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Abstract

Data quality (DQ) is an important concept that is used in the design and employment of infor-

mation, data management, decision making, and engineering systems with multiple applications

already available for solving specific problems. Unfortunately, conventional approaches to DQ

evaluation commonly do not pay enough attention or even ignore the security and privacy of the

evaluated data. In this research, we develop a framework for the DQ evaluation of the sensor

originated data acquired from smartphones, that incorporates security and privacy aspects into

the DQ evaluation pipeline. The framework provides support for selecting the DQ metrics and

implementing their calculus by integrating diverse sensor data quality and security metrics. The

framework employs a knowledge graph to facilitate its adaptation in new applications development

and enables knowledge accumulation. Privacy aspects evaluation is demonstrated by the detection

of novel and sophisticated attacks on data privacy on the example of colluded applications attack

recognition. We develop multiple calculi for DQ and security evaluation, such as a hierarchical

fuzzy rules expert system, neural networks, and an algebraic function. Case studies that demon-

strate the framework’s performance in solving real-life tasks are presented, and the achieved results

are analyzed. These case studies confirm the framework’s capability of performing comprehensive

DQ evaluations. The framework development resulted in producing multiple products, and tools

such as datasets and Android OS applications. The datasets include the knowledge base of sensors

iv
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embedded in modern mobile devices and their quality analysis, technological signals recordings of

smartphones during the normal usage, and attacks on users’ privacy. These datasets are made

available for public use and can be used for future research in the field of data quality and security.

We also released under an open-source license a set of Android OS tools that can be used for data

quality and security evaluation.
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Chapter 1

Introduction

1.1 Data Quality Concept and Its Importance

The modern world has entered the era when we have to deal with previously unseen amounts of

data. The enormous volumes of data have enabled developing data powered systems and their

applications in the decision making processes. In addition, all these data are produced by sources

of high diversity including crowd-sourcing. Modern smartphones, with the help of various built-in

sensors [73], generate all kinds of sensor originated data, social-media users produce all sorts of

non-structured data, Internet of Things (IoT) devices deliver sensor data [61], etc. For the first

time in humankind’s history, we might get more data than we are able to process, manage, and

utilize effectively. For example, every minute YouTube users upload more than 300 hours of HD

quality [89] to contribute to an already massive collection of 1,300,000,000 videos, a Boeing 737 jet

engines’ sensors produce ten terabytes of data every 30 minutes [111].

Various tools, data processing, and transmission equipment that are built-in into modern smart-

phones and other mobile devices, as well as their availability, lead us to an even more significant

data generation. A broad spectrum of embedded sensors in various mobile sensor platforms and

1



CHAPTER 1. INTRODUCTION 2

data collected using these sensors appeal to data scientists, researchers, and engineers [67]. Data

collected from these sources can be used in embedded and third-party applications. For instance,

a step-counter uses an accelerometer and a gyroscope, and a weather application utilizes a built-

in temperature sensor, pressure sensor, and location sensors. In 2014, approximately 38% of all

North-American software developers employed sensors and used sensor-originated data in their

software [123]. Semiconductor Industry Association states that “Big Data exceeds the reach of

commonly used hardware environments and software tools to capture, manage and process it within

a tolerable elapsed time for its user population” [117]. The increasing number of crowd-sourcing

applications [45, 98], mobile crowdsensing tasks [44, 74, 75, 77, 134, 146], and the Internet of Things

also contribute to the unprecedented data volumes aggregation. Unfortunately, not all data gener-

ators are equal, and the quality of data produced by them may vary drastically, which significantly

impacts the quality of this data processing results.

The absence of adequate sensor data quality evaluation may lead to incorrect choices and sometimes

results in very undesirable consequences. For example, in October 2018, the Lion Air Flight 610

crashed and killed all 189 passengers and crew. Later, in March 2019, the same Boeing 737

Max 8 model operated by Ethiopian Airlines (Flight 302) crashed, killing 157 passengers and

crew. Boeing reported that both crashes were caused because of the Maneuvering Characteristics

Augmentation System (MCAS) was triggered by the data coming from a faulty sensor [1]. Crashes

could have been avoided if MCAS or other onboard systems had recognized poor data quality. While

Boeing attempts to release a quick fix of the issue, a system approach to an integral data quality

evaluation may be a more appropriate solution. In March 2009, an Emirates Airbus passenger jet

with 257 passengers aboard came perilously close to crashing at Melbourne Airport, Australia, and

had the tail section severely damaged because the wrong numbers were entered into an aircraft

computer [96]. It is not clear if the accident could be qualified as a malicious attack. Even though

if it was a genuine mistake, it could be considered as a stress test that a jet’s sensor and data

acquisition system failed, resulting in a potential disaster. The examples mentioned above indicate

the extreme importance of the DQ indicators in modern data-driven applications.
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Data Quality (DQ) concept has been studied for more than a decade [126, 136, 137], and various

definitions of DQ have been formulated. The majority of the DQ definitions include “fitness to

the user needs” and/or the application context. For example, quality data can be defined as the

data that fulfills user’s needs or satisfies particular requirements [40, 41, 59]. Strong et al. define

high-quality data as “data that is fit for use by data consumers” [126]. Unfortunately, researches

commonly do not include or consider security aspects of the data source from which the data

is acquired. This indifference to data security in the DQ concept motivated us to investigate

whether we can improve DQ evaluation by incorporating security measures into the DQ evaluation

procedures.

1.2 Research Goal and Major Research Tasks

The primary goal of this research is to develop a data quality and security evaluation framework

that integrates security and privacy aspects into a conventional data quality evaluation pipeline.

The framework includes the data quality and security metrics and methods of their integration.

It also incorporates a set of tools that implement these methods taking into account the data

consumers needs in the form of the application context. These tools are meant to be implemented

on mobile devices.

On our way to achieving the goal, we have, first of all, to analyze and classify the existing DQ

metrics, methods of their design and integration, types of DQ as well as methods of DQ evaluation.

We have to accomplish the following tasks:

1. Analyze existing methods of the DQ evaluation and identify ways of their improvement.

2. Develop methods for the security and privacy aspects integration into the overall DQ evalu-

ation pipeline.

3. Develop security and privacy evaluation methods that are suitable for integration into the
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DQ evaluation framework.

4. Implement the integral DQ evaluation framework on mobile devices.

5. Validate framework in solving important real-life problems.

While we are building the framework, we have to address the following questions: What has been

done in the domain of DQ evaluation? In particular:

• How is the DQ being evaluated currently?

• What needs to be improved and modified?

• What metric types and groups have been researched for DQ evaluation?

• How to choose and design DQ metrics?

• What is the role of the security and privacy aspects in the conventional DQ evaluation?

• What has been done in the area of security evaluation that is applicable in the conventional

DQ evaluation pipeline?

To answer these questions, we analyze leading research on the DQ concept and techniques of its

evaluation. We classify DQ types and groups of metrics that are used for the DQ evaluation. We

investigate the security representation in the DQ evaluation as well as the DQ representation in

the data security evaluation. We examine existing methods of the data security evaluation and

approaches to its inclusion into the overall DQ evaluation pipeline. Finally, we present our review

of the privacy evaluation components of the data security evaluation. We investigate sophisticated

novel threats to users’ privacy and existing ways of their detection.

The next task on the way to this research goal is to develop methods for the security and privacy

integration into the overall DQ evaluation processes. To solve this task, we have to answer the

second research question: How to integrate DQ evaluation into a synergetic DQ and security
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evaluation framework? We dissect this question into the following sub-questions: Are there any

ways to connect DQ and security metrics, their integration methods, their calculus implementation,

and user context? How to design the DQ evaluation framework in such a way that it can be easily

adjusted and expanded for new applications? Can a knowledge graph concept be used to unite

all framework components? How can we enable a knowledge accumulation in the DQ evaluation

framework?

We answer these questions in chapter 3. We explore the possibility of employing a knowledge graph

as a foundation of the proposed DQ evaluation framework. Since a knowledge graph does not have

a fixed structure and is defined through its vocabulary, we explore existing vocabularies that are

related to the DQ evaluation and develop our vocabulary. We investigate what vocabularies have

been already developed and ways of their adoption for DQ and security evaluation purposes. We

demonstrate how the knowledge graph may connect all framework components using the developed

vocabulary. Finally, we render the knowledge accumulation through the knowledge graph extension

and employment.

The next task on the way to the goal is to develop a novel security and privacy evaluation methods

that will become a significant part of the framework, including metrics selection and techniques of

their integration. To solve this task, we have to answer the third research question: How to

develop flexible and extendable techniques of the data security evaluation that can be included in

the framework? We divide this question into the following sub-questions:

• How to calculate each component of data security, such as data availability, integrity, and

confidentiality?

• How to integrate these components into the overall, comprehensive data security score?

• How to choose data security metrics for a particular data source?

• What are the methods of data security metrics integration?

• How to evaluate users’ privacy?
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We answer these questions in chapter 4. To facilitate an extension of the security evaluation

component and its easy adjustment, we investigate hierarchical metric design. We investigate the

mutual influence of the security metrics from different security components. Since we chose Android

OS smartphones as the initial data source, we develop an introductory set of security metrics for this

platform. We develop various calculi for the security metrics integration ranging from conventional

algebraic methods to new artificial intelligence (AI) and machine learning (ML) techniques.

We investigate methods of threats to a user’s privacy detection on the example of a “colluded

applications” attack. To investigate this attack, we conducted an empirical study and examined

ways of this attack detection. We developed various machine-learning classifiers capable of this

attack detection.

The fourth important task is an implementation of the integral DQ evaluation framework on mobile

devices and its validation in various application domains. This task is solved by answering the

fourth research question: How to develop effective and efficient framework implementation on

a mobile platform, such as Android OS-based smartphones? We answer this question in the first

part of chapter 5.

The final task is to validate the framework performance on important practical problems. We solve

this task in the second part of chapter 5 by answering the following questions:

• How to use the developed framework in real-life tasks?

• How does the security component influence the overall security evaluation?

In order to answer these questions, we develop an expert system that implements DQ metrics

integration. We develop an efficient implementation of this expert system for mobile devices based

on neural networks. To demonstrate the framework employment in real applications, we present

several use cases. These use cases demonstrate framework extension to new tasks through the

knowledge graph vocabulary augmentation and render knowledge accumulation.
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Overall in this research, the following novel and original results have been produced:

• We developed novel techniques and tools that facilitate security and privacy aspects inte-

gration into the conventional DQ evaluation pipeline, which significantly improved the DQ

evaluation procedures by including the security and privacy aspects into the evaluation meth-

ods.

• We advanced methods and developed tools for the knowledge graph employment in security

and privacy integration into DQ. The knowledge graph employment facilitates the framework

adoption by new applications with little or no modifications.

• We produced data source security evaluation based on the device metrics that are accessible

without device modifications. Our procedures refine DQ evaluation usability on standard

mobile devices, such as smartphones. Their application does not require device modification

and can be easily employed by untrained smartphone users.

• We validated our framework by its implementation on resource-constraint mobile devices with

multiple use cases of diverse important real-life problems.

• To address the DQ evaluation expert system implementation challenge in the resource-

constrained environment, we created efficient methods of the expert system realization on

mobile devices with machine learning techniques. We developed techniques that facilitate

converting an expert system to a neural network model that can be executed on mobile

devices.

• We addressed privacy aspect in DQ evaluation by applying machine learning techniques to

detect novel and sophisticated threats to a user’s privacy. We conducted an empirical study

that proves a novel attack detection feasibility by monitoring smartphone system resources.

We developed attack detector models that can be executed on modern Android OS-based

smartphones without their firmware modification.
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Our research and framework development has resulted in a set of various products, including

peer-reviewed publications in journals and conference proceedings, knowledge and data bases, and

Android OS applications. We developed three datasets that are made available for public use and

can be used in further research on data quality evaluation and security improvement. The first

dataset contains data about the quality of sensors that are built-in modern mobile devices and their

analysis, the second dataset includes data of smartphones’ technological signals during the normal

phone usage and during attacks on user privacy, and the third dataset contains data about Android

smartphones, their general characteristics, sensor information, and security-related metrics. More

details on these datasets are presented in section 4.4 and section 4.5. In addition, we developed

and published a number of Android OS tools that are used in overall data quality estimation and

Android OS smartphone security evaluation. More details on these applications are provided in

section 5.10.

1.3 List of Products Developed in This Study

1.3.1 Peer-reviewed Publications

1. Khokhlov I., Reznik L., Chuprov S., “Framework for Integral Data Quality and Security

Evaluation in Smartphones” in IEEE Systems Journal, DOI: 10.1109/JSYST.2020.2985343,

2020

2. Khokhlov I., Reznik L., Ajmera S., “Sensors in Mobile Devices Knowledge Base,” in IEEE

Sensors Letters Journal, Volume 4 , Issue 3 (pp.1-4), 2020.

3. Alrubaye H., Mkaouer M.W., Khokhlov I., Reznik L., Ouni A., Mcgoff J., “Learning to

Recommend Third-Party Library Migration Opportunities at the API Level”, in Applied

Soft Computing Journal (2020), 106140

4. Khokhlov I., Ligade N., Reznik L., “Recurrent Neural Networks for Colluded Applications At-

tack Detection in Android OS Devices”, IEEE World Congress on Computational Intelligence
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(WCCI) 2020, Glasgow, UK, July 2020. Accepted for publication.

5. Khokhlov I., Reznik L., Lyshevski S., “Adaptive Data Fusion in Inertial Sensors and Data

Quality of Sensor Networks”, 2020 IEEE 40th International Conference on Electronics and

Nanotechnology (ELNANO), Kyiv, Ukraine, April 2020. DOI: 10.1109/ELNANO50318.2020

6. Khokhlov I., Reznik L., “Knowledge Graph in Data Quality Evaluation for IoT Applications”,

2020 IEEE World Forum on Internet of Things, New Orleans, Louisiana, USA, April 2020.

Received Outstanding Student Paper award

7. Chuprov S., Marinenkov E., Viksnin I., Reznik L., Khokhlov I., “Image Processing in Au-

tonomous Vehicle Model Positioning and Movement Control”, 2020 IEEE World Forum on

Internet of Things, New Orleans, Louisiana, USA, April 2020. Accepted for publication.

8. Khokhlov I., Reznik L., “What is the Value of Data Value in Practical Security Applications”,

IEEE/NDIA/INCOSE Systems Security Symposium 2020, Crystal City, Virginia, USA, April

2020. Accepted for publication.

9. Chuprov S., Viksnin I., Kim I., Reznik L., Khokhlov I., “Reputation and Trust Models

with Data Quality Metrics for Improving Autonomous Vehicles Traffic Security and Safety”,

IEEE/NDIA/INCOSE Systems Security Symposium 2020, Crystal City, Virginia, USA, April

2020 Accepted for publication.

10. Khokhlov I., Perez M., Reznik L., “Machine Learning in Anomaly Detection: Example of

Colluded Applications Attack in Android Devices”, 18th IEEE International Conference on

Machine Learning and Applications - ICMLA 2019, Boca Raton, FL, USA, December 2019

(pp. 1328-1333).

11. Khokhlov I., Reznik L., Bhaskar R., “The Machine Learning Models For Activity Recogni-

tion Applications With Wearable Sensors”, 18th IEEE International Conference on Machine

Learning and Applications - ICMLA 2019, Boca Raton, FL, USA, December 2019 (pp. 387-

391).



CHAPTER 1. INTRODUCTION 10

12. Khokhlov I., Perez M., Reznik L., “System Signals Monitoring And Processing For Colluded

Application Attacks Detection In Android OS”, 2019 Western New York Image and Signal

Processing Workshop, Rochester, NY, USA, October 2019 (pp. 1-5).

13. Khokhlov I., Pudage A., Reznik L., “Sensor Selection Optimization with Genetic Algorithms”,

IEEE SENSORS 2019, Montreal, Canada, October 2019 (pp. 1-4).

14. Khokhlov I., Li Q., Reznik L., “D.I.F.E.N.S.E.: Distributed Intelligent Framework for Ex-

pendable Android Security Evaluation”, in “The 14th Annual Symposium on Information

Assurance (ASIA ’19)”, Albany, NY, USA, June 2019 (pp. 18-27).

15. Khokhlov I., Jain C., Miller-Jacobson B., Heyman A., Reznik L., St.Jacques R., “MeetCI:

A Computational Intelligence Software Design Automation Framework”. In IEEE World

Congress on Computational Intelligence, Rio de Janeiro, Brazil, July 2018. (pp. 1499-1506).

IEEE.

16. Killawala A., Khokhlov I., Reznik L., “Computational Intelligence Framework for Automatic

Quiz Question Generation”. In IEEE World Congress on Computational Intelligence, Rio de

Janeiro, Brazil, 2018. (pp. 76-83). IEEE.

17. Khokhlov I., Reznik L., Cappos J. and Bhaskar R., “Design of activity recognition systems

with wearable sensors”. In Sensors Applications Symposium (SAS), South Korea, Seoul, 2018

IEEE (pp. 1-6). IEEE.

18. Vora A., Reznik L. Khokhlov I., “Mobile road pothole classification and reporting with data

quality estimates”. In Mobile and Secure Services (MobiSecServ), 2018 Fourth International

Conference on (pp. 1-6), Miami Beach, FL, March 2018 IEEE.

19. Khokhlov I., Reznik L.,“Android System Security Evaluation”. Demonstration. IEEE Con-

sumer Communications & Networking Conference, Las-Vegas, NV, January 2018 (pp. 1-2).

20. Khokhlov I., Reznik L., Jothilingam S.B., “What Can Data Analysis Recommend on Design of

Wearable Sensors?”. IEEE Consumer Communications & Networking Conference, Las-Vegas,
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NV, January 2018 (pp. 1-2).

21. Khokhlov I., Reznik L., “Colluded Applications Vulnerabilities in Android Devices”. The 15th

IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC

2017), Orlando, FL, November 2017 (pp. 462-469).

22. Khokhlov I., Reznik L., Kumar A., Mookherjee A. and Dalvi R., “Data Security and Quality

Evaluation Framework: Implementation Empirical Study on Android Devices.” In IEEE

Information Security and Protection of Information Technologies Conference, St. Petersburg,

April 2017 (pp. 161-168).

23. Khokhlov I., Reznik L., “Data Security Evaluation for Mobile Android Devices.” In IEEE

Information Security and Protection of Information Technologies Conference, St. Petersburg,

April 2017 (pp. 154-160).

1.3.2 Android OS Applications on Google Play

Below are Android OS applications that were developed during this research. This application are

published on Google Play Store:

1. System Security Evaluation app based on a security evaluation library -

https://play.google.com/store/apps/details?id=com.igorkh.trustcheck.securitycheck

2. System Security Evaluation app based on a security evaluation library with the cloud support -

https://play.google.com /store/apps/ details?id= com.igorkh.trustcheck. securitycheckcloud

3. Detector of Unverified Apps -

https://play.google.com/store/apps/details?id=dataqualitylab.rit.ver app finder

4. Smartphone Data Collection Tool -

https://play.google.com/store/apps/details?id=com.dataqualitylab.collectinfo.

collectinfo
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5. Sensor Quality Assessment -

https://play.google.com/store/apps/details?id=com.dataqualitylab.sensorquality

6. Road Pothole Reporter -

https://play.google.com/store/apps/details?id=sdh.application.reportthepotholes

In addition, we developed the application that implements the NN calculus for security evaluation

component. The source code of this application is made public available as well: https://drive.google.com/

file/d/ 1jwii74qSpOPMHb4EuEwTtydSiF8Bf6mW/ view?usp=sharing

1.3.3 Produced Datasets

This research also resulted in a set of datasets:

• Sensor dataset: https://drive.google.com/drive/folders/

1vnwpp3hzmbOVf9exXVYLtN38UsT7KEIU?usp=sharing

• “Colluded applications” dataset: https://drive.google.com/drive/folders/

1YkiiDT4NlqVuBAICGpGtYiXPMggLsSgq?usp=sharing

• Dataset that includes smartphone information for the overall DQ evaluation and security

related information: https://drive.google.com/drive/folders/

1mU VIgYvbpm7keSldnWvvOoLFA22Y-cW?usp=sharing



Chapter 2

Research Background Review and

Analysis

Typical data quality evaluation pipeline includes such steps as the selection of appropriate metrics

that represent DQ and the choice of the methods of these metrics integration that fit users’ needs.

This chapter answers the first research question: What has been done in the domain of data quality

and security evaluation and how we can improve it? In this chapter, we review, analyze, and

classify approaches to metrics selection and design. We present their classification and ways of

their organization. Also, we cover existing research in security and especially privacy evaluation.

Despite some data scientists use term “information” as a product of data processing, in this research,

we follow up the DQ research mainstream and use information as a synonym of data [102], unless

specified otherwise. We refer to data and data source characteristics as DQ metrics. The term

“DQ dimensionality”, that is used below, is defined as the number of DQ metrics employed for the

DQ evaluation.

13
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2.1 Review of Existing Approaches to Metrics Design and Selec-

tion

The first question we answer in this section is “How to choose and design DQ metrics?”. On our

way to developing the DQ and security evaluation framework, we have to choose an approach to

metrics’ selection, the design of metrics’ organization, and data object types. In this research, we

employ theoretical metrics design selection. To facilitate users’ needs consideration, we chose a

hierarchical metrics’ organization. Finally, we focus on structured sensor originated data acquired

mostly from a wide sensor’s range. In this subsection, we present the overview of existing methods

and justification of our choices.

We classify approaches to DQ metrics design into three major groups: heuristic, theoretical, and

empirical. The majority of researchers employ the heuristic approach in DQ metrics selection. This

approach relies on researchers’ expertise and experience in a particular domain. Unfortunately, this

approach to metrics design very often results in a small number of DQ metrics, with the “accuracy”

metric as one of the major or even only one metric that is used in DQ evaluation. For example, Tan

et al. [128] use approach in target tracking tasks with only three metrics that are highly specific

to the application. Another example can be found in Prabha et al. [103] research. They consider

DQ only from the trustworthiness point of view, assuming that trustworthiness and privacy are

highly correlated. The authors evaluate DQ considering only four DQ metrics that are specific to

wireless sensor networks, such as identity, route, location, and data privacy. Their framework aims

at improving DQ by establishing a secured route from a sensor to a sink.

In the theoretical approach, researchers consider ways on how data may become imperfect during

data production or acquisition. In this approach, DQ metrics are defined as inconsistencies between

the world’s view that is restored from measurements and the view that is obtained through the

direct observation of the real-world system.

In the empirical approach to metrics design and selection, researchers analyze data collected from
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Figure 2.1: Example of metrics of first and second order

the data consumers’ point of view and consider those metrics that are important to users. This

approach to metrics selection may make it difficult to adapt DQ evaluation processes to new appli-

cations. In the empirical approach, metrics are often ranked based on various surveys.

In this research, we employ mostly the theoretical approach to metrics selection and design. While

this approach allows taking into consideration a large number of various metrics, it creates a

challenge in an efficient metrics organization.

The significant number of DQ dimensions calls for a sustainable metrics organization design. In

this research, we chose a hierarchical metrics organization. Hierarchical metrics architecture is one

of the approaches to improving the metrics’ maintenance. In the hierarchical metrics organization,

metrics may have various orders. Metrics of a higher order are based on the metrics of the lower

order of the same branch (see equation 2.1 and figure 2.1).

Mn,j = f(Mn−1,1, ...,Mn−1,k) (2.1)

where Mi,j is a metric of order n and Mn−1,k are metrics of lower order n− 1.

Cai and Zhu [21] propose hierarchical DQ standard from a user’s perspective: indicators -¿ DQ

elements -¿ DQ dimensions. Each metric (dimension) has its elements, and each element has its

quality indicators. The authors developed a two-layer data quality standard that includes five

higher-order dimensions: Availability, Usability, Reliability, Relevance, and Presentation Quality.

