
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

6-30-2020

Hardware Intellectual Property Protection Through Obfuscation Hardware Intellectual Property Protection Through Obfuscation

Methods Methods

Jason Blocklove
jmb8314@rit.edu

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Blocklove, Jason, "Hardware Intellectual Property Protection Through Obfuscation Methods" (2020).
Thesis. Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/10470?utm_source=repository.rit.edu%2Ftheses%2F10470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

Hardware Intellectual Property Protection Through
Obfuscation Methods

Jason Blocklove

Hardware Intellectual Property Protection Through
Obfuscation Methods

Jason Blocklove
June 30, 2020

A Thesis Submitted
in Partial Fulfillment

of the Requirements for the Degree of
Master of Science

in
Computer Engineering

Department of Computer Engineering

Hardware Intellectual Property Protection Through
Obfuscation Methods

Jason Blocklove

Committee Approval:

Dr. Marcin Łukowiak Advisor Date
Department of Computer Engineering

Dr. Stanisław Radziszowski Date
Department of Computer Science

Dr. Michael Kurdziel Date
L3Harris Technologies

i

To all of my family and friends who helped me on this journey

ii

Acknowledgments

I would like to thank my family for their immense support throughout my whole

college career. Without them I could not have accomplished this milestone and I

cannot thank them enough, especially my parents, Jon and Linda, and my sister Katie.

I would like to thank all of the friends I’ve made throughout the years. So many

people throughout my time at RIT have helped to push me forward and I would not

have made it here without them.

I would like to thank my many friends who worked alongside me in the Applied

Cryptography and Information Security lab including Stephanie Soldavini, Braeden

Morrison, Eric Scheler, Kevin Millar, and Prathibha Rama. The insights and help I

received were invaluable in the completion of this work and I wish them all the best

in their various endeavors.

Finally, I would like to thank all of the professors and advisers I’ve had the pleasure

of working with throughout the years. I’d like to thank Professor Cliver, who helped

truly inspire my love of teaching and my goals to always be a better TA.

Thank you especially to the members of my committee, without whom none of this

work would have been possible: Dr. Kurdziel for his help throughout the project,

Dr. Radziszowski for his incredible expertise in dealing with the mathematics behind

cryptography, and Dr. Łukowiak for helping me really understand the research process

and always being available for help.

iii

Abstract

Security is a growing concern in the hardware design world. At all stages of the

Integrated Circuit (IC) lifecycle there are attacks which threaten to compromise the

integrity of the design through piracy, reverse engineering, hardware Trojan insertion,

physical attacks, and other side channel attacks — among other threats. Some of the

most notable challenges in this field deal specifically with Intellectual Property (IP)

theft and reverse engineering attacks. The IP being attacked can be ICs themselves,

circuit designs making up those larger ICs, or configuration information for the devices

like Field Programmable Gate Arrays (FPGAs). Custom or proprietary cryptographic

components may require specific protections, as successfully attacking those could

compromise the security of other aspects of the system. One method by which these

concerns can be addressed is by introducing hardware obfuscation to the design in

various forms. These methods of obfuscation must be evaluated for effectiveness and

continually improved upon in order to match the growing concerns in this area.

Several different forms of netlist-level hardware obfuscation were analyzed, on standard

benchmarking circuits as well as on two substitution boxes from block ciphers. These

obfuscation methods were attacked using a satisfiability (SAT) attack, which is able

to iteratively rule out classes of keys at once and has been shown to be very effective

against many forms of hardware obfuscation. It was ultimately shown that substitution

boxes were naturally harder to break than the standard benchmarks using this attack,

but some obfuscation methods still have substantially more security than others. The

method which increased the difficulty of the attack the most was one which introduced

a modified SIMON block cipher as a One-way Random Function (ORF) to be used for

key generation. For a substitution box obfuscated in this way, the attack was found

to be completely unsuccessful within a five-day window with a severely round-reduced

implementation of SIMON and only a 32-bit obfuscation key.

iv

Contents

Signature Sheet i

Dedication ii

Acknowledgments iii

Abstract iv

Table of Contents v

List of Figures vii

List of Tables ix

Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Objective . 4
1.3 Novel Contributions . 5

2 Background 6
2.1 Hardware Reverse Engineering . 6

2.1.1 FPGA Reverse Engineering 6
2.1.2 ASIC Reverse Engineering . 8

2.2 Intellectual Property Attacks . 9
2.2.1 Hardware Trojans . 9
2.2.2 Counterfeiting . 11
2.2.3 Overproduction . 11

2.3 Hardware Model Encryption . 12
2.4 Hardware Authentication . 13
2.5 Hardware Obfuscation . 13
2.6 Hardware Obfuscation Methods . 13

2.6.1 Netlist Logic Locking . 14
2.6.2 ORF Insetion . 28

v

CONTENTS

2.6.3 Binary Decision Diagram Logic Locking 29
2.6.4 Finite State Machine Insertion 31
2.6.5 Signal Path Obfuscation . 33
2.6.6 ASIC Cell Camouflaging . 34
2.6.7 Reconfigurable Logic Barriers 35

2.7 Attacks on Hardware Obfuscation . 35
2.7.1 Satisfiability Attacks . 35
2.7.2 Bypass Attack . 39
2.7.3 Key Sensitization Attack . 40
2.7.4 Signal Probability Skew Attack 41

2.8 Physical Unclonable Functions . 41
2.8.1 PUF Definitions . 42

2.9 Substitution Boxes . 43
2.9.1 MK-3 S-Box . 44
2.9.2 AES S-Box . 44

2.10 SIMON Block Cipher . 45
2.10.1 Round-Reduced SIMON . 47

3 Methodology 49
3.1 Circuit Obfuscation Program . 49

3.1.1 Modified Random Locking Implementation 52
3.1.2 LUT-Lock Implementation . 52

3.2 SIMON as an ORF Experiments . 54
3.3 Obfuscated Models . 55

4 Results 57
4.1 Test Setup . 57
4.2 Basic Logic Locking . 57

4.2.1 ISCAS ’85 Benchmarks . 58
4.2.2 Substitution Boxes . 60
4.2.3 Modifications to Locking Methods 65

4.3 ORF Added Logic Locking . 67
4.3.1 Overhead . 75

5 Conclusions 77

Bibliography 78

vi

List of Figures

1.1 IC Lifecycle Concerns . 2

2.1 Combinational Trojan Example . 10
2.2 MOLES Example Trojan . 11
2.3 XOR Lock Gate . 14
2.4 Lock Gates Surrounding an Inverter 15
2.5 Fault Propagation Example . 16
2.6 Concurrent Key Gate Muting . 18
2.7 Circuit with Locking Gates for Demonstrating Strong Logic Locking

(SLL) Graph . 19
2.8 SLL Interference Graph . 19
2.9 SARLock Circuit . 21
2.10 SARLock+SLL . 22
2.11 Anti-SAT Configurations . 23
2.12 Anti-SAT Type-0 Integrated into a Locked Circuit 24
2.13 FPGA Obfuscation Look-Up Table (LUT) Example 25
2.14 ORF Insertion . 28
2.15 Binary Decision Diagram (BDD) Representation of an Y = A⊕B . . 29
2.16 Obfuscated BDD . 30
2.17 Obfuscated State Space . 31
2.18 Obfuscated Signal Path . 34
2.19 Distinguishing Input Pattern (DIP) Miter Circuit 36
2.20 Example Circuit for Tseitin Transformation 39
2.21 Circuit Vulnerable to the Key Sensitization Attack 40
2.22 One Round of SIMON . 46

3.1 Process Workflow . 50
3.2 Circuit Stages . 51

4.1 SAT Attack on Advanced Encryption Standard (AES) S-Box obfuscated
with different methods . 61

4.2 SAT Attack on MK-3 S-Box obfuscated with different methods. “Time-
out” indicates an unsuccessful attack after 5 days (432,000 seconds). . 62

vii

LIST OF FIGURES

4.3 SAT Attack on MK-3 S-Box obfuscated with different methods. Finer
grain keys between 40 and 96-bits “Timeout” indicates an unsuccessful
attack after 5 days (432,000 seconds). 63

4.4 SAT Attack on MK-3 S-Box obfuscated with different methods. Finer
grain keys between 96 and 128-bits “Timeout” indicates an unsuccessful
attack after 5 days (432,000 seconds). 64

4.5 SAT Attack on SIMON Netlists . 67
4.6 SIMON ORF MK-3 S-box Test Setups 70
4.7 SAT Attack Results on Locked Circuits with SIMON Configurations as

ORFs . 73

viii

List of Tables

2.1 Example Truth Table for a SARLock Circuit 21
2.2 Tseitin Transformations . 38
2.3 Tseitin Example Transformations . 39
2.4 SIMON Configurations . 47
2.5 Summary of results on SIMON. CP = chosen plaintexts, CC = chosen

ciphertexts, Att. = attacked, Succ. = success, Ref. = reference. . . . 48

3.1 Obfuscated Models . 56

4.1 Average SAT Attack Break Time (seconds) on ISCAS ’85 Benchmarks 59
4.2 Average SAT Attack Break Time (seconds) on S-boxes. “Timeout”

indicates unsuccessful attack after 5 days (432,000 seconds). 60
4.3 SAT Attack Break Time (seconds) on SIMON. “Timeout” indicates an

unsuccessful attack after 5 days (432,000 seconds). 68
4.4 Average SAT Attack Break Time (seconds) on MK-3 S-box with SIMON

as an ORF. “Timeout” indicates an unsuccessful attack after 5 days
(432,000 seconds). 70

4.5 Average SAT Attack Break Time (seconds) on AES S-box with SIMON
as an ORF. “Timeout” indicates an unsuccessful attack after 5 days
(432,000 seconds). 71

4.6 Average SAT Attack Break Time (seconds) on ISCAS c432 with SIMON
as an ORF. “Timeout” indicates an unsuccessful attack after 5 days
(432,000 seconds). 71

4.7 Average SAT Attack Break Time (seconds) on ISCAS c1908 with
SIMON as an ORF. “Timeout” indicates an unsuccessful attack after 5
days (432,000 seconds). 72

4.8 SIMON 32/64 Overheads (# of 2-Input Gates) 75

ix

Acronyms

AES

Advanced Encryption Standard

ASIC

Application-Specific Integrated Circuit

ATPG

Automatic Test Pattern Generation

BDD

Binary Decision Diagram

BFS

Breadth First Search

BIL

Bitstream Interpretation Library

CDFG

Control and Data Flow Graph

CNF

Conjunctive Normal Form

x

Acronyms

CRP

Challenge/Response Pair

DIP

Distinguishing Input Pattern

EDA

Electronic Design Automation

FPGA

Field Programmable Gate Array

FSM

Finite State Machine

HDL

Hardware Description Language

IC

Integrated Circuit

IP

Intellectual Property

xi

Acronyms

KPG

Key Programmable Gate

LUT

Look-Up Table

NIST

National Institute of Standards and Technology

NLFSR

Non-Linear Feedback Shift Register

NSA

National Security Agency

ORF

One-way Random Function

PCB

Printed Circuit Board

PIP

Program Interconnect Point

xii

Acronyms

PLP

Programmable Logic Point

PSM

Parallel State Machine

PUF

Physical Unclonable Function

RTL

Register Transfer Logic

s-a-0

stuck-at-0

s-a-1

stuck-at-1

SAT

satisfiability

SEM

Scanning Electron Microscope

SLL

Strong Logic Locking

xiii

Acronyms

SoC

System on Chip

SPS

Signal Probability Skew

SRAM

Static Random Access Memory

STG

State Transition Graph

TEM

Transmission Electron Microscope

VHDL

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

(HDL)

xiv

Chapter 1

Introduction

1.1 Motivation

Hardware security is the concept of protecting circuit information against many

possible types of attacks, such as reverse engineering, inserting malicious hardware

Trojans, or creating counterfeit devices based on the original.

These attacks can differ at the various stages of the Integrated Circuit (IC) lifecycle,

and each entity involved has its own assets to protect, as well as its own possible

malicious behaviors as shown in Figure 1.1.

1

CHAPTER 1. INTRODUCTION

IC Lifecycle Stage
Possible Malicious

Behavior
Protected Asset

IP Development -
IP Vendor

SoC Design

Foundry

Final Circuit -
End User

• Trojans
• Backdoors

• Trojans
• Counterfeiting
• Malicious Tools

• Overproduction
• Trojans

• Reverse Engineering
• Counterfeiting
• Side Channel Attacks

IP Source Code

Design
Implementation

Personal Data

Figure 1.1: IC Lifecycle Concerns. The middle column shows the stage in the cycle, the
left column represents the assets each stage wants to protect, and the right column shows
the types of attack each stage can perform.

The Intellectual Property (IP) vendor is concerned with protecting the IP itself. One

method of protecting their Hardware Description Language (HDL) IP is to encrypt

the HDL itself before sending it to future stages. This encryption is done in such a

way that tools are able to decrypt the design and modify it, but the actual circuit

data is never exposed [1]. As an attacker, the vendor/designer could insert a backdoor

or hardware Trojan to compromise the security of further stages in the process.

The System on Chip (SoC) design house can be vulnerable to maliciously modified

Electronic Design Automation (EDA) tools that could insert hardware Trojans or

gather data on their implementation of the design, as well as the malicious behaviors

from the IP providers, since complex IC designs can be comprised of multiple instances

of IPs. These attacks cannot be easily prevented, but can be detected through trust

2

CHAPTER 1. INTRODUCTION

verification methods [2]. Once detected, the toolchain can be modified to remove

the malicious tools. The SoC designers would also be able to attack the end user by

inserting their own Trojans or attack the vendor by counterfeiting the design.

Currently, foundries are not particularly susceptible to attacks by other entities in the

IP lifecycle. However, once a design is ready to be manufactured, the foundry has the

ability to exploit it in many ways, as it is inherently given access to low level chip

representation information in order to fabricate it, often in the form of GDSII files.

They are then able to insert their own hardware Trojans or overproduce a chip with

the intention of selling the extras.

Finally, the end users are concerned with protecting their own personal data. They

are vulnerable to a number of malicious behaviors from other stages, like Trojans

and backdoors inserted into the design. End users are able to attack a design by

reverse engineering the IP to counterfeit the device or performing side-channel attacks

to acquire secret information stored in the IP. These attacks primarily affect the IP

vendor/designer [2, 3]. Each of these possible attacks has its own protections, several

of which will be explored further in this document.

When manufacturing new circuits, a significant concern is that most designers creating

these systems do not have direct access to a fabrication method. As a result, most

chip fabrication is done through external services that cannot necessarily be trusted.

These outside manufacturers could be performing many of the hardware attacks noted

earlier by reverse engineering the design. Even without reverse engineering, untrusted

manufacturers could still overproduce a device and sell the extra for their own profit,

either to end users or to the initial designer’s competitors [4].

A major-area of concern with IP piracy is that the configuration information, the

bitstream in the case of Field Programmable Gate Arrays (FPGAs), could be reverse

3

CHAPTER 1. INTRODUCTION

engineered. While the issue of manufacturing piracy mostly concerns the design of

Application-Specific Integrated Circuits (ASICs) or other custom designs, FPGA

programming is widespread and accessible, so the effect of these attacks could have a

substantial reach. Protections against these attacks must be evaluated for effectiveness,

and more advanced countermeasures must be found to guard against increasingly

complex attacks.

One common technique used to protect hardware designs is to obfuscate the design

itself, such that reverse engineering becomes too expensive, in either time or resources,

for an adversary to realistically accomplish. This obfuscation can be done at different

stages of the lifecycle, ranging from the HDL being modified to make it more difficult

to understand, to the netlist, which is used to either generate a bitstream — in the

case of FPGAs — or generate the hardware design for manufacture — in the case of

ASICs, being manipulated. Other methods of protection rely on encrypting certain

aspects of the design, or even the design description itself, such that only trusted users

with the correct key can utilize the sensitive information [1].

