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Abstract

This paper presents the design of a 32-bit RISC processor, which is then mapped to the backend
of GCC so basic C code can be compiled successfully to the processor. There are many design
decisions that go into the construction of a processor. The instruction set architecture gives
away a lot of information regarding the individual instructions that the processor will have, the
memory architecture, as well as how 1/O peripherals will be handled. Additionally, the hardware
implementation of the processor needs to be kept in mind when crating the design. Pipelining
can often help with processor speed, while cache implementation can assist in memory speed.
After designing the processor, GCC’s backend needs to be analyzed to port it to function with
the processors individual opcodes. Once GCC can compile its C code to an assembly language
which is able to assemble into machine code that matches up with the opcodes the processor was
created for, the machine code can be written into the processor’s program memory and executed
successfully. This paper also talks about different design decisions that are made during the

process of creating a processor, as well as the general makeup of the GCC compilation process.
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Chapter 1

Introduction

The functionality of processors makes them a tool that is used universally. Processors are seen
in every piece of technology used on a day-to-day basis. Computers, phones, tablets, robots,
cars, anything that “thinks” has a processor at its core, making the most basic of decisions. For
every new processor that is designed, there is an assembly language to match. Having a different
programming language to learn for every unique processor would be tedious and difficult to
manage. Processors would be less ubiquitous. For this reason, it is common for compilers of
commonly-used coding languages, like C, C++, Java, etc. to be ported to these processors, so
higher level code can be compiled and run on unique processors. This process is explored in this
paper. For this project, a 32-bit RISC pipelined processor with cache memory was designed and

GCC (GNU C Compiler) was ported to the custom processor to run basic C code.

1.1 Organization

This paper will be organized into 6 chapters. This chapter, Chapter 1, is the introduction. Chap-

ter 2 will talk about the background of processors and compilers, specifically RISC processors
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and GNU Compiler Collection. Other processors and compilers will be explored to find their
advantages and disadvantages. Next, Chapter 3 will talk about the design of the custom RISC
processor used in this project. Chapter 4 will talk about the back end alterations made to GCC,
and then Chapter 5 will follow with testing and results of the GCC porting to the custom RISC

processor. Finally, Chapter 6 will talk about future work and conclusions of the project.



Chapter 2

Background on Processors and Compilers

This chapter discusses background of processors, specifically RISC and CISC, as well as deci-
sions made during the design of processors. This chapter also talks about the background of C

compilers, specifically GCC and its structure, with some comparison to the operation of LLVM.

2.1 Processor Design

There are many processor architectures to bear in mind when designing a processor. Many ar-
ticles and studies have debated over which processor structure is the best, comparing speed to
size on a chip to overall performance, like power and energy consumption, to rate these proces-
sor designs. One of the most common comparisons is done between the reduced instruction set
computer (RISC) and the complex instruction set computer (CISC) architectures. This compar-
ison will be talked about more in section 2.1.1. Even after deciding on a general instruction set
architecture (ISA) to follow, there are many other decisions that go into the process of designing
the processor, talked more about in section 2.1.2.

Hand-in-hand with processor design comes the compiler that allows code to be written to
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and executed on the processor. GCC, which stands for “GNU Compiler Collection”, supports
over 30 different processor architectures and 7 programming languages, and is one of the most
used compilers for processor execution [11]. Another rising compiler is LLVM, which stands
for low-level virtual machine. These compilers will be compared in section 2.2.4. The general
design flow of a compiler will be talked about in section 2.2.1. Finally, GCC will be discussed

in further detail in section 2.2.2, since GCC is the compiler used in this project.

2.1.1 RISC vs CISC

The debate of whether RISC or CISC is a higher performer in the playing field of computer and
processor architectures is one that was sparked around the time of the mid-80s. The general
consensus for a while was that the RISC architecture was the superior performer, but this was
during a time when the main constraints were chip size and processor design complexity [12].
Nowadays, architect engineers are more concerned with the energy and power consumption of
a processor, which largely changes the debate. Arguably, when comparing RISC and CISC
architectures based on today’s more relevant constraints, it is irrelevant whether the processor is
a RISC or a CISC. Rather, it is other components of the processor that aren’t categorized under
the RISC/CISC ISA that make the processor execute more efficiently, with respect to its energy

and power consumption [12, 13].

2.1.1.1 CISC

The idea of a reduced instruction set computer (RISC) came around to specifically compete with
the presently (in the early 80s) used complex instruction set computer (CISC). CISC was the
architecture currently used on nearly all computers and computing machines at the time. Some of
the more common ones were the Intel x86 and Motorola 68000 [14]. Some basic characteristics

that make a processor have a CISC architecture are:
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* Large instructions sets: One of the goals of a CISC architecture is to cover many program-

ming scenarios through complicated instructions

* Complex instructions: Some instructions are more complex than the basic add and subtract,

and might contain multiple basic instructions in one.

* Instructions that operate over different numbers of clock cycles: Since there are so many
instructions, many of them have different structures and take a different number of clock

cycles to complete, which can make pipelining difficult [12, 14].

* Multiple addressing modes: CISC processors typically have a number of ways to reference

memory locations.

* Register limitations: CISC architectures typically only have 16 registers, which is not
always enough to support all functionality going on at one time. Often, values have to
transferred from registers into memory to make space so certain manipulations can be
done. These values are then transferred back into the corresponding register when the
manipulations are over. This can be a waste of time, as transferring data in and out of

memory is not always a quick task [14].

* Multiple instruction formats: Some of the instructions will do their operations from register
to register, some memory to register, and others memory to memory [14]. This can greatly

affect the number of clock cycles it takes for the instruction to be executed.

To this day, CISC is largely used on most large-scale electronic devices with processors, such as

laptops, desktop computers, and servers.
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2.1.1.2 RISC

RISC was designed with the goal of simplifying the complicated instruction set known to the
CISC architecture. Many of the CISC instructions were uneven and took too long to execute.
RISC takes the burden of the complicated instructions off the architecture and places it in the
compiler [15]. For a RISC processor, the compiler needs to be much heftier, being able to
break down the same code the is executed by CISC processors into much more basic instructions
that can execute on a RISC implementation. Studies on program behavior showed that 25%
of instructions in CISC instruction sets make up 95% of the program execution time, meaning
about 75% of the instruction set are hardly used or not used at all [14]. Studies such as these
proved that a RISC architecture could be implemented realistically and would be quite useful in

reducing chip size. Some characteristics of a RISC architecture are:

* Small instruction sets: Of course, a main goal of RISC was to reduce the instruction set

from CISC. Usually RISC architectures only have about 20 instructions or less.

» Simple instructions: Instructions are stripped down to only the most basic operations, like

add, subtract, shift, etc.

* Instructions all take the same number of clock cycles to execute: Instructions usually take
4-5 clock cycles, depending on the design, and all instructions take the same amount of

time to execute, simplifying the pipelining process.

* Few addressing modes: Typically, RISC processors will only have direct addressing mode,

register-direct addressing mode, and only maybe a couple others, such as PC-relative.

* Large number of registers: RISC processors usually have at least 32 general-purpose reg-
isters. Since the processor takes up less space on the chip, some of the extra space can be

used for more registers [13].
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Table 2.1: Characteristics of RISC vs. CISC

Architecture Characteristic RISC CISC
Instruction Set Size small large
Instruction Complexity simple complex
Instruction Execution Times all the same different
Number of Addressing
Modes few, 3-4 many
Number of Registers at least 32 very few, generally
only 16
Number of Instruction two: load-store, three: load-store,
reg-reg, reg-mem,
Formats reg-reg

mem-mem

* One instruction format: RISC processors only have register-to-register instructions, with

only the load and store instructions being capable of accessing memory.

Today, RISC processors are mostly used in smaller electronics, such as tablets, phones, and smart
watches.

Table 2.1 displays the characteristics of RISC and CISC listed above in a way that makes
them easy to compare.

The most basic RISC processor needs nothing more than an instruction execution unit, an
arithmetic unit, memory, I/O peripherals, and a bus to connect all these units. A RISC processor
can be extremely simple in structure, and still be able to run the same code as a CISC or more
complex-structured processor [1]. Figure 2.1 represents a block diagram of the most simple
RISC processor. When compared to Figure 3.8, it can be seen that the DMF RISC processor has

a RISC architecture, but is not of the simplest design.
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instruction bus
execution
unit

arithmetic memory input

unit output

Figure 2.1: Basic RISC block diagram [1]

2.1.1.3 Comparison: Which is Better?

The question of which processor is better really depended on the time that question was asked.
Back in the 80s and 90s, this question could be answered by which fit onto a smaller chip size
and was still able to execute quickly. RISC programs were longer than CISC programs, but
only by about 30% [14]. This is one of the few shortcomings of the RISC processor. Some of
the more complex instructions in the CISC architecture took multiple instructions to replace the
equivalent functionality in a RISC processor. Other than this, there were only good things when
talking about switching to a RISC processor. Despite the slightly longer programs, however,
studies have actually found that RISC execution is faster than CISC, largely because much of the
run-time complexity is resolved at compile-time for the RISC processor [16].

So then, why are all processors not a RISC architecture? First, companies did not necessar-
ily need to switch to a different processor to get a smaller chip size, until the phone and tablet
age came about. Secondly, as technology advanced, the question was no longer of chip size,
but rather the energy and power consumption. With these new variables in play, the processor
architectures were re-compared, and found to be very similar. In fact, it was found that any
performance gains were not due to characteristics that had to do with the RISC/CISC archi-
tecture, they were instead other design adjustments made to the processor architecture, such as
cache memory, branch prediction, out-of-order execution, fetch prediction methods, along with

other instruction organization methods [13, 17]. These added characteristics make the processor
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“smarter”, as they allow it to predict what will happen next based on previous execution. When
these methods are executed in a way that they are correct a high percentage of the time, this saves
much processing power and execution time. These methods will be talked more about in section

2.1.2.

2.1.2 Design Decisions

When designing a processor, more goes into the decision process than just what ISA should
be used. Things like memory architecture, I/O peripheral access, cache memory, and pipeline
structure are just some of the basic decisions that need to be made. These are talked more about
in Chapter 3. Some of the more interesting decisions come in when optimizing the processor.
Aspects like branch prediction and out-of-order execution make the complexity of the processor

much greater, but can also largely increase the performance.

2.1.2.1 Branch Prediction

Branch prediction is a method used to guess what the outcome of a conditional jump or branch
statement will be. Referring to Figure 3.9, it can be seen that different stages of different instruc-
tions are executed at the same time. So, when a conditional jump or branch statement is brought
into the instruction fetch phase, it will be another few clock cycles (2 in the case of the DMF
RISC processor) before the processor knows if the jump will occur or not, since the outcome
of the conditional is decided in the execute stage [18]. To avoid the stalling of the pipeline that
would normally have to take place until the conditional branch statement was in the execution
phase, some processors implement branch predictors. When a branch predictor predicts cor-
rectly, some time is saved since the pipeline does not have to be stalled, and instructions continue
executing as they would. If the prediction is incorrect, then the processor has to ignore the in-

structions that have been brought into the pipeline incorrectly, and carry on from where the next
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Program
execution Ti 200 400 600 800 1000 1200 1400 -
ime T T | T T T T >
order
(in instructions)
add x4. x5 x6 Instruction R ALU Data Re
! ' fetch €9 access g
. A AN Instruction Data
beq x1, x0, 40 420Tp€‘: feich Reg| ALU access | R€9
“bubble/Cbubble/bubble/{bubble/Cbubble/
or x7, x8, x9 »{Instruction Data
\l 400 ps fetch Reg| ALU access |9

Figure 2.2: Pipeline with no branch prediction [2]

instruction will be. An incorrect branch prediction looks a lot like no branch prediction at all in
terms of time it takes to execute in the pipeline. This can be seen by comparing Figures 2.2 and
2.3.

Often, a branch prediction can be as simple as one bit. If this bit it a 0, then it is predicting
that the branch will be false. If the bit is a 1, it is predicting the branch will be true. Every time
the bit predicts incorrectly, it changes to match what actually happened. In the case of loops,
which is how most conditional branches are used, this can be a very effective method, as the
branch predictor is usually only incorrect on the first and last iteration of the loop. Depending
how many times the loop executes, having only two incorrect predictions can make for a very
small percentage of wrong guesses. Since the worst case scenario is that upon a false prediction,
the pipeline is delayed only as much as it would be without any branch prediction at all, having
a branch predictor is only advantageous to the efficiency of the processor.

An interesting method some processors use to eliminate buffer time, even with a false branch
prediction is having a small pipeline in parallel with the main pipeline. This small pipeline will
start executing instructions starting where the processor thinks the branch will NOT bring the

processor to. For example, if a branch predictor thinks the branch will not be executed, the
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Figure 2.3: Pipeline with correct and incorrect branch prediction [2]



2.1 Processor Design 12

main pipeline will continue executing the instructions as usual, and the side pipeline will execute
instructions starting from where the branch would bring the pipeline to if the condition for the
branch was met. This way, even if the branch prediction is incorrect, those instructions have been
being executed on the side all along, and the transition is much smoother, still with some delay,

though [18].

2.1.2.2 Out-of-Order Execution

Out-of-order execution is a method used to maximize hardware usage in a processor. At any
given point in a typical pipelined processor design, only one instruction will be in the execute
phase. If this instruction is, for example, a load, store, data transfer, or flow control instruction,
the ALU will not generally be used, and is sitting idle. Meanwhile, there may be other instruc-
tions that are manipulation instructions that will need to use the ALU. Out-of-order execution
takes advantage of all hardware items at once, and orders instructions in a way that optimizes the
use of hardware, rather than ordering them in the order they are written in the program memory.
Out-of-order execution can be very effective in optimizing the processor, as seen from Figure 2.4

but can be a very complicated design component for a processor architect to take on.

2.1.2.3 Reducing Processor Size

Other options that were explored to reduce chip size of a processor were to move from 32-bit
processors to 16-bit. This usually presents a problem because 16-bit processors would not have
the same functionality and capabilities that a 32-bit would. At the 16-bit level, things like code
size and instruction cache efficiency are greatly improved. On the other hand, however, due to
the small bit size, 16-bit processors lack support for certain data types and three-address mode
[19]. The problem with a processor not being able to handle a three-address mode is that a

simple instruction, such as rO = r1 +r2 has to be implemented using two instructions, a move
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Figure 2.4: Performance of processors using out-of-order vs in-order execution [3]

and then an add: mov r0,r1 followed by add r0,r2 [19]. In [19], a process called move-folding
is introduced to try and fix this problem to make 16-bit processors more appealing. The process
of move folding is an interesting technique where an extra register (MR) is used to hold the value
of the extra source register. When it comes time to execute, instead of selecting the destination
register as the second source, the MR is used as the second source. This interesting solution
could increase the chances of a 16-bit processor being more attractive than before, however there

is still extra hardware used to properly implement this kind of instruction.

2.2 Compilers

The quality of a compiler can make a huge difference when designing code for an embedded

system. Many compilers are used to decompose basic code languages, such as C, Java, or C++
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to run on CPUs. How efficient a compiler is can often be determined by how much they condense
the code and the dynamic instruction count in the output executable file. Especially in embedded
systems, these are indicators of power consumption and execution time [20]. Two main compilers
used are GNU Compiler Collection (GCC) and Low Level Virtual Machine (LLVM). These
are both often used to compile C code to standard RISC-V or ARM processors, and are often
compared using bench-marking programs to determine their abilities to create short code and

optimize different aspects like register allocation and dynamic instruction count.

2.2.1 Compiler Design

Compiler’s have three main parts to them: a front end, a middle end, and a back end. Many
compilers typically do the same general functions in each phase, but how they go about it differs
for each compiler. Two main models of compilers are the Davidson Fraser Model, shown in
Figure 2.5, which GCC is modeled off of, and the Aho Ullman Model, shown in Figure 2.6,
which LLVM is modeled off of [21].

Generally, the front-end of a compiler parses the program and checks for syntax errors and



2.2 Compilers 15

convert the file into some intermediate representation file format [5]. For Davidson Fraser, this
file format is register transfer language (RTL), whereas the Aho Ullman Model uses an inter-
mediate representation specific to the compiler. The middle-end is responsible for most of the
optimization. This portion is where a compiler can shine, with the right optimization techniques.
Typically, how well a compiler optimizes is based on how well it can condense the code and or-
der the instructions in a way that makes the output as short and as quickly executed as possible.
Usually, this portion can be done target-independently. The back end is essentially the code gen-
erator, and is responsible for converting the code from the optimized intermediate representation
(or the RTL) to the binary the target processor will accept to create the executable. Sometimes,
some optimization is left to the back end, depending on the target. Since GCC is the compiler
used in this project, and it is based on the Davidson Fraser Model, this will be the model most

closely discussed in the rest of this paper.

222 GCC

Launched in 1984 by Richard Stallman, the GNU Compiler Collection is a portable compiler
designed to optimize and compile code for a wide array of processor targets [11]. GCC is one
of the most widely used compilers for C and supports more processor architectures, and offers
some coder-friendly features making any code compiled by GCC very portable [22]. GCC is
compatible with multiple languages in the front end, and uses a common language-independent
middle end and back end to compile code into target-specific machine code. No other compiler
suite can do quite what GCC can, all while being free, open-source software [23]. Being older
than LLVM, the optimization process has been worked on for longer, and is much more efficient
and better at its process. An overall block diagram and more specific compilation overview can
be seen in Figures 2.7 and 2.8, respectively. The next subsections will break down the three

stages of the GCC compilation process: front end, middle end, and back end.
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2.2.2.1 Front End

As mentioned previously, the front end of any compiler is responsible first for checking for any
syntactical errors in the code. The GCC front end specifically will then create the Intermediate
Representation (IR) of the code in a tree-like format. The IR is language-independent, and
convert many different languages into IR, such as Java, C, C++, and FORTRAN [5]. The tree
structure the IR takes the form of is called GENERIC. GENERIC is the language the code is
in when it goes from the front end stage of compilation to the middle end stage of the process,
as seen in Figures 2.7 and 2.8. Since GENERIC is language-independent, the compiler process

used for the middle end can be more universal, used for any language.

2.2.2.2 Middle End (Optimization)

The middle end is responsible for the first part of optimizing code to reduce execution time
and output program size. The GENERIC trees are converted to GIMPLE, another language
independent IR. In the transformation from GENERIC to GIMPLE, complicated processes and
instructions are broken down into simpler statements [5]. This transformation process is called
gimplification. After the gimplification process, Static Single Assignment (SSA) information is
given to GIMPLE to incorporate the data flow. As seen in Figure 2.7, a series of optimization
passes are then performed on the GIMPLE with SSA. The SSA is then removed and this is
converted into Register Transfer Language (RTL). RTL is the language the middle end finishes

in and passes along to the back end [5].