Each dimension consists of up to five data quality metrics.
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An important factor in the metrics’ design is the type of data that is assessed. We classify data

types into three groups: structured data, semi-structured data, or unstructured data. In this

research, we mostly focus on structured sensor-originated data. The data quality assessment of

semi-structured and unstructured data adds additional challenges to the evaluation processes and

falls out the scope of this research. However, to make the review of DQ metrics selection and design

complete, we present a few approaches to metrics’ design and selection further.

A huge amount of data that is freely available is unstructured or semi-structured. A significant

portion of this data is collected through crowdsourcing applications. Restuccia et al. [110] presented

a survey and rendered challenges in data quality assessment for citizen-science applications. This

survey demonstrates that in the crowdsensing applications, the trustworthiness is the major and

sometimes the only metric of the data quality.

In order to improve methods of DQ evaluation for these data types, new data parameters may

be applied. For example, Immonen et al. [57] focus on DQ evaluation of the data obtained from

social media sources. The authors distinguish two concepts of DQ characteristics: DQ attribute

and DQ metric. DQ attribute represents a single aspect of the data, while the DQ metric measures

a particular property of the DQ attribute. Authors present eleven DQ attributes, where each

attribute includes several DQ metrics. Despite that this approach is similar to the one that is

used by Cai and Zhu [21], Immonen et al. assign a set of properties to each metric: description,

purpose, target, applicability, formula, value range, acceptable value, and rule. Also, according to

the authors, each data object can have a different set of DQ attributes.

Big data phenomenon also adds new challenges to the DQ evaluation. For example, a data consumer

very often acquires data from many various and heterogeneous data providers through a chain of

data proxies. This indirect relation between data consumers and data providers creates obstacles

on the way to DQ assessment. Two aspects influence the set of metrics that are used for the DQ

evaluation: the application context and the data object type, which may result in additional layers

in the DQ evaluation model. For instance, Klas et al. [80] present the DQ model with several
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layers and consider data quality in the context of a user’s application. Their model is based on

the hierarchy of such concepts as quality aspects, quality factors, and quality measures. The DQ

model structure is similar to the DQ metrics design in Cai and Zhu [21] research.

2.2 Classification of Existing Metric Groups and Data Quality

Types

This sections answers the following two questions:

• What metric types and groups have been researched for DQ evaluation?

• How is the DQ being evaluated currently?

In this section, we present DQ types, their metrics, and DQ evaluation methods. We also reveal

insufficient attention to security aspects in the DQ evaluation processes.

2.2.1 Data Quality Metric Groups

Data scientists consider DQ from various points of view. As we mentioned earlier, the overall DQ

concept is tightly connected with the data consumers’ application context. However, the overall

DQ concept may be dissected in DQ “sub-types”. It allows us to classify DQ research into a

few groups. Further, we show two major DQ sub-types: application-independent and application-

dependent. Each DQ sub-type includes a corresponding set of DQ metrics. In this research, we

consider two major groups of metrics: objective and subjective. Objective DQ metrics reflect those

data characteristics that are independent of the application context. Subjective metrics, on the

other hand, tightly related to user needs. Further, we show various approaches to the DQ metrics

group classification.
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At first glance, it may seem that all metrics are related to the application context. However, some

of the metrics do not depend on the user’s needs. For example, Hermans et al. [54] chose only four

DQ metrics: accuracy, completeness, timeliness, and consistency. If we take a closer look at these

metrics, we can see that consistency indeed depends on the application context. However, accuracy,

completeness, and timeliness metrics have to be application-independent. Accuracy belongs to

data source characteristics, timeliness is related to a communication channel, and completeness

characterizes a data stream. Accuracy, for example, is defined by the data source sensors and their

hardware and does not change if the user’s needs changed. But the weight of accuracy metric

directly related to the user’s needs. The same idea applies to completeness and timeliness metrics.

Strong et al. identify quality data in the following way: “Data that is fit for use by data con-

sumers” [126]. The authors classify DQ metrics into four categories: intrinsic DQ, accessibility

DQ, contextual DQ, representational DQ. Intrinsic DQ does not depend on a user’s model and

includes four basic metrics: accuracy, objectivity, believability, reputation. Accessibility DQ re-

flects technical aspects of data accessibility and includes the following metrics: accessibility, access

security. It is important to distinguish technical accessibility and accessibility from the consumer’s

point of view. Contextual DQ metrics are deeply linked to the application context and include

relevancy, “value-added” (how much value this data object contributes to the overall decision),

timeliness, completeness, and amount of data. Representational DQ metrics include the following

four metrics, which also depend on a user’s model: interpretability, ease of understanding, concise

representation, consistent representation.

Wang et al. [137] presented a comprehensive set of 179 metrics. Authors classify all metrics into

four groups that are similar to Strong et al. metric groups:

• Intrinsic DQ metrics – do not depend on application;

• Contextual DQ metrics – rely on the application context;

• Representational DQ metrics – include aspects related to the format of the data. This group
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can be further divided into the following sub-groups: unstructured data, semi-structured

data, and structured data;

• Accessibility DQ metrics – consider how data consumers can access data.

Pipino et al. [102] presented 15 metrics that are used in the DQ assessment. They classify metrics

into objective metrics (do not depend on a task) and subjective metrics (depend on a user model).

Todoran et al. [130] extended Wang’s research and use 20 metrics that are categorized into three

groups: content group, source group, and presentation group. The source group includes two sub-

groups: the subjective sub-group and the objective sub-group. The subjective sub-group contains

metrics that depend on the application context, and, for example, includes timeliness metric.

Bar-Noy et al. [12] also present two types of DQ metrics: intrinsic and contextual. Intrinsic metrics

do not depend on the application and include such metrics as freshness, correctness, precision, and

security. Contextual metrics depend on the application context and include timeliness, accuracy,

completeness, and the credibility of the information source.

Cai and Zhu [21] proposes five metric groups: Availability, Usability, Reliability, Relevance, and

Presentation Quality. The first four groups are fundamental and inseparable from the data, while

the last group is additional and improves a user’s satisfaction. The availability metrics represent

the level of data access convenience and include three data quality elements: accessibility, time-

liness, and authorization. The usability group evaluates the level of usefulness and includes data

definition/documentation, reliability, and metadata. The reliability group reflects the level of the

data trustworthiness and consists of accuracy, consistency, completeness, adequacy, and auditability

elements. The relevance group represents a relation between data content and a user’s expecta-

tion and includes only one DQ metric - fitness. The presentation group characterizes description

methods of the data and include two elements: readability and structure. The presentation group

depends on the user’s needs.
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2.2.2 Data Quality Types

Each DQ metric group is used to evaluate a corresponding DQ sub-type, such as subjective and

objective DQ. However, DQ can be classified differently. For example, Todoran et al. [130] classify

DQ into two types: local DQ and global DQ. Local DQ is evaluated in the context of the data

source (sensor platform) and does not depend on the application context. Global DQ presents data

fitness to a data consumer’s decision-making process.

Another approach to DQ type classification is suggested by Bar-Noy et al. [12] in their research on

tactical military networks. The authors classified DQ into two groups: desired DQ and delivered

DQ. The desired DQ is the level of DQ level that the data consumer requests. A network guarantees

the desired DQ with some probability. A delivered DQ is the DQ level of the data that the user

receives.

Immonen et al. present two types of DQ estimations: the DQ assessment and the DQ evaluation.

The DQ assessment estimates the quality of the raw data and does not depend on the application

context. The DQ evaluation estimates the quality of processed data considering the application

context.

2.2.3 Review of Approaches to Data Quality Evaluation

In addition to various DQ types, different approaches to DQ evaluation have been proposed. For

instance, Todoran et al. [130] distinguish an analytical and non-analytical evaluation. The analyt-

ical approach to DQ evaluation can be employed if we have complete knowledge about the data

processing system and when its complexity is not high. If we do not have complete knowledge

about the data processing system, the non-analytical method is used. In this case, an experimental

estimation has to be done. However, it requires access to the input and output of the data pro-

cessing system and knowledge about its general behavior. The necessary data can be collected, for

example, by varying input data and recording output.
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Immonen et al. [57] present two types of DQ attribute evaluation: quantitative and qualitative.

Quantitative evaluation is a formal process that is based on a user’s rules. Qualitative evaluation

is based on the evaluator’s expertise and knowledge about the user. Thus, both DQ estimation

methods consider the application context.

Bar-Noy et al. [12] present DQ as a value that represents the instantaneous quality of the piece

of data. However, data transmission conditions change in time, and the same pieces of data can

have different DQ measures at the data recipient’s side. In addition, the authors introduce the

Operational Information Content Capacity (OICC) concept. OICC represents the amount of data

that can be delivered with a specified DQ level to a data consumer through the network. Also,

in-network data processing can either increase or decrease the DQ level of the transmitted data.

For example, compression of a video stream can decrease the video resolution, frame rate, field

of view, etc. On the other hand, due to the smaller size of the processed video, the timeliness of

the delivered data may be improved. Also, in-network processing allows for DQ improvement via

fusion data from various sources.

Nowadays, a huge portion of the data is gathered from sensors and sensor networks. In some

cases, these sensors produce data streams. Data quality for these data streams also has to be

evaluated. Klein [81] develops a framework for data quality evaluation of a sensor originated data

streams. They consider data quality as a meta-data that augments the sensor data and is stored in a

database. Their framework does not explicitly take into account a user’s application context. Their

DQ meta-data model initially consists of three DQ metrics: accuracy, confidence, and completeness.

The framework evaluates data quality at a source’s (sensor) side. To evaluate the DQ of a data

stream, they use a sliding window technique. However, this approach does not explicitly consider

user needs.

Trustworthiness is an important data aspect that should be considered in the DQ evaluation.

While the trustworthiness evaluation is out of the current research’s scope, there are attempts to

evaluate it separately. The importance of the data trustworthiness comes from the Big Data concept
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evolution. The Big Data concept has evolved from three V’s (volume, variety, and velocity) to the

five V’s: volume, variety, velocity, veracity, and value. Veracity is an important characteristic that

includes the trustworthiness of the data. For example, Chen et al. [24] investigate the trust model

of the sensor networks and methods to improve their trustworthiness. Authors employ historical

data acquired from a sensor for a data trustworthiness evaluation. Neighbor sensors also play an

important role in this task and demonstrate how data fusion helps in the data trustworthiness

evaluation and may help in the DQ evaluation. On the other hand, DQ evaluation may help to

improve trust models and trust evaluation [27].

2.2.4 Data Quality Concept Evolution

There are ways to detach the application context from the DQ concept. Researchers who do not

directly include an application context into the DQ concept may use a novel concept of the data

value (DV). DV may be perceived from various points of view. For example, Cai et al. [21] consider

DV as a low-value density, where value density is inversely proportional to the overall size of the

data set. It means that the greater the data set size, the less relatively valuable the data. DV also

might be considered as a further evolution of the contextual data quality, which we described above.

Suri et al. [127] present the quality of information and the value of information concepts, where

information has the same meaning as data. Their research is devoted to tactical networks. They

investigate the quality and value of data objects that are collected via these networks. The authors

demonstrated that the data object increases its value if it improves the situational awareness of a

data consumer or causes the data consumers to change their decision for a better outcome. All

data objects are ranked in such a way that the most valuable (important) objects are consumed

and processed first. Data quality and data value are two characteristics of the data that are used

for the ranking.

Data quality is represented with internal and objective metrics that consider only the intrinsic

characteristics of data object [91]. For example, resolution, brightness, contrast are the metrics



CHAPTER 2. RESEARCH BACKGROUND REVIEW 23

that are included in the DQ. These metrics do not depend on the application context. Images that

have been taken at night with a night-vision camera will have better values of these parameters

and, thus, higher data quality than a photograph taken with a regular camera. However, during the

day, the photograph from a regular camera would have better quality. Data value is represented

with external and subjective metrics that rank data objects according to the utility it provides

to the data consumer. This data object should support the data consumer in more effective and

efficient decision-making. In this case, a data object with the same data quality may have various

data values for the different data consumers. Therefore, the data value is a function of data quality

and the data consumer’s application context [113].

To calculate the data object’s DV, we have to have a model of the data consumer. Also, we have

to consider that data object that already has been consumed by the user, due to duplicate data

objects’ DV is zero. The history of the delivered data object should be considered as well as changes

in the data object itself. In other words, we should consider in which way the new data object

differs from the old one. For example, if a hostile truck moved 100 meters from the last position

and in the distance of one kilometer from the soldier, this data object has a higher value than the

data object about the truck that also moved 100 meters, but 10 kilometers away from the soldier.

Despite the DQ of these data objects are the same, the DV of these objects are different; in other

words, the consumer context influences on a ranking function.

The data value concept is often used in military-related research. During the military operation,

units should make quick and right decisions in a tough or even hostile environment. Cansever [22]

investigates data value evaluation for military mobile ad hoc networks. These networks have very

low bandwidth, and it is important to transfer only data that are relevant in important for the

data consumer.

Bisdikian et al. [14] investigate DQ and DV in sensor networks. Authors distinguish between

“the ability of judging” of a data object and “the outcome of judging”. The ability to judge

corresponds to the DQ concept and DQ metrics that feed the judging process. The outcome of
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judging corresponds to the DV concept that the data object delivers to a data consumer. The

authors represent the DQ and DV as a stack of layers, where the DV layer is on top of the DQ

layer. They define the DQ and DV concepts in the following way:

• Data quality – “The body of tangible evidence available (i.e., the innate information proper-

ties) that can be used to make judgments about the fitness-of-use and utility of information

products”.

• Data value – “An assessment of the utility of an information product when used in a specific

usage context”.

Some researchers, for example, John Quiggin [105], extend the DV concept even further and in-

troduce a novel “value of awareness” concept. The value of awareness is an evolution of the DV

concept. The author defines data value as “the difference between the expected return to the op-

timal decision based on prior beliefs and the expected return based on posterior beliefs”. Value of

awareness is “the improvement in expected return when an agent takes all possible states of nature

into account in selecting a state-contingent income vector from a choice set”.

While the DV concept allows generalizing the DQ evaluation and expends the DQ concept applica-

bility, it requires models of the data consumer. In this research, we follow up on the conventional

DQ concept. In the DQ evaluation, we employ objective DQ metrics and consider the application

context during the metrics integration. This approach to these metrics design and integration al-

lows relatively effortless framework modification to include new user needs. Also, as seen from the

presented works, data security and privacy are often underestimated or even ignored. Our approach

to metrics design and their integration into the DQ value allows data security aspects incorporation

into the DQ evaluation pipeline.
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Figure 2.2: Relationship between DQ concepts and DQ metrics

2.3 Review and Analysis of Existing Approaches to Security Eval-

uation Component in Data Quality Evaluation Pipeline

This section answers the question: “What has been done in the area of security and privacy eval-

uation that is applicable in the conventional DQ evaluation pipeline?”. Data security and privacy

aspects are a critical part of the overall DQ evaluation. Unfortunately, conventional DQ evaluation

methods do not pay enough attention to security and privacy aspects. Researchers in the security

domain very often do not consider that security and privacy can be employed in the DQ evaluation.

While there are multiple studies on security and privacy evaluation, they are limited to a particular

application. To develop methods for security aspect incorporation into the DQ evaluation, we have

to analyze the existing approaches to the security aspect assessment.

In the security evaluation we follow the traditional security definition, which is “Security = Con-

fidentiality + Integrity + Availability”. Security evaluation integrates metrics from all three

branches. The importance of each branch depends on the application context and user needs.

Data security has been studied for many years and is considered from various points of view and for

various applications, for example, military [60] or medical applications. Since data security is a very

complex area of research, many researchers have classified data security into categories and sub-

categories that may drastically vary from researcher to researcher. Moreover, some international
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standards have been developed that describe particular aspects of a system that are related to data

security. For instance, TCSEC [84] and ITSEC [122] are used to estimate an operating system

security. However, these standards describe only a small part of the data security area or focus

only on one security component.

For example, Solms et al. [133] proposed a framework for an information security evaluation and

developed a five-leveled information security management model. This model includes such data se-

curity aspects as hardware and software aspects, communication aspect, procedural aspect, physical

aspect, personnel aspect, and environmental aspect.

Some consider security by taking into account only one aspect. For instance, Josang and Knapskog

[58] consider data security from a data trust perspective. They propose a model for quantifying

and reasoning about trust in IT equipment. Their model takes into consideration such parameters

of an IT equipment as system reputation, security incidents, security advisory reports, developer

reputation, and others. However, data trust mostly represents only the data integrity part of data

security.

Neumann [95] tries to evaluate computer system security by combining concepts from both remedial

and preventive approaches. Specifically, they use formal SRI Hierarchical Development Methodol-

ogy and focus on an operational system security evaluation. This methodology focuses on software

aspects of data security evaluation without considering hardware and communication aspects.

With the growing popularity of cloud computing over recent years, researchers started to focus

on data security evaluation in cloud services. Sood [124] develops a methodology of data security

assuring in cloud computing. Similarly to our approach in this research, they present data security

as a combination of data confidentiality, integrity, and availability. However, unlike us, the proposed

methodology does not consider the data source and starts evaluation from the moment data is stored

in the cloud facilities.

Chen and Zhao [23] investigate data security and privacy (confidentiality) issues in cloud services.
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Their research focuses on security and privacy protection issues in a cloud. They classify cloud

computing security into four major components: software security, platform security, infrastructure

security, and auditing and compliance. However, similarly to Sood, they consider data security only

after the data was acquired.

In this research, we take into account those data security characteristics that may affect the overall

DQ score. We combine system security, data security, and privacy evaluation approaches and

integrate them into the overall DQ evaluation. We employ only those security metrics of sensor

platforms that are accessible without these platforms modification. While in this research, we

mostly focus on Android smartphones, the security metrics set can be extended to cover other

sensor platforms as well.

2.4 Review and Analysis of Existing Approaches to Privacy Eval-

uation Component in Data Quality Evaluation Pipeline

In this section, we answer the following questions:

• What has been done in the field of privacy evaluation for mobile devices?

• How are addressed complex threats to user privacy and how we can improve the existing

approaches?

Nowadays, privacy plays an important role not only in data science but also in our everyday life.

The goal of this research is to integrate security and privacy aspects into the overall DQ evaluation

processes. If approaches to security evaluation described in the previous section allow evaluation

data security from the data consumers’ perspective, this section presents ways on privacy evaluation

from the data contributors’ point of view. It is especially critical in today’s era of citizen-science

and crowd-sensing. If smartphone users agree to share some data (e.g., sensor data) from their

devices, they have to be sure that their other private data is safe. Privacy evaluation allows the
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detecting of potential data leaks. In this research, we consider a modern smartphone as a sensor-

rich sensor platform with a wide variety of built-in sensors. While we mostly focus on Android

OS-based smartphones, the principles described in this subsection may be applied to other mobile

platforms with no or little modifications.

Vendors of mobile hardware and software products attempt to address security and privacy issues

with various tools developed, e.g., authentication mechanisms and anti-malware software, with

many of them employing various artificial intelligence (AI) and machine learning (ML) techniques.

Misuse based malware detection software and application catalogs (i.e., Google Play [49], App-

Store [8], and Amazon market [4]) are called to reduce the malware threat. To protect users’

privacy, users have to maintain, all the time, healthy security habits, such as keeping authentica-

tion mechanisms enabled, installing applications only from trusted sources, not blindly approving

all permissions requested, etc. Unfortunately, even these measures may not be sufficient to prevent

private data leakages. Malware each day becomes more sophisticated, and methods for its detec-

tion that worked yesterday may not work today. Most of the existing protection tools available

for mobile devices detect and/or defend against known threats only, which makes ordinary users

vulnerable to novel attacks. Alternative methodologies of anomaly detection based on analysis

of data collected through monitoring of system parameters such as memory, a central processor

unit (CPU), disk, and network utilization are widely used on other platforms with bigger resources

available for their implementation.

Over the last decade, the research community has been slowly turning its attention to an anomaly-

based attack detection on mobile devices. Schmidt et al. [116] successfully demonstrated anomaly

detection cases for malware recognition in Symbian and Windows Mobile smartphones. Hu et

al. [56] developed anomaly detection models based on network traffic data analysis. Burguera et

al. [20] monitored 250 system calls using the GNU C library and analyzed collected data on a remote

server that allowed the employment of effective but computationally expensive AI techniques, which

might demonstrate high detection rates. Shabtai et al. [118] developed a behavioral malware

detection framework for android devices. Their “Andromaly” framework is capable of detecting an
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anomaly system behavior based on real-time monitoring of various system metrics, such as CPU

consumption, the number of sent packets through the Wi-Fi links, the number of running processes,

and the battery level. Shabati et al. achieved very good results in detecting continuous attacks, for

instance, denial of service (DoS) attacks and worm infection. Yin et al. [143] developed an anomaly

detector that is based on improved self-organized maps and trained and tested it on a KDD CUP

99 data set [132] that contains captured network traffic.

In this research, as an example of the novel threats to a user’s privacy, we use “colluded applications”

vulnerability [68], which exploitation is currently emerging. [82]. Although the computer security

community has turned their attention to this problem in 2010 [34], the existing anti-malware tools

(for instance, Google Bouncer [150]) are not helpful enough in resolving this issue. In 2014, a

collaborative ACiD [2] research was started to study and address this vulnerability and develop

novel theoretical methods and tools to detect applications suspected in collusion and perform formal

security inspection. In 2015, a modified version of this vulnerability exploitation was discovered [28].

The “Moplus” SDK library that was used in 14,112 Android applications at the time of discovery

created numerous backdoors and other breaches in the smartphone security. Once the application

that contains this library was installed, its exploitation allowed it to: get phone details, download

and upload files to/from a device, read/send text messages, get a user’s geo-location, and more. In

2016, Intel identified 21 applications that were exploiting this vulnerability [29]. These applications

may execute “colluded applications” attacks to escalate privileges, bypass system limitations, and

perform malicious activities. Later, in June 2016, McAfee Labs published the threats report [88]

that documented 23 colluded applications. In 2017, more than twenty thousand of application

pairings that may leak data were identified [135]. More applications in the wild that exploit

this vulnerability were discovered in 2018 [15]. In November 2019, the security research team at

Checkmarx discovered and implemented a modification of “colluded applications” attack [139,142]

that involved vulnerability of the standard “camera app” and allows to control a smartphone’s

camera, take photo images, record videos, and send them to a remote server. One can observe

the growth of the sophisticated novel attacks on a smartphone in general and colluded applications
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attack in particular. Considering the current efforts of OS developers as well as smartphone vendors

in improving users’ privacy, it is very likely the number of such innovative and complex attacks

as colluded applications will continue to grow. Therefore, millions of existing devices, as well as

future devices, require adequate protection against these threats.

2.4.1 Use Case of Novel Attack on Users’ Privacy

We classify “colluded application” attacks into two major categories: inter-application collusion

and intra-library collusion [65]. Inter-application collusion attack exploits Android OS mechanisms

that allow communication between applications without exempting malicious ones, which attempt

to bypass permissions mechanisms of the Android OS intentionally. The second type of attack

exploits a malicious library integration into various applications [129].

Nowadays, application developers commonly employ various libraries that allow extending appli-

cation functionality without writing additional source code. Taylor et al. [129] found out that

more than 57% of 30,000 tested devices have the library that may exploit intra-library collusion

and access two or more additional permissions in 30.8% of cases. Over the last couple of years,

researchers in the security and privacy domain paid special attention to this problem [34, 94, 109],

which resulted in the broad set of tools that address it. A few types of classification can be applied

to these tools: based on the reaction time, based on the OS level integration, based on who have

to use a tool (an application developer, user, or vendor), and based on the analyzed application’s

components (see figure 2.3).