1.2 Thesis Objective

The purpose of this thesis is to evaluate some of the currently proposed hardware

obfuscation techniques, both on existing benchmark circuits as well as on specific non-

linear cryptographic components. The cryptographic components analyzed include

substitution boxes, namely the 8-bit S-box from Advanced Encryption Standard (AES)

and a larger 16-bit S-box from MK-3 [5,6]. Further, it will explore satisfiability (SAT)

attacks as a method of defeating hardware obfuscation, and the effects which different

obfuscation methods have on protecting the components from this type of attack.

4

CHAPTER 1. INTRODUCTION

1.3 Novel Contributions

The novel contributions of this work primarily focus on implementing different methods

of obfuscation on the S-box component of the configurable block cipher MK-3. The

effectiveness of these obfuscation methods on this component were evaluated with the

SAT attack. Finally, the use of the lightweight block cipher SIMON was tested for

additional obfuscation as an One-way Random Function (ORF).

5

Chapter 2

Background

2.1 Hardware Reverse Engineering

Reverse engineering is a necessary precursor to most attacks on hardware IP designs;

the ultimate goal of this approach is usually to determine most or all of the underlying

functionality of the targeted design. This can be accomplished through a number of

methods, including inferring the function of the system and extracting the circuit

implementation details [7]. Reverse engineering also differs based on the type of system

being targeted; determining the functionality of a system on a FPGA can be very

different from reverse engineering an ASIC.

2.1.1 FPGA Reverse Engineering

Reverse engineering a FPGA relies on the adversary being able to extract and decipher

the bitstream used to program the device [8]. It is the job of the FPGA vendors to

make this as difficult as possible, through offering measures like bitstream encryption

as well as by ensuring that their bitstream specifications are not publicly available.

There have been several projects that have attempted to thwart these measures,

though, and some have been able to at least partially reverse engineer a bitstream

back into a usable netlist.

6

CHAPTER 2. BACKGROUND

In [9] the use of a tool called “debit” is discussed as a means of reverse engineering

the bitstream format for several of Xilinx’s older FPGA devices — namely the Virtex

4 and Virtex 5, among a few others. This work was partially successful, as some of

the configuration information for the netlist could be recovered. Over 90% of the

bitstream in these cases was made up of switching box logic — specifically Program

Interconnect Point (PIP) data — and the tool was only able to recover some of that

data.

Another tool was later called Bitstream Interpretation Library (BIL) [10]. This tool

expanded upon the previous work and created a database that contains many of the

component definitions and mappings from Xilinx’s older bitstreams. This method uses

files which can be obtained through the Xilinx toolchain for Xilinx ISE, called the

XDL and XDLRC files. These are netlist files that describe the design and structure of

the device being used. Unlike the work done using the “debit” tool, this work was able

to completely decipher a large segment of the PIP information using the information

from the XDLRC file. It was not, however, able to reverse the PIP commands for

primitive site and several other types of tiles [8].

Finally, an effort was put forth by Mathias Lasser to reverse engineer both Lattice’s

iCE40 bitstream and Xilinx’s 7-series FPGA bitstream, which is for their most recent

family of devices [11]. Lasser was able to completely reverse engineer Lattice’s iCE40

FPGA bitstream, which is a very small device compared to Xilinx’s FPGAs. This

was accomplished by debugging and slightly modifying the vendor-supplied bitstream

generation tool. This is the best-case scenario for FPGA reverse engineering, but it is

very unlikely to work on most applications where the bitstream mapping information is

more carefully hidden. Reversing the Xilinx 7-series bitstream was a more substantial

challenge, as this bitstream was notably more complex and included features like

error correction that made the bitstreams difficult to analyze. It was ultimately done

7

CHAPTER 2. BACKGROUND

through careful analysis of the bitstream by converting the data to a bitmap image

and identifying patterns. The full mappings have not been released; however, it can

be assumed that an adversary — given enough time and resources — could manage

to reverse engineer a bitstream for an FPGA using a combination of these methods.

2.1.2 ASIC Reverse Engineering

Reverse engineering of ASICs is more focused on analyzing the physical chip after

production. This can be done at a number of different levels depending on the

adversary and their capabilities [7].

At the IC level, an attacker has several options available to reverse engineer a fabricated

device, both nondestructive and destructive. For a nondestructive attack, the adversary

can use X-ray tomography and ptychography to analyze the internal structure of a

chip layer-by-layer without having to alter the device itself [2, 12]. If the adversary is

willing to alter or destroy the IC in the process of reverse engineering it, the attack

could entail delayering the chip and using microscopy (optical, Scanning Electron

Microscope (SEM), Transmission Electron Microscope (TEM), or any combination

thereof) to analyze each layer individually [7].

Once the chip has been fabricated and mounted on a Printed Circuit Board (PCB),

the reverse engineering can extend to that PCB itself. This would allow an attacker to

gain a greater understanding of the chip’s outward interactions. The attacks against

PCBs are largely the same as those against ICs, in both the nondestructive and

destructive attack approaches [13].

A full system would consist of a number of ICs, PCBs, and other configuration

information to allow the device to work as intended. This is what most end-users

would receive. This configuration information is often stored in some form of non-

volatile memory. A reverse engineering attack on a completed system would likely

8

CHAPTER 2. BACKGROUND

include attacks on the individual components, as mentioned above, as well as reverse

engineering the configuration data, which can contain information about the system’s

final operation and timing.

An understanding of the functionality of the IP gained through reverse engineering

can lead to a number of attacks, such as counterfeiting and Trojan insertion, that go

beyond the initial issues of stealing the design or other trade secrets [2].

2.2 Intellectual Property Attacks

2.2.1 Hardware Trojans

Hardware Trojans are additional components added to a design that act in a malicious

way. They are intended to be difficult to detect and can cause problems with the

affected circuit ranging from minor malfunctions to early system death to leaking

critical information. Trojans are characterized by three main features: malicious

intent, difficulty to detect, and rare activation [14].

A Trojan must have malicious intent to be considered a Trojan. It must be inserted

by an adversary with the intention of compromising the design in some way, otherwise

it cannot be considered a Trojan.

A Trojan must also be placed in such a way that it is difficult to detect. It would not

benefit an attacker if a Trojan could be easily identified and removed, so the intention

is that they be well disguised from normal testing and analysis of the modified device.

This relates to the third characteristic: by crafting a Trojan so that it only triggers

on rare occurrences, the likelihood of it being detected in normal testing is greatly

reduced. In theory, these triggering conditions could be entirely skipped in ordinary

fault testing, but are likely to arise under extended operation in the field [15].

9

CHAPTER 2. BACKGROUND

There are several kinds of Trojans that could be inserted into a design with different

intended outcomes. One form is a basic device that would, when triggered, cause a

malfunction at the output. An example of this from [15] is shown in Figure 2.1.

Figure 2.1: Combinational Trojan Example [15]

This Trojan would be inserted into the path of signal S and change the output to be

S*. When the trigger condition (a=0, b=1, c=1) is met, S* becomes the inversion of S

and likely introduces a malfunction in the design. If this Trojan is placed strategically,

this error could propagate through much of the circuit and leave the output completely

unusable.

Another form of Trojan is one that leaks critical information from the design when

triggered. A Trojan of this kind is proposed in “MOLES: Malicious Off-Chip Leakage

Enabled by Side-Channels” [16], which can leak critical information through side chan-

nels. The given example depicts a MOLES-based Trojan inserted into a cryptographic

processor to leak the key information, shown in Figure 2.2.

10

CHAPTER 2. BACKGROUND

Figure 2.2: MOLES Example Trojan [16]

2.2.2 Counterfeiting

Counterfeiting a design is the process of creating illegal copies of IP. The issue of

counterfeiting has become greater with the increased use of offshore foundries and

the lack of effective avoidance mechanisms [17]. Often, this approach requires reverse

engineering of the design, however it links closely to the problem of overproduction —

which does not necessarily require full reverse engineering to create counterfeits of a

design.

2.2.3 Overproduction

Overproduction is mainly a concern with ASIC production at untrusted foundries. It

is possible that a bad actor at a foundry/fab could produce more of a design than

necessary and sell the extra for profit. This sale could be to new end users or to the

initial designer’s competitors, who could then reverse engineer the design to uncover

secrets [2].

The counter to this attack is called metering, and it refers to carefully controlling the

number of devices that are produced, for whom they are made, and their properties.

11

CHAPTER 2. BACKGROUND

Obfuscation can be enacted to help prevent this attack by ensuring that a produced

device is unusable without some final configurations that would be done by a trusted

actor or the design house itself [4, 18].

2.3 Hardware Model Encryption

One approach to protecting hardware designs is to encrypt the HDL using cryptographic

methods. This prevents the end users of these models from accessing the plaintext

of the design and being able to maliciously influence it. The main method for this

HDL encryption is defined in IEEE Standard P1735 [1]. This document provides

standards of practice for encrypting the IP using both symmetric and asymmetric

cryptography, as well as recommendations for how to manage licensing and distribution

of the encrypted IP.

These standards allow vendors to send encrypted versions of their designs to customers

who have properly purchased them, and for those customers to have their EDA tools

decrypt the IP internally. This ensures that the end user never has access to the

plaintext, but is still able to use the secured component [19].

By encrypting the design, vendors are preventing some of the more basic attacks from

end users — namely counterfeiting the design or stealing secrets from within it. This

encryption is useful to that extent, but it does very little to protect against reverse

engineering or any attacks at the manufacturing stage, should the IP be intended for

use in an ASIC.

However, vulnerabilities were discovered in IEEE standard P1735 roughly two years

after it was adopted. It was prone to several attacks that could, in the worst cases,

allow for full circuit definition recovery of the IP [20].

12

CHAPTER 2. BACKGROUND

2.4 Hardware Authentication

Though it doesn’t necessarily directly protect the IP, hardware authentication is often

considered one of the main methods of stopping IP piracy. Authentication involves

techniques like digital watermarking, which can prove who created the initial design

by embedding digital signatures in the design that should only be known to the IP

vendor [21]. This, however, is only useful in litigation should the design be stolen.

2.5 Hardware Obfuscation

Hardware obfuscation consists of a series of methods by which the function of a design

is modified to make it infeasible to understand or use without the proper information,

such as a key. These are intended to protect the IP at almost all stages of the hardware

development process. Obfuscation of this kind is able to offer protections against

reverse engineering of the hardware itself by either the manufacturer or end user,

insertion of hardware Trojans by the manufacturer, and overproduction of the device.

Since functionality is affected, without the secret necessary for proper operation the

device will not behave normally and most attacks are, ideally, prevented.

These techniques can vary significantly in their implementation, from introducing

extra elements into the design, to swapping signal paths based on differences from

chip-to-chip.

2.6 Hardware Obfuscation Methods

There are a number of different methods of obfuscating the function of a design. Some

rely on inserting additional combinational logic along paths in the design to act as

locks, while others involve adding Finite State Machines (FSMs) for encryption and

authentication.

13

CHAPTER 2. BACKGROUND

2.6.1 Netlist Logic Locking

The following methods obfuscate hardware designs by adding combinational logic into

the original design to create false outputs if not configured properly. This configuration

usually comes in the form of key inputs to the circuit — additional inputs that function

as a secret key, similar to a cryptographic function.

2.6.1.1 Random Locking

The first method of netlist level logic locking, proposed in “EPIC: Ending Piracy of

Integrated Circuits,” relies on randomly placing XOR and XNOR gates throughout

a circuit to act as the obfuscation [22]. Each locking gate would be connected to an

internal signal and a key bit, as shown in Figure 2.3.

L1
key input

internal wire
locked wire

Figure 2.3: XOR Lock Gate

These locking gates would be picked based on the key bit input — XOR for ‘0’, XNOR

for ‘1’ — and would then be placed randomly throughout the circuit. The key bit/gate

combinations are determined by the logical characteristics of the gates: when one

input of an XOR is a ‘0’ it acts as a buffer for the other input, and the opposite is

true for XNOR.

It is unlikely that a circuit obfuscated in this way would be unlocked by multiple

keys, though is technically possible in certain situations. In [22] this is said to be

possible in a circuit consisting entirely of XOR and XNOR gates, as an XOR tree

can be unlocked by 50% of all key combinations. However, it is possible in a circuit

consisting of any number of XOR and XNOR gates; should two locking gates be made

the inputs of another XOR or XNOR gate those key bits could be invalidated in

14

CHAPTER 2. BACKGROUND

certain combinations. Another instance where multiple keys could unlock the circuit

comes when employing any form of stacking locking gates or surrounding an inverter,

as shown in Figure 2.4.

L1 L2
K1

Internal Wire

K2

Figure 2.4: Lock Gates Surrounding an Inverter

With the configuration in Figure 2.4, if both lock gates are given the wrong input the

inversions will cancel out and the proper value will be passed. This has the capability

to invalidate some key bits in certain combinations and allow for multiple functional

keys. The likelihood of this occurring should be low, especially in a large enough

circuit, and the risk of this becoming a significant problem is mitigated by having

a suitably large key. Flaws like this can also be avoided entirely by modifying the

placement algorithm to account for similar configurations of gates; in this case, the

gates would no longer be placed truly randomly, but by removing the possibility of

this occurring the locking would on average be stronger with fewer invalidated key

bits.

It was determined in [22] that a “suitably large key” is larger than 64 bits, as that

can withstand a brute force attack with today’s technology. That does not, however,

guarantee that the circuit is secure, as there are several other attacks currently

developed, and possible new attacks, that can break this encryption much more

quickly than a brute force attack would be able to on average.

2.6.1.2 Fault Analysis-Based Logic Locking

A logic locking technique is created in [23] in which the location of XOR/XNOR

locking gates are determined by using similar methods to those used in fault-analysis

15

CHAPTER 2. BACKGROUND

of completed circuits. As such, incorrect inputs to locking gates can be pictured as

stuck-at-0 (s-a-0) or stuck-at-1 (s-a-1) faults depending on the input pattern of the

initially locked circuit.

The metrics that take advantage of this definition were designed to combat possible

inadequacies with the random locking scheme from [22] — specifically those dealing

with fault propagation and fault masking problems, as shown by the previously

discussed lock gate interactions with other XOR and XNOR gates.

Fault propagation in this context is the idea that not all incorrect keys will propagate

their “error” through the circuit. Given circuit input patterns, some key gates might

be on unused paths, which would render them useless. An example of this is given in

Figure 2.5.

L1G1

G2

G3

K1A

B

C

D

Y

Figure 2.5: Fault Propagation Example

In the circuit in Figure 2.5, for any set of inputs to the circuit with both C and D as

1, the output of G3 will output a 1 and the effect of the locking gate L1 will not be

propagated to the output.

Fault masking refers to a property which states that when exciting multiple stuck-at

faults some of the faults’ effects could be covered up by other faults later in the circuit.

The same thing can happen with key gates in a locked netlist.

16

CHAPTER 2. BACKGROUND

Using fault analysis tools, the ideal locations for locking gates can be determined such

that the hamming distance between the correct and incorrect outputs is 50%, meaning

that for an incorrect key half of the output bits will be incorrect. This is achieved by

looping through the netlist and determining the fault impact of each gate and then

locking the gate with the highest fault impact until the correct number of key bits

have been achieved. The fault impact is determined using Equation 2.1.

Fault impact = (No. of Test Patternss−a−0 ×No. of Outputss−a−0)

+ (No. of Test Patternss−a−1 ×No. of Outputss−a−1)
(2.1)

2.6.1.3 Strong Logic Locking

In [24] a logic locking technique, referred to as Strong Logic Locking (SLL), was

proposed that utilizes key gates in a way similar to [22], but that offers other heuristics

for where those gates should be placed to be as effective as possible. These methods

of gate placement are determined by a gate’s “mutability,” or the ability to determine

its key bit by “muting” another locking gate in the circuit — similar to fault masking

from [23]. There are several definitions for each locking gate based on its placement

within the circuit: isolated, dominating, concurrently mutable, sequentially mutable,

and non-mutable. Each of these gate definitions has an associated attack that could

allow the attacker to determine its key bit.