2.2.2.3 Back End

The back end converts the inputted RTL into machine language that is target-dependent. Dif-

ferent target-dependent optimizations can be done to reduce code size and execution time even
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more. These optimizations include processes such as instruction scheduling and register alloca-
tion. Instruction scheduling reorganizes the instruction stream, only if the target processor has
pipeline units [24]. It often attempts to reorganize in a way that causes as few dependencies
as possible while still having the correct program results. The register allocator must take the
pseudo registers in the RTL and map them each to an actual register in the target processor.
Registers are an invaluable and high speed portion of the processor, so register allocation can
be considered one of the most important optimization processes in the entire compilation [25].
There are two types of register allocation, intraprocedural and interprocedural. Intraprocedural
allocates registers within a procedure, making sure there are enough registers, and making intel-
ligent decisions about how to rearrange when there are not. Interprocedural allocates registers
across multiple procedures. This mostly takes care of global variables, keeping them in regis-
ters permanently throughout program execution [25]. Of course, after these optimizations are
complete, the machine code is generated to be run on the target machine or CPU.

Since the back end is responsible for generating the target-dependent machine code from
the given RTL, the back end of GCC is where most processor architects would also retarget
GCC to port the compilation process to their individual processor. The retargeting process is
not a simple one, but GCC makes it very doable by being open-source. After understanding
certain target processor components, such as the register file, pipeline, and ISA, the architect
must redefine GCC’s application binary interface (ABI) [21]. The ABI contains information
regarding alignment of data types as well as defining how the stack will be used in a call, how
registers will be used and data transferred, etc. The third step is to define and write three machine
description files that will tell GCC about the processor’s environment and setup [21]. The fact
that very little GCC back end code needs to be altered to retarget the entire compilation process

to a new target platform makes GCC very attractive for retargeting purposes.
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223 LLVM

Low Level Virtual Machine (LLVM) was created in 2003 by Chris Lattner for a Master’s Thesis
[7]. LLVM is largely based around optimizing during compile-time, link-time, and run time [8].
Unlike GCC, which compiles into an IR to optimize, and then overlays SSA, LLVM compiles
directly to an IR that is in SSA form to perform optimizations. LLVM’s architecture can be
found in Figure 2.9. The LLVM compilation process can be broken down into a block diagram,
as shown in Figure 2.10.

The LLVM compilation process starts with source code that goes through llvm-gcc. Llvm-
gcc is a front end compatible with C code based of GCC. It compiles C programs into LLVM

bitcode, which is usually an object or executable file [8]. Next, the llvm bitcode goes through llc,
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Table 2.2: GCC vs LLVM Compiler Characteristics

Characteristic GCC LLVM
Compiler Model Davison-Frasser Aho Ullman
Machine RTL SSA IR
Description

. C instruction scheduling
Main optimization

points and register allocation link-time
during back end
Register Inter and intra (local Linear scan
Allocation and global)

which compiles the bitcode into assembly of the host machine, or another machine if specified.
This is then assembled into the native object file, which is put through the 1lvm linker, which can
merge multiple llvm bitcodes stemming from multiple C files into one execution file. The linker

also provides most of the optimizations performed in the LLVM compilation process.

224 GCCyvs. LLVM

GCC and LLVM have been comparing using many different variables and benchmarking pro-
grams. Table 2.2 compares some of the basic compiler features between GCC and LLVM.

It was found in most results that GCC is overall a better compiler due to its robustness and
better optimization techniques. There are, however, pluses and minuses to both. In the end, how-
ever, code size determines memory length, and memory is the most expensive unit in a CPU, so
whichever compiler makes the shortest programs takes the cake [20]. In a study done to compare
GCC and LLVM on the EISC Processor, it was found that although LLVM was good with calcu-
lation intensive programs, GCC had the leg up on register allocation and jump optimization. As
mentioned previously, register allocation can be one of the most crucial optimizations for short-
ening execution time of a program [20]. LLVM was able to get through calculation intensive

functions due to its superior loop-unrolling techniques. LLVM is known to aggressively unroll
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loops, which can end up shortening programs quite a bit. The GCC compiler, however, uses reg-
isters more often and more efficiently, and rearranges blocks in order to eliminate unconditional
jumps, a factor that sets the bar pretty high for competitor optimizers [20]. In another study
done to compare LLVM and GCC on an ARM Platform, it was found that while LLVM falls
close to GCC in some benchmarks, in others it pales greatly in comparison. Specifically, code
with heavy memory access was handled inefficiently by LLVM [8]. However, it was deemed
that since most programs have many files and many function calls, and LLVM has a strong suit
in linker optimization, LLVM’s performance with these types of programs would shine, and be

nearly equivalent to GCC [8].



Chapter 3

Custom 32-bit RISC Processor Design

This chapter discusses the design and relevant aspects of the 32-bit processor, including why

certain design choices were made, and what alternatives were available.

3.1 Instruction Set Architecture

The instruction set architecture (ISA) of a processor is key to its design. The ISA contains infor-
mation regarding how many bits the processor will be, the number of general purpose registers,
the load-store technique, memory structure, input/output peripheral structure, addressing modes,
and more. Most of the general functionality of the processor is defined in the ISA. For the DMF
RISC processor, the processor is 32 bits to make it easier to match up with C compiled code. This
32

means that each register will be 32 bits long, and memory would be capable of containing

memory locations, more than enough, even if a Von Neumann memory architecture was chosen.
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3.1.1 Register File

The register file contains the set of all registers used in this design. There are 32 general purpose
registers, each of them capable of storing numbers up to 32 bits, which is the equivalent of a
float in C. Other important registers include the status register, the stack pointer register, and
the program counter. The status register is a 32-bit register where only 4 bits are used to keep
track of the carry, negative, overflow, and zero (CNVZ) bits from any computation done by the
processor. The status register is critical in making a decision for conditional jumps. The layout

of the status register can be seen in Figure 3.1.

31 12 11 10 9 8 7 0

Unused C|N|V | Z Unused

Figure 3.1: Status Register Bits

The status register bits (CNVZ) can be explained as follows:

C: C is the carry bit. This bit is set to 1 when an executed manipulation instruction has
a high carry out. This mostly applies for addition and rotate instructions. This bit is

otherwise a 0.

N: N is the negative bit. If any manipulation instruction results in a negative number (1 in

the most significant bit place), this bit will be set to 1. Otherwise this bit will remain at 0.

V: V is the overflow bit. If a manipulation instruction has operands that lead to a result that
is too large to fit in a 32-bit register, the overflow bit will be set to 1. Otherwise this bit

will remain at 0.

Z: 7 is the zero bit. If a manipulation instruction results in zero, this bit will be set to 1.

Otherwise this bit will remain at O.
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31 0
Program Counter Bits

Figure 3.2: Program Counter Register

The program counter is important for keeping track of which address in memory holds the next
instruction to be executed. The program counter (PC) needs to have enough bits to contain
every possible address in the program memory, usually the ROM (read-only memory). Since
this processor is 32-bits, the PC is 32 bits long, and can therefore point to 23?memory locations,
if needed. The layout of the program counter register can be seen in Figure 3.2.

Lastly, the stack pointer is a register used to keep track of what spot in the stack the processor
will use to store information in next. In this processor, the stack is mostly used to store informa-
tion, such as the SR and the PC, for maintaining the state of the processor when returning from
a call. When items are added to the stack, the stack pointer will decrement to point to the next
location in stack. The stack pointer in this processor starts at the top and stores in decreasing
address orders. This does not change the standard behavior of the stack, where items are pushed
and popped into and out of stack. Like most stacks, the stack is also still last in first out, or LIFO.

The layout of the stack pointer register can be found in Figure 3.3.

31 0

Stack Pointer Bits

Figure 3.3: Stack Pointer Register

3.1.2 Peripheral Layout/Stack Design

For the DMF RISC processor, the peripherals are memory mapped, meaning that the peripherals
are accessed by using a designated spot in the data memory RAM. The alternative to memory-

mapped peripherals is separate-mapped peripherals, which are accessed via a memory block that
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is separate from the data memory. In this memory-mapped peripheral design, the stack is treated
as a peripheral. Since the stack is only used for storing the PC and SR during a call-return
sequence, not much space needs to be designated to stack. From memory spaces 0x3ff0 to Ox3fff

are designated to the stack and other peripheral uses.

3.1.3 Memory Architecture

Two main memory architectures that are commonly used in processors are Harvard and Von
Neumann. Von Neumann is a structure where the program and data memory both share one
block of memory. Typically, the data memory will start at address O (or some other arbitrary
address value) and fill upwards, while the program memory will start at the last address and fill

down.

Peripherals

Data Memory Data Memory

Program Memory Program Memory

1/0 Peripherals

Figure 3.4: Von Neumann memory structure with separate-mapped (left) vs. memory-mapped
(right) I/0 peripherals
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For this processor, the Harvard memory architecture was implemented. This means that a
different memory block was used for the program memory and the data memory [26]. For the
DMEF RISC processor, a read-only memory (ROM) block was used for the program memory,
since the program memory is never written to after the initial programming. A random-access
memory (RAM) block was used for the data memory, where the peripherals and stack are also

located. The memory and stack layout of this processor can be seen in Figure 3.5.

Peripherals

Program Memory
Data Memory (RAM) (ROM)

Figure 3.5: Harvard memory structure with memory-mapped I/O peripherals

Program Memory

Data Memory (RAM) (ROM)

1/O Peripherals

Figure 3.6: Harvard memory structure with separate-mapped I/O peripherals
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3.1.4 Addressing Modes

Addressing modes allow the program writer to reference addresses in memory in different meth-
ods. Available in the DMF RISC is direct addressing mode, PC-relative addressing mode, and
register direct addressing mode using the general purpose registers. The program can also use the
SP as the address. How these addressing modes are implemented is talked about later, in section
3.3.1, specifically the load and store subsection. Figure 3.7 also visually explains the different

forms of addressing modes used in most basic RISC processors.
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Figure 3.7: Addressing mode types [9]

3.2 Hardware Implementation

There are many functional pieces that make up the hardware implementation of the DMF RISC

processor designed for this project. The DMF RISC processor was designed using Verilog hard-
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ware description language (HDL) at the register transfer level (RTL). Some features of the hard-

ware implementation are the four-stage pipeline, the arithmetic logic unit (ALU), the shifter,

the multiplier/divider unit, the register file, the cache memories, as well as the main memories

(program and data), and the phase-locked loop (PLL) clock generator (not pictured in Figure

3.8).

Register File
SR

PC

SP

R1

R31

——|ADDR

PM Cache
Program Memory

(Dz,r's

(‘DBfZ

e

d)ZfE

DM Cache

Call Stack/Peripherals

Data Memaory

32

l

A B

Multiplier/Divider

CNVZ ouUT

32

Figure 3.8: DMF RISC CPU Functional Block Diagram



3.2 Hardware Implementation 30

Pipeline Stage Pipeline
IF | | L | L |1
OF Iy h |L|L | 1L
EX Lh| 6L | L |L
WB I | I | b

Clock Cycle \1\2\3\4\5\6\:\

Figure 3.9: Four-Stage Pipeline [4]

Instruction Fetch [—| Operand Fetch |—| Execute |— Write Back

Figure 3.10: Four-Stage Pipeline Block Diagram[4]

3.2.1 Pipeline Design

The use of a pipeline is key for increasing the throughput rate of instructions being executed in
a CPU [27]. The four-stage pipeline in the DMF RISC Processor consists of the following four
stages: instruction fetch, operand fetch, instruction execution, and write-back. After the first
instruction is finished with the instruction fetch stage, the next instruction may enter the pipeline,
and so on. In the CPU implementation, it’s important to note the order that the instructions are
executed during any single clock cycle. Looking at Figure 3.9, if the processor is in clock cycle
4, there is an instruction in each of the pipeline stages. For the purpose of fixing any dependency
issues, the write-back stage with instruction Iy will be executed first, then the execution with
I;, then the operand fetch with I, and finally, the instruction fetch with I3. The implications of

dependencies will be talked about more later in section 3.2.1.2.

3.2.1.1 Instruction Fetch

The instruction fetch (IF) stage is fairly straightforward. This stage consists of loading the next

instruction word from the program memory cache and transferring it into internal registers in
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the main CPU. The instruction word is generally broken up into the op-code and other relevant
pieces of the instruction word, such as operand values. The program counter is then incremented
to point to the next instruction word. The instruction fetch stage is also responsible for stalling
the processor if the next instruction will be a jump, call, return, load, or store. Any instruction
requiring a change in program counter or a second instruction word requires some processor

stalling to execute properly.

3.2.1.2 Operand Fetch

The operand fetch (OF) stage largely depends on the type of instruction being looked at. For
manipulation instructions, the original instruction word had two operands, two source registers,
and a destination register that the result is stored in. This data must be used to find which
general purpose registers are being used in this instruction, and obtain the data from within these
registers. The OF stage is also responsible for working out all dependency issues. In pipelining,
multiple dependency issues can be encountered, such as read after write (RAW), write after
read (WAR), and write after write (WAW). The one that is focused on being handled in this
pipeline structure is read after write. If two consecutive instructions use the same operand as
the destination operand, it is critical that the value from the first instruction be placed in the
operand before the next instruction is executed. To solve this problem, a technique called data
forwarding is called. The operand fetch stage is responsible for executing all data forwarding.
Data forwarding is the process of using internal registers to transfer the value of an operand after
an instruction is executed to the next instruction for execution with the proper number values. For
example, if an instruction that is the equivalent of R2 = R2 + R1 is followed by an instruction
that uses the value of R2 to multiply with R3, data forwarding will be needed because while
the addition instruction is in the execution phase, the multiplication instruction will be in the

operand fetch stage, where the values of the registers will be obtained. In this case, when the



3.2 Hardware Implementation 32

multiplication instruction is in the OF stage, instead of obtaining the value of R2 by looking in
the register file, the processor will use the result of the addition instruction as the value of R2.
Because there are many cases that could occur that would require data forwarding, the OF stage
is one of the most logic-heavy stages, with many conditional statements to make sure all bases

are covered.

3.2.1.3 Instruction Execution

Instruction execution (EX) is exactly what it sounds like, the actual execution of the instruction.
If the instruction is a manipulation instruction, the ALU, shifter, or multiplier/divider is used to
perform logic on the operands and store the result in an internal register. If the instruction is a
load or store, in this phase, the data will be stored to or loaded from memory. If the instruction is
a jump, call, or return, during this stage, the program counter will be set to the new location for

it to continue keeping track of instruction words in the program memory.

3.2.1.4 Write Back

In the write back phase, the result of the instruction execution is written back into the general
purpose destination register, if this applies. If the instruction was a flow control instruction, such
as a jump, call, or return, this phase will also be responsible for telling the processor there is no

longer a need to stall.

3.2.2 Cache Memory

Cache memory is an important feature when a processor would otherwise be reading/writing
from large, monolithic blocks of memory. In hardware, the blocks of memory being used for
program and data memory can be very large and far away from the CPU, making interactions

with these blocks take a long time. To solve this issue, often cache memories will be used. A
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cache memory is a smaller block of memory that temporarily stores relevant blocks of memory to
be used with the CPU. It is up to the architect to decide what makes a block of memory relevant,
and how much memory will be placed in cache at a time. For the DMF RISC processor, the
cache memories each contain 8 blocks of memory, where each block has 16 words.

The way this processor decides which blocks of memory are placed in cache (placement
strategy) are simply based on which addresses are used by the CPU. When an address is called
for by the CPU, the corresponding block will be moved into cache so the CPU can access that
address. Once the cache is full, a replacement strategy must be implemented to decide which
blocks will be overwritten to accommodate for the new block needed by the CPU. In this pro-
cessor, the replacement strategy is the block of memory that was used the longest time ago is the
one that will be replaced by the new block of memory.

There are a few ways to map the main memory blocks to blocks in cache.

» Associative: For a cache that is fully associative, any block in memory can be placed
anywhere in the cache. This means for a replacement strategy, all blocks in cache will
have to be compared to see which was the least recently used. A visual of this cache

organization can be seen in Figure 3.11.
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Figure 3.11: Fully associative cache organization[10]

* Direct: For a cache that is direct mapped, each block in main memory has a designated
block in cache, depending on the group bits in the address. Each address in main memory
is broken into parts that help for organizing where each block belongs. This organization

is broken down in a visual in Figure 3.12.
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Figure 3.12: Direct-mapped cache organization[10]

Group #:

0
1
2

255

* Block-set Associative: Block-set associative can have any number of blocks, for example

4-way set associative or 2-way set associative. This organization method is in between

fully associative and direct mapped. Instead of only having one spot each memory block

can map to, like in direct-mapped, there are a set number of spots each block in memory

can map to. If the organization is 2-way set associative, like in Figure 3.13, there are 2

spots in cache each block in main memory will be able to map to.
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Figure 3.13: 2-way set associative cache organization[10]

Using an organization technique like direct-mapped or block-set associative makes it easier
to decide which blocks to replace when the cache is full. Sometimes, however, using these
methods makes no sense. For example, in the case of a program memory where the addresses
will usually be called chronologically, it might make more sense to use fully associative rather
than direct-mapped or block-set associative since the latter two will restrict how many relevant
blocks of program memory will be able to be in cache at a time. The DMF RISC Processor uses
2-way set associative to map the main memories to the cache.

There are some general properties that can be used to decide on an effective replacement
strategy for cache memory. These include temporal and spacial locality. Temporal locality is a
property of most programs where if a specific address in the memory is used by the CPU, it will

most likely be used again in the near future. Furthermore, spacial locality is a property that if an
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address in memory is used by the CPU, it is likely that addresses nearby will also be used in the
near future. This is especially true for the program memory, where generally, the addresses are
needed in chronological order, with the exception of the case of a jump, call, or return.

Once it has been decided that a block in cache will be replaced, it is also important to keep
track of if this block of memory needs to be written back to the main memory or not. If while in
the cache, a block of memory is at all written to, a write-back of that block will need to be done
to ensure that the main memory reflects the new state of that block of memory. It is important
to note that some memory blocks that do not have a write enable, like ROM, will not require a
write-back. This is true for program memory, in particular.

In the DMF RISC Processor, there are two cache memories, one for the data memory, and
one for the program memory. Since the memory structure was Harvard and then DM and PM

were separated, this was necessary. This can be seen in Figure 3.8.

3.2.3 Stalling

Stalling is required during any flow control instructions, such as jump, call, and return, as well as
for load and store, which use a second instruction word as the address in data memory being ac-
cessed. The stalling is required for different reasons for each of these cases. For the flow control
instructions, stalling is required because until the program counter is set to the new address, there
is no way to get the next instructions to execute. For the load and store, stalling is implemented
for only one clock cycle so that the instruction work with the memory address isn’t implemented
as an actual instruction. Additionally, because the data memory is being accessed, often a clock

cycle is needed to get the information from the data memory.
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N L

Figure 3.14: Clock Phases

3.2.4 Clock Phases

For the best efficiency, a PLL is used to generate three clocks with phases 30° phase shifts. The
¢ clock was used as the CPU clock. The other two, ¢,and ¢3were used as the cache/main mem-
ory clocks. Which clock was used for which memory block depended on if the main memory
was writing to cache or if cache was writing back to main memory. This clock layout made for

the most efficient memory-CPU execution.