Based on their reaction time, available tools can be classified into proactive and reactive. Proactive

tools try to reveal application collusion before it happens. Reactive tools detect collusion in real-

time while it is happening. Proactive tools have two subcategories, which are: a static application

analysis and a dynamic application analysis. Static tools analyze applications’ source code and

try to trace information flows in order to reveal malicious intentions. This approach is capable

of detecting leakage of a very small amount of private data [11]. On the other hand, the source
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Figure 2.3: Existing tools for detection and prevention colluded application attacks classification

code of modern applications is obfuscated and may hide dangerous API calls. Moreover, each day,

about 2,500 new applications are published in Google Play [106], and it is hardly possible to apply

the static analysis of their code. Dynamic analysis is called to solve the problem with the code

obfuscation. In this case, the analyzed applications are run in the controlled environment of a

real or virtual device in different scenarios with the hope that malicious applications reveal their

collusion. The device runs a modified version of the Android OS, which allows tracing unauthorized

information flows or applications that are run in the debug mode. For example, Hay et al. [53]

developed the tool for dynamic application analysis in the debug mode. However, modern malware

are able to detect these controlled environments (for example, using motion sensors [46]) and hide

their malicious intentions. While this approach partially solves the problem, it cannot be scaled

up to the constantly increasing number of available applications. In addition, modern versions of

Android OS update applications automatically by default that may result in collusion after the

analysis was performed.
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Reactive or real-time tools analyze only installed applications and parameters of the device, which

may indicate collusion that makes them robust enough to the growing number of available appli-

cations. For example, the TaintDroid tool [39] traces sensitive information and reveals dangerous

information flow. Xmandroid [19] extends the Android OS monitoring system and allows detecting

the unauthorized device’s resource access. However, these tools have to be integrated into the de-

vice’s firmware; in other words, the Android OS has to be modified. Considering that today, more

than two billion active devices are running Android OS [131], and different vendors have produced

these devices, it is almost impossible to update their firmware.

Integration into a device’s firmware requires OS modification and can be done only for a limited

number of models due to the massive platform fragmentation. Frameworks that can be run on a

standalone or a remote computer do not require a firmware modification and can perform an analysis

much faster due to higher computational capabilities than mobile devices [10, 17]. However, this

approach requires specific knowledge in the domain which a regular user is not expected to have.

Table 2.1 summarizes the characteristics of the most popular tools for “colluded applications” attack

detection. It specifies the use of AI techniques in their design and operation. As one can see, most

tools employ rules in analyzing applications source code or their behavior. Moreover, those rules

are “hardcoded” in tools’ code, which makes this approach sensitive to the attack variations [11].

Rules modification becomes a hard problem that would require code re-design and re-compilation.

Similarly to the security evaluation approach, we are going to use only those security and privacy-

related metrics that are accessible without a device modification. We propose an AI-based anomaly

detection methodology capable of detecting private information leakage. This methodology employs

machine learning classification models, which can be retrained and adjusted to detect novel attacks

without a source code modification.
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Table 2.1: Existing tools for colluded applications attack detection

Tool or au-
thor

Time
Level

Integ-ration
Level

Invol-vement
Level

AI Compon-ent
Level

Asavoae et al.
[10]

Static Runs on remote
computer

Requires specific
knowledge

Rules All components

SCLib [141] Static/real-
time

Integrated into
application

Application de-
veloper

Rules All components

DIALDroid
[17,18]

Static Runs on remote
computer

Requires specific
knowledge

Rules All components

TrustDroid
[148]

Static/real-
time

Integrated into
firmware

Firmware devel-
oper

Rules Not all compo-
nents

TaintDroid
[39]

Real-time Integrated into
firmware

Firmware devel-
oper

Rules All components

Xmandroid
[19]

Real-time Integrated into
firmware

Firmware devel-
oper

Rules All components

IntentDroid,
[53]

Dynamic Integrated into
firmware

Requires specific
knowledge

Rules Not all compo-
nents

IntelliDroid
[140]

Dynamic Runs on remote
computer

Requires specific
knowledge

No Not all compo-
nents

2.5 Conclusions

Addressing the first research question posed in this chapter “What has been done in the do-

main of DQ evaluation?”, we obtained the following major research results, which are further

explained in details:

• We reviewed and classified modern approaches to the data quality evaluation;

• We revealed insufficient attention to the security aspect in the conventional data

quality evaluation pipeline;

• We classified existing approaches to the data quality metrics design;

• We investigated privacy threats and classified existing approaches to the privacy

protection;

Although the DQ concept has been studied for decades, there is no unanimously accepted DQ
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definition. As we have rendered in this chapter, there are multiple approaches to DQ evaluation.

While some researchers present more than two DQ metric groups, our analysis proves that on a

fundamental level, all conventional DQ metrics can be classified into two major groups: application-

independent (intrinsic) and application-dependent (contextual) groups. Also, our analysis of the

existing research in the DQ domain reveals insufficient attention to the security and privacy-related

metrics.

For the metric design, we chose a theoretical approach because it allows us to include a big set of

DQ metrics into the DQ evaluation processes. A big number of DQ metrics requires an efficient

approach to their organization. We chose a hierarchical approach to metrics organization because

it facilitates metrics set extension with no or little efforts.

Also, we classified existing approaches to the DQ concept definition. While most researchers in-

clude the application context into the DQ concept, some researchers present two types of the DQ

concept: intrinsic and contextual. Some researchers move the application context to the data value

concept and render the DQ concept as application-independent. Our analysis led us to choose the

conventional approach to DQ evaluation that employs mostly application-independent first-order

metrics. We consider the application context on the DQ metrics integration level.

Our analysis of current methods of DQ calculation revealed insufficient attention to the security and

privacy aspects in the overall DQ evaluation pipeline and guided us to investigate ways of security

aspects incorporation into the DQ evaluation processes. We analyzed existing methods of security

evaluation and revealed that existing approaches mostly focus on a very narrow set of features. We

chose to use a wide spectrum of system security metrics to perform the security evaluation and

integrate it into the DQ evaluation pipeline. We are going to use only those security metrics that

are accessible without a sensor-platform modification.

As an implementation platform, in this research, we focus on the Android OS based smartphones.

To evaluate the user’s privacy, we analyzed current threats to it and approaches to enforce privacy

policies. Unfortunately, our analysis shows that modern methods of private information leakage
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detection and prevention are not very effective in detecting sophisticated modern attacks on the

user’s privacy, such as the “colluded applications” attack. We investigated existing methods of this

attack detection and revealed a lack in the methods that are accessible to untrained users. In this

research, we are going to develop security and privacy evaluation methods that may be used by

untrained smartphone users and can be integrated into the overall DQ evaluation framework.



Chapter 3

Data Quality Evaluation Framework

Design

This chapter addresses the second major research question: “How to integrate DQ evaluation

into a synergetic DQ and security evaluation framework?”. This question can be divided

into a set of sub-questions, which are answered in each section of this chapter. In this chapter, we

develop and present the overall structure of the DQ evaluation framework (section 3.1). We render

the overall framework structure and relationships between data source, data object, data quality, a

data consumer, and application context. The developed hierarchical DQ metrics organization facil-

itates adding new metrics and, therefore, taking into account data user needs. Section 3.2 presents

the knowledge graph concept that builds up a solid foundation for the framework development and

its implementation in applications by creating a collaboration between such framework components

as DQ metrics selection and metrics integration calculus. In addition, the knowledge graph em-

ployment enables knowledge accumulation and facilitates framework adoption by new applications.

In section 3.3, we present our knowledge analysis of sensors that are typically built into modern

mobile devices. This analysis allowed us to classify popular sensors from the quality perspective and

resulted in developing sensors quality knowledge base.

36



CHAPTER 3. DQ EVALUATION FRAMEWORK DESIGN 37

Figure 3.1: The overall structure of the integral data quality and security evaluation framework

3.1 Proposed Data Quality Evaluation Framework Architecture

In this section, we investigate the relationship between the conventional data quality evaluation

and security evaluation components. This section addresses the question: “How to design the DQ

evaluation framework in such a way that it can be easily adjusted and expanded for new applica-

tions?”.
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The integral framework for data quality and security evaluation includes the following components:

create the list of the initial data quality and security metrics, tools for these metrics acquisition,

and metrics integration calculus methods that allow consideration of an application context (see

figure 3.1). As we rendered in the previous section, we developed a multilevel hierarchical structure

of the metrics organization (see figure 3.2). This type of metrics organization facilitates framework

modifications and adjustments in order to employ it in the new application domains.

The tree leaves of the metrics hierarchy represent the metrics of the first order. All other metrics

of higher order are composed from the metrics of the previous layer (lower order metrics). This

design allows us to employ the “divide and conquer” strategy, in which each branch of the hierarchy

corresponds to one of the DQ components. In this approach, each DQ component can be calculated

separately and then integrated into the unified overall DQ score. It also enables employing various

(non-heterogeneous) calculi.

This approach to the metrics organization and DQ evaluation facilitates the DQ calculus adjustment

by changing the corresponding branches. It enables the framework adaption for the new application

context by including new metrics representing the data consumer’s needs.

The metric hierarchical structure can be extended either horizontally or vertically. The horizontal

metric hierarchy reflects adding new metric branches, groups, and types. This extension facilitates

taking into consideration new applications. The vertical extension adds new metrics to the existing

metric branches. This type of hierarchy extension allows taking into account new first-order metrics

and calculating new higher order metrics. Adding of new low-order metrics makes our DQ calculus

even more comprehensive.

Figure 3.2 presents a higher level organization of the metrics used in the framework for DQ evalu-

ation in mobile devices and sensor networks. We classify DQ calculus or metrics?? in two major

groups: Data Security and Data Correctness. Each of these groups consists of other lower level

elements and represents a branch in a hierarchical structure of the DQ evaluation.
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Figure 3.2: Data Quality overall hierarchical structure. Green colored metrics belong to conventional DQ
group, yellow colored belong to data availability, red colored belong to data integrity, and blue colored metric
belong to data confidentiality group.
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Data Correctness component reflects the data source’s physical parameters and characteristics, such

as accuracy, noise, consistency, resolution, etc. Data Security component integrates data availabil-

ity, data integrity, and data confidentiality. Data integrity, in its turn, merges data integrity of the

source and data integrity of the communication channels. In addition, components of one branch

(i.e., data security) may influence elements of other branches (i.e., data correctness). Data source

integrity takes into account various parameters of the data source that influence data integrity in

multiple ways.

Data delay (freshness) and time resolution are related to the sensor’s data quality metrics, but

also represents the data availability. Data delay, to some degree, reflects data freshness. However,

freshness is a broader concept than data delay. Data delay describes the latency of data delivery

as it deals with short time periods, while data freshness may be represented by years.

In the developed framework, we consider sensor accuracy, noise level, and consistency as basic (first-

order) metrics for the data correctness calculation. Noise (e.g., the RMS noise of an accelerometer) is

calculated based on the actually gathered data. The real noise value is scaled between its maximum

and minimum values, which are defined by a data consumer. After scaling, the noise is represented

with a dimensionless value that can take values in the range from zero (minimum noise value) to

100 points (if it is on or above the maximum allowed noise value). We apply this type of scaling

to all metrics in this branch. Consistency represents the number of records that are missing. If

consistency equals 100 points, all records are present. Zero points of the consistency reflects that the

maximum amount (a user also defines that) of missing records is reached. Consistency is important

for the decision-making process because various decision-making algorithms may tolerate various

rates of missing data.

Time resolution reflects how often data can be acquired. It is similar to the “data delay” metric,

but it describes “latency” within a data object if the data object represents a piece of time series

data. Basically, data delay and data time resolution may be represented as subcategories of the

data freshness.
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While our multilevel metrics hierarchy enables framework extendability, it also has to be supported

by the implementation platform. In addition, it has to be able to employ heterogeneous calculi and

facilitate effortless framework extension. Also, the implementation platform has to allow taking

into account an application context and choosing those metrics (and their integration calculus) that

satisfies data consumer needs.

It is a very challenging task to find or develop the framework implementation that would satisfy

our demanding and specific requirements. Fortunately, a knowledge graph concept satisfies all our

requirements [71], which is also one of the novelties in this research. The knowledge graph allows

merging all framework components into the complete solution. The absence of a fixed schema

gives the required flexibility, merges such framework’s components as metrics selection and their

integration calculus, and allows taking into consideration the application context. The additional

benefit from the knowledge graph employment is knowledge accumulation.

The knowledge accumulation works on two levels. On the first level of knowledge accumulation, the

knowledge graph acts as the database. It means that each time the framework does any evaluation,

this evaluation may be stored in the knowledge graph and reused later if needed.

On the second level of knowledge accumulation, the framework evolves with each new application.

To modify the framework for the new application, we need to add a new application context, new

relevant DQ metrics, and metrics integration methods. The nature of the knowledge graph (see

section 3.2) allows creating a connection between different types of data and their entities. A new

application context adds new physical and logical entities, which is a knowledge accumulation.

3.2 Developed Methodology for Knowledge Graph Employment

in Data Quality Evaluation

In this section, we answer three questions:
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Figure 3.3: “Triplet” is the basic unit of a knowledge graph. a) Generic example. b), c) samples from the
framework’s knowledge graph.

• Are there any ways to connect DQ and security metrics, their integration methods, their

calculus implementation, and user context?

• Can a knowledge graph concept be used to unite all framework components?

• How can we enable a knowledge accumulation in the DQ evaluation framework?

This section presents the architecture of the knowledge graph and describes its role in the overall

DQ evaluation. Since a knowledge graph does not have a fixed schema, its architecture can be

defined by its vocabulary. The basic unit of the developed knowledge graph is a “triplet”. A triplet

consists of a “subject”, a “relation”, and an “object”. “Relation” connects “subject” and “object”

(see figure 3.3).

“Object” and “subject” are relative concepts, where subject points to an object. Further, we refer to

“object” and “subject” as “entity”. Each entity has to have its unique ID, while all other property

fields are optional. If a property points to another entity, this property is a “relation”. If a property

takes a single value (can be numerical, alphabetical, or both), it is an attribute. For example,

in statements “smartphone - contain - location sensor” and “smartphone - has - security level”,

“smartphone” is a subject (an entity), “contain” and “has” are relations (properties), and “location

sensor” and “security level” are objects (other entities/attributes). However, in the statement
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Figure 3.4: The knowledge graph concept representation as a synergy between data source and DQ evalua-
tion. It demonstrates knowledge accumulation and the relationship between data collection DQ evaluation.
Orange circles correspond to physical entities, pink circles represent logical entities, entities related to se-
curity are presented with white circles, data objects are represented with blue circles, and green circles
correspond to DQ related entities.
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“Location sensor belongs to the smartphone”, “location sensor” is a subject, “smartphone” is an

object, and “belongs to” is a relation (see figure 3.3-c). In a statement “security level - based on

- app security, sensor security, and device security”, “security level” is a subject, “based on” is a

relation, and “app security”, “sensor security”, and “device security” are objects.

The knowledge graph concept includes data source models, calculus methods, and data objects

along with their data characteristics, such as DQ estimates. Figure 3.4 presents an example of

a knowledge graph, where blue entities correspond to a model description of a smartphone, that

may have a security level property and a location sensor. The location sensor supports “Global

Positioning System” (GPS) and “BeiDou Navigation Satellite System” (BDS) and also has an

accuracy property. Pink entities represent two applications that require a DQ evaluation. For

example, “DQ secure location” is based on the location sensor accuracy and a smartphone security

level. To integrate these metrics into a one DQ value, a “calculus #2” (for example, an expert

system, a function, a weighted sum, etc.) has to be applied. “DQ simple location” task needs a

DQ estimate that is based only on the location sensor accuracy and is calculated through “calculus

#1”. Green entities/attributes represent a particular smartphone (and some data from it), which

model is described by entities of a blue color. This particular smartphone has a location data

object (DO) (location coordinates), that has “time”, “accuracy”, and “DQ” properties (relations).

“Accuracy” and “DQ” entities have “used” property that points to a corresponding logical entity

that was used to create (calculate, estimate, etc.) this particular entity. For example, “DQ =

Medium” has a time when it was calculated (11/11/2018 at 12:33:45) and that it was calculated for

“DQ secure location”, which is based on a device security level and location sensor accuracy. Since

“DQ secure location” requires the security level and location accuracy, these parameters were also

calculated, and corresponding entities were created (green color in figure 3.4). Each time a data

object is requested, or a DQ estimate is needed, a new piece of knowledge is created and is stored

in the knowledge graph in the form of a new knowledge graph entity.

The vocabulary specifies all possible property fields, their types, and their relations. Since new

properties can be easily added to the vocabulary, the knowledge graph can be adopted by new
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applications without significant efforts. Some of the terms from our vocabulary may correspond to

terms in other popular knowledge graph vocabularies, such as DBPedia [37] or Google Knowledge

Graph [47]. In this case, we use the term “same as” that allows re-utilizing other vocabularies and

simplifies the migration process.

3.2.1 Knowledge Graph Vocabulary Development

While the vocabulary can be easily extended, the initial set of the vocabulary entries is presented

below. Vocabulary is a collection of entities. Since DQ evaluation is very often associated with

sensor data and the Internet of Things (IoT), we heavily rely on an IoT vocabulary developed by

schema.org and W3 [115]. However, due to some specifics of DQ evaluation, we introduce new

entity types and relations. The entity hierarchy supports the parent-child (inheritance) concept.

All properties except “uid” are optional. The basic type in our knowledge graph is “Thing”. All

other entities inherit properties from “Thing” and extend them with specific ones. Further, we use

two basic types of entities: physical and logical. The physical entity represents a material object

or a device, and the logical entity describes a concept that does not have a physical representation.

Initial entities and their properties are presented in Table 3.1.

3.2.2 Demonstration of Knowledge Graph Role in Data Quality Evaluation and

Knowledge Accumulation

To facilitate DQ evaluation, we developed an initial set of various calculi that can be used for

DQ evaluation in a wide application range. When a user requests a new DO, our framework

augments it with a DQ estimate. The requested DO (and its DQ value) form a new entity in the

knowledge graph. Intermediate calculations are also stored in a form of knowledge graph entities,

that allows using them in other DQ estimations and improving DQ evaluation efficiency. For

example, if one user requested a DO with DQ evaluation and this DQ based on the security level

of a smartphone, the security level calculated in the process is added to the knowledge graph as a
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Table 3.1: Initial vocabulary of the presented knowledge graph. * - denotes mandatory fields. ** - denotes
logical entity. *** - denotes physical entity.

Thing Entity

uid* the unique identifier of an entity/value

type a type of an entity/attribute

parent specifies a parent entity type. “null” or missing property indicates that the parent type is a “thing”.

description human-readable description. May be empty.

belongs to represent “back” relation. Points to an entity that has this entity as a property.

same as present a set of links on the entities from other vocabularies that contain similar entity.

time date and time when this entity was created.

Logical Entity**

based on specifies a set of other “logical” entities on which this entity is based on

has a set of “logical” entities that this entity has

value a set of “value” entities

apply points on a “calculus” entity

Device Entity***

contain a set of “device” entities that this entity has built-in

has a set of “logical” entities that this entity has

Sensor Entity

support a set of “logical” entities that specify what protocols this sensor supports

Accuracy Entity**

Security level Entity**

DQ Entity**

used points on DQ application entity

DQ application Entity**

new entity/attribute.

Figure 3.5 presents an example of DQ evaluation along with knowledge accumulation. A user

requests a smartphone location for an application where the location has to be trustworthy. In this

case, a “DQ secure location” entity is called, which is based on “smartphone.security level” and

“smartphone.location sensor.accuracy” entities. An “expert system” #2 (ES #2) has to be used

to calculate DQ of the location DO for that particular application, The security level is based on

“app security” and “device security”. It is calculated using the “ES #1”. Similarly, “accuracy” is

based on the accuracy of “GPS” and “GLONASS” and takes the best accuracy. Once the security

level, accuracy, and DQ are calculated, new entities/attributes are created (see figure 3.5 pink-

colored entities). Security level got value “8” and time “01/01/2019 08:31:33”, “accuracy” got

value “+/- 1m” and time “01/01/2019 08:31:33”, and smartphone entity got a new “last location”

property. “Last location” has attributes “time” and “value” and property “DQ”, that also has

property/relation “used”. Relation “used” points on the application, it was evaluated for. Let us
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Figure 3.5: Example of DQ evaluation and knowledge accumulation. Blue and green entities represent new
knowledge.

assume that there was a previous request of the secure location at “01/01/2019 08:21:54”. This

request also created a new knowledge graph entities (see figure 3.5 blue-colored entities). Entity

“location” has such properties/relations as “belongs to” and “DQ”. A new location entity has been

added to the smartphone entity via “has” property. New entities that have been generated and

added to the knowledge graph represent knowledge accumulation.

Framework flexibility and scalability are additional benefits of the knowledge graph employment.

For example, we do not need to know in advance what protocols the location sensor supports. We

just need to specify that DQ evaluation for this particular task is based on location sensor accuracy

and smartphone security level. Further, each instance of a smartphone entity may support various

location protocols, as well as security level may be based on various specific parameters. Our

framework follows the chain of relations (see figure 3.6), returns the result, and create new entities.

In this particular example, we use simple relations and simple calculi, while in real life, special rules

that verify data freshness have to be applied.
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Figure 3.6: Relations chain in the knowledge graph

Because all knowledge is represented with entities and their relations, we can extend our framework

to cover new applications with a little effort. Since we use a standardized approach, the learning

curve is very shallow. To start using the framework, a user need to specify DQ calculi and depen-

dencies. The user can migrate from older API to ours without significant efforts and, in return,

will gain DQ estimates. The more users and the more frequently they use our framework, the more

data accumulates in a knowledge graph, which makes it more generic and robust.

3.3 Created Knowledge Base of Mobile Devices’ Sensors Quality

In this section, we present our research on the quality of data coming from sensors that are built

into modern Android OS smartphones. Our investigation resulted in building a knowledge base

that can be later utilized in various applications. While we are developing a generic knowledge

base approach, previous studies and tools were highly specialized, with a very limited number of
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sensors and sensor types involved. A. Das et al. [31], for example, collected sensor data in real-

time under different conditions by creating a web application and storing the data on a university

server. Unfortunately, since web applications can access only an accelerometer and a gyroscope

sensor of a mobile device, this application can be used only with two mobile sensors. K. Hilgenberg

[55] develops a configurable and device-independent mobile sensor data collection framework that

provides sensor readings in real-time. Z. Ma et al. [149] compared accelerometers, gyroscopes,

and magnetometers based on properties of sensors such as sensitivity, noise, frequency, and range.

Q. Mourcou et al. [93] evaluated mobile device sensors for clinical motion research. Shala et

al. [120] compared the accuracy of mobile device sensors for indoor positioning scenarios. Unlike the

aforementioned researches, we develop a service that is applicable to a wide range of applications

and embedded sensors. In contrast to the researches and frameworks mentioned above, in our

knowledge base, we consider multiple sensor quality metrics, integrate them into the overall quality

score, classify sensors into two quality groups using machine learning techniques, and provide

information about sensor quality to users through the developed Android OS application.

3.3.1 Sensor Data Collection and Processing Methodology

This knowledge base focused on the most common sensors that are embedded in modern mobile

devices. To obtain data about these sensors, we searched public repositories such as GSMArena [52]

that allowed us to acquire a comprehensive list of sensors and their types. Also, we investigated

sensor characteristics that can be found in the manufacturers’ data-sheets and online [5, 38, 42, 43,

101]. The data collection workflow is presented in figure 3.7.

We made the collected data publicly available, and we encourage the community to use it [32]. We

further analyzed the original data set and identified the attributes related to the selected sensors.

We normalized sensor characteristics in the range between “-1” and “1”. In the case of sensor

quality metrics that have a positive influence on the overall sensor quality score, “-1” represents

the worst case, “0” is the average, and “1” is the best case. For those sensor quality metrics that
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Figure 3.7: Data Collection and Processing Workflow

have a negative influence on overall sensor quality score, the scale is inverted, where “-1” represents

the best case, and “1” is the worst case. This normalization facilitates further comparison of sensors

and their quality evaluation.

3.3.2 Mobile Sensor Data Collection

Our data collection contains information about sensors embedded in 9443 devices, including An-

droid OS-based smartphones, wearable devices, and tablets. This data collection includes other

attributes related to mobile devices such as type, size, resolution, chipset, camera, sensors, per-

formance. In total, we have about 58 attributes for these devices produced by over a hundred

manufacturers.

