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Abstract

Deepfakes, or artificially generated audiovisual renderings, can be used to defame

a public figure or influence public opinion. With the recent discovery of generative

adversarial networks, an attacker using a normal desktop computer fitted with an off-

the-shelf graphics processing unit can make renditions realistic enough to easily fool

a human observer. Detecting deepfakes is thus becoming vital for reporters, social

networks, and the general public. Preliminary research introduced simple, yet surpris-

ingly efficient digital forensic methods for visual deepfake detection. These methods

combined convolutional latent representations with bidirectional recurrent structures

and entropy-based cost functions. The latent representations for the video are carefully

chosen to extract semantically rich information from the recordings. By feeding these

into a recurrent framework, we were able to sequentially detect both spatial and tem-

poral signatures of deepfake renditions. The entropy-based cost functions work well in

isolation as well as in context with traditional cost functions.

However, re-enactment based forgery is getting harder to detect with newer generation

techniques ameliorating on temporal ironing and background stability. As these gen-

erative models involve the use of a learnable flow mapping network from the driving

video to the target face, we hypothesized that the inclusion of edge maps in addi-

tion to dense flow maps near the facial region provides the model with finer details to

make an informed classification. Methods were demonstrated on the FaceForensics++,

Celeb-DF, and DFDC-mini (custom-made) video datasets, achieving new benchmarks
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in all categories. We also perform extensive studies to evaluate on adversaries and

demonstrate generalization to new domains, consequently gaining further insight into

the effectiveness of the new architectures.
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1 Introduction

While misinformation being spread through interpersonal communication and mass media is

hardly new, we are at a pivotal point in history where advances in digital communication and

AI, in particular, threaten to magnify misinformation’s scale, persistence and consequence

[20, 57]. Historically, journalists have played a significant role vetting information before

publication and dissemination. Now, however, with deceptive information harder to verify,

journalists accidentally threaten to contribute to information anarchy, stoking unfounded

fears in the public. At best, false information may manipulate emotions and opinions. At

worst, it could lead to organized and destabilizing public actions united behind false ideas

or impressions.

Deepfakes are artificially generated audiovisual renderings of a person. These recordings,

which are typically done without consent, can be used to defame a public figure or influence

public opinion. Much like malicious computer viruses, deepfake generation [38, 21, 47, 79,

28, 29, 11, 58, 90, 68, 60, 78, 45, 82, 23, 56, 41, 89, 69, 88, 83, 82] and deepfake detection

[1, 70, 22, 55, 62, 14, 43, 54, 13, 4, 40, 18, 6, 42, 7, 16, 52, 85, 10, 2, 3, 87] techniques are

continually evolving. As time passes, deepfake generation methods are not only becoming

more realistic or believable, but they are learning to better circumvent detection methods.

In parallel, deepfake detection methods are learning to recognize subtle hints or fingerprints

inadvertently introduced by improved generation methods.
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Figure 1: An overview of the problem space. Audio and visual tracks are extracted and
processed through spoof and deepfake detection models.

Deepfake creation methods typically rely on face swapping [38, 47] or face synthesis [79]

combined with audio dubbing, voice conversion or voice synthesis [46]. Detection methods

have concentrated on structure [1, 70, 22, 55, 62, 14, 54] or soft biometrics [43, 13, 4] in

visual data, as well as spoof detection for audio [35, 80, 37]. Digital forensic methods can be

very good at detecting targeted forgeries, but they struggle at out-of-sample, or unforeseen

creation methods.

Inspired by the XceptionNet [12] architecture and convolutional recurrent neural network

methods [22, 71], we introduce simple, yet effective architectures for the detection of both

deepfake video and audio. As shown in Fig. 1, in agreement with current datasets and

challenges, we treat audio and video as separate problems. The audio and video streams

are referred to as spoof detection and deepfake detection, respectively. This research work
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focuses on the deepfake detection stream but not the audio network because there doesn’t

exist a dataset where both the audio and the video channels are manipulated.
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2 Literature Review

2.1 Deepfake Generation

Deepfake creation is a relatively new field in digital forgery. Although the generation process

began with traditional vision and voice impersonation, most recent works involve generative

adversarial networks (GANs). We will first describe the traditional approaches, and then

the adversarial methods.

In general, there are two types of deepfake generation, face replacement and face re-enactment.

In face replacement, the face of a target person is overlaid on the face of a source. The over-

laid faces are post-processed to blend the edges such that they match the source’s facial

outline. This can be used, for example, to make Nicholas Cage (the source actor) appear

in a movie in place of the original (target) actor.1 Faceswaps [39] are a graphical approach,

where the facial landmarks (nose, eyes, eyebrows, lips, chin, and cheek areas) play a major

role in morphing the target’s face with the source’s, and the output is post-processed with

edge polishing and color correction.

Facial re-enactment, on the other hand, is used to make a target appear to act and speak

like the source. This is used, for example in the videos where former U.S. President Barack

Obama is made to say whatever the source video says.2 Facial re-enactment techniques

1https://www.theguardian.com/technology/ng-interactive/2019/jun/22/the-rise-of-the-deepfake-and-
the-threat-to-democracy

2https://www.buzzfeednews.com/article/davidmack/obama-fake-news-jordan-peele-psa-video-buzzfeed
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model both the source and target faces to identify facial landmarks and manipulate the

target’s landmarks to match the source’s facial movements. Face2Face [79] is a face re-

enactment method that translates the facial expressions of a source subject with a target

while maintaining the facial features of the target.

More recent Deepfake methods are based on Generative Adversarial Networks (GANs) [21].

GANs consist of two competing neural networks: a generator G that generates fake samples

that mimic real samples from a target dataset, and a discriminator D that tries to tell fakes

apart from real samples. These two networks are trained simultaneously, such that over the

training period, both the generator and discriminator improve. Upon successful convergence,

the generator can then be used to create realistic-looking examples. To promote variation, G

is seeded with a noise vector, but this noise vector can be paired with a latent representation

of an object (word, image, sentence), to constrain the resulting image [61].

Zhu et al. [91] and Kim et al. [31] built on the GAN concept and replaced the noise vector with

input images. This modification enabled their cycle-consistent GANs to alter the domains of

the output images based on the input image domains. Similarly, in deepfake generation, it is

possible to retain the facial expressions of a source person while transferring identities to a

target person. Lu et al. [48] proposed an identity-guided conditional CycleGAN to translate

low-resolution face images to high-resolution face images. Kim et al. [30] accomplished a

similar transfer, with the difference being that they transfer expressions as well as 3D pose
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into a target image, creating a video in the process. Faceswap-GAN [47] created realistic

looking imagery using adversarial and perceptual losses. The addition of a perceptual loss

was shown to minimize unnatural artifacts such as awkward eyeball movements. Temporal

smoothing of the frame-to-frame face detection box and an attention mask made the created

videos appear more realistic. NeuralTextures [78] is a facial re-enactment forgery that relies

directly on facial landmarks. These fakes are generated using a patch-based adversarial loss

alongside a photometric reconstruction loss.