3.3 Instruction Details

This section details the implementation of the different instruction types.

3.3.1 Load and Store

Load and store instructions are used to transfer data in and out of memory to general purpose
registers. The load/store operations require two instruction words. The first instruction word
(IWO0) contains the opcode and an Ry, R;, and R; field. The Rjfield is used to determine the
addressing mode of the instruction, the Ryfield is used to tell the processor which general purpose

register to load into, and the Rjfield is used to tell the processor which general purpose register
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to store from. The second instruction word (IW1) contains the address offset the CPU will use

to load or store. The instruction word breakdowns can be found in Figure 3.15.

31 26 25 21 20 16 15 11 10 0

Opcode Ry R; R Unused

31 0

Address Offset

Figure 3.15: Load and Store IWO (top) and IW1 (bottom)

The addressing mode used depends on the value in the Rjfield. The possible addressing
modes to be used are absolute, PC relative, SP, and register direct. A description of each of these

and their corresponding R;field value can be found in Table 3.1.

Table 3.1: Addressing Mode Descriptions

Mode R; Effective Address Value

Absolute 0 The value in the address field

The value of the PC register + the
PC Relative 1
value in the address field

The value of the stack pointer (SP)
SP 2

register

Register Direct | 3-31 | The value of the R; register operand
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Table 3.2: Load and Store Instruction Details[4]

Instruction | Mnemonic | Opcode Function

Load value from memory at the effective address
Load LD 0x15
or I/O peripheral into the R; register

Store the value in the R; register into memory at
Store ST 0x16
the effective address or I/O peripheral

3.3.2 Data Transfer

Data transfer instructions are the swap and copy instructions. These only require one instruction
word since they do not have an address offset. The swap and copy instructions solely deal with
register to register interaction. Swap swaps the values in two registers, while copy copies the
value from one register into another. The instruction word layout and instruction descriptions

can be seen in Figure 3.16 and Table 3.3, respectively.

31 26 25 21 20 16 15 0

Opcode Ry R; Unused

Figure 3.16: Data Transfer Instruction Word

Table 3.3: Data Transfer Instruction Details[4]

Instruction | Mnemonic | Opcode Function

Copy the value from the R; register into the Ry
Copy CPY 0x17
register

Swap SwP 0x18 Swap the values in the R; and R; registers
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3.3.3 Flow Control

Flow control instructions include all jumps, conditional and unconditional, as well as call and
return. The distinct difference between a jump and a call is that a jump can not be returned
from, whereas a call can. This is because during a call, the SR and PC are stored in stack so
that upon return the values can be retrieved from the stack and stored back into their respective
registers. For all of these, two instruction words are required, again an IW0 with the op-code and
addressing mode (and for a jump, conditional information), and an IW1 with the address offset.
The last 4 bits, C, N, V, Z, are all used to tell the condition of the jump. For a call and return,
these field values are ignored or left as Os, since only the opcode and IW1 are needed for the call

and return instructions. The instruction word layouts can be found in Figure 3.17.

31 26 25 21 20 16 15 4 3 2 1 0
Opcode Unused R; Unused C|N|V|Z
31 0
Address Offset

Figure 3.17: Flow Control IWO (top) and IW1 (bottom)

For conditional jumps, the status register is checked to see if the corresponding bit meets the
requirement for the jump before the jump is executed. This means sometimes there is a stall
in the CPU and then no jump is made because the condition fails. There are methods that can
be used to predict if the jump will fail or not, however these were not used in the DMF RISC

Processor. The conditional and unconditional jump descriptions can be found in Table 3.4.
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Table 3.4: Jump Condition Code Description[4]

C|N |V |Z | Mnemonic Description
0({0|0|0| JMP/JU Jump unconditionally
1/0{0/|0 JC Jump if carry
0[(1]0/0 JN Jump if negative
0(0|1]0 JV Jump if overflow
00101 JZ Jump if zero / equal
o111 JNC Jump if not carry
10|11 JNN Jump if not negative
11/0]1 JNV Jump if not overflow
1110 JNZ Jump if not zero / not equal

Table 3.5: Flow Control Instruction Details[4]

Instruction | Mnemonic | Opcode Function

Conditionally (or unconditionally) set the PC to

Jump JMP 0x19
the effective address
Write the PC followed by the SR onto the call
Call CALL Ox1A
stack, set the PC to the effective address

Read the top of call stack into the SR, then read

Return RET 0x1B
the next value into the PC

3.3.4 Manipulation Instructions

Manipulation instructions are some of the more basic instructions that manipulate the contents
of registers. These include adding, subtracting, multiplying, and dividing, as well a logical
manipulation, such as AND, OR, XOR, and NOT. These instructions all take R; and Rjﬁelds and

use the contents in the corresponding registers to perform the manipulation. The Ry register is
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the destination register because the result of the manipulation gets stored in this register. The

R; and R; registers are referred to as the source registers. In some cases, like the multiply and

divide instructions, the R; register contents will also be replaced by results of the manipulation

instruction.

31

26 25

21

20

16

15

11

Opcode

Ry

R;

Rj

Unused

Figure 3.18: Manipulation Instruction Instruction Word
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Table 3.6: Manipulation Instruction Details

Instruction Mnemonic | Opcode Function
Add ADD 0x1 Store R; +R; in Ry
Subtract SUB 0x2 Store R; —R; in Ry
Add constant ADDC 0x3 StoreR; +R; in Ry, where R is a
constant
Subtract constant SUBC 0x4 Store R; —R; in Ry, where R is a
constant
Multiply MUL 0x8 Store the most significant half of R; X R;
in R;and the least significant half Ry
Divide DIV 0x9 Store the quotient of R;/R; in Ryand the
remainder in R;
Exclusive OR XOR OxA Store R;®R; in Ry
Invert NOT Ox11 Store ~ R; in Ry, ignores R; field
AND AND 0x13 Store R; ®R; in Ry
OR OR 0x14 Store R; OR R; in Ry

3.3.4.1 Shift and Rotate

Last, the shift and rotate instructions are used to shift and rotate values in registers a certain

number of times. For these instructions, the value in the R; register is the one shifted or rotated,

and then stored in the Ry register

. The number of times the value is shifted or rotated is dependent on the value in the R; field.

In the DMF RISC Processor, the value will not shift more than 4 times to the right or left.
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Table 3.7: Shift and Rotate Instruction Details

Instruction Mnemonic | Opcode Function
Shift right Shift R; right logically by R; bits and
SHRL 0xB
logical store in Ry
Shift right Shift R; right arithmetically by R;
SHRA 0x12
arithmetic bits and store in R,
Rotate R; right by R; bits and store
Rotate right ROTR 0x5
in Ry
Rotate R; left by R; bits and store in
Rotate left ROTL 0xC
Rg
Rotate left Rotate R; left through negative bit in
RLN 0xD
through negative SR by R; bits and store in Ry
Rotate left Rotate R; left through zero bit in SR
RLZ OxE
through zero by R; bits and store in Ry
Rotate right Rotate R; right through negative bit
RRN OxF
through negative in SR by R; bits and store in Ry
Rotate right Rotate R; right through zero bit in
RRZ 0x10
through zero SR by R; bits and store in Ry




Chapter 4

GCC Back End Alterations

This chapter discusses what changes were made to the back end of GCC with respect to the

ORIk files to match the opcodes of the DMF RISC processor.

4.1 ORIk Structure

The Open RISC 1000 Processor (OR1k) is supported by the GCC C compiler. This means there
are a collection of files that can be used in the back end of GCC to port the intermediate language
or RTL to be compatible binary machine code with the processor. The ORIk is the closest
processor to the DMF RISC Processor, so it is the only one that could be used with some basic

opcode manipulation.

4.1.1 General Structure

The ORIk is somewhat complicated in its instruction set as it has its instructions divided by
addressing mode. Some instructions that have an immediate addressing mode (where a constant

is used in the manipulation), have a standard 6-bit op code followed by a destination and source
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register and then the 16-bit constant value. This, however, is not how all instructions work.
Other instructions that use register-register for manipulation have a general 6-bit opcode in the
beginning, the three registers (5-bits each, destination, A, and B), followed by some unused bits
and then 4-5 bits of a specific opcode at the end of the instruction word. This differs from the
DMEF RISC processor majorly, and causes some misalignment when trying to match the OR1k

instruction words to the DMF RISC processor’s.

4.1.2 Alterations made to OR1K Back End

The alterations made to the OR1k filed in the back end of GCC were simply the changing of the

opcode values.

4.2 GCC Back End

GCC’s back end is used for porting the IR to the machine code compatible with a specific pro-
cessor. By default, this processor is the machine the code is being compiled and run on, but other

processor architectures can be chosen, like in this case, the OR1k processor.

4.2.1 Altered Files

The files that needed to be altered to create machine code that is compatible with the DMF RISC
Processor were limited to the ORIk files. In the file path ../toolchain/binutils/opcodes, there are
a list of 8 files that coincide with creating the machine code for an OR 1k processor, specifically.

The files are:
e orlk-asm.c

» orlk-desc.c : tables of opcode output values
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* orlk-desc.h : contains actual opcode values, as well as other opcode relevant enumerations

(enums) used in orlk-desc.c

e orlk-dis.c

e orlk-ibld.c

* orlk-opc.c : contains some opcode structures, and also how the instructions will be printed

in the disassembly file

 orlk-opc.h : contains some enums that are used in orlk-opc.c

* orlk-opinst.c

The main file that was edited was the orlk-opc.c since it contained the opcode values that needed
to be altered. These specific opcodes were hard-coded into their shifted bit positions in an enum
table, as can be seen in Figure 4.1. The last line of code in these blocks includes a hex number
that is 8 digits long (or 32 bits, the length of one instruction word). The most significant six
bits of these hex numbers are the opcode for the corresponding instruction. For example, the
opcode of the immediate add instruction for the OR1k processor is 0x27, or decimal 39. Since
this opcode needs to be in the most significant 6 bits, however, this is shifted up and the bits go
from least significant spaces to most significant spaces, as can be seen in Figure 4.3. Since in the
DMEF RISC processor the opcode for an immediate add instruction is simply 0x03, this shifted

to the left twice would be 0x0C, as seen in Figure 4.2.

{

{1 B
{ { HNEH L COF ‘', OP {(RA), ',', OP (SIMM16), & } },
& ifmt 1 1wz, { 8x9cd

}r

Figure 4.1: orlk-opc.c before changes
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{
{ |':|r |':|r |':|r [

{ { MNEM, * ' B ',', OP (SIMM1G), © } },
& ifmt 1 lwz, { oxOcE OE
T

Figure 4.2: orlk-opc.c after changes

VA

Figure 4.3: Bits (0x27) shifted to most significant 6 bits to make 0x9C

4.2.2 Resulting Output

The resulting output is a disassembly file with machine code that matches the instruction word
format of the DMF RISC processor. This was obtained and can be seen the lines below in Figure
4.5 with addi instructions. When compared to Figure 4.4, its clear that the opcode for the addi
instruction has been changed successfully. This was the only opcode change implemented, so

this is the only opcode that will have a difference between Figure 4.4 and 4.5.
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hello-world.elf: file format elf32-orilk

Disassembly of section .text:

<main=:
J: 9c¢ ff f4
4: d4 81 10 84

: 9c 41 86 8c

: d4 81 48 08

: @a 20 86 85
4: d7 e:

: 86 .
i O3e
p: d7

s |

i £1

: 84 4
8: 85
4: 9c¢ .

38: 44 0

15 6

.addi ri,ri1,-12
5w 4(rl1),r2
.addi r2,r1,12
.sw B(rl),r9
.ori ri7,ro,0x
swo-12(r2),
JAwz ri17,-12ir2)
.addi ri7,r17,1
swo-12(r2),ri17
.nop 9x@

.or rili,rl?,rl7
Jdwz r2,4(rl)
Jdwz r9,8(r1)
.addi r1,r1,12
ajrr8

.nop 9x@

M L R
[Ty Ay

[
=

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4.4: Disassembly of hello-world.c for OR1k processor
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hello-world.elf: file format elf32-orlk

Disassembly of section .text:

.addi r1, ri, -12
.jsw 4(rl), r2
.addi r2, ri, 12
.5w 8(rl), ro
.addi ri7, r2, 5
.Sw -12(r2), ri7
lwz rle, -12(r2)
.addi r17, ri17, 1
5w -12(r2}, ri7
.nop 0x8

0r rll,rl?,;rl7
dwz r2, 4(rl)
dwz ra, 8(rl)
.baddi r1, ri, 12
.jrra

.nop 8x6

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Figure 4.5: Disassembly of hello-world.c for DMF RISC processor

4.2.3 Changes Not Implemented

A full scale port to the back end of GCC was not implemented for this project. A full scale
port requires much more time and a deeper understanding of the GCC back end, the ABI of the
processor/GCC, and much more. This, however, would be how the DMF RISC processor would
be able to run any C code compiled to it, without having to fix the instruction word structure of the
DMEF RISC processor. Additionally, had the opcode porting with the OR1k processor worked, it
would have only been with certain simple instructions, such as the manipulation and data transfer
instructions. Most likely no instructions that accessed memory would have been functioning, as
well as any flow control instructions, like jumps and calls. These would all require a bit more
manipulation to the ORIk files and the instruction word formats to match them to the DMF RISC

processor (or vice versa). At that point, doing a full port of the back end of GCC to the DMF
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RISC processor would make for a more simple fully functioning processor to compiled C code.



Chapter 5

Tests and Results

This chapter discusses the results of the compiled C code run on the DMF RISC Processor.

5.1 Test of Basic Program

A program titled hello-world.c was used to test the process of compiling to the DMF RISC pro-
cessor. Hello-world.c was a very short and simple program, and can be seen in Program Listing
I.11. The program simply initializes an int variable (x), sets it equal to 5 and then increments it
by 1. This will be a simple enough program to see some instructions be used, but not too com-

plicated for GCC to generate assembly instructions not supported by the DMF RISC Processor.

5.1.1 Compiled Using GCC

The C code was compiled, and the new opcodes were able to be seen in the machine code that was
run in the DMF processor. The machine code that was output from compiling hello-world.c can
be seen in 4.5. This assembly code was inputted into the mif file that the DMF RISC Processor

uses to initialize the program memory, and the program was tested. The output was successful,
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as can be seenin 5.1.

5.1.2 Run in Processor

Register 17 is the one the OR1k back end of GCC decided to use for the variable declared in the
hello-world.c program. It can be seen after the program counter (PC) switches to 0x8, the output
of R17 becomes 5, which is the reflection of the declared integer x being initialized to 5. Then,
a few instructions later, when the PC switches to 0xB, the value in register 17 switches to 6, a

reflection of integer x being incremented by 1.

Figure 5.1: Output waveform for hello-world.c run on DMF RISC Processor

5.1.3 Challenges of using OR1k Back end

There were a few challenges to using the back end of a processor that was not designed exactly

the same as the DMF RISC Processor. The issues are as follows:

1. The supported instructions are not the same. The ORIk has instructions that the DMF
RISC Processor does not support, and vice versa. Therefore, when the GCC compiles the

c code into assembly for the ORIk, all functionality can not necessarily be ported over
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to the DMF RISC Processor. This is one reason why it may be more beneficial to do a
complete back end port of GCC rather than simply an opcode port. The solution to this
was instructions that were unsupported by the DMF RISC Processor were given opcodes
of 0 (equivalent to a nop in the DMF RISC) so that it would not be mistaken for a different
instruction. These instructions were unused or irrelevantly used in the assembly code

generated for hello-world.c

2. Originally, the DMF RISC Processor was a 2-operand processor (destination = destination
(operand) source) while the OR1k is a 3 operand (destination = source (operand) source).
The DMF RISC Processor had to be manipulated a bit to make into a 3-operand processor
to match the OR1k assembly code GCC outputted. It was too difficult to change the OR1k

back end to support the 2-operand instructions.

3. It was very tedious and time-consuming to find the part of the back end where the opcodes
needed to be changed. Eventually, they were found in orlk-opc.c, but the way the opcodes
were hard coded in made them difficult to find. As talked about in section 4.2.1, the
opcodes were pre-shifted to be in the most significant 6 bits of the instruction word. The
opcodes would have been much easier to find if they were put into the code as is, and
GCC shifted them into the most significant 6 bit positions. As much work as porting the
entire back end of GCC to a new processor would have been, it might have taken a similar
amount of time to figuring out the OR1k back end enough to alter the opcodes to match

the DMF RISC Processor.

4. There is no control over how GCC converts the C code to assembly. There were so many
extra unnecessary instructions generated by the GCC compilation process that might be
necessary for the OR1k, but weren’t for the much simpler DMF RISC. Luckily, these

extra instructions were able to be ignored in the DMF RISC, but it takes up extra program
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memory space to have unnecessary instructions, which could be eliminated by doing a full

port to the back end of GCC.



Chapter 6

Conclusions

This chapter discusses future work that could be completed as well as the conclusions from this

project.

6.1 Future Work

In the future, the processor could be more fully integrated with the GCC compiler by improving

two key things:
1. The instructions in the processor, and maybe the structure of their instruction words

2. The number of instructions/opcodes compatible with the GCC compiler

6.1.1 Processor Improvements

Since much of the time spent on this processor was to convert it from a 14-bit (original require-
ments from a class) to a 32-bit, extra critical instructions were not added to create a complete

instruction set. Instructions such as a move instruction, as well as more data transfer instructions
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that would add and remove items from stack (typically push and pop) were not implemented in
this processor, but are used by the GNU Assembler.

Additionally, the processor could be converted to allow for three operands, a destination and
two sources. Most processors operate like this nowadays, however, this processor was a very
basic RISC design. It is much easier to port a processor to C, however, if it is capable of three
operands.

Other components that would improve the processor functionality would be creating different
features, as talked about in Section 2.1.2, such as out-of-order execution and branch predictions.
Since this project was mostly to prove the availability of nearly any processor to be ported to

GCC, these extra tasks were unnecessary, but could be implemented for future improvements.

6.1.2 More Compatible Instruction Words

The DMF RISC processor was not intended to be directly ported to GCC. Since instead the
OR1k model was used and the simple binary of the opcodes were to be changed to be compatible
with opcodes in the DMF RISC processor, the port was not done to its full potential. Using a
tool called CGEN, new processors can be entirely ported to GCC for any C code to compile to
cleanly. In the future, this would be another main goal, to create all the additional files needed
(typically a list of 7/8 files) to completely port the back end of GCC to the DMF RISC processor.
This would most likely be an easier task if the aforementioned changes to the processor were

first made.