The current collection contains data on 19 sensor types [97] including accelerometer, barometer,

gesture, humidity [35], face id and fingerprint sensor (rear, side, under display and in front), tem-
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Table 3.2: Sensors and the characteristics they were evaluated upon

Sensor Type Characteristics Application Purpose Ex-
amples

Accelerometer Sensitivity, Non-
linearity,Noise Density

Inclination measurement, vi-
bration evaluation

Gyroscope Sensitivity, Noise Density,
Cross-axis Sensitivity, Non-
linearity

Step counting, activity recog-
nition

Proximity Resolution, Range, Absolute
Response

Obstacles detection

Barometer Lowest Measurement in
range, Highest Measurement
in range, Absolute Accuracy,
Noise(RMS)

Altitude measurement

Compass Non-linearity, Sensitivity,
Noise(RMS), Heading Accu-
racy, Magnetic Field Range,
Resolution

Navigation

Table 3.3: Statistical analysis for the accelerometer sensor type

Stat Sensitivity Non-linearity Noise Density

Min 16 0.10 75

Max 17039 2.00 800

Mean 6033.91 0.61 308.08

SD 7434.01 0.39 183.23

perature, ambient light, gyroscope, heart rate, compass, UV [7], iris scanner, SpO2 [104], proximity,

and color spectrum sensors. In this research, we selected and further analyzed the five most pop-

ular sensor types: 52 accelerometers brands, 14 gyroscopes brands, 20 proximity sensor brands,

five barometers, and 16 compass sensors brands. The selected sensors and their characteristics

that are chosen for further analysis are given in Table 3.2. For each of the chosen sensor types,

we selected sensor parameters that can be accessed through the standard Android OS API. These

parameter’s values are used for the sensors’ quality evaluation. The selected sensor parameters and

the results of their statistical analysis are presented in Table 3.3 for accelerometer sensors, Table

3.4 for gyroscope sensors, Table 3.5 for proximity sensors, Table 3.6 for barometer, and Table 3.7

for magnetometer sensor.
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Table 3.4: Statistical analysis for the gyroscope sensor type

Stat Sensitivity
Noise
Density

Cross-axis
sensitivity

Non
linearity

Min 33.8 0.0038 1.0 0.10

Max 131.2 0.030 2.0 0.20

Mean 114.55 0.0117 1.66 0.142

SD 24.62 0.008345 0.32025 0.036

Table 3.5: Statistical analysis for the proximity sensor type

Stat Resolution Range Absolute Response

Min 8.00 50.00 100.00

Max 20.00 100.00 165.00

Mean 12.91 93.75 131.42

SD 3.43 11.023 17.54

3.3.3 Mobile Sensor Quality Analysis

In our further analysis, we employed the K-means method to classify all sensors of each type

into groups based on their quality. The K-means clustering algorithm is chosen as it is relatively

computationally inexpensive and, considering small quality metrics dimensionality, provides good

cluster positioning [112]. This algorithm allows to partition a collection of instances into k different

subsets employing a recursive technique. Since this algorithm requires choosing the initial (start)

point of cluster centroids, there are several approaches to choose them. In our research, we employed

the K-means++ algorithm, which uses a heuristic to find centroid seeds for k-means clustering,

and take advantage of our sensor quality metrics analysis and scaling. According to Arthur and

Vassilvitskii [9], K-means++ improves the efficiency and effectiveness of Lloyd’s algorithm.

The workflow for quality evaluation is presented in figure 3.8. Since not all sensor parameters

equally affect the overall sensor quality, in the quality evaluation calculus, weights to each of the

sensor parameters can be adjusted. In this particular implementation, we employed the mean value

of all metrics. One can see that metrics normalization in the range from “-1” to “1” facilitates

the overall sensor quality evaluation since only weights have to be adjusted based on the metric

importance. The overall quality indicators were calculated for each sensor type, and the results are
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Table 3.6: Statistical analysis for the barometer sensor type

Stat
Lowest
Measurement

Highest
Measurement

Absolute Accuracy Noise

Min 260.00 1100.00 0.50 0.01

Max 300.00 1260.00 2.00 1.30

Mean 284.00 1194.00 1.30 0.28

SD 21.90 85.90 0.67 0.56

Table 3.7: Statistical analysis for the compass sensor type

Stat Non-
linearity

Sensiti-vity Noise Heading
Accuracy

Magnetic
Field
Range

Resolu-tion

Min 0.100 0.008 0.150 1.0 800.00 8.0

Max 2.000 1.000 1.0 2.5 7200.00 16.00

Mean 0.835 0.243 0.5437 1.833 3202.40 14.466

SD 0.4027 0.242 0.2679 0.434 2042.26 2.1561

Figure 3.8: Quality Score Evaluation Workflow

made available online [32] as well.
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Table 3.8: Sensor clustering based on sensor quality metrics. Acc.- accelerometer, Gyro. - gyroscope, Prox.
- proximity, Bar. - barometer, Comp. - compass.

Sensor Type Acc. Gyro. Prox. Bar. Comp.

Total sensor models 52 14 19 5 16

Number of clusters 2 2 2 2 2

Cluster 1 (Good) (# of sensors) 17 2 6 2 11

Cluster 2 (Bad) (# of sensors) 35 12 13 3 5

Table 3.9: Device classification based on sensors quality. Acc.- accelerometer, Gyro. - gyroscope, Prox. -
proximity, Bar. - barometer, Comp. - compass.

Sensor type Acc. Gyro. Prox. Bar. Comp.

Cluster 0 (No data) 449 142 315 15 128

Cluster 1 (Good) 119 89 34 2 88

Cluster 2 (Bad) 343 24 18 20 79

Table 3.8 presents the results of the clustering of the accelerometers, gyroscopes, proximity sensors,

magnetometers, and barometers based on their sensitivity, non-linearity, and noise values. Since

in the developed knowledge base each sensor type has its own table, we do not include sensor type

in the table. Table 3.9 presents the results of our device classification based on their embedded

sensors’ quality. All devices were clustered based on one of the five described sensors; for example,

there are 119 devices with an accelerometer sensor of good quality and 343 with a poor quality

accelerometer.

3.3.4 Knowledge Base Employment

The created knowledge base can be used in a variety of domains, for example, in the crowd-

sensing, in which it will allow choosing and fusing the best sensor sources for particular application

design. Another example is a multicriteria optimization of sensor systems and networks. One of the

traditional ways to improve the overall data quality in SCADA and other data collection systems

is fusing numerous data streams that are originated from multiple networked sensor platforms.

Various methods of sensor networks optimization have been proposed [13,99,114]. These methods

could be improved if sensor quality is evaluated, and these estimates are utilized in the sensor
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network design and optimization with the goal to improve the overall quality of the collected sensor

data [67]. In the section 5.10.1, we present a tool that implements this knowledge base on Android

OS smartphones.

3.4 Conclusions

In response to the major research question posed in this chapter “How to integrate DQ evalua-

tion into a synergetic DQ and security evaluation framework?”, we achieved the following

major research results, which are further described in details:

• We studied the variety of data quality and security metrics and developed a multilevel hi-

erarchical knowledge structure that facilitates the framework development and adaptation

to new applications;

• We investigated the knowledge graph concept and developed the methodology of its em-

ployment as the novel implementation platform of our DQ evaluation framework;

• We demonstrated an application of the developed novel methodology and applied it in the

case DQ evaluation of the sensor originated data in crowd-sensing applications.

• We formulated an initial knowledge graph vocabulary, which facilitates the framework

usage in crowd-sensing tasks for evaluation sensor originated data.

• We investigated and analyzed sensors incorporated in the modern mobile devices, produced

the comprehensive knowledge base and made it available for community use.

We developed a novel systematic pipeline for the integral DQ and security evaluation framework.

We also formed the comprehensive, multilevel hierarchical structure of the DQ and security metrics.

This structure allows framework extension to new applications and inclusion of new metrics without

severe framework modification. The framework integrates metrics from the two major metrics



CHAPTER 3. DQ EVALUATION FRAMEWORK DESIGN 56

group: data correctness and data security. We also developed the approach to incorporating the

security and privacy aspects into the conventional DQ evaluation pipeline.

The proposed framework includes several vital components: metrics selection, metrics integration

calculus, and application context consideration. We formed and examined a novel idea of a knowl-

edge graph employment to unite all these components in the framework. As we rendered in this

section, the knowledge graph is a very effective way of merging all the framework’s components.

The knowledge graph employment is also the answer to the question of how to incorporate security

and privacy aspects into the conventional DQ evaluation pipeline.

We harnessed the adaptable schema of the knowledge graph to support the overall framework

flexibility. We can adapt the framework to new user needs by augmenting the knowledge graph’s

vocabulary with new entities that are relevant to the application context. In addition, due to the

knowledge graph employment, we achieved the utilization of the versatile calculi for the DQ eval-

uation. In the future, we can automate the selection of the metrics integration calculus depending

on the application context.

We also achieved knowledge accumulation on two levels. On the first level of knowledge accumu-

lation, we employed the knowledge graph to store data objects. Saving data objects along with

their DQ scores in the knowledge graph enables knowledge accumulation and improves the overall

framework efficiency. The second level is reached when the framework is used in new application

domains. In this case, we extend the knowledge graph vocabulary that later can be used in similar

applications.

In addition, to provide the sensor comparison and recommendations on the sensor applications

based on their quality, we created and made available to the community the knowledge base of a

wide range of sensors embedded in various mobile devices and their characteristics. This research

on sensor quality facilitates closer collaboration between sensor systems and network developers

and sensor users as well as mobile device owners. The sensor analysis reveals that while the

quality characteristics of embedded sensors are lower than the specialized individually calibrated
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instruments in professional use, they may vary significantly. Based on the analysis, all sensors were

classified into good and poor, and the integral quality indicator was calculated for each device.

The presented framework is a “skeleton” that later can be easily expanded and modified for various

new applications.



Chapter 4

Developed Techniques for

Incorporating Security and Privacy

into Data Quality Evaluation

Framework

In this chapter, we address the problem of ”How to develop effective and efficient secu-

rity and privacy evaluation methods targeted for their implementation on resource-

constrained mobile devices and incorporate them into the overall DQ evaluation pipeline?”.

This research question is subdivided into several questions that are answered in each section of this

chapter. Section 4.1 presents the developed calculus for evaluating each security component, such

as data integrity, data privacy, and data availability. In sections 4.2 - 4.5, we demonstrate an ap-

plication of the developed methods in the case of the novel violations of the security and privacy in

the mobile devices. We present a novel attack on user privacy, describe it and derive a formalized

model of this threat, investigate attack models and scenarios, and conduct an empirical study of

this attack and its detection with the help of DQ metrics. We describe an application of machine

58
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learning techniques and artificial neural networks models to develop attack classifiers based on DQ

technological signals in mobile devices.

4.1 Data Security Evaluation Components Formalization

In our systematic approach to DQ evaluation, the data security component plays an essential role

in the overall DQ evaluation [26, 27, 69, 72, 76, 78]. This section presents a detailed description of

the structure of the data security evaluation component, we developed, such as the metrics and

their hierarchy, the metrics integration calculus, and its implementation.

The proposed data security model has a hierarchical structure that is composed by the data avail-

ability, data integrity, and data confidentiality. The data integrity component includes data in-

tegrity of the source and data integrity of the communication channels. Employment of the knowl-

edge graph allows investigating the interrelationship between components of different branches (i.e.,

integrity and confidentiality branches), which makes the developed model more complete.

4.1.1 Data Integrity Metrics

“Data source integrity” takes into account various parameters of the data source (i.e., sensor plat-

form) that influence the overall data integrity in multiple ways [63,70]. Table 4.1 presents calculus

formulae that are used for data security calculation.

Since our implementation focuses on Android OS-based devices, “data source integrity” incor-

porates such hierarchy branches as application security, a device feature security, and a sensor

integrity. Sensor integrity takes into account those smartphone parameters that may influence the

trustworthiness of the data that comes from a smartphone’s sensors. This component includes

such parameters as bootloader status, “root” status, developer menu status, and device lock status

along with the type of the locking method (e.g., password, graphical pattern, fingerprint, facial
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identification, etc.). Unlocked bootloader status endangers data integrity by allowing “rooting” a

device or installing a modified firmware. The formula 4.1 (see table 4.1) calculates the probability

that a device will have an unlocked bootloader.

Root access represents an even more significant threat to data integrity. An application that has

super-user privileges (e.g., “root”) can modify any data on a smartphone. For example, data from

such motion sensors as an accelerometer and a gyroscope can be modified through editing the

corresponding files in the “/dev/input/” directory. This directory is accessible only by a user that

has super-user privileges. The formula 4.2 (see table 4.1) calculates the probability that a device

will have “root”. This formula reflects the “unlocked bootloader” requirement for a smartphone

“root”. In other words, to root a smartphone, its user has to unlock the bootloader at first.

“Developer options” menu can be used to temper the position sensor data, for example, to spoof

location. In addition, the “developer options menu” has to be enabled to turn on Android Debug

Bridge (ADB), which allows spoofing data from such sensors as touch screen [92]. The formula 4.3

(see table 4.1) calculates the probability that a device has an enabled developer options menu.

“Device lock” (i.e., screen lock) prevents unauthorized access to the device. An unauthorized user

may modify or spoof data collected by a smartphone’s sensors without legitimate user awareness.

An intruder may gain access to the unprotected device, install malicious malware, spyware, or

manually edit and fake data. Moreover, these actions may go unnoticed, and the device will stay

compromised for a more extended period of time. The formula 4.4 (see table 4.1) calculates the

probability that a device does not have a screen lock mechanism enabled.

Formula 4.5 (see table 4.1) integrates together all metrics in this “sensor integrity” sub-branch.

“Devices feature security” (see figure 3.2) incorporates those parameters of a device that are re-

lated to the firmware and hardware. The latest versions of Android OS likely have fewer known

vulnerabilities than older versions, and it is important to keep the devices’ OS version updated.

Some vendors, for example, Google and Samsung, periodically release patches that fix discovered
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vulnerabilities. The latest security patch that is installed on a device makes a device more secure

and increases the overall security level. The device model, along with an OS version and installed

security patches, can provide information about device security in terms of discovered vulnerabil-

ities. To calculate these scores, formulas 4.6, 4.7, and 4.8 are used (see table 4.1). Formula 4.9

(see table 4.1) integrates together metrics in this sub-branch and produces “firmware score” of the

device.

The “application security” branch represents threats to the data integrity and data privacy brought

by installed applications. This branch is also contributing to the data confidentiality evaluation

as well as to the data availability evaluation. “Application security” integrates metrics that are

related to threats that are coming from the installed applications. These metrics include allowing

application installation from unknown sources, a number of the blacklisted applications, a num-

ber of potentially harmful applications, and the dangerous application permission score, which is

calculated through the permission analysis of all applications installed on the smartphone.

Allowing the application installation from unknown sources increases the risks of malware installa-

tion, such as spyware, ransomware, botnet-ware, dedicated software that modifies sensor data, etc.

These malware pieces have different goals and have to be taken into account in different branches of

security evaluation. Malware that alters or fakes sensor data influences on “data integrity” branch.

To calculate the “unknown sources” score, the formula 4.10 is used (see table 4.1).

Sometimes, an application may be included in the so-called blacklist based on various reasons.

For example, a developer of an application might have a bad reputation; the application is over-

privileged, or other reasons. An over-privileged application is potentially dangerous since it has

already been granted a lot of permissions, which are not used yet. It may be unclear why it needs

these many permissions and how they will be used in the future. Later, this application can be

updated, and all these granted permissions may be used with malicious intentions. To calculate

the “black listed app score”, formula 4.11 is used (see table 4.1).

While the “potentially harmful applications” score has a meaning similar to the “number of black-
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listed application”, it is determined differently. To decide if an application is potentially harmful

or not, the safety-net library from Google, which is a part of Google Play Protect, is used [6].

Potentially harmful applications are those applications that may harm your device or do something

undesirable with the data on your device. This library scans [50] all installed application and is

able to detect such application type as:

• Backdoors: Apps that let hackers control your device, giving them an unauthorized access to

your data.

• Billing fraud: Apps that charge you in an intentionally misleading way, like premium SMS

scams or call scams.

• Spyware: Apps that collect personal information from your device without consent.

• Hostile Downloads: Apps that download harmful programs, often through bundling with

another program.

• Trojan Apps: Apps that appear benign (e.g., a game that claims only to be a game) but

actually perform undesirable actions.

Formula 4.12 calculates the “potentially dangerous score” of the device.

The “dangerous application permissions” metric (see figure 3.2) may employ machine learning

techniques to analyze the permission distribution on the device and evaluate the application security

level.

All these metrics are integrated into the “application security score” using an expert system and

fuzzy rules (see formula 4.13 in table 4.1) and are submitted to the cloud service. This cloud service

keeps track of the device integrity score. Analytics on the cloud side include building a trend of

the integrity score change and score comparison with other similar devices. The cloud employment

allows analytics extension over time without a significant modification on the client-side. The

mobile client may have thousands of instances, and their modification may introduce a challenge,
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while the cloud service has only one instance and totally under a developer’s control. The expert

system takes these cloud service analytics as the input, which creates a recurrent architecture of the

data integrity evaluation. Expert system employment allows handling partial metrics availability

and evaluating data integrity even when only a few parameters are available.

Data integrity of the communication channels takes into account such parameters as a type of com-

munication channel encryption, data transfer protocols, and data nature. The type of encryption

describes how long it may take to break encryption and modify data. If it is possible to modify

data without decryption, what are the costs of breaking encryption in the computational and eco-

nomic sense? Data transfer protocols indicate if they have a mechanism to prevent unauthorized

data modification and how difficult it is to do that. This parameter, to some degree, is related

to the channel encryption since some encryption types have data integrity protection mechanisms.

Data nature (or origin) may influence data integrity as well. Sometimes it is pointless to modify or

fake some data objects due to the nature of the data. Formula 4.14 (see table 4.1) calculates data

integrity based on the metrics of this sub-branch.

4.1.2 Data Confidentiality Metrics

Data privacy estimates the level of data leakage threat and consists of two branches: system privacy

and network privacy. System privacy evaluation takes into account issues related to the malware

presence and partially is derived from the “application security” branch of the “data integrity

evaluation” component. System privacy considers such threats as spy-ware and the “colluded

applications” attack, which is a more sophisticated type of a spy-ware. “Colluded applications”

attack detection involves various techniques that are available on a particular piece of hardware. In

addition, system privacy may take into consideration the probabilities of installing malware based

on system parameters received from the “data integrity” component.

Formula 4.16 (see table 4.1) computes the system privacy of a device. PMal.GP lay - is the probability

that a user installed a malicious application from Google Play Store. This probability may be



CHAPTER 4. SECURITY AND PRIVACY EVALUATION 64

calculated as a ratio of detected malicious applications on the Google Play Store to all applications

in Google Play. For example, in September 2018, 145 malicious apps were detected in Google

Play [36] among 2600000 total applications [125]. In this case, the probability of getting malicious

application from Google Play equals to PMal.GP lay = 145/2600000 = 5.58× 10−5

PMal.Unkn.src is the probability that a user installed a malicious application from an unknown

(unverified) source. This probability may be calculated as a ratio of the number of all detected

malware to the number of all Android OS applications. In addition, we have to consider that

application installation from unknown sources requires the corresponding system setting.

PCol.app is the probability that a user has installed one of the applications that are capable of

collusion. This probability can be calculated as a ratio of the number of known colluded apps to

the number of all applications. Since the “application collusion” requires two or more applications,

this ratio has to be squared.

In addition, the system privacy is also affected by other security mechanisms that prevent an

unauthorized access to the device. Root access and an absence of the device lock may negatively

affect the system privacy of a device. Root access may lead to cases when a software that has

superuser privileges accesses private data and transmits it to the third parties. It is similar to

spyware, but a malware with superuser privileges may be much more harmful. The disabled

device lock may simply lead to a case, when an unauthorized user gains a physical access to

a device and may access all data they want, such as photo-image gallery, location history, text

messages, passwords (if they are stored in non-encrypted form), etc. Aforementioned parameters

are important to system security evaluation.

The network privacy considers two major parameters such as a channel encryption type and the

probability of correct identification of data endpoints (see formula 4.17 in table 4.1). In some

cases, it is crucial to keep data endpoints hidden. For example, TOR (The Onion Router) network

may hide data endpoints. However, due to a website fingerprinting, a user’s destination may be

revealed with some degree of confidence [121]. VPN services may conceal data points, as well. The
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importance of this metric is profoundly affected by the channel encryption type. If an attacker may

find out data endpoints from the traffic due to a weak transmission channel encryption, there is no

point in performing the fingerprinting attack. For example, HTTPS traffic is encrypted, but data

endpoints are open to anyone who sniffs the traffic.

4.1.3 Data Availability Metrics

Data availability is another important branch in data security evaluation. It also reflects the

reliability of a sensor platform. It considers the unavailability of the data due to various reasons,

mostly due to a malicious attack. This branch includes such metrics as a possibility that data is

not available, data delivery delay, and measurement’s time resolution.

Data may not be available because of various reasons, for instance, because of data was lost,

because of the ransomware, or because the sensor platform was infected with a specific malware

that transforms this sensor platform into a part of a botnet. Converting device into a part of a

botnet may lead to inaccessibility of a device’s resources or significant latency. Ransomware is a

type of malware that encrypts data on the device and requires a ransom to decrypt it back. Some

decryption keys may be obtained by reverse engineering and generated without paying a ransom; in

some cases, the ransom has to be paid; and sometimes, the key just does not exist or communication

with extortionists is lost, which leads to a very low probability of successful data decryption.

Data backups also influence “data availability”. In the case of ransomware and simple data loss,

data may be recovered from the backup, and the weight of the ransomware factor will be much

smaller.

However, data backup cannot resolve network-related issues. This metric is partially influenced by

the network confidentiality of the data confidentiality branch as well. If a network is broken, the

data availability level goes down; however, the confidentiality level of the network may go up. This

simple example demonstrates that we keep the conventional relationship between data availability
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and data confidentiality: if data is not available, its confidentiality is very high since nobody can

access it. “Network issues” metric is affected by three parameters: denial of service (DOS) attack,

accidental network issues, and botnet malware.

DOS attacks may partially affect or completely stop the functionality of the network. Moreover,

the “network issues” metric affects network confidentiality through this parameter.

Another parameter that affects the data availability from a network perspective is a “Bot Net

Malware” parameter. This type of malware converts a sensor platform into a part of a botnet

that may perform various malicious actions. The most popular goals of a botnet are: distributed

DOS (DDOS) attacks and mining crypto-currencies. Participating in a DDOS attack may reduce

network bandwidth for the actual data objects flow and decrease its data availability. Participating

in a distributed crypto-currency mining may consume too many computational resources of a sensor

platform and make the sensor-platforms inaccessible. It is also partially affected by the “application

security” of the data integrity branch. Since it is a malware, application security has a direct impact

on this aspect. This parameter can be estimated as a rare event probability as well, since converting

a mobile into a botnet part requires the concurrence of multiple events, such as an installation of the

particular type of malware, an absence of anti-malware software, third-party interest in performing

DDOS or mining crypto-currency, etc.

Accidental network issues are not directly related to data security but heavily affect it; that is why

we include it into the data availability. These issues include all problems with a network that has

a non-malicious origin, such as a power absence in transmitting equipment due to natural disasters

(earthquake, flood, etc.), time of network congestion due to some social event, etc. While some of

these events may be predicted to some degree (social event), others may have spontaneous character

and can be assessed only from the rare event probability perspective.

Formula 4.18 (see table 4.1) represents data unavailability as a simple sum of other probabilities

due to other probabilities, much less than one. Otherwise, it has to be divided by three.
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Since, data security is an integration of data confidentiality, integrity, and availability, formula 4.19

(see table 4.1) represents their integration through logical functions of an expert system.

