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Abstract

Conceptions of Refactoring: An Investigation of Stack Overflow Posts

Steven David Simmons

Supervising Professor: Dr. Mohamed Wiem Mkaouer

Refactoring is a common activity in software development. Developers make changes in

the code in order to achieve a desired effect such as better performance, conformance to

new business rules, or the removal of code anti-patterns such as code smells. However,

refactoring operations often fail to achieve the results that are expected of them. There

have been many studies conducted to assess their impact and effectiveness in different sce-

narios, but they have not returned consistent results. At times, studies have even shown

decreasing and increasing in code quality from the same operation. This study investigated

whether a common set of well-known refactoring actions defined by Fowler aligned with

the terms and actions discussed by developers in the process of refactoring. It obtained

these scenarios by looking into Stack Overflow posts discussing refactoring to see what ac-

tions and goals users were pursing. We hypothesis that there may be discrepancies between

the actions discussed and the context (i.e., web-development vs. database) or technology

(i.e., Java, PHP, Python) where different refactorings are more easily implemented. It was

found that the number of identifiable refactoring scenarios increases when the scenario con-

tains matching components described in the methods (i.e., Extract Method, Rename Class,

etc.). Additionally, developers often only have a vague conception of what actions they

believe will achieve the goals of their refactor. The conclusion drawn from these results is



iv

that refactoring suggestions must be aware of the context they will be applied to in order to

align with the developer’s expectations. These methods also must be explicitly aligned with

specific quality improvements or changes in order for developers to feel more comfortable

using them to communicate their refactoring intentions.



v

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Ineffectiveness of Refactoring . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Misconception in Software . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Stack Overflow Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Data Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Processing Post Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1 Popularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.2 Parsing for Keywords . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Manual Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Experimental Results and Evaluation . . . . . . . . . . . . . . . . . . . . . 20
4.1 RQ 1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 RQ 2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Post Popularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Refactoring Methods . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3 Languages and IDEs . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 RQ3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 RQ4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Threats to Validity and Future Work . . . . . . . . . . . . . . . . . . . . . 32
5.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



vi

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



vii

List of Tables

3.1 Refactoring Methods per Language . . . . . . . . . . . . . . . . . . . . . . 15

4.1 IDEs in Sample Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Refactoring Methods per Topic . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Top 100 Popular Questions: Refactoring Methods . . . . . . . . . . . . . . 30
4.4 Top 100 Popular Questions: Refactoring Topics . . . . . . . . . . . . . . . 31

1 Refactoring SLRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2 Topics: Set of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 Statistical summary of popularity characteristics of question and answer posts 47
4 Refactoring Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Cases of Multiple Refactoring Methods in Stack Overflow Posts . . . . . . 49
6 Languages in Sample Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7 Refactoring Methods per Language . . . . . . . . . . . . . . . . . . . . . . 51



viii

List of Figures

3.1 Popularity Calculation for Stack Overflow Question posts from Pinto
et. al 2015 study on energy consumption [31] . . . . . . . . . . . . . . . 13

3.2 Popularity Calculation for Stack Overflow Answer posts from Pinto et.
al 2015 study on energy consumption [31] . . . . . . . . . . . . . . . . . 13



1

Chapter 1

Introduction

Refactoring is a popular process for improving the internal structure of the code [1]. The

process is often done in order to satisfy evolving requirements [27], add new functionality

or remove bugs in the code [37], or to remove design anti-patterns or ”code smells” [1].

Code smells are structural problems in the program with common examples including God

Class, Feature Envy, and Long Method [1]. The result of refactoring is a program that is

measurably improved, usually in an improvement of quality metrics or in the removal of an

undesirable piece of code, such as a code smell.

Refactoring is a consistent practice that spans several domains such as mobile, desktop,

and embedded software and is independent of any particular programming language. Sev-

eral metrics have been proposed in order to measure the impact of refactoring and identify

refactoring opportunities such as the CK-Metrics [11] and the MOOD metric suite [17],

and others are consistently employed in order to identify areas for refactoring opportuni-

ties, particularly in implementations of refactoring tools such as Ref-Finder [32].

However, performing refactoring does not reliably achieve improvements in software

quality or the removal of code smells. There have been several studies that have attempted

to leverage metrics in order to measure the results in refactoring [10, 2, 4, 30, 13] but

they all commonly attest that there is not a shared consensus amongst their results when

refactoring is attempted. Refactoring operations taken to remove code smells are often

unsuccessful and in fact instead have a significant change to introduce new smells into

the code [9]. It is still currently unclear what factors are contributing to this discrepancy

between the application of refactoring and the lack of consistent benefits of those actions



2

in the literature.

This study seeks to begin an investigation into how accurately refactoring methods are

being applied by performing a study analyzing Stack Overflow, a popular Q&A site where

programmers ask questions. Refactoring is often a stated action or goal in making changes

to the code, therefore this study will attempt to identify trends in the posts made when

developers attempt to refactor their code. Identifying what developers perceive the intended

goal of their refactoring will be along with the context (i.e., language, domain, etc.) in

which they make that assumption will allow us to form a conception of what refactoring

is and hopes to achieve in these scenarios. This will allow us to see if there are common

scenarios where specific refactoring actions are applied or if there is a mismatch between

the actions commonly suggested in literature and what actions are suggested within the

discussion. We will also seek to identify the reasoning that developers undertake these

actions and see if there is any consistency in their mindset when they undertake refactoring

actions.

Our ultimate goal in this is to identify a basis as to why refactoring does not attain the

results expected of it and highlight any factors that may contribute to changing the context

in which the refactoring is occurring. Through this, we believe refactoring can become a

more accurate activity that better acknowledges factors which require it to adapt its methods

to create more effective, desirable change.
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Chapter 2

Related Work

2.1 Ineffectiveness of Refactoring

This thesis was initially inspired by the work done by Bavota et. al. on identifying the

relationship between quality and refactoring [2]. They noticed a lack of studies that quan-

titatively analyzed which quality characteristics in the code are more likely to be subject to

refactoring. This also implied that there was a lack of evidence that the presence of con-

cerning quality metrics (i.e., code smells) actually prompted the developers to refactor the

code. Analyzing 63 releases of 3 large Java programs (Apache Ant, ArgoUML, Xerces)

with Ref-Finder [32], a tool that automatically detected 52 types of refactoring methods,

they uncovered 12,922 refactoring methods present in the systems. Of those observed

to be directly acting on files exhibiting code smells, only 7% of total operations actually

removed the smell. The reasoning for this discrepancy was interpreted by leveraging a

previous study done by the authors about developer perception of code smells [29]. There

it was considered that only particularly severe code smells were considered worthwhile to

refactor. An additional interpretation was that refactoring actions were only mitigating the

smell without fully removing it, although it is unclear from this study of that was the devel-

oper’s intent when the change was made. The interpretation we take from these results is

that refactoring, which often has a main goal of removing smells, does not often achieve the

results that it is assumed to be able to meet. Therefore, this study attempts to identify what

developers seek to accomplish in each refactoring opportunity through an investigation of

Stack Overflow posts. Bavota’s initial study was followed up by couple [10, 9] longitudinal
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studies that expanded upon this research, addressing some of its limitations such as its very

small sample size (only the major releases of 3 projects were looked in the original study),

by expanding it to over 20 open source projects for each study and examining each version.

A longitudinal study was performed by Cedrim et. al in order to identify the effects of

refactoring on code smells [9] after observing a lack of studies categorizing the positive or

negative effects of refactoring methods on smells. The study was conducted on 23 GitHub

projects that were highly popular (as measured by their stars), had active issue tracking

systems, and that had a majority of files (above 90%) written in Java. Using a tool called

Refactoring Miner [39, 40] to identify the refactorings in the code, the authors considered

refactorings to be either positive, negative, or neutral based on the amount of code smells

the change had increased, decreased, or remained the same. Code smells were detected

using three sets of metric thresholds in order to cover for each threshold potentially having

its own results. These thresholds were based on previous studies by Macia et al. [26]

and Bavota et. al [2] as well as including a relaxed set which was more inclusive. They

identified 16,566 refactorings in the code set with only 79.4% of the operations directly

touching a smelly element. Only 9.7% of the operations actually removed the smell, with

33.3% inducing at least one additional smell, and the remaining 57% not affecting the

number of smells in the code at all. This suggests that even having previous studies prove

that developers detect smells in a similar method to the one used by the study to detected

smells [19, 15], they are still not accurately able to accurately able to target and remove the

smells. This study seeks to confirm that developer expectation of refactoring actions are in

line with their actual effect to see if that helps explains these results.

