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Abstract

Crop health assessment and yield prediction from multi-spectral remote sensing imagery are ongoing

areas of interest in precision agriculture. It is in these contexts that simulation-based techniques

are useful to investigate system parameters, perform preliminary experiments, etc., because remote

sensing systems can be prohibitively expensive to design, deploy, and operate. However, such

techniques require realistic and reliable models of the real world. We thus present a randomizable

time-dependent model of corn (Zea mays L.) canopy, which is suitable for procedural generation

of high-fidelity virtual corn fields at any time in the vegetative growth phase, with application

to simulated remote sensing of agricultural scenes. This model unifies a physiological description

of corn growth subject to environmental factors with a parametric description of corn canopy

geometry, and prioritizes computational efficiency in the context of ray tracing for light transport

simulation. We provide a reference implementation in C++, which includes a software plug-in for

the 5th edition of the Digital Imaging and Remote Sensing Image Generation tool (DIRSIG5), in

order to make simulation of agricultural scenes more readily accessible. For validation, we use our

DIRSIG5 plug-in to simulate multi-spectral images of virtual corn plots that correspond to those

of a United States Department of Agriculture (USDA) site at the Beltsville Agricultural Research

Center (BARC), where reference data were collected in the summer of 2018. We show in particular

that 1) the canopy geometry as a function of time is in agreement with field measurements, and

2) the radiance predicted by a DIRSIG5 simulation of the virtual corn plots is in agreement with
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radiance-calibrated imagery collected by a drone-mounted MicaSense RedEdge imaging system.

We lastly remark that DIRSIG5 is able to simulate imagery directly as digital counts provided

detailed knowledge of the detector array, e.g., quantum efficiency, read noise, and well capacity.

That being the case, it is feasible to investigate the parameter space of a remote sensing system

via “end-to-end” simulation.



Chapter 1

Introduction

1.1. Introduction

Crop monitoring via passive remote sensing with multispectral sensors and imaging spectrome-

ters, mounted on Unmanned Aerial Systems (UAS) and Earth-orbiting satellites, is fast becoming a

critical part of general crop management and yield prediction [1]. That being the case, an important

research objective is to quantify the spectral relationship between the continually changing environ-

ment and the phenology of commodity crops, and to improve remote sensing technology in pursuit

of more robust systems for crop monitoring and assessment of crop ecology. However, remote

sensing systems can be prohibitively expensive to design, deploy, and operate. Simulation-based

techniques therefore are useful to investigate system parameters, perform preliminary experiments,

and pre-visualize data products, among other things. Of course, such techniques require models

of the real world which are realistic and reliable (provide high structural and spectral fidelity), as

well as accessible (user-friendly and computationally efficient).

Corn (Zea mays L.) is perhaps the most ubiquitous commodity crop. It is the primary ingredient

in myriad food and industrial products, as well as the primary feed grain [2], [3]. Approximately 90

million acres of corn are projected to be planted, with 15 billion bushels projected to be harvested,

in the United States in 2020 [4]. We thus present a randomizable time-dependent model of corn

canopy, which is suitable for procedural generation of high-fidelity virtual corn fields at any time in

the vegetative growth phase, with application to simulated remote sensing of agricultural scenes.

That is, the model should be sufficient to simulate physically-accurate multi-spectral imagery of

7



CHAPTER 1. INTRODUCTION 8

corn fields (from drone-level to satellite-level distances) at arbitrary vegetative growth stages, where

quantities of interest (e.g., plant height, leaf area, leaf chlorophyll content, leaf water content,

etc.) are known by construction. Physically-accurate simulated images with known ground-truth

quantities should be useful to optimize the parameters of a hypothetical imaging system, as well

as to provide a source of data for machine learning detection and classification algorithms. To

that end, we provide a freely available C++ implementation of the model. This implementation

includes a software plug-in to the 5th edition of the Digital Imaging and Remote Sensing Image

Generation tool (DIRSIG5) [5], described in greater detail in Section 1.3, with the hope that this

plug-in will make simulated remote sensing of agricultural scenes more accessible to the research

community. We used this plug-in to simulate multi-spectral images of virtually reconstructed corn

plots corresponding to those from a USDA site at the Beltsville Agricultural Research Center

(BARC), where reference data were collected in summer 2018. We subsequently used the real

multispectral imagery to validate the efficacy of the virtual simulation-based model.

1.2. Related work

Plant growth modeling is varied in the literature, in the sense that motivations, techniques,

inputs, and outputs may differ drastically from one model to the next. Many crop growth models

in particular are agronomical, i.e., motivated by interest in optimizing soil management and crop

production. Agronomical models aim to be comprehensive in their consideration of crop ecology,

phenology, and physiology. Such models simulate the shoot and root systems of crops through the

end of the reproductive stage, accounting for eco-physiological processes via day-to-day integration

of abstract “rate” and “state” variables. Modeled processes include photosynthesis, assimilation

(the conversion of CO2 to organic material), respiration (the conversion of soil nutrients into energy

for growth), and transpiration (the process by which water moves through and evaporates from

plant tissue).

van Diepen et al. [6] introduced WOFOST, the WOrld FOod STudies model of annual field

crops. WOFOST represents a crop variety as a generic parameter set (including, e.g., optimum

day length, maximum rates of respiration and transpiration, maximum nutrient concentrations in

leaves). As such, it is able to simulate the growth and development of different types of crops as well

as different varieties for each type. WOFOST has been improved, expanded, and used to great effect
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in the 25 years since its introduction [7]. Jones et al. [8] introduced CERES-Maize, an agronomical

cropping model which predates WOFOST and focuses specifically on the growth and development

of corn varieties. CERES-Maize thus exposes more genotype-specific parameters, and features

more explicit (though still abstract) process modeling. Yang et al. introduced the Hybrid-Maize

model [9]–[11], which combines the corn-specific formulation of CERES-Maize with the mechanistic

formulation of WOFOST and other generic cropping models. While useful for soil management

analysis and yield forecasting, none of these models prioritize high-fidelity canopy geometry and/or

the associated optical properties as outputs, and thus are not immediately applicable to light-

transport simulation. Fortunately, there is another category of growth models which we may

call graphical or architectural, i.e., motivated by interest in graphics applications, visualization, or

otherwise reproducing physical plant architecture.

There is in fact much interest in the computer graphics research community related to the

geometrical structure and optical properties of plants. Of particular interest is the fractal arrange-

ment of many plant varieties. There are two competing viewpoints in terms of understanding the

mechanisms that produce such fractal arrangements. On one hand is the notion that plants are self-

similar, as proposed by Honda [12]. This is to say that plant structure is inherently recursive and

replicates with well-defined rules at each level. This has motivated explicitly recursive algorithms

[13], [14]. The opposing viewpoint considers that plants are self-organizing, as is traceable to Ulam

[15]. This is to say that plant structure is owed to competition between branch modules for space

and resources, and not necessarily only to inherent recursion rules. Pałubicki et al. [16] presented

a method for generating realistic trees with self-similar, but also self-organizing branching struc-

tures, remarking that trees do exhibit recursive, self-similar branching, but the genetic mechanism

that controls branching is not distinct enough between tree types to be entirely responsible for the

emergent structure [17].

The widely adopted approach to actually represent plant structure is to use an L-system [18],

[19]. An L-system is a formal grammar used to “grow” a hierarchical string of symbols by repeatedly

applying a set of rewriting rules in parallel to an initial string of symbols. The first L-system

was introduced by Lindenmayer [20] (after whom it is named) to model cellular interaction over

discrete time steps, given a set of rules that constrain how cells may interact at each time step.

In the context of plant modeling, this idea is adapted such that the string of symbols encodes the



CHAPTER 1. INTRODUCTION 10

𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

Figure 1.1: Iterations 𝑘 = 2 through 𝑘 = 5 of a basic L-system modeling a tree-like structure. To make
the structural changes between iterations more visually comparable, each iteration is scaled by 1/2𝑘.

hierarchical organization of branching structures in a plant, and the set of rewriting rules encodes

how the branching structures may grow at each time step. An example is shown Figure 1.1. Here,

the initial string at iteration 𝑘 = 1 is just 𝑋. Subsequent strings for iterations 𝑘 = 2, 3, 4, … are

generated by applying two rewriting rules,

𝑋 → 𝐹+[[𝑋]−𝑋]−𝐹[+𝐹𝑋]+𝑋,

𝐹 → 𝐹𝐹.

We use a “turtle algorithm” to generate the drawing for each 𝑘 in the figure. That is, we consider a

turtle starting at (0, 0) facing north. We then look at each symbol in the 𝑘th string as an instruction

for the turtle. If the symbol is 𝑋, the turtle does nothing. If the symbol is 𝐹 , the turtle draws a line

from its current position to a unit ahead in the direction it is facing. If the symbol is +, it rotates by

22∘. If the symbol is −, it rotates by −37∘. If the symbol is [, it remembers its current position and

direction. If the symbol is ], it goes back to the position and direction it most recently remembered

(without drawing a line). This L-system is simple and ad hoc. By attributing quantities of interest

to the symbols (length, biomass, growth potential, etc.), it is possible to engineer an L-system

which emulates more complicated biophysical interactions.

Fournier and Andrieu [21] modeled the growth and development of corn canopy architecture

using L-systems. In their model, the authors use the L-system representation of a corn plant
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to produce associated canopy geometry, which is then used to compute the microclimate, i.e.,

temperature and Photosynthetically Active Radiation (PAR), at each leaf. The microclimate is

used in turn to inform how the L-system is updated in the next time step. This cycle repeats to

simulate the growth of the plant. Drouet and Pagès [22] presented GRAAL, a model of the GRowth,

Architecture, and carbon ALlocation in corn plants which also uses explicit canopy geometry to

simulate microclimate. As its name may imply, GRAAL pays even greater attention to agronomical

quantities of interest such as carbon allocation and biomass. We may think of such “microclimate

models” as being in part agronomical, in part architectural, but not exactly graphical. That is

to say that the motivation is predominantly agronomical, such that interest in plant architecture

and modeling of canopy geometry serves only to improve modeling of agronomical processes. That

being the case, the canopy geometry is not necessarily intended for graphics applications or light

transport simulation.

España et al. [23] presented a more extensive parameterization of corn canopy geometry intended

for application to reflectance simulation, which built upon the work of Prévot et al. [24]. This

parameterization represents the lengths, positions, and orientations of leaves and internodes as a

function of three primary variables, being 1) the final number of leaves, 2) the final height, and 3)

the cumulative leaf area. This parameterization also includes a plethora of secondary variables, e.g.,

per-leaf insertion angle, curvature, and undulation, all of which affect the specific appearance of

each plant. By randomizing these secondary variables according to empirically deduced statistical

distributions, the authors were able to generate an arbitrary number of visually unique plants with

known primary characteristics. Such approaches, however, almost exclusively dealt with 3D plant

geometry, with little attention paid to spectral or optical properties, especially those beyond the

visible electromagnetic spectrum (400–700nm).

Regarding the simulation of leaf optical properties spectra, Jacquemoud and Baret [25] most

notably introduced a model called PROSPECT. The model considers the interaction of diffuse light

with a stack of 𝑁 dielectric plates separated by 𝑁 −1 empty spaces to model leaf scattering. While

this construction implies 𝑁 to be any positive integer, the result of the derivation permits 𝑁 to

be any positive real number. The parameter 𝑁 is known as the structure parameter, representing

in some capacity the internal organization of the leaf. For a so-called compact leaf, e.g., a corn

leaf, 𝑁 ≈ 1. The model accepts other notable biophysical parameters, such as the refractive
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Figure 1.2: A DIRSIG5-simulated image of the Port of Tacoma, as captured by a low-earth orbiting
pan-chromatic framing array.

index of leaf material and the concentrations and specific absorptance spectra of pigments and

water in the leaf. Through its inversion, PROSPECT is most often used to retrieve biophysical

parameters from measured spectra [26]–[29], though it has also been used directly in scattering

models for computer graphics [30], [31]. The PROSPECT+SAIL variety of models [29] extends

the individual-leaf optical properties spectra predicted by PROSPECT to directional scattering

distributions of entire canopies. The objective of this modeling is to deduce biophysical parameters

of canopies via inversion/fitting to bidirectional reflectance measurements, such that there is no

explicit representation of leaf geometry. As such, the PROSPECT+SAIL modeling approach in

particular is not applicable within this work, where explicit geometry is a central component.