Table 4.1: Data Security Metric Formulas. ∧
L

is metrics integration through an expert system

Metric and its descrip-

tion

Formula

Probability that device has

unlocked bootloader. Nu-

mOfUnlckd - number of

all devices in an organi-

zation that have unlocked

bootloader, and NumOfAl-

lUsers - a number of all

users in the organization

P (btldrUnlckd) =
NumOfUnlckd

NumOfAllUsers
(4.1)

Probability that device has

root access. NumOfRoot

- number of all devices in

an organization that have

a root access

P (root) = P (btldrUnlckd)× NumOfRoot

NumOfAllUsers
(4.2)

Continued on next page
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Table 4.1 – Continued from previous page

Metric and its descrip-

tion

Formula

Probability that device has

enabled developer options

menu. NumOfdevOptn -

number of all devices in an

organization that have an

enabled developer option

menu, SmplKoef - simplic-

ity coefficient, which re-

flects relative easiness of

enabling a developer op-

tion menu. This coeffi-

cient depends on the aver-

age technical experience of

organization members

P (devOptn) =
NumOfdevOptn

NumOfAllUsers
× SmplCoef (4.3)

Continued on next page
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Table 4.1 – Continued from previous page

Metric and its descrip-

tion

Formula

Probability that device has

no screen lock. NumOf-

scrnLck - number of all

devices in an organiza-

tion that have no a screen

lock, incnCoef - inconve-

nience coefficient, reflects

the inconvenience of using

a screen lock. For exam-

ple, screen pattern is more

convenient than password,

and fingerprint sensor is

more convenient than pat-

tern. This coefficient indi-

cates the likelihood that a

user will decide to turn of

the screen lock

P (scrnLck) =
NumOfscrnLck

NumOfAllUsers
× incnCoef (4.4)

Sensor security score

SensorSecurity = 4− P (btldrUnlckd)−

− P (root)− P (devOptn)− P (scrnLck)

(4.5)

Continued on next page
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Table 4.1 – Continued from previous page

Metric and its descrip-

tion

Formula

OS version score

V erScore =



0 if CurV er > V erThreshold

MaxV erScore−

−MaxV er − CurV er

if CurV er ≤ V erThreshold

(4.6)

Security patch score

PatchScore =



0 if CurV er > V erThreshold

MaxPatchScore−

−MaxV er − CurV er

if CurV er ≤ V erThreshold

(4.7)

Device model score

ModelScore =



0 if CurV er > V erThreshold

MaxV erScore−

−MaxV er − CurV er

if CurV er ≤ V erThreshold

(4.8)

Overall firmware score

FirmwareSecurity = V erScore+

+ PatchScore + ModelScore

(4.9)

Continued on next page
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Table 4.1 – Continued from previous page

Metric and its descrip-

tion

Formula

App unknown sources

score. NumOfUnkn -

number of all devices in

an organization that al-

lows unknown application

sources

UnknSrcScore =


0 if UnknSrc is ON

1− P (UnknSrc)

if UnknSrc is OFF

P (UnknSrc) =
NumOfUnkn

NumOfAllUsers

(4.10)

Black listed app score

BlkLstScore =



0 if Number ¿ Threshold

MaxScore−

− (Num− Threshold)

if Number ≤ Threshold

(4.11)

Dangerous permission uti-

lization score

PDanScore =



0 if Number ¿ Threshold

MaxScore− (Number−

− Threshold)

if Number ≤ Threshold

(4.12)

Application security score

AppSecScore = UnknSrcScore ∧
L
BlkLstScore ∧

L

∧
L
PDanScore ∧

L
PermScore

(4.13)

Continued on next page
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Table 4.1 – Continued from previous page

Metric and its descrip-

tion

Formula

Data integrity score

DataIntegrity = CloudScore ∧
L
SensorSecurity ∧

L

∧
L
AppSecScore ∧

L
DevSecurity ∧

L

∧
L
CommChannel

(4.14)

Spyware installation prob-

abilities. PMal.GP lay - is

the probability that a user

installed a malicious appli-

cation from Google Play

Store. PMal.Unkn.src - is the

probability that a user in-

stalled a malicious applica-

tion from an unknown (un-

verified) source. PCol.app

- is the probability that a

user installed one of the ap-

plication that is capable of

collusion.

PMal.GP lay =
Nmal.GP lay

NAll.GP lay

PMal.Unkn.src =
Nmal

NAll
× P (UnknSrc)

PCol.app =
Ncol

NAll

2
(4.15)

System privacy score

SystemPrivacyScore = 3− PMal.GP lay−

− PMal.Unkn.src − PCol.app

(4.16)

Continued on next page
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Table 4.1 – Continued from previous page

Metric and its descrip-

tion

Formula

Network privacy score.

PDest - represents a prob-

ability of successfully

identification of a website

that visits a user and

EncryptLevel - represents

a level of communication

channel encryption

NetworkPrivacyScore = EncryptLevel − PDest (4.17)

Data unavailability proba-

bility
PRansom =

NumOfRansom

AllUsers

PDataLoss =
NumOfLoss

AllData

PNetPrbm = (
NumOfDOS + NumOfAcdnt

2×AllT ime
+

+
BotNet

AllUsers
)/2

PDataNA =


0 if Data Backed Up

PRansom + PDataLoss + PNetPrbm

if NOT Data Backed Up

(4.18)

Data security score

DataSecurity = Confidentiality ∧
L
Integrity ∧

L

∧
L
Availability

(4.19)
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4.2 Privacy Evaluation Components Formalization

In the following sections, we present a novel, sophisticated attack on users’ privacy and its influence

on sensor platforms. We formalize the attack, analyze its scenarios, derive attack model, and

investigate ways of its detection. We render the place of this attack detector in the systematic

security evaluation pipeline.

As was described in section 2.4, “colluded applications” attack threats users’ privacy and may

decrease the “confidentiality component” score of a mobile phone’s (sensor platform) security.

However, this is a sophisticated and complex attack that requires significant efforts from a piece

of malware and its developer (i.e. “colluded applications” attack involves two or more malicious

applications). Hence, executing this attack in an environment where data can be leaked using more

straightforward approaches is meaningless. Therefore, we perform a lightweight yet efficient overall

smartphone security and privacy evaluation. A high-security score achieved indicates that users

did everything possible to protect their privacy, and the attack detector can be started.

The “colluded applications” attack detector is incorporated into a complex pipeline (see figure 4.1)

that includes the following stages:

1. As the first stage, we have to perform the preliminary periodic analysis that includes system

security evaluation with AI-based calculus that examines the device and system security,

collects a number of metrics, calculates the security score, and provides a system owner with

the recommendations on what needs to be implemented. We will not proceed to the next

stages until these recommendations are implemented.

2. On this step, we will also conduct a misuse based attack detection with available tools.

3. We will start system parameter monitoring only on the systems with a reasonably high-

security level with preventive and simple detection mechanisms already implemented.

4. Anomaly detection event will trigger post-detection analysis, which will be performed in real-
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Figure 4.1: The overall methodology of security and privacy improvement of a smartphone

time as well and will investigate specific details of the involved applications and system parts

in order to confirm an attack case.

For the initial security evaluation, we integrate such security-related metrics as application instal-

lation from unknown sources, Android OS version, screen lock, enabled “Developer options menu”,

root access, bootloader state (locked/unlocked), and presence of potentially harmful applications.

To obtain these parameters, we developed a special Android OS library and application that is
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based on this library (see details in chapter 5). The overall security score is calculated using the

following formula:

SecurityScore = MSL + MV + MUS + MPH + MDO+

+ MBI + MCT ×MBI

(4.20)

Table 5.1 provides more details about formula 4.20.

4.2.1 “Colluded Applications” Model Formalization

Since we use “colluded applications” attack as an example of novel attacks, we need to properly

describe and explain this threat to a user’s privacy. This section contains a formalized description of

the attack, its model, exploitation scenarios, and developed tools that try to address this particular

attack type.

4.2.2 “Colluded Applications” Attack Formalized Description

Let the applications A and B belong to a set of installed applications S. A has the permission set

PA and B has the permission set PB. PA consists of the normal permission subset PNA and the

dangerous permission subset PDA. PB consists of the normal permission subset PNB subset and

the dangerous permission subset PDB (see figure 4.2). PDA and PDB represent subsets of danger-

ous permissions DP . PDA and PDB are not equal. A generates data object D. To generate D a

permission pD is required and to leak D to third parties a permission pL is required. A transmits D

to B (tA(B,DpD , background)) while A and B are in the background. If PDA includes pD and does

not include pL, PDB does not include pD but includes pL, then A and B are colluded applications.

Definition of colluded applications can be written with the following statements:
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Figure 4.2: Application A and B permission sets

(A,B ∈ S) ∧ (PDA, PDB ⊂ DP ) ∧ PDA 6= PDB ∧ (pD ∈ PDA) ∧ (pD /∈ PDB) ∧ (pL ∈ PDB) ∧ (pL /∈

PDA)∧

∧tA(B,DpD , background)→ A and B are colluded.

It is important to notice, that PDA 6= PDB. In the case PDA = PDB there is no sense for application

collusion. Applying this rule before further analysis may reduce the search space of analyzed

applications. In addition, this definition is true for Intra-Library Collusion (ILC) attack [129] as

well, since instances of an embedded library are part of host applications.

4.2.3 “Colluded Applications” Attack Model

We assume that the goal of the attack is the same malicious actions as for single malware ap-

plications and include information theft, money theft, service misuse, sabotage, denial of service,

ransom, etc.

An attacker is an agent that tries to get a user’s private data without a user’s permission. The
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Figure 4.3: Attack model data flow

motivation of the attack is to obtain a user’s private data without the user’s awareness. The attacker

exploits “colluded applications” vulnerability that may allow an attacker to obtain a user’s private

data with bypassing permission requests.

The attack is an action that results in unauthorized data flow from the device’s source to the

attacker’s destination through colluded applications without a user’s permission (see figure 4.3).

Further, we present four use cases that support our attack model and its formalized description.

Use case #4 is implemented in scenarios that are presented in section 4.4.1.

4.2.4 Use Case 1. No Collusion. Applications Cannot Leak Data.

Let the application A be a camera app. To be able to take a photo (to generate a data object D),

it requires and obtains a camera permission pD, where pD belongs to the dangerous permission
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group (pD ∈ DP ). The set of the dangerous permissions PDA of the app A does not include

any permission that allows photo image leaking to the third parties (pL /∈ PDA). To allow photo

editing, the application A transmits a photo image D to the application B, which is a photo editing

software. The permission set PB of the application B does not include the permission pD (pD /∈ PB)

and B obtains photo image D without the camera permission pD. However, the permission set PB

also does not include permission that allows photo image leaking (pL /∈ PB). Since application B

cannot leak data object D and communication between A and B is not malicious, applications A

and B are not “colluded applications”.

4.2.5 Use Case 2. No Collusion. Legitimate Use of Inter-application Commu-

nication.

Let the application A be a shopping list app. It is able to search for products in the remote database

with the Internet permission pL. However, pL is the only permission that A has. Application B is a

bar-code scanner. Application B has an open API that allows using the app’s functionality by other

apps. In order to scan bar-codes, B has only one permission, which is camera permission pD. pD

allows generating a data object D, which is a photo image. The application A can request from B

to scan a bar-code to simplify the process of products adding to the shopping list. The application

B returns the raw image D and processed bar-code in the form of text to the A through “intent”

objects. The application A uses only text and discards the image. However, at some point, A

possesses the data-object D for which it does not have the permission. However, since B explicitly

allows using its functionality and A discards D as soon as possible, A and B are not “colluded

applications”.
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4.2.6 Use Case 3. No Collusion. Application Collaboration Does Not Compro-

mise Privacy.

Let the application A be a shopping list app. It is able to search for products in the remote database

with Internet permission pL. A has a functionality of bar-code scanning through a phone’s camera.

To scan bar-code, A has camera permission pD, which allows generating data object D (photo

image). A QR-code scanning application B that can process various types of bar-codes and QR-

codes, and provides open API that can be used by other apps is also installed on the phone. When

A requests to scan a bar-code, B returns the raw image D and a processed bar-code. A uses only

text and discards the image. Since A already has the permission pD that allows generating D, there

is no reason for A and B to be considered as “colluded applications”.

4.2.7 Use Case 4. “Colluded Applications” Attack.

Let application A be a camera app. In order to take a photo (to generate a data object D), it

requires and gets the camera permission pD. The set of the dangerous permissions PDA of the app

A does not include any permission that allows photo image leaking to the third parties (pL /∈ PDA).

Also, on the phone, a weather forecast application B is installed. The application B has the

Internet permission pL, which potentially allows information leakage. When A detects that B has

been installed on the phone, it sends to B data object D, and B is able to receive D and send it to

the remote server through the Internet. Since B possesses D without the appropriate permission

and leaks it to the third parties, A and B are “colluded applications”.
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4.3 Other Approaches to the “Colluded Applications” Attack De-

tection Feasibility

Various AI and ML techniques have been investigated for this attack detection. In our preliminary

empirical study, we employed multiple artificial intelligence techniques such as various types of

decision trees and random forest. Unfortunately, classifiers that are based on these AI techniques

performed relatively poorly, even despite the collected technological data had minimum background

noise. The achieved accuracy is less than 90% on clean data without the background noise.

Another approach to the attack detection that has been reported in the literature is the application

of Hidden Markov Models (HMM). An HMM is a doubly stochastic process with an underlying not

observable directly that can only be seen through another set of stochastic processes that produce

the sequence of observed symbols [107]. HMM-based attack detectors may show a relatively good

performance. Still, they require more time to detect an attack and give a higher error rate in

comparison to conventional misuse detection techniques [25]. This delay makes the development

of a real-time attack detector difficult. One of the ways to decrease the error rate of an HMM

in intrusion detection systems (IDS) is by building an ensemble of HMMs [25, 30]. However, this

improvement in accuracy increases the overall model complexity.

The attack detection task, in its essence, represents a sub-class of the classification problems. While

some types of HMM may outperform IDS based on such techniques as K-NN and SVM [87], it is

hard for HMM-based IDS to compete with systems that are based on neural networks, especially

recurrent neural networks [51] in classifier’s performance [85, 90, 100]. Classification accuracy of

HMMs can be improved, for example, by combining HMM with neural networks. However, this

integration increases the model complexity as well and does not allow utilizing dedicated NN chips

such as visual core in modern smartphones [48]. Another limitation in the HMM employment is

that HMMs make the Markovian assumption. In other words, the model assumes that the current

state depends only on the previous state, which may not be the case in the data collected during
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cyber-attacks. These HMM limitations make neural networks more preferable for applications in

modern smartphones [145]. In addition, the non-Linearity of NN-based, and RNN-based models,

particularly, make them more expressive and more adaptive at learning from real-world data [3,62,

79]. The recurrent neural networks, in general, gives higher accuracy and overall performance in

such tasks as intrusion and attack detection [144,147].

4.4 Attack Detection Using Memory Consumption and CPU Uti-

lization

In our attack detector architecture initially, we employed two types of technological signals [64,66]

to feed up into a classifier: random access memory (RAM) consumption and CPU utilization rate.

In this study, 45 different attack scenarios were examined. Memory and CPU usage were logged

in each of the scenarios. The attacks were conducted on an Android emulator for the Nexus 6

device. The device ran Android version 6.0 (API 23) and used a 1.5 GB of RAM. The scenarios

consisted of different data types transmission such as contact list, SMS, audio, image, and video

files of various sizes. Multiple combinations of block sizes were used. The individual attacks were

run for longer and shorter time periods. In order to obtain the comparison base, some scenarios

recorded the application usage under a “non-colluded” (no attack/normal) situation. In addition,

we ran a legitimate user process such as Internet Browser during the attacks. While this process

added additional “noise” to the memory consumption and CPU usage, it imitates a normal user’s

activity on the device. Finally, some overlapping attack scenarios were run. We tried multiple

statistical analysis techniques, such as exploratory data analysis and principal component analysis,

to study a potential influence of the background processes on the attack recognition. This analysis

confirms that collected data has a lot of noise (see figure 4.4 for an audio scenario) that reflects

real device operational patterns.

All collected data were organized into the “colluded applications” attack dataset, which was made
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Figure 4.4: Nexus5x: kernel density estimation for an audio scenario.

available for public use. This dataset can be used in future research of detection and mitigation

“colluded applications” attacks.

4.4.1 Attack Scenarios Description

Five attack scenarios were selected for further analysis: contacts list data transmission, text mes-

sages transmission, photo image transmission, audio data transmission, and video data transmis-

sion. These scenarios were implemented on seven smartphones: Google Nexus 5X, Google Nexus

6P, OnePlus 3, OnePlus 5T, OnePlus 6, OnePlus 6T, Google Pixel 2XL. The collected data resulted

in a second dataset that is also made available.

Scenario 1. Contacts data. The contact list was transferred from the source application to the

sink application with batches of 20 contacts and a delay between batches with ten milliseconds. The

attack lasts approximately 500 milliseconds for 540 contacts. Attack duration varies from phone

to phone and also depends on a number of contacts.
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Figure 4.5: Memory consumption during the “attack” and “no attack” periods for contact data scenario.
Attack periods are marked with yellow.

Audio data. In this scenario, a 13MB audio file was transmitted with 100KB chunks with a 15ms

delay between chunks. The attack duration is approximately 1.5 seconds.

Image data. In this scenario, a 10MB file was transferred between applications in chunks of 50

KB and a 5ms delay between chunks. The duration of the attacks is approximately 1.3 seconds.

4.4.2 Attack Results and Their Analysis

Contacts data.

Figure 4.5 shows the memory usage in bytes during the periods of no attack and attack, which was

sending ten contact details at a time. As the amount of data is small, the usage pattern does not

show a significant increase (only about four megabytes over an attack). Due to the data size is so

small, the CPU usage does not show any visible patterns (see figure 4.6).
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Figure 4.6: CPU load during the “attack” and “no attack” periods for contact data scenario. Attack periods
are marked with yellow.

Image and audio data.

Figure 4.7 shows the memory consumption with clearly visible patterns. There is a rise of about 20

MB of memory for an attack. Also, after each attack, one can see memory usage stabilizes. In some

cases, there could be a drop in memory usage during the attack periods. This memory usage drop

happens due to the system’s garbage collector reclaims the memory that is occupied by “intent”

objects that were used during the attack.

Figure 4.8 demonstrates the increase in CPU usage during the attack. The CPU usage rises as

high as 15 percent as compared to the no attack period. There are a low number of data points in

the CPU usage as compared to memory because of the execution time for the CPU load recording

services. A similar CPU and memory usage patterns were observed in the case of Audio data as

well (see figure 4.9 and figure 4.10.
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Figure 4.7: Memory consumption during the “attack” and “no attack” periods for image data. Attack
periods are marked with yellow.

Figure 4.8: CPU load during the “attack” and “no attack” periods for image data scenario. Attack periods
are marked with yellow.
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Figure 4.9: Memory consumption during the “attack” and “no attack” periods for audio data. Attack
periods are marked with yellow.

Figure 4.10: CPU load during the “attack” and “no attack” periods for audio data scenario. Attack periods
are marked with yellow.
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4.5 Attack Detection Using Memory Consumption and CPU Clock

Speed

Unfortunately, starting Android OS version 8.0, the system does not allow acquiring the CPU

utilization. This modification in the OS has been done to improve the privacy of the system but

prevents our anomaly detection algorithm from proper functioning. This limitation can be overcome

if our processes have superuser (root) privileges, but it contradicts our idea that the framework can

be employed on a smartphone with a stock, unmodified firmware.

To overcome this new limitation, we substituted CPU utilization with CPU cores clock speeds

(a.k.a. CPU frequency), which can be monitored through a standard Android API.

Memory consumption and CPU cores’ clock speed were recorded every 20 ms through the standard

Android OS API calls. While memory consumption can be recorded with a much higher resolution,

the CPU cores’ clock speed time resolution is limited to one request per 20 ms. On the other hand,

as conducted empirical study proved, this interval between technological signals recording does not

significantly affect the battery life of the smartphone. The study participants reported that they

did not notice any changes in battery life during the experiments. The data were recorded for eight

hours.

All this collected data was added to the “colluded applications” attack dataset that is mentioned

section 4.4, can be used in future research on investigating and developing ML techniques. The

data includes the following technological signals: the attack scenario, timestamps when the attack

started and stopped, the record’s timestamp, the clock speed of all available CPU cores, total

RAM, free RAM, and used RAM. Overall, 4194 attacks were executed, and 402796 measurements

of technological signals have been recorded. Examples of the recorded data are shown in figure 4.11

and figure 4.12.
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Figure 4.11: Memory consumption during the “attack” and “no attack” periods. Attack periods are marked
with yellow. In the picture, attacks are presented in the following order (left to right): audio, video, video,
SMS.

Figure 4.12: CPU clock speed (frequency) during the “attack” and “no attack” periods. Attack periods are
marked with yellow. In the picture, attacks are presented in the following order (left to right): audio, video,
video, SMS.
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4.6 Conclusions

Addressing the primary research question posed in this chapter “How to develop effective and

efficient security and privacy evaluation methods targeted for their implementation on

resource-constrained mobile devices and incorporate them into the overall DQ evalu-

ation pipeline?”, we obtained the following major research results, which are further explained

in details:

• We investigated modern Android OS based smartphones and developed multilayered hier-

archical security-related metrics structure that includes three major branches.

• We developed the initial calculus for metrics integration from each of the security

branches.

• We investigated current threats to user privacy and revealed the lack of tools for

detection novel and sophisticated attacks.

• We developed a systematic security evaluation pipeline that considers smartphones’

resource-constraint nature and includes a comprehensive set of security and privacy

evaluation approaches.

• We formalized “colluded applications” attack and developed its model.

• We conducted an empirical study of this attack, and created a dataset that can be

used for developing machine learning-based attack detectors.

• We investigated and analyzed various artificial intelligence techniques for the

detection attacks on users’ privacy.

Existing approaches to DQ evaluation very often ignore the security aspect or do not pay proper

attention to it. In the developed DQ and security evaluation framework, security plays a crucial

role. In this section, we developed flexible and extendable techniques for data security and privacy
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evaluation. We developed a hierarchical structure of security-related metrics that includes three

major branches: integrity, confidentiality, and availability. We produced and presented calculus for

each of the security components. We investigated and analyzed what sensor platform characteristics

and properties may influence on data security privacy, and, thus, on overall DQ level. Based on

our analysis, we developed an initial set of security and privacy-related metrics for sensor platforms

that run the Android OS. While the presented set of metrics is mostly related to Android OS-based

smartphones, it can be extended to cover other sensor platforms as well.

We investigated current threats to data privacy and revealed the inability of modern anti-malware

software to detect novel and sophisticated attacks on data privacy in modern smartphones. We

examined in detail colluded applications attack, which is one of the new sophisticated attacks on

data privacy that is currently emerging. After studying various inter-application communication use

cases and analyzing possible attack scenarios, we formulated the attack’s definition and developed

the attack model. In order to build an attack detector (see section 5.2 for details), we conducted

an empirical study.

Before the detection of more sophisticated attacks on data privacy, more straightforward threats to

data privacy have to be addressed. We developed a systematic pipeline that includes initial steps

of the data security evaluation, which have to be performed before colluded application attack

detector starts. Our two-step approach to detection of attacks on data privacy allows effective and

efficient data privacy evaluation implementation on the resource constraint devices.

We investigated the employment feasibility of various artificial intelligence techniques for attack

detection. Our study covers such techniques as various decision trees, hidden Markov-chain models,

and neural networks. Our analysis revealed that decision trees have the worst performance in this

attack detection task. Also, we revealed that while hidden Markov-chain models may have high

attack detection rates, they are outperformed by recurrent neural networks, especially long-short

term memory models. In addition, neural network models may take advantage of the Android OS

neural network API and dedicated chips, such as “visual core”. Employing neural network API
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allows running NN models in a very efficient way and preserves devices’ battery.

We implemented the developed scenarios on an Android OS-based smartphone to investigate and

analyze attacks influence on the sensor-platform. During the attacks, overall memory consumption,

the CPU usage of the system’s and user’s processes, and changes in CPU cores clock speed were

recorded. Logged data is organized into a comprehensive dataset and is made available for public

use and future research. Four scenarios that represent restricted data transmission of various types

such as contacts, audio, images, and video were selected for further research and were implemented

on seven real smartphone models. The second empirical study resulted in a second dataset that

contains detailed time-series data of overall memory consumption, CPU usage, and process-by-

process data during the attacks. The obtained dataset is used for attack detector development

described in chapter 5.