Isolated Key Gates An isolated key gate is one that does not have a path to all

other key gates. For example, if two key gates input directly into the final gates for

two separate outputs. These gates cannot have any effect on each other or any other

key gates, so they are both isolated.

17

CHAPTER 2. BACKGROUND

Dominating Key Gates A dominating key gate is one that is on every path

between another key gate and an output. This key gate’s output would “dominate”

the output of the earlier gate.

Concurrently Mutable Convergent Gates Mutable convergent gates are gates

that converge at another gate whose outputs can be “muted” by placing a certain bit

on an input to another gate such that the effect of the lock cannot be seen. For two

gates to be concurrently mutable, one gate’s bit must be able to be determined by

muting the other, and vice-versa. This is shown in Figure 2.6

L2

L1G1

G2 G4

G3

G5

K1

K2

A

B

C

D

E

F

Y

Figure 2.6: Concurrent Key Gate Muting

The effect of K1 can be muted by setting E=0, and the effect of K2 can be muted by

setting F=1. Once a gate is muted, the key value of the other can be sensitized.

Sequentially Mutable Convergent Gates Sequentially mutable gates are muta-

ble gates which only go in one direction. If the key bit for K2 can be found by muting

K1, but not the other way around, the gates are sequentially mutable.

Non-Mutable Convergent Gates Non-mutable convergent gates are key gates

that converge to another gate, but no key gate values can be found by muting another

key gate’s effect.

The method for inserting key gates for increased circuit protection is then to add gates

18

CHAPTER 2. BACKGROUND

such that the number of non-mutable gates is maximized. This is done by representing

the key gates of a circuit in a graph, referred to as an “interference graph,” in which

each locking gate is a node, dashed edges connect mutable gates, and solid edges

connect non-mutable gates. Sequentially mutable gates are connected by both a solid

and a dashed edge, to show that only one of the gates can be muted to find the value

of the other.

A circuit with multiple types of mutable and non-mutable gates is shown in Figure 2.7.

L2

L1

L3

L4

G1

G2 G4

G3

G5

G6
K1

K2

K3

K4

A

B

C

D

E

F

Y

Z

Figure 2.7: Circuit with Locking Gates for Demonstrating SLL Graph

The interference graph representation of this circuit is shown in Figure 2.8.

K1

K2K3

K4

Figure 2.8: SLL Interference Graph

Gates L1 and L2 are connected to each other with non-mutable edges, as they are

non-mutable convergent gates. Both gates can be muted by setting E=0 for L1 and

F=1 for L2; however, neither can be used to determine the value of the other.

19

CHAPTER 2. BACKGROUND

The other gate connections are sequentially mutable, with the exceptions of L2

connecting to L3 and L3 connecting to L4. As an example: if E=0 then the effect

of key bit L1 can be muted, which can be used to help determine the values of L3

and L4. This cannot be done in the opposite direction, which makes that connection

sequentially mutable. Similarly, L2 being muted cannot be used to determine L3, and

L3 cannot be used to find L4, so in the interference graph they are disconnected.

By using this method of representing the key gates in a circuit, stronger logical

obfuscation is achieved by maximizing the number of non-mutable edges in the circuit.

This is done by initially inserting a certain percent of the key gates randomly —

Rajendran et. al. used 10% — and then constructing the interference graph of the key

gates. Each further gate was then introduced iteratively, such that for every gate in

the netlist the type of edges connecting to the previous gates were determined. The

type of edge was then assigned a weight, with non-mutable edges being given the

higher weight, and the sum of the weights was calculated. The gate which maximized

this sum was selected for obfuscation and a key gate was inserted at its output.

2.6.1.4 SARLock

SARLock [25], or SAT Attack Resistant Logic Locking, is another extension of the

locking method proposed in EPIC that specifically focuses on increasing resistance to

the SAT attack introduced in [26]. The SAT attack, which is described in detail in

Section 2.7.1, relies on finding Distinguishing Input Patterns (DIPs) that can rule out

incorrect key values, ideally multiple at a time. The worst-case scenario for the SAT

attack then, is that each DIP is only able to rule out a single incorrect key. This is

the goal of SARLock.

This type of obfuscation is done by introducing a comparator into the design, which

compares the key to the circuit input. For certain combinations of the key and input,

20

CHAPTER 2. BACKGROUND

the comparator produces a flip signal, which is XORed with a primary output, thus

inverting it. This is shown in Figure 2.9.

Figure 2.9: SARLock Circuit [25]

The intended effect of this is to ensure that for each input pattern only a single key

will produce an incorrect value. While only the correct key will produce the correct

output for all inputs, other keys will produce an incorrect value for one input pattern.

This effect is shown in Table 2.1.

Table 2.1: Example Truth Table for a SARLock Circuit

Output for Each Key Value
a b c Y k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7

0 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 1 1 1 1 1 1 0 1 1 1 1

1 0 0 0 0 0 0 0 1 0 0 0

1 0 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 0

The truth table defines the behavior of a circuit: Y = (ab) + (bc) + (ac), with key gates

inserted. Only a single output bit will change for each possible key value, ensuring

that each DIP can only rule out a single incorrect key. This is done by creating a

function, flip = F (in, k), where in is the primary input to the circuit and k is the

21

CHAPTER 2. BACKGROUND

key. This flip bit is passed into an XOR gate on the output of the circuit, as shown in

Figure 2.9.

SARLock on its own is not enough to provide protection to a circuit, as it only serves to

increase protection against SAT attacks. As the additional components for SARLock

are isolated from the main circuit, there are several attacks that could remove that

functionality if no additional protections were added. Yasin et. al. recommend a

two-layer locking approach, in which SARLock is combined with SLL from [24]. This

method splits the key into two separate parts, one for locking the logic cone using

SLL, called K1, and one for interacting with the SARLock block, called K2. K2 is

scrambled with K1 for two reasons. First, it ensures that the flips do not all occur on

pre-determined combinations of input and key values. Second, it creates a dependency

between the two keys, which ensures that a simple removal attack cannot reduce the

number of the key bits. In order to extract K2 from the scrambler function, the value

of K1 must be known; however, in order to determine the value of K1 an attack —

possibly a SAT attack — must be performed on the locked logic cone, which the

SARLock block should prevent. This combined functionality is shown in Figure 2.10.

Figure 2.10: SARLock+SLL [25]

22

CHAPTER 2. BACKGROUND

2.6.1.5 Anti-SAT

Anti-SAT is another netlist locking method of hardware obfuscation designed to

attempt to thwart the SAT attack [27]. The aim of Anti-SAT is to include a small

additional circuit that greatly increases the number of iterations the SAT attack will

take to break the function. The method of obfuscation has two configurations, known

as type-0 and type-1. Both are made of two additional functional blocks, g and g,

which share the primary inputs but have differing keys. In type-0 Anti-SAT the output

of these blocks is then tied to an AND gate, while in type-1 they are tied to an OR

gate, as shown in Figure 2.11.

(a) type-0 Anti-SAT Block (b) type-1 Anti-SAT Block

Figure 2.11: Anti-SAT Configurations [27]

By feeding the output of the g and g blocks into an AND or an OR gate, this circuit

now produces a single bit output, defined by the following functions:

Y = g(~X ⊕ ~K1) ∧ g(~X ⊕ ~K2) (2.2)

Y = g(~X ⊕ ~K1) ∨ g(~X ⊕ ~K2) (2.3)

Equation 2.2 gives the equation for the output of a type-0 Anti-SAT block, and

Equation 2.3 gives the equation for a type-1 block. The inputs and keys in this

case were only XORed for simplicity, but in a realistic implementation it would be

23

CHAPTER 2. BACKGROUND

a combination of XORs and XNORs in accordance with the key bits, similar to the

implementation in EPIC [22].

These equations, if the correct key is given, should then always output either a 0 in

the case of the type-0 block, or a 1 in the case of a type-1 block. These blocks are

then integrated into a circuit as shown in Figure 2.12.

Figure 2.12: Anti-SAT Type-0 Integrated into a Locked Circuit [27]

Based on whether a type-0 or type-1 block is used, the “New Gate” highlighted in the

figure could either be an XOR or an XNOR to guarantee that the output is correct

with the correct key.

How these Anti-SAT blocks connect to the locked circuit is important for increasing

the level of complexity of the SAT attack. It is recommended that the inputs to the

block are connected to primary inputs from the original circuit, and the output is

connected to a randomly selected internal wire within the top 30% observability.

In [27], it is recommended that the Anti-SAT blocks also be combined with another

obfuscation method to provide resilience against other types of attacks. SLL is

again recommended for this purpose, as it has been shown to be strong against key

24

CHAPTER 2. BACKGROUND

sensitization attacks [24].

2.6.1.6 LUT-Lock

In [28], a method of netlist-level logic locking is proposed which uses Look-Up Tables

(LUTs) to obfuscate the netlist rather than simpler gates, as were used in other

methods [22–25,27]. This proposed method also includes specific heuristics for which

gates should be obfuscated by these LUTs so that the design is secure against SAT

attacks.

The research in [28] points to a number of different ways to utilize LUTs for stronger

logical obfuscation, some of which differ between FPGAs and ASICs. In FPGAs the

hardware itself is fixed, but can be reconfigured. This gives the designer an abundance

of LUTs and other hardware resources that can be used for obfuscation. When routing

for a FPGA bitstream, individually defined gates are mapped to LUTs of various sizes.

This can be leveraged to insert obfuscation logic into the design. Gates can be placed

in larger-than-necessary LUTs, with the additional inputs being fed by Non-Linear

Feedback Shift Registers (NLFSRs) or Physical Unclonable Functions (PUFs). These

can act as internal keys, so that the bitstream will function properly only on a specific

device that is configured to produce that particular output. This method of utilizing

LUTs in FPGAs is shown in Figure 2.13.

(a) Unmodified Circuit (b) Obfuscated Circuit with LUTs

Figure 2.13: FPGA Obfuscation LUT Example [28]

25

CHAPTER 2. BACKGROUND

The red, purple, and yellow groups of gates all became larger-than-necessary LUTs

with PUFs leading to some inputs. These are the obfuscated gates in the design.

The use of LUTs for obfuscation in ASICs differs substantially from their use in

FPGAs, as they are not readily available resources for a fully custom design. LUTs

can lead to substantial area and delay overheads with modern technology, so they

need to be used more sparingly and should be placed more specifically so as not to

interfere with timing or power specifications. Their use is rather simple, though: the

gates selected for obfuscation are removed and replaced with equivalent LUTs. The

functionality of these LUTs can be hidden from the fab, and are then programmed at

a trusted facility later.

The heuristics for where to best place these LUTs are what provide more substantial

protection against SAT attacks. There are five algorithms established in [28] on which

LUT-Lock is based, each used to remove weaker gates for obfuscation from a list of

possible candidates. These algorithms are:

1. FIC: Fan-In Cone of minimum number of primary outputs

2. HSC: Focusing on Higher Skew gates in FIC

3. MFO-HSC: Focusing on gates with Minimum Fan-Out

4. MO-HSC: Focusing on gates with least impact on primary outputs

5. NB2-MO-HSC: Avoiding back-to-back insertion of LUTs

FIC The first algorithm is focused on reducing the output corruption of the locking

gates, which increases the difficulty of the SAT attack. This is done by selecting

only fan-in cones that affect the fewest number of primary outputs of the circuit.

Due to intersections in these fan-in-cones, it is rare that only only a single output

26

CHAPTER 2. BACKGROUND

will be affected; however, it should be minimized as much as possible. This can be

accomplished by doing a Breadth First Search (BFS) to find the closest cells to the

selected output for obfuscation. After all gates in the selected fan-in cone are replaced,

a new output is selected and the process is repeated. The selected output must have

a large fan-in cone so as to offer more candidate gates for obfuscation.

HSC This algorithm relies on creating a candidate gate list based on the Signal

Probability Skew (SPS) of all gates in the selected output’s fan-in cone. Through the

original researchers’ testing, it was found that gates with higher SPS are better for

obfuscation. SPS is defined as | Pr(0)−Pr(1) |, where Pr(0) is the probability that the

gate will produce a 0 and Pr(1) is the probability that the gate will produce a 1 based

on possible inputs. This is a measurement of how controllable a gate is by the primary

inputs of the circuit. By selecting gates with a high skew, it raises the chances that a

SAT attack will select inputs that will test the output of that particular gate.

MFO-HSC This is another step that focuses on lowering the output corruption

of the locked gates. It finds the gate to obfuscate by determining the gates with

minimum fan-out. If multiple gates have the same fan-out, the gate with the higher

SPS is selected. This is done to attempt to reduce the corruption to only gates within

the initial fan-in cone, with the intention of reducing the corruption at intersections.

When a gate is selected for obfuscation, the gates in its fan-in cone are added to the

list of candidate gates for the next iteration of the method.

MO-HSC This is an incremental improvement over MFO-HSC, in which the number

of affected primary outputs is accounted for. Some gates can have larger fan-out but

only affect a single primary output. MO-HSC, instead of finding the fan-out cone of a

gate, calculates how many outputs are affected by this gate. This approach requires

additional processing to find each candidate gate, but should further reduce the output

27

CHAPTER 2. BACKGROUND

corruption. Similarly to MFO-HSC, once a gate is selected to be obfuscated its fan-in

cone is added to the list of candidate gates for the next iteration.

NB2-MO-HSC This final algorithm utilizes MO-HSC, but additionally accounts

for the back-to-back insertion of LUTs. When multiple LUTs are placed sequentially

multiple keys could be able to unlock those obfuscated gates, due to De Morgan’s

Laws. Each additional locked gate in a fan-in cone increases the number of possible

keys for unlocking, which leads to an exponential increase in the number of successful

keys. This is avoided by ensuring that no new obfuscated gate feeds into a previously

added one.

The NB2-MO-HSC algorithm is the most complete algorithm for finding the gates

to be obfuscated, so this is ultimately the algorithm which was used in the final

LUT-Lock design.

2.6.2 ORF Insetion

To provide additional obstruction between the primary inputs of a circuit and a locked

netlist, Yasin et. al. proposed inserting an ORF between the key inputs of the circuit

and the key inputs of the logic locked device [29]. This is shown in Figure 2.14.

Figure 2.14: ORF Insertion [29]

An ORF is a random function whose inverse is infeasible to compute, meaning its

input pattern cannot reasonably be determined by its output pattern. These functions

28

CHAPTER 2. BACKGROUND

prevent attackers from determining the key inputs to the function from its outputs by

disassociating them.

The researchers discuss using a modified AES block cipher with a hard-coded key

as the ORF for these locking schemes, as they are reliable one-way functions [29].

The hard-coded key value is implemented to prevent possible removal attacks. Since

the structure of AES is well known, it is possible that an attacker could identify and

remove it; however, by including the key in the design itself, once it is synthesized it

would become much harder to identify and remove.

2.6.3 Binary Decision Diagram Logic Locking

Xu et. al. proposed a method of logic locking that does not function on the base netlist

like those previously discussed, but instead relies on representing the circuit using a

Binary Decision Diagram (BDD) and inserting obfuscation in that before synthesizing

into a netlist [30]. A BDD is a method of representing logic, often used in verification

and synthesis, that shows the logic as a tree of decisions. Figure 2.15 represents the

BDD for an XOR gate.

Figure 2.15: BDD Representation of Y = A⊕B [30]

In the diagram, dashed edges represent the variable being input as a 0, and solid

29

CHAPTER 2. BACKGROUND

edges represent a 1. The final boxes show the output of the function when that node

has been reached. These diagrams can easily be expanded to represent more complex

logical functions.

Using these BDDs, the authors of [30] use Figure 2.16 to describe the obfuscation

method.

Figure 2.16: Obfuscated BDD [30]

K1 and K2 are new variables added to the function which act as key bits. The use of

the proper key, (0,0), leads to f , the original function being obfuscated. Any other key

combination leads to a modified version of the circuit f ′, f ′′, or f ′′′. These modified

circuits provide incorrect functionality, and allow the design to be obfuscated.