Tahir et. al performed an analysis of how developers discussed code smells on Stack

Overflow[38]. Based on other recent work in the field [29, 45] and the increase in reports

that smell detection tools were often returning false positives [16], they postulated that

the software community was facing a gap in their understanding of the criticality of code

smells and anti-patterns. Taking a set of question posts identified by code smell keywords,

they determined which were the most actively discussed by utilizing the post score and
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view count. Selecting the top 100 posts from this set, they were able to determine the

common corrective action suggested to refactor the smell. Of the minority of answers seen

that offered a fix ( 25%), they did not specify any specific name to the operations (such

as a refactoring method) and often were given in code snippets. Our study expands this

perception analysis to refactoring while also attempting to identify the context in which the

developers are refactoring.

2.2 Misconception in Software

Pantiuchina et. al [30] attempted to perform an investigation into if quality metrics are able

to capture code improvements as perceived by developers. Using the GitHub Archive, a

project recording public GitHub events in a JSON format, they looked for any commits

that mentioned one of the quality metrics of interest: coupling, complexity, cohesion, read-

ability. After filtering out any commits that testing related commits or any commits that

affected more than 5 files, the authors manually reviewed the remaining commits to ensure

the main goal of the commit was quality improvement. This process resulted in 1,282 com-

mits from 986 Java programs on GitHub. A record of the quality metrics of the code (e.g.

LCOM, WFC, RFC) was taken before the commits in the set and compared against the

metrics present after the commit was applied. The results found that there was often incon-

sistencies between the changes in metrics and the developer’s perception of improvement in

the code. There were several instances observed where a developer undertook refactoring

in order to improve an aspect of the code (e.g. reducing complexity by extracting several

method from a long method) resulted in a negative change in the metrics for the affected

files. Our study takes a similar assumption to the conclusions found in this paper that a

developer may have a different conception of a refactor than is suggested measurements

or static analysis tools. Therefore, it is imperative to identify if there are common trends

in developers’ perception to see if they can be greater alignment and support provided by

those tools.

Zapalowski et. al performed a study investigating six systems to determine what sort
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of divergence happens between conceptual architecture design and actually implemented

design [47]. Despite the importance of software architecture, many systems do not have

reliable architecture documentation which dictates the rules different components should

follow (i.e. when methods and functions can be invoked and by whom). This lack of

documentation contributes to architecture erosion (i.e. creation of undesired dependencies

among modules) and may lead to the loss of knowledge on the original conception of

the system as it slowly drifts from its intended implementation. Their analysis revealed

that violations of architecture rules were detected in all the systems, ranging from 44.4%

- 73.9% of all dependencies in the observed system. Furthermore, there was a lack of

dependencies allowed by the rules with the highest observed system having 39.7% of its

dependencies unimplemented. This implied that the rules in the system were too loose

and potentially allowing unnecessary or harmful dependencies to be formed within the

system. While this study does not focus on refactoring it does reinforce our assumption that

there are software concepts that can diverge from what they set out to and have potentially

harmful impacts on the software.

2.3 Stack Overflow Studies

Zhang et. al looked into the reliability of code snippets on Stack Overflow in terms of

correct API usage [48]. They determined the proper API usage patterns by mining code

examples from GitHub using a program they developed called ExampleCheck. After ob-

taining these patterns, they select posts that contained an API from list of 100 Java APIs

that were discovered by parsing the Stack Overflow dump taken on Oct. 2016 and an API

misuse benchmark tool called MUBench [6] and extract their code snippets. Out of the

217,818 posts identified, they found that 31% had potential misuse of their APIs with con-

sequences such as resource leaks, incomplete action (i.e. not completing a transaction after

modifying data), or potentially crashing the program. They also found that the highly voted

posts are not necessarily correlated with fewer API usage violations. As previous studies

have shown, the score is more closely correlated to the presence of code examples and
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detailed step-by-step instructions in the post [28]. The vote score they used in their study

is the same score value used in our popularity calculation, so the insights they found on

highly scored posts have the potential to translate to different domains, such as refactoring

in our study.

Imtiaz et. al performed a study on Stack Overflow where [20]. This study also used

the MSR 2019 challenge dataset that this study uses. They built their set based on a list

of popular SATs from OWASP(Open Web Application Security Project), forming a set of

17 keywords that were searched for in the tags of question posts. After those posts were

identified, they were further filtered by 9 keywords related to alerts. The authors found

that the posts had three common themes: Ignore/Filter alerts, False Positive Validation, and

Handling False Positives, accounting for over 90% (93.5%) of the posts observed. The

alerts the posts described were categorized according to a grouping scheme proposed by

Johnson et. al into two categories that are comprised of 10 challenges developers faced [?]:

Knowledge Gap, a gap between the developer’s knowledge and the information performed

by the alert and Knowledge Mismatch, a mismatch between what the developer expects the

alert to communicate and what it actually means. This study is similar in that is trying to

understand a consensus in how developers handle tool alerts while ours is focused on refac-

toring. The Knowledge Mismatch category reinforces our assumption that there might be

areas that have a gap between what the developers perceived and what is actually occurring.
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Chapter 3

Methodology

In this chapter, we will explain the research questions we formed for this study. These

questions will provide a framework for our understanding and explain the actions we will

take in this study. Answering these questions will place us in a better position to understand

if the actions developers discuss while refactoring and the reasoning they have for their

approaches. Finally, we will explain how we have gathered the data we used for the study

and in what ways we have processed it. We will also explain how the result of each step of

the processing will assist in answering the research questions.

3.1 Research Questions

This section will cover the research questions for this study and explain how answering

them will further our understanding of how developers interpret refactoring and the actions

they take in the name of refactoring.

RQ1: What are the general areas where refactoring is considered unreliable?

This question will help us confirm if the idea that refactoring methods are unreliable

is prevalent, at least amongst academia. There is the potential that we may focus on stud-

ies that support our hypothesis (refactoring methods are unreliable) and ignore legitimate

counterclaims. Therefore, we must analyze sources discussing refactoring and determine

if they cast doubt on the reliability of refactoring methods.

While our initial analysis pointed toward refactoring methods being unreliable, that
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does not mean all the commonly used methods cannot produce reliable results. For ex-

ample, going by our current assumption that refactoring methods are being applied toward

the incorrect domain, there could be domains where a refactoring method is consistently

applied and produces results that align with the developer’s expectations. Therefore, we

must first gain an understanding of what areas the refactoring methods we demonstrate

consistent results.

If the literature agrees with our initial hypothesis, we will have a stronger basis from

which to base our study off of, given that there would be several different reports that refac-

toring reliability is in question. In addition, gathering these sources will help us identify

common areas of misunderstanding amongst refactoring methods, which may be able to be

identified in the investigation performed later in the study.

RQ2: What methods, languages, and IDEs are associated with ”refactoring” posts?

For this question, we wish to see if the results from the literature review in RQ1 com-

plement with information on how developers interpret different refactoring scenarios. This

is done in order to verify if the refactoring methods discussed in the previous studies align

with the interpretations developers have on refactoring in locations further removed from

academia. The way this study chose to investigate these scenarios was to leverage Stack

Overflow (https://stackoverflow.com), a Q&A that is a fairly popular location for develop-

ers to receive advice about many software topics, including refactoring. Developers will

often come to the site to ask for advice on how to resolve bugs or improve their code, which

are also common refactoring scenarios [1]. The scope of this question will be limited to sit-

uations in which developers specifically believe they are performing ”refactoring” as that

will allow us to observe what refactoring is conceptualized as by the developer and pre-

vent us from injecting our own bias into the study by interpreting which actions constitute

refactoring.

Here we chose to identify the refactoring methods, languages, and IDEs in posts that

were specifically discussing ”refactoring”. For the refactoring methods, which were chosen

from a well-known set of Fowler’s refactoring methods [1], we want to see how often they
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are mentioned within these posts to see if the common understanding of refactoring actions

are aligned with actions discussed in real refactoring scenarios.

RQ3: Does the software domain affect which refactoring methods are applied?