Next, it is helpful to introduce DIRSIG5 in reasonable detail to establish the overall context of this

simulation-based research effort.

1.3. The DIRSIG5 simulation model

DIRSIG5 is the 5th and most recent edition of the Digital Imaging and Remote Sensing Image

Generation (DIRSIG) model [5], which has been developed and validated by the Digital Imaging

and Remote Sensing (DIRS) laboratory at the Rochester Institute of Technology over the past

two decades. The DIRSIG model performs physics-based light transport simulation in order to

provide radiometrically-accurate solutions to light transport problems of interest to remote sensing
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applications. Moreover, the model is able to generate passive broadband, multi-spectral, and hyper-

spectral imagery [32]–[36], as well as response signals from Light Detection And Ranging (LiDAR)

[37]–[39] and Synthetic Aperture Radar (SAR) [40]. DIRSIG numerically integrates the radiance

distribution in a virtual scene over the area of a virtual detector element by explicitly tracing light

rays. Therefore, the geometric structure of the scene being simulated, e.g., a landscape, city, or

forest canopy, must be modeled explicity by 3D primitive shapes. The most frequently used primi-

tive is the triangle. That is to say, a virtual scene is usually facetized as a collection of (potentially

millions or more) triangles, though other primitive shapes, e.g., disks, cylinders, and spheres, may

also be used. Each primitive shape is associated with a set of material properties. Such properties

include, most importantly, the Bidirectional Reflectance Distribution Function (BRDF) and the

Bidirectional Transmittance Distribution Function (BTDF) of the material, which characterize how

an incident light ray is reflected, transmitted, and absorbed. Material properties may be different

for every primitive, and may even vary over a single primitive using a feature called material map-

ping. An example of a high-fidelity DIRSIG5 scene is shown in Figure 1.2. This scene represents

the Port of Tacoma in Tacoma, Washington. It contains cars, crates, streetlights, buildings, bar

targets, and even water, among other things. Every object in the scene is constructed in the way

just described, i.e., as a collection of geometric primitives with different material properties.

While the Tacoma scene shown in Figure 1.2 is an excellent showcase of what DIRSIG5 is

capable of, it is imporant to note that creating a high-fidelity scene is not easy. Doing so requires a

lot of time, effort, and data. Typically, the geometry that represents an object is modeled by hand

in a 3D content-authoring application, e.g., Blender (https://blender.org), or is obtained from

3D scan data. Proper characterization of an object’s material properties requires either measured

goniometer data or hand-tuning of a parametric scattering function to obtain the desired scattering

shape, and often further requires authoring of material mixture maps to model textured surfaces.

1.4. Objectives

The objectives of this work are to simulate the growth and development of a virtual corn field,

and to assess the fidelity of such a virtual corn field in accurately reproducing spectral response, as

measured by a UAS multi-spectral agricultural imaging system, via physics-based light-transport

simulation. It is also important to note that an outcome of this work, namely the DIRSIG5

https://blender.org
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software plug-in, is meant to automate aspects of DIRSIG scene creation, specifically regarding the

generation of virtual corn canopy geometry and associated optical properties, in order to make it

easier for users of the software to assemble and simulate realistic agricultural scenes. The overview

of the simulation approach is described in Section 2.1. The specific simulation methods implemented

for the modeling of corn canopy geometry, physiological growth and development, and associated

optical properties are described in Sections 2.2, 2.3, and 2.4, respectively. The qualitative and

quantitative validation of virtual corn models in reproducing spectral response is described and

discussed in Section 2.5. Closing remarks and suggested directions for future work are given in

Sections 3.1 and 3.2, respectively.



Chapter 2

Structural and spectral modeling of

corn canopy

2.1. Overview

The primary contribution of this work is, in brief, to develop and validate a high-fidelity, time-

dependent geometric parameterization of corn canopy that is suitable for light-transport simulation

by ray tracing, where the time dependence is governed by a physiological model of growth and de-

velopment. That is, we model a corn plant as a collection of parametric surfaces whose primary

physical characteristics (e.g., surface area) depend on physiological age, and whose secondary phys-

ical characteristics (e.g., leaf angle) are randomizable within plausible distributions.

There are four main points that set our model apart from previous models in the literature.

1) The geometric parameterization more rigorously considers, and thus more faithfully reproduces,

lengths and areas of leaves. 2) The geometric parameterization introduces additional features,

including leaf curl and explicit sheath modeling, that improve visual fidelity. 3) The growth model

operates in continuous time. This is to say that plant geometry is efficiently and smoothly evaluable

as a function of time. We mean by “efficiently evaluable” that the algorithmic complexity is constant

𝑂(1) with respect to time. We mean by “smoothly evaluable” that time is a real number, not an

integer corresponding to a discrete time step. As this may suggest, the model does not rely on a

typical L-system representation of plant architecture. We note that corn does not exhibit deeply self-

similar branching, and therefore we propose that corn does not necessarily warrant representation

15
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as an L-system. 4) The growth model translates expressions from previous models into a unified

“physiological age space”. This collapses consideration of environmental factors to their impact on

a single equation and a handful of parameters. While this is a simplification, it is not without

merit, and it permits the model to be more general, extensible, and implementable for the task of

generating spectrally and structurally plausible corn canopy geometry.

We have constructed the model to be suitable for simulated remote sensing of agricultural

scenes. This requires that the model be able to produce visually high-fidelity geometry, to capture

in-field spectral and structural variability with some consideration of environmental conditions,

and to operate efficiently for various viewing distances. For example, it should be possible to

simulate imagery captured by a drone flying less than 100 meters above the ground, with a ground

sample distance (GSD) on the order of centimeters, as well as imagery captured by a satellite

in low-Earth orbit, with a GSD on the order of tens of meters or greater. The vast number of

corn plants potentially visible at satellite-scale distances is problematic, and coping with this has

greatly influenced the design of the model. It is impractical to simulate the nutrient uptake and

microclimate for millions of corn plants as part of the growth model, where neighboring plants

shadow each other, compete for resources, etc. This level of simulation would further necessitate

an impractical amount of input data, consisting of spatial maps of all incorporated environmental

variables, some or many of which may not even be relevant to an end user’s specific scenario.

Even so, the model should be agronomically informed, and it should be possible for an end user

to reproduce the effects of biophysical interactions of interest through exposed parameters in the

model. Stated differently, the model is designed to be able to reproduce relevant biophysical

phenomena, but not necessarily to predict these phenomena from first principles.

We describe the geometric parameterization of the relevant plant surfaces, namely the lamina,

sheath, and internode, in section 2.2, building on the parameterization of España et al. [23]. We

describe the physiological growth model in section 2.3, where we derive piecewise linear equations

for growth in “physiological age space”from the work of Fournier and Andrieu [21] and Drouet and

Pagès [22]. In Section 2.4, we describe our approach for modeling leaf optical properties, which

includes uniting the ordinary PROPSECT model [25] with modern, physically-based microsurface

scattering functions [41], [42]. Finally, in Section 2.5, we validate the efficacy of the virtual corn

model in reproducing spectral response by comparing simulated imagery to multi-spectral UAS
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Internode

Leaf

Sheath

Lamina

Figure 2.1: Two images labeling the relevant parts of the vegetative structure of a corn plant. On the
left, the distinction between the internode (stalk) and leaf. On the right, the lamina (leaf blade) and sheath
(connective tissue).

imagery captured by the MicaSense RedEdge-3.

2.2. Methods: Geometric parameterization

The vegetative structure of a corn plant consists of two major parts: leaves and internodes.

Each leaf is logically divisible into its lamina and its sheath—the lamina is the leaf blade itself,

while the sheath is the protective tissue joining the leaf blade to an internode. An internode is a

segment of the stalk of the plant which connects a pair of leaves (see Figure 2.1). In this section,

we construct a high-fidelity parametric expression for each of these surfaces, such that each has an

exact length, and the lamina in particular has a “nearly exact” area, which is properly exact in

the absence of curl and undulation deformations. We have referred most extensively to the work

of España et al. [23] and Prévot et al. [24]. The following discussion focuses on the aspects of

our parameterization that differ in this work. We omit simpler or less important mathematical

expressions in favor of descriptions in plain English where it is sensible to do so. Such expressions

and other implementation details are documented as part of the implementation itself.
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2.2.1. Forming the midrib curve

We form the midrib (the middle rib in the center of the lamina) as a piecewise curve in the

XY plane, analogous to España et al., with the exception that we explicitly parameterize by arc-

length, which requires that we derive and invert the arc-length integral for each of the two piecewise

segments. It turns out that neither arc-length integral is invertible in closed form, so we determine

an appropriate initial guess for numerical inversion by Newton-Rhaphson iteration. This additional

work ultimately guarantees that the midrib has an exact length 𝐿, and the magnitude of the

derivative of the midrib is constant and in fact equivalent to 𝐿. This information is useful later

to show that the lamina has an exact area in the absence of deformations. Let 𝑷𝔪 ∶ [0, 1] → ℝ2

parameterize the midrib curve, again in the XY plane. Then,

𝑷𝔪(𝑡) =
⎧{
⎨{⎩

𝑷𝔪0(𝑡) 𝑡 ≤ 𝑡𝔪s,

𝑷𝔪1(𝑡) 𝑡 > 𝑡𝔪s,
(2.1)

where 𝑷𝔪0 is quadratic, 𝑷𝔪1 is elliptic, and 𝑡𝔪s ∈ (0, 1] is the parametric split location.

Quadratic segment. As a function of 𝑥 instead of parameter 𝑡, the quadratic segment is of the

form

𝑷𝔪0(𝑥) = [𝑥 𝑎𝑥2 + 𝑏𝑥]
⊤

(2.2)

where 𝑎 is the curvature and 𝑏 is the slope at the origin. The arc-length integral 𝐿𝔪0 is obtainable

by change of variables, such that

𝐿𝔪0(𝑥) = 1
2𝑎[�̂�𝔪0(2𝑎𝑥 + 𝑏) − �̂�𝔪0(𝑏)] (2.3)

where �̂�𝔪0(𝑥) = 1
2𝑥√1 + 𝑥2 + 1

2 arcsinh 𝑥. (2.4)

We must evaluate Equation 2.2 at 𝑥 = 𝐿−1
𝔪0(ℓ) to parameterize 𝑷𝔪0 by arclength ℓ. By manipulating

Equation 2.3, we have

𝐿−1
𝔪0(ℓ) = 1

2𝑎[�̂�−1
𝔪0(2𝑎ℓ + �̂�𝔪0(𝑏)) − 𝑏] (2.5)

which requires only that we invert �̂�𝔪0. Although �̂�𝔪0 is not invertible in terms of elementary

functions, it is nonetheless bijective and differentiable, and thus subject to efficient numerical

inversion by Newton-Rhaphson iteration given a sufficiently good initial guess 𝑥∗. To determine
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𝑷𝑠

𝑷𝑐

𝑟 ⟂

𝑟∥

𝜑𝑑
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̂𝒚

•

•

Figure 2.2: A possible configuration of the midrib curve, with the quadratic segment 𝑷𝔪0 shown in blue
and the elliptic segment 𝑷𝔪1 shown in orange. The elliptic segment has parallel and perpendicular radii 𝑟∥
and 𝑟⟂ with respect to its tangent at 𝑷𝑠. The elliptic tangent may be angularly displaced from the quadratic
tangent by setting 𝜑𝑑 > 0, as shown.

the initial guess, we notice that the arcsinh term in Equation 2.4 becomes insignificant as 𝑥 → ∞.