Wang et al. [83, 82] proposed flow-based video-to-video synthesis that required training on

multiple talking videos of the same person for face re-enactment forgery and revamped the

network to only use a single image of a person in generating a deepfake. Siarohin et al. [69]

introduced a learnable optical flow network approximating it to a first-order Taylor polyno-

mial. Their method enabled few-shot capability to generate a manipulated video of a person

using a single image. Li et al. [41] devised an adaptive-attention-based denormalization

generator for high-quality face replacement using a novel learning metric. In an interesting

twist, Suwajanakorn et al. [72] achieved photorealistic results by only requiring audio as an

input to generate forged videos. Using the weekly addresses of Barack Obama, the raw audio

features are first mapped to mouth shapes, then mouth textures, then 3D pose mapping,

and finally compositing of the head and torso from stock footage.
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2.2 Deepfake Detection

Since the threats posed by deepfake video manipulations became apparent in early 2018,

several works have looked into detecting them. A few of the detection techniques targeted

handcrafted features [43, 13, 50] like blinking inconsistencies, biological signals, and unreal-

istic details. Most of these manually crafted detection features exploit known weaknesses in

creation methods. Like a cat-and-mouse game, deepfake creation methods quickly adapted

to circumvent detection, and the cycle repeats. Recent detection methods [40, 18, 6, 42,

7, 16, 52, 85, 10] rely on machine learning on deepfake datasets to automatically discover

forgeries from real videos.

MesoNet [1] uses a shallow convolutional network to detect forgery at a mesoscopic (or inter-

mediate) level of detail, intentionally avoiding focusing too much on microscopic features that

could be lost due to video compression. They also introduced a variant of their model that

replaces regular convolution blocks with MesoInception blocks to get slight improvements.

The Capsule-Forensics method proposed by Nguyen et al. [55] uses capsule networks [25] for

the detection of replay attacks as well as computer-generated images and videos. They argue

that the chances of detecting high-quality forgeries would be increased with the agreement

between capsules through dynamic routing [65]. Cozzolino et al. [14] applied an autoencoder-

based architecture to show its usefulness for transfer learning. Nguyen et al. [54] extended

Cozzolino et al.’s network by replacing the standard decoder with a decoder that additionally
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generates a mask of the manipulated region through multi-task learning.

XceptionNet [12] is one of the more promising deep neural models for feature extraction

when trained either from scratch or with pre-trained ImageNet [15] weights. As such, we

choose XceptionNet as an embedding space instead of the networks used in prior works [22,

71]. The network architecture not only uses skip connections akin to ResNet [24] with an

Inception-like [74] convolutional arrangement, but it also has a modified version of depth-

wise separable convolutional layers for reducing the number of parameters with marginally

better performance.

While the previously mentioned methods targeted intra-frame inconsistencies, Güera and

Delp [22] introduced a spatio-temporal model with InceptionV3 [74] as the feature extraction

network to tackle deepfakes. The features from their time-distributed extraction network are

forwarded to a unidirectional Long Short-Term Memory (LSTM) network that ultimately

makes the classification decision. Sabir et al. [64] evaluated the same architecture with

different feature extractors [27, 24]. Their face-extraction process was adjusted by aligning

the faces from consecutive frames using facial landmarks to maintain temporal consistency.

While their performance on manipulated videos [22] from the HOHA dataset [84] was quite

good, performance on the larger and more complex FaceForensics++ [62] dataset was not

as effective.
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Agarwal et al. [4, 2, 3] took an alternative approach to detection by treating the problem

as one of anomalous behavior detection. They learn the typical behavior of the subject

from real videos by extracting facial landmarks and temporal actions and use them to train

novel networks for behavioral understanding. They also model correlation-based anomaly

detection between lip movements and phonemes/visemes. Although these methods cannot

be used on unforeseen faces, it is an effective option to preserve robustness against future

improvements in other aspects of deepfake generation. For example, they claim there is al-

ready sufficient data for most world leaders, although it would be a considerable undertaking

to train a detector for all government officials, corporate leaders, or persons of interest.

It is also established that GANs leave their impression on the samples they generate. Yu et

al. [87] discuss the potential of GAN fingerprinting analysis by developing a network that is

able to extract the model fingerprint from the samples. However, this technique can only be

used as a baseline to improvize on because their work can’t be generalized for a plethora of

deepfake generators.

Although most of the deepfake detection models are accurate on paper, they are unequivo-

cally prone to adversarial attacks. Some of the works [59, 53, 9, 63] analyze the pitfalls of

the state-of-the-art detectors by delving into the adversaries and demonstrate the need for

robust forgery detectors.
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Additionally, recent survey papers [81, 77, 51] in the domain present a comprehensive un-

derstanding on the state-of-the-art methods and comparative analysis.
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3 Background

3.1 CNNs for feature extraction

Facenet [67] provides a unique embedding space for facial recognition and clustering. This

deep convolutional neural network uses triplet loss for training where the objective is to not

only minimize the distance between the feature points of the same face in a euclidean space

but also maximize the distance between different faces. Triplet loss is defined as

N∑
i

[||f(xai )− f(xpi )||
2
2 − ||f(xai )− f(xni )||22 + α]+ (1)

where a, p, and n are anchor, positive, and negative samples respectively. f(x) represents

the embedding vector of an image. α is defined as the margin between positive and negative

pairs. It is essentially a threshold that determines how distant positive pairs should be

relative to that of negative pairs. A secondary advantage of using triplet loss is that there

exists a large set data samples from all the possible combinations of anchors and positives

even if the dataset isn’t large enough. The embedding space of the Facenet architecture is

designed to be 128-dimensional.

XceptionNet (Fig. 2) [12] is a deep convolutional neural network that enhances feature

abstraction by using modified depthwise separable convolutions instead of traditional 2D
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Figure 2: XceptionNet as a feature extraction model, converting each video frame to a latent
vector embedding.

convolutions. As the architecture is a deep network, residual connections establish an identity

nexus for the gradients to be propagated in a better fashion without any depreciation. The

model produces a 2048-dimensional feature space for a 299 x 299 RGB image. On the

Imagenet [15] leaderboard, XceptionNet is shown to perform better in a classification setting

than traditional deep networks [70, 24, 73].

EfficientNet [76] is a neural architecture designed using neural architecture search (NAS).
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Figure 3: EfficientNet baseline archiecture [76].

NAS is a technique for automating the design process of a deep artificial neural network.

Traditionally, CNNs are designed in an austere fashion and scaled up to improve the per-

formance. The conventional method of scaling involves either the width or the depth of

the network. The authors present a compound model scaling technique against available re-

sources to improve the performance of a model. They perform a grid search of the available

scaling options to determine the scaling coefficients and test the performance of the model

layer-by-layer. Using this information, they scale the baseline network to the desired size

which is computationally viable as constrained.

However, to design an efficient model as a whole, the baseline architecture should be able

to extract adequate features from the image dynamics. This hypothesis drove the team to

rely on MnasNet [75] for the design of the baseline network. They scaled up the baseline to

obtain a family of models, named EfficientNets (variants ranging from B0 to B7). In com-

parison with the traditional classifiers [70, 24, 73, 12] on Imagenet [15], EfficientNets showed

outstanding performance with a reduction in parameter size and floating point operations.

Likewise, they also proved to be consistent in transfer learning applications.
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3.2 Long Short-Term Memory (LSTM)

Recurrent units from RNNs suffer from perpetuating short-term memory. If a set of features

are passed into recurrent units in multiple timesteps, RNNs fail in utilizing features from

earlier timesteps to later timesteps when making an informed decision pertaining to the task.

LSTMs were created as a solution to the short-term memory drawback. They are designed

with internal gates that regulate the flow of information between timesteps.