6.2 Project Conclusions

Unfortunately, due to the development environment, the port of the DMF RISC processor to the

back end of GCC through the OR1k files was unsuccessful. That does not mean, however, that
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with more work, this could not be done. Even still, processors and compilers were explored in
Chapters 2 and 3, and a deeper understanding of their workings was obtained. Every project
attempt will not be successful, and sometimes it is the failures we learn most from. In the end,
a solid processor was designed and redesigned, and a GCC back end was altered to what should
have made the machine code compatible. Much was learned from this experience, and that is the

main goal of any academic project.
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Appendix I

Source Code

I.1 DMF RISC Verilog Code Main File

module dmf_RISC621_cache_v (Resetn_pin, Clock_pin, SW_pin,

/1

/1

/1

/1
/1

Display_pin);

The code has been only tested for the instruction sequence
currently

loaded in roml. Additional logic may be required for
other instrcution

sequences. DxP October 2014.
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11

12

13

14

15

16

17

18

19
20

I.1

DMEF RISC Verilog Code Main File

I-2

/1

//— Declare machine cycle and

/1

input Resetn_pin, Clock_pin;
input [4:0] SW_pin;
output [7:0] Display_pin; // 8 LEDs

/! Four switches and one push-button

instruction cycle parameters

parameter [21:0] ADD_IC=22"b01, SUB_IC=22"b10, ADDC_IC=22’bll

b

SUBC_IC =22"b100, ROTR_IC=22"b101, MUL_IC=22"b1000,

=22"b1001,

DIV_IC

XOR_IC=22"b001010, SHRL_IC = 22°b001011, ROTL_IC=22"b001100

, RLN_IC = 22°b001101,

RLZ_IC = 22°b001110, RRN_IC=22°b001111, RRZ_IC =
, NOT_IC = 22°b010001 ,

SHRA_IC = 22°b010010, AND_IC = 22°b010011, OR_IC
b010100, LD_IC = 22°b010101,

ST_IC = 22°b010110, CPY_IC = 22°b010111, SWAP_IC
b011000, JMP_IC = 22°b011001,

CALL_IC = 22°b011010, RET_IC = 22°b011011;

22°b010000

22°

22°
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29
30
31
32
33
34
35
36
37

I.1 DMF RISC Verilog Code Main File I-3

parameter [3:0] JU = 4°b0000, JC1 = 4°b1000, JN1 = 4°b0100,

J

/1

/] —=
/1

reg
reg

reg

reg
reg

re

UQ

reg

wWir

JV1 = 4°b0010,
Z1 = 4°b0001, JCO = 4°b0111, JNO = 4°b1011, JVO = 4°b1101,
JZ0 = 4°bl1110;

Declare internal signals

[31:0] R [31:0];
WR DM, stall mcO, stall mcl, stall_mc2, stall mc3;
[31:0] PC, IR3, IR2, IR1, MAB, MAX, MAeff, ADeff, SP,
DM_in, IPDR;
[31:0] TA, TB, TALUH, TALUL, quotient, remainder, TBST;
[11:0] TSR, SR;
[7:0] Display_pin;
[32:0] TALUout;

e [31:0] PM_out, DM_out;

wire Done DM, Done PM;

wire C, Clock _not;

reg

int

[63:0] product;
eger Ril, Rjl, Ri2, Rj2, Ri3, Rj3, Rdl, Rd2, Rd3;
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43

44

45
46

47

48

49

50

I.1 DMF RISC Verilog Code Main File 14

/1

/1

/1

/1

/1

/1

/1
/1

/1

/1

/1

/1

In this architecture we are using a combination of
structural and
behavioral code. Care has to be exercised because the
values assigned

in the process are visible outside of it only during the
next clock

cycle. The CPU comprised of the DP and CU is modelled as
a combination
of CASE and IF statements (behavioral). The memories are
called within
the structural part of the code. We could model the
memories as

arrays , but that would result in less than optimal memory

implementations. Also, later on we will want to add an
hierarchical

memory subsystem .

Structural section of the code. The order of the
assignments doesn’t

matter. Concurrency!
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51 //

52 assign Clock_not = ~Clock_pin;

53

54 dmf_DM_system_v DM (Resetn_pin, Clock_pin, WR DM,
MAeff, DM_in, DM_out, Done DM) ;

55 dmf_PM_system_v PM (Resetn_pin, Clock_pin, PC,
PM_out, Done_PM) ;

56

57 11

58 // Behavioral section of the code. Assignments are evaluated

in order, 1i.e.

59 //  sequentially. New assigned values are visible outside the
always block

60 // only after it is exit. Last assigned value will be the

exit value.

61 //

62 always@ (posedge Clock_not)
63 //
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65
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74
75
76
77
78
79

80
81

I.1 DMF RISC Verilog Code Main File I-6

// The reset is active low and clock synchronous. For
verification/simulation
// purposes it is necessary in this case to initialize the

value of some

/1 registers .
/1
if (Resetn_pin == 1)
begin

PC = 32°h00000000;
R[0] = 0; R[1] = 0; R[2] = 0; R[3] = 0; R[4] = 0;
R[5] = 0; R[6] = 0; R[7] = 0; R[8] = 0; R[9] = O;
R[10] = 0; R[11] = 0; R[12] = 0; R[13] = 0; R[14] = O;
R[15] = 0; R[16] = 0; R[17] = 0; R[18] = 0; R[19] = O;
R[20] = 0; R[21] = 0; R[22] = 0; R[23] = 0; R[24] = O;
R[25] = 0; R[26] = O0; R[27] = 0; R[28] = 0; R[29] = O;
R[30] = 0; R[31] = O;
/l Necessary for sim

/!l The initialization of the stall_mc signals is necessary for

the correct
/1l startup of the pipeline.
stall_mcO = 0; stall_mcl = 1; stall_mc2 = 1; stall_mc3 =

I;
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I-7

/1 All IRs are initialized to the "don’t care OpCode value O

xffff
IR1 = 32°h00000000; IR2 = 32°h00000000; IR3 =
h00000000 ;
TALUout = 0;
TALUH = O0;
TALUL = O;
TSR = 0;
SR = 0;
product = 0;
TA = 0;
TB = 0;
Display_pin = 0;
Ril = 0; Ri2

I
)

Ri3 = 0;
Rjl = 0; Rj2

I
()

Rj3 = 0;

Rdl = 0; Rd2 = 0; Rd3 = O0;

SP = 32°h00003FF0; //may have to change
WRDM = 1°b0;

/I MAeff = 14°b0;

MAB = 32’b00000000;
MAX = 32’°b00000000;
end

else if (Done_PM == 1°b0 || Done_DM == 1°b0) begin
SR = SR;
IR1 = IR1;

32°
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DMEF RISC Verilog Code Main File I-8

/1

/1

/1
/1

IR2 = IR2;
IR3 = IR3;
TA = TA;

TB = TB;

Ril = Ril;
Rjl1 = Rjl;
Ri2 = Ri2;
Rj2 = Rj2;
Ri3 = Ri3;
Rj3 = Rj3;
Rdl = Rdl;
Rd2 = Rd2;
Rd3 = Rd3;

end

else begin

WRDM = 1°b0;

MC3 is executed first because its assignments might be
needed by MC2 or MCI

to resolve data or control D/H.
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125 if (stall_mc3 == 0) begin case (IR3[31:26])
126 //

127 LD_IC: begin

128 if (MAeff[31:22] == 10’ h3FF)

129 if (MAeff[21:0] == 22°hF) R[Rd3] = SP;
130 else R[Rd3] = {27°b000000000, SW_pin};
131 else R[Rd3] = DM_out; end

132 ST_IC: begin

133 WRDM = 1°b0;

134 if (MAeff[31:22] == 10 h3FF)

135 if (MAeff[21:0] == 22°hF) SP = TBST;
136 else Display_pin = TBST[7:0];

137 else ; end

138 CPY_IC: begin R[Rd3] = TALUL; end

139 SWAP_IC: begin

140 R[Rd3] = TALUL;

141 R[Ri3] = TALUH; end

142 JMP_IC: begin case (IR3[3:0])

143 JU : begin PC = ADeff; end

144 JC1: begin

145 if (SR[11] == 1) PC = ADeff;

146 else PC = PC; end
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JN1: Dbegin

if (SR[10] ==

else PC = PC;
JV1: Dbegin

if (SR[9] ==

else PC = PC;
JZ1: begin

if (SR[8] ==

else PC = PC;
JCO: Dbegin

if (SR[11] ==

else PC = PC;
JNO: Dbegin

if (SR[10] ==

else PC = PC;
JVO: begin

if (SR[9] ==

else PC = PC;
JZ0: begin

if (SR[8] ==

else PC = PC;
endcase
stall_mc0 = 1;

CALL_IC: begin

MAeff = SP;

1) PC = ADeff;

end

0) PC

end

0) PC

end

0) PC

end

end

ADeff;

ADeff;

ADeff;

ADeff;

ADeff;

ADeff;
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WR DM

1’bl;

DM_in {{2{SR[11]}}, SR};
PC = MAB + MAX;
stall_ mcO = 1; end
//SP = SP — 1°bl; end
//stall_mc3 = 1; end
RET_IC: begin
PC = DM _out;

stall._ mcO = 1; end

MUL_IC, DIV_IC: begin
R[Rd3] = TALUH;
R[Ri3] = TALUL;
SR = TSR;
Display_pin = R[IR3[3:0]][7:0];

ADD_IC, SUB_IC, ADDC_IC, SUBC_IC, NOT_IC, AND_IC, OR_IC,

SHRA_IC,

end

ROTR_IC, ROTL_IC, XOR_IC, SHRL_IC, RRN_IC, RRZ_IC, RLN_IC,

RLZ_IC:

begin
R[Rd3] = TALUH;
SR = TSR;

Display_pin = R[IR3[3:0]][7:0];

end
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195 default: ;: endcase end

196 //

197 if (stall_mc2 == 0) begin case (IR2[31:26])

198 //

199 JMP_IC: begin

200 ADeff = MAB + MAX;

201 WRDM = 1°b0;

202 stall_ mcO = 1; end

203 LD_IC: begin

204 MAeff = MAB + MAX;

205 WRDM = 1°b0;

206 stall_mcO = 0; end

207 ST_IC: begin MAeff = MAB + MAX;
208 if (MAeff[31:26] != 10’h3FF) begin
209 WRDM = 1°bl;

210 DM_in = TB;

211 TBST = TB; end

212 else WRDM = 1°b0;

213 stall_ mcO = 0; end

214 CPY_IC: begin TALUL = TB;

215 if (TALUL == 32°b0) TSR[8] = 1:
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235
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/1

/1

/1
/1

else TSR[8] = 0; end
SWAP_IC: begin TALUH = TA; TALUL = TB; end
CALL_IC: begin

WRDM = 1°bl;

MAeff = SP;

DM_in = PC;

SP = SP - 1°bl;

stall_mcO = 1; end

//stall_mc2 = 1; end
RET_IC: begin

WRDM = 1°b0;

MAeff = SP;

//PC = DM_out;

SP = SP + 1°bl;

stall_ mcO = 1; end

For all assignments that target TALUH we use TALUout. This
is 15-bits wide

to account for the value of the carry when necessary.

ADD_IC, ADDC_IC: begin
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236 TALUout = TA + TB;

237 TSR[11] = TALUout[14]; // Carry

238 TSR[10] = TALUout[13]; // Negative

239 TSR[9] = ((TA[13] ~~ TB[13]) & TA[13]) » (TALUout[13] & (

TA[13] ~~ TB[13])); // V Overflow

240 if (TALUout[31:0] == 32°h0000) TSR[8] = 1; // Zero

241 else TSR[8] = 0; TALUH = TALUout[31:0]; end

242 SUB_IC, SUBC_IC: begin

243 TALUout = TA - TB;

244 TSR[11] = TALUout[14]; // Carry

245 TSR[10] = TALUout[13]; // Negative

246 TSR[9] = ((TA[13] ~~ TB[13]) & TA[13]) ~ (TALUout[13] & (

TA[13] ~~ TB[13])); // V Overflow

247 if (TALUout[31:0] == 32°h0000) TSR[8] = 1; // Zero
248 else TSR[8] = 0; TALUH = TALUout[31:0]; end
249 MUL_IC: begin

250 product = TA x TB;

251 TALUH = product[63:32];

252 TALUL = product[31:0];

253 TALUout = {TALUH, TALUL[31]};

254 if (product == 0) TSR[8] = 1; //zero

255 else TSR[8] = O;

256 TSR[10] = product[63]; end //negative

257 DIV_IC: begin

258 quotient = TA / TB; remainder = TA % TB;
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TALUH = quotient;
TALUL = remainder;
if (quotient == 0) TSR[8] = 1; //zero
else TSR[8] = 0;
TSR[10] = quotient[31]; end //negative
NOT_IC: begin
TALUout = ~TA;
TALUH = TALUout[31:0];
if (TALUH[31:0] == 32°h00000000) TSR[8]
else TSR[8] = O;
TSR[10] = TALUH[31]; end //negative
AND_IC: begin
TALUout = TA & TB;
TALUH = TALUout[31:0];
TSR[10] = TALUH[31]; // Negative
if (TALUH[31:0] == 32°h00000000) TSR[8]
else TSR[8] = 0; end
OR_IC: begin
TALUout = TA | TB;
TALUH = TALUout[31:0];
TSR[10] = TALUH[31]; // Negative
if (TALUH[31:0] == 32°h00000000) TSRI[8]
else TSR[8] = 0; end
XOR_IC: begin

TALUout = TA * TB;

I

I;

I;

// zero

/]l Zero

/!l Zero
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284 TALUH = TALUout [31:0];

285 TSR[10] = TALUH[31]; // Negative

286 if (TALUH[31:0] == 32°h00000000) TSR[8] = 1; // Zero

287 else TSR[8] = 0; end

288 SHRL_IC: begin //shift right logic

289 case (IR2[1:0])

290 2°b00: begin TALUH = TA; end

291 2°b01: begin TALUH[31]=1"b0; TALUH[30:0]=TA[31:1]; end

292 2°b10: begin TALUH[31:30]=2"b0; TALUH[29:0]=TA[31:2];
end

293 2°bll: begin TALUH[31:29]=3"b0; TALUH[28:0]=TA[31:3];

end endcase end

294 SHRA_IC: begin

295 case (IR2[1:0])

296 2°b00: begin TALUH = TA; end

297 2°b01: begin TALUH[31]=TA[31]; TALUH[30:0]=TA[31:1];

end

298 2°b10: begin

299 TALUH[31]=TA[31]; TALUH[30]=TA[31]; TALUH[29:0]=TA
[31:2]; end

300 2’bll: begin TALUH[31]=TA[31]; TALUH[30]=TA[31];

301 TALUH[29]=TA[31]; TALUH[28:0]=TA[31:3]; end endcase
end

302 ROTL_IC: begin

303 case (IR2[1:0])
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304 2’b00: begin TALUH = TA; end

305 2°b01: begin TALUH[O] = TA[31]; TALUH[31:1]=TA[30:0];
end

306 2°b10: begin TALUH[O] = TA[31]; TALUH[1] = TA[30];
TALUH[31:2] = TA[29:0]; end

307 2°bl1: begin TALUH[O] = TA[31]; TALUH[1] = TA[30];
TALUH[2] = TA[29];

308 TALUH[31:3] = TA[28:0]; end endcase end

309 ROTR_IC: begin //rotate right

310 case (IR2[1:0])

311 2’b00: begin TALUH = TA; end

312 2°b01: begin TALUH[31] = TA[O0]; TALUH[30:0]=TA[31:1];
end

313 2°b10: begin TALUH[31] = TA[O0]; TALUH[30] = TA[1];
TALUH[29:0] = TA[31:2]; end

314 2°bl1: begin TALUH[31] = TA[O0]; TALUH[30] = TA[1];
TALUH[29] = TA[2];

315 TALUH[28:0] = TA[31:3]; end endcase end

316 RLN_IC: begin //roll left through N

317 case (IR2[1:0])

318 2°b00: begin TALUH = TA; end

319 2°b01: begin TALUH[O] = TSR[10]; TALUH[31:1] = TA
[30:0];

320 TSR[10] = TA[31]; end
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2°b10: begin TALUH[O] = TA[31]; TALUH[1] = TSR[10];
TALUH[31:2] = TA[29:0];
TSR[10] = TA[30]; end
2°bl1: begin TALUH[O] = TA[30]; TALUH[1] = TA[31];
TALUH[2] = TSR[10];
TALUH[31:3] = TA[28:0]; TSR[10] = TA[29]; end
endcase end
RLZ_IC: begin //roll left through Z
case (IR2[1:0])
2°b00: begin TALUH = TA; end
2°b01: begin TALUH[O] = TSR[8]; TALUH[31:1] = TA[30:0];

TSR[8]

2°b10: begin TALUH[O] = TA[31]; TALUH[1]
TALUH[31:2]

TSR[8]

2°bll: begin TALUH[O] = TA[30]; TALUH[1]

TALUH[ 2 ]

TALUH[31:3]

= TA[31];

end

= TA[30]; end

= TSR[8];

endcase end

RRN_IC: begin

case (IR2[1:0])

2’b00: begin TALUH = TA;

2°b01: begin TALUH[31]=TSR[10]; TALUH[30:0]=TA[31:1];

TSR[10]

= TA[O];

end

= TA[29:0];

= TA[28:0]; TSR[8]

end

= TA[29];

TSR[8];

TA[31];

end
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337 2°b10: begin TALUH[31]=TA[O]; TALUH[30]=TSR[10]; TALUH
[29:0]=TA[31:2];

338 TSR[10] = TA[1]; end

339 2°bll: begin TALUH[31]=TA[1]; TALUH[30]=TA[O]; TALUH
[29]=TSR[10];

340 TALUH[28:0]=TA[31:3]; TSR[10] = TA[2]; end endcase
end

341 RRZ_IC: begin//roll right through Z

342 case (IR2[1:0])

343 2°b00: begin TALUH = TA; end

344 2°b01: begin TALUH[31]=TSR[8]; TALUH[30:0]=TA[31:1];

TSR[8] = TA[O]; end

345 2°b10: begin TALUH[31]=TA[O]; TALUH[30]=TSR[8];
346 TALUH[29:0]=TA[31:2]; TSR[8] = TA[1]; end
347 2°bl1: begin TALUH[31]=TA[1]; TALUH[30]=TA[O]; TALUH

[29]=TSR[8];

348 TALUH[28:0]=TA[31:3]; TSR[8] = TA[2]; end endcase
end

349

350 default: ; endcase end

351 //

352 if (stall_mcl == 0) begin case (IR1[31:26])
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/1

LD_IC, JMP_IC: begin //think this is done
MAB = PM_out; //unsure
if (Ril == 0) MAX = 0;

else if (Ril == 1) MAX = PC;

else if (Ril == 2) MAX = SP;
else begin
if (Rd2 == Ril) MAX = TALUH;
else 1if ((IR2[31:27] == 5°b00100II1IR2[31:26] == 6’
b011000) && Ri2 == Ril) MAX = TALUL;
else MAX = R[Ril]; end
PC = PC + 1°bl;
stall_mcO = 1; end //maybe
CALL_IC: begin
MAB = PM out;//unsure
if (Ril == 0) MAX = 0;
else if (Ril == 1) MAX