Once we identify scenarios in which developers describe refactoring, we want to also

take into consideration the domain of the questions. The domain, in this case, is the area of

software development that the scenario covers, such as web design, OO-programming, or

database modifications. We identify these domains by using LDA. LDA (Latent Dirichlet

Allocation) is a topic modeling technique [8] that was used in several other studies [43, 34,

41, 5] in order to capture topics from Stack Overflow posts. By having these topics, we can

show that there is a relationship between particular software areas and refactoring actions.

If we can identify a trend between the actions and the domain, we may be able to more

accurately recommend actions to refactor code.

For this question, we will identify the topics through performing LDA on the refactoring

set of posts and then evaluate the topics discovered by the analysis. The topics will be

manually identified by the author and a doctorate student with the rationale given in the

following section for this question.

RQ4: What are the common characteristics of popular posts?

The final analysis we can perform is leveraging the popularity metric we recorded ear-

lier to see what if there are any common trends amongst refactoring posts. The popularity

metric represents a certain degree of user engagement, and we can assume that increased

engagement represents an increased interest in the content in the post and an increased pos-

sibility that the post more accurately represents a form of ”refactoring”. We will be able to

make this assumption in part because we will explicitly search for the ”refactor*” keyword

in order to obtain the set of posts we perform the analysis on. The higher degree of en-

gagement also suggests that that representation of refactoring may be closer to a consensus

view of refactoring that is more easily understood by larger groups of developers. For that

reason, we believe an investigation into the most popular posts is desirable in order to see

there are any trends amongst their characteristics.



11

3.2 Literature Review

A literature review was performed to see how widespread the idea that refactoring methods

can be ineffective is. This allows us to make sure that this study is not being unduly influ-

enced by any specific group of studies as it is possible that the assumption that refactoring is

ineffective does not have a wealth of evidence to back up the claim. Simultaneously, it will

help us identify areas where refactoring has generally proven reliable or unreliable, which

will help us see if those circumstances are present in Stack Overflow posts, enhancing our

analysis of RQ2.

Since we initially believed the study done by Bavota et. al [2] was the earliest paper ex-

pressing doubts about the efficacy of refactoring, we wanted to observe if any other studies

made similar claims. Sourcing papers that were related to this study alone would introduce

bias into our sources, as it could be assumed that any paper citing it would likely have a

similar view on refactoring or wished to use its results to back up its claims. Therefore, we

also gathered sources that discussed refactoring by utilizing the Google Scholar database

(https://scholar.google.com/). We initially searched for systematic literature reviews using

the keywords ”refactor” and ”systematic” as those would provide a more holistic view of

the state of refactoring at the time the study was performed and be in a position to notice

trends (such as refactoring being ineffective) becoming more widespread.

Once these reviews were identified, we looked to see if they discussed any results from

refactoring attempts in the study. We were looking for any mention of refactoring having

been performed or a specific refactoring method being cited and the results of its use. We

discarded any papers that did not contain a section discussing the results of refactoring or

did not cite metrics or approaches on how the results came about.
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3.3 Data Gathering

The data set used for this study came from the MSR 2019 Challenge Dataset accessed

through SOTorrent1, which is a set of Stack Overflow posts available to query through the

use of Google’s BigQuery platform 2. In order to locate posts concerning refactoring, we

attempted to search the body, title, and tags of each post for strings containing ”refactor%”.

For question posts, we had the body, title, and tags were available, and for the answer posts,

only the body of the post was available for parsing.

While we were aware of additional vocabulary related to refactoring (i.e., refactor-

ing methods such as Extract Method, Rename Method, etc.), we searched specifically for

”refactor%” in order to obtain the cases where the developers directly stated they were

attempting some kind of refactoring and not changing the code for some other reason.

Limiting the set in this way helped us gain an understanding of what actions developers

believe refactoring consists of and what context encourages refactoring attempts. It also al-

lows us to more reasonably assume that the posts are definitively talking about refactoring

in some form, which helps us draw conclusions on the results to answer RQ2 and RQ4.

The answer posts were further divided between accepted answers and answers not ac-

cepted. In Stack Overflow, users have the option to mark an answer to a question that

they ask as ”accepted”. We identify these accepted answers adding a join on our query to

the Votes table, which records the date when an answer is accepted. Answers that were

not accepted as answer posts that are related to a question about refactoring, but were not

accepted by the question’s user as an answer to their question.

3.4 Processing Post Data

There were three processing steps performed on Stack Overflow posts in this study: popu-

larity calculation, parsing for relevant keywords, and LDA.

1https://empirical-software.engineering/projects/sotorrent/
2https://cloud.google.com/bigquery
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3.4.1 Popularity

Figure 3.1: Popularity Calculation for Stack Overflow Question posts from Pinto et.
al 2015 study on energy consumption [31]

The popularity calculation used in this study was taken from a study by Pinto et al.

[31]. For this study, locating posts highly rated by this metric allows us to gain insight

into what concepts of refactoring users engage the most with and allows us to answer

RQ4 by manually reviewing highly popular posts. This calculation was preferred over

similar calculations [42, 38] due to its inclusion of all the attributes of a post (i.e., score,

comment count, etc.), which allowed the calculation to respond to all ways users might

express interest in the post. The calculation is a simple aggregation of a post’s score,

answer count, favorite count, comment count, and view count. For answer posts where all

these fields are not available, popularity can be calculated from the sum of the available

fields: the score, answer count, and comment counts.

Figure 3.2: Popularity Calculation for Stack Overflow Answer posts from Pinto et. al
2015 study on energy consumption [31]

The studies using a popularity metric also suggested the need to normalize the compos-

ite values before calculating the result [31, 42, 38]. This is done to remove distortions in the

result that are caused by the presence of particularly large outliers in the set [31]. For the

same reason, we also pulled all the posts from the MSR 2019 Challenge dataset that we had

gathered the refactoring questions from and obtained the mean of each of the values used

in the popularity metric. The mean values were then compared against the mean values we

would receive from the set of refactoring posts we identified.
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Since the refactoring set was much smaller and had a greater number of outliers that

could skew the results, we further processed the refactoring set to remove outliers using

the outlierKD function (https://datascienceplus.com/identify-describe-plot-and-removing-

the-outliers-from-the-dataset/) which was preferred due to ignoring the mean and standard

deviation which would be overly influenced by posts with large amounts of engagement

(i.e., score, comments, etc.). We did not perform this process on the full Stack Overflow

set as we believed its size ( 45.8 million total posts) compared to the refactoring set we

used for the study (101,163 total posts) allowed the mean values which would be used to

be relatively unaffected.

Once the outliers were removed from the refactoring set and the means for all the values

were obtained from the full Stack Overflow dataset, the refactoring set means for each

composite value of the popularity metric were divided by the mean of the full dataset in

order to see how the refactoring set differed from the average Stack Overflow post. The

results of this process are discussed in the Experimental Results section of this paper.

Once the popularity was calculated for each type of post, we performed a separate

manual review on the top 100 posts of each category. Since these posts demonstrate the

highest level of engagement on the subject of ”refactoring”, it will give us insight into what

developers consider related to refactoring. We also compared the least 20 posts each type as

that can investigate why they may not have been as helpful or informative onto the concept

of refactoring.

3.4.2 Parsing for Keywords

We further processed the posts in order to get relevant information on the refactoring actions

taken and the context the actions were performed in. Understanding these will help us

understand the context under which users talk about refactoring, which will help us answer

RQ2. The information we were able to uncover in this manner was refactoring methods,

programming languages, and IDEs.

Refactoring methods are standard methods used to describe the actions taken during
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Table 3.1: Refactoring Methods per Language

Refactoring Method Word Stem

Change Package chang

Change Type chang

Extract Class extract

Extract Interface extract

Extract Method extract

Extract Superclass extract

Extract Variable extract

Inline Method in line, in-line, inline, in-lined, inlined

Inline Variable in line, in-line, inline, in-lined, inlined

Move Attribute mov

Move Class mov

Move Method mov

Pull Up Attribute pullup, pull up, pull-up, pulledup, pulled up, pulled-up

Pull Up Method pullup, pull up, pull-up, pulledup, pulled up, pulled-up

Push Down Attribute pushdown, push down, push-down, pusheddown, pushed down, pushed-down

Rename Class rename

Rename Method rename

Rename Package rename

Rename Parameter rename

Rename Variable rename
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refactoring. Some of the most well-known ones, such as Extract Class and Rename Method

come from Fowler’s original definitions of design patterns and code smells [1]. A list

of common refactoring methods from these sources was used and is displayed in 3.1.