Figure 4: An LSTM unit (adapted from [26])
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The following equations describe the computations involved in an LSTM cell -

it = σ(xtU
i + ht−1W

i)

ft = σ(xtU
f + ht−1W

f )

ot = σ(xtU
o + ht−1W

o)

ćt = tanh(xtU
g + ht−1W

g)

ct = σ(ft ∗ ct−1 + it ∗ ćt)

ht = tanh(ct) ∗ ot

(2)

where i, f , and o indicate input, forget and output gates respectively. Additionally, c stands

for the cell state and h stands for the hidden state of an LSTM unit.

The core idea of a working LSTM is its cell state and the operations carried out by the

gates. In theory, the cell state is expected to carry relevant information down the temporal

sequence of the recurrent layer. During training, the gates act as tiny neural units that decide

which information is considered relevant. Information from the previous hidden state and

the current input is passed through the forget gate ft where the sigmoid activation decides

if the information needs to be memorized or ignored. At the input gate it, tanh activation

constrains the information between -1 and 1, thus regulating the network. This knowledge

is multiplied with the resultant forget state to ensure that only relevant information is
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propagated. Eventually, the output gate ot decides what the next hidden state ht should be.

The hidden state is responsible in carrying the information from the previous inputs of the

LSTM layer.

3.3 Optical Flow

Naively, optical flow is defined as the pattern of motion caused by moving objects in a video.

OpenCV [8] provides extracting two types of flow from a visual motion sequence, namely

sparse flow and dense flow. Sparse flow uses Lucas-Kanade [49] method and produces the

flow vectors of salient feature set of pixels in an image i.e., corners or geometric center of

objects whereas dense flow generates instance-level flow vectors of the entire frame regardless

of the object in focus. For dense flow, OpenCV computes the magnitude and direction of the

flow from a 2-D array of flow vectors. OpenCV’s dense flow uses Gunnar Farneback’s [19]

algorithm.

3.4 Edge Detection

Edge detection involves a variety of mathematical transformations on the image that aim to

extract the edges at the pixels across which there are discontinuities in the intensity. Sobel,

Prewitt, Laplacian, and Canny are some of the most common edge detection algorithms.

Sobel, Prewitt, and Laplacian edge detectors use simple two-dimensional filters that operate

on the image to produce an edge map whereas Canny edge detection is relatively complex

in functioning.
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Canny edge detector is also the most effective of the aforementioned algorithms. It follows

a series of operations on an image in order to produce an edge map. The first step of Canny

edge detection involves applying Gaussian filter on the image to attenuate the noise. Now,

the gradients (and their orientation) of the filtered image are computed using either of Sobel

or Prewitt edge detectors. To this intermediate map, non-maximum suppression is applied

so that remaining noisy pixels and thin broken edges are suppressed. This leaves out both

properly drawn edges and broken edges due to suppression applied in the previous step.

Hysteresis is a method of linking such broken edges that are meant to be connected. Using

appropriate thresholding, smaller edges can be ignored and perceptible ones are conjoined.
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4 Proposed Deepfake Detection Architecture

Although newer deepfake generative algorithms process multiple frames at a time and devise

a flow-based learning metric, the existence of temporal inconsistencies is plausible regardless

of any post-processing during their generation. To equip ourselves in detecting any forged

audio or video, we discuss the advantages of recurrent conformations over convolutional

feature extractors by presenting deep neural models in visual domain. Our architecture for

deepfake detection is inspired by the spatio-temporal processing used in prior works [22, 71].

We use a convolutional architecture to obtain a vector representation of a facial region of a

frame, fi. A sequence of such facial regions from frames, f1, f2, . . . , ff are passed into a bidi-

rectional LSTM module to learn a latent representation capable of discriminating between

facial manipulations and original faces. Additionally, we leverage the optical flow from the

video to endow the model with dense visual features and facilitate in robust discrimination

of deepfakes apart from the original videos.

4.1 Preprocessing

4.1.1 Face Extraction

The dlib [32] face detector determines the primary face over each frame in the video. Canon-

ical face images are generated by cropping to the dlib facial bounding box with a multiplier

three times the area of the extracted bounding box, resampling to 299 × 299 pixels, and



Akash Chintha’s Masters Thesis Document 28

normalized to zero mean and unit variance.

As dlib extracts faces individually for each frame, we observed that the subsequent face

images have subtle differences in the box coordinates. Similar to Faceswap-GAN [47], we

apply a linear smoothing filter over the box coordinates of consecutive frames to mitigate

the temporal inconsistency introduced in the extraction process.

4.1.2 Optical flow and Edges

We use OpenCV [8] to extract the dense optical flow from the consecutive frames in a video.

If there exist n frames in a video, we get n−1 flow maps. The dense optical flow is generated

using three layers of pyramids where each layer is half the size of the previous. The window

size for constructing the flow is set to 15 for three iterations. Then, the flow is represented

in RGB channels to signify the magnitude and direction of motion.

Figure 5: The EdgeFlow (EF) input shown on the right is generated using the test sample
on the left.

In addition to the flow map between kth and (k+ 1)th frames, we propose supplementing the

dense flow map with the edges produced in the kth frame. OpenCV’s canny edge detection is



Akash Chintha’s Masters Thesis Document 29

employed for this strategy. The OpenCV function for canny edge detection has a provision

for manual threshold apart from the image. The threshold is set to 100 below which all

edges detected are discarded. The canny edge function returns a grayscale image with

sparse features which is converted into an RGB image.

Eventually, an edgeflow map is devised by element-wise addition between the edge map and

the flow map; as depicted in Figure 5.

4.2 Architectures

4.2.1 CNN+Temporal Model

Canonical faces are encoded using the CNNs described in Section 3.1. We propose FacenetL-

STM, XcepTemporal, and EffTemporal; convolutional recurrent networks with multiple lev-

els of temporal feature abstraction. The spatial features from the CNN module are passed

into a first bidirectional-LSTM layer. The outputs of the first bidirectional-LSTM layer are

passed to a second bidirectional-LSTM layer to produce secondary feature abstraction. The

feature vector from the last LSTM unit of this second bidirectional layer is passed into a fully-

connected layer and finally to a classification layer. Dropout is added to the fully-connected

layer for regularization.
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Figure 6: The CNN+Temporal model. Faces are first extracted and normalized to a canonical
representation. These canonical images are passed into a convolutional recurrent model to
make a prediction. µ and σ2 represent the mean and variance of the distribution in a two-
dimensional space.

4.2.2 RGB+EF XcepTemporal Model

Although the CNN+Temporal model seemed to work well for within-dataset test samples, it

is still only an initial step towards building robust deepfake detectors. The CNN+Temporal

model is sensitive to visual constituents like lighting, blur, noise, and compression. This

makes the model vulnerable to manipulations by such adversarial elements.

We propose leveraging the dense motion facets of the video as it not only invigorates resilience

against adversarial attacks but also provides the recurrent layers with beyond-the-visual flow

attributes which could ultimately be used in making a better decision.
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Figure 7: The early fusion, mid-fusion, and late fusion (left to right) variants of XceptionNet
feature extractor of the RGB+EF XcepTemporal model.

As described in Section 4.1.2, we devise edge flow maps that can be used to enhance the

feature abstraction ability of the CNN feature extractor. We chose XceptionNet [12] as

the feature extractor in designing the RGB+EF variants of the model. The entry flow and

exit flow of XceptionNet described in Figure 7 are shown in blue and purple regions in

Figure 2 respectively. The plus (+) symbol indicates element-wise addition of features at

that particular layer.