That is,

lim
𝑥→∞

�̂�𝔪0(𝑥)
�̃�𝔪0(𝑥)

= 1 for �̃�𝔪0(𝑥) ≡ 1
2𝑥√1 + 𝑥2.

where the simplified function �̃�𝔪0 is invertible in terms of elementary functions for 𝑥 ≥ 0. We thus

select the initial guess as

𝑥∗ = �̃�−1
𝔪0(ℓ) = √1

2
√16ℓ2 + 1 − 1

2. (2.6)

Elliptic segment. As a function of ellipse eccentric angle 𝜑 instead of parameter 𝑡, the elliptic

segment is given by

𝑷𝔪1(𝜑) = 𝑷𝑐 + ⎡
⎢
⎣

cos 𝜑𝑠 sin 𝜑𝑠

− sin 𝜑𝑠 cos 𝜑𝑠

⎤
⎥
⎦

⎡
⎢
⎣

−𝑟⟂ cos 𝜑
𝑟∥ sin 𝜑

⎤
⎥
⎦

(2.7)

where 𝑷𝑐 is the ellipse center, 𝜑𝑠 is the tangent angle at 𝑡𝔪s, and 𝑟⟂ and 𝑟∥ define the perpendicular

and parallel radii with respect to the tangent at 𝑡𝔪s. Refer to Figure 2.2, which also features the

split location 𝑷𝑠 and the displacement angle 𝜑𝑑 between the quadratric and elliptic tangents at

𝑡𝔪s. In accordance with España et al. [23], setting 𝜑𝑑 > 0 causes the leaf to “break” at 𝑡𝔪s.

We accept the parallel radius 𝑟∥ > 0 and the signed eccentricity 𝜀 ∈ (−1, 1) as parameters, then
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compute 𝑟⟂ as

𝑟⟂ = 𝑟∥ ×
⎧{
⎨{⎩

(1 − 𝜀2)+1/2 𝜀 ≥ 0,

(1 − 𝜀2)−1/2 𝜀 < 0.
(2.8)

The arc-length integral 𝐿𝔪1 of 𝑷𝔪1 is again obtainable by change of variables with careful consid-

eration of the eccentricity 𝜀,

𝐿𝔪1(𝜑) =
⎧{
⎨{⎩

𝑟∥𝐸(𝜑, 𝜀2) 𝜀 ≥ 0,

𝑟⟂𝐸(𝜑 + 𝜋
2 , 𝜀2) − 𝑟⟂𝐸(𝜋

2 , 𝜀2) 𝜀 < 0,
(2.9)

where 𝐸 denotes the incomplete elliptic integral of the second kind

𝐸(𝜑, 𝑚) = ∫
𝜑

0
√1 − 𝑚 sin2 𝑢 d𝑢.

As before, we must evaluate Equation 2.7 at 𝜑 = 𝐿−1
𝔪1(ℓ) to parameterize by arc-length ℓ. By

manipulating Equation 2.9, we obtain

𝐿−1
𝔪1(ℓ) =

⎧{
⎨{⎩

𝐸−1( ℓ
𝑟∥

, 𝜀2) 𝜀 ≥ 0,

𝐸−1( ℓ
𝑟⟂

+ 𝐸(𝜋
2 , 𝜀2), 𝜀2) − 𝜋

2 𝜀 < 0,
(2.10)

where 𝐸−1 denotes the inverse of 𝐸 with respect to 𝜑 for fixed 𝑚. Similarly to the quadratic case,

there is no elementary expression for 𝐸−1, but 𝐸 is bijective and differentiable with respect to 𝜑,

and thus subject to efficient numerical inversion by Newton-Rhaphson iteration given a sufficiently

good initial guess 𝜑∗. Notice that 𝐸 is a strictly increasing function of 𝜑 which oscillates about a

line through the origin with slope (2/𝜋)𝐸(𝜋/2, 𝑚). We therefore choose

𝜑∗ = 𝜋
2

1
𝐸(𝜋/2, 𝑚)ℓ′ (2.11)

where ℓ′ denotes the appropriate argument expression from equation 2.10.

2.2.2. Forming the lamina surface

We form the lamina surface similarly to España et al. [23], i.e., we use a quadratic width

profile 𝑞 to extrude the lamina in the Z direction at each point in XY on the midrib. However, we

substitute the arc-length parameterized midrib developed in the previous section, and subsequently

show that the preliminary definition of the lamina surface has an exact area 𝐴 in addition to an
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exact length 𝐿. We further introduce leaf curl, a new parameter, to work in conjunction with leaf

undulation as defined by España et al [23].

Width profile. Let 𝑞 ∶ [0, 1] → ℝ denote the width profile, which defines the extent of the lamina

in the Z direction at each point on the midrib. The width profile is given by

𝑞(𝑡) = −𝑞𝑤(𝑡 + 𝑞0)(𝑡 − 1) (2.12)

where 𝑞𝑤 depends on desired area 𝐴 and length 𝐿, and 𝑞0 ∈ [0, 1] is a shaping parameter. For

𝑞0 = 0, the width is largest at 𝑡 = 1/2. For 𝑞0 = 1, the width is largest at 𝑡 = 0. To ensure the

area calculation for the preliminary lamina surface works out properly, we define 𝑞𝑤 as

𝑞𝑤 = 𝐴
𝐿

1
𝑞0 + 1/3 ⟹ ∫

1

0
𝑞(𝑡) d𝑡 = 1

2
𝐴
𝐿 . (2.13)

Preliminary lamina surface. From equations 2.1 and 2.12, we form a preliminary expression for

the lamina surface 𝑺𝔩0 ∶ [0, 1]2 → ℝ3 as

𝑺𝔩0(𝑠, 𝑡) = 𝑷𝔪(𝑡) + (2𝑠 − 1)𝑞(𝑡) ̂𝒛. (2.14)

It is necessary to integrate the magnitude of the cross product of the partial derivatives over

the domain of interest, in order to compute the area of a parametric surface in general. This is

achievable in closed-form for Equation 2.14, as vector calculus reveals that

∥𝜕𝑺𝔩0
𝜕𝑠 × 𝜕𝑺𝔩0

𝜕𝑡 ∥ = 2𝑞∥𝜕𝑷𝔪
𝜕𝑡 ∥ = 2𝐿𝑞,

where the last equality follows because 𝑷𝔪 is parameterized by arc-length. Then, it is straightfor-

ward to show that 𝑺𝔩0 has desired area 𝐴 by evaluating

∬
[0,1]2

∥𝜕𝑺𝔩0
𝜕𝑠 × 𝜕𝑺𝔩0

𝜕𝑡 ∥ d𝑠 d𝑡 = 2𝐿 ∫
1

0
𝑞 d𝑡 = 𝐴.

Incorporating curl. In order to incorporate leaf curl, we wrap the preliminary lamina surface 𝑺𝔩0

cylindrically around a copy of the midrib curve 𝑷𝔪 displaced in the XY plane along its normal

direction with a bilinearly-varying radius. That is, we define

𝑟𝔩(𝑠, 𝑡) = lerp(𝑠; lerp(𝑡; 𝑟𝔩00, 𝑟𝔩01), lerp(𝑡; 𝑟𝔩10, 𝑟𝔩11)) (2.15)
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Increasing curl

Increasing
undulation

Figure 2.3: Lamina surface deformation in the presence of curl and undulation.

for choice of radii 𝑟𝔩𝑠𝑡 > 0, and where lerp denotes ordinary 1D linear interpolation. Varying the

radius with 𝑠 allows the lamina to spiral inward or outward, while varying the radius with 𝑡 allows

the lamina to taper from one end to the other. Next, we define the cylindrical angle as

𝜃𝔩(𝑠, 𝑡) = 𝑞(𝑠, 𝑡)
𝑟𝔩(𝑠, 𝑡) (2.16)

where 𝑞(𝑠, 𝑡) = (2𝑠 − 1)𝑞(𝑡), from Equation 2.14, represents arc-length around the cylinder. Then,

we define the curled lamina surface 𝑺𝔩1 as

𝑺𝔩1(𝑠, 𝑡) = 𝑷𝔪(𝑡) + 𝑟(𝑠, 𝑡)𝑽 (𝑠, 𝑡), (2.17)

𝑽 (𝑠, 𝑡) = (1 − cos(𝜃𝔩(𝑠, 𝑡)))�̂�𝔪(𝑡) + sin(𝜃𝔩(𝑠, 𝑡)) ̂𝒛, (2.18)

where �̂�𝔪 is the right-hand normal direction with respect to the tangent of 𝑷𝔪,

�̂�𝔪 = ̂𝒛 × 1
𝐿

𝜕𝑷𝔪
𝜕𝑡 .

The reader is referred to the top right of Figure 2.3 to see the effect of bilinearly-varying curl on

the lamina surface.

It is important to note that Equation 2.17 is a nearly, but not perfectly, area-preserving rendition

of Equation 2.14 (though it is perfectly area-preserving in two limiting cases, being in the limit
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as 𝑟 → ∞, and when the 𝑷𝔪 is perfectly straight and 𝑟 is constant). Calculating the differential

area element for 𝑺𝑙,1 is cumbersome, but is nonetheless achievable in closed-form. We find that

the deformed area is typically within 1% of the defined area, even if the radius is small and/or

bilinearly-varying.

Incorporating undulation. We displace the lamina along its unit-length surface normal to incor-

porate undulation. We thus define the curled, undulated lamina surface 𝑺𝔩2 as

𝑺𝔩2(𝑠, 𝑡) = 𝑺𝔩1(𝑠, 𝑡) + 𝛾(𝑠, 𝑡)�̂�𝔩1(𝑠, 𝑡) (2.19)

where 𝑺𝔩1 is the curled lamina surface, �̂�𝔩1 is its unit-length surface normal, and 𝛾 is the magnitude

of displacement. Following España et al. [23], we parameterize 𝛾 by the number of cycles 𝑛𝑡 and

the angular amplitude 𝛺𝑡, being the maximum angular deviation in the surface derivative. Then,

𝛾(𝑠, 𝑡) = (2𝑠 − 1)2𝑞(1, 𝑡) tan(𝛺𝑡)

×
⎧{
⎨{⎩

sin(+𝜔0𝑡) 𝑡 < 𝑡𝔪s

sin(−𝜔1(𝑡 − 𝑡𝔪s)) 𝑡 ≥ 𝑡𝔪s

(2.20)

where 𝜔0 = 2𝜋(𝑛𝑡 + 1/2)/𝑡𝔪s and 𝜔1 = 2𝜋𝑛𝑡/(1 − 𝑡𝔪s).
We further allow the number of undulations to be different on either side of the lamina, such

that we choose between two values 𝑛𝑡0 and 𝑛𝑡1 for 𝑠 less-than/greater-than 1/2. Note that, just as

in the curl deformation, the undulation is approximately but not strictly area-preserving. Refer to

the bottom left and bottom right of Figure 2.3 for the effect on lamina geometry.

2.2.3. Forming the leaf and internode surfaces

We introduce an explicit parameterization of the sheath, then connect the sheath to the lamina

with a cubic patch in order to form the leaf surface. We consider the sheath as a modified cylinder,

where the radius and angular extent vary over the domain, such that the sheath surface 𝑺𝔰 ∶
[0, 1]2 → ℝ3 is given by

𝑺𝔰(𝑠, 𝑡) =𝜌(𝑠, 𝑡)𝑟𝔰(𝑡)[cos(𝜃𝔰(𝑠, 𝑡))�̂� + sin(𝜃𝔰(𝑠, 𝑡)) ̂𝒛]

+(𝑡ℎ + ℎ0) ̂𝒚.
(2.21)
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Figure 2.4: A leaf, formed as a first-order continuous union of the lamina and sheath surfaces.