This obfuscation method was designed as a countermeasure to the bypass attack that

was introduced in the same paper.

In order to provide resistance from the SAT attack, each incorrect function must

have a Hamming Distance from the original function of 1. This creates only a single

incorrect bit on the output when the wrong key is used, which increases the difficulty

of SAT attacks finding a DIP.

30

CHAPTER 2. BACKGROUND

2.6.4 Finite State Machine Insertion

Another prevalent method of hardware obfuscation is the act of inserting additional

control FSMs, which can work with a key to obscure the functionality of the design.

2.6.4.1 Adding an Isolation State Space

In [15], a method of obfuscation was proposed that uses a separate and isolated

“obfuscated state space” that locks the proper functionality of the design behind a key

sequence. This was designed specifically to protect against hardware Trojan insertion,

as a Trojan inserted into the incorrect state space would be rendered benign. This

concept is shown in Figure 2.17.

Figure 2.17: Obfuscated State Space [15]

A notable benefit of this method of obfuscation is that it offers both obfuscation and

authentication, depending on how the designer chooses to set up the state spaces.

These state spaces come from the following modifications of the State Transition

Graph (STG):

1. The size of the reachable state space is increased with additional state elements.

31

CHAPTER 2. BACKGROUND

2. Certain states which were initially unreachable are used in the isolated state

space.

When the device is booted up, it starts in the “initialization state space,” and a key

must be entered before moving on to the proper circuit functionality. If the entered

key is correct, the device transitions to the “original state space” and is able to function

as intended; however, if it is incorrect the functionality is moved to an “isolation state

space” that offers no way to return to the original state space without rebooting the

device and attempting another key.

The initialization sequence can be made very short, and as such can also be hidden

from the end-user as part of the normal “power-on” latency. This could be particularly

helpful if the key was derived from a PUF so that the design could only work for a

single device, and the user would not need to influence the key.

To greatly increase the size of the obfuscated state space, the authors recommend

inserting a Parallel State Machine (PSM) that defines transitions between the extra

states. This can be folded into the normal functionality so it cannot be extracted and

removed easily. These states that exist in the obfuscated functionality are also what

allow for authentication with this design. If a specific “incorrect” key is given in the

initialization sequence, it can transition to a specific series of states that function as a

digital watermark.

These additional state spaces should make hardware Trojan insertion incredibly

difficult, as effective Trojans must be inserted at locations which will only be reached

on rare events, so the proper functionality must be understood and accessible. If the

attacker is unable to access the normal state space then they cannot insert an effective

Trojan. A randomly placed Trojan is very unlikely to be located at a rare state in the

normal functionality — it is more likely that it would be placed at a common state

32

CHAPTER 2. BACKGROUND

and be found or placed in the isolated state space and would be rendered useless.

2.6.4.2 Utilizing the CDFG

In [31], a similar obfuscation method was suggested; however, it was accomplished by

converting the Register Transfer Logic (RTL) into a Control and Data Flow Graph

(CDFG) to determine where to add the obfuscation state space and mode-control

state machine. First, the RTL is converted to the CDFG and the graph is flattened.

This means that smaller blocks are merged where possible, creating larger CDFGs.

These larger graphs are useful for integrating the mode control logic with the already

existing state control logic. By integrating them, the mode change logic becomes more

difficult to remove.

Once the CDFGs have been created and flattened, branches with large fan-out are

selected for modification to allow for the obfuscated mode of functionality.

The CDFGs are then converted back into RTL with the additional obfuscation added,

which can then be implemented for a device.

2.6.5 Signal Path Obfuscation

A further form of defense through obfuscation relies on modifying the signal paths

between components, as discussed by Wendt et. al. [32]. Figure 2.18 shows a method

for obfuscating the signal paths between components such that they cannot be easily

followed without knowing the Challenge/Response Pairs (CRPs) of a specific PUF.

33

CHAPTER 2. BACKGROUND

Figure 2.18: Obfuscated Signal Path [32]

This method ensures that it cannot easily be determined how different components

connect without knowledge of the set of CRPs for the PUF being used as the select

for the multiplexers. On its own, this method would likely not be enough to protect a

design, though in conjunction with other methods it could help fully protect a design.

2.6.6 ASIC Cell Camouflaging

Another method of obfuscation, specific to the manufacture process for ASICs uses

modified layout-level standard cells for design [33,34]. This approach does not obfuscate

the function, per se, but instead obfuscates the physical appearance of the material

being manufactured. This was done using a camouflaged standard cell library with

modifications to only the dopant layer, keeping all other layers identical. Camouflaging

in this way protects mostly against attacks at a foundry while laying out the design,

but is also a key defense against attacks where the device is being reverse engineered

through use of an X-ray or Scanning Electron Microscope to see the silicon layout of

the design. Another obfuscation technique used with this design is to populate the

empty space on the chip with arbitrary materials laid out in such a way that makes

viewing the design difficult, but does not affect functionality.

34

CHAPTER 2. BACKGROUND

2.6.7 Reconfigurable Logic Barriers

Similar to obfuscation, reconfigurable logic barriers can be utilized to protect the

design from adversaries [4]. This method is done by sectioning off part of the design to

be left reconfigurable after manufacturing. The separation is done in such a way that

each device requires a unique design placed in the reconfigurable area to restore proper

functionality. The main purpose of this approach is to protect against overproduction

at the manufacturing stage, since producing more boards offers the adversary no

benefit without the correct reconfigurable designs.

2.7 Attacks on Hardware Obfuscation

2.7.1 Satisfiability Attacks

One of the main attacks on hardware obfuscation is the SAT attack, which uses the

Boolean satisfiability problem to attempt to determine the key of an obfuscated circuit.

Originally proposed in [26], this attack rules out equivalence classes of keys that do

not lead to the correct output. To accomplish this attack, the adversary must have

access to both the locked netlist and a functional unlocked IC.

Keys are separated into equivalence classes, which are sets of keys where for each key

in the set, the inputs and outputs are equivalent, as denoted in Equation 2.4.

~K1 ≡ ~K2 ⇐⇒ ∀ ~Xi : C(~Xi, ~K1, ~Yi) ∧ C(~Xi, ~K2, ~Yi) (2.4)

In the equation, ~K1 and ~K2 refer to the two keys in the equivalence class, and

C(~Xi, ~K, ~Yi) is the function of the circuit with inputs ~Xi and outputs ~Yi.

By considering these equivalence classes, the SAT attack is able to rule out sets of

keys rather than individual keys, thus increasing the efficiency of the search. Once

35

CHAPTER 2. BACKGROUND

equivalence classes are defined, the attack iteratively rules out incorrect keys through

the use of Distinguishing Input Patterns (DIPs). A DIP is defined as an input vector

where, for two different keys ~K1 and ~K2 the output is different. This output can then

be compared to the output of the unlocked circuit for that input vector and one or

both equivalence classes can be ruled out. This allows the attack to rapidly reduce

the size of the key space in order to narrow in on the correct key.

A miter-like circuit is created to find the DIPs, which creates two copies of the circuit

with the same primary inputs and two different keys [35]. The outputs of these circuits

are XORed to determine if they are the same, and then ORed into a single diff signal.

If any output between the circuits differs, the diff signal is asserted high, as shown

in Figure 2.19.

Figure 2.19: DIP Miter Circuit [35]

To use this to find the DIPs, the full miter circuit is converted to its Conjunctive

Normal Form (CNF) and a SAT solver is run on the description of the circuit. A DIP

has been found once a satisfiable assignment has been found.

Once a DIP has been found, the output of the activated IC can be examined to rule

out either or both of the keys used — and by extension, those keys’ equivalence classes.

This process is repeated either until no further DIPs can be found, indicating that the

36

CHAPTER 2. BACKGROUND

equivalence class of the key can no longer be narrowed down and the correct key has

been found.

Algorithm 1 describes the full process of the attack.

Algorithm 1 SAT Attack [26]
Inputs: C and eval
Output: ~KC

1: function decrypt
2: i := 1
3: F1 = C(~X, ~K1, ~Y1) ∧ C(~X, ~K2, ~Y2)

4: while sat[Fi ∧ (~Y1 6= ~Y2)] do
5: ~Xd

i := sat_assignment ~X [Fi ∧ (~Y1 6= ~Y2)]

6: ~Y d
i := eval(~Xd

i)

7: Fi+1 = Fi ∧ C(~Xd
i ,
~K1,

~Y d
i) ∧ C(~Xd

i ,
~K2,

~Y d
i)

8: i := i+ 1
9: end while
10: ~KC := sat_assignment ~K1

(Fi)

Once the while condition (line 3) is no longer true, meaning the miter circuit is

unsatisfiable, the correct key value ~KC is output.

2.7.1.1 Tseitin Transformation

The general conversion of a Boolean formula into CNF is an NP-hard problem and can

result in an exponential explosion of clauses depending on the circuit being transformed.

To resolve this, the tool uses a Tseitin, alternatively known as Tseytin, transformation,

which is a method of easily converting gates into proper CNF by including the output

of the gate as a variable [36]. This transformation also reduces the complexity of the

satisfiability problem by providing only clauses with a maximum of three variables.

The following equations show the derivation for the Tseitin transformation of an AND

gate.

37

CHAPTER 2. BACKGROUND

An AND gate can be defined by:

(C → (A ∧B)) ∧ (C → (A ∨B)) (2.5)

Implications are replaced with equivalent logic using only AND, OR, and NOT:

(C ∨ (A ∧B)) ∧ (C ∨ (A ∨B)) (2.6)

The equation is then be put in CNF by using distribution on the leftmost clause:

(C ∨ A) ∧ (C ∨B) ∧ (C ∨ A ∨B) (2.7)

Table 2.2 shows the applicable Tseitin transformations for all two-input gates and an

inverter.

Table 2.2: Tseitin Transformations [37]

Type Operation CNF Expression

AND C = A ·B (C ∨ A) ∧ (C ∨B) ∧ (C ∨ A ∨B)

NAND C = A ·B (C ∨ A) ∧ (C ∨B) ∧ (C ∨ A ∨B)

OR C = A+B (C ∨ A) ∧ (C ∨B) ∧ (C ∨ A ∨B)

NOR C = A+B (C ∨ A) ∧ (C ∨B) ∧ (C ∨ A ∨B)

XOR C = A⊕B (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C)

XNOR C = A⊕B (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C) ∧ (A ∨B ∨ C)

NOT C = A (A ∨ C) ∧ (A ∨ C)

Figure 2.20 is an example circuit, encoding the equation (AB+C) obfuscated with two

locking gates, to be converted to CNF for a SAT solver using the Tseitin transformation.

38

CHAPTER 2. BACKGROUND

A

B

C

K1

K2

G1 G3

G4G2

G5
Y

Figure 2.20: Example Circuit for Tseitin Transformation

Each gate output was given a label, G1-G5. These labels are then used to find the
Tseitin transformation of each gate, as shown in Table 2.3.

Table 2.3: Tseitin Example Transformations

Gate CNF Sub-Expression

G1 (A+B +G1)(A+G1)(B +G1)

G2 (C +G2)(C +G2)

G3 (G1 +K1 +G3)(G1 +K1 +G3)(G1 +K1 +G3)(G1 +K1 +G3)

G4 (G2 +K2 +G4)(G2 +K2 +G4)(G2 +K2 +G4)(G2 +K2 +G4)

G5 (G3 +G4 +G5)(G3 +G5)(G4 +G5)(G5)

Connecting each of the individual CNF formulas with AND operations yields a full

CNF equation for the circuit. As gate G5 represents the output of the circuit, an

additional lone (G5) clause was added to force the circuit output to be one and yield

the correct results from a SAT solver.

2.7.2 Bypass Attack

The bypass attack proposed in [30] is an attack that was designed to capitalize

on the vulnerabilities of various SAT attack-resistant locking mechanisms, such as

SARLock [25]. Based on a SAT attack, once the attacker has found all DIPs for an

incorrect key they would be able to use that key and reverse the outputs to become

39

CHAPTER 2. BACKGROUND

correct. A “bypass circuit” could be attached alongside the original locked netlist

to monitor the DIPs to change incorrect outputs to the correct outputs based on

SARLock’s flip bit.

2.7.3 Key Sensitization Attack

Proposed in [24], the key sensitization attack is performed by determining input

patterns that allow key bits to propagate to the outputs of the circuit. This is done

using Automatic Test Pattern Generation (ATPG) tools, which are ordinarily used

to generate input patterns for fault analysis of circuits [38]. They can, however, be

leveraged to determine input patterns that propagate key bits to the output.

A basic example of a circuit that allows a key bit to propagate to the output is shown

in Figure 2.21

L1G1

G2

G3

K1A=1

B=1

C=0

D=0

Y

Figure 2.21: Circuit Vulnerable to the Key Sensitization Attack

The input pattern shown in the figure would allow an attacker to sensitize the key bit

K1 to the output Y and observe its value.

The SLL method of obfuscation was developed as a means to prevent this type of

attack. By ensuring that the gates are connected in such a way that they cannot

expose key values, this attack could be rendered ineffective [3].

40

CHAPTER 2. BACKGROUND

2.7.4 Signal Probability Skew Attack

An attack was formulated in [39] known as the Signal Probability Skew (SPS) attack,

designed to specifically attack the Anti-SAT method of obfuscation. This attack is

used to analyze the SPS of gates g and g. These gates will very likely have the highest

skews of the circuit and can be easily singled out and guessed. These gates can also

be removed, and the value of their output can be determined by analyzing the skew

of the output of the block itself.

2.8 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) are components that produce a unique value

per-chip. They utilize variations in the silicon and manufacturing process to ensure

that each will give a different response. This is called a Challenge/Response Pair

(CRP), and must be unique for each PUF [40].

The space of this CRP can vary based on the type of PUF, either weak or strong. A

strong PUF is defined as one with, “so many CRPs such that an attack (performed

during a limited amount of time) based on exhaustively measuring the CRPs has only

a negligible probability of success” [41]. A weak PUF is one with a restricted CRP

space, sometimes only a single CRP. These are often used for creation of a single value

per-chip.

PUFs are useful for designs that need a unique identifier or key that differs from

instance-to-instance such that no two devices will ever share a key. These values cannot

be detected during the manufacturing process/bitstream programming. LUT-Lock

utilizes these devices in obfuscation on FPGAs to act as keys for obfuscated gates [28].

41

CHAPTER 2. BACKGROUND

2.8.1 PUF Definitions

A PUF must be provably unclonable, unique, and random in order to guarantee

security. Barbareschi offers a number of equations for determining if a design fits

these characteristics, as well as several definitions that help simplify the language

surrounding the components [40].

First, a PUF is formally defined by Equation 2.8.

θ ∈ Θ : C → R|θ(c) = r, c ∈ C, r ∈ R (2.8)

The function θ takes a challenge, c, as an input and returns a response r. C is the set

of all challenges, and R is the set of all responses that map to these challenges. The

CRP in this case would be defined as the pair (c, θ(c)) = (c, r), and a PUF is a device

which is able to provide a unique CRP for each device.

Unclonability is one of the main properties of PUFs, which means that they cannot be

mimicked on another device. This ensures that a design that is dependent on a specific

PUF output will only work for a certain challenge on a certain chip. Unclonability is

defined by the following series of functions [40]:

@f : θ(c) = f(c) = r,∀c ∈ C (2.9)

@θ′ : θ(c) = θ′(c) = r,∀c ∈ C (2.10)

Both equations state similar properties, but with slightly differing contexts. Equa-

tion 2.9 states that a mathematical function f cannot be found that would produce

the same set of CRPs as the initial PUF. Equation 2.10 similarly states that it would

be hard to create a device with a PUF that can be swapped out for the initial PUF

with function θ.

42

CHAPTER 2. BACKGROUND

Another major characteristic that all PUFs must adhere to is uniqueness, which is

similar to unclonability and can often be mistaken for such, but has a key difference.