These method names were reduced to their word stems to account for instances of different

word forms (i.e., ”changing”, ”renamed”, ”moving”, etc.) and in the instance of ”inline”

refactoring, alternative spellings were included. This approach allowed us to capture all

available instances where developers may have attempted to directly mention refactoring

methods.

Since we were able to locate information in posts through keywords, we also attempted

to look for a list of popular programming languages3 and IDEs 4 as keywords. This will

provide further avenues to analyze the posts and determine if refactoring is conceptual-

ized differently amongst different languages or if it is influenced by the IDE at all. In any

instances where there was a ”/” character in the provided list (i.e., C/C++), we split the

options into distinct languages. For instances with an ”-” character, we added an additional

permutation to our search in which it was replaced with a space character, which was the

most common alternative we observed (i.e., Objective-C, Objective C). During the manual

review, we also identified several tags and programming languages that were closely asso-

ciated with the languages in the provided sources (i.e., ”React” or ”reactjs” for Javascript)

and considered those languages equivalent instances.

The keywords were parsed by a small Java program that used regular expressions to find

the keywords. The regex was in the form of ”.*[method].*” for each refactoring method and

”\b[language]\b” and ”\b[IDE]\b” for each programming language and IDE respectively.

The rationale was that refactoring methods have different permutations that need to be

check (i.e., ”move”, ”moved”, ”moving” for Move Method). Languages and IDEs were

required to have defined word boundaries as there are popular programming languages that

are spelled similarly (Java/Javascript, C/C#/C++), so a similar approach to the refactoring

3http://pypl.github.io/PYPL.html
4http://pypl.github.io/IDE.html
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methods was not desirable. For the set of question posts, the keywords were searched for

in the title, body, and tags of the post.

3.4.3 Topic Modeling

To derive and understand the topics of discussions that revolve around refactoring related

posts, we performed topic modeling and n-gram analysis of the posts. Topic modeling is

an unsupervised machine learning procedure that infers the topics (or thematic structure)

discussed in large volumes of unlabeled and unstructured text documents [21]. N-grams

are sets of co-occurring words (or letters), within a given window, that is available in a

textual document and are useful in understanding a word in its context [22].

In order to perform the analysis described above, the posts were processed in order to

format the text. This process involved the expansion of any word contractions (e.g., ‘I'm’ →

‘I am’) and the removal of URLs, code blocks, alphanumeric words, punctuation, and a list

of stopwords supplied by NLTK [7]. We added some additional stopwords to our set to deal

with common words in our dataset, with examples such as ”thanks”, ”question”, ”answer”.

After this process, only the nouns, verbs, adjectives, and lemmatizations of potentially

interesting words were retained. We opted to use lemmatization over stemming, as the

lemma of a word is a valid English word [24] that we can interpret information from easier.

We then derived the topics discussed in each post by making use of the Latent Dirichlet

Allocation (LDA) algorithm [8]. LDA has been used successfully in several studies involv-

ing Stack Overflow posts [43, 34, 41, 5] to perform topic modeling, so we felt comfortable

using it in this study. LDA builds a statistical model that groups related words together

from a corpus of textual documents where each grouping of frequently co-occurring words

represents a topic. A mandatory input for the LDA algorithm is the number of topics that it

is to generate. A low value will result in high level or general topics while a high value will

produce more detailed topics, some of which will be noise. Hence, to arrive at the optimal

number of topics, we iteratively extracted topics starting from two to fifty in increments of

one. Each LDA execution cycle (i.e., model creation) was subjected to ten passes and one
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hundred iterations.

Finally, to determine the optimal number of topics for our LDA analysis, we relied

on a combination of topic coherence [33], perplexity [8], visualization [36], and manual

analysis. With regards to our manual and visual analysis; we looked at the topics and

terms generated in each execution cycle of the LDA algorithm to discover patterns in the

topics such as similarities and overlapping of topics, topics that are consistent between

each execution cycle, the prevalence of each topic, distribution and relevance of words by

topics, etc. Finally, since the LDA process does not result in meaningful names for the

topics it generates, we had to manually examine the list of generated terms to determine

the appropriate topic names.

For our manual analysis, a collaborative approach was undertaken; we looked at the

terms that represented each topic and came to an agreement on the name of the topics and

also decided on the topics that were generated by noisy terms. We looked at the terms that

are unique to each topic and the terms that are shared among topics (including the overall

frequency of the term).

3.5 Manual Review

A manual review was performed on the posts obtained in order to accomplish two goals:

(i) to identify any false positives from processing posts. (ii) within the post refactoring

methods, and any languages or IDEs mentioned.

The languages and IDEs we looked for were taken from the same lists of popular pro-

gramming languages and popular IDEs described above. Obtaining information on which

of these languages or IDEs are more often involved in refactoring scenarios could help us

identify scenarios that may better help developers understand the context in which they are

refactoring and what alternative actions they may be able to take. If refactoring is more

prevalent or rarer in certain domains than others, we also may be able to leverage the other

information we have in the study to identify why that is so to make refactoring more effi-

cient and reliable for other domains.
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For this study, a sample set of 657 question posts was selected in order to give a con-

fidence level of 99% and a confidence interval of 5 from a total set of 35,863 questions

to perform the manual review. The results from this review will allow us to make an as-

sumption on what developers were thinking about while refactoring and allow us to expand

trends viewed in the sample onto the rest of the data, helping us answer RQ2 and RQ3.

Additionally, a separate manual review will be performed on the top 100 popular question

posts measured by the popularity metric described earlier.
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Chapter 4

Experimental Results and Evaluation

4.1 RQ 1 Results

The earliest literature review that discussed quantitative impacts of refactoring methods was

included in a thesis by Warenburg [44]. The literature review was conducted by gathering

studies discussing code or design smells from Google Scholar, including the articles that

discussed the empirical results of a refactoring method, discussed a method or tool that

could be used for refactoring decisions or code smell analysis, or reported the usage of

code smells in domains related to object-oriented software (i.e. UML diagram creation,

architectural smells). In total, 46 studies were identified in this review.

At the time of writing, they could only find one study [35] citing several refactoring

methods that were applied to an application and metrics were taken before or after to mea-

sure the improvement in maintainability. While changes and improvements, in metrics

were observed, they were not linked directly to any maintainability concept (i.e. decrease

in defect rates, decrease in time needed to add features to the product). The lack of this link

means that a developer cannot easily determine what the impact of the refactoring on their

project has for their overall work. Given the lack of studies at this time, we can assume

that there was a general lack of understanding of what each refactoring method improved

for the developer.

Al Dallal and Abdin performed a later study that attempted to synthesize the results

of studies investigating how refactoring methods affected software quality attributes into a

single literature review [3]. Including only studies that report empirically-based findings on
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the impact of refactoring on software, they identified 76 primary studies. The studies were

further divided based on several factors: i) whether they analyzed the impact of a single

refactoring scenario or whether they investigated the impact of several refactoring actions

together, ii) whether the study used internal quality attributes (cohesion, coupling) which

can be measured by utilizing code artifacts or external quality attributes (maintainability,

fault-proneness) which cannot be solely determined through code artifacts [14] to measure

the impact of refactoring actions, iii) what approaches or statistical techniques were applied

to measure the impact of refactoring on software quality, and iv) what datasets were used

in the studies.

These divisions highlight the potential for misunderstanding on the impact of refac-

toring. Single refactoring actions are often ineffective in removing a code smell [9, 46],

and in fact, have been reported to only partially remove the smell or even introduce new

smells [9]. The division between internal and external quality attributes is notable as there

are different set of measurable metrics that current ways of analyzing the code (i.e. static

analysis tool) may be ineffective to effectively capture. Indeed, only 14 of the 76 studies

even considered external quality attributes in their analysis.