4.2.3 Loss Functions

Faces from real videos are hypothesized to have their own embedding distribution, while

different types of generated fake videos can either be clustered together or in disparate

distributions. The main goal in our system is to discriminate the real video distribution

from that of the forged videos. To this end, we compare the use of two loss functions for
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learning the discrimination accurately: Cross-entropy and Kullback-Leibler (KL) divergence.

Cross-entropy loss is the conventional loss used in classification and is defined as

LCE = − log

(
eyc∑1+nf

j=1 eyj

)
(3)

where yc is the ground truth logit value and (1 + nf ) represents one class for real videos

alongside nf deepfake classes.

KL divergence, also known as relative entropy, is a natural approach to measure the

differences amongst probability distributions. Inspired from the application of KL divergence

in variational autoencoders [34], the high-level idea is to disentangle different probability

distributions via parameter learning. We hypothesize that the probability distribution of

the real and ersatz material [5] when mapped into a two-dimensional space from the latent

feature representation generated after the primary fully-connected layer can be disentangled.

In this setting, mean (µ) and variance (σ) of the bivariate normal distribution N are esti-

mated to be computed from the latent feature vector. The loss function encourages the model

to distinguish one distribution from another. The bivariate KL divergence is represented as:

DKL(N ((µ1, µ2)
T , diag(σ2

1, σ
2
2)) || N (0, I)) = λ (

n∑
i=1

σ2
i + µ2

i − log(σi)− 1) (4)
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We use λ = (1/2).

Similar to the Fisher linear discriminant loss, the KL loss is equivalent to the sum of class-

wise KL divergences. Intuitively, the KL loss distributes all the learned samples of each class

in a densely packed normal distribution and clusters the samples from one class further away

from other classes. The loss composition of the KL-divergence metric is defined as:

LKL =
n∑

i=1

yi log(
yi
ŷi

) (5)

The choice of using a two-dimensional space was determined empirically.

We also propose to use an ensemble of the learning procedures with a convex combination

of the cross-entropy and KL divergence losses. The ensemble loss function is defined as:

LEN = λ1 LKL + λ2 LCE (6)

where λ1 and λ2 are the weights allocated to respective loss metrics to provide a flexible over-

all loss function. We typically allocate a larger weight to KL divergence than cross-entropy

for deepfake detection, as KL divergence aids in driving the real and fake distributions further

apart.
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4.2.4 Variants

As we proposed to make use of two different loss metrics, they were made use in isolation

and also in combination to define the variants of our CNN+Temporal model. We then

choose the best performing loss metric across the variants of the CNN+Temporal network in

RGB+EF XcepTemporal model. Within the XceptionNet model architecture of RGB+EF

XcepTemporal model, we introduce various fusion techniques and comprehend which of them

performs the best during inference.

We propose four variants of the CNN+Temporal model:

1. CNN+Temporal (CE).

• CNN+Temporal with cross-entropy loss LCE.

• It follows the horizontal line path to the blue box labelled ”Class Layer” in Fig-

ure 6.

2. CNN+Temporal (KL).

• CNN+Temporal with KL divergence loss LKL.
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• It follows the dashed line path to the yellow box labelled ”KL-Divergence” in

Figure 6.

3. CNN+Temporal (EN).

• CNN+Temporal with ensemble loss LEN .

• This variant has two classes in the classification layer of the model (real and fake).

• It has a Y-shaped final layer where the outputs are a two-class classification layer

and a sample in two-dimensional space.

4. CNN+Temporal (EN1+n).

• CNN+Temporal with ensemble loss LEN .

• This variant has 1 + nf classes in the classification layer of the model (one real

and nf fakes).

• It has a Y-shaped ultimate layer where the outputs are a (1 + nf ) - class classifi-

cation layer and a sample in two-dimensional space.
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• This variant not only distinguishes the distribution of fakes from original faces

but also determines the type of fake.

We propose three variants of the RGB+EF XcepTemporal model:

1. RGB+EF XcepTemporal (Early Fusion).

• RGB+EF XcepTemporal with KL divergence loss LKL.

• The CNN feature extraction is depicted on the left in Figure 7.

• Both the inputs i.e., the face and its edge flow are fused early to produce a 6-

channel input for the XceptionNet model

2. RGB+EF XcepTemporal (Mid-Fusion).

• RGB+EF XcepTemporal with KL divergence loss LKL.

• The CNN feature extraction is depicted in the centre of Figure 7.

• Both the inputs have separate streams of entry flow and are element-wise added

to have a single exit flow.
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3. RGB+EF XcepTemporal (Late Fusion).

• RGB+EF XcepTemporal with KL divergence loss LKL.

• The CNN feature extraction is depicted on the right in Figure 7.

• Both the inputs have separate streams of entry and exit flows and their feature

vectors are element-wise added to produce a single feature vector.
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5 Results

5.1 Datasets

UADFV [86] uses traditional vision approaches to generate manipulated videos. The gen-

eration process maps the facial landmark points of the source to that of the target. This

dataset consists of 49 real and 49 fake videos.

DeepfakeTIMIT [36] was built from the VidTIMIT [66] dataset using a GAN-based face

swap [47] over dataset subjects. This dataset uses 32 subjects, each with 10 face swap videos

of both low and high quality for a total of 620 fake videos.

FaceForensics++ [62] contains four different types of deepfakes, namely Face2Face [79],

FaceSwap [47], Deepfakes, and NeuralTextures [78], alongside corresponding real videos. The

dataset contains 1000 real source videos and 1000 of each of the four deepfake generation

methods. Since the traditional vision and face swap methods used to create the UADFV

and DeepfakeTIMIT datasets, respectively, are also in FaceForensics++, most works do not

report on UADFV or DeepfakeTIMIT.

The FaceForensics++ dataset was updated on 23rd August 2019 to host the Deep Fake

Detection (DFD) dataset from Google and JigSaw [62], which consists of 360 original

source videos and 3000 manipulated videos.
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Celeb-DF [44] was built from 400 original YouTube videos and 800 synthesized videos.

Unlike the aforementioned datasets, these fakes are refined to address issues with color

inconsistency, low-frequency smoothing, and temporal flickering. Additional refinements

include synthesis of higher-resolution fakes (256 × 256), whereas the algorithms used in

previous works synthesized low-resolution (64× 64) fakes.

Deepfake Detection Challenge (DFDC) [17] by Facebook consists of 19k real videos

and 95k deepfakes generated using the real videos. The manipulated set of the challenge

consists of face replacements and video tampering. As our work doesn’t focus on detecting

visual tampering, a partial dataset, referred to as DFDC-mini in the later sections, was

isolated with 872 real videos and their corresponding 1241 face replacement videos.

YouTube (YT) consists of 20 real and 20 fake videos that we collected from YouTube.com

as a way to test accuracy on unseen samples. The 20 real videos all feature a single camera-

facing subject, while the 20 fake videos are from the Ctrl Shift Face YouTube channel.3 We

do not know which deepfake technique the creator of this channel uses, however we do know

that he uses face-swapping as opposed to facial re-enactment methods.