This property is defined by Equation 2.11.

@θ̃ ∈ Θ : θ̃(c) = θ(c) = r,∀c ∈ Ĉ ⊆ C (2.11)

The key distinction of Equation 2.11 is that uniqueness requires that a θ̃ which belongs

to Θ and produces the same CRP cannot exist. It also must only hold valid for a

subset of C.

These properties of PUFs allow them to make ideal keys which cannot be discerned at

any stage of the manufacture process.

2.9 Substitution Boxes

Security in block ciphers relies on the incorporation of components that add to both

the confusion and diffusion of the data. Confusion is the process of making each bit of

ciphertext dependent on multiple key bits, thus obscuring the connection between the

key and the encrypted data. Diffusion spreads the information in the plaintext out

across a substantial amount of the ciphertext, such that if a single bit of plaintext is

changed half of the bits of ciphertext will change, on average [42]. A major component

in block ciphers that helps create these security measures, specifically confusion, is the

substitution box (S-box), which is the main component being obfuscated in this work.

An important quality of S-boxes is that they are nonlinear components, and are

typically the only nonlinear components in a block cipher [6]. These components

can be designed in a number of ways, as long as they offer nonlinear functionality to

provide strong confusion.

43

CHAPTER 2. BACKGROUND

2.9.1 MK-3 S-Box

The S-box used in the MK-3 cipher uses 16-bit inputs and outputs which was, at

the time, believed to be the largest S-box used in a cryptographic algorithm [43]. As

with most other ciphers, this S-box is the main source of confusion and is the only

nonlinear element in the algorithm.

The algorithm for MK-3 is designed to be customizable, so that a number of different

S-boxes are available for different implementations. This results in the need for the

component to be protected, as it is important to guarantee the security of the cipher

for its users [44].

This S-box design from Wood’s Master’s thesis on the topic [6] was used because

it could be efficiently implemented in hardware. It functions very similarly to the

AES S-box, as it is also created by calculating a multiplicative inverse in a finite field

and then performing an affine transformation. This function can be represented as

S(α) = A · α−1 + b, where α denotes the 16-bit input to the function, which is treated

as a polynomial in GF (216). The affine transformation is handled by the matrix A and

the 16-bit vector b. The multiplicative inverse of α is calculated using an irreducible

polynomial f(x) = x16 + x5 + x3 + x+ 1.

As this S-box is customizable, the values for f(x), A, and b can be selected to create

a unique S-box without jeopardizing the security of the cipher [44].

2.9.2 AES S-Box

AES utilizes an 8-bit S-box component for its confusion. This S-box’s function is in

two steps: the multiplicative inverse of the input value is taken in the Galois Field of

GF (28) and then an affine transformation is performed over a binary Galois Field [45].

The design of this particular S-box was chosen based on both nonlinearity — leading

44

CHAPTER 2. BACKGROUND

to the lowest possible correlation between inputs and outputs and the lowest possible

difference propagation probability — and the algebraic complexity of determining the

values [46]. These criteria were chosen to make the confusion for the cipher as strong

as possible.

2.10 SIMON Block Cipher

In 2013 the National Security Agency (NSA) designed two families of lightweight

block ciphers for use in highly resource constrained devices, SIMON and SPECK [47].

The SIMON family was optimized to be implemented on hardware devices, while the

SPECK family of ciphers was optimized to be run in software. Each cipher could be

configured to use varying block and key sizes, ranging from 32/64 — denoting a 32-bit

block and 64-bit key — to 128/256.

This research will focus on making use of the SIMON family of ciphers as One-way

Random Functions (ORFs) for obfuscation.

The SIMON cipher is designed as a Feistel network, thus removing the need for

separate encryption and decryption logic. This network consists of a number of rounds

and a key scheduler, each of which is determined by the block and key size being

implemented.

The round consists of multiple rotation, logical AND, and logical XOR operations,

and is shown visually in Figure 2.22.

45

CHAPTER 2. BACKGROUND

Figure 2.22: One Round of SIMON [47]

In the figure, n is the number of bits being used for the operations, which is half of the

configured block size; xi and xi+1 are the upper and lower halves of the block being

used in round i; and Sn represents a left circular shift by n bits.

The key scheduler, which produces an n-bit ki for each round i, is what gives the SIMON

cipher the majority of its confusion. It defines five round sequences, z0 . . . z4, which

are used as round constants to remove slide properties and circular shift symmetries.

Each of these sequences is used for different block/key size combinations to provide

additional separation between similar configurations. The scheduler also uses a round

constant c that is defined as c = 2n − 4 =0xff· · · fc.

The equation for each round key is defined by the piecewise function in Equation 2.12.

ki+m =


c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, m = 2,

c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, m = 3,

c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1), m = 4,

(2.12)

46

CHAPTER 2. BACKGROUND

In this equation, m is defined as the number of key words being used, which varies

based on the configuration; and (zj)i represents the i
th bit of the sequence zj that is

used for that configuration. These configuration-specific values are defined in Table 2.4.

Table 2.4: SIMON Configurations [47]

block size
2n

key size
mn

word size
n

key words
m

constant
seq

rounds
T

32 64 16 4 z0 32

48 72 24 3 z0 36
96 24 4 z1 36

64 96 32 3 z2 42
128 32 4 z3 44

96 96 48 2 z2 52
144 48 3 z3 54

128 128 64 2 z2 68
192 64 3 z3 69
256 64 4 z4 72

Using the information from the table and the function in Equation 2.12, a round key

can be made for each round of operation and the block cipher is complete.

The intention is to use SIMON as an ORF, similar to the use of AES from [29].

2.10.1 Round-Reduced SIMON

A round-reduced version of SIMON could possibly be used as an ORF as long as it

still provides strong confusion and diffusion properties.

Several works have been published that look at the cryptanalysis of round-reduced

SIMON and determine the minimum number of rounds that cannot be broken by

several common attacks. In [48] the results were summarized in Table 2.5.

47

CHAPTER 2. BACKGROUND

Table 2.5: Summary of results on SIMON. CP = chosen plaintexts, CC = chosen ciphertexts,
Att. = attacked, Succ. = success, Ref. = reference. [48]

Cipher Rounds Time Data Memory Succ.
Full Att. Bytes Rate

Differential

SIMON32/64 32 18 246.0 231.2CP 215.0 0.632
SIMON48/72 36 19 252.0 246.0CC 220.0 0.981
SIMON48/96 36 19 276.0 246.0CC 220.0 0.981
SIMON64/96 42 26 263.9 263.0CP 231.0 0.863

SIMON64/128 44 26 294.0 263.0CP 231.0 0.863
SIMON96/96 52 35 293.3 293.2CP 237.8 0.632

SIMON96/144 54 35 2101.0 293.2CP 237.8 0.632
SIMON128/128 68 46 2125.7 2125.6CP 240.6 0.632
SIMON128/192 69 46 2142.0 2125.6CP 240.6 0.632
SIMON128/256 72 46 2206.0 2125.6CP 240.6 0.632

Related-Key Rectangle

SIMON32/64 32 18 254.55 230.86CP 232.86 0.632

Impossible Differential

SIMON32/64 32 13 250.1 230.0CP 220.0 ≈ 1
SIMON48/96 36 15 253.0 238.0CP 220.6 ≈ 1

SIMON64/128 44 17 271.0 252.0CP 221.0 ≈ 1
SIMON96/144 54 20 2111.0 284.0CP 219.6 ≈ 1
SIMON128/256 72 25 2195.0 2119.0CP 223.0 ≈ 1

The results in Table 2.5 suggest that, depending on the attack used and the size of

the cipher, as few as 13 rounds can be an effective cipher. Given this, a severely

round-reduced implementation could be effective as an ORF.

One reason a round-reduced implementation may be wanted is to account for overhead.

Though SIMON is a much smaller block cipher than AES, it can still add substantial

overhead to the circuit even with fewer rounds. As this research is being conducted,

National Institute of Standards and Technology (NIST) is running a competition to

find a new lightweight cipher for use in resource-constrained applications [49]. Though

the finalists and winner have not been announced at this time, this could lead to other

promising ciphers as ORFs.

48

Chapter 3

Methodology

Much work has been done in the last several years on improving the security of logic

locking algorithms for hardware obfuscation; however, little research has been done

that analyzes the effects of these obfuscation methods on cryptographic components.

This research seeks to analyze the effectiveness of several methods of obfuscation

on non-linear cryptographic components, specifically S-boxes, against SAT attacks.

Obfuscating these components would be particularly valuable for any proprietary

or customizable cryptographic operations implemented in hardware. Similar work

in analyzing different obfuscation methods has been done previously, however this

research only tests against a series of relatively basic components from the ISCAS ‘85

benchmark set [50].

3.1 Circuit Obfuscation Program

A Python program was written which can obfuscate a Verilog gate-level netlist using

several logic locking methods. This software was able to parse these netlists into

lists of gates and wires and then modify those to implement an obfuscation method

determined by the user.

To prepare the circuits for testing, if they were not already in the form of a gate-level

49

CHAPTER 3. METHODOLOGY

netlist, the circuits were synthesized using Leodardo Spectrum. For this synthesis

a generic ASIC standard gate library was used, and a helper script was written in

Python which converted the gate definitions from that library into standard Verilog

primitives. This process is shown in Figure 3.1.

Circuit
Model

Netlist?

Leonardo
Spectrum

Spectrum Gate
Conversion

Verilog
Netlist

Obfuscate

Obfuscated
Verilog

Bench
Conversion

Bench
Conversion

Obfuscated
Bench

SAT Attack

Unlocked
Bench

Methods:

• Random

• High Stage

• Low Stage

• LUT-Lock

• Modified
LUT-Lock

Yes

No

Figure 3.1: Process Workflow

The locking methods implemented were the random locking method proposed in [22],

as well as two which place the locking gates at either the highest or the lowest stages

of the circuit, and LUT-Lock — a more recently proposed locking method made to

specifically defend against SAT attacks [28], and a small modification of LUT-Lock.

The two methods which utilize gate stage as metrics for locking are based on the fully

random locking methods, but place all locking gates in either the highest or lowest

50

CHAPTER 3. METHODOLOGY

stages possible. The stage of a gate is determined by the largest number of gates from

primary inputs; so a gate with two primary inputs has a stage of 0, a gate with one

primary input and one input which passes through two levels of gates has a stage of 2,

and so on. Gate stage values are shown in Figure 3.2.

0

0

1

2

A

B

C

D E
F

Figure 3.2: Circuit Stages

Each gate is labeled with its stage in the design, which starts from 0 — with primary

inputs — and increments with each gate that must be passed through from those

inputs.

These obfuscation methods were used to protect both the 8-bit AES S-box as well as the

16-bit MK-3 S-box [43] with key sizes ranging from 16-bits to 128 bits. These methods

were also used to obfuscate a subset of the ISCAS ‘85 combinational benchmarks to

attempt to replicate some of the work done in [50].

The obfuscated circuits then had a SAT attack run against them using the attack tool

from [26]. To use this tool, the netlists had to be converted into bench format, which

was accomplished with another Python script.

For each circuit, each obfuscation method was run and then attacked ten times, and

the amount of time the attack took to complete was recorded. A timeout was set so

that if the attack ran for more than five days it was stopped. This was a requirement

set by the server cluster being utilized for testing.

51

CHAPTER 3. METHODOLOGY

The results for a SAT attack run on the ISCAS benchmarks with random locking

gates inserted closely mimicked the results from [50], though that work tested fewer

key sizes so a full comparison could not be made.

3.1.1 Modified Random Locking Implementation

The random locking method of encryption is theoretically vulnerable to physical

reverse engineering attacks where the attacker could X-ray or otherwise analyze the

traces in a chip to find and remove the locking gates. This is possible because the

locking gates in this method would only be added into wires, so replacing them with

buffers could invalidate the security.

As a countermeasure to this, a method was developed which would randomly either

insert locking gates into the internal signals — as was done in the original method —

or replace inverters with locking gates. For any inverters being replaced, the locking

gate would correspond to the opposite gate — either XOR or XNOR — as was used

to obfuscate the internal wires. This should ultimately have no impact on the SAT

attack as the effect of each key bit remains the same, it should only increase the

difficulty of physical analysis attacks.

3.1.2 LUT-Lock Implementation

The final algorithm proposed in LUT-Lock [28] was referred to as NB2-MO-HSC,

which was a combination of several heuristics used to determine which gates should

be obfuscated to increase security against SAT attacks. The algorithm which was put

forward in the research relied on narrowing down which outputs could be obfuscated

based on their timing requirements before locking specific gates. When implementing

this algorithm for testing, the timing aspect was ignored, as the designs were eventually

intended for use on FPGAs which will adjust routing to ensure timing constraints are

met if possible. Should it become clear that these considerations are important for

52

CHAPTER 3. METHODOLOGY

the security of the design, they could be re-added.

3.1.2.1 Key Programmable Gate Insertion

To test the functionality of a LUT-based obfuscation method, Key Programmable

Gates (KPGs) needed to be added. These are gates which, when given the correct key

act in the way that they are intended, otherwise they behave differently [51]. As with

previous methods, this was most easily accomplished using XOR and XNOR gates,

but it can be done with multiplexers or LUTs. XORs and XNORs were ultimately

used for this purpose again, as the attack tool would not be able to parse anything

other than primitive gates; however, should this algorithm be used on actual devices,

the gates would ideally be rolled into LUTs.

Gates of this nature are only required for testing when dealing with FPGAs, since an

implementation on an actual device would use PUFs or NLFSRs for key inputs rather

than primary inputs.

3.1.2.2 LUT-Lock Modification

A further modification done to the LUT-Lock method was based on how the candidate

list of gates was initially formed. In the originally proposed algorithm, a single output

would be chosen to be obfuscated first based on the timing requirements. This port’s

fan-in cone would be obfuscated through until no candidates in that cone could

remain, and once that occurred the next output would be obfuscated. This creates

a potential issue of incomplete obfuscation in the circuit with keys below a certain

size — determined by the size of the circuit itself. If smaller keys were used with this

algorithm as it was presented, not all outputs would necessarily be obfuscated before

the number of key bits was exceeded. To fix this, rather than fully iterating through

the fan-in cone of each output and obfuscating based on the metrics, all outputs were

added as candidates at the beginning. This ensured that each output received some

53

CHAPTER 3. METHODOLOGY

level of obfuscation, as long as the size of the key was greater than the number of

output bits.

The algorithm followed the original from this point: finding the child gates from the

fan-in cone with the lowest effect on primary outputs and highest SPS, obfuscating that

gate, forbidding its children from being obfuscated, and adding the obfuscated gate’s

children’s children to the candidate list. Both this modified form of the LUT-Lock

algorithm and the original NB2-MO-HSC method were used for obfuscation testing.

3.2 SIMON as an ORF Experiments

Variations of the SIMON block cipher [47] were used as One-way Random Functions

(ORFs) for obfuscating circuits in the manner presented in [29]. The configuration

used, prior to any modifications, was the 32/64 implementation of the cipher with a

32-bit block size and a 64-bit key. These netlists were derived from a Very High Speed

Integrated Circuit (VHSIC) HDL (VHDL) implementation of the 64/128 SIMON

block cipher [52]. The key scheduler from that project was modified to accommodate

the 32/64 size cipher and the rounds were resized appropriately.

To attempt to establish a trend that relates the number of rounds of SIMON to its

strength as an ORF for this application, several round-reduced implementations of

the cipher were created and tested.

Another experiment involved fixing both the plaintext and the key inputs to the cipher,

respectively. The purpose of fixing these values for certain tests was to protect against

the possibility of removal attacks. As noted in the original paper [29], in reference to

the AES, a cipher of this nature could have a known synthesis profile and an adversary

could simply remove the relevant gates if it were discovered. By fixing these values

prior to synthesis, the post-synthesis model would be effectively unrecognizable.