Consistent definitions of metrics used for refactoring appear to be an issue in the cur-

rent literature that hinder the applicability of the results to other studies. Only 10 studies

were identified as applying some statistical techniques to analyze the impact of refactoring

actions. This leads to the possibility that the majority of studies may focus on results that

are more anecdotal or dependent on the understanding surrounding context of the software

in order to effectively achieve the same results on separate projects. For datasets, the most

notable result was the language distribution, with 87.2% of the 149 datasets used in all the

studies were implemented in Java with the next most common languages being C++ (5)

and C# (3). This leads us to assume that any refactoring methods may be more identifiable

and effective within Java as there are the most examples to pull from.

Satnam and Paramvir performed an SLR on refactoring methods [23], focusing only

on primary studies whose operations clearly targeted code smells and grouped the primary
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studies observed based on whether statistical techniques were employed. It noticed that

studies performing the same refactoring activity had varying perceived impacts, at times

seeing a decrease or an improvement of metric values for the same action [12], depending

on the quality measures used.

Interestingly, the impact of refactoring methods differed depending on whether studies

focused on industrial or academic settings. Studies performed in academic settings typi-

cally found that their internal quality attributes improved after a refactoring activity was

applied, while industrial settings saw no improvement in internal quality factors. These

results are influenced by the small number of studies in industrial settings (17) compared to

academic settings (125) as well as a tendency for the studies to focus on different datasets

(industrial focusing on commercial datasets while academic studies usually prefer open-

source projects), but that simply highlights that there appear to be different factors that

determine the impact of refactoring in different contexts. Therefore, we can assume apply-

ing refactoring methods that produce positive results in academic contexts may fail to be

as effective if they do not take into account their context and more influential measures that

may impact the results.

This literature review proves that there has been consistent uncertainty within the soft-

ware community about measuring the impact of refactoring methods. For the most part,

this uncertainty is due to two contributing factors: i) lack of consistency in metrics, ii) the

metrics being used not being extensive enough to cover all the scenarios and implications

the metrics suggest. Our investigation into Stack Overflow posts should reinforce these

findings, highlighting that there is often a lack of depth in the implications of particular

refactoring actions.

4.2 RQ 2 Results

The manual review was performed over a representative sample set of 657 question posts

that gave us a 99% confidence level with a 5% confidence interval. The discussion of the

results will be split between the popularity metric, the languages identified, and the IDE.
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Examples posts from Stack Overflow will be referenced in the following format (Q) to

provide more context on the results and the interpretation. The number is the post id that

can be searched on Stack Overflow to display the associated post.

4.2.1 Post Popularity

The results of the popularity calculation on the Stack Overflow and refactoring sets are

displayed in Table 3. According to the results of our calculation, refactoring questions are

34.96% less popular than average Stack Overflow question posts, while accepted answers

and answers that were not accepted were 31.72% and 29.11% as popular. Refactoring

questions were viewed significantly less than Stack Overflow questions (received 85%

fewer views) yet still maintained a fairly close answer count ratio of about 35% fewer

answers on average. A less trafficked topic could be assumed to be harder to understand and

provide a meaningful answer. This seems to imply a degree of familiarity with refactoring

in the users that answer these questions as we would assume that there would be much

fewer answers for a less well-known domain.

4.2.2 Refactoring Methods

Refer to 4 for the discussion of refactoring methods and 5 for discussion involving multiple

refactoring methods mentioned in a post. The program we used initially received many

false positives for the ”move” actions due to following the ”.*[method].*” regex pattern,

mostly due to instances of ”remove” in the post. We were not able to identify any instances

of the change, pull, or push methods in the question posts.

Extract methods were the most prevalent in the sample, with Extract Superclass (39),

Extract Class (33), and Extract Method (26) being the most popular instance. This is in

line with what other studies found [3], but it is not entirely clear what this means in the

conception of refactoring. We can assume that in order to create effective change in the

software, enacting one of these methods is necessary. Indeed, of the 26 refactoring actions

that included more than one method, 23 include at least one Extract action.
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Change (31) and Rename (19) were the next more present method identified in the

sample. Interestingly, as opposed to the Extract refactors, they were mostly observed to

be suggested independently. This makes sense as a renaming a class, for example, only

involves renaming that specific class, and perhaps performing the same renaming operation

to any references to it. We may be able to assume that if either of these categories is the

suggested actions, the refactoring may be more narrowly defined and thus easier to interpret

the consequences.

The Move (10) and Inline (16) methods were the next most present refactoring methods.

Given their lack of entries in the sample, we may assume that these actions alone are

inadequate for resolving refactoring issues discussed on Stack Overflow. While 4 out of the

10 cases of Move refactors did have at least one other refactor method applied, only 2 out

of 10 applied for the Inline actions. It might be enlightening to follow up this investigation

with evidence of what the developer intended to perform with this action to reveal why the

use of these methods was not more common.

The Pull-Up and Push Down methods may be more prevalent than the results indicate

due to the Extract Superclass and Extract Class method being so prevalent and having the

potential to move attributes or methods along to the superclass or subclass once they are

defined and extracted. This may imply that when developers mention refactoring methods,

they may be considering several consecutive actions in order to achieve the desired effect.

Since a lack of consideration of refactoring in batches is prevalent in the literature, it may

be advisable for refactoring methods and tools to consider the impact of grouping of refac-

toring actions and present the actions as a sequence of events so that they are more aware

of the phenomena.

Question posts often did not describe the refactoring methods that they were attempting

to implement. In most cases, they accurately described the reason they were attempting to

refactor the code (i.e., code optimization, implementing functionality, fixing a bug, etc.).

However, they did not link it to one of the refactoring methods defined by Fowler [1]. This

is in line with the results from other studies [9] and is also not unexpected due to those
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definitions that may no longer be accurate to the current problems in software [38].

For the questions that did not have a specific instance of a refactoring method, there

were three common patterns: coding advice, tool-based advice, and planned refactoring.

Other instances where ”refactoring” was found in the posts were false positives where a

refactoring keyword was present, but a refactor of the code was not intended (Q16311092).

Coding advice follows the scenario where the developer is attempting to accomplish a

specific goal in the code, but does not describe the action needed to get there in the context

of Fowler’s refactoring methods. This is understandable in question posts as we could

assume that a user who posts a question on Stack Overflow lacks information on what

actions could resolve their issue. Developers typically had a clear idea of what they were

trying to accomplish by refactoring, whether it was implementing some new functionality,

resolve a bug they encountered, try to align the code with a design pattern or best practices.

Refactoring mentions were scenarios in which we found posts that mentioned the ”refac-

tor*” keyword, but did not intend to actually perform any code change. Often this happened

when users were attempting to figure out a best practice for a particular piece of code, which

may result in changing the code, but there was no clear indication of what refactoring action

they would take. Another common case is when ”refactor” was mentioned as a catch-all

for a previous code change or an intention or plan to change the code or to remark that a

section of code seemed in particular need of updating.

In these cases, the post was not attempting to address the code in question, but only to

give context to a separate problem, such as an issue importing data or an inability to modify

certain pieces of code to address the problem. The prevalence of these instances suggest

that ”refactoring” is not interpreted as a strict formal definition and is instead used more

colloquially to refer to changes in code.

4.2.3 Languages and IDEs

The results from the manual review of posts for languages and IDEs displayed in 6 for

languages and 4.1 for IDEs. For languages, we have avoided displaying the number of false
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positives for C#, R, and Go due to the program often misclassifying these instances. C#

was not located by the program, but instead always classified as an instance of both C and

C++. R was often misidentified due to looking for any instance of ”R” surrounded by non-

alphanumeric characters, notable instances were regex patterns ( Q48619351) or command

line arguments (Q48579214). Go was also misidentified often as the word ”go” due to not

accounting for cases in our regex pattern. Since we manually reviewed a representative

sample set, we were still able to identify the true number of cases for these languages.

The most prevalent languages in the sample were Java (18.72%), C# (18.72%), JavaScript

(17.05%), and Ruby (8.22%). Java, C#, and Ruby are OO-languages which maintain

classes, interfaces, and other structures that are commonly mentioned in Fowler’s refac-

toring methods [1]. JavaScript is a scripting language rather than OO-focused, but has a

major implementation in AngularJS which makes use of inheritance for various structures

such as controllers.