This indeed looks like a parameterization of a cylinder about the Y axis with height ℎ and vertical

offset ℎ0, where the effective radius is the product of an envelope 𝜌 and a profile curve 𝑟𝔰. We

define the angular extent 𝜃𝔰 to vary bilinearly, and to be symmetric in 𝑠 given principal angular

extents 𝜃𝔰𝑡 at 𝑡 = 0 and 𝑡 = 1 respectively, such that

𝜃𝔰(𝑠, 𝑡) = (𝑠 − 1/2) lerp (𝑡; 𝜃𝔰0, 𝜃𝔰1). (2.22)

The radius envelope 𝜌 is a bilinear function as well, defined for constants 𝜌𝑠𝑡 analogous to Equation

2.15. The radius profile 𝑟𝔰 is a piecewise curve uniting a cubic Hermite segment, which characterizes

a bulge at the base of the cylinder achieving a maximum displacment 𝑑, with a linear segment at

a given split point 𝑡𝔰s ∈ [0, 1].
We connect the sheath and lamina surfaces with a cubic patch to form the final leaf surface.

In particular, at each 𝑠, we construct a cubic Hermite spline connecting 𝑺𝔰(𝑠, 1) to 𝑺𝔩2(𝑠, 0) with

first-order continuity. We choose the top-edge parameters of the sheath to match the bottom edge

of the lamina in terms of radius and angular extent, then position the lamina a distance 𝑐 from the

sheath in the direction of the leaf insertion angle. A realization of the final leaf surface is shown

in Figure 2.4. We form the internode similarly to the sheath, i.e., as a cylinder with a profile

curve modulating the radius, though without varying angular extent. The internode radius profile

curve is piecewise, uniting an interior linear segment with two cubic Hermite segments on the ends.

The Hermite segments are formed identically to those in the sheath, also achieving a maximum
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displacement 𝑑.

2.2.4. Tessellation

To actually populate a three-dimensional scene with corn plants, we must discretize the geo-

metric parameterization of each plant in order to aggregate a set of facets suitable for ray tracing.

We thus obtain a set of vertices by evaluating parametric surfaces on a rectangular grid, then we

obtain a set of facets by forming edges between adjacent vertices. This process is known as tessel-

lation. Suppose that we 1) use 32-bit floating point numbers to represent vertex components, 2)

use 16-bit unsigned integers to represent the vertex indices for each facet, and 3) tessellate at a low

resolution, e.g., 16 vertices and 32 triangular facets per leaf. The facets for a plant having 10 to

20 leaves then will occupy ∼1 KB. This is problematic, as a typical corn field may occupy ≈ 300

acres with ≈ 30 thousand plants per acre (or ≈ 8 plants per square meter). Even for the limited

tessellation resolution given above, the facets for this many corn plants would occupy 20–70 GB. To

circumvent this issue, we tessellate geometry as needed while performing ray tracing, such that we

need not store facets explicitly on disk or in memory. We compute a bounding box for each plant,

which bounds the region its facets may occupy, and we tessellate its geometry only if a ray enters

the box. For efficiency, we maintain a Least-Recently Used (LRU) cache of recently tessellated

geometries. The maximum size of the cache is configurable, and when this size is exceeded, we

remove the least-recently used geometry.

We further allow the end user to specify the desired tessellation density of plant geometries.

This is given as a pair of floating point values that describe the desired number of subdivisions

per centimeter in 𝑠 and 𝑡 respectively. Using a higher tessellation density yields higher fidelity

geometry suitable for near viewing distances, where each plant may occupy many pixels in the

output image. Using a lower tessellation density produces lower fidelity geometry suitable for far

viewing distances, where each pixel in the output image may contain many plants.

2.3. Methods: Physiological growth modeling

In this section, we discuss the physiological model of growth and development that determines

the primary physical characteristics of the geometric parameterization as a function of time. The

model does not depend on time explicitly, but instead on physiological age. Physiological age is
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an abstracted measure of the age of a plant which quantifies its stage of development independent

of its chronological age. Physiological age is itself a function of time, temperature, and other

environmental factors. We have referred largely to the partly architectural, partly agronomical

models presented by Fournier and Andrieu [21] and Drouet and Pagès [22]. Both cited models

operate in discrete, fixed time steps, and explicitly simulate things like microclimate and resource

allocation within the plant at each time step. From these more rigorous discrete-time models

we have distilled a more efficient and more elegant, albeit less rigorous, continuous-time model.

That is to say that our model depends continuously on physiological age, which in turn depends

continuously on time-varying quantities.

It is worth stating at the outset that we measure physiological age in plastochrons, also called

plastochron numbers or plastochronic units; Fournier and Andrieu measured physiological age in so-

called growing degree units (GDUs), though the authors made use of plastochrons in certain aspects

of their model as well. As we will examine further in the next section, GDUs and plastochrons

happen to be redundant measuring systems, and for this reason we adopt plastochrons as the

canonical units of physiological age.

2.3.1. Growth concepts

A corn plant develops rather predictably, in the sense that there is no deeply recursive, self-

similar branching as there is in a common oak tree, for example. In describing the geometric

parameterization, we have already introduced the two major components of a corn plant, being

leaves and internodes. Leaves and internodes in fact come in pairs, such that there is a leaf for each

internode and vice versa. Moreover, each pair forms a functional unit of growth and development

known as a phytomer. While the plant is actively growing, there is a region of actively subdividing

tissue at the apex known as the apical meristem, which is responsible for sequentially initiating

phytomers.

The plastochron is defined as the length of time between the initiation events of successive

phytomers [43]. The rate at which the apical meristem initiates phytomers, which we denote by

𝑅𝑝, therefore is of particular interest. Warrington and Kanemasu [44] found that this initiation

rate, having units of phytomers per day, depends only on temperature under conditions where other

environmental factors are not prohibitive. In particular, 𝑅𝑝 is well modeled as a cubic function of
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Figure 2.5: Initiation rate of phytomers 𝑅𝑝 given by Warrington and Kanemasu [44] as a cubic function
of temperature 𝑇 in degrees celsius. 𝑅𝑝 is understood to be zero to left and right of the minimum and
maximum 𝑇 -intercepts respectively.

temperature 𝑇 in degrees celsius as

𝑅𝑝(𝑇 ) = −0.00065−0.0138𝑇

+0.00372𝑇 2 − 0.000072𝑇 3,
(2.23)

which achieves a maximum value of 𝑅𝑝 ≈ 1 phytomer per day at the optimal growing temperature

𝑇 = 𝑇opt ≈ 30 ∘C as shown in Figure 2.5. We may thus obtain the plastochrons 𝑝 elapsed over a

time interval [𝜏0, 𝜏0 + Δ𝜏] as

𝑝 = ∫
𝜏0+∆𝜏

𝜏0

𝑅𝑝 d𝜏 (2.24)

where 𝑅𝑝 depends on temperature 𝑇 , which may depend on time 𝜏 in turn. Because 𝑅𝑝 is positive

for plausible temperatures, the plastochron number 𝑝 is strictly increasing, and therefore invertible,

with respect to the duration Δ𝜏 .

A unit similar to the plastochron is the growing degree unit (GDU), also known as the growing

degree day (GDD), which is more widely-used in agricultural practice. A measurement in GDUs is

obtained by integrating the difference of the meristem temperature 𝑇 from the base temperature

𝑇base over time. The base temperature is the minimum temperature necessary for growth to occur.

We thus can think of GDUs as an approximate, scaled version of plastochrons where 𝑅𝑝 is replaced

by the simple linear equation 𝑇 − 𝑇base. For typicial mid-latitude summer temperatures, GDUs 𝐺
for 𝑇base = 9.8 ∘C and plastochrons 𝑝 are in fact linearly related by 𝐺 ≈ 𝑝/0.06. This is shown in
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Figure 2.6: GDUs versus plastochrons from May 1 (DOY 121) to August 31 (DOY 243) for typical mid-
latitude summer temperatures. As shown, the relationship is approximately linear, such that 𝐺 ≈ 𝑝/0.0602.

figure 2.6. We compute “typical” mid-latitude summer temperatures as discussed in appendix A.

We next provide expressions for the growth and development of leaves and internodes that de-

pend on physiological age in plastochrons 𝑝. We thus far suppose 𝑅𝑝 depends only on temperature,

which in turn depends on time, as given by Equation 2.23. However, the plastochron number 𝑝
as given by Equation 2.24 does not inherently assume anything about the definition of 𝑅𝑝. That

is to say that the resulting model is generalizable to consider more than temperature and time by

substituting an alternative expression for 𝑅𝑝 which considers the impact of more, and perhaps more

extreme, environmental factors. This is what we mean when we say that the model is defined in a

generic “physiological age space”. The built-in assumption is that the primary physical character-

istics of all corn plants develop identically under identical conditions, and 𝑅𝑝 is the fundamental

equation that defines how environmental variables affect development.

As a first attempt to incorporate environmental stress, we rewrite 𝑅𝑝 as

𝑅𝑝(𝑇 , 𝑆𝑤, 𝑆𝑛) = (1 − 𝑆𝑤)𝑒− 1
2 𝑆𝑛𝑅𝑝(𝑇 ) (2.25)

where 𝑆𝑤 ∈ [0, 1], 𝑆𝑛 ∈ [0, 1] are normalized water and nutrient stress parameters, such that a value

of zero indicates no stress and a value of one indicates maximal stress. When both parameters are

zero, 𝑅𝑝 is unchanged. Under maximal water stress 𝑆𝑤 = 1, 𝑅𝑝 = 0 and growth ceases. Under

maximal nutrient stress 𝑆𝑛 = 1, 𝑅𝑝 is reduced to ≈ 60% of its temperature-limited value. The
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form of Equation 2.25 is consistent with the implementation of WOFOST 7.1 in de Wit’s Python

Crop Simulation Environment (PCSE). The water stress parameter 𝑆𝑤 is the complement of the

Reduction factor due to excessive transpiration, which is the soil moisture fraction between the

critical soil moisture and the wilting point. The nutrient stress parameter 𝑆𝑛 is the complement of

the least nutrient index in Nitrogen/Phosphorous/Potassium (NPK) simulation.

2.3.2. Growth expressions

We characterize a corn plant by four primary physiological parameters, consisting of the total

number of leaves 𝑁T, the maximum length of the largest lamina 𝐿𝔩M, the maximum length of the

largest internode 𝐿𝔦M, and the rank of the first elongating internode 𝑛0. We use piecewise linear

functions of plastochron number 𝑝, which we derive from discrete-time expressions present in the

literature, to model the lengths of laminae, sheaths, and internodes.

Laminae. Let 𝐿𝔩(𝑘; 𝑝) denote the length of lamina 𝑘 as a function of plastochron number 𝑝. At

a high level, we express this as

𝐿𝔩(𝑘; 𝑝) = 𝐿𝔩m(𝑘) ⋅ clamp [𝑝 − 𝑝𝔩0(𝑘)
𝐷𝔩(𝑘) ∈ [0, 1]] (2.26)

where 𝐿𝔩m(𝑘) is the maximum length of lamina 𝑘. which multiplies a normalized “growth factor”

clamped to [0, 1]. The growth factor is a unitless linear expression of the plastochron number 𝑝,

where 𝑝𝔩0(𝑘) is the age in plastochrons at which growth begins, and where 𝐷𝔩(𝑘) is the growth

duration in plastochrons. Following Drouet and Pagès [22], we use the allometric length/width

relationship of Bonhomme and Varlet-Grancher [45] to determine lamina area 𝐴 and shaping 𝑞0

as a function of lamina length 𝐿. The width profile associated with this relationship is directly

convertible to the width profile 𝑞(𝑡) as given by Equation 2.12, constraining 𝐴 = 0.0795𝐿2 and

𝑞0 = 0.381.