54

CHAPTER 3. METHODOLOGY

Before using a possibly round-reduced SIMON for this purpose, the SAT attack’s

effectiveness against it must be analyzed. To do this, the SAT attack tool from [26]

was used. The “unlocked” netlist given was a netlist with a fixed key, as that key was

the value being searched for, and the locked netlist was the standard SIMON block.

This test was done using round-reduced implementations ranging from 1–8, 16, 24,

and 32 rounds.

Following these experiments, the three variations of SIMON were used as ORFs for

the MK-3 S-box. The actual number of locking gates used for the obfuscation itself

was fixed at 32 to match the size of the SIMON block. For each input variation of

SIMON; 2, 4, 6, 8, 10, 12, 14, 16, 24, and 32 round instances were tested, each 10

times.

3.3 Obfuscated Models

Several models were used in the obfuscation experiments, covering a range of sizes

and structures.

The first six models come from a set of benchmarks referred to as the ISCAS ’85

benchmarks [53]. These benchmarks are a series of standard combinational circuits

used for gate-level ATPG testing and fault simulation. The original work did not,

however, disclose the functionality of the designs, merely their netlists, so further

work [54] has gone into discerning their operations as described in the “Description”

column of Table 3.1. This subset of circuits from the full ISCAS ’85 set were chosen

so that comparisons could be made with the results of the work which created specific

obfuscation benchmarks of these particular designs [50]. The netlists used as the base

for obfuscation were from [55].

The final two models are instances of S-boxes from both the AES and MK-3 block

55

CHAPTER 3. METHODOLOGY

ciphers [43,45]. Both were created using composite field techniques to make the results

comparable between them. Both of these S-boxes were originally implemented in

VHDL; however, as the obfuscation tool only works with files based off of Verilog

netlists, the designs needed to be converted to Verilog. This conversion was done using

Leodardo Spectrum, which converted the design fully into two-input standard cell

gates, plus inverters, based on a standard ASIC library. This differs from the ISCAS

‘85 circuits used, as they use n-input standard cell gates, as well as including buffers

in several designs. This can lead to a misleading understanding of the comparison of

number of gates in the circuits, so it must be accounted for in analysis.

These models are described in Table 3.1.

Table 3.1: Obfuscated Models

Model Name # Inputs # Outputs # of Gates # of Stages Description

c432 36 7 160 16 27-channel inter-
rupt controller

c880 60 26 383 23 8-bit ALU
c1908 33 25 880 39 16-bit error de-

tector/corrector
c3540 50 22 1669 46 8-bit ALU with

binary and BCD
arithmetic, logic,
and shift opera-
tions

c5315 178 123 2406 48 9-bit ALU

ISCAS ’85

c7552 207 108 3512 42 34-bit adder and
magnitude com-
parator with in-
put parity check-
ing

AES S-Box 8 8 182 29 Composite field
S-Box for AES
block cipherS-Boxes MK-3 S-Box 16 16 699 61 Composite field
S-Box for MK-3
block cipher

56

Chapter 4

Results

4.1 Test Setup

To test the effectiveness of several obfuscation methods on protecting against SAT

attacks, the attack tool from [26] was used. Each base circuit being tested was

obfuscated with each tested key size and then attacked 10 times so averages could be

taken. Initially five different key lengths were used: 16-, 32-, 64-, 96-, and 128-bits.

These tests were conducted on a server with Intel Xeon Gold 6150 CPUs running at

2.70GHz. Each instance of a test was run on a single thread and given access to 24GB

of RAM with a timeout of five days.

Tests were generated using the Python programs described in Chapter 3 to obfuscate

the given netlists and convert them to the appropriate bench format for the attack

tool.

4.2 Basic Logic Locking

The first series of tests conducted were basic applications of different locking methods

on Verliog netlists using a custom program written in Python. These methods all

followed the initial direction of the papers from which they were derived: “EPIC” [22],

57

CHAPTER 4. RESULTS

in the case of random-based methods, and “LUT-Lock” [28].

“Random” refers to the original obfuscation described in “EPIC”. “High Stage” and

“Low Stage” refer to the modifications made to the random locking scheme in which

the locking gates are places at the highest and lowest stages respectively. “LUT-Lock”

is the original NB2-MO-HSC method from the “LUT-Lock” paper, with the only

modification being removal of the timing requirements. “Mod. LUT-Lock” describes

the modified instance of the NB2-MO-HSC locking scheme where all outputs are

added as candidates in the initial formation of the candidate gate list.

4.2.1 ISCAS ’85 Benchmarks

These netlist locking methods were first tested on six benchmark circuits from the

ISCAS ’85 set of benchmarks. This subset of benchmarks was used to serve as a

point of comparison against results collected when developing a series of hardware

obfuscation benchmarks [50].

Table 4.1 shows the results of the SAT attack breaking various obfuscation methods

applied to these circuits.

58

CHAPTER 4. RESULTS

Table 4.1: Average SAT Attack Break Time (seconds) on ISCAS ’85 Benchmarks

Circuit Key Size

c432

16

32

64

96

128

c880

16

32

64

96

128

c1908

16

32

64

96

128

c3540

16

32

64

96

128

c5315

16

32

64

96

128

c7552

16

32

64

96

128

Random High Stage Low Stage LUT-Lock Mod. LUT-Lock

0.026 0.025 0.021 0.032 0.023

0.041 0.035 0.095 0.081 0.054

0.162 0.164 0.208 0.281 0.269

0.480 0.285 0.585 0.304 0.471

0.509 0.563 0.603 0.159 1.101

0.048 0.025 0.055 0.035 0.020

0.062 0.074 0.074 0.131 0.021

0.116 0.197 0.143 0.108 0.047

0.306 0.347 0.333 0.198 0.103

0.386 0.616 0.695 0.221 0.347

0.077 0.049 0.067 0.095 0.034

0.103 0.076 0.285 0.237 0.046

0.336 0.172 1.518 0.990 0.367

0.748 0.162 4.904 2.325 0.514

1.677 0.303 7.172 3.352 1.193

0.210 0.102 0.558 0.133 0.077

0.312 0.192 1.084 0.265 0.109

0.982 1.498 1.581 0.666 0.260

1.142 5.069 1.788 0.873 0.559

1.484 6.939 2.498 1.924 0.752

0.219 0.150 0.244 0.189 0.113

0.365 0.213 0.353 0.358 0.113

0.541 0.506 0.545 0.647 0.114

0.824 0.962 0.822 0.665 0.115

0.924 2.294 1.089 1.006 0.135

0.265 0.241 0.304 0.282 0.169

0.488 0.346 0.455 0.401 0.170

0.709 0.640 0.746 3.599 0.168

1.149 1.101 1.345 0.970 0.168

1.486 1.826 1.750 26.661 0.338

59

CHAPTER 4. RESULTS

The results of random locking on the benchmarks closely mimic the results of similar

tests from [50]; however not all key sizes tested in Table 4.1 are represented in that

work. For five of the six tested ISCAS benchmarks, only 32-bit keys were tested, with

c7552 having testing results for 32-, 64-, and 128-bit keys.

Results of the tests on these benchmarks show that as the number of gates in the

circuits increased, as did the general resilience to the SAT attack. However, all circuits

were broken exceedingly quickly, regardless of obfuscation method, with only some

outliers taking more than 1 second.

4.2.2 Substitution Boxes

The same tests which were performed on the ISCAS benchmarks were then performed

on the S-boxes from both the AES and MK-3. The results of these tests are shown in

Table 4.2.

Table 4.2: Average SAT Attack Break Time (seconds) on S-boxes. “Timeout” indicates
unsuccessful attack after 5 days (432,000 seconds).

Circuit Key Size

AES S-Box

16

32

64

96

128

MK-3 S-Box

16

32

64

96

128

Random High Stage Low Stage LUT-Lock Mod. LUT-Lock

0.194 0.084 0.118 0.121 0.552

3.098 3.582 0.408 0.561 5.788

86.166 157.058 1.613 15.021 25.137

401.362 215.286 102.879 158.688 307.201

1,114.959 220.349 2,689.538 219.187 1,048.692

582.454 281.531 165.035 490.311 946.375

692.276 253.747 81.716 24,973.522 2,676.279

270,519.970 32,865.659 482.897 281,140.660 59,992.760

Timeout 298,616.340 43,736.577 414,580.100 333,862.340

Timeout Timeout Timeout Timeout Timeout

As these show the averages over 10 tests, any tests which timed out show that all tests

60

CHAPTER 4. RESULTS

with a certain key size and locking method timed out, while tests with values nearly

at the timeout (such as LUT-Lock with a 96-bit key on the MK-3 S-box) indicate that

some tests timed out and some did not.

Figures 4.1 and 4.2 show the results from Table 4.2 as bar charts. The y-axis uses a

logarithmic scale, as the amount of time required to break the obfuscation increased

drastically in most cases as the keys increased in size.

16 32 64 96 128

10−1

100

101

102

103

104

Length of Key (bits)

A
v
g
.
T
im

e
to

B
re
a
k
(s
)

Average SAT Break Times on Obfuscated AES S-Box

Random High Stage Low Stage

LUT-Lock Mod. LUT-Lock

Figure 4.1: SAT Attack on AES S-Box obfuscated with different methods

61

CHAPTER 4. RESULTS

16 32 64 96 128

102

103

104

105

106

Length of Key (bits)

A
v
g
.
T
im

e
to

B
re
ak

(s
)

Average SAT Break Times on Obfuscated MK-3 S-Box

Random High Stage Low Stage
LUT-Lock Mod. LUT-Lock

Timeout

Figure 4.2: SAT Attack on MK-3 S-Box obfuscated with different methods. “Timeout”
indicates an unsuccessful attack after 5 days (432,000 seconds).

As the results show, random locking is generally the most effective defense against

SAT attacks on S-boxes such as these, despite LUT-Lock being an algorithm designed

specifically to combat this attack. LUT-Lock and its modified version both performed

rather well, though, depending on the test. The modifications made to the algorithm

appear to have improved its performance with the smaller AES S-box, while the

MK-3 S-box benefited notably more from the LUT-Lock algorithm as it was initially

proposed.

There were some anomalies in the results which currently do not have explanations —

specifically the low stage tests on the AES S-box with a 128-bit key. This obfuscation

method, though generally performing much worse than all other methods tested, took

significantly longer to break than the other methods in that test instance.

To further analyze the effect of key size on obfuscation effectiveness and possibly help

determine a suitable minimum key size for some of the tested obfuscation methods,

62

CHAPTER 4. RESULTS

a series of tests were run with finer granularity of key sizes — shown in Figures 4.3

and 4.4. Between the 32-bit and 64-bit keys, additional keys spaced out by 8-bits were

tested, but from 64 to 128-bits additional keys were only separated by 4-bits.

Figure 4.3 shows the finer grain keys from 32 to 96-bits, and Figure 4.4 shows the

finer grain keys from 96 to 128-bits.

32 40 48 56 64 68 72 76 80 84 88 92 96

102

103

104

105

Length of Key (bits)

A
vg
.
T
im

e
to

B
re
ak

(s
)

Average SAT Break Times on MK-3 S-Box

Random High Stage Low Stage
LUT-Lock Mod. LUT-Lock

Timeout

Figure 4.3: SAT Attack on MK-3 S-Box obfuscated with different methods. Finer grain
keys between 40 and 96-bits “Timeout” indicates an unsuccessful attack after 5 days (432,000
seconds).

63

CHAPTER 4. RESULTS

96 100 104 108 112 116 120 124 128

104.6

104.7

104.8

104.9

105

105.1

105.2

105.3

105.4

105.5

105.6

105.7

Length of Key (bits)

A
vg
.
T
im

e
to

B
re
ak

(s
)

Average SAT Break Times on MK-3 S-Box

Random High Stage Low Stage
LUT-Lock Mod. LUT-Lock

Timeout

Figure 4.4: SAT Attack on MK-3 S-Box obfuscated with different methods. Finer grain
keys between 96 and 128-bits “Timeout” indicates an unsuccessful attack after 5 days (432,000
seconds).

As shown in the figures: past 84-bits, random locking was consistently reaching the

five day timeout on all tests, and all other methods showed a general positive trend

as the number of key bits increased. They did not all consistently reach the timeout

until a 128-bit key was used. The modified implementation of LUT-Lock, though

generally performing worse than the unmodified implementation, did reach a point of

consistently timing out across all tests with only a 104-bit key while the unmodified

version was still being broken for some tests. A similar phenomenon was seen with

the low-stage random locking: though performing substantially worse than all other

methods for almost all key sizes tested, it began consistently reaching the timeout of

the tests with a 116-bit key, where both high-stage and normal LUT-Lock were still

being broken.

These results generally aligned with what was expected based on previous tests, and

64

CHAPTER 4. RESULTS

confirmed that for random locking of the MK-3 S-box an 84-bit key may be considered

suitably large, where other methods may require up to a 128-bit key. Further analysis

may be necessary given additional testing, though, especially given the number of

tests which were being broken close to the timeout value. If a longer timeout could be

set, then the additional information gained could further point to what would be a

suitably large key size for all tested methods.

4.2.2.1 Comparing ISCAS and Substitution Box Results

These results, when compared to those of the ISCAS benchmarks, indicate that there

is an element of the design of these S-boxes which makes them naturally more resistant

to SAT attacks. The two ISCAS benchmarks which are closest in size to the S-boxes

are c432 and c1908, which correspond to the AES and MK-3 S-boxes respectively.

When comparing the amount of time these circuits were able to withstand the SAT

attack, it is clear that there is a difference of orders of magnitude.

This large difference for similarly sized designs may indicate that the inherent non-

linearity of the S-boxes may increase the complexity of the Boolean SAT problem.

Further analysis of these circuit structures would be required, but may be able to

indicate types of modifications which could be made which will naturally increase a

design’s resiliency against the SAT attack.

4.2.3 Modifications to Locking Methods

Three modifications to previously published locking methods were tested with both

the ISCAS benchmarks and the S-boxes: high stage random locking, low stage random

locking, and a modified NB2-MO-HSC algorithm from “LUT-Lock”. These each

performed generally distinctly from the locking methods that they are derived from,

which could further indicate the effects of lock placement on SAT attack effectiveness.

65

CHAPTER 4. RESULTS

4.2.3.1 Stage-Based Locking

The high and low stage random locking methods both performed generally much worse

than the original purely random locking method; however, placing the obfuscating

gates in higher circuit stages almost always performed substantially better than placing

them in lower stages. This is supported by several of the preliminary algorithms from

“LUT-Lock” [28]. Being closer to the outputs generally results in much lower output

corruption and higher SPS, which has been shown to increase the difficulty of the

SAT attack. The opposite should then be true of placing gates at lower stages, where

output corruption would be maximized and the locking gates would be much more

easily controlled by changes in the input patterns.

An interesting phenomenon occurred when using the high stage locking on the MK-3

S-box: each successful SAT attack only took a single iteration, and each unsuccessful

one was stuck on processing that first iteration. This behavior was not seen with any

other circuit being tested. This would seem to indicate that an aspect of the design of

this S-box combined with the locking gates being placed as close to the outputs as

possible creates a situation where finding a DIP might be difficult, but once a single

DIP is found it will always lead to the correct key.

4.2.3.2 Modified LUT-Lock

The modification to LUT-Lock which included all output gates in the initial obfuscation

candidate list seemed to behave inconsistently in relation to the original implementation.

The purpose of this modification was to ensure that all outputs would have at least

one gate of obfuscation if the number of key bits allowed for it; however this generally

seemed to decrease the effectiveness of the algorithm. This dynamic is reversed when

obfuscating the AES S-box, though it is unclear why that would be the case.

66

CHAPTER 4. RESULTS

4.3 ORF Added Logic Locking

Following the tests of basic logic locking on the ISCAS benchmarks and S-boxes, tests

following the ORF insertion scheme from [29] were performed. The ORF suggested in

that research was an implementation of AES with a fixed key; however, AES is a large

block cipher and could incur too much overhead to be feasible. It is for this reason

that SIMON, a small hardware-optimized block cipher, was used as an ORF for these

tests [56].