PC;
else if (Ril == 2) MAX = SP;
else begin
if (Rd2 == Ril) MAX = TALUH;
else if ((IR2[31:27] == 5°b00100IIIR2[31:26] == 6°
b011000) && Ri2 == Ril) MAX = TALUL;
else MAX = R[Ril]; end
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374 PC = PC + 1°bl;

375 stall_mcO = 1; //maybe

376 SP = SP - 1°bl; end

377 ST_IC: begin

378 MAB = PM_out; //unsure

379 if (Ril == 0) MAX = 0;

380 else if (Ril == 1) MAX = PC;
381 else if (Ril == 2) MAX = SP;
382 else begin

383 if (Rd2 == Ril) MAX = TALUH;
384 else if ((IR2[31:27] == 5°b00100IITIR2[31:26] == 6°

b011000) && Ri2 == Ril) MAX = TALUL;

385 else MAX = R[Ril]; end

386 PC = PC+ 1°bl;

387 stall_mcO = 1; //maybe

388 if (Rd2 == Rjl1) TB = TALUH;

389 else if ((IR2[31:27] == 5°b00100IIIR2[31:26] == 6°b011000

) && Ri2 == Rjl) TB = TALUL;

390 else

391 TB = R[Rj1];

392 TA = 4°b0; end
393 RET_IC: begin

394 MAeff = SP;

395 SR = DM_out[3:0];

396 SP = SP + 1°bl;
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397 stall_mcO = 1; end

398 CPY_IC: begin

399 if (Rd2 == Ril) TB = TALUH;

400 else if ((IR2[31:27] == 5°b00100IIIR2[31:26] == 6°b011000

) && Ri2 == Ril) TB = TALUL:

401 else TB = R[Ril];

402 TA = 4°b0; end

403 NOT_IC: begin

404 if (Rd2 == Ril) TA = TALUH;

405 else if ((IR2[31:27] == 5°b00100IIIR2[31:26] == 6°b011000

) && Ri2 == Ril) TA = TALUL;

406 else TA = R[Ril];
407 TB = 4°b0; end
408 SHRA_IC, ROTR_IC, RRN_IC, RRZ_IC, RLN_IC, RLZ_IC, SHRL_IC,

ROTL_IC: begin
409 if (Rd2 == Ril) begin TA = TALUH; TB = IR1[1:0]; end
410 else if ((IR2[31:27] == 5°b00100IIIR2[31:26] == 6°b011000
) &% Ri2 == Ril) begin TA = TALUL; TB = IR1[1:0]; end

411 else begin TA = R[Ril]; TB = IR1[1:0]; end end

412 ADDC_IC, SUBC_IC: begin

413 if (Rd2 == Ril) TA = TALUH;

414 else if ((IR2[31:27] == 5°b00100IIIR2[31:26] == 6°b011000

) && Ri2 == Ril) TA = TALUL;
415 else TA = R[Ril];
416 TB = {16°b0, IR1[15:0]}; end
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417 default: begin

418 /1 ADD_IC, SUB_IC, AND_IC, OR_IC, MUL_IC, DIV_IC, XOR_IC,
SWAP_IC:

419 if ((IR2[31:27] == 5°b00100I1IR2[31:26] == 6°b011000) &&

((Rd2 == Ril && Rd2 == Rjl) Il (Rd2 == Ril && Rd2 ==
Rjl))) begin TA = TALUH; TB = TALUL; end

420 else if (Rd2 == Ril && Rd2 == Rjl) begin TA = TALUH; TB =
TALUH ; end

421 else if (Rd2 == Ril) begin TA = TALUH; TB = R[Rjl1]; end

422 else if (Rd2 == Rjl) begin TA = R[Ril]; TB = TALUH; end

423 else 1if ((IR2[31:27] == 5°b00100IIIR2[31:26] == 6’b011000

) &% Ri2 == Ril) begin TA = TALUL; TB = R[Rj1]; end
424 else if ((IR2[31:27] == 5°b001001IIR2[31:26] == 6’b011000
) &% Rd2 == Rjl) begin TA = R[Ril]; TB = TALUL; end

425 else begin TA = R[Ril]; TB = R[Rjl1]; end end
426 endcase

427 end

428 /1

429 // The only data D/H that can occur are RAW. These are
automatically

430 // resolved. In the case of the JUMPS we stall until the
adress of the

431 // next instruction to be executed i1s known.
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432 // The IR value Oxffff I call a "don’t care" OpCode value. It
allows us to
433 /] control the refill of the pipe after the stalls of a jump

emptied 1t.

434 /]

435 if (stall_mc2 == 0)

436 begin IR3 = IR2; Rd3 = Rd2; Ri3 = Ri2; Rj3 = Rj2;
stall_mc3 = 0; end

437 else begin stall_mc3 =1; IR3 = 32°h00000000; Rd3 = 0; Ri3 =

0; Rj3 = 0; end
438 if (stall_mcl == 0) //&& IR2[13:8] != (JMP_IC |l CALL_IC ||
RET_IC)

439 begin IR2 = IR1; Rd2 = Rdl; Ri2 = Ril; Rj2 = Rjl;
stall_mc2 = 0; end

440 else begin stall_mc2 = 1; IR2 = 32°h00000000; Rd2 = 0; Ri2

= 0; Rj2 = 0; end

441 if (stall_mcO0 == 0)

442 begin IR1 = PM_out; Rdl = PM_out[25:21]; Ril = PM_out
[20:16]; RjI = PM_out[15:11]; PC = PC + 1°bl; stall_mcl
= 0; end

443 else begin stall_mcl = 1; IRl = 32°h00000000; Rdl = 0; Ril

= 0; RjlI = 0; end
444 if (IR3 == 32°h00000000)
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445 begin stall_mcO = 0; end
446 //

447 end
448 endmodule

Listing I.1: dmfrISCProcessorMainCode
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.2 DMF RISC Verilog Code Program Memory Cache Logic

module dmf_PM_system_v (Resetn,

input Resetn, clock;
input [31:0] Addr;
output reg Done;

output[31:0] out;

wire [25:0] TAG;
wire [1:0] group;

wire [3:0] word;

clock ,

wire [25:0] dout_CAM_O, dout_ CAM_1;

wire[25:0] din_CAM_O0, din_CAM_1;

wire[3:0] mbitsO, mbitsl;

reg miss, cache_wren, wr_en_0O,
process;

reg[6:0] cache_addr;

reg[31:0] PM_addr;

wire[31:0] cache_out, PM_out;

reg[3:0] replace;

reg[4:0] current_word;

wire cl, ¢c2, c3;

assign TAG = Addr[31:6];

wr_en_ 1,

Addr, out,

rd _en_ O,

Done) ;

rd _en_1,
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assign group = Addr[5:4];
assign word = Addr[3:0];

dmf PLL 2 clock_pll_1 (clock, cl, ¢c2, c3);

// assign PM_addr writeback? PM_wr_addr : PM_rd_addr;

// assign PM_data PM_wren? cache_out : 14°bz;

assign din_CAM_0 wr_en_0 ? TAG : 26°bz;

assign din_CAM_1 wr_en_1 ?7 TAG : 26°bz;

dmf CAM_v PM_CAM O (1’bl, wr_en_0, 1°b0, din_CAM_0, Addr
[31:6], Addr[5:4], dout_CAM_0O, mbits0);

dmf_CAM_v PM_CAM_1 (1°bl, wr_en_1, 1°b0, din_CAM_1, Addr
[31:6], Addr[5:4], dout CAM_1, mbitsl);

dmf PM_v PM MM (PM_addr, c2, PM_out);

dmf PM cache v PM_cache (cache_addr, c¢c3, PM_out,
cache_wren, cache_out);

//dmf_2to4_decoder DECODER (group_in, match_out);

assign out = Done ? cache_out : 32°bz;

always@ (posedge clock) begin

wr_en_0 = 1°b0;
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/1

wr_en_1 = 1°b0;
if (Resetn) begin
miss=1"bl; replace = 4°b0000;
Done = 1°b0; cache_wren = 0;
wr_en 0 = 1’b0; wr_en_1 = 1°b0;
current_word = 5°b00000; process = 0;
end

else begin

if we’ve been out of reset, need to check

or a hit

if (~process) begin

if (mbitsO == 4°b0000 && mbitsl == 4°b0000)

begin miss = 1°bl; Done = 1°b0; end

else begin miss = 1’°b0; Done = 1’b0;

end

//if it’s a hit, we can just use the cache

if (miss == 1’b0) begin

process = 1;

cache_addr[5:4] = group; //cache address

and then 4 word bits

3 block bits

if (mbitsO != 4°b0000)begin //are we taking from Cache0O?

cache_addr[6] = 1°b0;
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replace[group] = 1°b0;
Done = 1;
process = 0;
end
else begin /! or Cachel?
cache_addr[6] = 1°bl;
replace[group] = 1°bl;
Done = 1;
process = 0;

end

cache_addr[3:0] = word;

end

//'it’s a miss, gotta replace
else begin
Done = 0;
process = 1;
cache_addr = {replace[group], group, current_word[3:0]};
PM_addr = {Addr[31:4], current_word[3:0]};
cache_wren = 1°bl;

current_word = current_word + 1°bl;
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92 if (current_word == 5°b10001) begin //done with black

transfer into cache

93 miss = 1°b0;

94 cache _wren = 1°b0;

95 current_word = 5°b00000;

96 if (replace[group]) begin //replacing things in CAM
97 wr_en_1 = 1°bl;

98 end

99 else begin

100 wr_en 0 = 1°bl;

101 end

102 // cache_addr={replace[group], group, word};
103 end

104 end

105 end

106 end

107 endmodule

Listing [.2: Program Memory Cache Logic
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I.3 DMF RISC Verilog Code Data Memory Cache Logic

module dmf_DM_system_v (Resetn, clock,

Done) ;

input Resetn, clock, wr_en;

input [31:0] in, Addr;
output reg Done;

output[31:0] out;

wire [25:0] TAG:;
wire[1:0] group;

wire [3:0] word;

wire [25:0] dout_CAM_O0, dout_ CAM_1;

wr_en, Addr, in, out,

wire [25:0] din_CAM_O0, din_CAM_1;//gonna have to

whole ass mf thing

wire [3:0] mbitsO, mbitsl;

reg miss, cache_wren, DM_wren, wr_en_0O,

rd_en_1, process, writeback;

reg [6:0] cache_addr;

reg[31:0] DM_rd_addr, DM_wr_addr;

wire[31:0] cache_out, DM_out;

wire [31:0] DM_addr, DM_data,

reg [3:0] camO_dirtybit,

reg [4:0] current_word;

caml_dirtybit ,

wr_en_1,

cache_data;

replace;

rethink this

rd_en_O,
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wire c¢l, ¢c2, c3, DM _clk, cache_clk;

assign TAG = Addr[31:6];
assign group = Addr[5:4];
assign word = Addr[3:0];

dmf PLL 2 clock_pll_1 (clock, cl, ¢c2, c3);

assign DM_addr = writeback? DM_wr_addr : DM_rd_addr;
// assign DM_data = DM_wren? cache_out : 14°bz;
assign cache_data = (~miss && wr_en) ? in : DM_out;
assign DM_clk = writeback ? c2 : c3;

assign cache_clk = writeback ? c3 : c¢2;

assign din_CAM_0 wr_en_0 ? TAG : 26°bz;

assign din_CAM_1 = wr_en_1 ? TAG : 26°bz;

dmf CAM_v DM _CAM_1 (1°b0O, wr_en_0, 1’bl, din_CAM_0, Addr
[31:6], Addr[5:4], dout CAM_O, mbits0);

dmf CAM_v DM CAM 2 (1°b0, wr_en_1, 1°bl, din_CAM_1, Addr
[31:6], Addr[5:4], dout_ CAM_1, mbitsl);

dmf DM cache_ v DM_cache (cache_addr, DM_clk, cache_data,

cache_wren, cache_out);
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dmf DM_v DM MM (DM_addr, cache_clk, cache_out, DM_wren,
DM_out) ;
// dmf_2to4 _decoder DECODER (group_in, match_out);

assign out = Done ? cache_out : 32°bz;

always@ (posedge clock) begin

wr_en_0 = 1°b0;
wr_en_1 = 1°b0;
cache _wren = 1°b0;
if (Resetn) begin
miss = 1°bl; replace = 4°b0000;
Done = 1°b0; cache_wren = 0; DM _wren = 0O;
camO_dirtybit = 4°b0000; caml_dirtybit = 4°b0000;
wr_en 0 = 1’b0; wr_en_1 = 1°b0;
current_word = 5°b00000; process = 0; writeback = 0;
// din. CAM 0 = 8’bz; din. CAM_1 = 8’bz;
/1 TAG_0 = 8°b0; TAG_1 = 8’b0; group_0 = 2°b0; group_1 = 2°

b0 ;
end
else begin
//Done = 0;
// if we’ve been out of reset, need to check if its a miss
or a hit DONT NEED
/1 if (Addr == 14°bzzzz7272227272272727)
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64 // Done = 1°bl;

65 if (~process) begin

66 if (mbitsO == 4’°b0000 && mbitsl == 4’°b0000)
67 begin miss = 1°bl; Done = 1°b0; end

68

69 else if (I(mbitsO Il mbitsl))

70 begin miss = 1°b0; Done = 1°b0; end

71 else Done = 1°bl;

72 end

73

74 //1if it’s a hit, we can just use the cache

75 if (Done == 1’bl)

76 Done = 1°bl;

77 else 1f (miss == 1°b0) begin

78 process = 1;

79

80 cache_addr[5:4] = group; //cache address is 3 block bits

and then 4 word bits

81

82 if (mbitsO != 4°b0000)begin //are we taking from Cache0O?
83 cache_addr[6] = 1°b0;

84 replace[group] = 1°bl;

85 Done = 1°bl;

86 process = 1°b0;

87 end
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/1
/1
/1
/1
/1
/1
/1

else begin //or Cachel?
cache_addr[6] = 1°bl;
replace[group] = 1°b0;
Done = 1°bl;
process = 1°b0;

end

cache_addr[3:0] = word;

if (wr_en) begin /1if it’s a write ,
few more things
cache _wren = 1°bl;
// cache_data = in;
camO_dirtybit[ group] = mbitsO[ group];
caml_dirtybit[group] = mbitsl[group];
if (camO_dirtybit != 4°b0000) begin
writebackO[wb_index0] = Addr;
wb_index0 = wb_index0 + 1°bl;
end
if (caml_dirtybit != 4°b0000) begin
writebackl [ wb_index1] = Addr;
end
end
else

cache _wren = 1°b0;

need to

DONT NEED

set a
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//just_reset = 1°b0; DONT NEED

end

//'it’s a miss, gotta replace
else begin

process = 1’bl;

if (replace[group] == 1°b0)

writeback = camO_dirtybit[group];

else writeback = caml_dirtybit[group]; //what’s writeback
?
if (!writeback)begin // Nothing s been

written to, can just replace the block

cache_addr {replace[group], group, current_word

[3:01};
DM_rd_addr = {Addr[31:4], current_word[3:0]};
cache_wren = 1°bl;

DM_wren = 1°b0;

current_word = current_word + 1°bl;

if (current_word == 5°b10001) begin //done with black
transfer into cache
miss = 1°b0;
cache_wren = 1°b0;

current_word = 5°b00000;
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133 if (replace[group]) begin //replacing things in CAM
134 wr_en_1 = 1°bl;

135 end

136 else begin

137 wr_en 0 = 1°bl;

138 end

139 // cache_addr={replace[group], group, word};

140 end

141

142 end

143

144 if (writeback) begin // shit s been written to,

have to writeback and then replace
145 wr_en 0 = 1’b0; wr_en_1 = 1°b0; cache_wren = 1°b0;

DM_wren = 1°bl;

146

147 if (replace[group]) begin

148 cache_addr = {1°bl, group, current_word[3:0]};

149 DM_wr_addr = {dout_CAM_1, group, current_word[3:0]};
end

150

151 else begin//if (replace[group])

152 cache_addr = {1°b0, group, current_word[3:0]};

153 DM_wr_addr = {dout_CAM_0O, group, current_word[3:0]};

end
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current_word = current_word + 1°bl;
if (current_word == 5°b10001) begin // done with
writeback

writeback = 1°b0;

DM_wren = 1°b0;

current_word = 5°b00000;

if (replace[group])

1’b0;

caml_dirtybit[group]
else
camO_dirtybit[group] = 1°b0;

end

end

end

end
end

endmodule

Listing [.3: Data Memory Cache Logic
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I.4 DMF RISC Verilog Code CAM Memory

module dmf CAM_v (PM, we_n, rd_n, din, argin, addrs, dout,

mbits) ;

/1

//—— Declare input and output port types

/1
input PM;
input we_n, rd_n; // write and read enables
input [25:0] din, argin; //data input and argument input
busses
input [1:0] addrs; // address input bus; points to 4
locations
output reg [25:0] dout;
output reg [3:0] mbits; //data output bus and mbits = match
bits
/1

//— Declare internal memory array
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/1
reg [25:0] cam_mem [3:0]; //an array of 4x26 bit locations
integer 1, int_addrs;

/1

//— The WRITE procedural block.

//— This enables a new tag value to be written at a specific
location ,

/] — using a WE, data input and address input busses as with
any

/] —— other memory.

//— In the context of a cache, this happens when a new block
is

/] — uploaded in the cache.

/1

always @ (we_n, din, addrs, argin, PM)
begin
if (PM)
begin
mbits = 4°b0000;
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/1

end

else
begin
if (argin === 26’bx)
mbits = 4°bx;
else
mbits = 4°b0000;

end

int_addrs = addrs;

dout = cam_mem]|[int_addrs ];
if (we_n == 1)
begin
cam_mem]|[ int_addrs] = din;
end
if (argin == cam_mem|[int_addrs])
begin

mbits = 4°b0000;
mbits[int_addrs] = 1;
end

end
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/1 — The READ procedural

block.

at a specific location to be read out,

output and address input busses as

cache, this is not necessary. This

for reference and debugging purposes.

cam_mem]|[ int_addrs |;

//—— This allows a value

/] —— using a RD, data
with any

/] — other memory.

//— In the context of a
functionality

/] — is provided here

/1

/l always @ (rd_n)

/1l begin

// int_addrs = addrs;

/1 if (rd_n == 1)

/1 begin

/1 dout =

/1] end

/1 else

/1 begin

// dout = 8°b0;

/1 end

/1 end



73

74
75
76

77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92

I.4 DMF RISC Verilog Code CAM Memory 143

/1

//— The MATCH procedural block.

//—— This implements the actual CAM function.

//—— An mbit is 1 if the argument value is equal to the content
of the

/] — memory location associated with it.