Following Fournier and Andrieu [21], the maximum length of lamina 𝑘 is given by

𝐿𝔩m(𝑘) = 𝐿𝔩Me 1
2 𝑎M(𝑘/𝑛M−1)2+ 1

2 𝑏M(𝑘/𝑛M−1)3 (2.27)

where 𝐿𝔩M represents the length of largest lamina. Fournier and Andrieu [21] used published data

from 22 genotypes to linearly regress the remaining curve parameters against the total number of
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leaves 𝑁T that ultimately develop in the plant, thereby obtaining

𝑎M = 0.25𝑁T − 10.61,

𝑏M = 0.27𝑁T − 5.99,

𝑛M = 0.33𝑁T + 5.93.

The duration 𝐷𝔩(𝑘) is determined by dividing the terminal length 𝐿𝔩m(𝑘) by a growth rate

𝑣∗
𝔩 in units of length per plastochron. Fournier and Andrieu [21] used the growth rate parameter

𝑣𝑙 = 0.564(𝑇 −9.8) proposed by Salah [46], which has units of centimeters per day and is a function

of meristem temperature 𝑇 in celsius. This parameter is constructed to be effective in the region

where growth rate increases quasi-linearly with temperature. This region is between the base

temperature of 𝑇base = 9.8 ∘C, below which it is understood that growth does not occur, and the

optimal growing temperature 𝑇opt ≈ 30 ∘C, above which it is understood that growth rate decreases

with temperature. However, 𝑣𝑙 is not directly compatible with our approach because it explicitly

considers temperature and time, whereas we would like to express growth rate independently in

units of length per plastochron. We consider that the derivative of 𝑣𝑙 with respect to temperature

is a constant 𝑑𝑣𝑙/𝑑𝑇 = 0.564 cm/∘C/d having units of length per degree-day. As we have previously

established, degree-days or GDUs are approximately linearly related to plastochrons within typical

mid-latitude summer temperatures (refer back to Figure 2.6). This range of temperatures is between

the base and optimal growing temperatures, and so is consistent with the region 𝑣𝑙 intends to

model. We thus convert 𝑑𝑣𝑙/𝑑𝑇 to the desired units of length per plastchron using the relationship

𝐺 ≈ 𝑝/0.06. This yields

𝑣∗
𝔩 = 0.564 cm/∘C/d

0.06 pl/∘C/d = 9.4 cm/pl.

The age in plastochrons at which growth begins 𝑝𝔩0(𝑘) is given by the age at which the phytomer

is initiated plus the delay between initiation and linear elongation. The age in plastochrons at which

phytomer 𝑘 is initiated by the apical meristem is, by definition, 𝑝 = 𝑘. The delay between initiation

and linear elongation in plastochrons was fit by Fournier and Andrieu [21] to data published by Cao

et al. [47] and Zur et al. [48]. This fit is part linear and part cubic. The linear part is 1.94𝑘 − 5.16
for 𝑘 < 𝑛M, and the cubic part is constrained to be first-order continuous at 𝑘 = 𝑛M, to have zero

slope at 𝑁T, and to increase by 3.65 from 𝑘 = 𝑛M to 𝑘 = 𝑁T.
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Sheaths and internodes. We express the lengths of sheaths and internodes in exact analogy to

Equation 2.26. For brevity, we do not include the expressions here. We calculate the growth

duration for sheaths and internodes analogously, by dividing terminal length by growth rate. The

growth rate of sheaths 𝑣∗
𝔰 is equivalent to the growth rate of laminae 𝑣∗

𝔩 , and the growth rate of

internodes 𝑣∗
𝔦 is set to 0.18𝑣∗

𝔩 . Note that the growth rates of sheaths and internodes are also defined

in units of length per plastochron, but are otherwise analogous to the values used by Fournier and

Andrieu.1 Elongation of the sheath is 30% complete when lamina elongation ceases, and elongation

of the internode begins when the elongation of the sheath is 60% complete. These heuristics are

reported, but not used, by Fournier and Andrieu [21] based on data by Sharman [49], Hesketh et

al. [50], Grant and Hesketh [51], and Robertson [52].

Randomized parameters. The primary physical characteristics of each plant are determined by

the four parameters 𝑁T, 𝐿𝔩M, 𝐿𝔦M, and 𝑛0 stated previously. We further store the location and

azimuthal angle, as well as a 32-bit integer identifier or “seed value”. The seed value is used to

initialize a Pseudo-Random Number Generator (PRNG), which is used in turn to randomize all

remaining secondary physical characteristics, such as leaf insertion angles and curvatures, within

plausible distributions given by España et al. [23] and Drouet and Pagès [22]. Regarding the choice

of PRNG, we use and recommend the 32-bit Permuted-Congruential Generator (PCG) [53], which is

a principled modification of the Linear-Congruential Generator (LCG) that is comparably efficient

and produces statistically better output.

It is important to emphasize that, while these parameters are randomized, they are not stochas-

tic. In other words, each seed value uniquely and deterministically identifies a configuration of sec-

ondary physical characteristics. Furthermore, we linearly interpolate many randomized parameters

from sensible initial values to the randomized terminal values using the appropriate growth factors.

For example, each leaf insertion angle is always initially vertical, growing upward from the apex,

and interpolates to its randomized terminal value via the lamina growth factor. This results in each

plant being truly physically unique and growing continously over time, as shown in Figure 2.7. By

modeling the growth and development of plant geometry explicitly, known phenomenology such as

shadow-hiding and opposition surge (an extreme case of shadow-hiding) is inherently reproducable,
1Also, Drouet and Pagès report a value of 0.41𝑣∗

𝔩 for the growth rate of internodes, yet cite Fournier and Andrieu.
This is a misprint, and should be instead 0.14𝑣∗

𝔩.
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Figure 2.7: Plant geometry shown at 15-day increments as output by the growth model under temperature-
limited (no stress) conditions.

as shown in Figure 2.8. This is scalable to scenes containing millions of unique plants, using the

runtime tessellation technique described in Section 2.2.4, since each plant is only represented by a

handful of physiological parameters, its location and azimuthal angle, and an integer seed value.

2.4. Methods: Optical properties modeling

We implement a PROSPECT-inspired model to obtain leaf optical properties. In particular,

we use PROSPECT [25] to simulate leaf hemispherical reflectance and transmittance given the

concentrations of chlorophyll 𝑎 + 𝑏 and water. We further simulate a perfectly energy conserving

Bidirectional Scattering Distribution Function (BSDF) for a rough dielectric plate, in order to

capture directional variation. This is consistent with the theoretical understanding of a compact

leaf in the PROSPECT model for 𝑁 ≈ 1. We re-weight the reflective hemisphere of this BSDF by

the hemispherical reflectance and the transmissive hemisphere of this BSDF by the hemispherical

transmittance.
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Figure 2.8: An example corn plot, where the stage of development is incremented uniformly across rows.
These images were rendered with Blender’s RGB-centric Cycles path tracer (not DIRSIG) with ad hoc
optical properties. The intent of this figure is to demonstrate observable phenomenology due to explicit plant
geometry, namely the effects of shadow-hiding (top two images) as well as the extreme case of opposition
surge (bottom image).
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Spherical Quad Tree BSDFs. DIRSIG5 features a numerical BSDF format called Spherical Quad

Tree (SQT) [5]. This format constructs a quad-tree-like data structure on the surface of a sphere

from given BSDF measurements for efficient and smooth interpolation and sampling of an arbitrary

scattering function at runtime. An SQT is most often used to incorporate real-world Bidirectional

Reflectance Distribution Function (BRDF) data measured by a goniometer into a DIRSIG scene.

It is equally valid however to use an SQT to incorporate a simulated BSDF into a DIRSIG scene,

such as that of a rough dielectric plate.

2.4.1. Layered-SQT

We developed a separate tool, called layered-sqt, for simulating the emergent BSDF of a

layered assembly in SQT format for use with DIRSIG scenes. A layered assembly is a theoretical

construction consisting of 𝑀 layers, separated by 𝑀 + 1 participating media for 𝑀 ≥ 1. A layer

is an infinite plane which is offset along (and normal to) the 𝑧-axis, and which is associated with a

constituent BSDF that describes how light scatters upon intersection. A medium occupies the space

between adjacent layers or, in the boundary cases, the spaces above and below the top and bottom

layers respectively. See Figure 2.9 for clarification. The emergent BSDF is the BSDF observed

in the limit as one backs infinitely far away from the assembly or, identically, as the assembly

shrinks to an infinitesmial point. To ensure that the emergent BSDF is well-defined, layered-sqt

requires that the properties of surfaces and participating media be homogeneous, i.e., independent

of spatial location. Furthermore, layered-sqt does not account for wavelength-dependence for

simplicity/tractability.

Basics of program usage. The layered-sqt program is run from the command-line. It scans

command-line arguments for (optional) configuration flags and a (required) input filename appear-

ing somewhere as a positional argument, i.e., an argument not consumed by a flag. It then parses

the input file, simulates the emergent BSDF, and writes the results to a RAW-format file ready for

conversion to SQT-format via the existing raw2sqt program. For instance,

$ ./layered-sqt example.lsqt -p 50000 -o example.raw

simulates a layered assembly described in example.lsqt with 50,000 paths, and writes the emergent

BSDF in plain-text RAW format to example.raw. Then, run



CHAPTER 2. STRUCTURAL AND SPECTRAL MODELING OF CORN CANOPY 35
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Layer 1 (top)
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Figure 2.9: An example diagram of a layered assembly with three layers and four participating media.

$ ./raw2sqt example.raw

to write a new SQT-format file example.sqt for use with DIRSIG.

Two of the most common flags appear above, being -p (or --path-count) to specify the number

of light paths sampled in the simulation and -o (or --output) to specify the output filename. To

see a list of all acceptable flags with brief descriptions and default values, pass -h (or --help), or

simply run layered-sqt with no filename. As an aside, layered-sqt verifies parameters specified

in command-line flags, as well as keyword arguments specified in the input LSQT file. In the event

that something has an unreasonable value, the program issues an error and fails in a controlled

manner. Lastly, layered-sqt recognizes the single dash filename “-” as standard input. This makes

it possible to pipe the (presumably LSQT format) output of a script into layered-sqt directly, if

this happes to be convenient. As a trivial example,

$ cat example.lsqt | \

./layered-sqt -p 50000 -o example.raw -

is equivalent to just passing example.lsqt.

Basics of LSQT format. The structure of a layered assembly is easy enough to convey in plain-

text with rudimentary syntax, so this is the format layered-sqt accepts as input. We refer to this

as “LSQT format”, and we suffix associated filenames with the extension .lsqt (though this suffix
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is not strictly required for the program to run). An LSQT file is therefore a line-by-line plain-text

description of a layered assembly from top to bottom. So, the first line describes the top medium,

the second line describes the top layer beneath the top medium, the third line describes the medium

beneath the top layer, and so on until the bottom layer and bottom medium. That being the case,

odd-numbered lines describe media and even-numbered lines describe layers. The syntax is

Name key1=val1 key2=val2

where the identifier Name is described by keyword arguments key1 and key2. Importantly, this syn-

tax is whitespace-delimited, so keyword arguments of the form key=val must not contain whites-

pace. It is also worth mentioning that the keyword arguments may appear in any order.

2.4.2. Layered-SQT tutorial

The most intuitive way to introduce the functionality of layered-sqt is by a brief tutorial.

This section is not intended to provide a comprehensive treatment of the structure and usage of

layered-sqt, but instead to provide an idea of how the program is used and what the program

simulates. We will review two examples, the first of which is trivial, and the second of which is

more interesting.

We first consider simulating a trivial layered assembly which represents a 60% reflective Lam-

bertian surface. To do so, we create a plain-text file Lambertian.lsqt with three lines.