The datasets UADFV and DeepfakeTIMIT are not used in this research as the quality of

the fakes in these video datasets are visibly distinguishable and prior works already proved

3https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g/

https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g/
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to detect these fakes quite easily. We also chose not to utilize DFD dataset in our work

because the samples resemble FaceSwaps from FaceForensics++. We decide to concentrate

on FaceForensics++, Celeb-DF, and the more difficult DFDC-mini dataset for evaluating all

of our models. To test on the real-world deepfakes, we use DFDC-preview and YT datasets

to assess the efficiency of our models.

5.2 CNN+Temporal Model

5.2.1 Baselines

We compare our work with six high-performing deepfake detection models proposed in prior

work: CapsuleForensics [55], ClassNSeg [54], ConvLSTM [22], FaceNetLSTM [71], DenseNe-

tAligned [64], and XceptionNet [12]. We use code provided by the authors for this pur-

pose. The performance of most of these models have been previously reported on the same

datasets [62, 44]. For a fair comparison, however, we tested them along with our variants of

XcepTemporal on identical train and test splits.

Prior work did not describe how to address making a detection decision on an entire video

instead of a single frame. As we are interested in results on the entire video and to provide a

fair set of baselines for comparison, we propose a simple mechanism for converting a frame-

level model into a video-level model. We first pass the frame-level results, which produce a

higher value for frames that more likely to be fake, through a median filter with a window
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size of five, which helps to reduce false positives by smoothing out the resulting output. We

then take the maximum output from these windows as the overall result for the video. While

this can result in some false positives, it is important to detect a video as fake when even

just a short portion of the video is fake.

We applied this procedure to all of the baseline frame-level models to produce video-level

models, and we report the results for both frame-level and video-level models for multiple

methods of comparison.

5.2.2 Training
Split Train Validation Test

Videos 4520 904 819

Facial frames 1,437,681 281,462 248,623

Table 1: Data splits for our combined dataset, which is composed of the FaceForensics++
and Celeb-DF datasets.

We trained our CNN+Temporal model and the baseline models on the combination of the

full FaceForensics++ [62] and Celeb-DF [44] datasets. For the training, validation, and test

splits, we used the instructions provided along with the datasets. As Celeb-DF does not

offer any validation split, we randomly chose 50 real and 134 fake videos from the training

data to create a validation split. The test sets for both datasets was left unaltered. The

splits used are shown in Table 1.

We set the learning rate to 1e-4 with a decay factor of 1e-5. The optimizer is Adam, with β1
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Model

Dataset FaceForensics++ [62] Celeb-DF [44]

Real F2F NT DF FS Overall Real Fake Overall

ClassNSeg [54] 40.52 76.37 74.78 93.78 69.14 79.76 42.62 49.17 46.31

ConvLSTM [22] 83.13 88.72 85.71 92.91 90.61 87.84 74.76 80.22 78.17

DenseNetAligned [64] 90.68 89.32 87.30 94.05 91.32 90.53 71.66 87.90 81.39

CapsuleForensics [55] 90.20 96.88 97.40 96.00 97.22 95.54 - - -

XceptionNet [12] 91.82 96.13 98.14 99.21 99.89 97.03 79.62 95.12 89.55

Our Models

FaceNetLSTM [71] 94.01 87.20 86.89 89.16 90.60 89.57 72.95 84.11 79.83

XceptionNet (KL) 100 100 100 100 100 100 93.72 98.25 96.89

XcepTemporal (CE) 100 98.57 100 100 100 99.71 94.66 98.81 97.01

XcepTemporal (KL) 100 100 100 100 100 100 94.04 99.72 97.73

EffTemporal-B4 (CE) 100 100 100 100 100 100 95.13 98.64 97.21

EffTemporal-B4 (KL) 100 100 100 100 100 100 95.40 99.36 98.03

XcepTemporal (EN) 87.92 98.22 98.76 100 100 96.98 92.91 100 97.34

XcepTemporal (EN1+n) 93.10 96.61 95.02 99.93 99.82 96.89 95.01 99.22 97.83

Table 2: Within-Domain Accuracy: Frame-level accuracy on the FaceForensics++ [62]
and Celeb-DF [44] official test sets. Abbreviations: Face2Face (F2F), FaceSwap (FS), Deep-
fake (DF), and NeuralTextures (NT).

set to 0.9 and β2 set to 0.999, these being the default values suggested by Kingma and Ba’s

original paper on Adam [33]. A dropout of 0.5 is added to the first fully-connected layer.

Based upon hyperparameter tuning results, we set the sequence length to eight frames with

a stride of eight. All the variants of the model were trained end-to-end.

5.2.3 Within-Domain Results

The most basic test for deepfake detection is to train and test on the same datasets. We

show accuracy based on evaluating one frame at a time in Table 2, and show accuracy across
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the entire video in Table 3. We find that XceptionNet and EfficientNet based models are

very effective almost uniformly across all samples. In particular, the XceptionNet (KL) and

XcepTemporal (KL), EffTemporal (CE), and EffTemporal (KL) models achieve 100% accu-

racy for the entire FaceForensics++ dataset for both frame-level and video-level detection,

while XcepTemporal (CE) is close behind at 99.71% for frame-level detection and 100% for

video-level detection.

Among prior works, only XceptionNet [12] and CapsuleForensics [55] could achieve 97%

or above, where XceptionNet particularly suffers from false positives at over 8% FPR in

frame-level detection and over 11% FPR in video-level detection.

The two ensemble methods do not fare as well in FaceForensics++ at about 97% accuracy

on frames and 99% accuracy on full videos, but they reach new standards for accuracy on

the Celeb-DF dataset. EffTemporal (KL) has the overall best accuracy on frames at 98.03%

and 99.53% on full videos.

In our experience with training the models, using the 1.4M facial frames in the training set

(see Table 1), the CNN+Temporal (CE) takes four epochs to converge on the training data,

whereas the KL variant takes only two to three epochs to converge. The models with LKL

loss tend to converge faster than the cross-entropy loss LCE because the latent distribution

generated by the model is distinct between the original and the forged faces. By contrast,
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Model

Dataset FaceForensics++ [62] Celeb-DF [44]

Real F2F NT DF FS Overall Real Fake Overall

ClassNSeg [54] 47.14 65.71 60.00 64.29 48.57 57.14 - - -

ConvLSTM [22] 90.71 93.57 91.43 94.29 93.57 92.71 71.05 83.95 79.83

DenseNetAligned [64] 89.28 95.00 93.57 96.43 95.71 94.00 73.68 88.88 84.03

XceptionNet [12] 88.57 96.43 98.57 100 100 96.71 68.42 100 89.91

Our Models

FaceNetLSTM [71] 94.28 92.14 90.71 95.71 95.71 93.71 77.77 86.41 84.03

XceptionNet (KL) 100 100 100 100 100 100 89.48 93.83 92.44

XcepTemporal (CE) 100 100 100 100 100 100 97.37 100 99.16

XcepTemporal (KL) 100 100 100 100 100 100 97.37 100 99.16

EffTemporal-B4 (CE) 100 100 100 100 100 100 97.64 100 99.24

EffTemporal-B4 (KL) 100 100 100 100 100 100 98.12 100 99.53

XcepTemporal (EN) 94.29 100 100 100 100 99.14 94.74 100 98.32

XcepTemporal (EN1+n) 97.86 99.29 97.86 100 100 99.00 97.37 100 99.16

Table 3: Within-Domain Results: Video-level accuracy on FaceForensics++ [62] and
Celeb-DF [44] official test sets.
Abbreviations: Face2Face (F2F), FaceSwap (FS), Deepfake (DF), and NeuralTextures (NT).