/1

// always @ (argin)

/1 begin

// int_addrs = addrs;

// mbits = 4°b0000;

/1 if (argin == cam_mem|[int_addrs])

/1 begin

// mbits[int_addrs] = 1;

/1] end

!/ for (1=0; 1 <= 3; i=i+1)

/1 begin

/1 if (argin == cam_mem][i ])

/1 begin

// mbits[i] = 1;
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/1] end
/1 end

/1 end

endmodule

Listing [.4: CAM Memory
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IS5 DMF RISC Verilog Code Main PM

/1
/1
/1
/1

megafunction wizard: %ROM: 1-PORT%
GENERATION: STANDARD

VERSION: WMLI.0

MODULE: altsyncram

File Name: dmf PM v.v
Megafunction Name(s):

altsyncram

Simulation Library Files(s):

altera_mf

sk sk sk skt sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

15.1.0 Build 185 10/21/2015 SJ Lite Edition

sk skosk sk skoskosk sk sk skosk sk sk sk seosk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeosk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk

// Copyright (C) 1991-2015 Altera Corporation.

reserved .

rights
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//Your use of Altera Corporation’s design tools, logic
functions

//and other software and tools, and its AMPP partner logic

// functions , and any output files from any of the foregoing

// (including device programming or simulation files), and any

// associated documentation or information are expressly subject

//to the terms and conditions of the Altera Program License

// Subscription Agreement, the Altera Quartus Prime License
Agreement ,

// the Altera MegaCore Function License Agreement, or other

// applicable license agreement, including, without limitation ,

// that your use is for the sole purpose of programming logic

// devices manufactured by Altera and sold by Altera or its

// authorized distributors. Please refer to the applicable

// agreement for further details.

/!l synopsys translate_off
‘timescale 1 ps / 1 ps
// synopsys translate_on
module dmf PM_v (

address ,

clock ,

q);
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input [13:0] address;

input clock

output [31:0] q:
‘ifndef ALTERA_RESERVED_QIS
/!l synopsys translate_off
‘endif

tril clock;
‘ifndef ALTERA_RESERVED_QIS
// synopsys translate_on

‘endif

wire [31:0] sub_wireO;

wire [31:0] q = sub_wire0[31:0];

altsyncram altsyncram_component (
.address_a (address),
.clockO (clock),
.q_a (sub_wire0),
.aclr0 (1°b0),
.aclrl (1°b0),
.address_b (1’bl),
.addressstall_a (1°b0),
.addressstall_b (1’°b0),
.byteena_a (1°bl),
.byteena_b (1°bl),
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.clockl (1’bl),

.clockenO (1°bl),
.clockenl (1°bl),
.clocken2 (1°bl),
.clocken3 (1°bl),
.data_a ({32{1°bl}}),

.data_b (1’bl),
.eccstatus (),
q_b O,

.rden_a (1’bl),
.rden_b (1°bl),
.wren_a (1°b0),

.wren_b (1°b0));

defparam
altsyncram_component. address_aclr_a = "NONE",
altsyncram_component.clock_enable_input_a = "BYPASS",
altsyncram_component.clock_enable_output_a = "BYPASS",
altsyncram_component. init_file = "dmfRISC621_roml.mif",
altsyncram_component.intended_device_family = "Cyclone IV E

n
b

altsyncram_component.lpm_hint = "ENABLE RUNTIME MOD=NO" ,

altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = 16384,
altsyncram_component.operation_mode = "ROM",

altsyncram_component.outdata_aclr_a = "NONE",
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altsyncram_component.outdata_reg_a = "UNREGISTERED" ,
altsyncram_component.widthad_a = 14,
altsyncram_component.width_a = 32,
altsyncram_component.width_byteena_a = 1;

endmodule

/1 ==== ==== ==== ==== ==== ==== ==============

/1 CNX file retrieval info

/1 ==== ==== ==== ==== ==== ==== ==============

/1 Retrieval info: PRIVATE: ADDRESSSTALL A NUMERIC "0"

/!l Retrieval info: PRIVATE: AclrAddr NUMERIC "0"

/1 Retrieval info: PRIVATE: AclrByte NUMERIC "0"

/1 Retrieval info: PRIVATE: AclrOutput NUMERIC "0"

// Retrieval info: PRIVATE: BYTE ENABLE NUMERIC "0O"

/1 Retrieval info: PRIVATE: BYTE_SIZE NUMERIC "8"

/" Retrieval info: PRIVATE: BlankMemory NUMERIC "0"

// Retrieval info: PRIVATE: CLOCK_ENABLE INPUT A NUMERIC "0"

// Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_A NUMERIC "0"

// Retrieval info: PRIVATE: Clken NUMERIC "0"

// Retrieval info: PRIVATE: IMPLEMENT IN LES NUMERIC "O"

// Retrieval info: PRIVATE: INIT_FILE_LAYOUT STRING "PORT_A"

// Retrieval info: PRIVATE: INIT_TO_SIM_X NUMERIC "0"
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/1

/1
/1
/1
/1

/1
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1

/1
/1

/1

Retrieval

info:

Cyclone IV E"

Retrieval
Retrieval
Retrieval
Retrieval
.mif"
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
"o
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:

info:

info:
info:
info:
info:

info:

info:
info:
info:
info:
info:

info:

PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
LIBRARY :

altera_mf_components. all

Retrieval

Retrieval
BYPASS"

Retrieval

BYPASS"

info:

info:

info:

CONSTANT:
CONSTANT:

CONSTANT:

INTENDED_DEVICE_FAMILY STRING "

JTAG_ENABLED NUMERIC "0"

JTAG_ID STRING "NONE"
MAXIMUM_DEPTH NUMERIC "0"
MIFfilename STRING "dmfRISC621 roml

NUMWORDS_A NUMERIC "16384"
RAM_BLOCK_TYPE NUMERIC "0"
RegAddr NUMERIC "1"

RegOutput NUMERIC "0"
SYNTH_WRAPPER_GEN_POSTFIX STRING

SingleClock NUMERIC "1"
UseDQRAM NUMERIC "0"

WidthAddr NUMERIC "14"
WidthData NUMERIC "32"
rden NUMERIC "0"

altera_mf altera_mf.

ADDRESS_ACLR_A STRING "NONE"
CLOCK_ENABLE_INPUT_A STRING "

CLOCK_ENABLE_OUTPUT_A STRING "



137

138

139

140
141
142
143
144

145
146
147
148

149
150

151

152

153
154

1.5 DMF RISC Verilog Code Main PM

I-51

/1

/1

/1

/1
/1
/1
/1
/1

/1
/1
/1
/1

/1
/1

/1

/1

/1
/1

Retrieval
mif"

Retrieval

info:

info:

Cyclone IV E"

Retrieval

info:

CONSTANT:

CONSTANT:

CONSTANT:

ENABLE RUNTIME_MOD=NO"

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:

info:

info:
info:
info:

info:

address[13..0]"

Retrieval
Retrieval
[31..0]"
Retrieval
0
Retrieval

Retrieval

Retrieval

info:

info:

info:

info:

info:

info:

CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:

CONSTANT:
CONSTANT:
CONSTANT:
USED_PORT::

USED_PORT::
USED_PORT:

INIT_FILE STRING "dmfRISC621_roml.

INTENDED_DEVICE_FAMILY STRING "

LPM_HINT STRING "

LPM_TYPE STRING "altsyncram"
NUMWORDS_A NUMERIC "16384"
OPERATION_MODE STRING "ROM"
OUTDATA_ACLR_A STRING "NONE"
OUTDATA_REG_A STRING "UNREGISTERED

WIDTHAD_A NUMERIC "14"
WIDTH_A NUMERIC "32"
WIDTH_BYTEENA_A NUMERIC "1"

address 0 0 14 0 INPUT NODEFVAL "
clock 0 0 0 0 INPUT VCC "clock™
qg 0 0 32 0 OUTPUT NODEFVAL "q

CONNECT: @address_a 0 O 14 0 address 0 O 14

CONNECT: @clockO 0 0 O O clock 0 0 0 O

CONNECT: q 0 0 32 0 @g_,a 0 0 32 O

GEN_FILE:

TYPE_ NORMAL dmf_PM_v.v TRUE
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/1
/1
/1
/1
/1
/1

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:

info:

GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:

LIB_FILE:

TYPE NORMAL dmf PM_v.inc FALSE
TYPE_NORMAL dmf_PM_v.cmp FALSE
TYPE_NORMAL dmf_PM_v. bsf TRUE
TYPE_ NORMAL dmf_PM_v_inst.v FALSE
TYPE_NORMAL dmf_PM_v_bb.v TRUE

altera_mf

Listing I.5: Main PM
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I[.6 dmf RISC Verilog Code Main DM

/1
/1
/1
/1

megafunction wizard: %RAM: 1-PORT%
GENERATION: STANDARD

VERSION: WMLI.0

MODULE: altsyncram

File Name: dmf DM v.v
Megafunction Name(s):

altsyncram

Simulation Library Files(s):

altera_mf

sk sk sk skt sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

15.1.0 Build 185 10/21/2015 SJ Lite Edition

sk skosk sk skoskosk sk sk skosk sk sk sk seosk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeosk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk

// Copyright (C) 1991-2015 Altera Corporation.

reserved .

rights
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//Your use of Altera Corporation’s design tools, logic
functions

//and other software and tools, and its AMPP partner logic

// functions , and any output files from any of the foregoing

// (including device programming or simulation files), and any

// associated documentation or information are expressly subject

//to the terms and conditions of the Altera Program License

// Subscription Agreement, the Altera Quartus Prime License
Agreement ,

// the Altera MegaCore Function License Agreement, or other

// applicable license agreement, including, without limitation ,

// that your use is for the sole purpose of programming logic

// devices manufactured by Altera and sold by Altera or its

// authorized distributors. Please refer to the applicable

// agreement for further details.

/!l synopsys translate_off
‘timescale 1 ps / 1 ps
// synopsys translate_on
module dmf DM_v (

address ,

clock ,

data ,

wren ,
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q);

input [13:0] address;

input clock;

input [31:0] data;

input wren ;

output [31:0] q;
‘ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
‘endif

tril clock;
‘ifndef ALTERA_RESERVED_QIS
/!l synopsys translate_on

‘endif

wire [31:0] sub_wire0O;

wire [31:0] q = sub_wire0[31:0];

altsyncram altsyncram_component

.address_a (address),

.clock0O (clock),
.data_a (data),
.wren_a (wren),
.q_a (sub_wire0),

.aclrO (1°b0),
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.aclrl (1°b0),

.address_b (1’bl),

.addressstall_a (1°b0),

.addressstall_b (1°b0),

.byteena_a (1°bl),

.byteena_b (1°bl),

.clockl (1’bl),

.clockenO (1°bl),
.clockenl (1°bl),
.clocken2 (1°bl),
.clocken3 (1°bl),

.data_b (1’bl),
.eccstatus (),
q_b O,

.rden_a (1’bl),
.rden_b (1’bl),
.wren_b (1°b0));

defparam
altsyncram_component.
altsyncram_component.

altsyncram_component.

"
9

altsyncram_component.
altsyncram_component.

altsyncram_component .

clock_enable_input_a =
clock_enable_output_a

intended_device_family

lpm_hint = "ENABLE_RUNTIME MOD=NO" ,
lpm_type = "altsyncram",

numwords_a = 16384,

"BYPASS" ,
"BYPASS" ,
"Cyclone IV E
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altsyncram_component.operation_mode = "SINGLE_PORT",

altsyncram_component.
altsyncram_component.
altsyncram_component.

altsyncram_component.

outdata_aclr_a = "NONE",
outdata_reg_a = "UNREGISTERED" ,
power_up_uninitialized = "FALSE"

read_during_write_mode_port_a =

NEW_DATA_NO_NBE READ" ,

altsyncram_component.widthad_a = 14,

altsyncram_component. width_a = 32,

altsyncram_component.width_byteena_a = 1;

endmodule

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

CNX file

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

retrieval info

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

ADDRESSSTALL_A NUMERIC "0"
AclrAddr NUMERIC "0"
AclrByte NUMERIC "0"
AclrData NUMERIC "0"
AclrOutput NUMERIC "0"
BYTE_ENABLE NUMERIC "0"
BYTE_SIZE NUMERIC "8"
BlankMemory NUMERIC "1"
CLOCK_ENABLE_INPUT_A NUMERIC

b

n

HOH
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/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1

/1
/1
/1
/1

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:

info:

Cyclone IV E"

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
NUMERIC
Retrieval
Retrieval
Retrieval
Retrieval
"o
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:
info:
ngn
info:
info:
info:

info:

info:
info:
info:

info:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
Clken NUMERIC "0"
DataBusSeparated NUMERIC "1"
IMPLEMENT_IN_LES NUMERIC "0"
INIT_FILE_LAYOUT STRING "PORT_A"
INIT_TO_SIM_X NUMERIC "0"

INTENDED_DEVICE_FAMILY STRING "

JTAG_ENABLED NUMERIC "0"
JTAG_ID STRING "NONE"
MAXIMUM_DEPTH NUMERIC "0"
MIFfilename STRING ""
NUMWORDS A NUMERIC "16384"
RAM_BLOCK_TYPE NUMERIC "0"
READ_DURING_WRITE_MODE_PORT_A

RegAddr NUMERIC "1"

RegData NUMERIC "1"

RegOutput NUMERIC "0"
SYNTH_WRAPPER_GEN_POSTFIX STRING

SingleClock NUMERIC "1"
UseDQRAM NUMERIC "1"
WRCONTROL_ACLR_A NUMERIC "0"

WidthAddr NUMERIC "14"
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/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1

/1

/1
/1

Retrieval
Retrieval

Retrieval

info:
info:

info:

PRIVATE:
PRIVATE:
LIBRARY :

altera_mf_components. all

Retrieval
BYPASS"

Retrieval
BYPASS"

Retrieval

info:

info:

info:

Cyclone IV E"

Retrieval

info:

CONSTANT:

CONSTANT:

CONSTANT:

CONSTANT:

ENABLE RUNTIME_MOD=NO"

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
FALSE"

Retrieval

info:
info:

info:

info:

info:

info:

info:

CONSTANT:
CONSTANT:
CONSTANT:

CONSTANT:
CONSTANT:

CONSTANT:

CONSTANT:

WidthData NUMERIC "32"

rden NUMERIC "0"

altera_mf altera_mf.

CLOCK_ENABLE_INPUT A STRING "

CLOCK_ENABLE_OUTPUT_A STRING "

INTENDED_DEVICE_FAMILY STRING "

LPM_HINT STRING "

LPM_TYPE STRING "altsyncram"

NUMWORDS_ A NUMERIC "16384"

OPERATION_MODE STRING "SINGLE_PORT

OUTDATA_ACLR_A STRING "NONE"
OUTDATA _REG_A STRING "UNREGISTERED

POWER_UP_UNINITIALIZED STRING "

READ_DURING_WRITE_MODE_PORT_A

STRING "NEW_DATA_NO _NBE _READ"

Retrieval

Retrieval

info:

info:

CONSTANT:
CONSTANT:

WIDTHAD_A NUMERIC "14"
WIDTH_A NUMERIC "32"



156
157

158
159

160

161

162

163
164
165
166
167
168
169
170
171
172
173

[.6 dmf_RISC Verilog Code Main DM

1-60

/1
/1

/1
/1

/1

/1

Retrieval

Retrieval

address [13..0]"

Retrieval

Retrieval

info:

info:

info:

info:

data[31..0]"

Retrieval

[31..0]"
Retrieval
Retrieval

0
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

Retrieval

info:

info:

info:

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

CONSTANT:

USED_PORT::

USED_PORT::
USED_PORT::

USED_PORT::

USED_PORT::

CONNECT:

CONNECT:
CONNECT :
CONNECT:
CONNECT:
GEN_FILE :
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:

LIB_FILE:

WIDTH_BYTEENA_A NUMERIC "1"
address 0 0 14 0 INPUT NODEFVAL "

clock 0 0 0 0 INPUT VCC "clock™

data 0 O

32 0 INPUT NODEFVAL "

q 0 0 32 0 OUTPUT NODEFVAL "q

wren 0 0O 0 O INPUT NODEFVAL "wren

@address_a 0 0 14 0O address 0 0 14

@clockO 0 0 0 O clock 0 0 0 O
@data_a 0 0 32 0 data 0 0 32 O
@wren_a 0 0 0O O wren 0 O O O
q0O0320 @a00 320

TYPE_ NORMAL dmf DM_v.v TRUE
TYPE_NORMAL dmf DM_v.inc FALSE
TYPE_NORMAL dmf DM_v.cmp FALSE
TYPE_NORMAL dmf _DM_v. bsf TRUE
TYPE NORMAL dmf DM_v_inst.v FALSE
TYPE NORMAL dmf DM_v_bb.v TRUE

altera_mf

Listing 1.6: Main DM
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1.7 DMF RISC Verilog Code PM Cache

/1
/1
/1
/1

megafunction wizard: %RAM: 1-PORT%
GENERATION: STANDARD

VERSION: WMLI.0

MODULE: altsyncram

File Name: dmf PM cache v.v
Megafunction Name(s):

altsyncram

Simulation Library Files(s):

altera_mf

sk sk sk skt sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

15.1.0 Build 185 10/21/2015 SJ Lite Edition

sk skosk sk skoskosk sk sk skosk sk sk sk seosk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeosk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk

// Copyright (C) 1991-2015 Altera Corporation.

reserved .

rights
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//Your use of Altera Corporation’s design tools, logic
functions

//and other software and tools, and its AMPP partner logic

// functions , and any output files from any of the foregoing

// (including device programming or simulation files), and any

// associated documentation or information are expressly subject

//to the terms and conditions of the Altera Program License

// Subscription Agreement, the Altera Quartus Prime License
Agreement ,

// the Altera MegaCore Function License Agreement, or other

// applicable license agreement, including, without limitation ,

// that your use is for the sole purpose of programming logic

// devices manufactured by Altera and sold by Altera or its

// authorized distributors. Please refer to the applicable

// agreement for further details.

/!l synopsys translate_off
‘timescale 1 ps / 1 ps
// synopsys translate_on
module dmf_PM_cache_v (
address ,
clock ,
data ,

wren ,
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q);

input [6:0] address;

input clock;

input [31:0] data;

input wren ;

output [31:0] q;
‘ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
‘endif

tril clock;
‘ifndef ALTERA_RESERVED_QIS
/!l synopsys translate_on

‘endif

wire [31:0] sub_wire0O;

wire [31:0] q = sub_wire0[31:0];

altsyncram altsyncram_component

.address_a (address),

.clock0O (clock),
.data_a (data),
.wren_a (wren),
.q_a (sub_wire0),

.aclrO (1°b0),
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.aclrl (1°b0),

.address_b (1’bl),

.addressstall_a (1°b0),

.addressstall_b (1°b0),

.byteena_a (1°bl),

.byteena_b (1°bl),

.clockl (1’bl),

.clockenO (1°bl),
.clockenl (1°bl),
.clocken2 (1°bl),
.clocken3 (1°bl),

.data_b (1’bl),
.eccstatus (),
q_b O,

.rden_a (1’bl),
.rden_b (1’bl),
.wren_b (1°b0));

defparam
altsyncram_component.
altsyncram_component.

altsyncram_component.

