewed crowdsourcing techniques and humans-in-the-loop learning that inte-

grates human contributors with machine learning in an effective, efficient and inexpensive way. We

reviewed multi-label learning techniques which account for data items associated with subjective

diverse judgments, and active learning techniques that can achieve better modeling outcomes with

less training data. We also summarized a series of previous NLP research and applications which

are relevant to our thesis study, including text categorization, social issues in social media, semantic

frames, and neural network modeling, and so on.

In Chapter 3, we reviewed our previous research which laid foundations for our thesis work. We

demonstrated that non-expert and expert annotators performed differently and that labels produced

by each community led to different modeling performances and reflected differences among each

group in understanding social issues like distress and suicide. We designed crowdsourced annotation

tasks and showed in a series of experiments that it is useful to build robust machine models using

unanimous votes from multiple annotators. We developed a humans-in-the-loop active learning

framework that integrates crowdsourcing contributions, local community knowledge, and linguistic

features to identify job-related tweets from individual and business accounts on public social media,

and contributed the Twitter Job/Employment Corpus to the research community.

99
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In Chapter 4, we formalized a population label distribution learning problem with a clustering theory

and introduced our LDL algorithms to estimate ground truth and predict label distributions from

crowdsourced annotations with disagreement. We designed annotation schemes to collect multiple

annotations from crowdsourced workers. We conducted comparative experiments to comprehen-

sively evaluate different labeling strategies, clustering algorithms and neural network classification

models. We discussed model selection criteria and evaluation metrics in probabilistic learning sce-

nario. From the dataset perspective, by observing the various employment stages expressed in the

job-related tweets posted by individuals, we explored them as an issue with subjectivity in this

thesis work, together with suicide as another representative subjective domain.

In Chapter 5, we proposed our future research direction based on our existing efforts, to tackle

more challenging problems by integrating active learning with humans in the loop.
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Appendix A

Supplementary materials for Section

4.3.1

In this thesis, we address the categorization problem of career changes and transitions expressed

in job-related tweets, to illustrate our continuous work to build the humans-in-the-loop learning

framework. We are interested in modeling and detecting the major employment stages in public

social media. We aim to deepen our explorations of job-themed discourse and extract more fine-

grained knowledge and associated behavior patterns (such as going for an interview, landing a new

job, or getting laid off) from public social media data.

We first refer to the official census data about employment and unemployment, to understand how

the government or official institutions define various employment stages. This provides us with reg-

ular rules to form this multi-class classification problem. Then we match a series of job/employment

frames in FrameNet [248] to the official definitions of employment stages, to use the existing state-

of-the-art frame-semantic parsing system as an auxiliary tool in our proposed humans-in-the-loop

framework.

A.1 Employment Situations in Census Data

In published employment status surveys and reports, the U.S. Census Bureau defines the employment-

classification concept regarding three categories that characterize and determine the individual re-

lationship to the labor market: (1) Employed, (2) Unemployed, or (3) Not in labor force.
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Each respondent in their surveys is classified in one and only one category (usually during a partic-

ular survey week window) [249,250,251]. The U.S. Bureau of Labor Statistics gives the definitions

of the three types respectively: Employment1, Unemployed2, and Not in labor force3. When clas-

sifying the employment status for each tweet that was posted at a specific timestamp, it should

be classified into only one category. Besides the above three categories, we will add an additional

category (4) Others when none of the given categories is matched.

A.1.1 Employed

The employed are officially defined as:

• If people worked for pay (salary workers) or profit (self-employed) during the census survey

reference week.

• If people worked in a family-operate business or farm (at least 15 hours per week without

pay).

• If people were temporarily absent from their regular jobs (no matter they were paid or not

during the time off) because of vocation, illness, maternity/paternity leave, family/personal

obligations, labor dispute, bad weather or other short-term reasons.

A.1.2 Unemployed

People are classified as unemployed if:

• they do not have a job at all during the survey reference week.

• they made specific efforts to look for a job in the prior 4 weeks, such as: contacting an

employer or employment agency, submitting resumes or job applications, placing or answering

job advertisements, etc.

• they were available for work, such as expecting to be recalled from temporary layoff (unless

temporarily ill).

1https://www.bls.gov/cps/cps\_htgm.htm\#employed
2https://www.bls.gov/cps/cps\_htgm.htm\#unemployed
3https://www.bls.gov/cps/cps\_htgm.htm\#nilf
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A.1.3 Not In Labor Force

The labor force is defined to be made up of the employed and the unemployed. People are classified

as not in the labor force if they both have no job and are not looking for one, for example:

• students who are going to school;

• seniors who are retired.