EN variants of the model take the longest to train (ten epochs) because the gradients from

both the losses compete with each other. The convergence is slower in the early stages of the

training, but once both the channels start learning, the rate of convergence nearly doubles.

The next sections will explore these models further to help understand how the architectural

variations affect performance.
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5.2.4 Cross-Domain Results

A critical property of deepfake detection models for real-world use is good inference per-

formance on deepfake types not included in the training dataset. One way to measure this

performance is to train on publicly available deepfake datasets from Table 1, and test on the

unforeseen cross-domain samples in the Deepfake Detection Challenge preview dataset [17].

As shown in Table 4, we use binary class models, such that we expect the unforeseen fakes,

M-A and M-B to be both classified as fakes. Table 4 shows that the KL variant of our

XcepTemporal model performs significantly better than the CE variant. We believe this

is because the KL loss naturally encourages larger margins between the two different dis-

tributions. By encouraging existing classes (real vs. forgery) to be far apart, unforeseen

cross-domain variations are more likely to fall on the correct side of the boundary.

5.2.5 Compression

A simple but effective way to bypass deepfake detection is to apply compression to the

deepfake video. This section examines the performance of our models on two different types

of compression techniques (JPEG and MPEG).

JPEG Compression. OpenCV [8] provides an option to compress individual frames with

a reduction in quality as shown in Fig. 8. The quality factor is a measure of the compression

rate of JPEG images, ranging between 0 and 100. High numbers between 90-100 represent

3https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g/

https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g/
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Model

Dataset DFDC [17] YT

Real M-A M-B Real Fake

ClassNSeg [54] 25.02 76.21 71.07 49.00 54.62

ConvLSTM [22] 59.41 20.68 51.39 77.90 92.45

FacenetLSTM [71] 58.32 13.68 69.02 81.38 90.36

DenseNetAligned [64] 69.12 35.17 52.31 75.25 92.30

XceptionNet [12] 54.67 28.63 74.55 93.82 95.25

Our Models

Xception (KL) 67.18 55.91 76.11 98.35 100

XcepTemporal (CE) 87.34 65.99 85.03 100 100

XcepTemporal (KL) 92.19 73.21 88.34 100 100

XcepTemporal (EN) 93.26 76.08 90.10 100 100

Table 4: Cross-Domain Results: Models trained on FaceForensics++ [62] and Celeb-
DF [44] and then tested on out-of-sample DFDC-preview [17] and YT datasets. Method-A
(M-A) and Method-B (M-B) are two types of manipulated videos released in the DFDC-
preview dataset.

minimal visual quality loss, while numbers less than 60 represent visually significant quality

loss. Lower quality factor images take up less disk space. Table 5 shows the test accuracies

for our models as well as for the DenseNetAligned and XceptionNet models, two of the best

models in our results for uncompressed video. Our models perform the best on most settings

in the Face2Face, Deepfakes, FaceSwap, and Celeb-DF datasets, while XceptionNet performs

the best for JPEG compression on NeuralTextures fakes. We note a severe degradation in

deepfake detection performance across all the models for highly compressed faces. The accu-

racies are significantly more affected by compression on re-enactment-type fakes (Face2Face

and NeuralTextures) than the replacement-type (Deepfakes and FaceSwap).
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Model F2F NT DF FS Celeb-DF

DenseNetAligned [64]

JPEG Quality = 75 64.69 70.10 76.49 70.33 48.67

JPEG Quality = 50 29.17 25.34 56.60 50.44 13.16

JPEG Quality = 25 0.32 0.26 12.90 18.31 4.03

MPEG Quant. = 20 73.68 62.44 79.51 77.63 -

MPEG Quant. = 40 18.17 20.31 52.11 45.67 -

XceptionNet [12]

JPEG Quality = 75 75.60 70.17 89.32 91.59 63.02

JPEG Quality = 50 50.62 45.48 73.38 72.73 30.78

JPEG Quality = 25 0.81 0.53 20.17 16.84 7.29

MPEG Quant. = 20 80.12 75.24 84.25 82.38 -

MPEG Quant. = 40 27.16 25.41 60.05 56.59 -

Our Models

XcepTemporal (CE)

JPEG Quality = 75 80.62 69.54 99.40 95.63 82.65

JPEG Quality = 50 42.31 37.06 89.23 80.86 52.31

JPEG Quality = 25 0.07 0.03 37.28 46.04 1.32

MPEG Quant. = 20 98.66 86.16 90.13 88.62 -

MPEG Quant. = 40 48.75 16.96 78.95 64.64 -

XcepTemporal (KL)

JPEG Quality = 75 84.33 61.07 99.82 97.81 84.19

JPEG Quality = 50 53.05 18.44 97.95 94.45 48.68

JPEG Quality = 25 0.02 0.01 18.97 46.67 0.81

MPEG Quant. = 20 93.86 88.81 95.02 91.17 -

MPEG Quant. = 40 0.07 46.04 37.28 0.03 -

Table 5: Compression: Results for different rates of compression. Results in bold indicate
the best results across the four tested models for the given setting. Note that high JPEG
quality means less compression, while high MPEG quantization means more compression.

MPEG Compression. The models were additionally tested on the effects of video com-

pression using videos saved at two different H.264 quantization factor levels, as previously
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Figure 8: Visualization of image compression on a test sample. The original frame is shown
in the top-left corner. Compression using JPEG Quality 75, 50, and 25 are displayed in the
top-right, lower-left, and lower-right corners, respectively.

explored by Agarwal et al. [4]. The quantization factor reflects the MPEG compression rate

of the videos. The higher the quantization factor, the lower the quality and greater the

compression. We selected a quantization value of 20 to represent high-quality MPEG videos

and 40 to represent low quality MPEG videos. Table 5 shows a drastic drop in accuracy at

the quantization factor of 40.
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Model F2F NT DF FS Celeb-DF

DenseNetAligned [64]

Original 86.16 84.61 87.16 83.01 81.62

JPEG Quality = 75 85.16 82.06 87.81 85.02 82.57

JPEG Quality = 50 83.81 80.04 75.28 78.93 81.36

JPEG Quality = 25 71.68 68.12 66.52 69.30 72.61

MPEG Quant. = 20 83.18 82.90 86.47 85.12 -

MPEG Quant. = 40 68.23 63.02 59.31 58.80 -

XceptionNet [12]

Original 91.57 93.72 90.68 94.33 92.03

JPEG Quality = 75 90.42 89.56 88.30 89.16 90.91

JPEG Quality = 50 86.88 85.72 82.75 86.31 88.42

JPEG Quality = 25 80.43 79.64 80.11 72.63 85.80

MPEG Quant. = 20 89.14 90.61 90.12 92.67 -

MPEG Quant. = 40 88.00 84.56 81.40 82.52 -

Our Models

XcepTemporal (CE)

Original 98.55 93.17 97.84 99.44 99.8

JPEG Quality = 75 97.9 93.32 98.44 99.18 99.95

JPEG Quality = 50 97.5 93.04 99.78 99.2 100

JPEG Quality = 25 94.11 81.52 96.47 98.1 98.35

MPEG Quant. = 20 97.54 96.78 92.05 85.31 -

MPEG Quant. = 40 87.81 89.84 83.42 68.91 -

XcepTemporal (KL)

Original 94.26 84.8 97.73 98.68 99.99

JPEG Quality = 75 98.62 92.66 98.11 99.8 100

JPEG Quality = 50 98.01 92.09 99.15 99.71 100

JPEG Quality = 25 94.26 84.8 97.72 98.68 100

MPEG Quant. = 20 97.22 95.03 94.67 89.79 -

MPEG Quant. = 40 90.62 86.32 78.3 70.01 -

Table 6: Compression: Models trained on augmented training data consisting of the orig-
inal and JPEG compressed (Quality-50) versions of all the training faces.
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Data Augmentation. As the compression artifacts divulge an area of weakness for all

methods, we considered retraining models with data augmentation. The models from Ta-

ble 5 are retrained using both the original training data as well as with their corresponding

JPEG compressed faces with a quality factor of 50. The test results are presented in Table 6.