"
9

altsyncram_component.
altsyncram_component.

altsyncram_component .

clock_enable_input_a =
clock_enable_output_a

intended_device_family

lpm_hint = "ENABLE_RUNTIME MOD=NO" ,
lpm_type = "altsyncram",

numwords_a = 128,

"BYPASS" ,
"BYPASS" ,
"Cyclone IV E
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altsyncram_component.operation_mode = "SINGLE_PORT",

altsyncram_component.
altsyncram_component.
altsyncram_component.

altsyncram_component.

outdata_aclr_a = "NONE",
outdata_reg_a = "UNREGISTERED" ,
power_up_uninitialized = "FALSE"

read_during_write_mode_port_a =

NEW_DATA_NO_NBE READ" ,

altsyncram_component.widthad_a = 7,

altsyncram_component. width_a = 32,

altsyncram_component.width_byteena_a = 1;

endmodule

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

CNX file

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

retrieval info

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

ADDRESSSTALL_A NUMERIC "0"
AclrAddr NUMERIC "0"
AclrByte NUMERIC "0"
AclrData NUMERIC "0"
AclrOutput NUMERIC "0"
BYTE_ENABLE NUMERIC "0"
BYTE_SIZE NUMERIC "8"
BlankMemory NUMERIC "1"
CLOCK_ENABLE_INPUT_A NUMERIC

b

n

HOH
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/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1

/1
/1
/1
/1

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:

info:

Cyclone IV E"

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
NUMERIC
Retrieval
Retrieval
Retrieval
Retrieval
"o
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:
info:
ngn
info:
info:
info:

info:

info:
info:
info:

info:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
Clken NUMERIC "0"
DataBusSeparated NUMERIC "1"
IMPLEMENT_IN_LES NUMERIC "0"
INIT_FILE_LAYOUT STRING "PORT_A"
INIT_TO_SIM_X NUMERIC "0"

INTENDED_DEVICE_FAMILY STRING "

JTAG_ENABLED NUMERIC "0"
JTAG_ID STRING "NONE"
MAXIMUM_DEPTH NUMERIC "0"
MIFfilename STRING ""
NUMWORDS A NUMERIC "128"
RAM_BLOCK_TYPE NUMERIC "0"
READ_DURING_WRITE_MODE_PORT_A

RegAddr NUMERIC "1"
RegData NUMERIC "1"
RegOutput NUMERIC "0"

SYNTH_WRAPPER_GEN_POSTFIX STRING

SingleClock NUMERIC "1"
UseDQRAM NUMERIC "1"
WRCONTROL_ACLR_A NUMERIC "0"

WidthAddr NUMERIC "7"
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/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1

/1

/1

/1
/1

Retrieval info: PRIVATE: WidthData NUMERIC "32"

Retrieval info: PRIVATE: rden NUMERIC "0"

Retrieval info: LIBRARY: altera_mf altera_mf.
altera_mf_components. all

Retrieval info: CONSTANT: CLOCK_ENABLE INPUT_A STRING "
BYPASS"

Retrieval info: CONSTANT: CLOCK_ENABLE OUTPUT A STRING "
BYPASS"

Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "
Cyclone IV E"

Retrieval info: CONSTANT: LPM_HINT STRING "
ENABLE RUNTIME_MOD=NO"

Retrieval info: CONSTANT: LPM_TYPE STRING "altsyncram"

Retrieval info: CONSTANT: NUMWORDS A NUMERIC "128"

Retrieval info: CONSTANT: OPERATION_MODE STRING "SINGLE_PORT

Retrieval info: CONSTANT: OUTDATA_ACLR_A STRING "NONE"

Retrieval info: CONSTANT: OUTDATA REG A STRING "UNREGISTERED

Retrieval info: CONSTANT: POWER_UP_UNINITIALIZED STRING "
FALSE"

Retrieval info: CONSTANT: READ DURING WRITE MODE _PORT A
STRING "NEW_DATA_NO _NBE _READ"

Retrieval info: CONSTANT: WIDTHAD A NUMERIC "10"

Retrieval info: CONSTANT: WIDTH_A NUMERIC "32"
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/1
/1

/1
/1

/1

/1

/1

Retrieval

Retrieval

address [9..

Retrieval

Retrieval

info:

info:

01"

info:

info:

data[31..0]"

Retrieval
[31..0]"
Retrieval
Retrieval
0
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
FALSE
Retrieval
FALSE
Retrieval
TRUE
Retrieval

FALSE

info:

info:

info:

info:

info:

info:

info:

info:

info:

info:

info:

info:

CONSTANT:

USED_PORT::

USED_PORT::
USED_PORT::

USED_PORT::

USED_PORT::

CONNECT:

CONNECT:
CONNECT :
CONNECT:
CONNECT:
GEN_FILE :
GEN_FILE:

GEN_FILE:

GEN_FILE:

GEN_FILE:

WIDTH_BYTEENA_A NUMERIC "1"
address 0 0 10 0O INPUT NODEFVAL "

clock 0 0 0 0 INPUT VCC "clock™

32 0 INPUT NODEFVAL "

data 0 O

q 0 0 32 0 OUTPUT NODEFVAL "q

wren 0 0O 0 O INPUT NODEFVAL "wren

@address_a 0 0 10 O address 0 O 10

@clockO 0 0 0 O clock 0 0 0 O
@data_a 0 0 32 0 data 0 0 32 0
@wren_.a 0 0O O O wren O O O O
q00320 @ga00320

TYPE NORMAL dmf PM_ cache_v.v TRUE
TYPE_NORMAL dmf_PM_cache_v.inc

TYPE_NORMAL dmf_PM_cache_v.cmp

TYPE NORMAL dmf PM_ cache_v.bsf

TYPE NORMAL dmf PM_cache _v_inst.v
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172 // Retrieval info: GEN_FILE: TYPE NORMAL dmf PM_ cache v_bb.v
TRUE

173 // Retrieval info: LIB_FILE: altera_mf

Listing I.7: PM Cache
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.8 dmf_RISC Verilog Code DM Cache

/1
/1
/1
/1

megafunction wizard: %RAM: 1-PORT%
GENERATION: STANDARD

VERSION: WMLI.0

MODULE: altsyncram

File Name: dmf DM cache_v.v
Megafunction Name(s):

altsyncram

Simulation Library Files(s):

altera_mf

sk sk sk skt sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

15.1.0 Build 185 10/21/2015 SJ Lite Edition

sk skosk sk skoskosk sk sk skosk sk sk sk seosk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeosk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk

// Copyright (C) 1991-2015 Altera Corporation.

reserved .

rights
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//Your use of Altera Corporation’s design tools, logic
functions

//and other software and tools, and its AMPP partner logic

// functions , and any output files from any of the foregoing

// (including device programming or simulation files), and any

// associated documentation or information are expressly subject

//to the terms and conditions of the Altera Program License

// Subscription Agreement, the Altera Quartus Prime License
Agreement ,

// the Altera MegaCore Function License Agreement, or other

// applicable license agreement, including, without limitation ,

// that your use is for the sole purpose of programming logic

// devices manufactured by Altera and sold by Altera or its

// authorized distributors. Please refer to the applicable

// agreement for further details.

/!l synopsys translate_off
‘timescale 1 ps / 1 ps
// synopsys translate_on
module dmf_DM_cache_v (
address ,
clock ,
data ,

wren ,
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q);

input [6:0] address;

input clock;

input [31:0] data;

input wren ;

output [31:0] q;
‘ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
‘endif

tril clock;
‘ifndef ALTERA_RESERVED_QIS
/!l synopsys translate_on

‘endif

wire [31:0] sub_wire0O;

wire [31:0] q = sub_wire0[31:0];

altsyncram altsyncram_component

.address_a (address),

.clock0O (clock),
.data_a (data),
.wren_a (wren),
.q_a (sub_wire0),

.aclrO (1°b0),
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.aclrl (1°b0),

.address_b (1’bl),

.addressstall_a (1°b0),

.addressstall_b (1°b0),

.byteena_a (1°bl),

.byteena_b (1°bl),

.clockl (1’bl),

.clockenO (1°bl),
.clockenl (1°bl),
.clocken2 (1°bl),
.clocken3 (1°bl),

.data_b (1’bl),
.eccstatus (),
q_b O,

.rden_a (1’bl),
.rden_b (1’bl),
.wren_b (1°b0));

defparam
altsyncram_component.
altsyncram_component.

altsyncram_component.

"
9

altsyncram_component.
altsyncram_component.

altsyncram_component .

clock_enable_input_a =
clock_enable_output_a

intended_device_family

lpm_hint = "ENABLE_RUNTIME MOD=NO" ,
lpm_type = "altsyncram",

numwords_a = 128,

"BYPASS" ,
"BYPASS" ,
"Cyclone IV E
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altsyncram_component.operation_mode = "SINGLE_PORT",

altsyncram_component.
altsyncram_component.
altsyncram_component.

altsyncram_component.

outdata_aclr_a = "NONE",
outdata_reg_a = "UNREGISTERED" ,
power_up_uninitialized = "FALSE"

read_during_write_mode_port_a =

NEW_DATA_NO_NBE READ" ,

altsyncram_component.widthad_a = 7,

altsyncram_component. width_a = 32,

altsyncram_component.width_byteena_a = 1;

endmodule

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

CNX file

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

retrieval info

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

ADDRESSSTALL_A NUMERIC "0"
AclrAddr NUMERIC "0"
AclrByte NUMERIC "0"
AclrData NUMERIC "0"
AclrOutput NUMERIC "0"
BYTE_ENABLE NUMERIC "0"
BYTE_SIZE NUMERIC "8"
BlankMemory NUMERIC "1"
CLOCK_ENABLE_INPUT_A NUMERIC

b

n

HOH
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/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1

/1
/1
/1
/1

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:

info:

Cyclone IV E"

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
NUMERIC
Retrieval
Retrieval
Retrieval
Retrieval
"o
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:
info:
ngn
info:
info:
info:

info:

info:
info:
info:

info:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
Clken NUMERIC "0"
DataBusSeparated NUMERIC "1"
IMPLEMENT_IN_LES NUMERIC "0"
INIT_FILE_LAYOUT STRING "PORT_A"
INIT_TO_SIM_X NUMERIC "0"

INTENDED_DEVICE_FAMILY STRING "

JTAG_ENABLED NUMERIC "0"
JTAG_ID STRING "NONE"
MAXIMUM_DEPTH NUMERIC "0"
MIFfilename STRING ""
NUMWORDS A NUMERIC "128"
RAM_BLOCK_TYPE NUMERIC "0"
READ_DURING_WRITE_MODE_PORT_A

RegAddr NUMERIC "1"
RegData NUMERIC "1"
RegOutput NUMERIC "0"

SYNTH_WRAPPER_GEN_POSTFIX STRING

SingleClock NUMERIC "1"
UseDQRAM NUMERIC "1"
WRCONTROL_ACLR_A NUMERIC "0"

WidthAddr NUMERIC "7"
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/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1

/1

/1

/1
/1

Retrieval info: PRIVATE: WidthData NUMERIC "32"

Retrieval info: PRIVATE: rden NUMERIC "0"

Retrieval info: LIBRARY: altera_mf altera_mf.
altera_mf_components. all

Retrieval info: CONSTANT: CLOCK_ENABLE INPUT_A STRING "
BYPASS"

Retrieval info: CONSTANT: CLOCK_ENABLE OUTPUT A STRING "
BYPASS"

Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "
Cyclone IV E"

Retrieval info: CONSTANT: LPM_HINT STRING "
ENABLE RUNTIME_MOD=NO"

Retrieval info: CONSTANT: LPM_TYPE STRING "altsyncram"

Retrieval info: CONSTANT: NUMWORDS A NUMERIC "128"

Retrieval info: CONSTANT: OPERATION_MODE STRING "SINGLE_PORT

Retrieval info: CONSTANT: OUTDATA_ACLR_A STRING "NONE"

Retrieval info: CONSTANT: OUTDATA REG A STRING "UNREGISTERED

Retrieval info: CONSTANT: POWER_UP_UNINITIALIZED STRING "
FALSE"

Retrieval info: CONSTANT: READ DURING WRITE MODE _PORT A
STRING "NEW_DATA_NO _NBE _READ"

Retrieval info: CONSTANT: WIDTHAD A NUMERIC "10"

Retrieval info: CONSTANT: WIDTH_A NUMERIC "32"
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/1
/1

/1
/1

/1

/1

/1

Retrieval

Retrieval

address [9..

Retrieval

Retrieval

info:

info:

01"

info:

info:

data[31..0]"

Retrieval
[31..0]"
Retrieval
Retrieval
0
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
FALSE
Retrieval
FALSE
Retrieval
TRUE
Retrieval

FALSE

info:

info:

info:

info:

info:

info:

info:

info:

info:

info:

info:

info:

CONSTANT:

USED_PORT::

USED_PORT::
USED_PORT::

USED_PORT::

USED_PORT::

CONNECT:

CONNECT:
CONNECT :
CONNECT:
CONNECT:
GEN_FILE :
GEN_FILE:

GEN_FILE:

GEN_FILE:

GEN_FILE:

WIDTH_BYTEENA_A NUMERIC "1"
address 0 0 10 0O INPUT NODEFVAL "

clock 0 0 0 0 INPUT VCC "clock™

32 0 INPUT NODEFVAL "

data 0 O

q 0 0 32 0 OUTPUT NODEFVAL "q

wren 0 0O 0 O INPUT NODEFVAL "wren

@address_a 0 0 10 O address 0 O 10

@clockO 0 0 0 O clock 0 0 0 O
@data_a 0 0 32 0 data 0 0 32 O
@wren_.a 0 0O O O wren O O O O
q0O0320 @a00 320

TYPE NORMAL dmf DM _cache_v.v TRUE
TYPE_NORMAL dmf_DM_cache_v.inc

TYPE_NORMAL dmf_DM_cache_v.cmp

TYPE NORMAL dmf DM _ cache _v.bsf

TYPE NORMAL dmf DM cache_v_inst.v
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172 // Retrieval info: GEN_FILE: TYPE NORMAL dmf DM cache _v_bb.v
TRUE

173 // Retrieval info: LIB_FILE: altera_mf

Listing I.8: DM Cache
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1.9 DMF RISC Verilog Code PLL

/1
/1
/1
/1

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1l

megafunction wizard: %ALTPLL%
GENERATION: STANDARD

VERSION: WMLI.0

MODULE: altpll

File Name: dmf PLL 2.v
Megafunction Name(s):

altpll

Simulation Library Files(s):

altera_mf

sk sk sk skt sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

18.0.0 Build 614 04/24/2018 SJ Lite Edition

sk skosk sk skoskosk sk sk skosk sk sk sk seosk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeosk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk

// Copyright (C) 2018 Intel Corporation. All rights reserved.

//Your use of Intel Corporation’s design tools, logic functions

//and other software and tools, and its AMPP partner logic
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// functions , and any output files from any of the foregoing

// (including device programming or simulation files), and any

// associated documentation or information are expressly subject

//to the terms and conditions of the Intel Program License

// Subscription Agreement, the Intel Quartus Prime License
Agreement,

//the Intel FPGA IP License Agreement, or other applicable
license

// agreement, including , without limitation , that your use 1is
for

// the sole purpose of programming logic devices manufactured by

// Intel and sold by Intel or its authorized distributors.
Please

// refer to the applicable agreement for further details.

/!l synopsys translate_off
‘timescale 1 ps / 1 ps
/!l synopsys translate_on
module dmf_PLL_2 (
inclkO ,
cO,
cl,

c2);
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input
output
output

output

inclkO ;
c0;
cl;

c2;

wire [0:0] sub_wire2 = 1°h0;

wire [4:0] sub_wire3;

wire

sub_wire0 = inclkO;

wire [1:0] sub_wirel = {sub_wire2, sub_wire0 };

wire [2:2] sub_wire6 = sub_wire3[2:2];

wire [1:1] sub_wire5 = sub_wire3[1:1];

wire [0:0] sub_wire4 = sub_wire3 [0:0];

wire
wire

wire

altpll

c0 = sub_wire4;
cl = sub_wire5;
c2 = sub_wire6;

altpll_component (
.inclk (sub_wirel),
.clk (sub_wire3),
.activeclock (),
.areset (1°b0),
.clkbad (),
.clkena ({6{1°bl}}),
.clkloss (),
.clkswitch (1°b0),
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.configupdate (1°b0),
.enable0 (),

.enablel (),

.extclk (),
.extclkena ({4{1°bl}}),
.fbin (1°bl),
.fbmimicbidir (),
.fbout (),

.fref (),

.icdrclk (),

.locked (),

.pfdena (1’°bl),
.phasecounterselect ({4{1°bl}}),
.phasedone (),
.phasestep (1°bl),
.phaseupdown (1°bl),
.pllena (1°bl),
.scanaclr (1’°b0),
.scanclk (1°b0),
.scanclkena (1’°bl),
.scandata (1°b0),
.scandataout (),
.scandone (),
.scanread (1°b0),

.scanwrite (1°b0),
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95 .sclkoutO0 (),

96 .sclkoutl (),

97 .vcooverrange (),
08 .vcounderrange ());

99 defparam

100 altpll_component.bandwidth_type = "AUTO",

101 altpll_component.clkO_divide_by = 1,

102 altpll_component.clkO_duty_cycle = 50,

103 altpll_component.clkO_multiply_by = 1,

104 altpll_component.clkO_phase_shift = "0",

105 altpll_component.clkl_divide_by = 1,

106 altpll_component.clkl_duty_cycle = 50,

107 altpll_component.clkl_multiply_by = 1,

108 altpll_component.clkl_phase_shift = "1667",

109 altpll_component.clk2_divide_by = 1,

110 altpll_component.clk2_duty_cycle = 50,

111 altpll_component.clk2_multiply_by = 1,

112 altpll_component.clk2_phase_shift = "3333",

113 altpll_component.compensate_clock = "CLKO",

114 altpll_component.inclkO_input_frequency = 20000,

115 altpll_component.intended_device_family = "Cyclone IV E",
116 altpll_component.lpm_hint = "CBX_MODULE_PREFIX=dmf_PLL_2",
117 altpll_component.Ilpm_type = "altpll",

118 altpll_component.operation_mode = "NORMAL",

119 altpll_component. pll_type = "AUTO",
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altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.

altpll_component.

altpll_component.
altpll_component.

altpll_component.

port_activeclock = "PORT_UNUSED",
port_areset = "PORT_UNUSED",
port_clkbad0 = "PORT_UNUSED",
port_clkbadl = "PORT_UNUSED",
port_clkloss = "PORT_UNUSED",
port_clkswitch = "PORT_UNUSED",
port_configupdate = "PORT_UNUSED"
port_fbin = "PORT_UNUSED",
port_inclkO = "PORT_USED",
port_inclk1l = "PORT_UNUSED",
port_locked = "PORT_UNUSED",
port_pfdena = "PORT_UNUSED",
port_phasecounterselect =
port_phasedone = "PORT_UNUSED",
port_phasestep = "PORT_UNUSED",
port_phaseupdown = "PORT_UNUSED",
port_pllena = "PORT_UNUSED",
port_scanaclr = "PORT_UNUSED",
port_scanclk = "PORT_UNUSED",
port_scanclkena = "PORT_UNUSED",
port_scandata = "PORT_UNUSED",
port_scandataout = "PORT_UNUSED",
port_scandone = "PORT_UNUSED",
port_scanread = "PORT_UNUSED",
port_scanwrite = "PORT_UNUSED",