Chapter 5

Framework Implementation and

Validation on Use Cases

This chapter addresses the fourth major research question: “How to develop effective and

efficient framework implementation on a platform of mobile devices, such as Android

OS-based smartphones?”. This question can be divided into a set of sub-questions, which are an-

swered in each section of this chapter. In this chapter, we develop and present novel techniques and

tools that enable security and privacy aspects integration into a conventional data quality evaluation

pipeline. Section 5.1 presents the implementation of the initial data quality and security metrics

acquisition. We present our implementation of the detection attacks on users’ privacy in sections

5.2 - 5.4. Section 5.5 presents the implementation of data quality and security metrics integration

methods. Implementation of the cloud component is presented in section 5.6.1. In section 5.6, we

present metrics integration implementation targeted at the resource-constrained devices. Finally,

we validate the developed framework on a set of diverse use cases presented in sections 5.7 - 5.9.

93
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5.1 Framework Components Implementation

In the following sections, we present our implementation of the developed framework. This section

presents our implementation of the initial metrics acquisition.

To implement the framework, we employed a number of artificial intelligence techniques. Initially,

the metrics integration calculus has been implemented through the fuzzy rules of the expert system

(ES). Employment of the ES improves the framework scalability, simplifies its design and main-

tenance, and enables its modification. Unfortunately, ES systems are computationally expensive,

that presents a particular problem for resource-constrained mobile devices. To overcome this lim-

itation, we substituted developed ES modules with the neural network models that approximate

input/output hyper-surfaces produced by ES modules. Developed NN models are computationally

cheaper and faster than ES systems and may take advantage of the NN dedicated chips that are

built into modern smartphones and other mobile devices [48]. We present details of our framework

implementation below.

5.1.1 Initial Security Metrics Acquisition

We have developed an Android OS library, and a specialized application that is based on this

library, that retrieves security and privacy-related parameters, which are used as the inputs to

the expert system. The developed library provides an API that can be used by other researchers

and software developers and is available at Google Play Store. The developed software provides

recommendations on how to improve the smartphone security level and gives an explanation of

each parameter to a user. In addition, it allows opening a “simulation” screen where users can

experiment with these parameters and see how they influence overall security. Table 5.1 provides

the library’s API and figure 5.1 presents the architecture of the developed software.
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Table 5.1: System’s parameters that are gathered for the initial security evaluation

Metric Symbol Values

Screen lock MSL 1 - Pattern, PIN or password; 0 - otherwise

Android OS version MV 2 - The latest version, 1 - previous version; 0 - otherwise

Unknown sources MUS 1 - Unknown sources disabled; 0 - otherwise

Potentially harmful
applications

MPH 0 - Installed at least one potentially harmful application; 1 -
otherwise

Developer’s menu MDO 1 - Developer option menu disabled; 0 - otherwise

Basic integrity test MBI 1 - System passed basic integrity test; 0 - otherwise

Android compatibil-
ity test

MCT 1 - System passed Android compatibility test; 0 - otherwise

Figure 5.1: Architecture of the software for initial security evaluation
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5.2 Attacks Against Privacy Detection Implementation

In this section, we present our implementation of the developed technique aimed at reducing false-

positive alerts for the detector of novel attacks on users’ privacy.

To implement the anomaly detection, we use an example of the “colluded applications” attack

described in section 4.2. The “colluded applications” attack is a threat to user privacy because it

may leak private data from a smartphone. We completed an empirical study and collected data

from multiple phones during the attack and during the normal smartphone operation (see section

4.2 for more details). To conduct these experiments, we developed two applications. The Source

application has the data and the necessary permissions to receive private data. And the other one

is the Sink application, which requests and receives data from the Source and could violate privacy

protection by leaking this data to a remote host. Apart from the above-mentioned applications, a

third application was developed to log memory and CPU usage.

Unfortunately, some legitimate applications may produce patterns in the system resources utiliza-

tion signals,which are similar to malicious applications, therefore we need to develop a technique

to distinguish them. An application permission analysis is called to differentiate legitimate ap-

plications from malicious ones and with the goal to reduce the false-positive rate. In the case of

“colluded applications”, this analysis allows revealing applications that may benefit from the col-

lusion. The architecture of the developed tool is presented in figure 5.2. We have built an expert

system whose knowledge base is constructed by analyzing the permissions available in an Android

application Manifest file, which is a vital part of all Android OS applications. The built system is

capable of suspecting collusion between pairs of applications.

This tool scans the user-installed applications by ignoring the pre-installed ones (system appli-

cations). From the list of user-installed applications, application pairs are formed from which

permission pairs are extracted (one from each of the application pairs). These permission pairs are

then passed to the rule-based engine, which performs forward chaining and generates a boolean



CHAPTER 5. IMPLEMENTATION AND VALIDATION 97

Figure 5.2: Schematic representation of suspecting malicious collusion between Android applications using
a rule-based expert system

value. If this boolean value is set, it means that the application pairs may benefit from collusion.

On the other hand, if the boolean value is “false”, the collaboration of application pairs do not en-

danger a user’s privacy. In the case when attack detector warned about the attack and permission

analysis shows that the system contains applications that may benefit from the collusion, a more

detailed analysis of the suspected applications is required.

5.3 Attacks Against Privacy Detection With Intelligent Techniques

Using Memory Consumption and CPU Utilization

This section presents our attack detector implementation that is based on machine learning tech-

niques such as feed-forward neural network and recurrent neural network. The attack detector

relies on such technological signals as overall memory consumption and CPU load.
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To develop an attack detector, we investigated various machine learning techniques such as feed-

forward neural networks (FFNN), simple recurrent neural networks (RNN), long short-term memory

(LSTM), and bidirectional LSTM. We completed the empirical study employing two approaches

to the attack detector design: a generic model and individual model. The generic model is trained

on the collected data combined from all smartphones that participate in the study. The individual

model is based on the data from a particular phone. Since all collected data are the time-series data,

a sliding window approach was used to train and test the developed attack detectors. The data time

resolution is one millisecond, and the window size of 32 measurements results in a 32-millisecond

delay in the attack detection.

5.3.1 Attack Detector Generic Model for Multiple Smartphones

FFNN is the artificial neural network that does not have any feedback loop and has a lightweight

architecture as compared to RNN. The architecture consists of an input layer, multiple hidden

layers, and an output layer with a tuned set of hyper-parameters. Figure 5.3a shows an example of

the actual data against the model classification that demonstrates this model failures in the attack

recognition.

A simple RNN model consists of a single input layer, multiple hidden layers with the feedback

loop, and an output layer. In our empirical study, it works better in terms of false positives rates

as compared to FFNN, but the performance is still not sufficient enough. Figure 5.3b shows an

example of the model classification.

LSTM is a special type of RNN that has memory cells to store information in memory for a longer

period, which also overcomes the standard RNN problem of the vanishing gradient. LSTM has

input, output, and a forget gate making it a robust architecture to deliver better results, but this

performance comes at the cost of its higher complexity. In this research, the LSTM model consists

of a single input, hidden, and an output layer. It demonstrates a better performance than the RNN

and FFNN models, as observed in figure 5.3c.
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(a) FFNN (b) RNN

(c) LSTM (d) BiLSTM

Figure 5.3: Models performance. Actual (red color) versus classified (blue color).

A bidirectional LSTM (BiLSTM) is a variant of LSTM wherein we add a “bidirectional” layer so

the model can learn the patterns in the data in both directions. It has a more complex and robust

architecture as it stores information from the past and future classifications, which results in better

performance. Figure 5.3d shows the BiLSTM model classification vs actual data.

This BiLSTM model demonstrates a better performance than others that we observed previously,

with higher precision and recall rates resulting in high recognition accuracy. Training accuracy

for the BiLSTM model is 92%, with a loss of 0.0895 and validation accuracy of 87.68% having

considered 32 history records. Figure 5.4 shows the summary of a BiLSTM model parameter

values obtained at the end of the training. Table 5.2 shows the performance of the developed

generic BiLSTM model. The overall accuracy for the BiLSTM model is appealing for a generic
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Table 5.2: Test results for BiLSTM model

Device Scenario Accuracy Precision Recall

Nexus 5X Overall 0.941 1.0 0.42

OnePlus 5T Overall 0.891 0.52 0.09

OnePlus 5x Contacts 0.985 0.0 0.0

Figure 5.4: Summary of a Bidirectional LSTM model.

model, but the precision and recall rates are relatively low. This low performance motivated us to

transition from a generic model to an individual model training based on the data collected from

a particular smartphone.

5.3.2 Attack Detector Individual Model for a Particular Smartphone

In this section, we verify our hypothesis that the attack detector may perform better on a smart-

phone if it is trained on the data from the same smartphone. Since BiLSTM gives the best results,

we use this architecture in the individual training model as well. In addition, to more accurately

reflect the performance of the attack detector, we use the true positive rate (TPR) and false-positive

rate (FPR) concepts.



CHAPTER 5. IMPLEMENTATION AND VALIDATION 101

TruePositiveRate =
Correctly IdentifiedAttacks

Total Attacks
(5.1)

A true-positive rate is the ability of a model to correctly identify an attack, i.e., how sensitive the

model is in detecting an attack. The higher the true-positive rate, the more sensitive the model is,

which maximizes the chances of attack detection. However, this high sensitivity comes at a cost as

it also increases false alarms.

False PositiveRate =
Wrongly IdentifiedAttacks

Total NoAttacks
(5.2)

A false-positive is the error that happens when the model detects an attack while there is no attack.

This error rate must be minimized to reduce the chances of “False Alarm” and prevent a further

reaction to a non-existing attack. Similarly, the cost of FPR reduction is TPR decreasing.

In this research, we aim at increasing the attack detection effectiveness. We employed the following

rules for the model performance evaluation:

1. We calculate the TPR based on a number of attacks detected against the overall actual

attacks.

2. We introduce a time delay (delta parameter) in attack detection decision. Table 5.4 and 5.5

prove that adding a small delay can significantly improve the model overall performance.

3. We also take into account the edge case where an attack is detected after an actual attack

starts, and the detected attack ends after the actual attack ends. Considering the edge cases,

we finally calculate the false-positive rate based on wrongly identified samples in the data.

We developed models for two smartphones: OnePlus 6T and Google Pixel 2XL. For OnePlus 6T,

we used data that was collected for generic model training. In addition, to make data more diverse,

we included a scenario with video data transmission. The results are presented in table 5.3 for
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Table 5.3: Performance of the model trained on the data from OnePlus 6T

Confidence TPR FPR

0.99 100 2.9

0.95 100 3.6

0.90 100 4.1

various confidence levels of the attack detector. A confidence level is a threshold of the attack

detector’s decision confidence. A high confidence level decreases FPR but also decreases TPR. One

can observe, in the case of OnePlus 6T smartphone, we achieved high TPR with low FPR.

To confirm the high performance of the attack detector that is trained on the data of the particular

phone, we used a similar approach for Google Pixel 2XL. We collected data for three scenarios from

Google Pixel 2XL. Each scenario contains 50 attack instances.

In the first performed experiment, the attack detection model uses only overall memory consumption

as its inputs. The model was not able to converge well and hence failed to detect attacks. This

proves that only overall memory consumption use does not provide enough information for reliable

attack detection.

In the second experiment, the attack detection model uses memory consumption, CPU utilization,

and system interrupts as its inputs. Our study reveals that bigger volumes of data, such as im-

age and video, can be detected with high TPR and low FPR. Table 5.4 shows the performance

evaluation of the BiLSTM model on unseen data of audio scenario for Pixel-2XL Android smart-

phone. The audio scenario test data consists of overall “Memory”, all “CPU” usage parameters,

and system interrupts during the 15 attacks. We can see the trade-off between the TPR and FPR.

Similarly, table 5.5 shows the performance evaluation of the architecture on unseen image scenario

data for the same device. The image scenario test data consists of overall “Memory consumption”,

all “CPU” usage parameters, and system interrupts during 12 attacks.
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Table 5.4: Pixel 2XL: Performance evaluation for audio scenario

Confidence TPR FPR FPR W/ Delta

0.99 0.9333 0.1169 0.1049

0.95 0.9333 0.1637 0.1488

0.90 0.9333 0.2062 0.1798

0.85 1.0 0.2238 0.1899

0.80 1.0 0.2418 0.1985

Table 5.5: Pixel 2XL: Performance evaluation for image scenario

Confidence TPR FPR FPR W/ Delta

0.99 0.9167 0.1637 0.1538

0.95 0.9167 0.2196 0.1970

0.90 0.9167 0.2582 0.2250

0.85 1.0 0.2777 0.2442

0.80 1.0 0.2875 0.2539

Table 5.6: Results for FFNN and LSTM models (green shade means the best result for the window size).
Model uses as inputs memory consumption and CPU cores clock speed.

5.4 Attacks Against Privacy Detection With Intelligent Techniques

Using Memory Consumption and CPU Frequency

In this section, we present the attack detector implementation based on two machine learning

techniques: feed-forward neural network and long-short term memory. These implementations of

attack detector use overall memory consumption and CPU cores clock speed for attack detection.

Unfortunately, as we described in section 4.5, starting Android OS version 8.0 and above, standard
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Table 5.7: Results for FFNN and LSTM models (green shade means the best result for the window size).
Model uses as inputs CPU cores clock speed only.

Android API does not allow accessing CPU utilization data. That restriction directed us to use

CPU cores clock speeds instead. To develop attack detectors, we chose two machine learning

architectures: FFNN and LSTM. As we rendered in the previous section, LSTM proved to be an

efficient solution for anomaly detection based on memory consumption and CPU utilization. At

the same time, the FFNN model is more straightforward and computationally cheaper. While this

empirical study involves data from one smartphone, in the future, this research can be extended to

creating the generic model based on the collected data combined from various smartphone models.

As one can observe in figures 4.11 and 4.12, in the case of CPU frequency, the data is relatively noisy

and has to be filtered. We concatenated every ten records and replaced their values with the mean

value of each technological signal, which reduced our dataset to 80559 records. All these records

were divided into test, validation, and test data sets with the 60/20/20 proportion. Since these

technological signals represent time series, it is crucial to keep the sequence of the data records.

The data time resolution is 20 milliseconds, but after filtering, the time resolution becomes 200 ms.

Since all collected data are the time-series data, a sliding window approach was used to train and

test the developed attack detectors. We tried five various window sizes: one, three, five, eleven, and

fifty-five record points. The window size of one filtered record equals to 0.2 seconds. The window

shift is equal to the window size. Models were designed to take as an input memory consumption

and CPU cores’ clock speeds (see table 5.6 for the results), CPU cores’ clock speed only (see table

5.7 for the results), and memory consumption only. Models that rely on memory consumption only
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could not effectively identify attacks, which confirms our previous findings, and were excluded from

the further analysis. In addition, to compare FFNN model performance with the LSTM model, we

employed the so-called “point-by-point” approach to data points classification. In the “window”

mode, if the model classifies the window that contains at least one attack instance as an attack, we

count it as a true positive. In the “point-by-point” mode, after model classified the data window,

the assigned label is applied to all data points within this window, and only after that, we compare

results point-by-point with round truth values.

5.4.1 Application of Feed Forward Neural Network Model

FFNN is the artificial neural network which has no feedback loop and has a lightweight architecture

as compared to LSTM. The architecture consists of an input layer, multiple hidden layers, and an

output layer with a tuned set of hyper-parameters. Figure 5.5a shows an example of the actual

data vs. the model classification that demonstrates this model performance in attack detection

task.

We used the following architecture of the FFNN model:

• Number of neurons in the input layer: windows size × number of features;

• Windows size: 1,3, 5, 11, or 55 record points;

• A hidden layer with 40 neurons;

• An output layer with 2 neurons.

• Hidden layer activation function: tanh

• Output layer activation function: softmax

• The loss function: the mean of the categorical cross-entropy.
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(a) FFNN model performance. (b) LSTM model performance.

Figure 5.5: Actual (red shade) versus detected (blue line).

The FFNN model achieves high accuracy with a low false-positive rate and false-negative rate. The

overall results of the FFNN model are presented in table 5.6 and table 5.7. As one can observe

in figure 5.7, in the mode of complete window classification, the best accuracy is achieved with a

window size of 11 record points. However, in the “point-by-point” mode, as window size increases,

the model accuracy decreases. This decrease in accuracy happens due to the model classifies the

whole window, and all records within this window are labeled according to the window label.

However, within the classified window, the attack might not occupy the whole window, or there

might be several attacks. Since later in the “point-by-point” mode, we compare classified labels

with ground truth labels, it results in increasing of false-positive and false-negative rates as window

size increases.

Both model that is trained on CPU frequency only and model that is trained on “memory and

CPU frequency” achieved similar accuracy for windows of one and three records. However, for the

window sizes of five and eleven records, the model that is based on memory usage and CPU clock

speed has higher accuracy.
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5.4.2 Application of Recurrent Neural Network Model

As we mentioned earlier, long short-term memory is a special type of recurrent neural network

(RNN) having memory cells that store information in memory for a longer period, which also

overcomes the standard RNN problem of the vanishing gradient. LSTM has input, output, and a

forget gate making it a robust architecture to deliver better results, but this performance comes at

the cost of its higher complexity. In this research, we used the following LSTM model architecture:

• An input layer: “number of timestamps in sequence” × “number of features”;

• An LSTM layer with 100 neurons

• A dense layer with 100 neurons

• A dropout layer

• An output layer with 2 neurons

• Recurrent activation function: hard sigmoid,

• Kernel initializer: glorot uniform

• Recurrent initializer: orthogonal

• Bias initializer: zeros

• The dense layer activation function: ReLU

• The dropout rate in the dropout layer is 0.5

• The output layer activation function: softmax

• The loss function: the mean of the categorical cross-entropy

Table 5.6 presents results of the LSTM model. Figure 5.7 demonstrates that LSTM model accuracy

increases as window size increases. Comparing models based on the type of inputs, one can observe
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Figure 5.6: LSTM model performance. Actual attack - red shade, blue lines are the confidence levels for
no-attacks, and the yellow lines are the confidence level for attacks.

that the model that takes only CPU clock speed performs similarly to the model that takes as

inputs both memory usage and CPU clock speed. This can happen due to memory usage data

being extremely noisy.

5.4.3 Feed Forward and Recurrent Neural Network Models Performance Com-

parison

Both FFNN and LSTM models achieved a high performance in anomaly detection. With the size

of the sliding window equal to five record points, the FFNN model slightly (0.4%) outperforms the

LSTM model. With bigger window sizes (11 and 55 record points), LSTM clearly performs better.

The advantage of the FFNN model is in its simplicity.
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While the LSTM model demonstrates a comparable performance to the FFNN model (see figure

5.5b), it has much higher decision granularity. Figure 5.6 renders the LSTM model confidence

during the attack and no attack periods. Although the model uses as inputs a number of record

points equal to the window size, it classifies the last point in the window that results in better

classification granularity in comparison to the FFNN model. The FFNN model classifies the whole

window. FFNN in the point-by-point mode has the same classification granularity as the LSTM

model, but the FFNN model performance in this mode is much worse.

In terms of input types, the FFNN model that relies on both memory usage and CPU clock

speed performs better than the model that takes only CPU clock speed. However, using memory

consumption in the LSTM model did not show any significant difference except for increasing the

model complexity.

The LSTM model achieves a higher performance in accuracy (see figure 5.7) and precision (see figure

5.8), and demonstrates similar to FFNN model recall (see figure 5.9) and F1-Score (see figure 5.10).

On the other hand, the LSTM model complexity is much higher than the FFNN models. Figure

5.11 demonstrates the training time for FFNN and LSTM models that take as inputs both CPU

clock speed and RAM consumption.

The results of these anomaly detectors can be used as inputs to the expert system modules respon-

sible for the security evaluation.

5.5 Expert System Employment in Framework Implementation

In this section, we present our implementation of data quality and security metrics integration

through fuzzy rules expert systems.

After all metrics of the first order have been acquired, they are integrated into the overall data

quality score. We chose an expert system with fuzzy rules to implement the developed calculus.
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Figure 5.7: Model accuracy vs. window size
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Figure 5.8: Model precision vs. window size
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Figure 5.9: Model recall vs. window size
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Figure 5.10: Model F1-Score vs. window size
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Figure 5.11: Model training time vs. window size
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Figure 5.12: The metrics hierarchy tree for data quality and security evaluation expert system.

Fuzzy rules allow dealing with vague inputs such as “old/fresh” Android OS version, or “good/bad”

sensor accuracy. For example, for the security patches, when do they become old? Maybe one day?

One week? Or even six months? Assume the “expiration date” of the security patches is one week.

Is it fair to say that a security patch released eight days ago is “old” and the one that is released

seven days ago is “fresh”? Fuzzy logic can handle such ambiguous definitions. This subsection

further provides a bottom-up view of the expert system implementation by stepping through the

development process, starting from the first-order metrics up to the overall data quality score (see

figure 5.12).

Let us focus our attention on the “Device Feature Security”. Three metrics within this higher-

order metric are “Android OS Versions”, “Security Patches”, and “Device Model”. Among the

15 Version of Android OS, the majority of the users have Version “Marshmallow” (API 23) or

above. Version “Lollipop” (API 22) is not only discontinued within the device manufactures, but

also rarely available on the second-hand market. Therefore, two member-functions, “older” and
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“newer”, were chosen to represent the Android OS Versions, as shown in figure 5.13.

Figure 5.13: Membership functions for device feature security input - Android OS version.

The output from this module is split into three categories – low, medium, and high, as shown in

Figure 5.14. More fuzzy rules of the “Device Security Feature” ES module are given below:

• IF (OSVersion is older) AND (SecurityPatch is outdated) AND (DeviceModel is older)

THEN (DeviceFeatureSecurityScore is low)

• IF (OSVersion is older) AND (SecurityPatch is outdated) AND (DeviceModel is newer)

THEN (DeviceFeatureSecurityScore is medium)

• IF (OSVersion is older) AND (SecurityPatch is upToDate) AND (DeviceModel is older)

THEN (DeviceFeatureSecurityScore is low)

Human experts formulate the rules based on their knowledge. Conflicting rules are resolved with

weight assignments. The metrics, such as the Android OS version, security patches age, and the

device model parameters, are gathered from the smartphone and passed into the fuzzy inference
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Figure 5.14: Membership functions for device feature security output.

engine (FIE) described above.

5.6 Distributed Architecture for the Framework Implementation

In this section, we present the developed expert system (see details in section 5.5) implementation

for the resource-constraint devices, such as Android OS smartphones.

5.6.1 Cloud Component Implementation

This section renders the implementation of the cloud component that performs additional analysis

of smartphones’ security metrics, which are later used as the input for the overall security evaluation

component.

The state of any device may change over some time. How do we adapt to it? If we have prior

knowledge of the device’s former state, then it can be a boon. By combining the prior knowledge
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Figure 5.15: The cloud module

of the device’s previous security states, along with the system that is responsible for evaluating the

possible existing and new threats, we can develop a more efficient security evaluation system.

The device’s previous security evaluation score can be stored on the device itself, but it is not

beneficial to do so. Recording data on the device consumes some memory and is not recommended.

In the case where the application experiences failure, there exists the possibility of relevant infor-

mation being lost. Analyzing results obtained after evaluating the security parameters for a given

device, would be tedious as it would involve direct communication between the devices. This would

result in the need for requesting the user’s permission to use the data stored on their device when

attempting to assist a different user. Large amounts of data would be frequently communicated

over the network unnecessarily.

Alternatively, if the results are stored in a single place for all users, it provides a unique opportunity

to use and organize the user’s device efficiently. The server application communicates with all the

devices running the “System Security Evaluation” application. Each device has its instance of the

Android OS application mentioned above. A user having multiple devices can have these devices

tracked in one location. Figure 5.15 presents the flow of the data generated on various devices and
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the analysis that is performed. The data can then be used to help the user to make the device more

secure. The server application contains information such as the score details, the user information,

and the comparison score. This information can help to analyze the data from different aspects

and helps to gain more insights. The server application can also generate detailed history reports

of the score changes.