1 Medium

2 Layer z=0 Lambertian fR=0.6

3 Medium

Above, lines #1 and #3 specify the top and bottom media as vacuum, i.e., writing Medium with no

keyword arguments indicates vacuum. Line #2 specifies a layer at 𝑧 = 0, with a Lambertian BSDF

with reflectance coefficient 𝑓𝑅 = 0.6. We next run layered-sqt on Lambertian.lsqt, without

passing any additional command-line flags. Doing so creates two new files: Lambertian.raw2 and

Lambertian.lsqt.lss. As stated in the previous section, we may convert the plain-text RAW file

to a binary SQT file for use with DIRSIG by running raw2sqt. The LSS file is a binary cache

layered-sqt uses to store simulation data. LSS is an initialism for LSQT-Slice. It is useful for 1)
2By default, layered-sqt replaces the extension .lsqt with .raw to form the output filename.
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Figure 2.10: A preview of a 60% reflective Lambertian BRDF output by layered-sqt-lssview.

previewing the emergent BSDF without setting up and rendering a DIRSIG scene and 2) simulating

the emergent BSDF progressively, with multiple runs of layered-sqt.

We may run layered-sqt-lssview, an accompanying program packaged with layered-sqt,

to preview the emergent BSDF in an LSS file. For example,

$ ./layered-sqt-lssview Lambertian.lsqt.lss

writes a new file Lambertian.lsqt.png, which is a 512 × 512 rendering of the BSDF applied to

a ball, shown in Figure 2.10. It is important to note that layered-sqt-lssview is not a full-

blown path-tracer, and may not perfectly represent how the BSDF will appear in DIRSIG. It

only accounts for the direct (first bounce) contributions of a few directional light sources, and it

further uses tone-mapping and sRGB correction, such that the output image is not suitable for any

radiometric analysis. The intended use of the preview image is to determine if a simulated BSDF

is suitably convergent/noise-free.

We next consider simulating a slightly more interesting layered assembly which represents a

20% reflective Lambertian surface with a dielectric coating and a layer of back-scattering dust. We

create a plain-text file Dusty.lsqt with seven lines.

1 Medium

2 Layer z=2 Null
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Figure 2.11: A preview of a 20% reflective Lambertian BRDF with a dielectric coating and a layer of
backscattering dust output by layered-sqt-lssview.

3 Medium mus=0.2 HenyeyGreenstein g=-0.4

4 Layer z=1 MicrosurfaceDielectric alpha=0.2

5 Medium eta=1.4

6 Layer z=0 Lambertian fR=0.2

7 Medium

Similarly to the previous example, lines #1 and #7 specify the top and bottom media as vacuum,

and line #6 specifies a layer at 𝑧 = 0 with a 20% reflective Lambertian BRDF. There is much to

unpack, however, in lines #2, #3, #4, and #5. Line #2 specifies a null layer at 𝑧 = 2. A null layer

is a layer with no associated BSDF, used only to separate media with different properties. Line

#3 specifies a scattering medium with coefficient 𝜇𝑠 = 0.2, characterized by the Henyey-Greenstein

phase function (the volume-scattering analog of a surface BSDF) with shape parameter 𝑔 = −0.4.

Line #4 specifies a layer at 𝑧 = 1 with a dielectric microsurface BSDF with roughness coefficient

𝛼 = 0.2. Line #5 specifies a medium with refractive index 𝜂 = 1.4.

Regarding the new keyword arguments that appear for media—every medium in an LSQT file

has a refractive index 𝜂 (eta), which defaults to one, and two volume scattering parameters, which

default to zero. The volume scattering parameters consist of the scattering coefficient 𝜇𝑠 (mus) and



CHAPTER 2. STRUCTURAL AND SPECTRAL MODELING OF CORN CANOPY 39

the absorption coefficient 𝜇𝑎 (mua). Scattering and absorption events happen according to Beer’s

Law in a homogeneous medium. That is, the probability of scattering within a particular distance

𝑑 is given by an exponential distribution 1 − exp(−𝜇𝑠𝑑), where 𝜇𝑠 is the distribution parameter.

This applies analogously to the probability of absorption and 𝜇𝑎. We thus identify the units of 𝜇𝑠

and 𝜇𝑎 as inverse distance, and we interpret the reciprocals 1/𝜇𝑠 and 1/𝜇𝑎 as the mean distances

between scattering and absorption events, respectively. Note that in the limit 𝜇𝑠 = 𝜇𝑎 = 0 (the

default values), the mean distances tend to infinity, such that scattering and absorption events

cease to exist. This is why Medium with no keyword arguments, having 𝜂 = 1 and 𝜇𝑠 = 𝜇𝑎 = 0, is

equivalent to vacuum.

To simulate a thin layer of back-scattering dust, line #3 specifies a medium with a scattering

coefficient 𝜇𝑠 = 0.2 and a Henyey-Greenstein phase function with shape parameter 𝑔 = −0.4. We

choose 𝜇𝑠 to be 0.2 so that the mean distance between scattering events is 1/𝜇𝑠 = 5 units. This

is somewhat large in comparison to the thickness of the dust layer, which is 1 unit, so that the

dust appears suitably thin. The Henyey-Greenstein phase function is widely used in computer

graphics due to its simplicity and intuitive parameterization (although it was originally intended to

model scattering of interstellar dust clouds). This phase function is equipped with a single shape

parameter 𝑔 ∈ (−1, +1), which is identical to the mean scattering cosine. That is, it tends to

forward scatter as 𝑔 → +1 and back scatter as 𝑔 → −1, and is isotropic at 𝑔 = 0.

Line #4 specifies a layer with a dielectric microsurface BSDF. A microsurface is thought to

be an infinitesimally thin cloud of microscopic facets, where each facet is thought to scatter light

according to another simpler BSDF [42]. The cloud is characterized geometrically by a distribution

of the slopes of the facets and a distribution of the heights of the facets. The distribution of slopes

is parameterized by its so-called roughess 𝛼 (more generally, anisotropic roughness 𝛼𝑥, 𝛼𝑦). As

𝛼 → ∞, the distribution of slopes widens and the microsurface BSDF appears rougher. As 𝛼 → 0,

the distribution of slopes collapses. This recovers the initial, simpler BSDF in the limiting case

where 𝛼 = 0. A so-called dielectric microsurface applies the dielectric Fresnel mirror delta BSDF

to the microfacets. So, line #4 using 𝛼 = 0.2 corresponds to a somewhat-rough Fresnel mirror,

where the relative refractive index is formed as 1/1.4 from the media above and below on lines #3

and #5.

To simulate this layered assembly effectively, we run
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Figure 2.12: On the left, a PROSPECT-inspired rough dielectric plate BSDF with refractive index 1.4.
On the right, a standard 50% reflective, 50% transmissive Lambertian BSDF for comparison. Both are
spectrally unweighted and perfectly energy conserving.

$ ./layered-sqt -wi=300 -p=100000 Dusty.lsqt

where -wi=300 increases the number of incident direction samples 𝜔𝑖 from 80 (the default) to 300

and -p=100000 increases the number of simulated light paths from 10,000 (the default) to 100,000.

The simulation takes a few minutes to complete. The preview produced by layered-sqt-lssview

is shown in Figure 2.11.

2.4.3. PROSPECT-inspired plate BSDF

A leaf is represented as a stack of 𝑁 dielectric plates in the PROSPECT framework. A corn leaf

is a compact leaf, meaning that its internal structure is relatively simple and uniform. As such, it is

in fact modeled as a single plate with 𝑁 ≈ 1. Though this representation is well-suited to predicting

net hemispherical optical properties, it is not ideal for predicting the directional variation of these

properties. That is to say that a smooth dielectric plate exhibits directional scattering similar to

a Fresnel mirror. Corn leaves in the real world do not appear mirror-like but instead appear much

more diffuse. PROSPECT hemispherical spectra thus are typically applied in conjunction with the

Lambertian assumption, i.e., that scattering is uniform in all directions. This is more realistic but

still far from accurate. In order to unite the ordinary PROSPECT framework with the observation

that leaves appear diffuse, we consider a corn leaf to scatter directionally as a dielectric plate
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Figure 2.13: Hemispherical polar plots of the BRF (top row) and BTF (bottom row) of the non-absorbing
PROSPECT-inspired BSDF, shown for viewing zenith angles of 0∘ (left column) and 45∘ (right column).
The red dot in each plot corresponds to the viewing direction.
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with rough top and bottom surfaces instead of smooth ones. For the purpose of simulating the

scattering distribution of the BSDF, we further assume that the plate is perfectly energy conserving

(no energy is absorbed). We reincorporate absorption by subsequently re-weighting the reflective

and transmissive hemispheres of the BSDF to reproduce the Directional Hemispherical Reflectance

(DHR) and Directional Hemispherical Transmittance (DHT) at nadir, as predicted by the standard

PROSPECT model. This separates the directional behavior of the BSDF into a more tractable

subproblem.

We use layered-sqt to simulate the emergent BSDF of a rough dielectric non-absorbing plate

as a layered assembly with two layers, both characterized by a rough, isotropic microsurface BSDF.

Using the microsurface formalism to model reflectance by rough surfaces was first popularized in

the computer graphics community by Cook and Torrance [54]. The generalization of reflective

microsurface BRDFs to both reflective and transmissive BSDFs was given by Walter et al. [55].

Until recently however, microsurface BSDFs suffered from energy loss at high roughness values

due to over-estimation of shadowing and disregard of multiple-scattering. This was resolved by

rigorous analysis of microsurface shadowing properties and the introduction of multiple-scattering

microsurface models by Heitz et al. [41], [42]. We attribute the latter, perfectly energy-conserving

BSDF model of Heitz et al. [42] to the top and bottom surfaces of the plate with a roughness of 2

and a refractive index of 1.4. In a more comprehensive simulation, roughness and refractive index

would be parameters that potentially vary with wavelength. We note, however, that the emergent

BSDF is not particularly sensitive to refractive index within a sensible range, say [1.2, 1.8], and is

decreasingly sensitive to increasing roughness >> 2.

The emergent BSDF is shown in Figure 2.12 next to a 50% reflective, 50% transmissive Lamber-

tian BSDF for reference. Hemispherical polar plots of the Bidirectional Reflectance Factor (BRF)

and Bidirectional Transmittance Factor (BTF) for viewing angles at nadir and 45 degrees off axis

are shown in figure 2.13. Notice that the plate BSDF reflects proportionally more energy at grazing

angles and transmits proportionally more energy parallel to the incident direction.

2.5. Validation of the corn models

We validated our model against UAS data collected in the summer of 2018 at the United States

Department of Agriculture (USDA) Beltsville Agricultural Research Center (BARC) in Beltsville,
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Figure 2.14: A top-down diagram of the corn plots at the BARC site, with 25 smaller plots (appearing
to the left/west) and 20 larger plots (appearing to the right/east). Each is associated with an integer ID,
displayed in the center. Each is filled to indicate how much nitrogen it received, and hatched if it received
irrigation.

Non-irrigated Irrigated
0% N 7 6

25% N 2 2
50% N 4 4
75% N 1 2

100% N 5 3
200% N 5 3

Table 2.1: The distribution of the 44 plants for which measurements were collected over nitrogen and
irrigation treatments.
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Maryland. That is, we verified that the radiance predicted by a DIRSIG5 simulation of virtual

corn canopy is suitably close to the radiance captured by a real multispectral agricultural imaging

system, namely the MicaSense RedEdge-3, flown by the RIT UAS team on the morning of June

18, 2018. The BARC site is located at approximately 76.8∘ West and 39.0∘ North and occupies

approximately 200 meters by 100 meters. The site consisted of 25 smaller corn plots and 20 larger

corn plots, as depicted in Figure 2.14, planted on May 9. The plots were variously subjected to six

different nitrogen treatments, being 0%, 25%, 50%, 75%, 100%, and 200% of the recommended rate

of 130 pounds per acre. Around half of the plots were irrigated. The USDA collected measurements

from 44 different plants on nine occassions in the months of June and July. The measurements

include plant height and chlorophyll content, quantities of particular interest to this work. As

may be evident, examining 44 plants across six different nitrogen treatments and two different

irrigation treatments left little headroom to draw conclusions confidently from statistical analyses

of specific treatment combinations. The effective sample sizes were single digit numbers, and the 44

plants were not evenly stratified across treatment categories as shown in table 2.1. We nonetheless

considered general trends in plant height and chlorophyll content in our virtual reconstruction of

the site.