There are cases that people are not in the labor force, but marginally attached to the labor force, if:

• they indicated their desires to have a job

• they have looked for jobs in the last 12 months

• they were discouraged by job seeking process, but available for work

A.2 Mapping Frames to Employment Stages

FrameNet derived from the linguistic and lexicographic theory of Frame Semantics [252,253,254,255]

with basic and straightforward ideas to achieve the goal of capturing information about events and

relations in text. Semantic frame was universally introduced and represented as a type of descrip-

tions of events, associated with additional information such as event participants (frame elements),

relations between one event type to another (frame relations), and words/phrases to trigger a

given frame (lexical units). Compared to classical ACE (Automatic Content Extraction) and ECE

(Entities, Relations, Events) standards to annotate entities, events, and relations in a variety of

documents, frames are much more comprehensive and finer grained [256]. FrameNet defines the

frames, annotates sentences/documents, and demonstrates frame elements, frame relations and

lexical units in syntactic structures.

Baker et al. [248] developed the Berkeley FrameNet Project and contributed an ongoing upgraded

database of distinct semantic frames and corresponding frame-evoking lexical units. The newly

released FrameNet (version 1.7) includes 1,222 identified frames and 13,586 lexical units. This

system of frame representations provides us a lexical basis for further events and actions reasoning.
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FrameNet has been heavily used as a lexical resource for Semantic Role Labeling (SRL) tasks [257].

We will start from FrameNet [248] as a reference of ontologies of job-related frame narratives, and

build our annotation scheme of job-changing events in virtue of frames.

Frame-semantic parsing that returns frames and frame elements could play an important role in

our humans-in-the-loop framework as it introduces semantic meanings when selecting samples for

human annotators to examine. Before using frames directly as some linguistic features in our

proposed multi-class classification problem, it is essential to map frames to the official employment

stages as discussed in the previous section.

A.2.1 Job/Employment Frames

In FrameNet, there are some semantic frame types related to job and employment. They are

detailed with their definitions4 as:

1. Being employed

“An Employee has a Position doing work in a particular Field, or doing work on a

particular Task, for which an Employer gives Compensation to the Employee.”

2. Employee scenario

“The sequence of events in which the Employee hires on with an Employer, holds a

Position, and finally leaves the Position.”

3. Employer scenario

“The sequence of events in which the Employer hires an Employee, employs them in a

Position for some Duration, and finally lets them go from the Position.”

4. Employing

“An Employer employs an Employee whose Position entails that the Employee perform

certain Tasks in exchange for Compensation.”

5. Employment continue

4Adopted from https://framenet.icsi.berkeley.edu/fndrupal/frameIndex
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“This is a non-perspectivized frame representing the middle stage of the Employment scenario,

in which there is a stable employment relationship between the Employee and the Em-

ployer.”

6. Employment end

“This is a non-perspectivized frame representing the final stage of the Employment scenario,

in which the relationship between the Employer and the Employee comes to an end. There

are two different ways in which the relation ends, represented in the Firing frame (in

which the Employer is agentive) and the Quitting frame (in which the Employee is agen-

tive).”

7. Employment scenario

“An Employee and Employer enter into an employment relation, wherein the Employee

remains employed for some Duration of time, and finally the relationship ends either by

the Employee leaving the job or the Employer letting go (or firing) the Employee. To

each of these events there are concomitants, such as agreeing to/signing a contract for

entering employment, compensation and performance of a service for the employment

period itself, and severance for the dissolution of the relationship. There are several other

events involved, including preparatory actions on the part of the Employer (posting the

Position), the prospective Employee’s part (looking for a job), or both (job interviews). In

addition, there is the possibility of change in the relationship of Employer and Employee

during the employment period, such as a change in Position (e.g. promotion, demotion)

and a change in Compensation (e.g. raise, paycut).”

8. Employment start

“This is a non-perspectivized frame representing the initial stage of the Employment scenario:

the formation of the employment relationship between the Employer and the Employee.”

9. Hiring

“An Employer hires an Employee, promising the Employee a certain Compensation in

exchange for the performance of a job. The job may be described either in terms of a

Task or a Position.”

10. Quitting

“An Employee voluntarily leaves the service of an Employer.”
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11. Get a job

“A new Employee obtains a Position with an Employer, with which there are certain

Tasks associated; in exchange for the performance of these Tasks, the Employee receives

Compensation from the Employer.”

These frames provides ways to answer the question in Section 4.3.1 about employment conditions

revealed in job-related tweets. If further putting some of these frames in sequence, they could

roughly form a job status cycle as illustrated in Figure 4.2, for example: Employment start →
Employment continue → Employment end → Get a job (→ Employment start).
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