With a minimal loss in accuracy on the original test sets, all the models gained robustness

in detecting forged faces which are compressed at various compression levels. In this setting,

our models become the top performers in all but three of the 28 configurations tested. Im-

pressively, the XcepTemporal (KL) model attains 84.8-100% accuracy for JPEG Quality of

25, which has a substantial reduction in visual quality, as shown in Figure 8. In contrast,

neither DenseNetAligned nor XceptionNet got above 81% in any of the tests with this low

quality. On MPEG compression, our models also perform best in the Face2Face, NeuralTex-

tures, and Deepfakes, with XcepTemporal (CE) getting above 83% on these datasets. On

the FaceSwap dataset, however, XceptionNet was significantly better – this marks the main

exception to our overall findings that showed our models to be superior.

An interesting observation is that the test accuracies for the MPEG compression rise after

retraining on datasets augmented just with the JPEG compression samples and not with the

MPEG samples.
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5.2.6 Transfer learning / Domain Adaptation.

As new deepfake generation algorithms are released, companion deepfake detection algo-

rithms follow. In a phenomenon referred to as catastrophic forgetting, when new data sam-

ples are introduced into a training regiment, the performance on original samples suffers.

Model

Dataset FaceForensics++ [62] Celeb-DF [44]

Real F2F NT DF FS Overall Real Fake Overall

XceptionNet [12] 89.90 94.26 98.77 99.56 99.13 96.32 70.88 95.31 86.17

XceptionNet (KL) 100 100 100 100 100 100 93.21 98.25 96.89

XcepTemporal (CE) 98.95 98.57 100 100 100 99.83 92.77 99.81 96.78

XcepTemporal (KL) 100 100 100 100 100 100 93.82 99.02 97.18

XcepTemporal (EN) 83.22 97.75 95.31 100 100 95.25 93.12 100 97.51

XcepTemporal (EN1+n) 89.67 96.08 94.53 99.90 99.61 95.95 93.19 100 98.01

Table 7: Transfer learning/Domain Adaptation: Models are initialized on FaceForen-
sics++ [62] and trained on Celeb-DF [44] along with 50 out of 720 Faceforensics++ videos
of each class to prevent forgetting.

We train our model on FaceForensics++ and transfer learn to Celeb-DF. During transfer

learning, all the layers but the classification layer (for CE variant) are frozen. After conver-

gence, we lower the learning rate and fine-tune all layers. To prevent catastrophic forgetting,

we include 50 (out of 720) randomly chosen samples from each FaceForensics++ deepfake

type along with the Celeb-DF training data. The results are shown in Table 7. We note

that after the final stage of training, our models perform well on all datasets, showing their

ability to learn new types of fakes without forgetting how to classify original fakes.
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5.2.7 Ablation Study

To help understand our model further, we explore several aspects and elucidate on the

decisions involved in defining the model.

Recurrent layers. To understand the importance of recurrent layers in the XcepTemporal

model, Table 8 shows the combinations between uni/bidirectional and single/double LSTM

layers. The results in Table 8 suggest that the backward pass within a recurrent layer

extracts meaningful temporal information. In addition, the added parameters from the

secondary layer help improve results.

Recurrent Layers FF++ Celeb-DF

Uni + Single 92.37 84.48

Uni + Double 92.9 86.02

Bi + Single 96.99 93.21

Bi + Double 99.71 97.01

Table 8: Ablation: Accuracy of XcepTemporal (CE) with different recurrent structures.

Length and Stride. We now examine the variation in performance for different lengths

of the input sequence and different lengths of strides between two consecutive input se-

quences. Longer sequence lengths enable temporal features of longer duration but require

more compute resources.

The combined accuracy on both the test sets shown in Table 1 for different lengths and
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Length Stride Accuracy

4 4 98.02

8 8 99.24

8 6 98.81

16 16 99.29

16 12 99.16

32 32 99.50

32 24 99.37

Table 9: Ablation: Accuracy of XcepTemporal (CE) on the combined test sets for various
length and stride combinations.

strides is shown in Table 9. While the overall accuracy does not change much, we chose a

length and stride of eight because

1) shorter sample lengths translate into more training samples

2) shorter sample lengths are more capable at detecting short sequences of manipulated

frames embedded between real frames.

5.3 RGB+EF XcepTemporal Model

5.3.1 Within-Domain Results

Unlike the CNN+Temporal model, RGB+EF XcepTemporal model requires preprocessed

edge flow maps from the whole dataset for training and evaluation. To validate the perfor-

mance of the model, DFDC-mini dataset was chosen from which the edge flow maps were

extracted prior to training. As the isolated dataset contains only a couple of thousands of
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videos, a random 60-40 split for training and testing was carried out, while maintaining the

ratio between the number of real and fake videos on both the sets. The variants of the model

are trained alongside the best performing CNN+Temporal models and evaluated on the held

out test set.

Model Real Fake Overall

XcepTemporal (CE) 90.45 96.64 94.25

XcepTemporal (KL) 90.36 97.13 94.67

EffTemporal-B4 (CE) 90.23 97.57 94.65

EffTemporal-B4 (KL) 90.51 98.10 95.15

RGB+EF XcepTemporal (Early Fusion) 92.68 99.32 96.76

RGB+EF XcepTemporal (Mid-Fusion) 95.37 99.53 97.94

RGB+EF XcepTemporal (Late Fusion) 91.33 99.45 96.38

Table 10: Within-Domain Results: Our models, CNN+Temporal and RGB+EF
XcepTemporal, and their variants are trained on the train set and evaluated on the test
set of DFDC-mini dataset.

From Table 10, it can be observed that leveraging the edge and flow information from the

video facilitates in better discrimination between the real and forged videos. Compared

to FaceForensics++ [62] and Celeb-DF [44], DFDC [17] has a diversified range of videos

where the subjects were exposed from low lighting to outdoor conditions, rapid camera

movements and an exhaustive list of such factors. These aspects explain the relative drop

in test accuracies across datasets.
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5.3.2 Cross-Domain Results

A basic requirement in building a deepfake detector that can be employed in real-world ap-

plication is to test its performance on unforeseen forgery. Although the RGB+EF XcepTem-

poral model accurately detects forged videos from the test set of the DFDC-mini dataset, we

next test the trustworthiness of the model by testing on datasets not seen during training.