To attempt to find a trend between number of rounds and effectiveness as an ORF,

several round-reduced implementations on SIMON were tested. The first tests run

were attacks on round-reduced implementations of the SIMON cipher itself. 1–8, 16,

24, and 32 round implementations of the SIMON 32/64 block cipher were tested using

the SAT attack. For this attack, the “unlocked” netlist was a netlist with a fixed

key synthesized in, and the “obfuscated” netlists were the various implementations

of SIMON with the SAT attack searching for the key. The tool requires two netlists

since an important step in the SAT attack algorithm is a comparison of the output of

locked netlists against the correct output of the circuit. These netlists are depicted as

blocks in Figure 4.5.

SIMON
(No Fixed Inputs)

SIMON
(Fixed Key)

PT

K

CT

PT CT

Figure 4.5: SAT Attack on SIMON Netlists

67

CHAPTER 4. RESULTS

The top block shows the SIMON netlist with no fixed inputs — this is treated by the

tool as the “obfuscated” or “locked” circuit. The bottom block is an implementation of

SIMON with a fixed key; this key value is what the attack is trying to determine for

the “locked” implementation.

The results of running these tests are shown in Table 4.3.

Table 4.3: SAT Attack Break Time (seconds) on SIMON. “Timeout” indicates an unsuc-
cessful attack after 5 days (432,000 seconds).

of Rounds Time to Break

1 0.010

2 0.017

3 0.034

4 0.082

5 2.596

6 1,845.920

7 Timeout

8 Timeout

16 Timeout

24 Timeout

32 Timeout

The implementations with 1–6 rounds were broken rather quickly, but 7 rounds or

more were not broken in the given timeout range with this attack. Given that,

implementations used as ORFs for obfuscation should not be broken if 7 or more

rounds are implemented.

Tests similar to those done with basic logic locking were conducted using SIMON

as an ORF between the primary key inputs of the circuit and the keys to the gates.

68

CHAPTER 4. RESULTS

Three base configurations of SIMON were used for this test: no fixed inputs, fixed key,

and fixed plaintext. The fixed input implementations were tested as ways to possibly

combat removal attacks as well as provide additional security against SAT attacks.

As the base configuration of this cipher is published, it is possible that an adversary

could identify the structure in a netlist and remove it, thus invalidating the protection.

By fixing an input before synthesis it should create an unrecognizable structure and

possibly prevent the removal. The standard implementation was then also examined

to determine if having the full cipher gave additional security against SAT attacks,

despite being more susceptible to removal attacks.

Rather than modulate key size in the tests, the number of rounds of SIMON was

changed. This is done to analyze the trends in the amount of security each imple-

mentation offers and to determine if the full cipher is required or if a round-reduced

implementation could be used and still provide substantial additional security.

The locking method used for these tests was the random locking scheme with a 32-bit

key. The random method was chosen as it generally offered the highest security for

most circuits tested, and a 32-bit key was used to correspond to the 32-bit output of

the SIMON block.

Figure 4.6 gives example block diagrams for the test setups on the MK-3 S-box.

69

CHAPTER 4. RESULTS

SIMON
(Fixed Key)

Key

PT CT

Locked
MK-3 S-box

Key

PT CT

P
ri
m
a
ry

In
p
u
ts

P
rim

a
ry

O
u
tp

u
ts

32

16 16

32

(a) Fixed key SIMON used as an ORF

SIMON
(Fixed Plaintext)

Key

PT CT

Locked
MK-3 S-box

Key

PT CT

P
ri
m
a
ry

In
p
u
ts

P
rim

a
ry

O
u
tp

u
ts

32

16 16

64

(b) Fixed plaintext SIMON used as an ORF

SIMON
(No Fixed Inputs)

Key

PT CT

Locked
MK-3 S-box

Key

PT CT

P
ri
m
a
ry

In
p
u
ts

P
rim

a
ry

O
u
tp

u
ts

32

16 16

64

32

(c) No fixed input SIMON used as an ORF

Figure 4.6: SIMON ORF MK-3 S-box Test Setups

Table 4.4 shows the results of these tests on the MK-3 S-box.

Table 4.4: Average SAT Attack Break Time (seconds) on MK-3 S-box with SIMON as an
ORF. “Timeout” indicates an unsuccessful attack after 5 days (432,000 seconds).

of Rounds

2

4

6

8

10

12

14

16

24

32

Fixed Key Fixed Plaintext No Fixed Inputs

927.226 461.267 832.390

1,359.334 934.231 2,047.327

4,108.339 Timeout 1,612.064

1,683.022 Timeout 2,462.465

5,228.145 Timeout 70,289.770

7,944.420 Timeout 416,078.200

10,679.470 Timeout Timeout

24,125.180 Timeout Timeout

313,615.620 Timeout Timeout

388,226.900 Timeout Timeout

70

CHAPTER 4. RESULTS

Table 4.5 shows the results of these tests on the AES S-box.

Table 4.5: Average SAT Attack Break Time (seconds) on AES S-box with SIMON as an
ORF. “Timeout” indicates an unsuccessful attack after 5 days (432,000 seconds).

of Rounds

2

4

6

8

10

12

14

16

24

32

Fixed Key Fixed Plaintext No Fixed Inputs

6.222 4.409 10.256

13.433 14.359 12.317

105.381 336,388.860 39.082

3,888.765 Timeout 6,980.247

21,231.967 Timeout 141,253.720

90,308.115 Timeout 419,342.900

280,292.180 Timeout Timeout

319,193.110 Timeout Timeout

414,411.000 Timeout Timeout

Timeout Timeout Timeout

Table 4.6 shows the results of these tests on the ISCAS ’85 c432 benchmark.

Table 4.6: Average SAT Attack Break Time (seconds) on ISCAS c432 with SIMON as an
ORF. “Timeout” indicates an unsuccessful attack after 5 days (432,000 seconds).

of Rounds

2

4

6

8

10

12

14

16

24

32

Fixed Key Fixed Plaintext No Fixed Inputs

0.287 0.219 0.312

1.170 0.620 3.518

16.349 80,477.414 8.638

293.527 Timeout 2,139.059

1,660.054 Timeout 217,207.610

64,247.510 Timeout Timeout

274,615.330 Timeout Timeout

203,958.718 Timeout Timeout

374,895.330 Timeout Timeout

386,263.700 Timeout Timeout

71

CHAPTER 4. RESULTS

Table 4.7 shows the results of these tests on the ISCAS ’85 c1908 benchmark.

Table 4.7: Average SAT Attack Break Time (seconds) on ISCAS c1908 with SIMON as an
ORF. “Timeout” indicates an unsuccessful attack after 5 days (432,000 seconds).

of Rounds

2

4

6

8

10

12

14

16

24

32

Fixed Key Fixed Plaintext No Fixed Inputs

0.213 0.145 0.391

1.266 0.682 4.372

16.230 442.660 9.673

113.747 413,649.900 417.311

1,974.259 Timeout 335,260.050

71,911.856 Timeout Timeout

24,669.020 Timeout Timeout

90,233.257 Timeout Timeout

148,126.070 Timeout Timeout

266,980.260 Timeout Timeout

Figure 4.7 gives these data in bar charts.

72

CHAPTER 4. RESULTS

2 4 6 8 10 12 14 16 24 32

103

104

105

of SIMON Rounds

A
v
g
.
T
im

e
to

B
re
ak

(s
)

Average SAT Break Times on MK-3 S-Box
with Random Obfuscation and SIMON ORF

SIMON Fixed Key SIMON Fixed Plaintext SIMON No Fixed Inputs

32-Bit Avg.

692.28

Timeout

(a) MK-3 S-box

2 4 6 8 10 12 14 16 24 32

101

102

103

104

105

106

of SIMON Rounds

A
v
g
.
T
im

e
to

B
re
ak

(s
)

Average SAT Break Times on AES S-Box
with Random Obfuscation and SIMON ORF

SIMON Fixed Key SIMON Fixed Plaintext SIMON No Fixed Inputs

32-Bit Avg.
3.098

Timeout

(b) AES S-box

2 2 4 6 8 10 12 14 16 24 32 32

10−1

100

101

102

103

104

105

106

of SIMON Rounds

A
v
g.

T
im

e
to

B
re
ak

(s
)

Average SAT Break Times on ISCAS c432
with Random Obfuscation and SIMON ORF

SIMON Fixed Key SIMON Fixed Plaintext SIMON No Fixed Inputs

32-Bit Avg.
0.041

Timeout

(c) ISCAS ’85 c432

2 4 6 8 10 12 14 16 24 32

10−1

100

101

102

103

104

105

106

of SIMON Rounds

A
v
g.

T
im

e
to

B
re
ak

(s
)

Average SAT Break Times on ISCAS c1908
with Random Obfuscation and SIMON ORF

SIMON Fixed Key SIMON Fixed Plaintext SIMON No Fixed Inputs

32-Bit Avg.
0.103

Timeout

(d) ISCAS ’85 c1908

Figure 4.7: SAT Attack Results on Locked Circuits with SIMON Configurations as ORFs

Most implementations with as few as two rounds showed a greater resistance to the

attack than the average amount of time the SAT attack took to be successful with only

basic logic locking, but continuing to increase the number of rounds showed substantial

differences between each configuration. Across all circuits and implementations the

tests which used a fixed key performed worse than the other two methods, though

still offered notable added security over the basic implementations without an ORF.

The tests which did not fix any input value, timed out above 14 rounds and offered

73

CHAPTER 4. RESULTS

drastic security improvements for all implementations above 10 rounds. This may

not have performed perfectly at 8 rounds, despite the cipher itself not being broken

with that many rounds, because there are a greater number of possible keys which

could lead to the correct output. As the outputs of the cipher are connected to the

obfuscation key gates, any input combinations which give the cipher that output

would be valid. This should lead to multiple possible input vectors, at least 232 as

that is the maximum possible plaintext values, that could give the correct output.

This should remain a rather small subset of all 296 possible input vectors (both key

and plaintext), but could weaken the cipher enough to make implementations with

fewer rounds more vulnerable than they would otherwise be.

The test which showed the most rapid improvement in SAT attack resistance with

increasing rounds was the implementation of SIMON synthesized with a fixed plaintext

input. Almost all tests conducted with an implementation of SIMON using 8 or more

rounds and a fixed plaintext timed out at the maximum 5 days. This method is also

susceptible to the issue of multiple valid keys, however with a fixed plaintext there

will be fewer such keys, which may indicate the increased security.

Fixing the plaintext seems to retain the most cryptographic strength as well as

possibly providing some protection against a removal attack, though more testing with

additional plaintext values must be conducted. The removal protection may also be

extremely minimal, as fixing the plaintext values should only affect the first 2 rounds

and would then have a very small impact on the synthesized design of the circuit.

Ultimately, adding SIMON as an ORF seems to vastly increase security in both the

cases of fixed plaintext and no fixed inputs regardless of the circuit it was applied

to. All ISCAS benchmarks tested with only logic locking were broken on the order of

seconds, but by adding this additional circuit the two tested benchmarks were able to

withstand the attack for at least five days.

74

CHAPTER 4. RESULTS

4.3.1 Overhead

Including SIMON does incur some overhead which must be accounted for when

designing a circuit. Table 4.8 gives data on the gate overhead for each configuration

of SIMON that was tested.

Table 4.8: SIMON 32/64 Overheads (# of 2-Input Gates)

Rounds: 2 4 6 8 10 12 14 16 24 32

Fixed Key 107 211 320 433 551 659 770 870 1338 1765

Fixed Plaintext 67 200 435 675 919 1155 1391 1628 2583 3540

No Fixed Inputs 128 256 495 717 955 1194 1432 1672 2634 3586

Each implementation and number of rounds adds a different amount of overhead to

go with the different amount of security offered. The configuration which uses a fixed

key is the smallest for more than 8 rounds, but also offers the least security. Fixed

plaintext, while substantially stronger than fixed key, greatly increases the number of

gates necessary to implement the function as the number of rounds increases. The

implementation with no fixed inputs, which had similar results to that of the fixed

plaintext, has the largest implementations for all numbers of rounds, but is only

slightly more than the fixed plaintext configuration.

When using an ORF, the overhead of the obfuscation method itself must also be

accounted for. For all of the discussed netlist logic locking methods, the overhead is

one gate per key bit.

Other lightweight ciphers could also be considered for use as ORFs moving forward.

The NIST competition for lightweight ciphers [49] is ongoing at the time of this

research and could lead to ciphers which provide more security than SIMON with a

smaller footprint.

75

CHAPTER 4. RESULTS

Ultimately, the utility of each of these implementations and ciphers must be determined

on a case-by-case basis, based on the size of the design being obfuscated, the security

requirements of that component, and the resources available.

76

Chapter 5

Conclusions

The inclusion of different hardware obfuscation techniques has been shown to be an

effective method of preventing SAT attacks. The methods explored in this work offered

varying levels of success, with random gate placement and ORF insertion ultimately

offering the most security for the tested components, in some cases increasing the

attack time from fractions of a second to several days. Additionally, substitution

boxes showed a much higher resistance to SAT attacks than the standard ISCAS ’85

benchmarks, which could indicate that non-linear components are, by design, harder

to break in this way. Further work needs to be done to analyze what specific aspect

of the S-boxes increased the complexity of the SAT attack and what other types of

components could offer this same strength.

Other future work might include examining other lightweight ciphers for use as ORFs

for obfuscation, analyzing the effectiveness of other attacks on these cryptographic

components, or better determining the effectiveness of different configurations of

SIMON as an ORF.

77

Bibliography

[1] “IEEE recommended practice for encryption and management of electronic
design intellectual property (IP),” 2015. [Online]. Available: http://dx.doi.org/10.
1109/ieeestd.2015.7274481

[2] S. Bhunia and M. Tehranipoor, Hardware Security. Elsevier, 2019. [Online].
Available: http://dx.doi.org/10.1016/c2016-0-03251-5

[3] K. Zamiri Azar, H. Mardani Kamali, H. Homayoun, and A. Sasan, “Threats on
logic locking: A decade later,” pp. 471–476, 05 2019.