This data can be analyzed in different ways:

• based on the device type, e.g., how many devices from a specific manufacturer never allow

installing applications from unknown sources;

• based on the device parameters, e.g., what is the percentage of the devices that never enable

screen-lock mechanisms;

• based on the users, e.g., how many users have more than one device.

This information analysis can then be given to users to help them maintain and improve the

security of their devices. Similarly, this information can be provided to the manufacturers to foster

the development of more secure devices. Lastly, developers would also find this analysis useful

to develop secure applications considering the vital aspects of a given device. The expert system

can also benefit from the input of this information. Whenever the android application is about to

create a new entry on the server, the user’s permission would be requested. For keeping track of

different devices against a given user, the device’s IMEI number is recorded in the database (only

with a user’s consent).

Figure 5.16 demonstrates that a web application can also use cloud service. All the points discussed

above are also valid for this web application. This web application can give the user an additional

interface to access the relevant information. A user having multiple registered devices can see all

the information from those devices from a single place. Otherwise, the user would have to manually

go through the application to access the information pertaining to every device. We further discuss

the details of the API discussed.
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Figure 5.16: Cloud Benefactors

API Design

There exist various architectural patterns of developing application programming interfaces, but

two of them are the most popular: Simple Object Access Protocol (SOAP) and Representation

State Transfer (REST). Based on the recommendations [83], we chose REST as it has better

throughput and faster response time than SOAP. SOAP involves a lot of overhead, which is a huge

drawback [83]. The REST properties, such as simplicity, usability, and scalability, made it suitable

for the back-end system designed in this research [86].

API is designed in order to permit its usage on different platforms. We followed the Richardson

Maturity Model (RMM) [108] and implemented a REST API of level 3, which allowed us to provide

services that would take hypermedia as an engine of the application state. Also, the Model-View-

Controller pattern design results in a loosely coupled API [119].

Outer-facing contract. The outer facing contract for the consumer of the API is a specific part

of the API design. It consists of a Uniform Resource Identifier (URI), HTTP methods, and an

optional payload. The payload can have data in a format such as JSON or XML.

Designing the URI. For designing the URIs, appropriate resource names (nouns) should be
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used, rather than the actions that can be performed on those resources.

Unique ID. Global Unique Identifier (GUID) usage is preferable rather than using the auto-

numbered database field, for having a unique identifier as it remains the same even if their database

is changed. This is not true in the case of auto-numbered unique identifiers.

Status Codes. A REST API should be configured with appropriate status codes, as they provide

a lot of valuable information regarding the communication taking place between the API and its

consumer.

Media Types. Requests and responses can be encoded in various standard formats. A cus-

tomized media type can also be designed and used for passing customized messages as a part of its

communication.

Security score comparison. The security score comparison is one of the most vital functions

of the back-end system. A new score is generated after evaluating the device and is then received

by the API. At this point, the score is compared with the latest scores from the other devices. As

a response to the message containing the score, the API also sends a score comparison result in

the form “x/y”, as an indication that the given device’s score is the Xth best among Y devices.

Along with the score, the values of the system scoring parameters are also saved. The scores from

different devices can be used to analyze and gather more valuable information. Figure 5.17 and

figure 5.18 present examples of a JSON request and response when a request has been made to

post a score of a user’s device.

Faults logging. Faults occurring in any part of the API during its execution should be properly

logged, and preferably in a single file, allowing the errors to be easily traced.

Caching. To decrease the network bandwidth and the number of requests being processed, caching

can be implemented.

Protecting the API. The API can be protected by rate-limiting, i.e., limiting the number of
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Figure 5.17: JSON request for posting a new score

Figure 5.18: JSON response for posting a new score

requests received from a specific IP within a fixed time span.

5.6.2 Expert System Implementation on a Mobile Platform with Neural Net-

works

Neural Network Architecture

To overcome the limitation of the expert systems implementation on mobile devices, we produce

a neural network hierarchical architecture that follows up the ES structure. Each NN model

approximates an input/output hyper-surface of a corresponding ES module. ES implementation

consists of eight modules (see Figure 5.12) that correspond to application security, device feature

security, sensor security, cloud comparison, correctness, adjusted correctness, device security, and
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Figure 5.19: Data Quality dependency on adjusted correctness and device security. Neural network model.

data quality. The neural network implementation of the framework has a very similar structure

with seven NN models: application security, device feature security, cloud comparison, correctness,

adjusted correctness, device security, and data quality. Since sensor security ES module inputs are

boolean (true/false), there are only 16 possible combinations of them. This module is substituted

with a simple lookup table function. The advantage of creating separate NN models that directly

substitute ES modules instead of creating an NN module that approximates the overall ES system

is flexibility. In the case when rules have changed, only the corresponding model has to be retrained

and replaced.

To approximate ES modules, a multilayer perceptron NN architecture is used. Each module has

one hidden layer. The number of neurons in the input layer equals to the number of inputs of the

corresponding ES module. The number of neurons in a hidden layer was chosen through performing

the empirical study and varies for each model in the range from ten to 50 neurons. The output

layer contains only one neuron. The generic architecture of used models is presented in Figure

5.19. All seven models were developed in MatLab using a neural network toolkit. The models were

trained using the Bayesian regularization algorithm.
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Table 5.8: Parameters of the NN models

NN Module Number of neurons in
hidden layer

Size of the training
dataset (records)

Testing Mean
Squared Error

App security 50 10249 0.024

Device feature secu-
rity

30 2247 0.0015

Cloud security 10 161 0.0027

Correctness 50 10249 0.0082

Device security 50 10249 0.0048

Adjusted Correctness 50 7141 0.0013

Data Quality 50 7141 0.00083

Neural Network Training

To produce a training dataset, we generated an extensive number of possible combinations (per-

mutations) of an input to an ES module. To do this, we iterated each input with a reasonable

interval. For example, for the “app security” module, there are four inputs, each can take any real

number between “0” and “1”. We iterated each of the inputs with delta equals “0.1”. This gives 11

values for each input. However, the number of all possible input combinations equals 114 = 14641.

Then, 70% of these inputs (randomly) were taken to train the model, 15% were taken for the cross-

validation, and 15% were taken for testing. Thus, in the aforementioned examples, 10249 records

were used for training, 2196 were used for validation, and 2196 were used for testing. Table 5.8

presents parameters of each model. It is worth noticing that in the column “Size of the training

dataset (records)” is the actual number of records used for training (70% of the overall generated

dataset).

Neural Network Models Validation and Implementation

To validate the developed models, we performed unit testing and then integration testing of the

whole system. We generated 10000 system inputs and fed them to the developed expert system

and NN models. One of the possible issues of substituting each ES module with the NN model is

the error accumulation. However, our system gives only 1.5% of the mean squared error, which is
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reasonably good for the ES as human expert errors may have higher rates.

After all NN models were trained and tested, they have been implemented in JAVA functions. Since

these functions mostly consist of matrix multiplication, they can be easily executed in the Android

OS environment. An Android application has been developed that calculates the overall DQ score

using trained NN models and demonstrates the framework functionality. We performed a test with

1000 DQ evaluations to demonstrate the performance benefits of NN models employment instead

of ES modules. Android smartphone Pixel 2XL with mobile chipset “Qualcomm Snapdragon 835”,

4GB of RAM, and Android v.9.0 using NN models finished evaluation in 0.2 seconds, while a

desktop computer with CPU Intel Core-i5 (I5-6500), 32GB of RAM, and MacOS v.10.12.6 using

ES finished DQ evaluation in 64.8 seconds. Unfortunately, ES and NN have to be compared on

different platforms due to a lack of ES implementation for the mobile platform. However, the

mobile platform computationally weaker than the desktop platform, yet NN DQ implementation

works 324 times faster.

5.7 Framework Validation Use Case One: Data Quality and Se-

curity Evaluation for Sensor Originated Data

This section presents a generic example of DQ and security evaluation of sensor originated data

that is collected from a smartphone in a crowd-sourced application.

A company MedResML is developing an application that can detect specific patterns in a human

walk that may indicate severe health problems. Building up a model requires an enormous amount

of data collected from an accelerometer, a gyroscope, a step counter, and a magnetometer during

a person’s walk. MedResML decided to employ a crowd-sensing approach and has distributed an

Android OS application that collects data from volunteers. To improve the quality of the collected

data, MedResML used conventional DQ evaluation techniques.
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Figure 5.20: Employing the knowledge graph in data quality evaluation. Sub-graphs for user A and B (see
table 5.9) are shown.

To collect data, the participated volunteers use their own smartphones. Unfortunately, some of

these volunteers are not very responsible smartphone users and have a low-security level of their



CHAPTER 5. IMPLEMENTATION AND VALIDATION 127

Table 5.9: Use Cases Summary

* - All metrics such as accuracy, noise, time resolution are scaled and take values from 0% to
100%. 0% denotes the less desirable value and 100% corresponds to the most desirable value. In
the parenthesis are absolute values.
** - Consistency is scaled between 0% and 100%. In the parenthesis are absolute values (how many
records were missed).

devices, which may lead to malicious data alternation. Conventional methods of DQ evaluation,

which do not consider the source trustworthiness and security, may assign high-quality indicators

to data acquired from these devices.

The sensor data evaluation alone does not provide sufficient information to identify data integrity

violations. Thus, the company decides to include a device security evaluation into conventional

DQ estimation procedures. In this case, the application that gathers sensor data also acquires
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information from the framework’s module, which is responsible for the device security evaluation.

Table 5.9 lists examples of parameters of five devices from individual volunteers. Furthermore,

we present use cases that demonstrate security evaluation influences on DQS evaluation, and vice

versa.

5.7.1 Knowledge Graph Vocabulary in Sensor Originated Data Quality Evalu-

ation

In this example, we extend our vocabulary with a set of logical and physical entities such as “smart-

phone”, “correctness”, “accuracy”, “noise”, “consistency”, and “time resolution”. “Smartphone” is

a physical entity that extends the “Device” entity, and represents a smartphone of a user that par-

ticipates in a crowd-sourcing application. “Accuracy” and “noise” reflects similar physical values

of a sensor.

The noise value is scaled between the maximum and minimum values, which are defined by the data

consumer. After scaling, noise is represented with a dimensionless value between zero (minimum

noise value) and 100 points (maximum noise value).

“Consistency” represents the number of records that are missing. If consistency is 100 points,

all records are present. Zero points of the consistency mean that the maximum value (a user

also defines that) of missing records is reached. “Time resolution” reflects how often data can

be acquired. It is also scaled between zero and 100 points. “Correctness” entity integrates noise,

consistency, time resolution, and sensor accuracy (that depends on a sensor model) and represents

sensor DQ.

5.7.2 Calculus Implementation in Sensor Originated Data Quality Evaluation

In this example, two major aspects are integrated into the overall DQ score: sensor DQ and

smartphone security. Security evaluation calculus is presented in section 5.1 in details. This
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subsection presents sensor DQ evaluation calculus.

A smartphone may provide the raw data from sensors such as an accelerometer, a gyroscope, a GPS,

a magnetometer, a gravity sensor, an illumination sensor, a proximity sensor, etc. Each “sensor”

entity has technical characteristics of the sensor hardware that participate in DQ evaluation. In

this use case, two types of calculus implementation were used: based on expert system and based

on a neural network that approximates the expert system input-output surface.

We developed an expert system module for a sensor correctness evaluation that takes as inputs

sensor accuracy, noise, consistency, and time resolution. Scaling these parameters between “0” and

“100” allows us to use developed calculus for various types of sensors. In order to implement this

calculus on the resource constraint mobile sensor-platform such as Android OS-based smartphone,

we substituted the developed expert system with the neural network models. The process is identical

to that one is described in section 5.6.

Figure 5.21, figure 5.22, and figure 5.23 show the input/output surfaces of the developed expert

system modules.

5.7.3 Knowledge Graph Employment in Sensor Originated Data Quality Eval-

uation

The knowledge graph acts as a database due to each new data object (a set of measurements),

and its DQ estimates are stored in the knowledge graph as new entities. The developed calculi

are presented in a knowledge graph as logical “calculus” entities. Figure 5.20 presents a simplified

sub-graph structure of the knowledge graph. One can observe that a hierarchical structure of a

security evaluation is also implemented in the knowledge graph. In addition, DQ estimation may

be easily modified by changing corresponding entities in the knowledge graph.
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5.7.4 Study of Sensor Originated Data Quality Influence on Integrated DQ

This case study involves user A and user C. As stated in table 5.9, both user A and user C have

excellent device security, both devices have the following characteristics:

• Application security - no suspicious applications, no unknown source applications, and rela-

tively strict permission controls.

• Device feature security – Android OS Oreo (API 26), security patch installed two months

ago, and running on Samsung Galaxy S9, which was a device release on June 1st, 2018, about

five months ago.

• Sensor security – bootloader is locked, root access is disabled, developer menu is disabled,

and has a pin code locking mechanism.

• Cloud security – the device evaluation history has an upward trend.

Naturally, both user A and user C achieve a high score of 10 on device security evaluation. We now

have a secure environment that can foster the production of high-quality data. Since both users A

and user C have highly secure devices, does that mean the data quality is high for both devices?

Looking back at the lower portion of the table, a clear distinction in the correctness of the sensors

between the first and second device stands out.

User A has relatively good accuracy, consistency, noise, and time resolution, which are +/-28mg, 20,

1.3mg, and 2.9ms, respectively. This grants user A’s device a score of 10/10 for sensor correctness.

Moreover, this sensor measurement data is collected not long ago, as shown in the metric of freshness

that adjusts the correctness score slightly based on the purpose of this evaluation, as shown in figure

5.22. In this case, we placed the medium importance to the freshness of the data, resulting in the

adjusted correctness score of 9.89/10. Lastly, we combine user A’s device security evaluation, “10”,

and the adjusted correctness score, “9.89/10”, and calculated the overall data quality score of

“9.76/10”.
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On the other hand, user C’s device sensors performed poorly with bad accuracy, consistency, noise,

and time resolution, which are +/-44mg, 120, 4.7mg, 8.6ms, respectively. This gives this sensor

correctness a score of 2.91/10. In addition, this data was collected more than a month ago, lowering

their adjusted correctness score to 2.01/10. Coupled with the device security score, 10/10, user C’s

overall data quality score is now 5.36/10. Considering device security alone may lead the researchers

to overlook important details that could tamper with the data quality. It is confirmed with user A

and user C, which could be found sitting on the peak and the right middle slope of the data quality

surface, respectively, as shown in figure 5.21.

5.7.5 Investigation of Device Security Influence on Integrated DQ

As stated in table 5.9, both user A and user D achieved scores of 10/10 on sensor correctness, for

having sensors that are accurate, consistent, with low-noise and good time resolution. As opposed

to case study 1, this case focuses on the adjusted sensor correctness, which is also the most widely

used area of evaluating data quality on a smartphone. However, we must not forget the influence

imposed by the data source environment on the data quality itself. In this case, the data source

environment is the device security.

Comparing against user A, user D has the opposite setup, with an assumption of having 50 apps

installed:

• App security – 10/20 apps are blacklisted, five apps are potentially dangerous, 25 apps are

downloaded from unknown sources, and more than half of the apps are at risk of abusing

dangerous permission.

• Device feature security – mediocre Android OS Nougat (API 24), installed security patch

eight months ago and running on Moto G4 smartphone, which was released about 29 months

ago.

• Sensor security – bootloader is unlocked, root access is enabled, developer menu is enabled,
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and a device lock present.

• Cloud security – the device evaluation history has a downward trend.

Figure 5.21: Data Quality dependency on adjusted correctness and device security.

The device security score for user D is 3.49/10, a good deal lower than user A’s. It may not be ap-

parent at first, why user D’s sensor data seems so good considering the state of the device. However,

as mentioned earlier, when device security is compromised, tampering the sensor data becomes a

trivial task. For example, when bootloader and root access are enabled, legitimate users/apps can

obtain superuser privileges, which may perform the modification of virtually everything on and

about the device, such as faking good sensor data. The proposed framework considers this and

combines both the device security and sensor correctness for the overall data quality evaluation -
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Figure 5.22: Adjusted correctness dependency on data correctness and freshness.

resulting in a score of 5.45/10 for user D. As shown in figure 5.21, user A sits at the peak of the

data quality surface, while user D lays at the middle left slope, which leaves more to be desired for

the device security feature.

5.8 Framework Validation Use Case Two: Data Quality Evalua-

tion in the Road Pothole Reporting System

In this example, we consider a design of the system that receives reports from citizens about

road potholes, calculates, and assigns the DQ evaluation to each report. DQ estimates are used
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Figure 5.23: Device security dependency on sensor security and application security.

to prioritize necessary road works. Citizens may send reports about road potholes using their

smartphones. We employ a ranking mechanism to evaluate a report’s priority. Each road pothole

report represents the data object (DO) and has DQ associated with it. DQ of the report includes

such metrics as image quality, report completeness, and security characteristics.

5.8.1 Knowledge Graph Vocabulary for DQ Evaluation of Road Pothole Re-

porting System

In this example, we extend the initial vocabulary with new entities and their relations. The report

is the DO that is augmented with its DQ value. Report is a logical entity that has such properties
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as “has”, “time”, and “belongs to”. In addition, this entity has various data (values) that have

to be present in the road-pothole report (see table 5.10). This report entity has “image quality”,

“completness”, and “DQ”.

Figure 5.24: DQ indicator (report priority) calculation engine.

Figure 5.25: Knowledge graph and road pothole report DQ evaluation.

Image quality is calculated based on the quality of the camera that captured the pothole image. In

this example, image quality is calculated using such image characteristics as camera type (smart-
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Table 5.10: Pothole Cases Table

Factors Instance 1 Instance 2

M
et

ri
cs Completeness 100% 90%

Image Quality High Medium
Device Security High High

D
at

a
O

b
je

ct
Weather Sunny Sunny
Street Type Arterial Arterial
Depth 16 cm No Data
Area 20 sq. ft. 20 sq. ft.
Traffic Vol. Extremely High Extremely High
Avg. Speed High High
Safety Zone School Zone School Zone
Junction Intersection Intersection
PPRRW Center Center
Material Asphalt Asphalt
Repair Permanent Permanent

DQ Priority Extremely High Medium

phone type), brightness, contrast, resolution, noise, and exposition. The good quality of the image

allows the system to estimate the required work. Data completeness specifies a user trust measure

based on the ratio of the number of questions answered by the user to the number of answers

requested by the reporting software. In the case of new sensors employment, the DQ metric set

can be further extended to include such metrics as noise, consistency, time resolution, and data

freshness. Security characteristic measure is based on techniques presented in the section 4.1 an

in [69,70,78,138]. To determine the report’s trustworthiness, a hierarchical framework that analyzes

installed applications, embedded mobile security features, device privacy settings, and a historical

device trust is employed.

The left part of figure 5.24 shows the data quality rule engine. Data quality is determined by

taking into consideration the data completeness, camera quality, and security. The quality degree

is scored as a percentage. Completeness score is calculated based on the ratio between the number

of questions answered by the user to the number of answers requested by the reporting application.

Camera quality score is determined from image quality parameters, and meta-data (EXIF) provided

along with the photo image. The security score is determined by analyzing the smartphone security
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characteristics. After calculating the score for each factor, it is multiplied by each factor’s weight.

The final weighted sum gives the calculated data quality. The priority score is calculated through

the forward-chained, rule-based intelligent system and represents the integrated DQ value. The

priority (DQ) is represented in percents.

When all the data is gathered, it is incorporated into a database, which may be used to analyze

and schedule potholes repair works. In addition, a new entity of the report and its DQ is created in

the knowledge graph. The goal is to analyze the data and to detect patterns like regions, which are

extremely prone to specific types of potholes, specifically sized potholes, how the weather conditions

affect potholes in a particular area. After the sufficient amount of data accumulated in the database,

it may increase the ability to find answers on many questions related to road maintenance and help

in the effort of prognosis and actions on pothole-related maintenance.

Table 5.10 presents two samples of road pothole reports. One can notice that Instance 1 of the

report and Instance 2 of the report represent the data about the same road pothole. However, the

DQ metrics of these instances are different. In addition, “Instance 2” lacks one of the fields, which

impacts on DQ as well (because of the lower “completeness” score). As a result, the “Instance

1” of the report gets a higher priority than the “Instance 2”. Authorities can have more trust in

this report than in the “Instance 2”. This application allows authorities to reduce data processing

efforts and to focus on other tasks.

5.8.2 Knowledge Graph Employment in DQ Evaluation of Road Pothole Re-

porting System

Figure 5.25 presents the role of knowledge graph in road pothole report DQ evaluation. The report

is represented by an entity with basic fields that are described in section 3.2.1 as well as with

new properties. This example demonstrates how the knowledge graph facilitates the automation

of DQ evaluation adoption by new IoT applications. Entities of pink and blue colors illustrate

new knowledge generation after the report was sent and its DQ value evaluated. In the figure 5.25
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two examples that are represented in table 5.10 are shown. Entity “ES road pothole” points to a

metrics integration calculus. “Report 1” and “Report 2” entities correspond to “Instance 1” and

“Instance 2” in the table 5.10.

5.9 Framework Validation Use Case Three: Data Quality Evalu-

ation in the Crowd-sourcing Application

This use case demonstrates the framework application in the crowdsourcing project for non-sensor

originated data. ICitizen is a crowdsourcing platform that bridges citizens and decision-makers. It

is a nonpartisan civic engagement platform where people can influence action on the issues they care

about, and decision-makers can inform policy with real-time feedback. People vote on and promote

issues and policies that affect their lives. Decision-makers use that feedback to inform policy and

make data-driven decisions. By working together online, people and their leaders build stronger,

more connected communities in the real world. ICitizen users are general citizens, candidates,

organizations, elected representatives, officials, and schools, which act as data consumers.

Figure 5.26: Knowledge graph employment in iCitizen DS calculation.

This platform uses an Android Application where a user can take or generate polls and ideas. Their
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responses are recorded and sent to the server where they are stored for further use. The responses,

polls, and ideas are augmented with user profile information and other relevant meta-data.

5.9.1 Knowledge Graph Vocabulary for DQ Evaluation of Electronic Polling

System

This example extends the initial vocabulary even further. We introduce new “poll”, “user”, and

“decision-maker” logical entities. The “Decision-maker” entity represents an official who is in-

terested in a poll results. “User” and “Poll” entities have “DQ” entity and “relevance” entities

associated with them (more details in the next subsection). “Poll” entity may be created by a user

or a decision-maker. We introduce “DQ for official” logical entity that represents the DQ value

that is interesting for a decision-maker. In addition, we augment vocabulary with such relations

as “created” and “voted”. “Created” relation (property) points to a “user” or “decision-maker”

entities that created the “poll” entity. “Voted” relation connects “user” entities with “poll” entities

and points to users that voted for the particular poll.

5.9.2 Calculus Implementation for DQ Evaluation of Electronic Polling System

To each poll or survey, relevant weights are assigned. As seen in the following example, these are

w1, w2, etc. weights. The DQ evaluation is based on device security, data, and the relevance of

the data to the user. In this example, linear equations are used to reduce the resources used for

the computation of various metrics.

Let us consider a case of Helen Smith being a Democrat senator from Tennessee, TX. Her area

of interest is in issues related to taxes, immigration policy, and Medicare. DQ is a function of a

data object, DR, and device security. Relevance can be calculated using two aspects: the profile

relevance and the poll (data object) relevance. These values depend on how relevant the profile

and data are to the data consumer.
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Table 5.11 presents profiles of five users with all their details. The profile credibility score in the

table can be calculated using the following parameters:

• How frequently the application is used.

• How many users have used the same Device id.

• How many polls a user took.

• How many polls were posted.

• Posted polls credibility score = f (Total posted polls vote count, Presence of any anti-social

agenda in the posted polls)

• If the user is blacklisted.

For this example, we consider five Polls.