Plant height seemed to depend more on nitrogen treatment than on whether or not irrigation

was present, as shown in Figure 2.15. The USDA remarks widespread drought-stress occurring

only from July 3 until July 20, sufficiently after the early stages of development. There was

notable variability in plant heights, even within specific treatment combinations, from ±6 cm on

June 12 to ±40 cm by July 16. A handheld SPAD-502 meter was used to measure leaf chlorophyll

content non-destructively. SPAD really measures “greenness” via a spectral band index which

correlates with chlorophyll content, such that an empirical equation is required to obtain absolute

concentrations [56]. We used the so-called literature consensus equation for converting SPAD

readings to chlorophyll concentrations given by Cerovic et al. [57], which is 𝐶𝑎+𝑏 = 99𝑆/(144 − 𝑆)
micrograms per square centimeter. Leaf chlorophyll content was highly variable, even more so than

plant height, such that it is not sensible to speculate about its relationship to the applied nitrogen

and irrigation treatments. Overall, the mean chlorophyll content increased from ≈ 25 μg/cm2 on

June 12 and plateaued at ≈ 40 μg/cm2 in early July.

We virtually reconstructed the BARC site as a DIRSIG scene to obtain simulated imagery that
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Figure 2.15: The mean heights of plants measured at the BARC site over time, separated by nitrogen and
irrigation treatment.
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Figure 2.16: The mean height of corn plants measured at the BARC site over time versus mean height of
simulated plants. Note that the height of a corn plant is measured from the ground to the highest point on
the top leaf which has begun to curl downward. We calculated the height of simulated plants according to
this principle.
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Band name Band center FWHM
Blue 0.475 μm 0.02 μm
Green 0.560 μm 0.02 μm
Red 0.668 μm 0.01 μm
Red Edge 0.717 μm 0.01 μm
Near IR 0.840 μm 0.04 μm

Table 2.2: MicaSense RedEdge band information used to simulate imagery with DIRSIG5.

is qualitatively and quantitatively comparable to MicaSense imagery collected by the RIT UAS

team. The scene was defined relative to (341821, 4321180, 30.2031) in the EPSG:26918 coordinate

system for UTM zone 18N. The underlying terrain was based on tessellation of the Digital Elevation

Map (DEM) of the surrounding area, acquired through Maryland’s iMAP data portal, at one-meter

resolution. The USDA provided ESRI Shapefiles describing the plot regions shown in Figure 2.14.

We interpolated plant locations within these regions to have row and column spacing roughly equal

to that at the BARC site, i.e., ≈ 36 inches between rows and ≈ 8 inches between columns. We

modeled plant growth via equation 2.25 with daily average temperatures measured by the Baltimore

Washington International Airport weather station. We applied up to 40% nutrient stress (ad hoc)

for plots without any applied nitrogen, with spatially-correlated noise (specifically, three layers of 2D

simplex noise [58]) to introduce lower-frequency variability. This produced ≈ 70, 000 unique plants

at varying stages of development. Figure 2.16 shows the mean height of measured plants versus

the mean height of simulated plants. A handheld Spectra Vista Corporation (SVC) spectrometer

was used to collect reflectance measurements at the site. We fit a PROSPECT spectrum to SVC

measurements of leaf reflectances in order to determine the Directional Hemispherical Reflectance

(DHR) and Transmittance (DHT) at nadir, to use in combination with our PROSPECT-inspired

BSDF described in Section 2.4. We varied the chlorophyll concentration of the fit within the

range indicated by SPAD readings to introduce optical properties variability. We further used SVC

measurements to characterize the reflectance of the ground directly via the Lambertian assumption.

We simulated imagery captured by the MicaSense RedEdge-3 at 10:50AM on June 18, flying at

≈ 60 meters above the ground, moving at ≈ 2 meters per second. The RedEdge has five spectral

bands in the visible through the near infrared, shown in table 2.2, and a 1280 × 960 focal plane

with a 5.5 μm focal length and 3.75 × 3.75 μm2 pixels. We used these quantities to characterize the

virtual sensor in DIRSIG. Running the simulation took around five minutes for decent convergence,
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and between 20 and 30 minutes for nearly noiseless convergence. Figure 2.17 shows the blue, green,

and red bands of real and simulated images.

2.5.1. Results

We statistically analyzed sets of image tiles extracted from real and simulated images in order

to quantitatively compare the real and simulated imagery. That is, we partitioned visually similar

real and simulated 1280 × 960 images into 8 × 6 grids of 160 × 160 square tiles, thus forming a set

of 48 real tiles and a set of 48 simulated tiles for analysis. The purpose of partitioning the larger

images into sets of smaller image tiles was to preserve the spatially-local statistical properties of

the imagery in the analysis. We first calculated normal summary statistics (𝜇, 𝜎), being the mean

radiance 𝜇 and standard deviation 𝜎, for each band in each individual tile. We then calculated the

average (𝜇, 𝜎) statistics across all tiles in each of the real and simulated tile sets. The average (𝜇, 𝜎)
statistics provide a broad measure of the “center” and “spread” of the radiance distributions by

which the general agreement of the real and simulated tile sets may be assessed. The average (𝜇, 𝜎)
statistics do not provide a proper measure of “shape” however, as we have no reason to believe that

the radiances are normally distributed. In order to assess the agreement of the “shape” of radiance

distributions between real and simulated tile sets, we further examined the 𝜒2 histogram distance

between tiles. For each band of each tile, we formed a radiance histogram with 𝑁 bins over the

range [0, 𝐿max], where 𝐿max is the maximum recorded radiance in the real imagery. We selected

𝑁 = 30 to be roughly double the number of bins given by Sturges’s rule for 1602 observations, i.e.,

1 + log2 1602 ≈ 15.6, to avoid overly-smoothing trends in the data. Examples of real and simulated

tiles are shown in figure 2.18, and the radiance histograms of these tiles are shown in Figure 2.19.

We used the 𝜒2 distance metric to quantitatively compare radiance histograms in each band. The

𝜒2 distance between normalized histograms 𝐻1 and 𝐻2 is given by

𝜒2(𝐻1, 𝐻2) = 1
2

𝑁
∑
𝑘=1

(𝐻1(𝑘) − 𝐻2(𝑘))2

𝐻1(𝑘) + 𝐻2(𝑘) .

Note that this gives a proper sense of “distance”, i.e., it is symmetric 𝜒2(𝐻1, 𝐻2) = 𝜒2(𝐻2, 𝐻1)
and non-negative 𝜒2(𝐻1, 𝐻2) ≥ 0 for all histograms 𝐻1, 𝐻2. Further, 𝜒2(𝐻1, 𝐻2) = 0 only if there

is an exact match 𝐻1 = 𝐻2. To provide a baseline distance to assess the relative closeness of

radiance distributions of corn-filled image tiles, we further selected a 160 × 160 tile containing only
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Figure 2.17: The blue, green, and red bands from a real radiance-converted image collected by the MicaS-
ense RedEdge (top) and from a DIRSIG5 simulation (bottom). The simulated date is June 18, 2018, with
the plants in growth stages V6–V8.
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Figure 2.18: Per-band comparison of 160 × 160 tiles of real MicaSense imagery versus simulated DIRSIG5
imagery. Note that all images have been contrast-stretched with respect to the same min/max radiances so
that they are properly visually comparable.
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Figure 2.19: Per-band radiance histograms for 160 × 160 tiles of real MicaSense imagery versus simulated
DIRSIG imagery.

.
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Per-band average (𝜇, 𝜎) statistics
Real Simulated

Blue (0.0152, 0.0052) (0.0158, 0.0074)
Green (0.0335, 0.0101) (0.0316, 0.0153)
Red (0.0226, 0.0101) (0.0223, 0.0126)
Red Edge (0.0476, 0.0125) (0.0454, 0.0221)
Near IR (0.0610, 0.0159) (0.0510, 0.0250)

Table 2.3: Per-band average (𝜇, 𝜎) statistics, being mean 𝜇 and standard deviation 𝜎 in units of Watts
per square meter per steradian per micron, for radiance distributions of 160 × 160 image tiles from real and
simulated images.

the ground, without any corn plants, from another real image (captured as the UAS took off).

Then, for each band, we calculated the average 𝜒2 distance between 1) all pairings of real tiles

with simulated tiles, 2) all pairings of real tiles with other (non-identical) real tiles, 3) all pairings

of simulated tiles with other (non-identical) simulated tiles, 4) all pairings of real tiles with the

reference ground tile, and 5) all pairings of simulated tiles with the reference ground tile.

The average (𝜇, 𝜎) statistics are given in table 2.3. The average 𝜒2 histogram distance metrics

are given in table 2.4. Regarding the interpretation of table 2.4, the Real/Sim column measures the

shape variability of radiance distributions between the real and simulated tile sets. The Real/Real

and Sim/Sim columns measure within-population shape variability of radiance distributions in the

real and simulated tile sets respectively. The Real/Ground and Sim/Ground columns provide the

baseline 𝜒2 distances between the real and simulated image tiles and a real image tile containing

only the ground. That being the case, if the simulated imagery perfectly mimicked the real imagery,

then the Real/Sim column would contain all zeros, the Sim/Sim column would be identical to the

Real/Real column, and the Sim/Ground column would be identical to the Real/Ground column.

2.5.2. Discussion

In examining table 2.3, we see that there is reasonable concensus in the mean radiance between

the real and simulated tiles, though the standard deviation in simulated tiles is wider. The percent

error of the mean 𝜇 is within ±6% in all bands except the near IR, where it is −16.4%. The

percent error of the standard deviation 𝜎 is 42.3% in the blue, 51.5% in the green, 24.8% in

the red, 76.8% in the red edge, and 57.2% in the near IR. In examining table 2.4, we see that
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Per-band average 𝜒2 histogram distances
Real/Sim Real/Real Sim/Sim Real/Ground Sim/Ground

Blue 0.133 0.054 0.024 0.993 0.995
Green 0.118 0.046 0.022 0.829 0.746
Red 0.114 0.068 0.030 0.868 0.835
Red Edge 0.162 0.042 0.023 0.234 0.367
Near IR 0.178 0.023 0.023 0.655 0.588

Table 2.4: Per-band average 𝜒2 histogram distances between 160 × 160 image tiles from real and simulated
images. Each column “A/B” contains the average distance between unique histogram pairs in groups A and
B for each band.

the Real/Sim 𝜒2 distances are seven to ten times smaller than the baseline Real/Ground and

Sim/Ground 𝜒2 distances in the blue, green, and red bands—thus indicating that the shapes of

the radiance distributions of these bands are reasonably close. The Real/Sim 𝜒2 distances are only

two to five times smaller than the baseline distances in the red edge and near IR, which is perhaps

consistent with the increased percent error in the standard deviations of these bands. The Sim/Sim

𝜒2 distance is on the same order of magnitude as the Real/Real 𝜒2 distance, though it is consistently

about half of the Real/Real 𝜒2 distance in all bands except the near IR, where it is approximately

equal. This suggests that there is greater shape variability in the real radiance distributions. The

fact that there is simultaneously greater shape variability and lesser standard deviation in the real

radiance distributions may indicate that the variability is more spatially dependent. In any case,

we found that the simulated imagery is quantitatively plausible, given that the real and simulated

scenes are not expected to be completely equivalent, and that the real and simulated images are

not expected to be entirely free of confounding sources of error.