The most prevalent languages after the above were PHP, Python, SQL. Python was

the most popular language listed in our source (http://pypl.github.io/PYPL.html), so it was

initially expected that there would be a closer number of instances to languages such as Java

and the rest above. More interesting still was that there was not a lot of refactoring methods

recorded from the review. While Python does not have all the same structures as Java and

C# (i.e., interfaces), it does have classes, variables, and methods. However, there was no

particularly high distribution of these actions. This leads to the assumption that there is

some difficulty in discussing refactoring within Python as since there the dataset gathered

for the sample specifically looked for mentions of refactoring within the post. Given the

lesser degree of refactoring instances observed, Fowler’s set of refactoring methods may be

poorly suited to dealing with changes that need to be made in Python systems.

One of the most interesting results we found was the prevalence of PHP in Stack Over-

flow questions. Although it was also ranked highly in our source list, it had as many entries

as Python, which was the most popular language at the of writing. PHP is mostly web-

focused but has class structures, and variables so it can enact refactoring along the lines of
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our refactoring methods [1]. We may similarly assume that there is difficulty in discussing

refactoring in PHP systems. Since PHP has a high association with web-based systems as

well, it may be of interest to see if questions that discuss such scenarios do not have as

many instances of refactoring that match to Fowler’s methods.

SQL was not listed in the initial languages obtained for the set. However, it can be inte-

grated with other languages that are making use of a database component, so its prevalence

here is not particularly surprising. SQL instances were mostly discussing instances where

developers were mostly attempting to improve the performance of queries or restructuring

objects in the database. In instances where the posts were referring to proper instances of

refactoring (i.e., intent clear and not asking about best practices/tools, Q43393), they often

discussed issues that were analogous to scenarios in other languages such as attempting to

implement new functionality (Q6916646) or move code off into a separate structure (i.e

view) for a performance boost (Q3598786). These instances did not align with the refac-

toring methods that were used for the study and so none of the SQL posts were categorized

as belonging to a refactoring method.

The IDEs did not seem to have a significant influence on refactoring methods. Visual

Studio had the most instances in our sample with 30. IDEs typically implemented their own

version of basic refactorings such as renaming a class in all locations in the program when

a developer changes it. There are several instances we observed where developers were at-

tempting to refactor through IDEs (Q12579561, Q40715010, Q14343054) but encountered

difficulties, so it appears that developers do tend to think refactoring through these tools is

a topic of interest.

4.3 RQ3 Results

The LDA analysis identified 4 topics: Object-Oriented, Environment, Database, and Front-

End. Object-Oriented represents common coding scenarios that involve the creation and

modification of code elements. Common terms include ”array”, ”value”, or ”function”.
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Table 4.1: IDEs in Sample Set
IDE Name Count

Android Studio 5

Eclipse 19

Emacs 2

IntelliJ 7

MonoDevelop 1

PhpStorm 1

PyCharm 2

Vim 2

Visual Studio 30

Visual Studio Code 2

Xcode 11
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Database involves scenarios with data components such as queries, databases, and connec-

tions to the database. These scenarios typically do not have associated refactoring methods

associated with them due to the difference between common programming structures (i.e.,

class, variable, method) and database structures (i.e., tables, queries). Web Development

involves scenarios that are specifically focused on developing and addressing issues within

webpages, such as dealing with views, website design, and media content (i.e., images,

videos).

Object-Oriented made up the majority of topics in the dataset (41.86%) and also had

the most amount of identified refactoring methods. Since the topic has the most relation

to coding objects such as arrays, strings, etc. it makes sense for this to have the most rec-

ognized refactoring methods. Similarly to the languages, it seems the Extract refactorings

are the most common with 73 entries, reinforcing that these refactoring seem particularly

useful for explaining the necessary code changes to cause the desired impact.

Environment (24.96%) appears to have the most relation to tools and development en-

vironments in the system. Often, the questions within this topic concern attempting to

achieve refactoring through the use of these tools (Q16883286, Q35100985, Q52992990).

Since most IDEs implement some form of refactoring functionality, the prevalence of this

topic makes sense.

Database (21.77%) had the second-lowest count of recorded refactoring methods at 18

and represented 21.77% of the sample set. This makes sense as database components are

not as applicable to Fowler’s refactoring methods due to not containing the same structures.

Front-End was the least prevalent area in our sample, representing only 11.41% of the

sample. There were only 5 instances of verified refactoring methods that fit into Fowler’s

categories in for this topic. Since the structures described in the methods (e.g., class, in-

stances, package) are not commonly used within web development, the lack of results for

this topic makes sense.

The interesting interpretation of these results is that the topic seems to have a large
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influence on how relevant the refactoring methods are to it. 120 of the 177 identified refac-

toring methods existed in the Object-Oriented topic, which most exhibited common coding

structures (i.e., classes, interfaces, etc.). All other topics saw a sharp drop in the number of

recognized refactorings suggesting that Fowler’s methods might not be able to accurately

encompass the changes desired in these domains. This highlights the need for analysis

and suggestion of refactoring methods to be more aware of the context to which they are

applied in order to ensure that their application makes sense.

4.4 RQ4 Results

Within this set of popular posts, 31 refactoring methods were identified. There were only 5

instances of multiple refactoring methods observed. 22 of the questions were identified as

false positives and the remaining 47 posts did not have an identifiable refactoring method.

The most common trait found in the false positives was a difficulty in managing a tool

or framework and using ”refactor” to denote the attempt to troubleshoot the problem (e.g.

Q7887580, Q1946364, Q20689979). Other common cases were attempts by developers to

identify a best practice, but without the context of any code that they wish to apply it to

(e.g. Q15300521, Q15260774). For the identified refactoring methods, Extract refactors

appear to be the most dominant as well (17) followed by Change (5) and Inline (4).

Interestingly, the most popular posts did not show a large trend of having posts with the
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Table 4.4: Top 100 Popular Questions: Refactoring Topics
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Database (13) 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Environment (28) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 4

Front-End (7) 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

Object-Oriented (52) 0 3 3 0 7 2 2 2 2 0 0 1 0 0 0 1 0 0 0 0 0 23

most words or the most code snippets as being the most popular, against the trend observed

by Nasehi et. al in their previous study [28]. Only 9 posts were observed with 3 or more

code blocks. If we assume the posts that are the most popular are representative of an ideal

way to communicate a refactoring issue, we can interpret from this that a post does not

need to have a great deal of code detail in order to appear interesting to developers.

In cases where the refactoring method was not identified, the most common theme

amongst the posts was an attempt to identify a best practice for their code. Performance

issues often stuck out as the most common reason to attempt a refactor, citing concerns or

uncertainty if a particular piece of code would cause issues if left as is (Q35959259).

The topic distribution on the most popular questions is similar to distribution in the

sample set with Object-Oriented (52) representing the overwhelming majority of topics

followed by Environment (28), Database (13), and Front-End (7). 21 false positives were

identified, with the majority coming from the Object-Oriented (11) and the Environment

(9) topics. The remaining two topics had a single false positive each.

The distribution is similar to the sample set (popularity: 13%, 28%, 7%, 52% — sample

set: 21.77%, 24.96%, 11.41%, 41.86%). Most of the difference can be attributed to the

popularity set not being a representative sample of the posts, but the proportions are not too

far off from the sample’s.
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Chapter 5

Threats to Validity and Future Work

5.1 Threats to Validity

The analysis of posts was not extended beyond popularity for the answer posts in this study.

Since question posts are often more vague and unsure of what they want to accomplish and

the techniques (i.e. refactoring methods) due to trying to identify and explain a problem

for a broader audience, answer posts may have more direct insight into what actions should

be pursued in order to address the issue. Due to the time it took to conduct the analysis of

the results for the question posts, we were reduced to only including the question results at

this time. we acknowledge that the analysis of question posts alone does not give us a full

pictures of how developers’ discuss refactoring.

Since we have also acquired the answer posts associated with refactoring, we are able

to conduct a future study to investigate them. The results from the questions that we have

analyzed here will be able to be supplemented by later studies.

The set of refactoring methods used in the study is taken from the list of methods

introduced by Fowler [1]. There have since been several additional methods identified since

their introduction, and it is possible that we may fail to properly catalog every instance

of refactoring we come across. However, for the purposes of this study, we believe that

the set we have chosen is sufficiently broad to cover most forms of refactoring we come

across. Searching for the word stems of these methods also allowed us to pick up on any

permutations of the method that might have been outside of the set we investigated. While

we may miss refactors tailored to more specific domains (i.e. databases), the lack of results
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in our studies will highlight which areas may need different sets of methods to properly

describe their refactoring actions.