The DQ in this example is calculated as follows:

DQ =
Rel(Profile data) + Rel(Polls data) + (Profile DQ ∗ Poll DQ)/2

3

The DQ value is always between of 0 and 1

Further, we present the calculus of each equation component:

1. Rel(Profile data)

If Helen wants to target the issues faced by Democrats in her constituency, aged in between 30 -

45, who are white males Democrats, all the relevance value associated with the profile data will be

derived using the following equation:

Relevance of Profile Data = w1*(Same region or Not) + w2*Gender matching + w3*Age matching

+ w4*Political affiliation matching + w5*(Matching interests points)
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Table 5.11: Table for Profiles and there associated values

User1 User2 User3 User4 User5

Name Alex Ram Chan Usain Jane

Age 32 30 54 30 34

Gender M M M M F

Race White Asian Asian Black White

From Tennessee,
TX

Rochester,
NY

San Fran-
sisco, CA

Washington
DC

Tennessee,
TX

Political Democrat Democrat Republican Republican Democrat

Education
Level

High School Graduate Under Grad-
uate

No School Graduate

Political
Views

Moderate Moderate Conservative Very Conser-
vative

Liberal

Areas of In-
terests

1.City Plan-
ning 2.Educa-
tion 3.Health-
Care

1.Immigra-
tion 2.Jobs
3.Sports

1.City Plan-
ning 2.Educa-
tion 3.Health
Care

1.Sports
2.Wild Life
3.National
Security

1.City Plan-
ning 2.Educa-
tion 3.Sports
Care

Security
Level
(Phone)

1 0.8 0.6 0.2 0.9

Polls Taken 121 82 43 17 110

Polls Cre-
ated

24 7 9 2 12

Number
of profiles
with the
associated
Device Id

1 1 2 4 1

Black-listed 0 0 0 0 0

Profile
Credibility
Score

1 1 0.33 0.66 1

Profile Re-
latability
Score

1 0.3 0.25 0.35 0.849

Complet-
eness

1 1 1 1 1
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Table 5.12: Table for profile relevance values

Alex Ram Chan Usain Jane

Profile Relevance Score 1 0.3 0.25 0.35 0.849

Table 5.13: Table for polls relevance values

Poll 1 Poll 2 Poll 3 Poll 4 Poll 5

Poll Relevance Score 0.39 0.217 0.1226 0.3817 0.6801

Weight for each of the data consumers interests = 1 / Interest count

So, in Helen’s case, it is 0.33 for each interest.

We can apply this equation to all the user profiles to assign them a relative profile relevance score.

The issues posted or answered by these user profiles, would have more value to the data consumer,

which is Helen Smith in this scenario.

Table 5.12 presents profile relevance values for w1 = 0.5, w2 = 0.1, w3 = 0.2, w4 =-0.05 and w5 =

0.15.

2.Rel(Polls data)

Let us assume that a poll is completed, and Helen Smith needs the poll results, which are the most

relevant to her. In this case, the poll data relevance is calculated using the same aforementioned

relevance formula but with some different weights values. Relevance of Poll Data =( w1*(Number

of people from same region) + w2*(Number of people from a particular gender) + w3* (Number

of people in the required age range) + w4*(Number of people with matching political affiliation)

+ w5*(Matching Tag)) / Vote Count We apply this equation to all polls to assign them a relative

poll relevance score. Let us suppose w1 = 0.5, w2 = 0.1, w3 = 0.2, w4 =-0.05, and w5 = 0.15 then

the Table 5.13 for poll relevance values shows us all the relevance for all the polls.

3. Poll Data Quality

This value depends on the following constraints:
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• Vote Count

– total vote count ¿ 5000 = +1

– total vote count between 2000 - 5000 = +0.5

– total vote count between 0 - 2000 = +0.25

– Otherwise = +0

• Tagged or Not

• Trending or not

• Freshness

• Question Count

• Not Controversial (Can be calculated using sentiment analysis)

By adding the points for all the above constraints, we obtain the normalized poll data quality by

dividing it with the number of constraints. Table 5.12 presents the calculated values for profile

relevance values.

4. Trust factor for the user profile.

The Trust level of a user profile will have a significant impact on the DQ. This trust for the user

profile can be calculated using the following steps 5.27:

• Suppose the user information form has ten questions to be answered, then depending on the

completeness of this form, the user profile completeness score can be calibrated as 0.1 for

each question completed. For example, if the user has completed 7 out of 10 profile related

questions, then this score component will be 0.7.

• The number of polls posted by the user and their quality will also have an impact on the

user’s trust score. The quality of the posted polls can be calculated by the aforementioned

method, and the quality of this poll can be averaged to get a value in a range from 0 to 1.
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Table 5.14: Table for DQ values of all the polls for Helen Smith

Poll 1 Poll 2 Poll 3 Poll 4 Poll 5

Data Quality 0.7429 0.4128 0.3301 0.5578 0.6574

• The number of polls taken by the user will also be considered. The score would be:

– 0.5 if the number of polls taken is between 1 to 25.

– 0.75 if the number of polls taken is between 26 to 100.

– 1.0 the number of polls taken is greater than 100.

• The duration for which the account is active will also have an impact on the trust level of

the user. The user is termed as active if he/she is either posting or taking polls at regular

intervals. The longer the user is active, the better. The dormant accounts will be loose points

in this aspect.

• The number of accounts associated with the device being used by this user.

– if only one account is associated with this users device then 1.0 point

– if 2 - 4 accounts are associated with this users device then 0.5 point

– otherwise 0

• The security of the device will also be used towards the trust factor of a profile.

The scores generated from the above-mentioned points are averaged out to get a profile trust score

in the range from 0 to 1. All the scores above are nullified if the “Integro-System” identifies the

account as ”Sybil”. To get the normalized profile data quality, we add all constraints and divide

them by the number of them.

Now, let us reconsider the scenario where ”Helen Smith wants to target the issues faced by

Democrats in her constituency, aged in between 30 - 45, who are white males Democrats” and

calculate the data value for each issue:
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Figure 5.27: Knowledge graph employment in the calculation of the trust score in the polling example.

Relevance of Poll 5 = 0.6801

Relevance of Jane’s Profile = 0.849

DQ =
DQ of Poll 5∗Trust score for Jane

2 + Relevance of Poll 5 + Relevance of Jane’s Profile

3
=

=
0.9167∗0.9667

2 + 0.6801 + 0.849

3
= 0.6574

(5.3)

Similarly, we calculate the DQ for all other polls. Values can be found in the Table 5.14.

The list of issues from top priority issues to the least priority for Helen Smith in this scenario would

be Poll 1, Poll 2, Poll 3, Poll 4, Poll 5.

Security and trust play a significant role in any crowd-sourcing platform. Let us see how security

and trust features can be built in to validate and improve the quality of data generated using this
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crowd-sourced application. The security and trust metrics in these kinds of applications can be

divided into two parts: the security and trust level evaluation of the device, which is used to collect

the data, and the evaluation of the profile that is generating this data. In this application, the

security level is calculated based on the implementation presented in section 5.1. The trust level

of the profile is determined as follows. We check how frequently and for how long the application

is being used. Longer the time for which the user is active, the higher the score. The frequency of

the usage also matters as the user using the application from the same device at a normal usage

frequency is more trustworthy. We also check if the device id associated with the account is being

used to create some other accounts as well and based on these number of devices associated with

that account. In addition, we detect fake accounts. For blacklisting an account, the following

criteria are used. The profile is blacklisted if it identified as a “sybil account” using the Integro-

System [16]. Similarly, the content posted by the user is checked if it contains any malicious or

harmful text; if the frequency at which such polls originate from a user profile is high, then the

account is blacklisted.

5.9.3 Knowledge Graph Employment in DQ Evaluation of Electronic Polling

System

Figure 5.26 presents a sub-graph of a knowledge graph that is used in this example. Each time a

decision-maker requests some data and the DQ associated with it, a new entity in the knowledge

graph is created (blue and pink color). Figure 5.26 presents two data polls and two users from

the table 5.11. This sub-graph reflects DQ evaluation for two polls in relation to Helen Smith’s

‘decision-maker” entity. One poll was created by a “user 1”, and Helen herself created the second

poll. The graph shows that both users have voted for both polls, which is reflected with “voted”

property in both users. “DQ iCitizen” entity indicates at what other entities and their relations

a “DQ for official” is based on, and what calculus has to be used. One can see in the graph that

after Helen requested information about two polls, two “DQ for official” entities were created. Both

entities have a “used” relation that points on Helen’s entity and “DQ iCitizen” entity.
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5.10 Developed Tools for Data Quality and Security Evaluation

This section presents tools that have been developed in this project and are dedicated to the DQ

and security evaluation as well as for the data collection.

5.10.1 Sensor Quality Evaluation Tool

This tool implements the sensors’ quality evaluation knowledge base, presented in section 3.3. To

assist mobile device users in the quality analysis of sensors that are built into their devices and

to provide further recommendations, we developed the specialized application [33]. It is based

on the quality calculation procedures described in the previous section and can be executed on

the Android OS devices. This application does not require any specific Android permissions and

employs standard Android API to acquire and to present to the user sensor types that are built-

in a smartphone as well as sensor characteristics. While basic sensor characteristics, such as the

resolution or sensing range, may be directly accessed through the Android API, other specific

information such as noise density or non-linearity is acquired from the developed database.

The screenshot of the application’s user interface is presented in figure 5.28. The developed Android

OS application reveals to the users those sensors that are built-in-to smartphones, their basic

characteristics, and overall quality score.

5.10.2 Smartphone Initial Security Evaluation Tool

This application evaluates the overall security level of your smartphone based on the system’s

parameters. It can consider parameters separately or perform a complex evaluation where all

the parameters are taken into account. As a result, you have a score that represents the overall

security level of your smartphone. In addition, this application provides detailed recommendations

on how to improve particular security aspects as well as general advice on increasing an overall
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Figure 5.28: The screenshot of the Android OS application for sensor quality assessment

security level. The application also provides a possibility to simulate various operating conditions

and system parameters values to demonstrate how they influence the overall security level. User

interface of the application is presented in figure 5.29 and figure 5.30.

5.10.3 Data Collection Tool

This tool collects smartphone’s data such as a device model, hardware description, onboard sen-

sors, installed applications and their permissions, state of the developer options menu, device lock
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Figure 5.29: The screenshot of the Android OS application for the smartphone security evaluation. Main
screen.

mechanism, basic integrity test, compatibility test, and presence of potentially harmful apps. This

data is saved to a text file. No private information about the owner is recorded. It gives a user an

option to prepare data for sending it to the specified email or remote folder. This tool may be used

for developing rules for DQ and security evaluation as well for training various AI models. The

interface of the tool is presented in figure 5.31.
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Figure 5.30: The screenshot of the Android OS application for the smartphone security evaluation. Emulation
screen.

5.10.4 Expert System Implementation on Android OS Smartphone with Neural

Networks

This application implements fuzzy rules expert systems presented in section 5.5 through neural net-

work models described in section 5.6. The application also utilizes the developed library presented

in section 5.1, which is used for acquiring the security metrics of the smartphone. The interface of
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Figure 5.31: The screenshot of the Android OS application for the collecting data about security and sensor
quality metrics of the Android OS smartphone.

the application is presented in figure 5.32.

5.11 Conclusions

In response to the research question posed in this chapter: “How to develop effective and

efficient framework implementation on a mobile platform, such as Android OS-based
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Figure 5.32: The screenshot of the Android OS application that implements ES modules through NN models
for the DQ and security evaluation.

smartphones?”, we achieved the following major research results, which are further described in

details:

• We developed methods and tools for security metrics acquisition in the form of Android
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OS library;

• We developed methods and tools for data quality and security metrics integration in

the form of fuzzy rules expert system;

• We developed a fuzzy rules expert systems implementation for resource-constraint

mobile devices through neural networks ;

• We developed detectors of novel and sophisticated attacks on users’ privacy that

can be used by untrained smartphone users on a modern Android smartphone without firmware

modification.

• We developed a set of various tools for data quality and security evaluation.

To validate the performance of the developed framework, we implemented and tested it on impor-

tant real-life use cases. To integrate all metrics into the overall DQ value, we implemented developed

calculi through expert systems based on fuzzy logic, neural networks, and algebraic functions. To

incorporate security and privacy aspects into the DQ evaluation process, we employed the knowl-

edge graph as a major development methodology. In addition, the knowledge graph allows an easy

framework extension and adjustment by extending vocabulary with new entities and adding new

calculus.

For the data privacy evaluation, we developed novel intelligent classifiers for real-time anomaly

detection on Android OS-based smartphones. We tested the developed attack detectors on multiple

diverse “colluded applications” attack cases. The novelty of the developed attack detectors is

that they do not require a sensor platform firmware modification and employ system resources

monitoring data collected and analyzed in real-time. The developed attack detectors employ various

machine learning techniques and models such as feed-forward neural networks, simple recurrent

neural networks, long short-term memory, and bidirectional long short-term memory.

In order to achieve better results in attack detection, models that utilize memory consumption

and CPU frequency were developed. The developed attack detectors employ feed-forward neural
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networks and long short-term memory ML techniques. Each detector was tested on the data from

selected four attack scenarios, and results were analyzed. The best results were achieved with

LSTM based attack detectors.

Our analysis shows that reliable attack detection accuracy can be achieved using system data

collected over one second with even higher accuracy with data collected over two seconds. While the

LSTM model has a higher performance than the FFNN model, it also has much higher complexity.

On the other hand, the LSTM model achieves this high accuracy using only CPU cores clock

speed, while the FFNN model needs memory usage as well. The developed attack detectors play

an important role in data privacy evaluation.

To reduce a false positive rate of the developed attack detectors, we developed and implemented

the permission analysis of the installed application. This additional step allows excluding the

applications that do not benefit from the attack execution.

We validated the developed framework on the set of important real-life tasks, such as framework

employment in the crowd-sensing application, road maintenance based on the user reports, and

autonomous self-driving vehicles. We demonstrated the ways of data security and privacy aspects

incorporation into the overall DQ evaluation processes.

We implemented the DQ evaluation calculus through the expert systems with fuzzy rules. We

developed a novel and effective implementation of the developed expert system on the resource

constraint sensor-platforms that are based on the Android OS smartphones. The presented solution

employs neural network models that approximate the input/output hypersurfaces of the developed

ES modules. The developed NN models may take advantage of the modern NN dedicated chips.

We rendered how to bind together the metrics integration calculi and the application context by

employing the knowledge graph. We demonstrated how to extend the framework application area

by augmenting the knowledge graph vocabulary.

To acquire initial data about a device for the security evaluation component, we produced a dedi-
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cated Android OS library that can be installed on any modern Android OS-based device. We also

developed the Android OS applications that implement concepts and methods developed in this

research:

• An Android application that analyzes the quality of the sensors that are available on the

device and provides this information to the device’s users. The developed tool enables the

education of sensor users and facilitates the sensor’s secure and safe applications.

• System Security Evaluation app based on a security evaluation library - https:// play.google.com

/store /apps/details?id= com.igorkh.trustcheck. securitycheck

• System Security Evaluation app based on a security evaluation library with the cloud support -

https://play.google.com /store/apps/ details?id= com.igorkh.trustcheck. securitycheckcloud

• Detector of Unverified Apps - https://play.google.com/ store/apps/details?id= dataquality-

lab.rit. ver app finder

• Implementation of the expert system on resource-constraint devices with neural network mod-

els. Source code of the NN calculus for security evaluation component - https://drive.google.com/

file/d/ 1jwii74qSpOPMHb4EuEwTtydSiF8Bf6mW/ view? usp=sharing

• Data collection tool for acquisition data quality and security metrics of Android smartphone

for further analysis - https:// play.google.com/store/apps /details?id= com.dataqualitylab.

collectinfo.collectinfo
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Conclusions

In the modern world of the constantly growing number of applications and systems that are fueled

by data, data quality and security are essential concepts in data management and decision-making

that are often separated in practice. Spreading of the citizens-science and crowdsensing elevated

the importance of DQ evaluation even higher. Bad quality of the data leads to wrong conclusions

and poor decisions that might produce bad results ranging from resource waste the loss of lives.

Data scientists and system developers have already produced a wide variety of DQ related applica-

tions, with most of them aiming at improving one or a few specific DQ aspects with no consideration

of many others. In addition, the security components of data quality are often underestimated or

even ignored. Nowadays, data security and privacy are extraordinarily important, especially con-

sidering the amount of data collected through mobile phones. We believe that data security as one

of the significant and essential components of the DQ evaluation process.

We developed a systematic approach to DQ evaluation system design and implementation that

takes into account multiple diverse metrics and enables an effortless adjustment to various areas.

We implemented this approach in a framework designed for DQ and security evaluation in resource

constraint sensor platforms such as mobile devices. The framework includes models and methods

156
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for DQ and security metrics assignment, selection, composition, their integration calculus, and the

knowledge graph that bonds them together and allows the further development through knowledge

accumulation. As an implementation platform, we chose an Android OS smartphone. However,

our framework design is not limited to mobile phones only and can be further adjusted to various

data sources and sensor platforms’ operations.

We analyzed the existing methods of DQ evaluation and revealed that current approaches to DQ

estimation are often limited to a very narrow application field. Consequently, those DQ evaluation

methods use a few application-specific metrics. Therefore, it is very hard to modify existing DQ

evaluation methods for employment in new application fields.

We classified existing DQ metrics design approaches into three categories: empirical, the-

oretical, and intuitive. In our DQ and security evaluation framework, we employ the theoretical

approach to metrics design and selection due to it considers ways on how data may become imper-

fect during the data production or acquisition processes and results in a broad spectrum of various

DQ metrics.

We studied the variety of data quality and security metrics and developed a novel multilevel

hierarchical knowledge structure that facilitates relatively effortless metrics adoption from new

application domains and extends framework employment in solving broad task spectrum.

We also reviewed and classified existing DQ concept types into two major categories: intrin-

sic and contextual, where the intrinsic approach to DQ definition isolates DQ from the application

context, and the contextual DQ considers users’ needs. Our analysis of the existing approaches to

DQ definition directed us to use intrinsic first-level DQ metrics and consider application context

on a stage of metrics integration.

Our analysis of existing approaches to DQ evaluation revealed insufficient attention to data

security and privacy. This lack of security and privacy consideration in the overall DQ evaluation

pipeline led us to investigate existing methods of security and privacy aspects evaluation and ways of
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their inclusion to the overall DQ evaluation processes. We chose to use diverse security and privacy-

related metrics that are accessible without sensor-platform modification. We investigated privacy

threats and classified existing approaches to the privacy protection. We also considered

novel and sophisticated threats to data privacy, such as the “colluded applications” attack. We

analyzed existing methods of this attack detection and revealed the absence of the

attack detection methods that can be used by untrained users.

We developed methods to integrate the security and privacy aspects into the overall

DQ evaluation processes. To integrate all security and DQ metrics into the overall DQ value,

we developed and implemented various calculi such as an expert system based on fuzzy logic, neural

networks, and weighted sum. The metrics integration hierarchy follows up the metrics hierarchy

and allows us to adjust DQ evaluation with a little framework modification. We investigated the

knowledge graph concept and developed the methodology of its employment as the novel imple-

mentation platform of our DQ evaluation framework. The knowledge graph allowed us to integrate

security and privacy aspects into the conventional DQ evaluation techniques and to consider the ap-

plication context. The knowledge graph component of the framework facilitates an easy framework

extension and adjustment by extending vocabulary with new entities and adding new calculus. The

knowledge graph also allows considering the application context on a stage of metrics integration,

which aids in adopting of more application domains. We formulated an initial knowledge graph

vocabulary, which facilitates the framework usage in crowd-sensing tasks for evaluation sensor

originated data. We investigated and analyzed sensors incorporated in the modern mobile devices,

produced the comprehensive knowledge base and made it available for community use. The

presented framework is a “skeleton”, which later can be easily expanded and modified for various

applications.

We investigated modern Android OS based smartphones and developed novel multilayered hi-

erarchical security-related metrics structure that includes three major branches. We devel-

oped the initial calculus for metrics integration from each of the security branches. On our

way to integrating security and privacy aspects into conventional DQ evaluation, we developed
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novel security and privacy evaluation methods. We considered security and privacy-related

characteristics of the Android OS-based smartphone and analyzed ways of violating security and

privacy data aspects. Our analysis resulted in the initial set of metrics that are used for security

evaluation. We investigated current threats to user privacy and revealed the lack of tools

for detection novel and sophisticated attacks. On the way of data privacy evaluation, we

conducted an empirical study of the novel and sophisticated attacks on data privacy on the example

of “colluded application” attacks. We formalized “colluded applications” attack and devel-

oped its model. We conducted an empirical study of this attack, and created a dataset

that can be used for developing machine learning-based attack detectors. We investigated and

analyzed various artificial intelligence techniques for the detection attacks on users’ pri-

vacy. We developed detectors of novel and sophisticated attacks on users’ privacy that

can be used by untrained smartphone users on a modern Android smartphone without firmware

modification.

We implemented the proposed methods and techniques on the resource-constraint sensor platforms,

such as Android OS-based smartphones. We developed a systematic security evaluation

pipeline that considers smartphones’ resource-constraint nature and includes a comprehensive

set of security and privacy evaluation approaches. To acquire initial intrinsic DQ metrics,

we developed an application that collects DQ and security metrics from most modern

Android OS-based smartphones. We developed a dedicated Android OS library that can

be installed on any modern Android OS-based device, collect security-related metrics, ad integrate

them into the security score. We developed a fuzzy rules expert systems implementation for

resource-constraint mobile devices with an application of neural network models. Developed

NN models approximate input/output hypersurfaces of the developed ES modules. NN models

are an effective and efficient approach to ES implementation on modern mobile phones that takes

advantage of the modern NN chips that are built into modern smartphones.

We validated the developed framework on a set of diverse important real-life exam-

ples. We demonstrated the knowledge graph role in DQ and security evaluation and how it allows
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a framework augmentation with new applications on several use cases. These use cases present

DQ evaluation for sensor originated data in the various application domain. We demonstrate the

comparison of the DQ evaluation with and without the security component and render the impor-

tance of the security component in overall DQ evaluation. We presented how the DQ evaluation

with a specific calculus is implemented through the knowledge graph. The presented use cases also

render how the knowledge graph vocabulary can be extended and how to include a new calculus

implementation.

The developed Android OS applications that implement concepts and methods presented in

this research are made available for public use:

• An Android application that analyzes the quality of the sensors that are available on the

device and provides this information to the device’s users. The developed tool enables the

education of sensor users and facilitates the sensor’s secure and safe applications.

• System Security Evaluation app based on a security evaluation library - https:// play.google.com

/store /apps/details?id= com.igorkh.trustcheck. securitycheck

• System Security Evaluation app based on a security evaluation library with the cloud support -

https://play.google.com /store/apps/ details?id= com.igorkh.trustcheck. securitycheckcloud

• Detector of Unverified Apps - https://play.google.com/ store/apps/details?id= dataquality-

lab.rit. ver app finder

• Implmentation of the expert system on resource-constraint devices throu neural network mod-

els. Source code of the NN calculus for security evaluation component - https://drive.google.com/

file/d/ 1jwii74qSpOPMHb4EuEwTtydSiF8Bf6mW/ view? usp=sharing

• Data collection tool for acquisition data quality and security metrics of Android smartphone

for further analysis - https:// play.google.com/store/apps /details?id= com.dataqualitylab.

collectinfo.collectinfo
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The integration of conventional DQ metrics and security properties into the single framework al-

lowed us to produce the overall DQ evaluation pipeline that covers diverse data aspects. The

employment of the knowledge graph facilitates the framework adaptation to a broad spectrum of

applications. The knowledge graph allowed us to integrate data collection and DQ evaluation into

the complete data management pipeline. It enables knowledge accumulation and, at the same time,

acts as data storage. In addition, the knowledge graph application allows the employment of versa-

tile DQ calculi. The framework could be employed in combination with other products in various

applications, for example, for data classification in data access control or security enhancement

with data object tracing.
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