[4] A. Baumgarten, A. Tyagi, and J. Zambreno, “Preventing IC piracy using
reconfigurable logic barriers,” IEEE Design & Test of Computers, vol. 27, pp.
66–75, 1 2010. [Online]. Available: http://dx.doi.org/10.1109/mdt.2010.24

[5] C. A. Wood, S. P. Radziszowski, and M. Lukowiak, “Constructing large S-boxes
with area minimized implementations,” in MILCOM 2015 - 2015 IEEE Military
Communications Conference. IEEE, 10 2015, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/milcom.2015.7357417

[6] C. A. Wood, “Large substitution boxes with efficient combinational
implementations,” mastersthesis, Rochester Institute of Technology, 2013.
[Online]. Available: https://scholarworks.rit.edu/theses/5527

[7] S. E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazmohamadi, L. Wang,
J. Chandy, and M. Tehranipoor, “A survey on chip to system reverse engineering,”
ACM Journal on Emerging Technologies in Computing Systems, vol. 13, pp. 1–34,
12 2016. [Online]. Available: http://dx.doi.org/10.1145/2755563

[8] H. Yu, H. Lee, S. Lee, Y. Kim, and H.-M. Lee, “Recent advances in FPGA
reverse engineering,” Electronics, vol. 7, p. 246, 10 2018. [Online]. Available:
http://dx.doi.org/10.3390/electronics7100246

[9] J.-B. Note and E. Rannaud, “From the bitstream to the netlist,” in the 16th
international ACM/SIGDA symposium. ACM Press, 2 2008, inproceedings.
[Online]. Available: http://dx.doi.org/10.1145/1344671.1344729

[10] F. Benz, A. Seffrin, and S. A. Huss, “Bil: A tool-chain for bitstream reverse-
engineering,” in 2012 22nd International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 8 2012, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/fpl.2012.6339165

78

http://dx.doi.org/10.1109/ieeestd.2015.7274481
http://dx.doi.org/10.1109/ieeestd.2015.7274481
http://dx.doi.org/10.1016/c2016-0-03251-5
http://dx.doi.org/10.1109/mdt.2010.24
http://dx.doi.org/10.1109/milcom.2015.7357417
https://scholarworks.rit.edu/theses/5527
http://dx.doi.org/10.1145/2755563
http://dx.doi.org/10.3390/electronics7100246
http://dx.doi.org/10.1145/1344671.1344729
http://dx.doi.org/10.1109/fpl.2012.6339165

BIBLIOGRAPHY

[11] M. Lasser, “Reverse engineering FPGAs,” 12 2017. [Online]. Available:
https://media.ccc.de/v/34c3-9237-reverse_engineering_fpgas

[12] M. Holler, M. Guizar-Sicairos, E. H. R. Tsai, R. Dinapoli, E. Müller, O. Bunk,
J. Raabe, and G. Aeppli, “High-resolution non-destructive three-dimensional
imaging of integrated circuits,” Nature, vol. 543, pp. 402–406, 3 2017. [Online].
Available: http://dx.doi.org/10.1038/nature21698

[13] N. Asadizanjani, M. Tehranipoor, and D. Forte, “PCB reverse engineering
using nondestructive x-ray tomography and advanced image processing,” IEEE
Transactions on Components, Packaging and Manufacturing Technology, pp. 1–8,
2017. [Online]. Available: http://dx.doi.org/10.1109/tcpmt.2016.2642824

[14] J. Vosatka, Introduction to Hardware Trojans. Springer International
Publishing, 11 2018, pp. 15–51. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-68511-3_2

[15] R. S. Chakraborty and S. Bhunia, “Security against hardware trojan attacks using
key-based design obfuscation,” Journal of Electronic Testing, vol. 27, pp. 767–785,
12 2011. [Online]. Available: http://dx.doi.org/10.1007/s10836-011-5255-2

[16] L. Lin, W. Burleson, and C. Paar, “Moles,” in the 2009 International
Conference. ACM Press, 11 2009, inproceedings. [Online]. Available:
http://dx.doi.org/10.1145/1687399.1687425

[17] U. Guin, D. Forte, and M. Tehranipoor, “Anti-counterfeit techniques: From
design to resign,” in 2013 14th International Workshop on Microprocessor Test
and Verification (MTV). IEEE, 12 2013, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/mtv.2013.28

[18] Y. M. Alkabani and F. Koushanfar, “Active hardware meter-
ing for intellectual property protection and security,” in 16th
USENIX Security Symposium (USENIX Security 07). Boston, MA:
USENIX Association, August 2007, inproceedings. [Online]. Avail-
able: https://www.usenix.org/conference/16th-usenix-security-symposium/
active-hardware-metering-intellectual-property-protection

[19] Vivado Design Suite User Guide: Creating and Packaging Custom IP, Xilinx Inc.,
2019. [Online]. Available: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf

[20] G. Wassermann. (2017) IEEE P1735 implementations may have weak
cryptographic protections. [Online]. Available: https://www.kb.cert.org/vuls/id/
739007/

79

https://media.ccc.de/v/34c3-9237-reverse_engineering_fpgas
http://dx.doi.org/10.1038/nature21698
http://dx.doi.org/10.1109/tcpmt.2016.2642824
http://dx.doi.org/10.1007/978-3-319-68511-3_2
http://dx.doi.org/10.1007/978-3-319-68511-3_2
http://dx.doi.org/10.1007/s10836-011-5255-2
http://dx.doi.org/10.1145/1687399.1687425
http://dx.doi.org/10.1109/mtv.2013.28
https://www.usenix.org/conference/16th-usenix-security-symposium/active-hardware-metering-intellectual-property-protection
https://www.usenix.org/conference/16th-usenix-security-symposium/active-hardware-metering-intellectual-property-protection
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.kb.cert.org/vuls/id/739007/
https://www.kb.cert.org/vuls/id/739007/

BIBLIOGRAPHY

[21] A. Kahng, J. Lach, W. Mangione-Smith, S. Mantik, I. Markov, M. Potkonjak,
P. Tucker, H. Wang, and G. Wolfe, “Constraint-based watermarking techniques
for design IP protection,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 20, pp. 1236–1252, 2001. [Online]. Available:
http://dx.doi.org/10.1109/43.952740

[22] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending piracy of integrated
circuits,” in 2008 Design, Automation and Test in Europe. IEEE, 3 2008,
inproceedings. [Online]. Available: http://dx.doi.org/10.1109/date.2008.4484823

[23] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Logic encryption: A fault
analysis perspective,” in 2012 Design, Automation & Test in Europe Conference
& Exhibition (DATE 2012). IEEE, 3 2012, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/date.2012.6176634

[24] ——, “Security analysis of logic obfuscation,” in the 49th Annual Design
Automation Conference. ACM Press, 6 2012, inproceedings. [Online]. Available:
http://dx.doi.org/10.1145/2228360.2228377

[25] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SARLock:
SAT attack resistant logic locking,” in 2016 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 5 2016, inproceedings.
[Online]. Available: http://dx.doi.org/10.1109/hst.2016.7495588

[26] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE, 5 2015, inproceedings. [Online].
Available: http://dx.doi.org/10.1109/hst.2015.7140252

[27] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, pp. 199–207, 2 2019. [Online]. Available:
http://dx.doi.org/10.1109/tcad.2018.2801220

[28] H. Mardani Kamali, K. Zamiri Azar, K. Gaj, H. Homayoun, and A. Sasan,
“LUT-lock: A novel LUT-based logic obfuscation for FPGA-bitstream and ASIC-
hardware protection,” in 2018 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), July 2018, inproceedings, pp. 405–410.

[29] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the
security of logic locking,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, pp. 1411–1424, 9 2016. [Online].
Available: http://dx.doi.org/10.1109/tcad.2015.2511144

[30] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel bypass attack
and BDD-based tradeoff analysis against all known logic locking attacks,” in

80

http://dx.doi.org/10.1109/43.952740
http://dx.doi.org/10.1109/date.2008.4484823
http://dx.doi.org/10.1109/date.2012.6176634
http://dx.doi.org/10.1145/2228360.2228377
http://dx.doi.org/10.1109/hst.2016.7495588
http://dx.doi.org/10.1109/hst.2015.7140252
http://dx.doi.org/10.1109/tcad.2018.2801220
http://dx.doi.org/10.1109/tcad.2015.2511144

BIBLIOGRAPHY

Cryptographic Hardware and Embedded Systems – CHES 2017, W. Fischer and
N. Homma, Eds. Cham: Springer International Publishing, 2017, inproceedings,
pp. 189–210.

[31] R. S. Chakraborty and S. Bhunia, “RTL hardware IP protection using key-based
control and data flow obfuscation,” in 2010 23rd International Conference on
VLSI Design: concurrently with the 9th International Conference on Embedded
Systems Design (VLSID). IEEE, 1 2010, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/vlsi.design.2010.54

[32] J. B. Wendt and M. Potkonjak, “Hardware obfuscation using PUF-based
logic,” in 2014 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 11 2014, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/iccad.2014.7001362

[33] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit camouflage
integration for hardware IP protection,” in the The 51st Annual Design
Automation Conference. ACM Press, 6 2014, inproceedings. [Online]. Available:
http://dx.doi.org/10.1145/2593069.2602554

[34] S. Malik, G. T. Becker, C. Paar, and W. P. Burleson, “Development of a
layout-level hardware obfuscation tool,” in 2015 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 7 2015, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/isvlsi.2015.118

[35] J. Rajendran and S. Garg, Logic Encryption. Springer International
Publishing, 1 2017, pp. 71–88. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-49019-9_3

[36] G. S. Tseitin, On the Complexity of Derivation in Propositional Calculus.
Springer Berlin Heidelberg, 1983, pp. 466–483. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-81955-1_28

[37] Wikipedia, “Tseytin transformation — Wikipedia, the free encyclope-
dia,” http://en.wikipedia.org/w/index.php?title=Tseytin\%20transformation&
oldid=962672219, 2020, [Online; accessed 17-June-2020].

[38] D. Vontela and S. Ghosh, “Methodologies to exploit atpg tools for
de-camouflaging,” in 2017 18th International Symposium on Quality
Electronic Design (ISQED). IEEE, 3 2017, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/isqed.2017.7918324

[39] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security analysis
of anti-SAT,” in 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 1 2017, inproceedings. [Online]. Available:
http://dx.doi.org/10.1109/aspdac.2017.7858346

81

http://dx.doi.org/10.1109/vlsi.design.2010.54
http://dx.doi.org/10.1109/iccad.2014.7001362
http://dx.doi.org/10.1145/2593069.2602554
http://dx.doi.org/10.1109/isvlsi.2015.118
http://dx.doi.org/10.1007/978-3-319-49019-9_3
http://dx.doi.org/10.1007/978-3-319-49019-9_3
http://dx.doi.org/10.1007/978-3-642-81955-1_28
http://dx.doi.org/10.1007/978-3-642-81955-1_28
http://en.wikipedia.org/w/index.php?title=Tseytin\%20transformation&oldid=962672219
http://en.wikipedia.org/w/index.php?title=Tseytin\%20transformation&oldid=962672219
http://dx.doi.org/10.1109/isqed.2017.7918324
http://dx.doi.org/10.1109/aspdac.2017.7858346

BIBLIOGRAPHY

[40] M. Barbareschi, Notions on Silicon Physically Unclonable Functions.
Springer International Publishing, 1 2017, pp. 189–209. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-44318-8_10

[41] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, FPGA Intrinsic PUFs
and Their Use for IP Protection. Springer Berlin Heidelberg, 2007, pp. 63–80.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-74735-2_5

[42] C. E. Shannon, “Communication theory of secrecy systems,” The Bell System
Technical Journal, vol. 28, no. 4, pp. 656–715, 1949.

[43] M. Kelly, A. Kaminsky, M. Kurdziel, M. Ł ukowiak, and S. Radziszowski,
“Customizable sponge-based authenticated encryption using 16-bit S-boxes,” in
MILCOM 2015 - 2015 IEEE Military Communications Conference. IEEE, 10
2015, inproceedings. [Online]. Available: http://dx.doi.org/10.1109/milcom.2015.
7357416

[44] P. Bajorski, A. Kaminsky, M. Kurdziel, M. Lukowiak, and S. Radziszowski,
“Customization modes for the Harris MK-3 authenticated encryption algorithm,”
in MILCOM 2018 - IEEE Military Communications Conference. IEEE, 10
2018, inproceedings. [Online]. Available: http://dx.doi.org/10.1109/milcom.2018.
8599712

[45] N. I. of Standards and Technology, FIPS PUB 197: Advanced Encryption
Standard (AES). Gaithersburg, MD, USA: National Institute of Standards
and Technology, November 2001. [Online]. Available: https://csrc.nist.gov/csrc/
media/publications/fips/197/final/documents/fips-197.pdf

[46] J. Daemen and V. Rijmen, The Design of Rijndael. Springer Berlin Heidelberg,
2002. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-04722-4

[47] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“The SIMON and SPECK families of lightweight block ciphers,” 2013. [Online].
Available: https://github.com/nsacyber/simon-speck

[48] F. Abed, E. List, S. Lucks, and J. Wenzel, “Differential and linear cryptanalysis
of reduced-round simon,” Cryptology ePrint Archive, Report 2013/526, 2013.
[Online]. Available: https://eprint.iacr.org/2013/526

[49] NIST, “Lightweight cryptography,” 2018. [Online]. Available: https://csrc.nist.
gov/Projects/lightweight-cryptography

[50] S. Amir, B. Shakya, X. Xu, Y. Jin, S. Bhunia, M. Tehranipoor, and D. Forte,
“Development and evaluation of hardware obfuscation benchmarks,” Journal of
Hardware and Systems Security, vol. 2, pp. 142–161, 6 2018. [Online]. Available:
http://dx.doi.org/10.1007/s41635-018-0036-3

82

http://dx.doi.org/10.1007/978-3-319-44318-8_10
http://dx.doi.org/10.1007/978-3-540-74735-2_5
http://dx.doi.org/10.1109/milcom.2015.7357416
http://dx.doi.org/10.1109/milcom.2015.7357416
http://dx.doi.org/10.1109/milcom.2018.8599712
http://dx.doi.org/10.1109/milcom.2018.8599712
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
http://dx.doi.org/10.1007/978-3-662-04722-4
https://github.com/nsacyber/simon-speck
https://eprint.iacr.org/2013/526
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
http://dx.doi.org/10.1007/s41635-018-0036-3

BIBLIOGRAPHY

[51] S. Roshanisefat, H. K. Thirumala, K. Gaj, H. Homayoun, and A. Sasan,
“Benchmarking the capabilities and limitations of SAT solvers in defeating
obfuscation schemes,” in 2018 IEEE 24th International Symposium on On-Line
Testing And Robust System Design (IOLTS). IEEE, 7 2018, inproceedings.
[Online]. Available: http://dx.doi.org/10.1109/iolts.2018.8474189

[52] J. Wetzels and W. Bokslag, “Simple simon: FPGA implementations of
the simon 64/128 block cipher,” arXiv, Jul 2015. [Online]. Available:
http://arxiv.org/abs/1507.06368v1

[53] F. Brgles and H. Fujiwara, “A neutral netlist of 10 combinational circuits and a
target translator in fortran,” in IEEE International Symposium on Circuits and
Systems, 06 1985, inproceedings.

[54] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the iscas-85 benchmarks: a case
study in reverse engineering,” IEEE Design & Test of Computers, vol. 16, pp.
72–80, 1999. [Online]. Available: http://dx.doi.org/10.1109/54.785838

[55] M. Jenihhn, 2007. [Online]. Available: http://www.pld.ttu.ee/~maksim/
downloads.html

[56] A. Aysu, E. Gulcan, and P. Schaumont, “SIMON says: Break area records of
block ciphers on FPGAs,” IEEE Embedded Systems Letters, vol. 6, pp. 37–40, 6
2014. [Online]. Available: http://dx.doi.org/10.1109/les.2014.2314961

83

http://dx.doi.org/10.1109/iolts.2018.8474189
http://arxiv.org/abs/1507.06368v1
http://dx.doi.org/10.1109/54.785838
http://www.pld.ttu.ee/~maksim/downloads.html
http://www.pld.ttu.ee/~maksim/downloads.html
http://dx.doi.org/10.1109/les.2014.2314961

	Hardware Intellectual Property Protection Through Obfuscation Methods
	Recommended Citation

	Signature Sheet
	Dedication
	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Thesis Objective
	Novel Contributions

	Background
	Hardware Reverse Engineering
	FPGA Reverse Engineering
	ASIC Reverse Engineering

	Intellectual Property Attacks
	Hardware Trojans
	Counterfeiting
	Overproduction

	Hardware Model Encryption
	Hardware Authentication
	Hardware Obfuscation
	Hardware Obfuscation Methods
	Netlist Logic Locking
	ORF Insetion
	Binary Decision Diagram Logic Locking
	Finite State Machine Insertion
	Signal Path Obfuscation
	ASIC Cell Camouflaging
	Reconfigurable Logic Barriers

	Attacks on Hardware Obfuscation
	Satisfiability Attacks
	Bypass Attack
	Key Sensitization Attack
	Signal Probability Skew Attack

	Physical Unclonable Functions
	PUF Definitions

	Substitution Boxes
	MK-3 S-Box
	AES S-Box

	SIMON Block Cipher
	Round-Reduced SIMON

	Methodology
	Circuit Obfuscation Program
	Modified Random Locking Implementation
	LUT-Lock Implementation

	SIMON as an ORF Experiments
	Obfuscated Models

	Results
	Test Setup
	Basic Logic Locking
	ISCAS '85 Benchmarks
	Substitution Boxes
	Modifications to Locking Methods

	ORF Added Logic Locking
	Overhead

	Conclusions
	Bibliography