"PORT_UNUSED" ,
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altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.
altpll_component.

altpll_component.

endmodule

port_clkO
port_clkl
port_clk?2
port_clk3
port_clk4
port_clk5
port_clkenaO
port_clkenal
port_clkena?2
port_clkena3
port_clkena4
port_clkena$
port_extclkO
port_extclkl
port_extclk?2
port_extclk3

width_clock

"PORT_USED" ,
"PORT_USED" ,
"PORT_USED" ,
"PORT_UNUSED" ,
"PORT_UNUSED" ,
"PORT_UNUSED" ,
"PORT_UNUSED"
"PORT_UNUSED"
"PORT_UNUSED"
"PORT_UNUSED"
"PORT_UNUSED"
"PORT_UNUSED"
"PORT_UNUSED"
"PORT_UNUSED"
"PORT_UNUSED"
"PORT_UNUSED"

5

/| =============================
/1 CNX file retrieval info
/| =============================
/!l Retrieval info: PRIVATE:

ACTIVECLK_CHECK STRING

HOH
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/1
/1

Retrieval
Retrieval
o

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:

info:

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

"50.000000"

PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

BANDWIDTH STRING "1.000"

BANDWIDTH_FEATURE ENABLED STRING

BANDWIDTH_FREQ_UNIT STRING "MHz"
BANDWIDTH_PRESET STRING "Low"
BANDWIDTH_USE AUTO STRING "1"
BANDWIDTH_USE_PRESET STRING "O"
CLKBAD_SWITCHOVER_CHECK STRING "0"
CLKLOSS_CHECK STRING "0"
CLKSWITCH_CHECK STRING "0"
CNX_NO_COMPENSATE_RADIO STRING "0"
CREATE_CLKBAD_CHECK STRING "0"
CREATE_INCLK1_CHECK STRING "O0"
CUR_DEDICATED_CLK STRING "cO"
CUR_FBIN_CLK STRING "c0"
DEVICE_SPEED_GRADE STRING "Any"
DIV_FACTORO NUMERIC "1"
DIV_FACTOR1 NUMERIC "1"
DIV_FACTOR2 NUMERIC "1"
DUTY_CYCLEO STRING "50.00000000"
DUTY_CYCLE1 STRING "50.00000000"
DUTY_CYCLE2 STRING "50.00000000"

EFF_OUTPUT_FREQ_VALUEO STRING
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/1

/1

/1

/1
/1

/1
/1
/1

/1
/1
/1
/1
/1
/1
/1
/1

/1
/1
/1

Retrieval
"50.000000"
Retrieval
"50.000000"
Retrieval
"o

Retrieval
Retrieval
o

Retrieval
Retrieval
Retrieval
"1048575"
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Cyclone IV E"
Retrieval
Retrieval

Retrieval

info:

info:

info:

info:

info:

info:
info:

info:

info:
info:
info:
info:
info:
info:
info:

info:

info:
info:

info:

PRIVATE:

PRIVATE:

PRIVATE:

PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:

EFF_OUTPUT_FREQ_VALUEI STRING
EFF_OUTPUT_FREQ_VALUE2 STRING
EXPLICIT_SWITCHOVER_COUNTER STRING
EXT _FEEDBACK_RADIO STRING "0"
GLOCKED_COUNTER_EDIT CHANGED STRING
GLOCKED_FEATURE_ENABLED STRING "0"
GLOCKED_MODE _CHECK STRING "0"
GLOCK_COUNTER_EDIT NUMERIC

HAS_MANUAL_SWITCHOVER STRING "1"
INCLKO_FREQ_EDIT STRING "50.000"
INCLKO_FREQ_UNIT_COMBO STRING "MHz"
INCLK1_FREQ_EDIT STRING "100.000"
INCLKI1_FREQ_EDIT_CHANGED STRING "1"
INCLK1_FREQ_UNIT_CHANGED STRING "1"
INCLK1_FREQ_UNIT_COMBO STRING "MHz"
INTENDED_DEVICE_FAMILY STRING "

INT_FEEDBACK__MODE_RADIO STRING "1"
LOCKED_OUTPUT_CHECK STRING "0"

LONG_SCAN_RADIO STRING "1"
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211 // Retrieval info: PRIVATE: LVDS MODE _DATA RATE STRING "Not
Available"

212 // Retrieval info: PRIVATE: LVDS MODE DATA RATE DIRTY NUMERIC
"o

213 // Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNITO STRING "deg"

214 // Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT1 STRING "deg"

215 // Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT2 STRING "deg"

216 // Retrieval info: PRIVATE: MIG_DEVICE_SPEED_GRADE STRING "Any"

217 // Retrieval info: PRIVATE: MIRROR_CLKO STRING "0"

218 // Retrieval info: PRIVATE: MIRROR_CLKI STRING "0"

219 // Retrieval info: PRIVATE: MIRROR_CLK2 STRING "O"

220 // Retrieval info: PRIVATE: MULT_FACTORO NUMERIC "1"

221 // Retrieval info: PRIVATE: MULT FACTOR1 NUMERIC "1"

222 |/ Retrieval info: PRIVATE: MULT FACTOR2 NUMERIC "1"

223 // Retrieval info: PRIVATE: NORMAL_MODE RADIO STRING "1"

224 // Retrieval info: PRIVATE: OUTPUT_FREQO STRING "100.00000000"

225 // Retrieval info: PRIVATE: OUTPUT_FREQ1 STRING "100.00000000"

226 // Retrieval info: PRIVATE: OUTPUT_FREQ2 STRING "100.00000000"

227 /! Retrieval info: PRIVATE: OUTPUT_FREQ MODEO STRING "0"

228 // Retrieval info: PRIVATE: OUTPUT_FREQ MODEl1 STRING "0O"

229 // Retrieval info: PRIVATE: OUTPUT_FREQ_MODE2 STRING "0"

230 // Retrieval info: PRIVATE: OUTPUT_FREQ_UNITO STRING "MHz"

231 // Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT1 STRING "MHz"

232 // Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT2 STRING "MHz"
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/1

/1

/1
/1
/1
/1

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

/1
/1

Retrieval
STRING "1"
Retrieval
"o

Retrieval
Retrieval
Retrieval
Retrieval
STRING "0"
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
"o

Retrieval

Retrieval

n

info:

info:

info:
info:
info:

info:

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

info:

info:

PRIVATE:

PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:
PRIVATE:

PHASE_RECONFIG_FEATURE_ENABLED

PHASE_RECONFIG_INPUTS_CHECK STRING

PHASE_SHIFTO STRING "0.00000000"
PHASE_SHIFT1 STRING "30.00000000"
PHASE_SHIFT2 STRING "60.00000000"
PHASE_SHIFT _STEP_ENABLED_CHECK

PHASE_SHIFT_UNITO STRING "deg"
PHASE_SHIFT_UNIT1 STRING "deg"
PHASE_SHIFT_UNIT2 STRING "deg"

PLL. ADVANCED_PARAM_CHECK STRING "0"

PLL_ARESET_CHECK STRING "0"
PLL_AUTOPLL_CHECK NUMERIC "1"
PLL_ENHPLL_CHECK NUMERIC "0"
PLL_FASTPLL_CHECK NUMERIC "0"
PLL_FBMIMIC_CHECK STRING "0"
PLL_LVDS_PLL_CHECK NUMERIC "0"
PLL_PFDENA_CHECK STRING "0O"

PLL_TARGET _HARCOPY_CHECK NUMERIC

PRIMARY_CLK _COMBO STRING "inclkO"
RECONFIG_FILE STRING "dmf_ PLL_2.mif
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/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

/1

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
o

Retrieval
"o

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

info:

info:
info:
info:
info:
info:
info:

info:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

PRIVATE:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

SACN_INPUTS_CHECK STRING "0"
SCAN_FEATURE_ENABLED STRING "1"
SELF_RESET_LOCK_LOSS STRING "0"
SHORT_SCAN_RADIO STRING "0"
SPREAD_FEATURE_ENABLED STRING "0"
SPREAD_FREQ STRING "50.000"
SPREAD_FREQ_UNIT STRING "KHz"
SPREAD_PERCENT STRING "0.500"
SPREAD_USE STRING "O0"
SRC_SYNCH_COMP_RADIO STRING "0O"
STICKY_CLKO STRING "1"
STICKY_CLK1 STRING "1"
STICKY_CLK2 STRING "1"
SWITCHOVER_COUNT_EDIT NUMERIC "1"

SWITCHOVER_FEATURE_ENABLED STRING
SYNTH_WRAPPER_GEN_POSTFIX STRING
USE_CLKO STRING "1"
USE_CLK1 STRING "1"
USE_CLK2 STRING "1"

USE_CLKENAO STRING "O"
USE_CLKENAI1 STRING "O0"
USE_CLKENA2 STRING "O"

USE_MIL_SPEED_GRADE NUMERIC "0"
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/1
/1

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

/1

/1

/1
/1

Retrieval

Retrieval

info:

info:

PRIVATE: ZERO_DELAY_RADIO STRING

LIBRARY :

altera_mf_components. all

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
"20000"

Retrieval

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

info:

Cyclone IV E"

Retrieval
Retrieval

Retrieval

info:
info:

info:

CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:

CONSTANT :

CONSTANT:

CONSTANT:
CONSTANT:

HO"

altera_mf altera_mf.

BANDWIDTH_TYPE STRING "AUTO"
CLKO_DIVIDE_BY NUMERIC "1"
CLKO_DUTY_CYCLE NUMERIC "50"
CLKO_MULTIPLY_BY NUMERIC "1"
CLKO_PHASE_SHIFT STRING "0"
CLK1_DIVIDE_BY NUMERIC "1"
CLKI_DUTY_CYCLE NUMERIC "50"
CLK1_MULTIPLY_BY NUMERIC "1"
CLK1_PHASE_SHIFT STRING "1667"
CLK2_DIVIDE_BY NUMERIC "1"
CLK2 DUTY_CYCLE NUMERIC "50"
CLK2_ MULTIPLY_BY NUMERIC "1"
CLK2_PHASE_SHIFT STRING "3333"
COMPENSATE_CLOCK STRING "CLKO"

INCLKO_INPUT_FREQUENCY NUMERIC

INTENDED_DEVICE_FAMILY STRING "

LPM_TYPE STRING "altpll"

OPERATION_MODE STRING "NORMAL"
PLL_TYPE STRING "AUTO"
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/1

/1
/1
/1
/1
/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1
/1

Retrieval

info:

PORT_UNUSED"

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

"

Retrieval

info:
info:
info:
info:

info:

info:

PORT_UNUSED"

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:

info:

PORT_UNUSED"

Retrieval

"

Retrieval

"

Retrieval

info:

info:

info:

PORT_UNUSED"

Retrieval

Retrieval

info:

info:

CONSTANT:

CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:

CONSTANT:

CONSTANT:

CONSTANT:

CONSTANT:

CONSTANT:

CONSTANT:

CONSTANT:

CONSTANT:

CONSTANT :

CONSTANT:

CONSTANT:
CONSTANT:

PORT_ACTIVECLOCK STRING "

PORT_ARESET STRING "PORT _UNUSED"
PORT_CLKBADO STRING "PORT_UNUSED"
PORT_CLKBADI STRING "PORT _UNUSED"
PORT_CLKLOSS STRING "PORT_UNUSED"
PORT_CLKSWITCH STRING "PORT_UNUSED

PORT_CONFIGUPDATE STRING "

PORT_FBIN STRING "PORT_UNUSED"
PORT_INCLKO STRING "PORT_USED"
PORT_INCLK1 STRING "PORT _UNUSED"
PORT_LOCKED STRING "PORT_UNUSED"
PORT_PFDENA STRING "PORT_UNUSED"

PORT_PHASECOUNTERSELECT STRING "

PORT_PHASEDONE STRING "PORT_UNUSED

PORT_PHASESTEP STRING "PORT_UNUSED

PORT_PHASEUPDOWN STRING "

PORT_PLLENA STRING "PORT_UNUSED"
PORT_SCANACLR STRING "PORT_UNUSED"
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/1
/1

/1
/1

/1
/1
/1

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

Retrieval

Retrieval

info:

info:

PORT_UNUSED"

Retrieval

Retrieval

info:

info:

PORT_UNUSED"

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:

info:

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

CONSTANT:
CONSTANT:

CONSTANT:
CONSTANT:

CONSTANT:
CONSTANT:
CONSTANT:

CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:

PORT_SCANCLK STRING "PORT_UNUSED"
PORT_SCANCLKENA STRING "

PORT_SCANDATA STRING "PORT_UNUSED"
PORT_SCANDATAOUT STRING "

PORT_SCANDONE STRING "PORT _UNUSED"
PORT_SCANREAD STRING "PORT_UNUSED"
PORT_SCANWRITE STRING "PORT_UNUSED

PORT_clkO STRING "PORT_USED"

PORT_clkl STRING "PORT_USED"

PORT_clk2 STRING "PORT_USED"

PORT_clk3 STRING "PORT _UNUSED"

PORT_clk4 STRING "PORT _UNUSED"

PORT_clk5 STRING "PORT _UNUSED"

PORT_clkenaO STRING "PORT_UNUSED"

PORT_clkenal STRING "PORT _UNUSED"

PORT_clkena2 STRING "PORT_UNUSED"

PORT_clkena3 STRING "PORT _UNUSED"

PORT_clkena4 STRING "PORT_UNUSED"

PORT_clkena5 STRING "PORT_UNUSED"

PORT_extclkO STRING "PORT_UNUSED"

PORT_extclkl STRING "PORT_UNUSED"

PORT_extclk2 STRING "PORT _UNUSED"
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/1
/1
/1

/1

/1

/1

/1

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

Retrieval
Retrieval
Retrieval
@clk[4..0]"
Retrieval

"

Retrieval

"

Retrieval

"

Retrieval

"inclkO"

info:

info:

info:

info:

info:

info:

info:

Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:

info:

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:
info:

info:

CONSTANT: PORT_extclk3 STRING "PORT_UNUSED"

CONSTANT: WIDTH_CLOCK NUMERIC "5"

USED_PORT::

USED_PORT::

USED_PORT::

USED_PORT::

USED_PORT::

CONNECT:
CONNECT :
CONNECT:
CONNECT:
CONNECT:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:

LIB_FILE:

cO 00O

cl 00O

c2 000

inclkO O

@clk 0 0 5 0 OUTPUT_CLK_EXT VCC "

0 OUTPUT_CLK_EXT VCC "cO

0 OUTPUT_CLK_EXT VCC "cl1

0 OUTPUT_CLK_EXT VCC "c2

0 0 0 INPUT_CLK_EXT GND

@inclk
@inclk
c0 00
cl 00

o o o o o
o o o o o

c2 00

1 TGND O O OO
I 0 inclkO 0 0 O O
@clk 0 010
@clk 0 0 1 1
@clk 0 0 1 2

TYPE NORMAL
TYPE_NORMAL
TYPE_NORMAL
TYPE_ NORMAL
TYPE_NORMAL
TYPE_ NORMAL
TYPE_ NORMAL

altera_mf

dmf_PLL_2.
dmf_PLL_2.
dmf_PLL_2.
dmf_PLL_2.
dmf_PLL_2.

v TRUE

ppf TRUE
inc FALSE
cmp FALSE
bsf FALSE

dmf PLL 2 inst.v FALSE

dmf_PLL_2_

bb.v FALSE
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357 // Retrieval info: CBX MODULE_PREFIX: ON

Listing [.9: PLL
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.10  DMF RISC Verilog Code Testbench

‘timescale 1 ps/1 ps

module test;
reg Resetn_tb, Clock_tb;
reg [4:0] SW_in_tb;
wire [7:0] Display_out_tb;

integer 1;

dmf_RISC621_cache_v top (Resetn_tb, Clock_tb, SW_in_tb,

Display_out_tb);

initial begin

$sdf_annotate ("sdf/dmf_RISC621_cache_v_tsmcl8_scan.sdf", test.
top);

/1l

/1 Resetn_tb, Clock_tb, SW_in_tb, Display_out_tb
//

//— Test Vector 1 (40ns): Reset
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for (1=0; 1<5;

apply_test_vector (1,

//— All other

i=i+1)

test vectors

0, 5°b00000) ;

//
for (1=0; 1<800; i=i+1)
apply_test_vector (0, 0, 5°b00000);
end
task apply_test_vector;
input Resetn_int, Clock_int;
input [4:0] SW_in_int;
begin
Resetn_tb = Resetn_int; Clock _tb
SW_ in tb = SW_in_int;
#20000;
Clock _tb = 1;

Clock _int;
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#20000;
end
endtask

endmodule

Listing I.10: testbench
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I.11 Hello-World C Test Code

E:

/1

//
//  hello-world.c

/1
/1

/1
/1 This file is part of the Amber project
/1
// http ://www.opencores.org/project ,amber
/1l
/1

/1
/!l Description
/1

// Simple stand —alone example application.

/1
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/1

/1
/! Author(s):
/1
// — Conor Santifort, csantifort.amber@gmail.com
/1
/1

/1
LEETETTEL T r i i r b r i r i r i rrrrrrry

/1

/1
// Copyright (C) 2010 Authors and OPENCORES.ORG
/1
/1

/1
/1 This source file may be used and distributed without
/1
// restriction provided that this copyright statement is not

/1



20

21

22

23

24

25

26

27

28

29

30

1.11 Hello-World C Test Code 1-101

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

/1

removed from the file and that any derivative work contains
/1
the original copyright notice and the associated disclaimer.

/1

/1

This source file is free software; you can redistribute it
/1

and/or modify it under the terms of the GNU Lesser General
/1

Public License as published by the Free Software Foundation;
/1

either version 2.1 of the License, or (at your option) any
/1

later version.

/1

/1
This source is distributed in the hope that it will be
/1
useful , but WITHOUT ANY WARRANTY; without even the implied
/1
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/1 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
/1
// PURPOSE. See the GNU Lesser General Public License for more
/1
/]l details.
/1
/1

/1
/!l You should have received a copy of the GNU Lesser General
/1
// Public License along with this source; if not, download it
/1
/!l from http ://www.opencores.org/lgpl.shtml
/1
/1

/1

%/

/+ Note that the stdio.h referred to here is the one 1in
mini—libc. This applications compiles in mini—-libc
so it can run stand-alone.

%/
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45 #include "stdio.h"

46

47 main ()

48 {

49 // printf ("Hello, World!\n");
50 /%« Flush out UART FIFO =/

51 // printf (" ")
52 /] _testpass () ;

53 /1

54 int x;

55

56 X =95 ;

57 X = x + 1;

58 }

Listing I.11: Hello-World C Test Code
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