Model Real Fake Overall

XcepTemporal (CE) 64.10 77.59 72.46

XcepTemporal (KL) 63.68 78.41 72.74

EffTemporal-B4 (CE) 67.64 78.89 74.38

EffTemporal-B4 (KL) 67.20 80.15 75.01

RGB+EF XcepTemporal (Early Fusion) 71.92 84.31 79.46

RGB+EF XcepTemporal (Mid-Fusion) 73.33 86.81 81.29

RGB+EF XcepTemporal (Late Fusion) 72.44 86.68 80.56

Table 11: Cross-Domain Results: Our models, CNN+Temporal and RGB+EF XcepTem-
poral, and their variants are trained on the FaceForensics++ [62] train set and evaluated on
the DFDC-mini dataset.

We trained the model on FaceForensics++ dataset and tested it on the whole DFDC-mini

dataset. From the results in Table 11, it is evident that incorporating the edgeflow input into

the model significantly improves the forgery detection accuracy across domains. Although

the deepfake generation process was different across the datasets, these edgeflow maps pro-

vide the model with rich beyond-the-visual instance-level flow attributes between successive

frames that conceivably came into effect during the training. It can also be learned that

the mid-fusion variant of the RGB+EF XcepTemporal model performed marginally better
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than its counterparts because its design provided the model with more favorable dynamics

for semantic feature abstraction.

5.3.3 Immunizability on Adversarial Attacks

Our models use first-order visual features as inputs. To make our models resilient against any

first-order attacks, the models must be aware of them in the first place. Some of the known

perturbations to the images are blurring, compressing, cropping, luminating/darkening, and

additive noise; or a random combination of them. As our models are trained on the Dlib [32]

extracted and extended faces irrespective of the location of the face in the video, cropping

doesn’t significantly impact the performance of both of our models. Prior work has shown

that manipulating the lighting in the video doesn’t affect deepfake detectors in general

because the datasets are diverse in the lighting spectrum. So, we choose to experiment with

blur, compression, and noise on our models. For analysis purpose, we choose Gaussian noise

and Gaussian blur out of numerous types that can be applied on the images.

For all the experiments, we arbitrarily administer one of the following options on each sample

(as shown in Figure 9):

• Additive Gaussian Noise (random normal distribution) - µ = 0 and σ ε [1, 5].

• Gaussian Blur with one of the kernel sizes - 3, 5, 7, or 9.
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• JPEG Image Compression with a quality factor chosen from a range of 25 to 75.

Figure 9: Visualization of the attacks on a test sample. The sample is administered with
the least and most perturbations of the corresponding attacks exercised in the experiments.

For the combined column in Tables 12 and 13, we apply all the three attacks on all the

samples during testing.

Before immunizing both our models against such attacks, they were tested on individual

and combined attacks as shown in Table 12. The RGB+EF XcepTemporal variants show
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Model Blur Compression Noise Combined

XcepTemporal (CE) 47.22 35.81 19.48 12.24

XcepTemporal (KL) 43.78 38.16 15.57 11.96

EffTemporal-B4 (CE) 48.12 53.68 18.21 10.54

EffTemporal-B4 (KL) 40.03 51.24 17.40 12.89

RGB+EF XcepTemporal (Early Fusion) 63.44 64.83 56.42 37.58

RGB+EF XcepTemporal (Mid-Fusion) 67.18 68.39 70.30 45.75

RGB+EF XcepTemporal (Late Fusion) 60.11 69.10 63.61 41.40

Table 12: Pre-Immunization Results: Our models, CNN+Temporal and RGB+EF
XcepTemporal, and their variants are evaluated on the adversarial attacks administered
on the whole DFDC-mini dataset. The accuracies reported are overall accuracy across the
test set of the dataset.

Model Blur Compression Noise Combined

XcepTemporal (CE) 78.54 79.89 75.26 70.44

XcepTemporal (KL) 80.27 79.43 77.61 70.63

EffTemporal-B4 (CE) 82.16 81.74 78.04 73.73

EffTemporal-B4 (KL) 84.31 82.10 79.06 73.91

RGB+EF XcepTemporal (Early Fusion) 87.16 88.18 85.08 77.34

RGB+EF XcepTemporal (Mid-Fusion) 88.32 91.69 89.31 78.15

RGB+EF XcepTemporal (Late Fusion) 87.49 86.62 87.00 78.41

Table 13: Post-Immunization Results: Our models, CNN+Temporal and RGB+EF
XcepTemporal, and their variants are evaluated on the adversarial attacks administered on
the whole DFDC-mini dataset. The accuracies reported are overall accuracy across the test
set of the dataset.

significant improvement in detection over the CNN+Temporal variants, specifically when

the attacks are combined during inference.

The models are retrained on the augmented train set and evaluated on the test set of the
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DFDC-mini dataset. The results are shown in Table 13. When immunized to the adversarial

attacks, all of our models seemed to acclimatize comfortably. This experiment demonstrates

the adaptability of our models to known attacks and that these models can be attuned to

any future attacks when their mode of fabrication is ascertained.
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6 Conclusion

Inspired by recent progress in digital forgery, we introduce two models, CNN+Temporal,

a convolutional recurrent neural network framework for deepfake detection and RGB+EF

XcepTemporal, an improvement over the XcepTemporal model where semantically rich fea-

tures from the frame’s edge and denseflow information are exploited in addition to the

frames themselves. We use ImageNet [15] pretrained XceptionNet and EfficientNet features

as salient and efficient facial feature representations. These representations are passed into

bidirectional recurrent layers to aid in detecting temporal inconsistencies across the frames.

Our model is trained both with traditional cross entropy and KL divergence loss functions.

We demonstrate the robustness of our methods on the popular FaceForensics++ and Celeb-

DF datasets, as well as the custom-created DFDC-mini dataset. Our methods obtain new

benchmark standards and are shown to generalize well to unforeseen attacks. We reckon

our work will be used as a baseline network in building more resilient models for detecting

deepfakes and other analogous applications.

6.1 Future Work

This work presents a convolutional recurrent network to identify forged videos apart from

unaltered videos. Taking this network as baseline, we employ the dense flow maps along with

edge maps as additional input channels to provide the recurrent network with semantically

richer features. However, as described in earlier sections, the model is sensitive to the visual
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aspects like blur and compression. As the proposed models only utilize visual input and its

flow, there is plenty of room for improving on it. Some of the possible extensions to our

proposed work are:

• Experimenting with mid-fusion at other stages of the XceptionNet architecture; fusing

after all the eight separable convolutional blocks, for instance.

• Replacing XceptionNet with EfficientNet-B4 and defining multiple variants in the

RGB+EF XcepTemporal model.

• Using the EdgeFlow (EF) as a segregated three-channel input (first map consists of

edges, second map with the ∆x of the dense optical flow, and the third map with the

∆y of the dense flow) instead of a unified three-channel input.

• Syncing between the audio and the visuals because the audio in a forged video might

not be consistent with the visuals.

• Using action units derived from the facial landmark movement between the frames to

distinguish natural facial motion with that of computer generated.

• Behavior analysis using dense visual input and/or sparse facial landmarks.
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• Manually extracting multiple degrees of motion and analyzing its potential as a feature

set.
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[19] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In

Scandinavian conference on Image analysis, pages 363–370. Springer, 2003.

[20] John Fletcher. Deepfakes, artificial intelligence, and some kind of dystopia: The new

faces of online post-fact performance. Theatre Journal, 2018.



Akash Chintha’s Masters Thesis Document 66

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-

jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances

in Neural Information Processing Systems (NeurIPS), pages 2672–2680, 2014.
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