Discrepancies. The simulated imagery agreed reasonably well with the real imagery, but it is not

perfect. It is therefore worth discussing the potential sources of discrepancies. It is always possible

that an aspect of the simulation was too simplistic or otherwise flawed. We characterized the ground

as a flat Lambertian surface whose reflectance is given by a single SVC measurement. In reality,

the ground is neither perfectly Lambertian nor a flat, singular surface. That is to say that portions

of the ground may be covered with grass, shrubs, and pebbles, as well as remnants of other plants

from no-till agricultural practices. Such textural variability in the ground was not modeled, nor was
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textural variability within individual plant leaves. The optical system of the RedEdge was modeled

as a pinhole with a rudimentary Point Spread Function (PSF) based on aperture diameter. The

real RedEdge optical system is certainly not as ideal. In Figure 2.18, the apparent row structure is

nearly lost in the red-edge and near IR in the real image tiles shown. These particular tiles were

located toward the edge of the image, where vignetting is the strongest, and the system PSF seems

to introduce the most blur. Moreover, we have performed our analysis on radiance images, where

the values at each pixel represent the average band-integrated radiances over the corresponding

detector element in physical units of power per unit area per unit solid angle. Real imaging

systems do not inherently capture radiance, but instead record arbitrary digital counts which must

be converted to radiance via calibrated equations. Radiometric-correction using such equations

introduces another potential source of error. For the RedEdge in particular, there is a standarized

radiometric-correction process (used in this analysis) which aims to correct for vignetting and to

account for exposure time and sensor gain. This involves scaling each digital count by an expression

which depends on metadata recorded in the raw TIFF files and on the coordinate of each pixel.

This process is not entirely reliable however. Mamaghani and Salvaggio [59] found that the average

percent error in radiance imagery using the “factory default” radiometric correction for a particular

RedEdge-3 sensor was −10.98% in the blue, −0.43% in the green, 3.59% in the red, 32.81% in the

red edge, and −17.08% in the near IR. The authors further note that this type of calibration error

is specific to each sensor, and is subject to change over time as a sensor ages.

PROSPECT-BSDF versus Lambertian assumption. As previously stated, we used the PROSPECT-

inspired BSDF given in section 2.4 to characterize the directional scattering of leaves in the DIRSIG

simulation. While this BSDF is based on widely accepted theoretical footing, it is reasonable to

wonder whether the use of this BSDF, instead of a Lambertian BSDF, actually improved the sim-

ulation results per tables 2.3 and 2.4. We therefore ran an alternate DIRSIG simulation, which

was identical in all aspects except that the PROSPECT-inspired rough plate BSDF was replaced

by a simple Lambertian BSDF (still weighted to reproduce standard PROSPECT hemispherical

optical properties, in order to preserve the total proportions of energy reflected, transmitted, and

absorbed). Using a Lambertian BSDF, we found that the percent errors and Real/Sim 𝜒2 distances

were relatively unchanged in the blue, green, and red bands, but significantly increased in the red
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edge and near IR—where the leaves were the most reflective and transmissive. The percent error

in the mean radiance 𝜇 was 0.7% in the blue, 3.6% in the green, −4.4% in the red, 18.7% in the

red edge, and 21.0% in the near IR. The percent error in the standard deviation 𝜎 was 42.3% in

the blue, 62.5% in the green, 22.8% in the red, 116.0% in the red edge, and 132.1% in the near IR.

Further, the Real/Sim 𝜒2 distance increased by 0.1% in the blue, 0.1% in the green, 2.5% in the

red, 23.8% in the red edge, and 28.1% in the near IR. This seems to suggest that the PROSPECT-

inspired BSDF is closer in shape to the true BSDF (at least in the red edge and near IR) than an

ordinary Lambertian BSDF. This may also suggest that there is further room for improvement in

the leaf scattering model.

We next will conclude with brief remarks and suggested future research efforts.



Chapter 3

Conclusions

3.1. Closing remarks

We presented a randomizable time-dependent model of corn canopy with application to simu-

lated remote sensing of agricultural scenes. The model is designed to be suitable to generate high

fidelity geometry at very near (< 100 m above ground) viewing distances, but also to generate lower

fidelity geometry efficiently enough to render millions of unique corn plants at very far, satellite-

level viewing distances. In doing so, we provided novel innovations to existing modeling approaches

in the literature. We parameterized the midrib curve of plant leaves by arclength, such that the

basic leaf shape has a well-defined area. We introduced a leaf curl deformation to allow leaves to

unfurl from base to tip. We further introduced explicit, visually interesting parameterizations of the

sheath and internode surfaces, and we continuously bridged the sheath and lamina surfaces in order

to form more visually compelling canopy geometry. We based the time-dependency of the geometry

on a physiological model of growth and development, which distills more rigorous models in the lit-

erature to an efficient, elegant, and time-continuous framework. We united the PROSPECT model

of leaf optical properties spectra with a numerically simulated bidirectional scattering distribution

function of a rough dielectric plate in order to characterize leaf scattering. We implemented the

model as a C++ library, and we have used this library to implement a DIRSIG5 software plug-in.

This plug-in automates the geometric and optical properties modeling of virtual corn plants, in

order to make it easier for users to generate and simulate realistic, high-fidelity agricultural scenes.

We have further used DIRSIG5 to simulate multispectral radiance imagery of corn plants mimick-

55
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ing real radiometrically-corrected imagery collected by a UAS-mounted MicaSense RedEdge sensor

at a USDA site at the Beltsville Agricultural Research Center. We quantitatively compared the

simulated imagery to the real imagery by examining normal statistics and 𝜒2 histogram distances,

and found that the spatially-local radiance distributions within the simulated imagery were plau-

sible. In particular, we found that the percent error of the mean radiance was within ±6% for all

bands except the near IR, where it was −16.4%. The percent error of the standard deviation varied

between 24% (red) and 77% (red edge). The 𝜒2 distances between the real and simulated radiance

histograms, which compare the shapes of the distributions, were seven to ten times smaller than

the baseline 𝜒2 distances (measured to the radiance histogram of the ground, containing no corn

plants) in the blue, green, and red bands, and two to five times smaller in the red edge and near

IR. We further found that the percent errors and 𝜒2 distances were reduced (improved) by using

the PROSPECT-inspired plate BSDF, instead of the typical Lambertian assumption, in the red

edge and near IR bands where leaves are the most reflective and transmissive. There is still room

for improvement, however, both regarding the fidelity of the virtual scene, as well as the fidelity of

the virtual imaging system.

3.2. Future work

There are many potential avenues for the continuation of this research. First, there is much

room for improvement regarding the modeling itself. This research has focused only the vegetative

stage of development—that is, the period of growth from emergence to the beginning of the repro-

ductive stage. Thus, we have not modeled the development of the tassel (which is initiated in the

vegetative stage, but is not visually striking until the reproductive stage), nor have we modeled

the development of actual ears of corn, nor have we modeled senescence (plant death following the

reproductive stage). Future work may consider extending the modeling approach to account for

later growth stages. Future work may also consider investigating sensible relationships between

the material concentrations determining leaf optical properties spectra (i.e., chlorophyll 𝑎 + 𝑏 and

water) and the proposed growth model, in order to form a more unified framework. It would also

be worthwhile to incorporate dirurnal cycles, i.e., changes in canopy structure and arrangment over

a day in response to light, temperature, as moisture, as an additional layer of complexity to the

model. We further recommend more thorough investigation of the Bidirectional Scattering Dis-
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tribution Function (BSDF) of corn leaves. We developed the layered-sqt BSDF simulation tool

to calculate the emergent BSDF of a general layered structure, containing many layers separated

by participating media with different optical properties. However, we restricted the theoretical de-

scription of the layered structure of a corn leaf to be consistent with the fundamental assumptions

of the PROSPECT model. That is, we made as few additional assumptions as possible—the leaf

was modeled as a dielectric plate with rough top and bottom surfaces, without any scattering or

absorption by a participating medium in between. Future work may consider proposing a more

comprehensive description which accounts for, e.g., epicuticular wax and sub-surface scattering

by leaf material. Future work may also consider investigating the wavelength-dependence of the

parameters of such a description. Regarding the representation of the virtual imaging system, we

have not accounted for the system PSF beyond a first approximation from the aperture diame-

ter, nor have we explicitly modeled optical elements in any fashion. We have further limited our

quantitative analysis to radiance images, which introduced the radiometric calibration of the real

imaging system as another potential source of error. It would be advisable for future work to apply

a more robust radiometric correction process, such as that proposed by Mamaghani and Salvaggio

[59], to improve the reliability of quantitative analysis. We also note that it is possible to simulate

digital counts, the fundamental quantity collected by real imaging systems, directly with DIRSIG5.

Alternatively, it is possible to convert DIRSIG5-simulated radiance images to digital counts with a

separate program or script. This type of comprehensive “end-to-end” imaging simulation requires

detailed information of the detector array however, e.g., quantum efficiency, read noise, dark noise,

photo-response non-uniformity (PRNU), and well capacity. We did not possess, and did not at-

tempt to measure, such information for the RedEdge-3. Future work may consider accounting for

such information in order to comprehensively simulate, analyze, and compare digital counts instead

of radiances.

Implementation

We make the C++ implementation freely available to the research community via a GitHub

repository:

github.com/mgradysaunders/labyrinth-v2

github.com/mgradysaunders/layered-sqt



Appendix A

Random air temperature

For convenience (or for instances where densely-measured data are not available), we developed a

continuous-time model of air temperature. We represent air temperature in degrees Celsius as a

function of time 𝑡𝑑 as fractional Day-Of-Year (DOY). We mean by “fractional DOY” that 𝑡𝑑 = 1.0
is 12AM on January 1, 𝑡𝑑 = 1.5 is 12PM on January 1, 𝑡𝑑 = 2.0 is 12AM on January 2, and so on.

The top-level function, 𝑇air, is broken down as the sum of a mean and an offset,

𝑇air(𝑡𝑑) = ̄𝑇air(𝑡𝑑) + Δ𝑇air(𝑡𝑑).

The mean is thought to oscillate sinusoidally between yearly extrema, denoted by ̄𝑇air,min and

̄𝑇air,max respectively, such that

̄𝑇air(𝑡𝑑) = (1 − 𝜇) ̄𝑇air,min + 𝜇 ̄𝑇air,max

where

𝜇 ← 1
2 sin 2𝜋𝜈 + 1

2,

𝜈 ← 0.0038872𝑡𝑑 − 0.5411472.

The offset is modeled as a skewed sinusoid with amplitude Δ𝑇air,amp,

Δ𝑇air(𝑡𝑑) = Δ𝑇air,amp

× 4.368815 tan−1 sin 2𝜋𝛼
4.368815 − cos 2𝜋𝛼
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Figure A.1: NOAA 2010 hourly mean temperature data from the Washington-Reagan international airport.
In the lower plot, our fit with optimized parameters of ̄𝑇air,min ≈ 12.1 ∘C, ̄𝑇air,max ≈ 26.6 ∘C, Δ𝑇air,amp ≈
3.8 ∘C is shown for a five day period.

where

𝛼 ← 𝑡𝑑 − 0.360914.

We fit the various constants to 2010 NOAA hourly mean temperatures recorded at the Wash-

ington Reagan International Airport station over the growing season from May 1 to August 31. As

a point of reference, this predicts the average maximum temperature to occur in the early afternoon

on July 21. Figure A.1 plots the NOAA data alongside our parametric fit with optimized param-

eters ̄𝑇air,min ≈ 12.1 ∘C, ̄𝑇air,max ≈ 26.6 ∘C, Δ𝑇air,amp ≈ 3.8 ∘C achieving an MSE of approximately

0.2 ∘C.
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