As a result of our study, we identified that ”refactoring” was used in a more colloquial

way to refer to any changes in the code, rather than a strict formal definition. This damages

any assertions that refactoring is considered to be attached to any particular refactoring

methods such as Fowler’s [1] and suggests that any vocabulary describing a change in this

setting may better locate instances of refactoring rather than looking strictly for mentions

of ”refactor*”. While ”refactor” still suggests some sort of intent to change the code as

reinforced by our manual review, we did not verify if there is was any other vocabulary that

is more accurate or inclusive than ”refactor”.

As part of analysis of the posts, we were able to obtain data about the word frequency

in regards to identifying the topics in the posts. We may be able to leverage this to identify

words that reliably correlate with direct mentions of refactoring to create a new set of posts

to investigate.

The popularity calculation we used is borrowed from the work done by Pinto et. al

[31] and is a simple aggregation of several post values. There is a possibility among these

values is particularly large and overly influences the other popularity calculations. We

performed normalization over each of the values to mitigate this risk, but there is still the

possibility that a particularly large outlier (i.e. a highly scored and viewed post) could

unfairly influence the popularity result. By recording all of these values however, we were

able to observe instances where that had occurred and can address those in future studies.

There is also the issue that some of the values used for the may not be as relevant as

others. Although they all represent a degree of user engagement and interest, there is no

guarantee that these particular values are actually influential. There might also be areas that

we had not recorded which may be influential (i.e. length of post, time of posting). Again,

recording all the information here will at least allow us to recognize if there is some sort of

discrepency between their influence for future study.

When processing the post data for popularity, we did not remove the outliers of the
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Stack Overflow set as we had done similarly for the set of refactoring posts. While we

realized that this could skew the results, the sheer size of MSR 2019 Challenge database

( 45.8 million total posts) compared to the refactoring set we used for the study (101,163

total posts) assured us that any disturbance by the outliers would be mitigated.

The program we had built to identify the programming languages present in the post

had issues with detecting instances of C# and Go, misidentifying them as instances of C

and C++ together and as the word ”go” respectively. Similarly, the ”move” method cases in

our sample set were often misidentified from common words such as ”remove”. Since we

also performed manual review on a representative sample with a 99% confidence level, we

were still able to identify these false positives and make assumptions about the rest of the

set. We will not be able to completely ensure that these languages are not more prevalent

in the rest of the set by the program results also because of these results, but we are still

able to make assumptions from the rest of the languages which did not display this issues.

5.2 Future Work

The Stack Overflow analysis from this study is part of a further study analyzing the content

of posts in order to discern what developers are thinking about while attempting to perform

refactoring. The study is currently planned to replicate the post analysis displayed in this

thesis onto answer posts, duplicating the processing to reveal topics and a manual review

of a representative sample in order to discover the languages and refactoring methods that

are suggested in these scenarios.

The study also plans to apply maintenance categories [25] and evolution tasks [18]

alongside the previous analysis. Their addition will help us further interpret the developers’

goals for attempting refactoring and will also be verified through manual review. This will

give us more context as to what the developers are trying to accomplish in each instance,

giving us a further means to identify how the refactoring methods can be more properly

applied.

Finally, since the number of posts selected to manually analyze for popularity was
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arbitrary, we wish to expand the number of posts investigated to 1% of the total refactoring

question set. We also plan to replicate this analysis with the answer posts within this

investigation as well.
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Chapter 6

Conclusion

Our investigation into the prevalence of the ineffectiveness of refactoring as a topic revealed

that there were several issues that were commonly attested to contribute to the fuzziness of

the results of refactoring actions. First, the observation of refactoring actions usually occur

in isolation. Observing the refactoring methods in the set showed that the Extract actions

(i.e. Extract Class, Extract Interface, Extract Superclass) are considered a common way

to achieve some change in the code, but only 30.26% of Extract refactorings (23 out of

76) were taken alongside other actions. This implies that refactoring actions as they are

commonly defined are assumed to consist of a series of actions to achieve a desired effect

(i.e. removal of a code smells, conforming to a best practice).

While the resolution of potentially complex problems seems like it would take multi-

ple actions to resolve, code refactorings are often not discussed as grouping of actions and

instead considered individually. In order to increase reliability of these methods, an iden-

tification of whether methods are being individually or if they are part of a set of actions

must be recognized in order to make sure developers have the correct assumption on what

should occur during refactoring.

Second, the topic seems to have a large influence in how relevant the refactoring meth-

ods are to it. 120 of the 177 identified refactoring methods existed in the Object-Oriented

topic, which most exhibited common coding structures (i.e. classes, interfaces, etc.). All

other topics saw a sharp drop in the amount of recognized refactorings suggesting that

Fowler’s methods might not be able to accurately encompass the changes desired in these

domains. This highlights the need for analysis and suggestion of refactoring methods to be
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more aware of the context to which they are applied in order to ensure that their application

makes sense.

Of particular interest is the expansion or utilization of refactoring methods that take

into the context of web development. Front-end focused questions had the least amount

of methods that could be identified by them, even if the languages contained structures

that aligned with refactoring set that we were using (classes, variables) such as in PHP. It

might be imperative to see if there are any candidate refactoring sets that capture the actions

developers want to perform.

This study highlights the need to take multiple conceptualizations of refactoring into

consideration when considering their effectiveness. In particular, increasing the awareness

that batch refactoring can have potential advantages over a single refactoring, evaluating

the different metrics used to determine software quality to see if they are applicable in their

particular domain, and taking the user perception of the issue within the software to help

guide them toward a better understanding of the issue and what actions would be effective

in addressing it.
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[33] Michael Röder, Andreas Both, and Alexander Hinneburg. Exploring the space of topic

coherence measures. In Proceedings of the Eighth ACM International Conference on

Web Search and Data Mining, WSDM ’15, pages 399–408, New York, NY, USA,

2015. ACM.

[34] Christoffer Rosen and Emad Shihab. What are mobile developers asking about? a

large scale study using stack overflow. Empirical Softw. Engg., 21(3):1192–1223,

June 2016.

[35] S. V. Shrivastava and V. Shrivastava. Impact of metrics based refactoring on the

software quality: a case study. In TENCON 2008 - 2008 IEEE Region 10 Conference,

pages 1–6, 2008.

[36] Carson Sievert and Kenneth Shirley. Ldavis: A method for visualizing and inter-

preting topics. In Proceedings of the workshop on interactive language learning,

visualization, and interfaces, pages 63–70, 2014.

[37] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. Why we refactor? con-

fessions of github contributors. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, FSE 2016, page

858–870, New York, NY, USA, 2016. Association for Computing Machinery.

[38] Amjed Tahir, Aiko Yamashita, Sherlock Licorish, Jens Dietrich, and Steve Counsell.

Can you tell me if it smells? a study on how developers discuss code smells and

anti-patterns in stack overflow. In Proceedings of the 22nd International Conference

on Evaluation and Assessment in Software Engineering 2018, EASE’18, page 68–78,

New York, NY, USA, 2018. Association for Computing Machinery.



43

[39] Nikolaos Tsantalis. Refactoringminer github page, 2017.

[40] Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. A multidimen-

sional empirical study on refactoring activity. In Proceedings of the 2013 Conference

of the Center for Advanced Studies on Collaborative Research, CASCON ’13, page

132–146, USA, 2013. IBM Corp.

[41] Isabel K. Villanes, Silvia M. Ascate, Josias Gomes, and Arilo Claudio Dias-Neto.

What are software engineers asking about android testing on stack overflow? In

Proceedings of the 31st Brazilian Symposium on Software Engineering, SBES’17,

page 104–113, New York, NY, USA, 2017. Association for Computing Machinery.

[42] Shaohua Wang, Iman Keivanloo, and Ying Zou. How do developers react to rest-

ful api evolution? In Xavier Franch, Aditya K. Ghose, Grace A. Lewis, and

Sami Bhiri, editors, Service-Oriented Computing, pages 245–259, Berlin, Heidelberg,

2014. Springer Berlin Heidelberg.

[43] Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study on developer in-

teractions in stackoverflow. In Proceedings of the 28th Annual ACM Symposium on

Applied Computing, SAC ’13, page 1019–1024, New York, NY, USA, 2013. Associ-

ation for Computing Machinery.

[44] Ruben Wangberg. A literature review on code smells and refactoring, 2010.

[45] A. Yamashita and L. Moonen. Do developers care about code smells? an exploratory

survey. In 2013 20th Working Conference on Reverse Engineering (WCRE), pages

242–251, 2013.

[46] Aiko Yamashita and Leon Moonen. Exploring the impact of inter-smell relations on

software maintainability: An empirical study. pages 682–691, 05 2013.
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Appendix A

Table 1: Refactoring SLRs
Title Year Accessible Fits Criteria

An empirical study of the bad smells and class error probability in the post-release object-oriented system, evolution 2007 Y N
Wei Li and Raed Shatnawi

A Literature Review on Code Smells and Refactoring 2010 Y Y
Ruben Wangberg

Identifying the move method refactoring opportunities based on evolutionary algorithm 2013 N -
Wei-Feng Pan, Jing Wang, Mu-Chou Wang

Recommending Move Method Refactorings Using Dependency Sets 2013 Y N
Vitor Sales, Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente

Software fault prediction metrics: A systematic literature review 2013 N -
Danijel Radjenović, Marjan Heričko, Richard Torkar, Aleš Živkovič

Trends, opportunities and challenges of software refactoring: A systematic literature review 2014 N -
Mesfin Abebe and Cheol-Jung Yoo

Identifying refactoring opportunities in object-oriented code: A systematic literature review 2014 - -
Jehad Al Dallal

A review of code smell mining techniques 2015 Y N
Ghulam Rasool and Zeeshan Arshad

Non-Source Code Refactoring: A Systematic Literature Review 2015 Y N
Siti Rochimah, Siska Arifiani, Vika Insanittaqwa

A systematic literature review: Refactoring for disclosing code smells in object oriented software 2017 Y N
Satwinder Singh and Sharanpreet Kaur

Empirical Evaluation of the Impact of Object-Oriented Code Refactoring on Quality Attributes: A Systematic Literature Review 2017 Y Y
Jehad Al Dallal and Anas Abdin

A systematic literature review on the detection of smells and their evolution in object-oriented and service-oriented systems 2019 Y N
Fatima Sabir, Francis Palma, Ghulam Rasool, Yann-Gaël Guéhéneuc, Naouel Moha

A Systematic Literature Review on Empirical Analysis of the Relationship Between Code Smells and Software Quality Attributes 2019 N -
Amandeep Kaur

Categorization Refactoring Techniques based on their Effect on Software Quality Attributes 2019 Y N
Abdullah Almogahed, Mazni Omar, Nur Zakaria

How does Object-Oriented Code Refactoring Influence Software Quality? Research Landscape and Challenges 2019 Y Y
Satnam Kaur and Paramvir Singh
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Table 2: Topics: Set of Terms

Topic List of Words

Database database, table, query, sql, db, json

Environment package, studio, eclipse, directory, tool, maven

Front-End javascript, event, button, html, thread, callback, promise

Object-Oriented class, interface, constructor, method, function, object, generic
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Table 3: Statistical summary of popularity characteristics of question and answer posts

Measurement Name Min. 1st Qu. Median Mean 3rd Qu. Max.

All Stack Overflow Questions (total instances: 18,154,493)
Question Score -1 0 0 2.04 1 23361
Answer Count 0 1 1 1.52 2 518
Comment Count 0 0 1 2.00 3 109
Favorite Count 0 0 0 0.61 0 10635
View Count 2 77 286 2282.49 1010 8083391
Popularity Score -37.22 1.33 2.48 5.00 4.34 29359.10

Refactoring Questions (total instances: 35,863)
Question Score -3 0 1 1.04 2 5
Answer Count 0 1 1 1.33 2 3
Comment Count 0 0 1 1.66 3 7
Favorite Count 0 0 0 0.25 0 2
View Count 3 68 171 356.12 486 1897
Popularity Score -2.71 1.46 2.66 3.25 4.45 10.86

All Stack Overflow Accepted Answers (total instances: 9,512,864)
Accepted Answer Score -129 1 1 4.60 3 30552
Comment Count 0 0 1 1.94721 3 157
Popularity Score -24.47 0.43 1.03 2.00 2.19 6687.15

Refactoring Accepted Answers (total instances: 21,781)
Accepted Answer Score -3 1 2 2.11 3 8
Comment Count 0 0 1 1.59 2 7
Popularity Score -0.44 0.44 1.09 1.37 1.98 4.90

All Stack Overflow Non-Accepted Answers (total instances: 18,152,145)
Non-Accepted Answer Score -58 0 0 1.94 2 10369
Comment Count 0 0 0 1.13 2 118
Popularity Score -10.56 0 0.44 1.00 1.24 2273.57

Refactoring Non-Accepted Answers (total instances: 43,969)
Non-Accepted Answer Score -3 0 1 1.02 2 5
Comment Count 0 0 0 0.88 1 5
Popularity Score -1.74 0 0.44 0.71 1.09 3.26
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Table 4: Refactoring Method

Refactoring Method Count

Change 31
- Change Package 9
- Change Type 23

Extract 76
- Extract Class 33
- Extract Interface 17
- Extract Method 26
- Extract Superclass 19
- Extract Variable 2

Inline 16
- Inline Method 10
- Inline Variable 6

Move 10
- Move Attribute 3
- Move Class 1
- Move Method 6

Pull Up 1
- Pull Up Attribute 0
- Pull Up Method 1

Push Down 1
- Push Down Attribute 1
- Push Down Method 0

Rename 19
- Rename Class 7
- Rename Method 3
- Rename Package 4
- Rename Parameter 1
- Rename Variable 5
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Table 5: Cases of Multiple Refactoring Methods in Stack Overflow Posts

Refactoring Method Count

Change 2
- Change Package, Change Type 1
- Change Package, Extract Interface, Extract Superclass 1

Extract 23
- Change Package, Extract Interface, Extract Superclass 1
- Extract Class, Extract Interface, Extract Superclass 2
- Extract Class, Extract Interface, Move Attribute 1
- Extract Class, Extract Method 5
- Extract Class, Extract Method, Extract Superclass 1
- Extract Class, Extract Superclass 2
- Extract Class, Pull Up Method 1
- Extract Interface, Extract Superclass 6
- Extract Interface, Move Method 2
- Extract Method, Inline Method 1
- Extract Method, Inline Variable 1

Inline 2
- Extract Method, Inline Method 1
- Extract Method, Inline Variable 1

Move 4
- Extract Class, Extract Interface, Move Attribute 1
- Extract Interface, Move Method 2
- Move Class, Rename Class 1

Pull Up 1
- Extract Class, Pull Up Method 1

Push Down 0

Rename 2
- Move Class, Rename Class 1
- Rename Class, Rename Method 1
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Table 6: Languages in Sample Set

Language Count False Positive

ASP.NET 9 0

C 15 0

C# 123 0

C++ 25 0

CSS 8 0

Dart 1 0

Delphi 3 0

Erlang 1 0

F# 1 0

Fortran 1 0

Go 5 0

HTML 11 0

Java 123 0

JavaScritpt 112 0

Kotlin 3 0

Lua 1 0

Objective-C 14 0

PHP 33 0

Perl 4 0

Powershell 3 0

Python 31 0

R 5 0

Ruby 54 0

Rust 3 0

Scala 9 0

Shell 1 0

SQL 16 0

Swift 9 0

TypeScript 2 0

Visual Basic 4 0
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Table 7: Refactoring Methods per Language
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ASP.NET 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

C 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3

C# 2 6 8 9 3 7 1 1 1 1 0 2 0 1 0 0 1 1 0 0 0 44

C++ 0 0 2 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

CSS 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Dart 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delphi 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

Erlang 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F# 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Fortran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Go 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

HTML 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Java 3 8 7 3 7 4 0 3 2 1 0 0 0 0 0 0 3 0 1 0 2 44

JavaScritpt 1 3 6 0 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 17

Kotlin 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2

Lua 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Objective-C 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2

PHP 1 2 3 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11

Perl 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2

Powershell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Python 1 1 1 0 3 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 9

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ruby 0 0 1 1 3 0 0 1 2 0 0 1 0 0 0 0 1 1 0 0 0 11

Rust 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Scala 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

Shell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SQL 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Swift 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

TypeScript 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Visual Basic 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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